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Abstract 

 

Electric power systems are huge real time energy distribution networks where 

accurate short term load forecasting (STLF) plays an essential role. This thesis is an 

effort to comprehensively investigate new and advanced neural network (NN) 

architectures to perform STLF. Two hybrid and two 3-layered NN architectures are 

introduced. Each network is individually tested to generate weekday and weekend 

forecasts using data from three jurisdictions of Canada.  

Overall findings suggest that 3-layered cascaded NN have outperformed almost 

all others for weekday forecasts. For weekend forecasts 3-layered feed forward NN 

produced most accurate results. Recurrent and hybrid networks performed well during 

peak hours but due to occurrence of constant high error spikes were not able to achieve 

high accuracy.  
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Chapter 1: Introduction 

1.1 Overview 

The electric power system is one of the biggest real time energy distribution 

systems where the generation, transmission and distribution of electrical energy take 

place simultaneously. With negligible storage of energy in the system, operation of an 

electric power system is a challenging task. The system response is dictated by on-line 

load requirements, and to strike a consistent balance between supply and demand of 

electric power is the main task of power systems operation management also known as 

Energy Management System. In order to achieve this task, an adequate amount of 

generation resources should be available at all times. The optimal allocation of these 

resources requires an accurate forecast of future load demands in order to ensure smooth 

operation and decrease generation cost [1 – 3]. All involved entities in a power system 

perform load forecasting on a continuous basis in order to operate efficiently in today’s 

deregulated environment. Whether be Generation companies, Transmission companies, 

Independent Power Producers, Independent System Operators or Regional Transmission 

Organizations, all base their planning, negotiations, and operations on the basis of load 

forecasting results achieved by adopting one of load forecasting methods available. 

Reduction in forecasting accuracy results in uneconomic operation. Hodge in [4] 

studied the implications of both positive and negative load forecasting error and 

concluded that errors on either side may result in high operating costs. For example one 

of the fallouts of underestimating load, is limited electric supply which may lead to 

reduction in energy quality which might prove costly.  On the other hand an 

overestimation causes excessive use of precious resources and results in expensive 
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generation [5]. This relationship between forecasting error and operating costs quantified 

by Hobbs in [6] showed that a 1% reduction in forecasting error of 10 GW utility results 

in an annual savings of US $ 1.6 million. Hipert in [7] says that “The costs of the error 

are so high that research that could help reducing it in a few percent points would be 

amply justified”. 

With respect to time horizons, load forecasting can be classified into three types: 

Long term, Medium term and Short term load forecasting. The Long Term Load 

Forecasting (LTLF) consists of forecasts from one to several years and has applications 

in long term planning of power systems. The Medium term load forecasting (MTLF) 

predicts load weekly, monthly and yearly for the mid-term planning tasks such as 

maintenance, fuel supply planning and generation scheduling of a power plant. The Short 

term load forecasting (STLF) on which this thesis is focused, predicts load demand for 

one hour to one week ahead. It assists in day to day operation of a power system and 

helps in performing functions like unit commitment, economic load dispatch, automatic 

generation Control, power system security analysis and electric price forecasting in 

deregulated power markets [8 – 9].  

For accurate STLF the most important aspect to deal with is the system load 

model. The load response is non-linear and is influenced by many factors such as time of 

day, day of week; weather specially temperature, season, market economic conditions 

and several random factors depending on social activities of the population, geography 

and characteristics of terrain [10]. Hipert in [7] indicates the effect of load of previous 

hour, same hour on previous days, same hour on same day of previous week and 

exogenous variables such as weather-related variables, weekdays, weekends and holidays 
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on having a substantial impact on load and to be considered while modeling load for 

STLF. 

1.2 Thesis Objective 

STLF has been one of the most researched areas of power systems studies and 

until now numerous forecasting methods have been introduced and employed [1, 5, 7 – 

12]. Many literature reviews have classified these methods into two main types which 

are: conventional or classical and computational or artificial intelligence techniques. 

Classical methods mostly include Time series models, Regression models and State space 

models in conjunction with estimation using Kalman filter. On the other hand models 

based on Expert systems, Fuzzy Inference, Machine Learning such as Support Vector 

machines (SVMs) and Neural networks (NNs) along with some hybrid models are 

classified as artificial intelligence methods. Classical methods treat load response as a 

linear device. The load series however, is a non-linear function especially considering 

distributed generation and deregulated market conditions. It requires computational 

intelligence based techniques [7] in order to accommodate non-linearity in load model. 

Standalone classical methods are no more sufficient enough to fulfill the needs of 

efficient economic operation.  

Among artificial intelligence methods Neural Networks (NNs) has gained much 

of attention during last three decades [12]. NNs are inspired by function of neurons in 

human brains [13]. They perform parallel processing in order to model non-linear 

systems such as load series by using artificial neuron model. The key reason for 

popularity of NNs is their ability to model load series with the help of effective training 

algorithm which uses historical and current data in order to teach the behavior of load to 
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NN and make it prone to any non-linearity that occur due to certain events during the 

operation. 

STLF through NN has been a popular topic among researchers and an immense 

amount of studies have been carried out to investigate the performance of different 

techniques and architectures of NN to improve the accuracy of STLF. In particular, 

ANNSTLF method introduced by Khotanzad et. al [14] in 1998 uses a Multilayer 

Perceptron (MLP) feed forward NN (FFNN) architecture trained by the error  Back 

Propagation (BP) method. Two ANN forecasters are used in parallel. Base load is 

predicted by one method and change in load by the other and a Recursive Least Squares 

(RLS) algorithm is used to combine both and give final forecast. Finally the effect of 

weather elements has been taken care of by transforming them into effective 

temperatures. 35 utility in various states of USA and Canada adopted this method. 

Similar sort of studies have been done in [15 – 21].  

Moreover, Cascaded NN (CNN) and Recurrent NN (RNN) have not been given 

much attention recently. Though some studies do test these networks in [22 – 27] but a 

thorough model is not being developed to take advantage of all benefits that might be 

achieved as a result of using these advanced architectures.  

This thesis embodies an effort to comprehensively investigate CNNs and RNNs to 

perform STLF and explore their advantages and disadvantages Hybrid network 

architectures combining CNN and RNN are introduced. In this architecture inputs are 

being cascaded in each layer as well as a local and global feedback loops are also used. 

Furthermore, two 3-layered versions of FFNN and CNN are also demonstrated to 

produce good forecasts. A total of eight architectures are individually tested and their 
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results are compared with each other. Case study data from three Canadian jurisdictions 

(Nova Scotia, New Brunswick and Ontario) are used to test the performance of 

understudy networks on real data. These jurisdictions are selected because their load 

demands differ from each other both in size and response. In this way the adaptability of 

each network is tested.   

This thesis also includes a study of load response of each jurisdiction in order to 

find out dominating factors affecting the load and a common set of variables for each 

dataset has been selected. Data preprocessing, separation of data into weekdays and 

weekends and training and testing sets of data have been carried out. Day ahead and weak 

ahead forecasts for weekdays and separate forecast for weekend are performed using all 

architectures for the three aforementioned datasets.  

1.3 Structure of the Thesis 

This introductory chapter is followed by an overview of STLF and a literature 

review in Chapter 2. Chapter 3 gives a theoretical background of Artificial Neural 

network architectures and learning algorithms used in this thesis. Chapter 4 treats the 

implementation of ANNs to perform STLF. Chapter 5 presents a comparative analysis 

and discussion of the results achieved for all three jurisdictions. Lastly, chapter 6 contains 

conclusion of the research and suggestions for future work. 
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Chapter 2: Short-Term Load forecasting (STLF) 

2.1 A brief description of Power Systems 

Power systems are complex energy transformation systems where energy is 

converted from various forms to electrical energy and transmitted and distributed to 

customers. It consists of three stages namely generation, transmission and distribution. A 

generalized structure of a power system is shown in figure 1:  

 

Figure 1: A generalized structure of Power System [3] 

The bulk of generation is performed at distant locations from where power is 

transferred through high voltage transmission lines to distribution centers from where it’s 

stepped down and delivered to the customers. Increasingly, distributed generators (DG) 

are being included in the network at the transmission and distribution stages in order to 

reduce reliance on non-environmentally friendly fossil-fuel based generation, reduce cost 

of power, and reducing power losses in transmission and distribution. A single line 

diagram of an electric power system is shown in Fig. 2 showing various elements of 

power system.  
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Figure 2: A single line diagram of electric Power System [1] 

The architecture of power system is different for different facilities depending on 

several factors related to the generating sources and load requirements. All present-day 

power systems are ac three-phased systems with predefined voltage and frequency.  

2.2 The necessity & importance of STLF 

One of the most important tasks of power system management also referred as 

Energy Management Systems (EMS) is to fulfill load requirements at all time. Since 

traditionally there has been no significant storage, a power system consists of multiple 

generating sources in order to provide enough redundancy to system. The extra 
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generation resources are also referred to as spinning reserves. To have a certain amount 

of spinning reserves floating all the time is extremely crucial and EMS is responsible for 

taking this operating decision. Since various jurisdictions set various capacity margins an 

accurate short term load forecasting is required to maintain the security of the system and 

help EMS to have sufficient spinning reserves.  

Kyriakides in [1] explained the significance of STLF in modern day operation of 

power systems. For any power utility to function economically without compromising 

security and reliability of the system has become a challenging task due to deregulated 

market and load demand, regulations on power quality and several system requirements. 

Power system studies such as load flow, contingency analysis, protection studies, unit 

commitment or economic load dispatch all rely on the results of STLF. For example the 

output of STLF is input for load flow studies and contingency analysis. With the help of 

these studies line flows, required active and reactive power generation as well as bus 

voltages are determined. When a contingency occurs, prevailing conditions can be 

determined.  

Furthermore, STLF is valuable for operations specialists to prepare for corrective 

measures like increasing spinning reserves, load shedding, switching interconnections, 

starting up any available generators or even exporting power from other utilities in case 

of any type of faults estimated. Also with increase in deregulation the accurate 

forecasting has become more essential both for plant and system operators on or market 

players like generation or transmission companies. The preceding actions highlight the 

importance of STLF in maintaining security and reliability of a power system. 
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2.3 A standardized approach to STLF 

STLF is a complex problem in which the relationship between load and the 

variables influencing it is generalized in order to predict future load values. Generally the 

correlation between load and related variables is identified and then quantified using an 

appropriate technique [28]. In recent years many different ways particularly those 

involving artificial intelligence based methods have been developed and employed in 

industry to perform STLF. López and Valero in [29] tried to come up with a standard 

model based on recently published methods. The standard model introduced in [29] 

contains processes which are common in most methods under study. The outline of the 

model introduced contains five stages which are found to be common between 

forecasting models.  The effectiveness and inadequacy of a forecasting model depend on 

all stages of standard model shown in figure 3 below followed by a brief description of 

each stage: 

 

Figure 3: Standardized structure of STLF model [28] 

2.3.1 Data Pre-processing 

The raw input data of load and other effective variables are presented in this stage. 

The raw data is first filtered to deal with abnormalities or missing values and then it is 
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normalized within a range to simplify the process. The normalized data is then classified 

in accordance with the load profile such as weekday, weekend, holiday or any special 

human social activity. Decomposing the data into components might also be required in 

some models. It involves transforming data using the Fourier or Wavelets transforms or 

fuzzy membership functions so that it is ready to apply respective forecasting technique. 

2.3.2 Variable Selection 

In this stage statistical tools such as self-correlation, cross-correlation and trial and 

error analysis are applied to variables affecting future forecast load values. Past load 

values affecting future load are selected through self –correlation analysis. Furthermore, 

in cross-correlation factors related to other series like the influence of weather related 

variables on the load series are determined.  Also trial and error methods employed and 

checked to see if there are any other variables affecting the load other than those 

determined by statistical analysis. So, this stage transforms raw data into a database 

including prominent information related to the forecast. 

2.3.3 Training Frame Selection 

This stage is deemed to be a most crucial stage of the model. It involves selection 

of training frame from data which teaches forecasting engine the desired behavior of 

load. Therefore, selection of these data points should be done very carefully as accuracy 

of forecasting engine depends on them. The training period that likely replicates the 

forecasting period should be identified and chosen. This is similar to the classification 

done during the first stage. This step may consist of selecting days from similar times of 



 

 11 

 

the year, days based on analogous events or days with similar weather and social 

activities like weekdays and weekends.  

2.3.4 Load Forecasting 

First, the forecasting engine is selected from techniques such as Neural Networks, 

Fuzzy systems, Support Vector Machines and various models based in regression 

analysis. Next the topology of a forecasting engine is decided and employed according to 

given conditions. This step may include selection of neurons and layers or fuzzy rules or 

certain parameters for the selected forecasting engine. Next a training algorithm is 

selected to use the training data from previous stage to train the forecasting engine and 

estimate the weights for each input. This training allows the forecasting engine to learn 

load behavior. Finally a training duration is selected. This is the allowable time following 

which training needs to be stopped to avoid any aliases. The outcome at this stage is a 

forecast which needs further processing before being presented as the final forecasting 

results.  

2.3.5 Data Post-processing 

The steps taken during the first stage are reversed and the data from load forecast 

is transformed back to an understandable format. In addition performance evaluation of 

the forecast is also performed in this stage. Depending on what steps were taken in the 

first stage on raw data, the forecasted data is either denormalized or recomposed. Then 

the performance of the forecast is determined through calculating accuracy – usually 

represented by Mean Absolute Percentage Error (MAPE), robustness – the percentage 

and frequency of any erratic results and universality – the performance of the same model 
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using different datasets and conditions. To establish the efficiency of a certain model to 

claim its applicability in real world applications, a certain amount of results are required. 

2.4 Literature Review 

As discussed in the introduction, the STLF is categorized into two types: 

traditional and computational intelligence based methods.  

2.4.1 Traditional Methods 

Early methods for STLF were based on statistical approaches, which may be 

further classified as Time series and Regression based models and State Space models-

Kalman filtering for estimation.  

2.4.1.1 Time-series models 

Also called univariate models the time series based models perform statistical 

analysis of auto-correlation of the load series [29], which means that the load is presented 

as a function of its past observations. Time series methods include Autoregressive (AR), 

Moving Average (MA), and Autoregressive Moving Average (ARMA) and 

Autoregressive Integrated Moving Average (ARIMA) models. These methods are 

analyzed and explained in [1, 8, 10, 11, 30, 31]. 

2.4.1.2 Regression Models 

Since load is also influenced by several other factors like weather conditions and 

social events, regression based models take these variables into account to model load 

series. Moghram and Rahman in [11] presented a load expression based on multiple 

linear regressions in which certain weather and non-weather variables represented the 
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electrical load. Papalexopoulos et. al [32] presented a regression based STLF method 

utilizing the data for past 15 days in conjunction with ARIMA and Multiple regression 

based peak load models. Haida and Muto in [33] combined multivariate regression 

analysis with a transformation technique to build a model based on a temperature-load 

relationship which utilizes both the annual and the latest trend in temperature and its 

influence on load in order to forecast. Mbamalu and El-Hawary in [34] introduced a 

seasonal multiplicative autoregressive model using an iteratively reweighted least squares 

algorithm. 

2.4.1.3 State Space Models based Kalman Filter Estimation 

In a state-space model the load value is treated as a state variable in a state space 

formulation, with the system being represented by set of equations called state equations 

and measurement equations. Kalman filter is an algorithm which uses the state space 

model to estimate the value of the next state which in the case of STLF is the forecast. 

Kalman filter use present and past data to predict the values of future load. Soliman and 

Al-Hamadi in [35] used a time-varying load model based weather and load variables with 

moving window, then the  Kalman filter is used to estimate the coefficients of each 

variable. This load model is applied to real data to forecast hour ahead and day ahead 

loads. Separate profiling for weekend and weekdays has also being taken into account. 

Zheng and Girgis et. al [9] introduced a hybrid method which combine the 

Kalman filter and Wavelet transformation techniques. The original signal is represented 

as a unique wavelet transform in the form of coefficient. These coefficients are then used 

as coefficients of Kalman filter. In addition time splitting is performed to split data into 3 

groups. A recursive Kalman filter is applied on each set to predict next state of 
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coefficients and the signal is reconstructed to represent the load forecast. This method is 

implemented on weather insensitive and a weather sensitive model with the performance 

of the latter found to be better. A simple Kalman filter model is also presented in [11] 

which is similar to the one presented by Soliman and Al-Hamadi in [35] but without 

using a moving window and weather variables. Identification of state space model 

parameters is the most important and difficult task in Kalman filter based methods. 

2.4.2 Artificial Intelligence Methods 

Hipert in [10] stated that due to their ability to relate load with physical 

components traditional models have assisted on field engineers and system operators to 

understand the behavior of load. However, there has been a significant evolution of the 

complexity in the system over time which has made load response non-linear [28]. Also 

the scarcity of resources has made accurate STLF necessary for optimal operation. 

Ongoing research to fulfill requirements of the electric utility industry has turned 

attention to the application of artificial intelligence based techniques for STLF. Artificial 

intelligence methods include many different approaches to STLF, and researchers have 

widely classified them as Knowledge Based Expert System (KBES), Fuzzy Inference 

System (FIS), Artificial Neural Network (ANN) and Support Vector Machine (SVM) [1], 

[8] and [10]. There are some hybrid models as well but they also make use of either one 

of these techniques or in combination with classical methods. 

2.4.2.1 Knowledge Based Expert System  

Knowledge Based Expert System (KBES) perform electric load forecasting by 

utilizing the experience of human experts with years of on-field experience in electricity 
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generation and synchronizing it with computer program called an expert system [9, 36]. 

Rahman and Bhatnagar et al. [37] introduced an expert system which uses load 

forecasting knowledge of the on-field experts to build its knowledge base KB. On the 

basis of this KB a set of IF-THEN rules were built which defined the relationships 

between variations in system load with respective to changes in natural and network 

conditions affecting electricity usage. These rules act as a forecasting engine to produce 

results. The variables in the knowledge base of this expert system consist of year, month, 

hour, day type, temperature, and load data which require continuous update to achieve 

good forecasting results. 

 Ho et al. [38] proposed a KBES to perform STLF for the Taiwan power system. 

Historical load data and weather parameters of 5 years along with on field operator’s 

knowledge were used and eleven day types were determined. Results indicate an 

improved performance of the developed algorithm over conventional the Box-Jenkins 

time series method. Rahman and Hazim in [39] proposed an expert system which was 

site-independent. A parameterized rule base was created by extracting knowledge about 

the load and influencing factors. A parameter database play the role of a knowledge base 

for the system which changes from site to site and it is coupled with a parameterized rule 

base to generate forecasts. The technique was tested on real data from several sites 

located in 7 states of the USA and the results demonstrated low forecasting errors.  

Some hybrid methods have also been developed which combine KBES with other 

forecasting methods. Dash et al. [40] combined fuzzy neural networks with expert 

systems. The neural networks inputs were the fuzzy membership values of the load and 

weather variables which were used to predict the output membership values. An adaptive 
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fuzzy correction scheme was adopted for getting final load. Extensive studies were 

performed for all seasons and average, peak and hourly load forecasts were generated 

which resulted in minimized forecasting error. Mohamad in [41] combined expert 

systems and neural networks to produce hourly load forecasting in Egypt. The operator 

was allowed to intervene during the forecasting process to make the process more 

accurate. Kim et al. [42] used a hybrid approach for STLF for Korea Electric Power 

Corporation. The method was a two-step approach in which initial load prediction was 

obtained by using a trained neural network and then temperature changes and holidays 

are accommodated by a fuzzy expert system. 

2.4.2.2 Fuzzy Inference System 

The Fuzzy Inference System (FIS) generalizes the Boolean logic which has the 

values of 0 and 1 to fuzzy membership functions. It means that an input can have certain 

meaningful values instead of the two extremes of Boolean logic. After the inputs are 

represented by these membership functions, a set of fuzzy rules are used to generate 

outputs. These outputs are then defuzzified to obtain original forecasts. An 

implementation of a fuzzy inference model to achieve STLF has recently been done by 

Ahmadi and Bevrani in [43]. Six inputs were used namely last day’s consumption, last 

week’s consumption, forecasted temperature, and last day’s temperature, weather and day 

type values. The output consumption along with other two inputs representing electricity 

consumption were divided into seven Gaussian membership functions, temperature inputs 

had three and weather had four membership functions and the day type was represented 

by holiday and weekday membership functions. The inference model was implemented to 

a real load of an electric utility in Iran with satisfactory results. Two hybrid methods 
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combining fuzzy inference, neural networks and expert systems presented by Dash et al. 

