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Abstract

In this expository thesis we describe the Bochner integral for functions taking

values in a separable Banach space, and we describe how a number of standard

definitions and results in real analysis can be extended for these functions, with an

emphasis on Hilbert-space-valued functions. We then present a partial vector-valued

version of a classical theorem on singular integrals.
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Chapter 1

Introduction

We begin our exposition by describing the Bochner integral for functions landing

in a separable Banach space. This integral was first introduced by Salomon Bochner

in his 1933 paper Integration von Functionen [2]. It is a generalization of the Lebesgue

integral. After we have described the Bochner integral, we discuss how it can be used

to extend a few basic results in real analysis to the vector-valued setting. We then

attempt to extend a result in singular integral theory to this setting.

We begin the first chapter by discussing the space of integrable functions landing

in a Banach space. We show that the simple functions are dense in this space, and

use this fact to define the Bochner integral. We show how basic measure-theoretic

results—such as can be found in Folland [5]—extend easily to the vector-valued set-

ting. Having established these basic facts, we come to our first application of the

Bochner integral: a vector-valued version of the Dominated Convergence Theorem.

Recall that the Dominated Convergence Theorem for the Lebesgue integral states the

following:

Theorem 1.1. Let {fn} be a sequence of integrable functions converging to f almost

everywhere. Suppose further that there is a nonnegative integrable function g such

that all of the fn’s are bounded almost everywhere by g. Then f is integrable, and∫
f = lim

∫
fn.

The version that we shall prove for the Bochner integral uses this scalar-valued version,

together with the important property of the Bochner integral that ‖ ∫ f‖ ≤ ∫ ‖f‖.
We conclude the first chapter by showing that linear operators can be pulled through

the Bochner integral.

In the second chapter we focus primarily on functions that land in a separable

Hilbert space. We discuss the notion of weak measurability for these functions, and

how this relates to the usual notion of measurability (which is that preimages of
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measurable sets are measurable). We also discuss weak measurability of operator-

valued functions.

We then turn to the Lp spaces for vector-valued functions, and describe the triangle

(Minkowski) and Hölder inequalities in this context. Recall the scalar-valued versions:

Theorem 1.2 (Minkowski’s inequality). If f, g ∈ Lp(X,C), 1 ≤ p ≤ ∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem 1.3 (Hölder’