[40] and Kim et al. [42] have already been discussed in the last section.   

Furthermore, Soozanchi and Yaghobi et al. [44] studied the design of (STLF) 

systems with the help of Adaptive Neural-Fuzzy Inference System (ANFIS). First the 

probability of chaos and predictability rate of time series load curve by a Lyapunov 

exponent was reviewed to determine the rate and horizon of forecasting. Then a multi 

Artificial Neuro-Fuzzy Inference System (ANFIS) was used to obtain the desired 

forecast. A separate adaptive neural-fuzzy system for each season of the year was used. 

Data used as input for multi ANFIS include the date of the day, maximum and minimum 

temperature, climate condition and the load consumed in previous days. The results 

points out the impact of temperature on load forecast. 

Petrounias and Kodogiannis et al. [45] developed a novel fuzzy logic system 

applied in the structure of a neural network (AFINN) model to perform STLF for the 

Power System of the Greek Island of Crete. A clustering algorithm consisting of two 

stages was used to determine the rules, number of fuzzy sets, and initial values of the 

parameters of the fuzzy membership functions. These parameters of membership 

functions were tuned by the error back propagation algorithm. The forecast results were 

achieved through a minimum and maximum load time series. The proposed intelligent 

forecasting model gave better forecasting results as compared to conventional neural 

networks models. 

2.4.2.3 Artificial Neural Network (ANN) 

The artificial neural network (ANN) is one of the most recent popular methods for 

STLF. Based on the principle of biological neuron, the central part of an ANN is an 



 

 18 

 

artificial neuron [13]. An artificial neuron model performs the sum of the product of the 

inputs and the respective weights connected to them and pass the sum through a transfer 

function to produce output. In order to use ANN to perform STLF, the first thing to do is 

to select a suitable architecture, for example feed forward (FNN), Cascaded (CNN), 

Recurrent (RNN), Spiking (SNN), Wavelet (WNN), Neuro-Fuzzy Networks and several 

others. Next, a learning algorithm needs to be selected to train the network. Furthermore, 

the number and connectivity of the layers and neuron is to be taken care of. In general, 

neural networks are used to model the load series at first using a number of inputs which 

affect the load demand and a suitable architecture. Than historical data is used to train the 

network by using an appropriate learning algorithm so that weights for every input may 

be determined. Lastly present online information is used as the input of the trained 

network in order to obtain outputs. The outputs acquired are linear or nonlinear 

mathematical functions of its inputs. These outputs may be the inputs of other networks 

as well as the actual forecasted loads [8]. 

Bakirtzis and Petridis [15] used a Feed forward Neural Network (FFNN) to 

forecast the load for Greek Public Power Cooperation. The Back Propagation (BP) 

algorithm was used for training the network with 63 inputs, 24 hidden and 24 output 

neurons. The historical load data of past two days along with historical and present 

maximum and minimum temperature data for each day was used as inputs. The network 

was trained by using the data for one year. It was found that it took more training time for 

an increased or decreased number of hidden neurons and an optimum amount of 24 

neurons were used in the hidden layer. A single ANN with an increased input of day type 

along with seven ANNs for each day was used in the experiments. In addition the data 
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was divided into weekdays, weekends and holidays for the single ANN. Results show 

that the single ANN outperforms the other forecasts. Moreover, Khotanzad et. al [14] 

introduced a method called ANNSTLF. FFNN architecture was used trained by the BP 

algorithm. Two ANN forecasters were used in parallel. One predicted the base load while 

the other forecasts the change in load. A Recursive Least Square (RLS) algorithm was 

used to combine both to produce the final forecast. Finally the effect of weather elements 

was taken care of by transforming them into effective temperature. Data from 10 utility 

companies was tested and results show increased accuracy as compared to using a single 

ANN for the forecast. 35 utility in various states of USA and Canada adopted this 

method. Ortiz-Arroyo, Skov and Huynh in [16] used a single ANN with BP. They took 

the month of the year, the day of the week, holiday and week number as inputs and 

experimented with different combinations of number of hidden neurons and epochs to 

training the network. The results achieved showed a 29% increase in accuracy over the 

SVM methods that won the EUNITE (European Network of Excellence on Intelligent 

Technologies for Smart Adaptive Systems) competition in 2001. Dai and Wang [17] also 

adopted FFNN for forecasting. They used pattern recognition to determine the inputs and 

forecasted 24 hour ahead load of the Jiangxi Province power system of China. Likewise 

Gu and Wang et. al [18] presented FFNN with additive weather features and normalized 

data. Along with the loads and minimum and maximum temperatures they used six 

different weather features as one of the inputs. This weather feature input had six levels 

each denoted by numerical values between 0 and 1. These levels were thundershower, 

shower, and moderate rain, light rain, cloudy and sunny. The data from Shanghai district 
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of China was tested. After training and simulation the method was found to be applicable 

for that location.  

Different variations in the same method of FFNN were also implemented and 

tested in recent publications during past 3 years. Shi and Niu in [19] used different 

transfer functions for input and hidden layers and forecasted the load by considering it a 

time series prediction problem. Moreover, Ghate and Tasre et. al [20] adopted FFNN and 

presented a seasonal forecast. Similar data variables were used as defined above but 

months were grouped according to 4 seasons in order to study the variations in load. The 

BP algorithm was used for training FFNN in all the aforementioned methods. Wang, Niu 

and Ji in [21] also selected the BP to train FFNN as forecasting engine but with an 

Improved Variable Learning (IVL) rate. They used the Genetic Algorithm in conjunction 

with BP to improve learning speed. The results showed improvement in the learning rate 

as well as accuracy over conventional FFNN.  

AlFuhaid and El-Sayed in [22] applied Cascaded ANN (CNN) architecture for 

STLF. The load for every half hour for the next 24 hours was forecasted using the 

historical load and weather data. First a simple FFNN was used to predict peak, minimum 

and daily energy. These predictions were used as additional inputs to the CNN. The data 

from the electric power system of Kuwait was used for the training and testing of the 

network. Results indicated a reduction in Mean Absolute Percentage Error (MAPE) from 

3.367% to 2.707 % when CNN was compared with FFNN. 

Sajjad and Farshif in [49] presented a new hybrid forecast strategy based on CNN 

to improve accuracy of STLF. This method used the wavelet transform to filter the inputs 

to remove any corrupted data. A CNN consisting of three neural networks forecasted the 
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load and an intelligent two-stage feature selection were used to tune the CNN through a 

cross-validation technique to generate forecast. Loads of PJM and New York City were 

forecasted. Results from the proposed algorithm were found to be most accurate 

compared to conventional FFNN, CNN and SVR methods. 

A Recurrent Neural Network (RNN) was employed for STLF by Lee and Choi in 

[24] with an adaptive learning rate. The network presented was diagonally recurrent 

(DRNN) meaning only the neurons in the hidden layer were recurrent as compared to the 

fully connected recurrent neural network (FRNN) where all neurons are coupled to one 

another. It was illustrated that DRNN require fewer weights than FRNN and was faster in 

convergence. In addition BP Algorithm with adaptive learning rate also ensured rapid 

convergence. The forecasting accuracy throughout the year was evaluated to consider the 

effect of seasonal load variations. Simulation results proved DRNN forecast to be better 

than FRNN. 

In addition, two Bilinear RNNs (BLRNNs) were proposed by Park in [23] and 

[25]. The network architecture of a BLRNN consisted of Input, Hidden and Output 

layers. The neuron in input layer receives two feedbacks from hidden layer, one with a 

delay and the other is direct. Both feedbacks were further coupled with original inputs 

before connecting to the input neuron. In [25] the BLRNN-based predictor was 

implemented and its performance was compared with the conventional Multi-Layer 

Perceptron NN (MLPNN). Load data from the North-American Electric Utility (NAEU) 

was used for the task. The proposed BLRNN model showed an improvement of about 

28% decrease in MAPE of performance in comparison with the traditional MLPNN. To 

further improve the accuracy Park, Woo and Han in [23] presented an Adaptive Multi-
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resolution based bilinear Recurrent Neural Network (AMBLRNN). In this architecture 

the learning process of BLRNN of [25] was improved further by applying the wavelet 

transform for multi-resolution analysis of the data. The same data as used in [25] was 

employed for testing. The performance of AMBLRNN was found to be even better than 

BLRNN and MLPNN by 10 % - 25% in terms of MAPE.  

Some hybrid models are also used which involve the combination of ANNs and 

other methods by different means to achieve improved accuracy. Zhao and Su et. al [27] 

employed a Weiner model to represent the  load series. Then Kalman filter and Elman 

Neural Network (ENN) were used to fit the linear and non-linear parts of the system. An 

ENN is a type of ANN which contains 4 layers – input, feedback, hidden and output 

layers. No input is coupled with feedback unlike the BLRNN. Kalman filer was used to 

minimize disturbances from system’s linear part and ENN was applied for non-linear 

load prediction.. A simulation example was demonstrated which used normalized load 

and weather data from a southern city in China for training and testing the algorithm. The 

results showed good learning efficiency and precision. A similar method using ENN for 

STLF was also established by Xia and Yand in [26]. The historical load and 

comprehensive consideration of various meteorological factors were used as input for the 

network. The result proved the effectiveness of this method for STLF for the power grid 

of Yichang city.  

Zhang and Li in [47] forecasted the load using FFNN with BP and LSSVM 

separately. After getting the results from both, a minimum variance method was used to 

combine the results and produce final forecast. The results showed the improved MAPE 

of the combined results as compared to separate forecasts. Ko and Lee in [48] introduced 
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a hybrid model to harvest better forecasting results by utilizing the advantages of Radial 

Basis Function NN (RBFNN), Support Vector Regression (SVR) and Dual Extended 

Kalman Filter (DEKF).  The method used SVR for initialization of RBFNN and DEKF 

was implemented for training it. The model was applied to actual load data for one, three 

and seven day ahead forecasts. Weekdays, weekends and holidays were separately treated 

for forecasting. The results proved fast convergence and better accuracy of the proposed 

SVR-RBFNN-DEKF based method over DEKF-RBFNN or Gradient Decent GRD-

RBFNN. 

2.4.2.4 Support Vector Machine (SVM) 

Based on the principle of structural risk minimization (SRM) support vector 

machines (SVMs) are able to achieve an optimum networks structure. In order to perform 

STLF SVMs use Vapnik’s ε-insensitive loss function [50] to treat STLF as nonlinear 

regression estimation problems which is also referred in literature as support vector 

regression (SVR). At first a nonlinear mapping (by using kernel functions) of the input 

data is performed which maps it into a high dimensional (feature) space. Then simple 

linear functions are used to create linear decision boundaries in the feature space. When 

we compare with ANNs the process of selecting architecture is replaced here by the 

problem of choosing suitable kernel and parameters for the support vector machine. Thus 

to decrease the forecasting error, values of the cost of the error C, ε-insensitive tube 

width, the type of kernel and the parameters inside  the kernel functions must be chosen 

carefully  during the SVM training [6,36,50,52]. Guo and Liang in [51] used a Gaussian 

kernel function along with user specified parameters for forecasting load in a city of 

China. The training sets were created by selecting similar days having a weather profile 
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same as the forecasting day in order to avoid interference of the non-correlative samples. 

The training of SVMs was done using these preprocessed samples. The SVM based 

method for forecasting was found to be efficient. 

Similarly, Turkay and Demren in [52] applied SVM to model the load in order to 

represent the nonlinear relations with the factors that affect the load. The load and 

weather data of Istanbul (European Side) were used. The inputs included the past load 

data, daily average temperature, calendar days, holidays and electricity price. The 

program LibSVM was used to implement SVM to perform STLF. Moreover, Ye and Liu 

et. al [53] compared SVM with BPNN and Time series methods. The electric load of 

Hubei (China) was used for the comparison. The forecasting results indicated a MAPE of 

1.91% for SVM which proved to be the best in contrast to BPNN (4.06%) and time series 

(4.47%). 

Hong et. al [36] introduced a SVR model with immune algorithm (IA) to forecast 

the electric loads. IA was applied for the parameter determination of SVR model. The 

proposed SVR model with IA (SVRIA) produced better forecasting results than the other 

methods like SVM with Gaussian kernel, regression model and ANN model. 

Furthermore, Nie and Liu in [54] presented a hybrid model combining the autoregressive 

integrated moving average (ARIMA) and SVMs. They used ARIMA to forecast the basic 

linear part of load and SVMs to forecast the sensitive non-linear part of load. The hybrid 

model resulted in high forecasting accuracy. 
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Chapter 3: Artificial Neural Networks and proposed algorithm 

3.1 Introduction 

Artificial neural networks are inspired by functionality of human brain. The 

capability of a human brain to remember, recall, correlate, interpret, recognize and reason 

have made its functionality attractive to make machines to imitate it in order to model 

and simulate and perform a variety of tasks. The human brain consists of billions of 

parallel computing elements called neurons. They interconnect via a network of axons, 

synapses and dendrites. Thus, the human brain is analogous to a vast interconnected  

Electrical switching network accustomed to biochemical processes. Figure 4 illustrates 

components of a biological neural network: 

 

Figure 4: Biological Neuron [13] 

 A typical brain cell has four major regions namely, cell body, dendrites, axon and 

synapse. Dendrites receive information from neurons through axons via an axon-dendrite 

connect called the synapse. An axon is like a transmission line which carries an impulse 

from neuron that splits into thousands of branches. A synapse is present at the end of 

each branch which converts the impulse into electrical effects that pass through dendrites 

and result in inhibitory or excitatory response in connected neurons. The neuron collects 



 

 26 

 

signals from all dendrites connected to it and reacts to the total of its aggregated input. 

When the excitatory input exceeds the inhibitory input by an amount called the threshold, 

the neuron fires a spike of electrical activity down its axon. Furthermore, learning takes 

place by changing the effectiveness of synapses which in turns changes the influence of 

one neuron on another [55, 56]. 

It has been observed that a biological network performs temporal integration and 

summation of incoming signals. The result is a complex biochemical process which is 

much different from digital computation but the characteristic feature of the neuron is 

that the signal in the nerve fiber is either absent or has a maximum value. It means that 

information exchange between cells is transmitted by means of a binary signal. Figure 5 

shows a model of biological neurons: 

 

Figure 5: Biological Neuron Model [58] 

3.2 Artificial Neuron Model 

McCulloch and Pitts in [57] first described the model of an artificial neuron which 

can imitate functioning of biological neuron. In real life an artificial neuron model 

performs a sum of products n of inputs denoted here by p and weights w connected to 

them and bias b. This sum is fed to a nonlinear transfer function f (.) to produce the 
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output. The weights w and bias b are adjustable parameters. Figure 6 demonstrates an 

artificial neuron model [59]:  

 

Figure 6: Artificial Neuron Model [59] 

Mathematically, n is given by the following equations, 

 𝑛 =  𝑤1𝑝1 + 𝑤2𝑝2 + ⋯+ 𝑤𝑅𝑝𝑅 + 𝑏 (3.1) 

 

𝑛 =  ∑𝑤𝑗𝑝𝑗 + 𝑏

𝑅

𝑗=1

 

(3.2) 

where R is number of inputs. The neuron's output is given by, 

 𝑎 =  𝑓(𝑛) = 𝑓 (∑𝑤𝑗𝑝𝑗 + 𝑏

𝑅

𝑗=1

) (3.3) 

3.3 Transfer Functions 

The output of a neuron depends upon the transfer function f (.) selected. A transfer 

function (also called an activation function) might be linear or non-linear and must be 

selected so as to fulfill the requirements of the problem at hand. Table 1 lists commonly 

used activation functions along with their response and equations. 
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Table 1: Transfer Functions 
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3.4 Network Architectures 

3.4.1 Single Layer Feed forward Neural Network 

The single-layer feed-forward neural network also known as single layer 

perceptron (SLP) contains one level of connection of neurons. It simply models the 

relationship of the input vector p to the output vector a through the adjustment of weights 

w. SLP might consists of multiple numbers of neurons. A simple SLP is shown in figure 

7: 

 

Figure 7: Single Layer Perceptron Network [59] 

The output vector can be determined using the following equation, 

 

𝑛𝑆 = ∑𝑤𝑆𝑗𝑝𝑗 + 𝑏𝑆

𝑅

𝑗=1

 

(3.4) 

 𝑎𝑆 =  𝑓(𝑛𝑆) = 𝑓 (∑ ∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆

𝑖=1

+ 𝑏𝑆) (3.5) 

R is the number of inputs and S is the number of neurons. The above expression can be 

written in vector form as: 
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 𝑎 = 𝑊𝑝 + 𝑏 (3.6) 

The input, weight, bias and output matrices are given by: 

𝑝 =  [𝑝1 … 𝑝𝑅] 

𝑊 = [

𝑤1,1 ⋯ 𝑤1,𝑅

⋮ ⋱ ⋮
𝑤𝑆,1 ⋯ 𝑤𝑆,𝑅

] 

𝑏 =  [𝑏1 … 𝑏𝑆] 

𝑎 =  [𝑎1 … 𝑎𝑆] 

3.4.2 Multilayer Feed forward Neural Network 

A multilayer feed-forward network or multi-layer perceptron (MLP) consists of 

multiple layers of neurons. Each layer may consist of the same or different numbers of 

neurons. In between input and output layers exists single or multiple hidden layers. Each 

layer may have the same or different activation functions and weight vectors. The output 

of every layer becomes an input for next hidden layer until it reaches output layer. Figure 

8 shows a MLP network with two hidden layers: 

 

Figure 8: Multi-layer Perceptron Network [59] 
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Let l denote the number of hidden layers and l = L for the output layer, the 

equations for the outputs of every hidden layer and the final output is given by following 

equations, 

Hidden layer 1 (l = 1): 

 𝑎1𝑆1 = 𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.7) 

Here Sl denotes the number of neurons in layer l.  

Hidden layer 2 to output layer (l = 2 … L): 

 𝑎𝑙𝑆𝑙 = 𝑓𝑙(𝑛𝑙𝑆𝑙) = 𝑓𝑙 (∑ ∑ 𝑤𝑖𝑗𝑎(𝑙−1)𝑗

𝑆𝑙−1

𝑗=1

𝑆𝑙

𝑖=1

+ 𝑏𝑙𝑆𝑙) (3.8) 

Since in the above figure L = 3: 

 𝑎3𝑆3 = 𝑓3(𝑛3𝑆3) = 𝑓3 (∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆2

𝑗=1

𝑆3

𝑖=1

+ 𝑏3𝑆3) (3.9) 

 𝑎3𝑆3 = 𝑓3 (∑∑𝑤𝑖𝑗

𝑆2

𝑗=1

𝑓2 (∑∑𝑤𝑖𝑗𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

 +  𝑏1𝑆1)

𝑆1

𝑗=1

𝑆2

𝑖=1

 +  𝑏2𝑆2)

𝑆3

𝑖=1

+ 𝑏3𝑆3) (3.10) 
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3.4.3 Cascaded Neural Network  

The cascaded neural network (CNN) architecture is a type of MLP network in 

which each input and the output of every hidden layer is cascaded to next layer. Figure 9 

demonstrates a 3-layered CNN:  

 

Figure 9: 3-layered Cascaded Neural Network 

The equations for the outputs of all the layers are as follows: 

Hidden layer 1 (l = 1): 

 𝑎1𝑆1 = 𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.11) 

Hidden layer 2 to last hidden layer (l = 2): 

 𝑎2𝑆2 =  𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑎1𝑗

𝑆1

𝑗=1

 +  ∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.12) 

𝑎2𝑆2may be treated as the output of a CNN with one hidden layer.  

Output Layer (l = L = 3): 

 𝑎3𝑆3 = 𝑓3(𝑛3𝑆3) = 𝑓3 (∑ ∑𝑤𝑖𝑗𝑎2𝑗

𝑆2

𝑗=1

𝑆3

𝑖=1

+ ∑ ∑𝑤𝑖𝑗𝑎1𝑗

𝑆1

𝑗=1

+ ∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏3𝑆3) (3.13) 
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𝑎3𝑆3 = 𝑓3 (∑∑𝑤𝑖𝑗𝑓2 (∑ ∑𝑤𝑖𝑗𝑓1 (∑∑ 𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

 +  ∑ ∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏2𝑆2)

𝑆2

𝑗=1

𝑆3

𝑖=1

+ ∑∑𝑤𝑖𝑗𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

 +  ∑∑ 𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏3𝑆3) 

(3.14) 

3.4.4 Recurrent Neural Network 

A recurrent neural network (RNN) contains a feedback path from the output to the 

input along with the associated weights. There are many types of RNN discussed in the 

literature which are used for prediction. Basically there are two types of feedback paths, a 

local feedback and a global feedback. Local feedback is achieved by the recurrent path 

within the hidden layer, while a global feedback is produced by connecting output to 

input of the network [60]. Figures 10 and 11 show both local and global RNNs: 

 

Figure 10: Recurrent Neural Network with Local feedback  

 

Figure 11: Recurrent Neural Network with Global feedback 
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Let t be current time. The output of Recurrent NN with Local feedback (RNNL) is given 

by : 

 𝑎1𝑆1(𝑡) =  𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆2

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.15) 

 𝑎2𝑆2(𝑡) =  𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡)

𝑆1

𝑗=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.16) 

 𝑎2𝑆2(𝑡) =  𝑓2 (∑∑𝑤𝑖𝑗𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆2

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.17) 

And the output of Recurrent NN with Global feedback (RNNG) is given by following 

equations: 

 𝑎1𝑆1(𝑡) =  𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.18) 

 𝑎2𝑆2(𝑡) =  𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑎1𝑗

𝑆1

𝑗=1

𝑆2

𝑖=1

(𝑡) + 𝑏2𝑆2) (3.19) 

 𝑎2𝑆2(𝑡) = 𝑓2 (∑∑𝑤𝑖𝑗𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.20) 

3.4.5 Hybrid Neural Network Architectures 

Hybrid Neural Network architectures that are introduced in this thesis combine a 

CNN with both recurrent networks. These networks contain a cascaded connection of 

input to output layer as well as local or global feedback paths. The network which 

combines the CNN with RNNL is called Cascaded – Recurrent NN with Local feedback 

(CRNNL). Figure 12 shows its architecture: 
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Figure 12: Cascaded Recurrent Neural Network with Local feedback 

The output equation of the CRNNL is derived as follows: 

 𝑎1𝑆1(𝑡) =  𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆2

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.21) 

 𝑎2𝑆2 =  𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆1

𝑗=1

 +  ∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.22) 

𝑎2𝑆2 =  𝑓2 (∑∑𝑤𝑖𝑗𝑓1
(∑∑ 𝑤𝑖𝑗𝑝𝑗

+ 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑ 𝑤𝑖𝑗𝑎1𝑗(𝑡 − 1)

𝑆2

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

 +  ∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.23) 

Moving forward the second hybrid network combines the CNN with RNNG to create  a 

Cascaded – Recurrent NN with Global feedback CRNNG network shown in Figure 13: 

 

Figure 13: Cascaded Recurrent Neural Network with Global feedback 
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The output of CRNNG is given by: 

 𝑎1𝑆1(𝑡) =  𝑓1(𝑛1𝑆1) = 𝑓1 (∑∑𝑤𝑖𝑗𝑝𝑗 + 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1) (3.24) 

 𝑎2𝑆2 =  𝑓2(𝑛2𝑆2) = 𝑓2 (∑∑𝑤𝑖𝑗𝑎2𝑗

𝑆1

𝑗=1

 +  ∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.25) 

𝑎2𝑆2 =  𝑓2 (∑∑𝑤𝑖𝑗𝑓1
(∑∑ 𝑤𝑖𝑗𝑝𝑗

+ 

𝑅

𝑗=1

𝑆1

𝑖=1

∑∑ 𝑤𝑖𝑗𝑎2𝑗(𝑡 − 1)

𝑆3

𝑗=1

𝑆1

𝑖=1

+ 𝑏1𝑆1)

𝑆1

𝑗=1

 +  ∑∑𝑤𝑖𝑗𝑝𝑗

𝑅

𝑗=1

𝑆1

𝑖=1

𝑆2

𝑖=1

+ 𝑏2𝑆2) (3.26) 

3.5 Network Training 

The training of a neural network is the process of modifying network architecture 

and updating the connection weights and biases so that a network response may follow a 

particular behavior. To achieve this task different learning algorithms are used. The 

purpose of a learning algorithm is to minimize the error function by altering network 

parameters by utilizing previous information as samples. When a solution is reached the 

finalized parameters are stored which means that network has learned how to respond if 

new information is received for a particular application.  

There are two types of learning algorithms; supervised and unsupervised. In 

supervised training the response of a network is known. The network is simulated by 

applying the input patterns. The output result is compared with the desired response and 

an error signal is generated. This error signal is used to direct changes in the  network 

parameters so as to minimize it and the network is taught to produce the desired response. 

Conversely, unsupervised training is used in situations when desired response of a 

network is unknown. In this thesis, supervised learning is used. 
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In order to train a network to reach a certain target d, output a is compared with it 

to obtain the error signal e. The error signal e is the difference between the target d and 

output o: 

 𝑒𝑢𝑣(𝑘) =  𝑑𝑢𝑣 − 𝑎𝑢𝑣 (3.27) 

u is the index of patterns, from 1 to U, where U is the number of input patterns. v is the 

index of outputs, from 1 to V, where V is the number of outputs. 𝑒𝑢𝑣 is the training error 

at the output v when applying input pattern u. For evaluating training process the Least 

Mean Squared (LMS) error for all the input patterns and the resulting outputs is defined 

as: 

 𝐸(𝑈, 𝑉) =  
1

2
 ∑ ∑ 𝑒𝑢𝑣

2

𝑆

𝑣=1

𝑅

𝑢=1

 (3.28) 

The average squared error is given by: 

 𝐸𝑎𝑣𝑒 = 
1

𝑈 ∗ 𝑉
∑ ∑ 𝐸(𝑢, 𝑣)

𝑆

𝑣=1

𝑅

𝑢=1

 (3.29) 

𝐸𝑎𝑣𝑒 represents the cost function which is a measure of learning performance. The 

objective of a learning process is to minimize it by adjusting network parameters. The 

learning algorithm used in this thesis is the error back propagation which is discussed 

next.  

3.5.1 Error Back Propagation Algorithm 

The error back propagation (EBP) algorithm is the most popular learning mechanism 

for ANN especially when it is used to perform STLF. The algorithm is derived from delta 

learning algorithm and updates the weights by applying a correction Δ𝑤𝑖𝑗(𝑘) 
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proportional to the partial derivative called gradient. This method is also named as 

gradient-descent method [61].  

Step 1: Initialization  

The first step of training process is to initialize the weights by selecting any random 

weights from uniform distribution with zero mean.  

Step 2: Forward Computation 

A training sample is presented to the network to perform forward computation in order to 

compute error signal. Consider the MLP network of figure 8, we rewrite equation (3.4) 

for 𝑛 which is sum of product at the input of activation function: 

 𝑛𝑗(𝑘) =  ∑𝑤𝑗𝑖(𝑘)𝑎𝑗(𝑘)

𝑅

𝑖=0

 (3.30) 

k is the index of iterations. i and j are the indices of weights, from 1 to N, where N is the 

total number of weights. R is the total inputs applied to neuron i. The weight 𝑤𝑖0 is equal 

to the bias 𝑏𝑖 applied to neuron i. The output is given by: 

 𝑜𝑗(𝑘) =  𝑓𝑗(𝑛𝑗(𝑘)) (3.31) 

Now from equation (3.21) the error signal can be achieved.  

 𝑒𝑗(𝑘) =  𝑑𝑗 − 𝑎𝑗 (3.32) 

Let C be the total number of neurons in the output layer equation (3.22) becomes:  

 

𝐸(𝐾) =  
1

2
 ∑𝑒𝑗

2(𝑘)

𝐶

𝑗=1

 

(3.33) 
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Step 3: Backward Computation 

Case 1 : Neuron j is situated at Output Layer 

The error signal is propagated backward. The weight correction Δ𝑤𝑖𝑗(𝑘) can be 

represented as a gradient  
𝑑𝐸(𝑘)

𝑑𝑤𝑖𝑗
  

 
Δ𝑤𝑗𝑖(𝑘) =  

𝑑𝐸(𝑘)

𝑑𝑤𝑗𝑖(𝑘)
 

(3.34) 

By applying the chain rule we can calculate the partial derivative. 

 
𝑑𝐸(𝑘)

𝑑𝑤𝑗𝑖(𝑘)
=  

𝑑𝐸(𝑘)

𝑑𝑒𝑗(𝑘)

𝑑𝑒𝑗(𝑘)

𝑑𝑎𝑗(𝑘)

𝑑𝑎𝑗(𝑘)

𝑑𝑛𝑗(𝑘)

𝑑𝑛𝑗(𝑘)

𝑑𝑤𝑗𝑖(𝑘)
 (3.34) 

 
𝑑𝐸(𝑘)

𝑑𝑒𝑗(𝑘)
=  𝑒𝑗(𝑘) (3.35) 

 
𝑑𝑒𝑗(𝑘)

𝑑𝑜𝑗(𝑘)
=  −1 (3.36) 

 
𝑑𝑎𝑗(𝑘)

𝑑𝑛𝑗(𝑘)
=  𝑓𝑗

′(𝑛𝑗(𝑘)) (3.37) 

 
𝑑𝑛𝑗(𝑘)

𝑑𝑤𝑗𝑖(𝑘)
=  𝑎𝑖(𝑘) (3.38) 

Finally, using equations (3.28) – (3.31): 

 
𝑑𝐸(𝑘)

𝑑𝑤𝑗𝑖(𝑘)
=  −𝑒𝑗(𝑘)𝑓𝑗

′(𝑛𝑗(𝑘))𝑎𝑖(𝑘) (3.39) 

The correction weight is given by: 

 Δ𝑤𝑗𝑖(𝑘) =  −𝜂
𝑑𝐸(𝑘)

𝑑𝑤𝑗𝑖(𝑘)
 (3.40) 

𝜂 is called the learning-rate parameter of back propagation algorithm. By using equations 

(3.32 and 3.33) we get: 
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 Δ𝑤𝑖𝑗(𝑘) = − 𝜂𝛿𝑗(𝑘)  (3.41) 

𝛿𝑗(𝑘) is the gradient and is defined as: 

 𝛿𝑗(𝑘) =  
𝑑𝐸(𝑘)

𝑑𝑤𝑗𝑖(𝑘)
  (3.42) 

Case 2 : Neuron j is situated at Hidden Layer 

When a neuron is located at the hidden layer the desired response is not specified. An 

error signal for a hidden layer needs to be evaluated in terms of the error signal of all 

neurons to which hidden neuron is connected directly. The gradient is given by: 

 𝛿𝑗(𝑘) =  
𝑑𝐸(𝑘)

𝑑𝑛𝑗(𝑘)
=

𝑑𝐸(𝑘)

𝑑𝑎𝑗(𝑘)

𝑑𝑎𝑗(𝑘)

𝑑𝑛𝑗(𝑘)
=  

𝑑𝐸(𝑘)

𝑑𝑎𝑗(𝑘)
𝑓𝑗

′(𝑛𝑗(𝑘))𝑎𝑖(𝑘)  (3.43) 

From equation (3.22) we have: 

 𝐸(𝑘) =  
1

2
 ∑ 𝑒𝑚

2 (𝑘)

𝑚 ∈𝐶

 (3.44) 

m is the output node and C is all the neurons in the output layer. Here the output neurons 

are denoted by a different letter to avoid confusion. Differentiating it with respect to 

𝑎𝑗(𝑘) we get: 

 
𝑑𝐸(𝑘)

𝑑𝑎𝑗(𝑘)
=  ∑𝑒𝑚(𝑘)

𝑚

𝑑𝑒𝑚(𝑘)

𝑑𝑎𝑗(𝑘)
 (3.45) 

Applying the chain rule: 

 
𝑑𝐸(𝑘)

𝑑𝑎𝑗(𝑘)
=  ∑𝑒𝑚(𝑘)

𝑚

𝑑𝑒𝑚(𝑘)

𝑑𝑛𝑚(𝑘)

𝑑𝑛𝑚(𝑘)

𝑑𝑎𝑗(𝑘)
 (3.46) 

Also: 

 𝑒𝑚(𝑘) =  𝑑𝑚(𝑘) − 𝑎𝑚(𝑘) =  𝑑𝑚(𝑘) − 𝑓𝑚(𝑛𝑚(𝑘)) (3.47) 
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Hence: 

 
𝑑𝑒𝑚(𝑘)

𝑑𝑛𝑚(𝑘)
=  −𝑓𝑚

′ (𝑣𝑚(𝑘)) (3.48) 

From equation (3.24) 𝑛𝑚(𝑘) is given as: 

 𝑛𝑚(𝑘) =  ∑𝑤𝑚𝑗(𝑘)𝑎𝑗(𝑘)

𝑚

𝑗=0

 (3.49) 

Differentiating equation (3.43) with respect to 𝑎𝑗(𝑘): 

 
𝑑𝑛𝑚(𝑘)

𝑑𝑎𝑗(𝑘)
=  𝑤𝑚𝑗(𝑘) (3.50) 

Equation (3.40) yields, 

 
𝑑𝐸(𝑘)

𝑑𝑎𝑗(𝑘)
=  − ∑𝑒𝑚(𝑘)𝑓𝑚

′ (𝑣𝑚(𝑘))

𝑚

𝑤𝑚𝑗(𝑘) =  − ∑𝛿𝑚(𝑘)𝑤𝑚𝑗(𝑘)

𝑚

 (3.51) 

Using equation (3.45) in (3.37) we can get the local gradient𝛿𝑗(𝑘): 

 𝛿𝑗(𝑘) =  − 𝑓𝑗
′(𝑛𝑗(𝑘))𝑎𝑖(𝑘) ∑𝛿𝑚(𝑘)𝑤𝑚𝑗(𝑘)

𝑚

 (3.52) 

Finally, the weight update is given by: 

 𝑤(𝑘 + 1) = 𝑤(𝑘) +  Δ𝑤𝑗𝑖(𝑘) =  𝑤(𝑘) −  𝜂𝛿𝑗(𝑘)  (3.53) 

Equation (3.47) describes the weight update in the BP algorithm. It has some 

problems which are related to the slow convergence. One of the main reasons for this is 

the occurrence of local minima. As the algorithm always changes weights towards 

steepest gradient where the curvature of error surface is low but it might briefly have to 

rise before reaching the general descent also referred as global minima. Sometimes the 

algorithm gets stuck at these points, thus slowing or inhibiting convergence [63]. This 

situation is demonstrated in Figure 14: 
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Figure 14: Local and Global Minima [63] 

Furthermore the selection of learning rate or step size also plays an important role in 

convergence. When the gradient is steep, a small step size needs to be selected so that any 

minimum point which might occur should not be missed. Also when the gradient change 

is gentle, a small step size would slow  the training process. But if a big step size is 

selected it might result in missing some minima [62]. This is demonstrated in Figure 15:  

 

Figure 15: Effect of learning rate coefficient on learning curve [62] 

These problems are addressed by improvements to the BP algorithm and making use 

of second order differential equations. Next some advanced algorithms are discussed. 



 

 43 

 

3.5.2 Newton Algorithm  

It is assumed that the local gradient is a function of weights which are linearly 

independent from each other: 

 𝛿𝑗(𝑘) =  𝐹𝑗(𝑤1(𝑘),𝑤2(𝑘),…𝑤𝑁(𝑘)) (3.54) 

Starting with Taylor series we get: 

 

𝛿1(𝑘)  ≈  𝛿1,0(𝑘) + 
𝑑𝛿1(𝑘)

𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + 

𝑑𝛿1(𝑘)

𝑑𝑤2(𝑘)
Δ𝑤2(𝑘) + ⋯+ 

𝑑𝛿1(𝑘)

𝑑𝑤𝑁(𝑘)
Δ𝑤𝑁(𝑘) 

𝛿2(𝑘)  ≈  𝛿2,0(𝑘) + 
𝑑𝛿2(𝑘)

𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + 

𝑑𝛿2(𝑘)

𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + ⋯+ 

𝑑𝛿2(𝑘)

𝑑𝑤𝑁(𝑘)
Δ𝑤𝑁(𝑘) 

⋮ 

𝛿𝑁(𝑘)  ≈  𝛿𝑁,0(𝑘) + 
𝑑𝛿𝑁(𝑘)

𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + 

𝑑𝛿𝑁(𝑘)

𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + ⋯+ 

𝑑𝛿𝑁(𝑘)

𝑑𝑤𝑁(𝑘)
Δ𝑤𝑁(𝑘) 

(3.55) 

Differentiating again with respect the weight, 

 𝑑𝛿𝑗(𝑘)

𝑑𝑤𝑖(𝑘)
=  

𝑑𝐸(𝑘)
𝑑𝑤𝑗(𝑘)

𝑑𝑤𝑖(𝑘)
=  

𝑑2𝐸(𝑘)

𝑑𝑤𝑖(𝑘)𝑑𝑤𝑗(𝑘)
 

(3.56) 

Equation (3.49) becomes: 

𝛿1(𝑘)  ≈  𝛿1,0(𝑘) + 
𝑑2𝐸(𝑘)

𝑑𝑤1
2(𝑘)

Δ𝑤1(𝑘) + 
𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤2(𝑘)
Δ𝑤2(𝑘) + ⋯+ 

𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤𝑁(𝑘)
Δ𝑤𝑁(𝑘) 

𝛿2(𝑘)  ≈  𝛿2,0(𝑘) + 
𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + 

𝑑2𝐸(𝑘)

𝑑𝑤2
2(𝑘)

Δ𝑤2(𝑘) + ⋯+ 
𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤𝑁(𝑘)
Δ𝑤𝑁(𝑘) 

⋮ 

𝛿𝑁(𝑘)  ≈  𝛿𝑁,0(𝑘) + 
𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + 

𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤2(𝑘)
Δ𝑤2(𝑘) + ⋯+ 

𝑑2𝐸(𝑘)

𝑑𝑤𝑁
2(𝑘)

Δ𝑤𝑁(𝑘) 

(3.57) 
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To minimize the total error function E, the left hand sides of above equations should be 

zero. The above equations will become: 

 

−𝛿1,0(𝑘)  ≈  
𝑑2𝐸(𝑘)

𝑑𝑤1
2(𝑘)

Δ𝑤1(𝑘) + 
𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤2(𝑘)
Δ𝑤2(𝑘) + ⋯+ 

𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤𝑁(𝑘)
Δ𝑤𝑁(𝑘) 

−𝛿2,0(𝑘)  ≈  + 
𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + 

𝑑2𝐸(𝑘)

𝑑𝑤2
2(𝑘)

Δ𝑤2(𝑘) + ⋯+ 
𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤𝑁(𝑘)
Δ𝑤𝑁(𝑘) 

⋮ 

−𝛿𝑁,0(𝑘) ≈  + 
𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤1(𝑘)
Δ𝑤1(𝑘) + 

𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤2(𝑘)
Δ𝑤2(𝑘) + ⋯+ 

𝑑2𝐸(𝑘)

𝑑𝑤𝑁
2(𝑘)

Δ𝑤𝑁(𝑘) 

(3.58) 

In matrix form we can write the above equation as: 

[

−𝛿1(𝑘)

−𝛿2(𝑘)
⋮

−𝛿𝑁(𝑘) 

] =  

[
 
 
 
 
 
 
 −

𝑑𝐸(𝑘)

𝑑𝑤1(𝑘)

−
𝑑𝐸(𝑘)

𝑑𝑤2(𝑘)
⋮

−
𝑑𝐸(𝑘)

𝑑𝑤𝑁(𝑘)]
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 

 𝑑2𝐸(𝑘)

𝑑𝑤1
2(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤1(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤2(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤2
2(𝑘)

⋯

𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤𝑁(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤𝑁(𝑘)
⋮ ⋱ ⋮

𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤1(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤2(𝑘)
⋯

𝑑2𝐸(𝑘)

𝑑𝑤𝑁
2(𝑘) ]

 
 
 
 
 
 
 

× [

Δ𝑤1(𝑘)

Δ𝑤2(𝑘)
⋮

Δ𝑤𝑁(𝑘)

] (3.59) 

The square matrix is called the Hessian matrix. 

 𝐻(𝑘) =  

[
 
 
 
 
 
 
 

 𝑑2𝐸(𝑘)

𝑑𝑤1
2(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤1(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤2(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤2
2(𝑘)

⋯

𝑑2𝐸(𝑘)

𝑑𝑤1(𝑘)𝑑𝑤𝑁(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤2(𝑘)𝑑𝑤𝑁(𝑘)

⋮ ⋱ ⋮

𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤1(𝑘)

𝑑2𝐸(𝑘)

𝑑𝑤𝑁(𝑘)𝑑𝑤2(𝑘)
⋯

𝑑2𝐸(𝑘)

𝑑𝑤𝑁
2 (𝑘) ]

 
 
 
 
 
 
 

 (3.60) 

Equation (3.53) becomes: 

 𝛿(𝑘) = 𝐻(𝑘)Δw(𝑘) (3.61) 

 Δw(𝑘) = −𝐻−1(𝑘)𝛿(𝑘) (3.62) 

 𝑤(𝑘 + 1) =  𝑤(𝑘)  − 𝐻−1(𝑘)𝛿(𝑘) (3.63) 
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3.5.3 Gauss – Newton Algorithm  

The Newton method requires the calculations of second order derivatives. In order to 

calculate Hessian matrix the second-order derivatives of the total error function should be 

computed, Jacobean matrix is introduced in Gauss – Newton method for this purpose. 

 𝐽(𝑘) =  

[
 
 
 
 
 
 
 
𝑑𝑒1(𝑘)

𝑑𝑤1(𝑘)

𝑑𝑒1(𝑘)

𝑑𝑤2(𝑘)
𝑑𝑒2(𝑘)

𝑑𝑤1(𝑘)

𝑑𝑒2(𝑘)

𝑑𝑤2(𝑘)

⋯

𝑑𝑒1(𝑘)

𝑑𝑤𝑁(𝑘)
𝑑𝑒2(𝑘)

𝑑𝑤𝑁(𝑘)
⋮ ⋱ ⋮

𝑑𝑒𝑗(𝑘)

𝑑𝑤1(𝑘)

𝑑𝑒𝑗(𝑘)

𝑑𝑤2(𝑘)
⋯

𝑑𝑒𝑗(𝑘)

𝑑𝑤𝑁(𝑘)]
 
 
 
 
 
 
 

 (3.64) 

Integrating equations (3.27) and (3.37): 

 𝛿𝑗(𝑘) =  
𝑑𝐸(𝑘) 

𝑑𝑤𝑖(𝑘)
=  

𝑑
1
2

∑ 𝑒𝑗
2(𝑘)𝑆

𝑗=1

𝑑𝑤𝑖(𝑘)
=  ∑

𝑑𝑒𝑚(𝑘)

𝑑𝑤𝑖(𝑘)
𝑒𝑚(𝑘)

𝐶

𝑚=1 

 (3.65) 

 𝛿(𝑘) = 𝐽𝑒(𝑘) (3.66) 

where C is the total number of neurons in the layer and m is index of e and: 

 𝑒 = [

𝑒1

𝑒2

⋮
𝑒𝐶

] (3.67) 

The element in Hessian matrix is given as: 

ℎ𝑖𝑗 = 
𝑑2𝐸(𝑘)

𝑑𝑤𝑖(𝑘)𝑑𝑤𝑗(𝑘)
=  ∑

𝑑𝑒𝑚(𝑘)

𝑑𝑤𝑖(𝑘)

𝑑𝑒𝑚(𝑘)

𝑑𝑤𝑖(𝑘)
 + ∑

𝑑2𝑒𝑚(𝑘)

𝑑𝑤𝑖(𝑘)𝑑𝑤𝑗(𝑘)

𝐶

𝑚=1

𝑒𝑚(𝑘)

𝐶

𝑚=1 

 

(3.68) 

 According to Newton method the later term is closed to zero [62]. Hessian matrix can be 

expressed in terms of Jacobean matrix as: 

 𝐻(𝑘) =  𝐽𝑇(𝑘)𝐽(𝑘) (3.69) 

 𝑤(𝑘 + 1) = 𝑤(𝑘) − (𝐽𝑇(𝑘)𝐽(𝑘))
−1

 𝐽(𝑘)𝑒(𝑘) (3.70) 
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3.5.4 Levenberg-Marquardt Back Propagation Algorithm  

The Gauss–Newton algorithm simplifies the process of learning as calculations of 

the second order derivative of total error function are replaced by the Jacobean matrix. 

This method seems to have fast convergence if error surface is likely to have a quadratic 

approximation but otherwise it might prove divergent [62].  

The Levenberg–Marquardt Back Propagation (LMBP) algorithm combines the 

Error Back Propagation (EBP) method with Gauss–Newton algorithm. In this way it 

achieves the fast convergence of Gauss–Newton algorithm and steadiness of EBP 

algorithm. LMBP is a little slower in convergence than Gauss-Newton algorithm but it 

ensures convergence even for a complex error surface. The LMBP uses EBP algorithm to 

learn the complex curvature of error surface to find a local curvature for which making a 

quadratic approximation is possible. It then switches to the Gauss–Newton algorithm to 

speed up convergence. The LMBP presents another approximation of the Hessian matrix 

to confirm that approximation made in Gauss–Newton method is always invertible: 

 𝐻(𝑘)  ≈  𝐽𝑇(𝑘)𝐽(𝑘) +  𝜇𝐼 (3.71) 

μ is called combination coefficient, its value is always positive and I is identity matrix. 

From above equation it is evident that values of diagonal elements are greater than zero 

hence approximated Hessian matrix is invertible. Equation (3.65) yields: 

 𝑤(𝑘 + 1) = 𝑤(𝑘) − (𝐽𝑇(𝑘)𝐽(𝑘) +  𝜇𝐼)−1 𝐽(𝑘)𝑒(𝑘) (3.72) 

The LMBP switches between Gauss–Newton and EBP algorithms; value of combination 

coefficient μ is used for this purpose. When it has a very small value equation (3.67) 

imitates (3.65) as Gauss–Newton, on the other hand when μ is made very large, equation 
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(3.67) and can be interpreted as (3.48). μ can be expressed in terms of learning rate 

coefficient 𝜂 of the EBP algorithm as: 

 
𝜂 =  

1

𝜇
 

(3.73) 

This thesis implements LMBP for training the neural networks. A step by step 

implementation of this algorithm is stated as follows: 

1. Generate the least mean square error by applying randomly generated initial 

weights. 

2. Update the weights using equation (3.67). 

3. Evaluate the total error after applying the new weights. 

4. If current total error is found more than previous one than reset the weights to 

previous values and increase the value of μ by a specified factor and return to step 

2 and try again. 

5. If the current total error is found lesser than previous one than make the updated 

weights as current and decrease the value of μ by a specified factor. 

6. Go to step 2 and repeat the whole process until the value of the total error 

becomes smaller than the required value. 

The flowchart of LMBP training described above is demonstrated in Figure 16 . 
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Figure 16: Flowchart of LMBP algorithm [62] 

In Figure: 

w(k) = current weight  

w(k+1) = updated weight  

E(k+1) = current total error  

E(k) = previous total error  

s = slope of activation function and 

f = specified factor for changing the value of μ. 

𝐸𝑚𝑎𝑥 = required value of total error (E) 
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Chapter 4: Implementation of ANN for STLF 

To implement ANN to perform STLF, three Canadian provinces; Nova Scotia 

(NS), New Brunswick (NB) and Ontario were selected. The data for each jurisdiction was 

gathered via online resources [64 - 67]. The load data from June 1 to August 30, 2013 

was collected through utility company websites; for Nova Scotia from NS Power Oasis 

database [65], for New Brunswick NB Power Operations data [66] and for Ontario 

Independent System Electricity (IESO) Power data [67]. Only temperature was selected 

as exogenous variable as it is the most influential of all meteorological parameters. 

Temperature data for each province was downloaded from Government of Canada 

Climate Database [65]. After gathering all data following procedures were followed to 

achieve forecasts.  

4.1 Statistical Analysis and selection of Input parameters  

In order to study load response and factors affecting it a statistical analysis was 

performed after gathering the data. The last week of August from August 24 to 30, 2013 

was selected to be forecasted. The remaining data points from June 1 to August 23 were 

selected for training. The performance of the algorithms depends on the choices of 

training and testing intervals. Data of four weeks prior to the forecasting week was given 

preference for input selection. To study relationship between loads of previous hours of 

same day and previous days in a week on current load, a graph was plotted. The week 

selected for plot was dated from July 30 to August 4 which is the first week of August. 

Load curves of each day were plotted on graph of that week to observe the relationship 

between load demand at any specific hour and load at previous hours and previous day 
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same hour. The graphs containing load curves for Nova Scotia, New Brunswick and 

Ontario for week mentioned are demonstrated below: 

 
Figure 17: Daily Load Curves for Nova Scotia 

 

Figure 18: Daily Load Curves for New Brunswick 

 

Figure 19: Daily Load Curves for New Brunswick 
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For all three provinces it can be seen that load values of previous hour and 

previous days match each other closely. The slopes almost replicate each other. Also load 

behavior of weekend days Saturday and Sunday is different than other days. Hence, it 

was decided to forecast weekdays and weekends separately. With the help of these graphs 

four inputs were selected for Weekdays and one for Weekend forecast. If y(h) is 

considered to be the variable to represent present load then the inputs for weekdays 

include load for previous hour of same day – y(h-1) , same hour of previous day – y(h-

24), same hour two days before – y(h-48) and same hour three days before – y(h-72). For 

weekend only y (h-1) was selected as their load curve generates a unique response.  

Furthermore, to study the effect of the load series of previous weeks on present 

load a graph for each jurisdiction was produced. A sample of data was selected 

comprising of load data for four weeks from July 22 to August 18, 2013 with week 1 

starting from July 22, week 2 starting from July 29, week 3 from August 5 and week 4 

from August 12 respectively. Following figures presents graphs containing load curves of 

four weeks stated for three selected provinces.  

 
Figure 20: Weekly Load Curves for Nova Scotia 
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Figure 21: Weekly Load Curves for New Brunswick 

 
Figure 22: Weekly Load Curves for Ontario 

It can be observed that load curves of four weeks are closely related to each other. 

Data points including first day (Monday) week 3 of Nova Scotia, Monday week 3 and 

third day (Wednesday) week 2 of New Brunswick, first day (Monday) all weeks, second 

day (Tuesday) week 1 and four of last five days week 3 of Ontario do not match closely. 

Therefore, they were treated as exceptions. It can also be seen that for weekends the 

response is more similar to each other than weekdays. Thus two inputs for weekday 

forecasts and three inputs for weekends were selected. The inputs selected for weekdays 

include the load for same hour previous week – y (h-168) and same hour two weeks 
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before – y (h-336). For weekends the load of same hour three weeks before – y(h-504) 

was selected in addition of former two.  

In order to study the effect of temperature on load the following sets of graphs were 

plotted for each province by using data points of week 1. The first graph consists of load 

and temperature curves superimposed on each other depicting the relationship between 

both variables. The second graph plots the temperatures of each day of the week.  

 
Figure 23: Weekly load and temperature (above), Daily temperature (below) for NS 
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Figure 24: Weekly load and temperature (above), Daily temperature (below) for NB 

 
Figure 25: Weekly load and temperature (above), Daily temperature (below) for ON 
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A close association between variations in temperature and respective change in 

load can be seen. Also temperatures of previous days are similar to each other. 

Henceforth, three temperature variables were selected for weekends which include 

current temperature denoted by t(h), temperature of pervious hour – t(h-1) and 

temperature of same hour of the previous day – t(h-24), Since the load response of each 

day of weekend is unique for temperature variables of the same day (t(h) and t(h-1)) were 

selected as inputs. In total, nine inputs for weekdays forecast and six inputs for weekend 

forecasting were selected. They are summarized in table 2: 

Table 2: Summary of selected Inputs for Weekdays and Weekend forecasts 

Inputs Denoted by Weekdays Weekends 

Previous Hour Load   y(h-1)   

Previous Day same Hour Load y(h-24)  x 

Same Hour Load 2 days before y(h-48)  x 

Same Hour Load 3 days before y(h-72)  x 

Previous Week same Hour Load y(h-168)   

Same Hour Load 2 weeks before y(h-336)   

Same Hour Load 3 weeks before y(h-504) x  

Current Temp t(h)   

Previous Hour Temp t(h-1)   

Previous Day Same Hour Temp                   t(h-24)  x 

4.2 Data Pre-Processing  

As mentioned in the previous section  the data was separated into weekdays and 

weekends for separate forecasts. Moreover, all data points were normalized between 

values of 0 and 1 in order to simplify the calculations and to quantify the effect of all 

temperature variables. It was done by using the following formula for load and tempter: 

 𝑥𝑛𝑜𝑟𝑚 = 
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (4.1) 
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where,  

𝑥𝑛𝑜𝑟𝑚 is the normalised data point  

𝑥 is the actual data point 

𝑥𝑚𝑖𝑛 is the minimum data point in the series 

𝑥𝑚𝑎𝑥 is the maximum data point in the series 

Data normalization was carried out in a separate MATLAB script prior to the 

separation into weekdays and weekends. Then the input matrices were created in same 

script respectively. 

4.3 Training of Neural Networks  

Further separation of data into training and testing datasets was performed. The 

training dataset consist of data points from June 1 to August 23, 2013 whereas the testing 

dataset includes data from August 24 to 30, 2013. The neural network architectures 

which are mentioned in next section were trained using the training dataset and the  

Levenberg-Marquardt Back Propagation (LMBP) algorithm discussed  in section 3.5.4. 

Each network took different time period to train. The time took for training each network 

is mentioned in the next chapter.  

4.4 Finalised networks used for Forecasting  

As discussed in section 3.4, regarding the theoretical background of ANN 

architectures, this section illustrates the implementation of networks used to perform 

STLF in this thesis. Four new networks are introduced and three advanced architectures 

are explored. The results of these seven network architectures are compared with the 
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most commonly used feed forward neural network (FFNN) with one hidden layer. For 

weekdays load forecast FFNN is demonstrated in Fig.  26  

 

Figure 26: Feed forward Neural Network (FFNN) 

For nine inputs nine neurons are used in the hidden layer while one neuron is used 

in output layer. Linear transfer function is used for the output layer while all prior hidden 

layers use hyperbolic tangent sigmoid. This result is achieved after trial and error. For 

fastest convergence equal number of neurons as number of inputs was found to be the 

best combination. It was also found that with no bias networks generated accurate 

forecasts therefore the value of bias was set to zero. This section will present network 

architectures to forecast weekday loads used in this thesis. For weekend forecasts only 

the number of inputs is changed to six. The performance of each network will be 

evaluated in the next chapter. Furthermore the Cascaded Neural Network (CNN) 

architecture with one hidden layer is shown in Fig. 27: 

 

Figure 27: Cascaded Neural Network (CNN) 

CNN is considered as advanced architecture which is very seldom used for STLF. 

In this architecture the input is cascaded to neuron of output layer with weight connected 
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to it. Moreover, Recurrent Neural Network with Local feedback (RNNL) and Recurrent 

Neural Network with Global feedback (RNNG) are also explored in this thesis besides 

CNN. The RNNL architecture consists of a feedback loop for output of hidden layer to its 

input. This feedback path is called local feedback. For RNNG a weighted feedback is 

taken from output of output layer to connect from input of hidden layer. Both these 

networks consist of one hidden layer and are presented in Fig. 28 and 29: 

 

Figure 28: Recurrent Neural Network with Local feedback (RNNL) 

 

Figure 29: Recurrent Neural Network with Global feedback (RNNG) 

Two hybrid ANN architectures are introduced. One combines CNN with RNNL 

and is named as Cascaded – Recurrent Neural Network with Local feedback (CRNNL). 

Whereas other combine CNN with RNNG and called Cascaded – Recurrent Neural 

Network with Global feedback (CRNNG). The architectures of both hybrid networks are 

given in Fig. 30 and 31: 



 

 59 

 

 

Figure 30: Cascaded – Recurrent Neural Network with Local feedback (CRNNL) 

 

Figure 31: Cascaded – Recurrent Neural Network with Global feedback (CRNNG) 

The FFNN and CNN networks are modified and tested with an increased hidden 

layer. The 3-layered FFNN denoted by FFNN (3L) consist of 2 hidden layers with 

number of neurons in first layer equal to number of inputs. The number of neurons in 

second hidden layer was kept double the number of inputs as it was found to produce 

accurate results. 3-layered CNN or CNN (3L) is much like FFNN (3L) but input is 

cascaded into both hidden and output layers with connection weights. The output of first 

hidden layer is cascaded to output layers as well with a weight connection of its own. 

Both network architectures are demonstrated as shown in Fig. 32 and 33.: 

 

Figure 32: 3-layered feed forward Neural Network (FFNN (3L)) 
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Figure 33: 3-layered cascaded Neural Network (CNN (3L)) 

4.5 Error Analysis and Performance Evaluation 

After getting forecasting results two parameters were used to compare the results 

and evaluate the advantages and disadvantages of each network. Error analysis was done 

on the basis of Mean Absolute Percentage Error (MAPE). Most authors in literature use 

this parameter as a measure of performance of a forecasting method. Another parameter 

calculated for error analysis is the Root Mean Squared Error (RMSE). The choice 

between MAPE and other error criteria depends on the error statistics which is system 

dependent.  Following formulae were used to calculate both error parameters: 

 𝑀𝐴𝑃𝐸 =  
100

𝑁
 ∑

|𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙|

𝑦𝑎𝑐𝑡𝑢𝑎𝑙

𝑁

𝑖=1

 (4.2) 

 𝑅𝑀𝑆𝐸 = √
(𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙)

2

𝑁
 (4.3) 

N is the total number of points forecasted.  

4.6 Use of Software 

Microsoft Excel was used to generate all the graphs in this Thesis. The figures of 

neural network architectures were produced using the MATLAB’s neural network 

toolbox and training of networks, forecasting results as well as data processing steps were 

performed using MATLAB script in conjunction neural networks toolbox.  
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Chapter 5: Results and Discussion 

This chapter is divided into four parts. The first three parts present forecasting 

results of three Canadian jurisdictions namely; Nova Scotia, New Brunswick and Ontario 

for weekdays and weekends using eight different neural network architectures introduced 

in section 4.4. Graphs of actual versus predicted values are followed by a table 

summarizing and discussing results. Last part of this chapter brings up all results together 

and discusses the observed outcome achieved.   

5.1 Nova Scotia 

The load of Nova Scotia ranges from 745 MW to 1373MW during selected time 

period. Though weekdays and weekend data is separated but since the province is not 

much industrialized, load curves throughout the week remain consistent. Load and 

temperature data from June 1 to August 25, 2013 is used for training all networks tested. 

This data was gathered from online resources published by the Government of Canada, 

climate database [64] and Nova Scotia power, Oasis Database [65]. The 24 hour ahead 

and week ahead forecasts are presented next for weekdays followed by weekend’s 

forecasts. 

5.1.1 24 hours ahead forecast for Weekday 

The 24 hours ahead NS load forecast using eight network architectures are given for 

a weekday. The day selected for forecast is August 26, 2013. It is the last Monday of the 

month. The architectures of networks tested are discussed in section 4.4. The following 

figures show a comparison between actual and forecasted load as well as the variations in 

forecasting error throughout the day for each network implemented. 
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Figure 34: Day ahead forecast results for FFNN 

Fig. 34 shows the actual and predicted loads for FFNN. The forecasting error 

ranges from 8.26% to -5.24%. Both these errors occur during first 6 hours of the day. 

Once load curve becomes steady the forecasting error is also reduced  to as low as 0.13%. 

It can also be observed that as the load starts decreasing towards end of the day, the error 

starts increasing. For the last 2 hours error increases above 5%. The training process for 

this architecture took 5 seconds to generate results. The MAPE of this network 

configuration was 2.32%. 
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Figure 35: Day ahead forecast results for CNN 

The forecasting error for the CNN ranges from 5.19% to -4.03%. The CNN 

forecast starts with the error around 2% for the first 5 hours but a negative spike of -4.03 

occurs at the 6th hour. The forecast is quite stable throughout except during the last 4 

hours. The error increases to its maximum during the last hour. As compared to the 

FFNN the overall error distribution seems to be more stable. The training took 6 seconds 

and the curve for predicted load follows the actual load consistently except during the last 

4 hours. The MAPE was also improved to 1.93% as compared to the FFNN.  
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Figure 36: Day ahead forecast results for RNNL 

The forecasting results for RNNL are shown in Fig. 36. Since the network 

contains a delay in the feedback path, training took time to produce forecasts. The total 

training time was 55 seconds long. Forecasting error for first hour was low (2.18%) but 

the maximum error peak occurs at the  3rd hour with a value of  6.45%. A negative error 

peak of -5.6% occurs at the 6th hour. The performance afterwards seems to be quite 

accurate and the error floats between -1% and 1%. The error performance during peak 

hours is very good and the error falls to its minimum of 0.048% during the 19th hour. The 

error increases again during the last 4 hours. Due to high peaks during start and end, 

MAPE for this network goes to 2.26% but the actual versus forecasted curves during the 

peak hours matches very closely with each other.  
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Figure 37: Day ahead forecast results for RNNG 

The performance of RNNG has more resemblance to that of the FFNN. The 

training time of network is 63 seconds. It starts with a high forecasting error of 8.55% 

and negative peak goes to -5.06%. Just like the FFNN both these error peaks occur during 

first 6 hours. After being steady during peak hours forecast ends with errors around 5% 

during last 2 hours. Because a few error peaks occurs during the forecast MAPE and 

drops down to 2.18% as compared to that of the FFNN.  
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Figure 38: Day ahead forecast results for CRNNL 

The forecasts of the hybrid network architecture CRNNL is shown in Figure 38. 

The MAPE drops down to 2.21% as compared to FFNN (2.32%). The training time of 

around 58 second is notable. It is like a trade-off between accuracy and time. For short 

term load forecasting this seems to be acceptable. The response is almost similar to 

FFNN with a starting error of 8.6% and a negative peak of -4.3% starting in 6 hours. The 

error rises towards the ending hours just like other networks discussed. In total there are 6 

instances where error goes above 3% both on positive and negative sides as compared to 

8 times for FFNN.   
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Figure 39: Day ahead forecast results for CRNNG 

The CRNNG produces improved results than CRNNL with slightly less time for 

training. Network trains in approximately 49 seconds and gives an overall MAPE of 

2.18% which is similar to the performance of the RNNG network. The forecasting error 

ranges from -3.6% to 8.6% which is a better outcome as compared to maximum negative 

error of -5.06% of RNNG and -4.03 of CNN. The error curve during peak hours is steady 

like other networks and towards negative error side is suppressed more than other 

networks. 
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Figure 40: Day ahead forecast results for 3-layered FFNN 

The performance of 3-layered FFNN presented in Figure 40 look much alike RNNL with 

low error to start with. The error response looks quite erratic but maximum positive and 

negative errors are between 5.53% and -3.32. The minimum error is 0.04%. The 

convergence time is 6 seconds with MAPE of 1.99%. Though the overall performance 

looks better than most of the networks but from error curve it is observed that the forecast 

performance during peak hours produces some error spike. 
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Figure 41: Day ahead forecast results for 3-layered CNN 

The forecast generated by the 3-layered CNN is shown in Figure 41. By far it 

gives the best performance with a MAPE of 1.81. The error ranges from -4.54% to 

6.33%. There are 6 instances where the error goes above 3% on either side but 

throughout it remains close to 0. The error remains between positive and negative 4% 

except for the last hour prediction. If we add the fast training period of 7 seconds, 3-

layered CNN by far proves to be the best among all eight networks for 24 hour ahead 

forecasting of weekday for Nova Scotia.   
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5.1.2 Comparative Analysis of 24 hours ahead forecast for Weekday 

The performance of all eight networks has been discussed in previous section. Now 

we will summarize and give a comparative analysis. Table 3 shows the MAPE and 

RMSE of each network tested for forecasting the Nova Scotia load for August 26, 2013. 

The improvement of each network over worst performing network which in this case is 

FFNN is also presented in the table.   

Table 3: 24 hours ahead MAPE and RMSE for Nova Scotia 

Architecture MAPE RMSE Improvement 

FFNN 2.32 32.66 0.00% 

CNN 1.93 26.28 16.68% 

RNNL 2.26 30.29 2.80% 

RNNG 2.18 31.23 5.86% 

CRNNL 2.21 30.92 4.76% 

CRNNG 2.18 31.20 5.86% 

FFNN (3L) 1.99 26.48 14.42% 

CNN (3L) 1.81 26.23 21.88% 

The results indicate that the 3-layered CNN gives best overall performance with 

21.88% improvement over the FFNN. The performance of CNN, RNNL, RNNG, 

CRNNL and CRNNG with enhancements of 16.68%, 2.8%, 5.86%, 4.76% and 5.86% 

have proved to be more stable during peak hours than 3-layered FFNN or CNN network. 

On the basis of consistency if the forecasting errors during starting and ending hours are 

acceptable to a utility company than CNN can be the best choice among all. Also 

networks with recurrent paths takes longer time to converge but gives better error 

response and closely matches the load curve during peak hours. Following is a graph 

giving a comparison between worst and best forecasting error performance; FFNN and 

CNN (3L)   
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Figure 42: 24 hours ahead forecasting error performance comparison between FFNN and CNN (3L) for 

Nova Scotia 
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5.1.3 Week ahead forecast for Weekdays 

The week ahead NS load forecast for weekdays is discussed in this section. The 5-

day week selected to forecast load is from August 26 to 30. These are days from Monday 

and Friday. The eight networks discussed in section 4.4 are tested and their results 

explained as follows:   

 

(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 
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(e) Friday 

Figure 43: Week ahead forecast results for FFNN 

FFNN performs better for longer period of forecast and produce a forecast for 

week ahead for the days specified with MAPE 2.21. The overall forecasting result may 

seem reduced but error range is increased. The error varies in between -7.45% to 8.26% 

with minimum error of 0.07%. The error rises during start and ending hours of a day with 

most error points towards negative side of the axis.  
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 44: Week ahead forecast results for CNN 
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CNN produces improved results as compared to FFNN. The MAPE drops down 

to 2.03 and the error is found in between -6.56% and 5.45%. The large negative error 

peak occurring during second and third day (Tuesday and Wednesday) have been 

reduced. Starting error is also reduced and error curve looks steadier than FFNN. The rise 

in error seen during starting and ending hours of each day has also improved. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 45: Week ahead forecast results for RNNL 
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RNNL produces almost same results as FFNN. With a MAPE of 2.16 the 

performance is also not much improved. Considering time it takes to train a recurrent 

network the overall performance of FFNN can be regarded to be better. During peak 

hours the predicted power curve closely follows the actual curve. Also the error during 

the starting hours of third and fourth days is greatly reduced. The reason for a reduced 

overall error performance is the high errors occurring throughout the forecast ranging 

from -8.4% to 7.61%.   
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 46: Week ahead forecast results for RNNG 



 

 79 

 

With the forecasting error ranging from -5.94% to 7.06%, RNNG produces a 

better result with a MAPE of 2.08%. The predicted load follows the actual load curve 

throughout with a total of only 10 spikes of error 5% above and below the axis. The 

distribution of error is consistent through the days and starting and ending hours do not 

result in increasing error.  
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 47: Week ahead forecast results for CRNNL 



 

 81 

 

Fig. 47 shows the forecast made by using hybrid CRNNL network. The result 

generates better forecasts as compared to CNNL network. It is seen that cascaded 

connection in architecture have improved the outcome. The error ranges from -7.71% to 

6.74% with a MAPE of 2.1%. The negative error increases greatly during forecast of 

second and fourth day but do not affect the overall performance. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 48: Week ahead forecast results for CRNNG 
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The CRNNG produces steady error distribution. Only 8 times error curve crosses 

5%. The MAPE is 2.12 and error range -6.23 to 6.21%. The result generated by this 

network is most consistent as compared to the network performance described before 

this. The error increases during starting and ending hours and the forecast of the last 36 

hours is very inaccurate contributing a great deal in increasing the overall error.   
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 49: Week ahead forecast results for 3-layered FFNN 
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The forecasting results of 3-layered FFNN are presented above. The error curve 

looks to be near 0 most of the time but the error peaks are very high. The positive and 

negative maximum errors are 8.94% and -9.66%. The minimum error has gone as low as 

0.07%. The error curve shows a stable performance but due to high peaks occurring at the 

start, end and once during second day forecast, MAPE has gone up to 2.17%. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 50: Week ahead forecast results for 3-layered CNN 
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The 3-layered CNN produces best overall performance with MAPE of 1.99. 

Though error rises to above 5% both above and below the axis for 12 times error 

distribution throughout is uniformly oscillating around -3% to 2.5% and many forecasted 

points near to 0 have improved MAPE. The error performance during the peak hours is 

not as good as compared to networks containing recurrent paths but with small variations 

in error is within acceptable limits.  
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5.1.4 Comparative Analysis of Week ahead forecast for Weekdays 

Following the discussion of each individual network for week ahead forecasting, 

Table 4 presents the MAPE and RMSE of all the networks. Since the FFNN have 

generated the highest forecasting error so the improvement of other networks are 

compared with it.  

Table 4: Week ahead MAPE and RMSE for Nova Scotia 

Architecture MAPE RMSE Improvement 

FFNN 2.21 31.45 0.00% 

CNN 2.03 28.69 8.26% 

RNNL 2.16 30.80 2.32% 

RNNG 2.08 29.32 5.83% 

CRNNL 2.10 30.24 4.81% 

CRNNG 2.12 29.93 4.15% 

FFNN (3L) 2.17 31.72 1.76% 

CNN (3L) 1.99 29.08 10.04% 

The cascaded networks CNN and 3-layered CNN have proved to be better than 

other networks with improvements of 8.26% and 10.04% respectively. The other 

networks have also shown improvement specially the RNNG network (5.83%). The 

prediction of 3-layered FFNN (1.76% improvement) is much like FFNN but the overall 

error curve is found to be consistent. Also all recurrent networks perform better during 

peak hours. The hybrid networks CRNNL (4.81%) and CRNNG (4.15%) also proved to 

be better than the FFNN and produced lower error during the starting and ending hours 

during the days of selected week. A comparison of forecasting error performance 

between FFNN and 3-layered CNN is given in Figure 51: 
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(a) Monday 

 

(b) Tuesday 

  

(c) Wednesday 
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(d) Thursday 

 

(e) Friday 

Figure 51: Week ahead forecasting error performance of comparison between 

FFNN and CNN (3L) for Nova Scotia 
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5.1.5 Load forecast for Weekend 

After forecasting the load for day ahead and week ahead, the eight network 

architectures are used to forecast weekend load. This section elaborates the performance 

of each network. The weekend days selected to forecast are August 24-25, 2013. It is the 

last weekend of the month. A comparison between the actual and forecasted load along 

with the variations in error that occurred during forecast is presented for each network. 

The results of first four architectures; FFNN, CNN, RNNL and RNNG are demonstrated 

in Figure 52:  

  

(a) FFNN 
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(b) CNN 

 

(c) RNNL 
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(d) RNNG 

Figure 52: Weekend forecast results (FFNN, CN, RNNL, RNNG)  

Above Figure 52 presents the Weekend load forecast for Nova Scotia produced by 

FFNN, CNN, RNNL and RNNG. It is observed that the performance of FFNN and CNN 

during peak hours is better than recurrent networks. The forecasting error for FFNN 

ranges from -6.8% to 5.09% and a minimum error of 0.03%. Its MAPE is 2.16%. For 

CNN the error varies from -7.32% to 3.48% with the same minimum error as FFNN. It 

suppresses forecasting errors during the starting and ending hours of both Saturday and 

Sunday as a result produce lower MAPE of 1.84%. If we compare it with RNNL whose 

MAPE is 2.09% and error ranges from -9.04% to 3.51%, CNN with added advantage of 

faster convergence seems a better option. Though the negative error spike of -9.04% 

occurs during the peak hour on Saturday and a similar error spike results on Sunday at 

almost the same time due to which MAPE has suffered. The most erroneous performance 

in all is that of RNNG. Its MAPE is 2.42% and possesses an error range of -6.84% to 

4.34%. Throughout the forecast predicted curve keep producing error spikes mostly 
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negative and ended up with worst MAPE of all. Furthermore, load forecasts of remaining 

four networks; CRNNL, CRNNG, 3-layered FFNN and 3-layered CNN are presented in 

Figure 53: 

 

(a) CRNNL 

 

(b) CRNNG 
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(c) FFNN (3L) 

 

(d) CNN (3L) 

Figure 53: Weekend forecast results (CRNNL, CRNG, FFNN (3L), CNN (3L)) 

CRNNL gives a slightly better performance than RNNL. The error is reduced for the 

peak hours but increased for starting hours of both days. A similar MAPE of 2.08% is 

produces. Forecasting error ranges from -6.89% to 3.73% which is a narrow range. The 
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CRNNG on the other hand offers a big improvement with MAPE 1.76%. It suppresses 

forecasting errors throughout both days. Its error ranges from -7.62% to 5.85%. The 3-

layered FFNN improves the overall performance to a greater extent. Its MAPE is 1.7% 

and error range is from -6.28 to 4.35% with a minimum error of 0.01%. Finally 3-layered 

CNN produces MAPE of 1.93% and error range of -8.25% to 2.4% respectively. 
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5.1.6 Comparative Analysis of Load forecast for Weekend 

For weekend forecast the RNNG has given the worst performance among all other 

architectures. Its performance is taken as a base and an improvement of each network 

over RNNG is given along with the summary of error performances. 

Table 5: Weekend forecast MAPE and RMSE for Nova Scotia 

Architecture MAPE RMSE Improvement 

FFNN 2.16 29.44 3.46% 

CNN 1.84 25.80 17.65% 

RNNL 2.09 30.92 6.54% 

RNNG 2.24 32.69 0.00% 

CRNNL 2.08 28.74 7.07% 

CRNNG 1.76 28.77 21.53% 

FFNN (3L) 1.70 24.84 23.93% 

CNN (3L) 1.93 28.68 13.68% 

3-layered FFNN has produced best results with 23.93% improvement over 

RNNG. CRNNG and CNN with performance enhancements of 21.53% and 17.65% are 

also worth mentioning. Specifically the CRNNG gives the best performance during peak 

hours. The remaining networks; 3-layered CNN (13.68%), CRNNL (7.07%), RNNL 

(6.54) and FFNN (3.46%) have also shown better performance for weekends as they did 

for weekdays. Overall the performances of all networks for weekends have forecasted 

better results than weekdays.  Figure 54 gives a comparison between the forecasting error 

performance of RNNG and 3-layered FFNN. 
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5.1.7 Summary of Load forecast results for Nova Scotia 

Table 6 summarizes all the forecasting results achieved for Nova Scotia followed by 

a graphical presentation in Figure 55. 

Table 6: Summary of Load forecast results for Nova Scotia 

Architecture 
Day 

ahead 

Week 

ahead 
Weekend 

FFNN 2.32 2.21 2.17 

CNN 1.93 2.03 1.85 

RNNL 2.26 2.16 2.10 

RNNG 2.18 2.08 2.24 

CRNNL 2.21 2.10 2.09 

CRNNG 2.18 2.12 1.76 

FFNN (3L) 1.99 2.17 1.71 

CNN (3L) 1.81 1.99 1.94 

   

 

Figure 54: Graphical presentation of load forecast results for Nova Scotia 
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5.2 New Brunswick 

New Brunswick electrical load demand varies from 771 MW to 1450 MW during 

June to August 2013. The load demand drops down a small amount towards the end of 

the week. Just like Nova Scotia load and temperature data from June 1 to August 25, 

2013 are used for training all the networks. This data was gathered from online resources 

broadcast by Government of Canada, climate database [64] and New Brunswick power, 

Operations Data [66]. The 24 hour ahead and week ahead forecasts are presented next for 

weekdays and weekends. 

5.2.1 24 hours ahead forecast for Weekdays 

The 24 hours ahead NB load forecast using the eight network architectures discussed 

in section 4.4 are given for a weekday. The same day is selected for forecast which was 

selected for testing Nova Scotia load. Figures 56 to 63 present the forecasts produced by 

each network tested. Each plot gives a comparison between actual and forecasted load as 

well as forecasting error at each step. In addition, the training and testing data sets for all 

three jurisdictions is same, hence the network convergence times are also same for New 

Brunswick and Ontario forecasts. 
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Figure 55: Day ahead forecast results for FFNN 

The forecasting results utilizing FFNN for NB load is presented in Figure 56. It 

can be seen that the predicted curve generates negative error for most part of the forecast 

but the error seems to be lower than acceptable limits. Overall, 5 times the error falls 

above or below 3%. The MAPE is 2.3% with maximum positive and negative errors of 

6.65% and -7.72%. The forecast from noon to midnight produces accurate results. Hence 

it can be pointed out that during first half of the day where load demand increases 

exponentially towards the peak hours, the forecast curve falls short of load demand but 

once during peak hours the demand becomes stable, network generates accurate 

forecasts. 
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Figure 56: Day ahead forecast results for CNN 

The CNN network is implemented and the forecasting results are shown in Figure 

57. The accuracy is increased as compared to FFNN. The error ranges from -4.44% to 

4.63%. The predicted curve during first half appears similar to FFNN with decreased 

error. The MAPE for this network is 1.96% which is mainly due to lower peak errors and 

throughout the day the predicted load closely follows the load demand though for the 

most part falls below it. 
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Figure 57: Day ahead forecast results for RNNL 

The RNNL also shows improvement over FFNN with a MAPE of 2.14% as 

compared to 2.3%. The overall response follows the same theme as FFNN with erroneous 

forecast during first half of the day. Upon close observation it can be noticed that big 

negative errors occur for most part of the first half. With an error ranging from -5.23% to 

4.21% most of errors -2% occurs during first 12 hours with two positive and negative 

error spikes towards the end.   
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Figure 58: Day ahead forecast results for RNNG 

With almost similar overall performance and a MAPE of 2.16%, load forecast 

made by RNNG is shown in Figure 59. The error distribution is much better than RNNL 

especially during first 12 hours. Due to high error peaks the overall error performance has 

suffered. Except first and last couple of hours error curve is quite stable. The maximum 

errors range from -4.84% to 5.81%. 
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Figure 59: Day ahead forecast results for CRNNL 

The hybrid network CRNNL has produced a MAPE of 2.14% which is same as 

RNNL but negative error has greatly reduced. Another factor worth highlighting is stable 

curve throughout. Though due to occurrence of positive peaks twice have increase the 

MAPE. The negative error performance has shown big improvement. This network has 

produced the least negative error among all the other networks tested yet. The error 

ranges from -3.97% to 5.6%.  
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Figure 60: Day ahead forecast results for CRNNG 

With MAPE equal to 2.21%, forecasting results for CRNNG are presented above. 

Though overall error performance of this network is inferior from most of the networks 

but error distribution is much more stable. Except forecasts for 1st and 4th to 8th hours, 

results produced for rest of the day are less erroneous than FFNN, RNNL, RNNG or 

CRNNL. Due to the consistent occurrence of error spikes during the hours mentioned the 

overall performance has suffered. CRNNG possesses and error range of -5.79% to 6.04% 

which is the worse range yet.   
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Figure 61: Day ahead forecast results for 3-layered FFNN 

With an increment of a layer in the architecture performance of FFNN has 

improved a great deal. The negative error during first half of the day has greatly reduced. 

With error peaks of -3.11% to 5.13%, 3-layered FFNN has produced accurate results. The 

MAPE has also decreased to 1.93% as compared to 2.3% of FFNN.  The predicted curve 

has very closely followed the demand curve and has produced a very stable error 

distribution. 
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Figure 62: Day ahead forecast results for 3-layered CNN 

The forecast generated by the 3-layered CNN is presented in Figure 63. The 

predicted and demand curve are almost a match with small error throughout. The 

negative error during first half of the day has greatly reduced. Error ranges from -4.97% 

to 5.03%. Error curve is also very stable and a MAPE of 1.89% indicates high accuracy 

maintained throughout the forecast. 
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5.2.2 Comparative Analysis of 24 hours ahead forecast for Weekdays 

For 24 hour NB load forecast for weekdays the FFNN has produced the least 

accurate results. Table 7 summarizes the error performances of the eight networks and 

gives the improvement of each individual network over FFNN. 

Table 7: 24 hours ahead MAPE and RMSE for New Brunswick 

Architecture MAPE RMSE Improvement 

FFNN 2.30 34.01 0.00% 

CNN 1.96 28.34 14.98% 

RNNL 2.14 30.70 7.19% 

RNNG 2.16 31.00 6.15% 

CRNNL 2.14 28.32 6.89% 

CRNNG 2.21 33.63 3.77% 

FFNN (3L) 1.93 26.87 15.99% 

CNN (3L) 1.89 26.21 17.71% 

The 3 best performing networks are CNN, 3-layered FFNN and 3-layered CNN. 

The 3-layered CNN outperforms all other networks with improvement of 17.71% over 

FFNN. CNN (14.98%) and 3-layered (15.99%) have also produced accurate results with 

fast convergence but the main advantage of 3-layered CNN over all the networks is its 

uniform error distribution throughout the day. Most of the networks have failed to 

suppress error during the first half of the day except 3-layered CNN. The performances of 

RNNL (7.19%), RNNG (6.15%), CRNNL (6.89%) and CRNNG (3.77%) look almost 

alike but the hybrid networks have reduced error during first half of the day to a larger 

extent than other two. Thus keeping all the aspects under consideration the best choice 

among all the networks is 3-layered CNN. Furthermore a comparison of forecasting error 

performance between 3-layered CNN and FFNN is given in Figure 64. 
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5.2.3 Week ahead forecast for Weekdays 

The week ahead NB load forecast for weekdays is discussed in this section. The 

same week is selected to forecast the load as was done for Nova Scotia. The eight 

networks treated in section 4.4 are tested and their results are elaborated as follows: 

 

(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 
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(e) Friday 

Figure 63: Week ahead forecast results for FFNN 

The forecasting results for FFNN are shown in Figure 65. The error ranges from -

7.24% to 9%. A negative error is observed during the starting hours of each day. The 

forecast for the fourth day (Thursday) is the most accurate. It is seen that overall load 

demand start to drop during fifth day (Friday) but it do not affect the forecast. A 

noticeable amount of peaks also occurs during the forecast of the first day (Monday). The 

MAPE is 2.31%. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 64: Week ahead forecast results for CNN 
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An increased accuracy is observed in the forecast generated by CNN. The error 

spikes that occurred during forecast of Monday are eliminated. Though for Thursday the 

forecasting error is increased but the overall performance is steady. The MAPE for this 

network is 2.12% and the error ranges from -6.4% to 9.47%. The error curve has passed 

above or below 5% only in 7 occasions out of a total of 120 hours. The negative error that 

occurred during starting hours of every day for FFNN has also been suppressed. As a 

result the forecast produced is uniform. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 65: Week ahead forecast results for RNNL 
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Figure 67 demonstrates the forecasting results for RNNL. The error peaks are -

7.32% and 8.82%. The MAPE is 2.20%. It’s also a big improvement over FFNN. 

Performance during peak hours is not very satisfying. Most of the errors are towards 

negative side of the axis. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 66: Week ahead forecast results for RNNG 



 

 118 

 

With a MAPE of 2.27% RNNG do not offers much improvement over FFNN. Of 

course the training time as a recurrent network is also a factor to consider. It has the same 

problem as was found in FFNN of a rise in error during starting hours of each day. The 

rest of the performance is much like FFNN. Its error ranges from -8.04% to 8.82%. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 67: Week ahead forecast results for CRNNL 
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CRNNL produces a very stable forecast. MAPE is 2.24% which is due to 

contribution of high error peaks. This network offers good accuracy during peak hours 

and can be considered over FFNN. Except for Thursday the error spikes mostly occur 

during the non-peak hours. It error ranges from -9.47 to 9.52% which is quite high. The 

error distribution is uniform and throughout with few points where error rises abruptly. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 68: Week ahead forecast results for CRNNG 
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The performance of CRNNG is very similar to RNNG but its performance during 

peak hours is better. Error ranges from -8.22% to 9.93%. The error distribution is much 

better than RNNG along with the error performance during starting hours of the day. 

Since the error peaks are quite high the overall performance has suffered and resulted in a 

MAPE of 2.26%. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 69: Week ahead forecast results for 3-layered FFNN 
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Though most of the errors are negative, performance throughout remains almost 

the same with very few abnormal error spikes in error distribution. With a MAPE of 

2.21% and very fast training this network can be preferred over RNNL. Its errors falls in 

between -6.52% and 9.4% with error getting as low as a minimum of 0.028%. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 70: Week ahead forecast results for 3-layered CNN 
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The output of the 3-layered CNN is presented above. The predicted and actual 

load curves match closely with a very stable error curve. MAPE is 2.18% which is a 

touch higher than CNN (2.12%). MAPE has gone high due to occurrence of high error 

peaks. Error ranges from -7.62% to 9.6% with minimum error of 0.02%. Due to higher 

accuracy the CNN may be preferred over its 3-layered version. 
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5.2.4 Comparative Analysis of Week ahead forecast for Weekdays 

The overall performance of errors for the week ahead NB load forecast for weekdays 

is presented in Table 8. The performance of FFNN produces the largest MAPE so an 

improvement of all the other networks over it is also given.  

Table 8: Week ahead MAPE and RMSE for New Brunswick 

Architecture MAPE RMSE Improvement 

FFNN 2.31 35.36 0.00% 

CNN 2.12 33.43 8.18% 

RNNL 2.20 34.23 4.48% 

RNNG 2.27 34.76 1.76% 

CRNNL 2.24 35.05 2.96% 

CRNNG 2.26 35.33 2.12% 

FFNN (3L) 2.21 34.28 4.29% 

CNN (3L) 2.18 34.95 5.67% 

Among the eight networks the performance of the CNN stands out with an 

improvement of 8.18% over the FFNN. The 3-layered version of the CNN has also 

proved to be accurate with an improvement of 5.67%. The results of the RNNL (4.48%) 

and the 3-layered FFNN (4.29%) are very similar but preference should be given to the 3-

layered FFNN among them due to its fast convergence. All remaining architectures do 

not offer significant enhancement in their forecasts and also due to slower convergence 

than FFNN cannot be preferred over it. Moreover a comparison of forecasting 

performance between the FFNN and the CNN is given in Figure 73 which can clearly 

show the error suppression done by CNN. 
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(a) Monday 

 

(b) Tuesday 

  

(c) Wednesday 
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(d) Thursday 

 

(e) Friday 

Figure 71: Week ahead forecasting error performance comparison between FFNN 

and CNN for New Brunswick 
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5.2.5 Load forecast for Weekend 

The load forecast for the weekend for New Brunswick is discussed in this section. 

The same days as those selected for Nova Scotia are selected for the forecast. The 

performance graphs of each network tested is given and explained. The results of the first 

four architectures; FFNN, CNN, RNNL and RNNG are presented in Figure 74. 

 

(a) FFNN 

 

(b) CNN 
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(c) RNNL 

 

(d) RNNG 

Figure 72: Weekend forecast results (FFNN, CNN, RNNL and RNNG) 

Due to a drastic increase in the load demand during 10th hour on Saturday the 

forecast accuracy has suffered for all the networks. The FFNN in particular produces a 

MAPE of 2.59%. The error ranges from -10.65% to 8.65%. The error decreases after the 

occurrence of demand spike. The CNN on the other hand improves the overall 

performance with MAPE 2.48% but generates a big negative error of -11.69% at the 10th 
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hour. The error response stabilizes and improves the forecast of rest of the hours. The 

maximum positive error of 7.83% occurs for last hour of Sunday. The performance of 

RNNL and RNNG are very similar to FFNN with MAPEs of 2.55% and 2.62% and the 

error ranges of -9.55% to 8.63% and -8.97% to 7.74%. The error curve of the RNNG 

does not come near to zero for the most of the time due to which MAPE has suffered. 

The RNNL on the other hand produces high error peaks almost at the same hours as the 

RNNG but its error curve remains near to zero for most part which have resulted in a 

reduced MAPE. The graphs for forecast produced by CRNNL, CRNNG, 3-layered FFNN 

and 3-layered CNN are discussed next. 

 

(a) CRNNL 



 

 133 

 

 

(b) CRNNG 

 

(c) FFNN (3L) 



 

 134 

 

 

(d) CNN (3L) 

Figure 73: Weekend forecast results: (CRNNL, CRNNG, FFNN (3L) and CNN (3L)) 

The error curves of both hybrid networks CRNNL and CRNNG look almost the 

same with similar sort of peaks occurring at same hours. CRNNL produces MAPE of 

2.37% and CRNNG 2.56%. For the most part of the forecast the error curve of the 

CRNNL remain close to zero. Whereas during the starting hours the error curve of 

CRNNG fall towards negative side resulting in decreased performance. The error for the 

CRNNL varies from -10.97% to 6.93% and that of the CRNNG from -10.01% to 7.91%. 

Furthermore the relationship between the error curves of both the 3-layered networks is 

much alike the hybrid ones. Both error curves closely resemble each other at almost all 

the points. The MAPE of the 3-layered FFNN is 2.38 and 3-layered CNN is 2.39%. The 

error curve of the former regularly stays near zero with presence of few error peaks. Its 

error range is from -10.7% to 6.96%. The error distribution of 3-layered CNN looks very 

unstable but remains in a close range of -7.95% to 7.37%. 
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5.2.6 Comparative Analysis of Load forecast for Weekend 

For New Brunswick weekend forecast RNNG generates the maximum error. Hence 

performance of each network is portrayed as an improvement over it. Table 9 summarizes 

the load forecasting performances of all the networks. 

Table 9: Weekend forecast MAPE and RMSE for New Brunswick 

Architecture MAPE RMSE Improvement 

FFNN 2.59 40.32 1.30% 

CNN 2.48 38.89 5.38% 

RNNL 2.55 38.42 2.72% 

RNNG 2.62 37.64 0.00% 

CRNNL 2.37 37.60 9.52% 

CRNNG 2.56 38.48 2.52% 

FFNN (3L) 2.38 38.23 9.42% 

CNN (3L) 2.39 35.74 9.16% 

Due to the rapid increase in demand during the first half of Saturday the forecast 

produced by all the networks is affected. Overall, no network performs better than their 

performance for the weekdays. CRNNL improves the results 9.52% over the RNNG. 

Other networks with noticeable performance are the 3-layered networks with the FFNN 

version improving by 9.42% and the CNN version improving 9.16%. CNN, RNNL, 

CRNNG and FFNN also produces better results with improvements of 5.38%, 2.72%, 

2.52% and 1.3%. A comparison of forecasting error between the RNNG and the CRNNL 

is given below which highlights the improvement of forecasting results of the CRNNL 

over the RNNG.  
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5.2.7 Summary of Load forecast results for New Brunswick 

Table 10 summarizes all the forecasting results achieved for New Brunswick 

followed by a graphical presentation. 

Table 10: Summary of Load forecast results for New Brunswick 

Architecture 
Day 

ahead 

Week 

ahead 
Weekend 

FFNN 2.30 2.31 2.59 

CNN 1.96 2.12 2.49 

RNNL 2.14 2.20 2.56 

RNNG 2.16 2.27 2.63 

CRNNL 2.14 2.24 2.38 

CRNNG 2.21 2.26 2.56 

FFNN (3L) 1.93 2.21 2.38 

CNN (3L) 1.89 2.18 2.39 

   

 

Figure 74: Graphical presentation of load forecast results for New Brunswick 
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5.3 Ontario 

The electrical load demand of Ontario varies from 10816 MW to 24927 MW during 

June to August 2013. Ontario is an industrialized province so the load demand drops 

down a significant amount during the weekend. The load and temperature data from June 

1 to August 25, 2013 are used for training all the networks just like the other two 

jurisdictions. This data was gathered from online resources broadcasted by Government 

of Canada, climate database [64] and Independent Electricity System Operator (IESO), 

Power Data [67].  

5.3.1 24 hours ahead forecast for Weekdays 

The 24 hours ahead ON load forecast using eight network architectures of section 4.4 

are given for a weekday. The day selected for forecast is August 26, 2013. Since the load 

demand for Ontario is very high a percent in error will weigh more than a percent of error 

for Nova Scotia or New Brunswick. Following figures present forecasts for all the 

networks. 
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Figure 75: Day ahead forecast results for FFNN 

The load forecast for Ontario using FFNN is shown above. It can be seen that 

prediction falls short of actual load during most part of the forecast. The error decreases 

during peak hours which is a big advantage considering high total demand. The error 

ranges from -11.43% to 3.76% and it falls to a minimum of 0.3% during peaks hours. The 

overall MAPE is 2.86% mainly due to high negative error. 
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Figure 76: Day ahead forecast results for CNN 

The load forecast generated by CNN is given above. The negative error is greatly 

suppressed. Throughout the day, predicted curve has remained below actual load which is 

not acceptable for a big industrialized province like Ontario. The error ranges from -

10.1% to 5.91%. Even during the peak hours error curve remains in the negative axis. 

The overall MAPE is 2.7%.  
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Figure 77: Day ahead forecast results for RNNL 

RNNL produces a MAPE of 2.75% in its forecast. Though negative error in first 

half of the day resembles from FFNN forecast but performance during peak hours is 

greatly improved. MAPE has suffered due to high negative peak of -11.29%. The positive 

error peak is 4.31%. During peak hours the error curve becomes steady and the error falls 

as low as 0.06%. 

 

 

 

 

 



 

 142 

 

 

Figure 78: Day ahead forecast results for RNNG 

RNNG gives inferior forecasting results than FFNN with the MAPE of 2.92%. 

The predicted load remains below actual demand. The error range is from -11.32% to 

5.12%. Considering training time this network is not preferred for application. 
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Figure 79: Day ahead forecast results for CRNNL 

The CRNNL offers good improvement over FFNN. With a MAPE of 2.77% it 

gives accurate results specially during peak hours. Though the negative error during first 

half is not greatly minimized and the negative error peak at -11%, due to accurate 

forecast during peak hours the overall performance is improved. The minimum error goes 

as low as 0.01% and the positive error peaks at 6.72% which occurs for the first hour.  
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Figure 80: Day ahead forecast results for CRNNG 

The CRNNG produces poorest performance of all the networks. Its negative peak 

goes to -12.26% and positive error peak is 5.64%. Like RNNG the predicted curve 

remain under demand curve for the most of the forecast period.  
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Figure 81: Day ahead forecast results for 3-layered FFNN 

The 3-layered FFNN greatly reduces negative error during first half of the day. 

During peak hours few error spikes occur but the error varies from -8.86% to 4.73%. It 

means that predicted curve closely follows the load curve and produces a MAPE of 

2.48%.   
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Figure 82: Day ahead forecast results for 3-layered CNN 

3-layered CNN produces best error distribution among all the networks tested. Its 

MAPE is 2.48% which is same as 3-layered FFNN. The negative error during first half is 

not that greatly suppressed but forecasts made during peak hours is more accurate than 3-

layered FFNN. Its error ranges from -8.65% to 6.18% and error falls as low as 0.05% 

during peak hours. With fast convergence this network can be preferred over all the other 

networks.  
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5.3.2 Comparative Analysis of 24 hours ahead forecast for Weekdays 

For Ontario the worst performing network is proved to be CRNNG. The performance of 

all the other networks is presented in the table below with an improvement of each over 

CRNNG.  

Table 11: 24 hours ahead MAPE and RMSE for Ontario 

Architecture MAPE RMSE Improvement 

FFNN 2.86 649.48 7.31% 

CNN 2.70 618.90 12.33% 

RNNL 2.75 619.19 10.75% 

RNNG 2.92 668.77 5.31% 

CRNNL 2.77 628.70 10.09% 

CRNNG 3.08 719.32 0.00% 

FFNN (3L) 2.48 551.70 19.40% 

CNN (3L) 2.48 558.22 19.52% 

The recurrent networks having global feedbacks CRNNG and RNNG perform 

poorly for Ontario. Though RNNG offers 5.31% enhancement over CRNNG but due to 

the slow convergence might not be a good choice. FFNN (7.31%) has proven to be better 

than the recurrent networks with global feedbacks. The other two recurrent networks that 

have a local feedback have generated superior results than FFNN. RNNL improves 

accuracy by 10.75% and CRNNL by 10.09% over CRNNG. Both cascaded architectures 

and the 3-layered FFNN have once more proved to be the best of the lot with CNN 

improving 12.33%, 3-layered FFNN 19.40% and 3-layered CNN 19.52%. The most 

recommended architecture is 3-layered CNN whose accuracy is almost equivalent to 3-

layered FFNN but performs better during peak hours. Also, a comparison of forecasting 

error between CRNNG and 3-layered CNN is given as follows: 
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5.3.3 Week ahead forecast for Weekdays 

The week ahead ON load forecast for weekdays is explained in this section. Same 

week for the forecast as selected Nova Scotia and New Brunswick is selected. The 

performance of eight networks is elaborated by the graphs below: 

 

(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 



 

 150 

 

 

(e) Friday 

Figure 83: Week ahead forecast results for FFNN 

The forecast produced by FFNN is shown above. The forecast for Monday and 

Friday is inaccurate. For three days in middle, the predicted and demand curves are quite 

close to each other. The MAPE for this network is 2.65% with error ranging from -

10.04% to 8.49%. The minimum error also falls as low as 0.009%. 
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 84: Week ahead forecast results for CNN 
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The inaccuracies observed for Monday and Friday are suppressed and an accurate 

predicted curve is produced by CNN. The MAPE is improved to 2.43% though the error 

range is -10.97% to 8.7% which is similar to FFNN. Better performance is due to lesser 

number of error spikes during the forecast. Only 12 times out of 120 the error goes rises 

more than 5%.  
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 85: Week ahead forecast results for RNNL 
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With a MAPE of 2.47% RNNL generates a good forecasting result. The first half 

of all the days experience negative error but during peak hours the performance 

improves. Error ranges from -12.81% to 5.79%. The performance can be considered good 

because of better results during peak hours.  
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 86: Week ahead forecast results for RNNG 



 

 156 

 

With error spikes occurring regularly RNNG produces a forecast much alike 

FFNN. Its MAPE is 2.61% and except Tuesday, the performance during peak hours is 

erroneous. Error varies from -11.92% to 6.9%. Though RNNG forecasts the load slightly 

better than FFNN but cannot be preferred over it.  
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 87: Week ahead forecast results for CRNNL 



 

 158 

 

The forecast generated by CRNNL is equivalent to FFNN. With MAPE of 2.64% 

it does not offer much improvement. Error ranges from -11.5% to 7.78%. Except first day 

the forecasting results during peak hours are quite accurate. The performance suffers due 

to rise in error during starting and ending hours of each day.  
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 88: Week ahead forecast results for CRNNG 
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The load forecast for CRNNG is presented above. The error curve is an 

improvement over RNNG and CRNNL as it suppresses the error at starting and ending 

hours of days to a small extent to produce MAPE of 2.59% and error peaks -12.75% and 

7.75% on the negative and positive axes of the error distribution.   
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 89: Week ahead forecast results for 3-layered FFNN 
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The error range of 3-layered FFNN is -12.33% to 8.14% which is not a reduced 

one but overall performance is improved over most of the networks discussed. Error 

performance throughout is uniform with minimal occurrence of abnormal error spikes. 

This has helped to improve the MAPE to 2.43%.  
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(a) Monday 

 

(b) Tuesday 

 

(c) Wednesday 

 

(d) Thursday 

 

(e) Friday 

Figure 90: Week ahead forecast results for 3-layered CNN 
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With a similar error range as 3-layered FFNN, the 3-layered CNN’s forecasting 

results are demonstrated in the figure above. Error varies between -11.22% and 9.01% 

but the overall negative error is reduced as compared to the other networks. The error 

curve starts negative but remains towards the positive side especially during peak hours.   
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5.3.4 Week ahead forecast for Weekdays 

The week ahead ON load forecast for weekdays using all the networks is 

summarized in the table below. The performance of FFNN has proved least accurate so 

an improvement of all the other networks over it is given.  

Table 12: Week ahead MAPE and RMSE for Ontario 

Architecture MAPE RMSE Improvement 

FFNN 2.65 595.59 0.00% 

CNN 2.43 561.93 8.20% 

RNNL 2.47 571.28 6.68% 

RNNG 2.61 579.74 1.72% 

CRNNL 2.64 585.84 0.34% 

CRNNG 2.59 600.44 2.40% 

FFNN (3L) 2.43 571.25 8.25% 

CNN (3L) 2.44 558.29 8.09% 

The network RNNG, CRNNL and CRNNG gives minimal improvements of 

1.72%, 0.34% and 2.40% over FFNN. RNNL with 6.68% increased accuracy can be 

preferred over FFNN as the forecast it produces performs well for the peak hours. The 

CNN, 3-layered FFNN and 3-layered CNN enhance the forecast with 3-layered FFNN 

performing slightly better than the two. All the three networks are fast in convergence. 

The 3-layered CNN gives better results during peak hours than the other two but 3-

layered FFNN offers suppression of error throughout the week which makes it an ideal 

choice for a utility company to implement. Following a graph comparing the forecasting 

error performances of FFNN and 3-layered FFNN is given to highlight the improvement.  
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(a) Monday 

 

(b) Tuesday 

  

(c) Wednesday 
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(d) Thursday 

 

(e) Friday 

Figure 91: Week ahead forecasting error performance comparison between FFNN 

and FFNN (3L) for Ontario 
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5.3.5 Load forecast for Weekdays 

The weekend forecast for Ontario is given. Same weekend is selected to forecast as 

for other two provinces. The weekend load becomes more predictable for Ontario. 

Following figure gives the forecasts for FFNN, CNN, RNNL and RNNG networks. 

 

(a) FFNN 

 

(b) CNN 
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(c) RNNL 

 

(d) RNNG 

Figure 92: Weekend forecast results (FFNN, CNN, RNNL and RNNG) 

FFNN and CNN give similar performance. Most of the times the prediction curve 

remain below the demand curve. The MAPE for FFNN is 2.46% and for CNN is 2.34%. 

CNN produces an improved performance because it contains more points with error near 

to zero than FFNN. The error range for FFNN is -5.39% to 5.21% and that of CNN is -

5.1% to 5.31%. The recurrent networks RNNL and RNNG also produce similar 
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performance to each other. Both have high MAPEs of 2.64% (RNNL) and 2.6% 

(RNNG). Due to the presence of many error spikes in the error curve both have inferior 

performance. The error range for RNNL is -6.67% to 4.92% and RNNG is -5.96% to 

5.59%. 

 

(a) CRNNL 

 

(b) CRNNG 
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(c) FFNN (3L) 

 

(d) CNN (3L) 

Figure 93: Weekend forecast results (CRNNL, CRNNG, FFNN (3L) and CNN (3L)) 

CRNNL produces a MAPE of 2.43% and mostly produces positive error. This 

network has greatly reduced the negative error. Its error ranges from -3.64% to 8.45%. 

CRNNG on the other hand performs similar to RNNG with a MAPE of 2.56%. During 

first half of both days it generates negative error which reduces during peak hours. Its 

error ranges from -6.88% to 6.25%. The error curve produced by 3-layered FFNN is very 
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steady and error remains near to zero on many occasions. The forecast of Sunday is more 

erroneous than Saturday. Its MAPE is 2.3% with error variation from -6.13% to 5.62%. 

Finally 3-layered CNN produces a MAPE of 2.33 and performs better on Sunday than 3-

layered FFNN. Its error ranges from -4.27% to 5.52%. Because of the occurrence of 

consistent error peaks during the last half of Saturday its MAPE has gone above 3-

layered FFNN. 
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5.3.6 Comparative Analysis of Load forecast for Weekdays 

For weekend forecast of Ontario RNNL gives the poorest performance. The table 

summarizing and comparing all the results is as follows. 

Table 13: Weekend forecast MAPE and RMSE for Ontario 

Architecture MAPE RMSE Improvement 

FFNN 2.46 437.33 6.94% 

CNN 2.34 430.73 11.29% 

RNNL 2.64 491.73 0.00% 

RNNG 2.60 469.11 1.31% 

CRNNL 2.43 489.99 7.97% 

CRNNG 2.56 468.53 3.09% 

FFNN (3L) 2.30 437.50 12.67% 

CNN (3L) 2.33 396.62 11.66% 

All the networks perform better to forecast weekend load as compared to 

weekdays. The 3-layered FFNN stands out of all the other networks with improvement of 

12.67%. Other significant improvements are 3-layered CNN (11.66%) and CNN 

(11.29%). CRNNL (7.97%), FFNN (6.94%), CRNNG (3.09%) and RNNG (1.31%) also 

produce enhanced results. The forecasting error performance between RNNL and 3-

layered FFNN is compared in the following graph:   
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5.3.7 Summary of Load forecast results for Ontario 

A table summarizing all the forecasting results achieved for Ontario is given as 

below followed by a graphical presentation. 

Table 14: Summary of Load forecast results for Ontario 

Architecture 
Day 

ahead 

Week 

ahead 
Weekend 

FFNN 2.86 2.65 2.46 

CNN 2.70 2.43 2.35 

RNNL 2.75 2.47 2.64 

RNNG 2.92 2.61 2.61 

CRNNL 2.77 2.64 2.43 

CRNNG 3.08 2.59 2.56 

FFNN (3L) 2.48 2.43 2.31 

CNN (3L) 2.48 2.44 2.34 

   

 

Figure 94: Graphical presentation of load forecast results for Ontario 
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5.4 Summary of Results 

The yearly peak load of Maritime Provinces is approximately 2000 MW. For the 

time period June 1 to August 30, 2014 the maximum load for Nova Scotia was 1373 MW 

and that of New Brunswick was 1450 MW. On the other hand Ontario peaks at 24927 

MW which occurs during the mentioned period. The big difference between load demand 

of Ontario and the Maritime Provinces is evident. Previous sections elaborate the 

performance and comparison between each individual network; this section summarizes 

all the forecasting results achieve and presents a comparative analysis of forecasting error 

performance for all three provinces.   

5.4.1 24 hours ahead forecast for Weekdays 

Following table gives a summary of error performances of 24 hours ahead forecast 

for the three understudy provinces. The best and worst performing networks for each 

jurisdiction are highlighted and an improvement of all networks over worst performing 

one is also demonstrated:  

Table 15: Summary of 24 hours ahead forecast for Weekdays 

Architecture 
Nova Scotia New Brunswick Ontario 

MAPE % Imp MAPE % Imp MAPE % Imp 

FFNN 2.32 0.00% 2.30 0.00% 2.86 7.31% 

CNN 1.93 16.68% 1.96 14.98% 2.70 12.33% 

RNNL 2.26 2.80% 2.14 7.19% 2.75 10.75% 

RNNG 2.18 5.86% 2.16 6.15% 2.92 5.31% 

CRNNL 2.21 4.76% 2.14 6.89% 2.77 10.09% 

CRNNG 2.18 5.86% 2.21 3.77% 3.08 0.00% 

FFNN (3L) 1.99 14.42% 1.93 15.99% 2.48 19.40% 

CNN (3L) 1.81 21.88% 1.89 17.71% 2.48 19.52% 

From the above table it can be observed the 3-layered CNN outperforms other 

networks for each jurisdiction. The performance of 3-layered FFNN and CNN are also 
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noticeable. It is seen that all the networks produce accurate forecasts for Maritime 

Provinces but for a big industrialized zone like Ontario the forecasting error increases. 

Also for a big utility, the hybrid and recurrent networks have not proved to be effective as 

CRNNG gave the most inaccurate results. For Nova Scotia and New Brunswick all the 

networks offered improvement over FFNN. It was observed that during peak hours when 

the demand curve stabilizes, the forecasts produced by both hybrid and recurrent 

networks were accurate and error curve went near to zero. But overall 3-layered CNN 

was found to produce the most precise forecasts throughout the whole period. Following 

graph demonstrates the comparison of all the networks for the three selected jurisdictions 

for day ahead forecasting performances. 

 

Figure 95: Graphical summary of Day ahead forecast results 
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5.4.2 Week ahead forecast for Weekdays 

Following table gives a summary of error performances of week ahead forecasts for 

three selected provinces. The best and worst performing networks for each jurisdiction 

are highlighted and an improvement of all networks over worst performing one is also 

demonstrated in the table given as follows: 

Table 16: Summary of Week ahead forecast for Weekdays 

Architecture 
Nova Scotia New Brunswick Ontario 

MAPE % Imp MAPE % Imp MAPE % Imp 

FFNN 2.21 0.00% 2.31 0.00% 2.65 0.00% 

CNN 2.03 8.26% 2.12 8.18% 2.43 8.20% 

RNNL 2.16 2.32% 2.20 4.48% 2.47 6.68% 

RNNG 2.08 5.83% 2.27 1.76% 2.61 1.72% 

CRNNL 2.10 4.81% 2.24 2.96% 2.64 0.34% 

CRNNG 2.12 4.15% 2.26 2.12% 2.59 2.40% 

FFNN (3L) 2.17 1.76% 2.21 4.29% 2.43 8.25% 

CNN (3L) 1.99 10.04% 2.18 5.67% 2.44 8.09% 

Just like day ahead load forecast, the 3-layered CNN has proven to be most accurate 

among all the networks for week ahead forecast for NS and ON, whereas for NB CNN 

has proven to be the best.. The decrease in performance for each individual network is 

illustrated when a bigger power system like Ontario is forecasted. Hence it can be 

concurred that a small percent of variation in Ontario’s load demand weighs more and 

affects the output to a greater extent as compared to a similar percentage of variation in 

load demands of NS or NB. 3-layered CNN has given better results than other networks 

after CNN for NB and for NS and ON, CNN has given improved performances as 

compared to the other networks which means that a cascaded connection for all three 

provinces has contributed to increment in overall accuracy of forecast. Furthermore, the 

hybrid networks offer noticeable improvements for Maritimes provinces but for a large 

sized demand horizon they have failed to impress. Furthermore, the overall week ahead 
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forecast performances for Ontario have improved as compared to 24 hour ahead 

forecasts. For Nova Scotia al the recurrent networks; RNNL, RNNG, CRNNL and 

CRNNG have performed better than day ahead as well. This is not the case for New 

Brunswick where all the networks have given a bit inferior results than its day ahead 

forecast.  Following graph shows a comparison between the error performances of all the 

networks for Nova Scotia, New Brunswick and Ontario. 

 

Figure 96: Graphical summary of Week ahead forecast results 
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5.4.3 Weekend forecast 

The error performances of each network for three provinces are summarized in the 

following table followed by a discussion. Table underlines the best and worst performing 

networks and an improvement of all networks over worst performing one is also 

demonstrated:   

Table 17: Summary of Weekend forecast 

Architecture 
Nova Scotia New Brunswick Ontario 

MAPE % Imp MAPE % Imp MAPE % Imp 

FFNN 2.17 3.46% 2.59 1.30% 2.46 6.94% 

CNN 1.85 17.65% 2.49 5.38% 2.35 11.29% 

RNNL 2.10 6.54% 2.56 2.72% 2.64 0.00% 

RNNG 2.24 0.00% 2.63 0.00% 2.61 1.31% 

CRNNL 2.09 7.07% 2.38 9.52% 2.43 7.97% 

CRNNG 1.76 21.53% 2.56 2.52% 2.56 3.09% 

FFNN (3L) 1.71 23.93% 2.38 9.42% 2.31 12.67% 

CNN (3L) 1.94 13.68% 2.39 9.16% 2.34 11.66% 

Weekends have different load patterns than weekdays and are generally more 

predictable. The best performing network for all three jurisdictions for this case have 

turned out to be 3-layered FFNN. For Nova Scotia and Ontario weekend forecasts all 

networks except RNNL and CRNNL have produced better results than New Brunswick 

forecasts. The main reason for this is an unexpected peak in load demand of New 

Brunswick that occurred during Saturday. If we compare the performances of all the 

networks from weekday performances, than except for New Brunswick the forecasting 

error has been greatly reduced. For Nova Scotia only RNNG and for Ontario RNNL have 

performed below weekdays forecasts of the same networks. For New Brunswick all 

networks have performed below par with RNNG to give the worst results. A graphical 
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presentation of weekend forecast results produced by all the networks for Nova Scotia, 

New Brunswick and Ontario is shown below. 

 

Figure 97: Graphical summary of Weekend forecast results 
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Chapter 6: Conclusion 

6.1 Summary and Contributions 

Various techniques are used to perform STLF. With the advent of deregulated 

market environment classical forecasting methods are being replaced by intelligent 

methods to understand variations in load. After going through the literature available on 

ANN to perform STLF, it was realized that some advanced neural network architectures 

have not been studied comprehensively and there is room for utilizing the properties of 

these modern architectures and introduce new ones. This thesis evaluates the 

performances of eight ANN architectures. In order to explore the applicability of these 

designs real data from three Canadian provinces; Nova Scotia (NS), New Brunswick 

(NB) and Ontario (ON) was used to experiment each individual network.   

The ANN designs examined in this work start from the most commonly used feed 

forward neural network (FFNN). FFNN served as a base to compare the performances of 

remaining ANNs. Three advanced architectures tested were cascaded neural network 

(CNN), recurrent neural network with local feedback (RNNL) and recurrent neural 

network with global feedback (RNNG). Also, four new architectures for the application 

of STLF were also introduced. These include two hybrid and two modified architectures. 

The hybrid models proposed were the combination of CNN and the two recurrent 

networks first was the cascaded – recurrent neural network with local feedback (CRNNL) 

and the other one was cascaded – recurrent neural network with global feedback 

(CRNNG). Modified architectures consisted of 3-layered FFNN and 3-layered CNN. 

A statistical analysis of load demand of each province indicated that weekends 

possessed different load response than weekdays, hence weekdays and weekends were 
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forecasted separately. The performances were evaluated on the basis of mean absolute 

percentage error (MAPE). Each network produced three forecasts for each province. Two 

out of three forecasts were day or 24 hours ahead forecast and week ahead forecast for 

weekdays and the third one forecasted weekend load. After achieving forecasting results 

for all the cases a comparative analysis was made. 

Comparisons were primarily based on three different forecasts for each province. 

For day ahead weekdays forecasts 3-layered CNN produced the most accurate results as 

compared to other networks with 1.81%, 1.89% and 2.48% MAPE for NS, NB and ON 

respectively. For week ahead weekdays forecasts 3-layered CNN presented accurate 

forecasts for NS and ON with MAPE of 1.99% (NS) and 2.44% (ON), whereas CNN 

proved best for NB with MAPE 2.12%. Finally for weekend forecast 3-layered FFNN 

with MAPE 1.71%, 2.38% and 2.31% for NS, NB and ON outperforms all networks.  

Hybrid and recurrent networks performed better in peak hours but didn’t produce 

satisfactory results. RNNL and CRNNL for day ahead forecast of Ontario enhanced 

results by improvements of 10.75% and 10.09% over worst performing CRNNG 

network. Other noticeable results include week ahead forecast by RNNG (5.83% 

improvement) for NS and CRNNL (9.52% improvement) for NB and weekend forecast 

by CRNNG (21.53% improvement) for NS and RNNL (4.48% improvement) for NB. 

Furthermore, CNN and 3-layered architectures offered big improvements. With 

fast convergence they produced superior results than any of recurrent networks for most 

cases stated. Finally, the economic worth of forecasting error depends upon the operation 

zone of the system (Unit commitment). 
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6.2 Suggestions for Future Work 

Perhaps this thesis presents a detailed performance evaluation of advanced and 

new neural network architectures and it was seen that architectures especially with 

cascaded connections were found to perform better than hybrid or recurrent networks. 

Suggestion for future work involves replacement of Levenberg-Marquardt Back 

propagation learning algorithm with Kalman filter or Support Vector machine. Both these 

techniques may prove to improve both accuracy and speed. Moreover, wavelet technique 

to transform inputs to filter any abnormality or redundancy might also aid in accuracy.   
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Appendix A: Pseudo Code 

There are a total of three MATLAB. One imports the raw data for Nova Scotia, 

New Brunswick and Ontario and makes a database. Second performs data preprocessing 

steps as explained in chapter 4. Third script makes use of the output of first two programs 

and generates forecast. Following are all three scripts. 

Script 1: data_import.m 

%% Data Import from Excel file and reorganizing for data preprocessing 
for i = 1 : 3 

     
    % Raw Data Import 
    switch i 
        case 1 
            clear all 
            [num1,txt1,raw1] = xlsread('NS0613'); 
            [num2,txt2,raw2] = xlsread('NS0713'); 
            [num3,txt3,raw3] = xlsread('NS0813'); 

             
            % Length of Data 
            d10 = length(num1(:,1)); 
            d11 = length(num2(:,1)); 
            d12 = length(num3(:,1)); 
            dl = d10 + d11 + d12; 

  
            t10 = length(txt1(:,1)); 
            t11 = length(txt2(:,1)); 
            t12 = length(txt3(:,1)); 

  
            % Initializing and organizing load, temperature and hour 

information 
            % from Raw data to generate a database 
            load = zeros(dl,1); 
            temp = zeros(dl,1); 
            hour = zeros(dl,1); 

  
            for i = 1:d10 
                load(i,1) = num1(i,1); 
                temp(i,1) = num1(i,3);  
                hour(i,1) = num1(i,2); 
            end 

  
            for i = 1:d11 
                load(i+d10,1) = num2(i,1); 
                temp(i+d10,1) = num2(i,3); 
                hour(i+d10,1) = num2(i,2); 
            end 
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            for i = 1:d12 
                load(i+d10+d11,1) = num3(i,1); 
                temp(i+d10+d11,1) = num3(i,3); 
                hour(i+d10+d11,1) = num3(i,2); 
            end 

  
            dates = {zeros(dl,1)}; 

  
            for i = 2:t10 
                dates{i-1,1} = txt1{i,1}; 
            end 

  
            for i = 2:t11 
                dates{i-2+t10,1} = txt2{i,1}; 
            end 

  
            for i = 2:t12 
                dates{i-3+t10+t11,1} = txt3{i,1}; 
            end 
            dates_v = cellstr(datestr(dates,'dd/mm/yyyy')); 

  
            data.Date = dates_v; 
            data.Hour = hour; 
            data.Temp = temp; 
            data.Load = load; 

             
            % Saving the database 
            dataexcel = [dates_v,num2cell([hour,temp,load])]; 
            header = {'Date','Hour','Temp(C)','Load'}; 
            dataexcel = [header;dataexcel]; 
            save thesis\NS_Data data; 
            xlswrite('thesis\NS_Data.xlsx', dataexcel); 

             

             
        case 2 
            clear all 
            [num1,txt1,raw1] = xlsread('NB0613'); 
            [num2,txt2,raw2] = xlsread('NB0713'); 
            [num3,txt3,raw3] = xlsread('NB0813'); 

             
            % Length of Data 
            d10 = length(num1(:,1)); 
            d11 = length(num2(:,1)); 
            d12 = length(num3(:,1)); 
            dl = d10 + d11 + d12; 

  
            t10 = length(txt1(:,1)); 
            t11 = length(txt2(:,1)); 
            t12 = length(txt3(:,1)); 

  
            % Initializing and organizing load, temperature and hour 

information 
            % from Raw data to generate a database 
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            load = zeros(dl,1); 
            temp = zeros(dl,1); 
            hour = zeros(dl,1); 

  
            for i = 1:d10 
                load(i,1) = num1(i,1); 
                temp(i,1) = num1(i,3);  
                hour(i,1) = num1(i,2); 
            end 

  
            for i = 1:d11 
                load(i+d10,1) = num2(i,1); 
                temp(i+d10,1) = num2(i,3); 
                hour(i+d10,1) = num2(i,2); 
            end 

  
            for i = 1:d12 
                load(i+d10+d11,1) = num3(i,1); 
                temp(i+d10+d11,1) = num3(i,3); 
                hour(i+d10+d11,1) = num3(i,2); 
            end 

  
            dates = {zeros(dl,1)}; 

  
            for i = 2:t10 
                dates{i-1,1} = txt1{i,1}; 
            end 

  
            for i = 2:t11 
                dates{i-2+t10,1} = txt2{i,1}; 
            end 

  
            for i = 2:t12 
                dates{i-3+t10+t11,1} = txt3{i,1}; 
            end 
            dates_v = cellstr(datestr(dates,'dd/mm/yyyy')); 

  
            data.Date = dates_v; 
            data.Hour = hour; 
            data.Temp = temp; 
            data.Load = load; 

             
            % Saving the database 
            dataexcel = [dates_v,num2cell([hour,temp,load])]; 
            header = {'Date','Hour','Temp(C)','Load'}; 
            dataexcel = [header;dataexcel]; 
            save thesis\NB_Data data; 
            xlswrite('thesis\NB_Data.xlsx', dataexcel); 

             
        case 3 
            clear all 
            [num1,txt1,raw1] = xlsread('ON0613'); 
            [num2,txt2,raw2] = xlsread('ON0713'); 
            [num3,txt3,raw3] = xlsread('ON0813'); 
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            % Length of Data 
            d10 = length(num1(:,1)); 
            d11 = length(num2(:,1)); 
            d12 = length(num3(:,1)); 
            dl = d10 + d11 + d12; 

  
            t10 = length(txt1(:,1)); 
            t11 = length(txt2(:,1)); 
            t12 = length(txt3(:,1)); 

  
            % Initializing and organizing load, temperature and hour 

information 
            % from Raw data to generate a database 
            load = zeros(dl,1); 
            temp = zeros(dl,1); 
            hour = zeros(dl,1); 

  
            for i = 1:d10 
                load(i,1) = num1(i,1); 
                temp(i,1) = num1(i,3);  
                hour(i,1) = num1(i,2); 
            end 

  
            for i = 1:d11 
                load(i+d10,1) = num2(i,1); 
                temp(i+d10,1) = num2(i,3); 
                hour(i+d10,1) = num2(i,2); 
            end 

  
            for i = 1:d12 
                load(i+d10+d11,1) = num3(i,1); 
                temp(i+d10+d11,1) = num3(i,3); 
                hour(i+d10+d11,1) = num3(i,2); 
            end 

  
            dates = {zeros(dl,1)}; 

  
            for i = 2:t10 
                dates{i-1,1} = txt1{i,1}; 
            end 

  
            for i = 2:t11 
                dates{i-2+t10,1} = txt2{i,1}; 
            end 

  
            for i = 2:t12 
                dates{i-3+t10+t11,1} = txt3{i,1}; 
            end 
            dates_v = cellstr(datestr(dates,'dd/mm/yyyy')); 

  
            data.Date = dates_v; 
            data.Hour = hour; 
            data.Temp = temp; 
            data.Load = load; 
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            % Saving the database 
            dataexcel = [dates_v,num2cell([hour,temp,load])]; 
            header = {'Date','Hour','Temp(C)','Load'}; 
            dataexcel = [header;dataexcel]; 
            save thesis\ON_Data data; 
            xlswrite('thesis\ON_Data.xlsx', dataexcel); 
    end 
end 

 

Script 2: data_preprocessing.m 

%% Data Preprocessing for STLF 
clc 
clear all 

  
for i = 1 : 3 
    switch i 
        case 1 
            clear all 
            load NS_Data 
            % ========================= Managing dates and days 

======================= 
            dates_hr = datenum(data.Date,'dd/mm/yyyy') + 

(data.Hour)/24;  % Inclusing hour information into Dates  
            DOW = weekday(dates_hr);                                      

% Day of Week 
            Day_type = ~ismember(DOW,[1 7]); 

  
            % =================== Normalizing Data between 0 and 1 

==================== 
            % Normalizing Load Data 
            L = data.Load'; 
            LM = minmax(L); 
            L_min = LM(1,1); 
            L_max = LM(1,2); 
            for i = 1 : length(L) 
            Normalized_Load(i) = (L(i) - L_min)/(L_max - L_min); 
            end 
            LN = Normalized_Load'; 

  
            % Normalizing Temperature Data 
            T = data.Temp'; 
            TM = minmax(T); 
            T_min = TM(1,1); 
            T_max = TM(1,2); 
            for i = 1 : length(T) 
            Normalized_Temp(i) = (T(i) - T_min)/(T_max - T_min); 
            end 
            TN = Normalized_Temp'; 

  
            % ================ Data Separation into Weekdays and 

Weekends ============= 
            Y = [dates_hr LN TN Day_type]; 
            k = 1; 
            l = 1; 
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            for i = 1 : length(Y) 
                if Y(i,4) == 1 
                    Dates_workdays(k,1) = Y(i,1); 
                    for j = 2 : 3 
                        Data_workdays(k,j-1) = Y(i,j); 
                    end 
                    k = k + 1; 
                else 
                    Dates_holidays(l,1) = Y(i,1); 
                    for j = 2 : 3 
                        Data_holidays(l,j-1) = Y(i,j); 
                    end 
                    l = l + 1; 
                end 
            end 

  
            % =========================== Inputs for Weekdays 

========================= 
            Load_WD = Data_workdays(:,1); 
            Temp_WD = Data_workdays(:,2); 

  
            YKW1 = [NaN(1,1); Load_WD(1:end-1)];        % Previous Hour 

Load   
            YKW24 = [NaN(24,1); Load_WD(1:end-24)];     % Previous Day 

Same Hour Load 
            YKW48 = [NaN(48,1); Load_WD(1:end-48)];     % 2 days before 

Same Hour Load 
            YKW72 = [NaN(72,1); Load_WD(1:end-72)];     % 3 days before 

Same Hour Load 
            YKW120 = [NaN(120,1); Load_WD(1:end-120)];  % Previous Week 

Same Hour Load 
            YKW240 = [NaN(240,1); Load_WD(1:end-240)];  % Previous 2 

Weeks Same Hour Load 
            TKW = Temp_WD;                              % Current Temp 
            TKW1 = [NaN(1,1); Temp_WD(1:end-1)];        % Previous Hour 

Temp 
            TKW24 = [NaN(24,1); Temp_WD(1:end-24)];     % Previous Day 

Same Hour Temp                   

  
            Data_WD = [YKW1 YKW24 YKW48 YKW72 YKW120 YKW240 TKW TKW1 

TKW24]; 

  
            % =========================== Inputs for Weekends 

========================= 
            Load_WE = Data_holidays(:,1); 
            Temp_WE = Data_holidays(:,2); 

  
            YKH1 = [NaN(1,1); Load_WE(1:end-1)];        % Previous Hour 

Load   
            YKH48 = [NaN(48,1); Load_WE(1:end-48)];     % Previous Week 

same hour load 
            YKH72 = [NaN(96,1); Load_WE(1:end-96)];     % Previous Two 

Weeks same hour load  
            YKH120 = [NaN(144,1); Load_WE(1:end-144)];  % Previous 

Three Weeks same hour load 
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            TKH = Temp_WE;                              % Current Temp 
            TKH1 = [NaN(1,1); Temp_WE(1:end-1)];        % Previous Hour 

Temp 

  
            Data_WE = [YKH1 YKH48 YKH72 YKH120 TKH TKH1]; 

  
            % =========================== Saving Processed Data 

======================= 
            save 'thesis\NS_pdata' Dates_workdays Data_WD Load_WD 

Dates_holidays Data_WE Load_WE L_max L_min; 

             
        case 2 
            clear all 
            load NB_Data 
            % ========================= Managing dates and days 

======================= 
            dates_hr = datenum(data.Date,'dd/mm/yyyy') + 

(data.Hour)/24;  % Inclusing hour information into Dates  
            DOW = weekday(dates_hr);                                      

% Day of Week 
            Day_type = ~ismember(DOW,[1 7]); 

  
            % =================== Normalizing Data between 0 and 1 

==================== 
            % Normalizing Load Data 
            L = data.Load'; 
            LM = minmax(L); 
            L_min = LM(1,1); 
            L_max = LM(1,2); 
            for i = 1 : length(L) 
            Normalized_Load(i) = (L(i) - L_min)/(L_max - L_min); 
            end 
            LN = Normalized_Load'; 

  
            % Normalizing Temperature Data 
            T = data.Temp'; 
            TM = minmax(T); 
            T_min = TM(1,1); 
            T_max = TM(1,2); 
            for i = 1 : length(T) 
            Normalized_Temp(i) = (T(i) - T_min)/(T_max - T_min); 
            end 
            TN = Normalized_Temp'; 

  
            % ================ Data Separation into Weekdays and 

Weekends ============= 
            Y = [dates_hr LN TN Day_type]; 
            k = 1; 
            l = 1; 

  
            for i = 1 : length(Y) 
                if Y(i,4) == 1 
                    Dates_workdays(k,1) = Y(i,1); 
                    for j = 2 : 3 
                        Data_workdays(k,j-1) = Y(i,j); 
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                    end 
                    k = k + 1; 
                else 
                    Dates_holidays(l,1) = Y(i,1); 
                    for j = 2 : 3 
                        Data_holidays(l,j-1) = Y(i,j); 
                    end 
                    l = l + 1; 
                end 
            end 

  
            % =========================== Inputs for Weekdays 

========================= 
            Load_WD = Data_workdays(:,1); 
            Temp_WD = Data_workdays(:,2); 

  
            YKW1 = [NaN(1,1); Load_WD(1:end-1)];        % Previous Hour 

Load   
            YKW24 = [NaN(24,1); Load_WD(1:end-24)];     % Previous Day 

Same Hour Load 
            YKW48 = [NaN(48,1); Load_WD(1:end-48)];     % 2 days before 

Same Hour Load 
            YKW72 = [NaN(72,1); Load_WD(1:end-72)];     % 3 days before 

Same Hour Load 
            YKW120 = [NaN(120,1); Load_WD(1:end-120)];  % Previous Week 

Same Hour Load 
            YKW240 = [NaN(240,1); Load_WD(1:end-240)];  % Previous 2 

Weeks Same Hour Load 
            TKW = Temp_WD;                              % Current Temp 
            TKW1 = [NaN(1,1); Temp_WD(1:end-1)];        % Previous Hour 

Temp 
            TKW24 = [NaN(24,1); Temp_WD(1:end-24)];     % Previous Day 

Same Hour Temp                   

  
            Data_WD = [YKW1 YKW24 YKW48 YKW72 YKW120 YKW240 TKW TKW1 

TKW24]; 

  
            % =========================== Inputs for Weekends 

========================= 
            Load_WE = Data_holidays(:,1); 
            Temp_WE = Data_holidays(:,2); 

  
            YKH1 = [NaN(1,1); Load_WE(1:end-1)];        % Previous Hour 

Load   
            YKH48 = [NaN(48,1); Load_WE(1:end-48)];     % Previous Week 

same hour load 
            YKH72 = [NaN(96,1); Load_WE(1:end-96)];     % Previous Two 

Weeks same hour load  
            YKH120 = [NaN(144,1); Load_WE(1:end-144)];  % Previous 

Three Weeks same hour load 
            TKH = Temp_WE;                              % Current Temp 
            TKH1 = [NaN(1,1); Temp_WE(1:end-1)];        % Previous Hour 

Temp 

  
            Data_WE = [YKH1 YKH48 YKH72 YKH120 TKH TKH1]; 
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            % =========================== Saving Processed Data 

======================= 
            save 'thesis\NB_pdata' Dates_workdays Data_WD Load_WD 

Dates_holidays Data_WE Load_WE L_max L_min; 

             
        case 3 
            clear all 
            load ON_Data 
            % ========================= Managing dates and days 

======================= 
            dates_hr = datenum(data.Date,'dd/mm/yyyy') + 

(data.Hour)/24;  % Inclusing hour information into Dates  
            DOW = weekday(dates_hr);                                      

% Day of Week 
            Day_type = ~ismember(DOW,[1 7]); 

  
            % =================== Normalizing Data between 0 and 1 

==================== 
            % Normalizing Load Data 
            L = data.Load'; 
            LM = minmax(L); 
            L_min = LM(1,1); 
            L_max = LM(1,2); 
            for i = 1 : length(L) 
            Normalized_Load(i) = (L(i) - L_min)/(L_max - L_min); 
            end 
            LN = Normalized_Load'; 

  
            % Normalizing Temperature Data 
            T = data.Temp'; 
            TM = minmax(T); 
            T_min = TM(1,1); 
            T_max = TM(1,2); 
            for i = 1 : length(T) 
            Normalized_Temp(i) = (T(i) - T_min)/(T_max - T_min); 
            end 
            TN = Normalized_Temp'; 

  
            % ================ Data Separation into Weekdays and 

Weekends ============= 
            Y = [dates_hr LN TN Day_type]; 
            k = 1; 
            l = 1; 

  
            for i = 1 : length(Y) 
                if Y(i,4) == 1 
                    Dates_workdays(k,1) = Y(i,1); 
                    for j = 2 : 3 
                        Data_workdays(k,j-1) = Y(i,j); 
                    end 
                    k = k + 1; 
                else 
                    Dates_holidays(l,1) = Y(i,1); 
                    for j = 2 : 3 
                        Data_holidays(l,j-1) = Y(i,j); 
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                    end 
                    l = l + 1; 
                end 
            end 

  
            % =========================== Inputs for Weekdays 

========================= 
            Load_WD = Data_workdays(:,1); 
            Temp_WD = Data_workdays(:,2); 

  
            YKW1 = [NaN(1,1); Load_WD(1:end-1)];        % Previous Hour 

Load   
            YKW24 = [NaN(24,1); Load_WD(1:end-24)];     % Previous Day 

Same Hour Load 
            YKW48 = [NaN(48,1); Load_WD(1:end-48)];     % 2 days before 

Same Hour Load 
            YKW72 = [NaN(72,1); Load_WD(1:end-72)];     % 3 days before 

Same Hour Load 
            YKW120 = [NaN(120,1); Load_WD(1:end-120)];  % Previous Week 

Same Hour Load 
            YKW240 = [NaN(240,1); Load_WD(1:end-240)];  % Previous 2 

Weeks Same Hour Load 
            TKW = Temp_WD;                              % Current Temp 
            TKW1 = [NaN(1,1); Temp_WD(1:end-1)];        % Previous Hour 

Temp 
            TKW24 = [NaN(24,1); Temp_WD(1:end-24)];     % Previous Day 

Same Hour Temp                   

  
            Data_WD = [YKW1 YKW24 YKW48 YKW72 YKW120 YKW240 TKW TKW1 

TKW24]; 

  
            % =========================== Inputs for Weekends 

========================= 
            Load_WE = Data_holidays(:,1); 
            Temp_WE = Data_holidays(:,2); 

  
            YKH1 = [NaN(1,1); Load_WE(1:end-1)];        % Previous Hour 

Load   
            YKH48 = [NaN(48,1); Load_WE(1:end-48)];     % Previous Week 

same hour load 
            YKH72 = [NaN(96,1); Load_WE(1:end-96)];     % Previous Two 

Weeks same hour load  
            YKH120 = [NaN(144,1); Load_WE(1:end-144)];  % Previous 

Three Weeks same hour load 
            TKH = Temp_WE;                              % Current Temp 
            TKH1 = [NaN(1,1); Temp_WE(1:end-1)];        % Previous Hour 

Temp 

  
            Data_WE = [YKH1 YKH48 YKH72 YKH120 TKH TKH1]; 

  
            % =========================== Saving Processed Data 

======================= 
            save 'thesis\ON_pdata' Dates_workdays Data_WD Load_WD 

Dates_holidays Data_WE Load_WE L_max L_min; 
    end 
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end 

 

 

Script 3: stlf.m 

%% Performance Evaluation of New and Advanced Neural Networks 
clc 
clear all 

  
forecast = 1; 
while forecast>0, 
    clear all 
% ========================= Region Selection 

============================== 
    region = menu('Select a Region for forecast',... 
        'Nova Scotia',... 
        'New Brunswick',... 
        'Ontario'); 

  
    switch region 
        case 1 
            load NS_Data 
            load NS_pdata.mat 
        case 2 
            load NB_Data 
            load NB_pdata.mat 
        case 3 
            load ON_Data 
            load ON_pdata.mat 
    end 

     
% =================== Data Selection and Splitting 

======================== 
    dtype = menu('Select Day type',... 
        'Weekday',... 
        'Weekend'); 

  
    switch dtype 
        case 1 
            period = menu('Select Time period for which forecast is 

requires',... 
                'Day Ahead',... 
                'Week Ahead'); 
            switch period 
                case 1 
                    % Training data: from June 1 to August 25, 2013  
                    train_data = floor(Dates_workdays) < 

datenum('08/26/2013'); 
                    trainX = Data_WD(train_data,:); 
                    trainY = Load_WD(train_data); 
                    train_Dates = Dates_workdays(train_data); 

  
                    % Test data: August 26, 2013 
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                    test_data = floor(Dates_workdays) == 

datenum('08/26/2013'); 
                    testX = Data_WD(test_data,:); 
                    testY = Load_WD(test_data); 
                    test_Dates = Dates_workdays(test_data); 
                case 2 
                    % Training data: from June 1 to August 25, 2013  
                    train_data = floor(Dates_workdays) < 

datenum('08/26/2013'); 
                    trainX = Data_WD(train_data,:); 
                    trainY = Load_WD(train_data); 
                    train_Dates = Dates_workdays(train_data); 

  
                    % Test data: August 26, 2013 
                    test_data = floor(Dates_workdays) >= 

datenum('08/26/2013'); 
                    testX = Data_WD(test_data,:); 
                    testY = Load_WD(test_data); 
                    test_Dates = Dates_workdays(test_data); 
            end 
        case 2 
            % Training data: from June 1 to August 25, 2013  
            train_data = floor(Dates_holidays) < datenum('08/24/2013'); 
            trainX = Data_WE(train_data,:); 
            trainY = Load_WE(train_data); 
            train_Dates = Dates_holidays(train_data); 

  
            % Test data: August 26, 2013 
            test_data = floor(Dates_holidays) >= datenum('08/24/2013'); 
            testX = Data_WE(test_data,:); 
            testY = Load_WE(test_data); 
            test_Dates = Dates_holidays(test_data); 
    end 

  
% =============== Network Selection and Initialization 

==================== 
    network = menu('Select the network',... 
        'FFNN',...Feedforward NN 
        'CNN',...Cascaded NN 
        'RNNL',...Recurrent NN with Local feedback 
        'RNNG',...Recurrent NN with Global feedback 
        'CRNNL',...Cascade-Recurrent NN with Local feedback 
        'CRNNG',...Cascade-Recurrent NN with Global feedback 
        'FFNN (3L)',...3-layered feedforward NN 
        'CNN (3L)'...3-layered cascaded NN 
        ); 
    switch network 
        case 1 % FFNN 
            net = fitnet(9); 
            net.biasConnect = [0; 0]; 
        case 2 % CNN 
            net = fitnet(9); 
            net.biasConnect = [0; 0]; 
            net.inputConnect = [1; 1]; 
        case 3 % RNNL 
            net = fitnet(9); 
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            net.biasConnect = [0; 0]; 
            net.inputConnect = [1; 0]; 
            net.layerConnect = [1 0; 1 0]; 
            net.layerWeights{1,1}.delays = 1; 
        case 4 % RNNG 
            net = fitnet(9); 
            net.biasConnect = [0; 0]; 
            net.inputConnect = [1; 0]; 
            net.layerConnect = [0 1; 1 0]; 
            net.layerWeights{1,2}.delays = 1; 
        case 5 % CRNNL 
            net = fitnet(9); 
            net.biasConnect = [0; 0]; 
            net.inputConnect = [1; 1]; 
            net.layerConnect = [1 0; 1 0]; 
            net.layerWeights{1,1}.delays = 1; 
        case 6 % CRNNG 
            net = fitnet(9); 
            net.biasConnect = [0; 0]; 
            net.inputConnect = [1; 1]; 
            net.layerConnect = [0 1; 1 0]; 
            net.layerWeights{1,2}.delays = 1; 
        case 7 % FFNN (3L) 
            net = feedforwardnet([9 18]); 
            net.biasConnect = [0; 0; 0]; 
        case 8 % CNN (3L) 
            net = feedforwardnet([9 9]); 
            net.biasConnect = [0; 0; 0]; 
            net.inputConnect = [1; 1; 1]; 
            net.layerConnect = [0 0 0; 1 0 0; 1 1 0]; 
    end 

  
% ================= Network Training and Forecasting 

====================== 
    % Network Training 
    net = train(net, trainX', trainY'); 
    view(net) 
    % Forecasting 
    Output = sim(net, testX')'; 

  
% ========================== Error Analysis 

=============================== 
    % Data Post Processing 
    for i = 1 : length(testY) 
    Actual(i,1) = (testY(i)*(L_max - L_min)) + L_min; 
    Predicted(i,1) = (Output(i)*(L_max - L_min)) + L_min; 
    end 

  
    % Calculating Errors (MAPE and RMSE) 
    P = 0; 
    M = 0; 
    V = 0; 
    D = 0; 
    N = length(Actual); 
    Per = zeros(N,1); 
    Hour = zeros(N,1); 
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    for i = 1 : N 
        E(i,1) = (Predicted(i)-Actual(i)); 
        D = D + abs(E(i)); 
        Per(i,1) = (E(i)/Actual(i))*100; 
        P = P + ((abs(E(i)) / Actual(i))); 
        M = M + (Predicted(i)-Actual(i))^2; 
        Hour(i,1) = i; 
    end 

  
    Table = [Hour Actual Predicted E Per] 
    MAPE = P*(100/N) 
    RMSE = sqrt(M/N) 

  
% ================= Plotting Results and View Network 

===================== 
    figure; 
    subplot(2,1,1); 
    plot(Hour,Actual,'-k',Hour,Predicted,'--r'); 
    l = legend('Actual','Forecasted'); 
    subplot(2,1,2); 
    plot(Hour,E,'b'); 

  
% ================ Another forecast or end the program 

==================== 
    question = menu('Do you want to generate another forecast', 'Yes', 

'No'); 
    if question == 1 
        forecast = 1; 
    elseif question == 2 
        forecast = 0; 
    end 
end 

 

 

 

 

 

 

 

 

 

 

 

 


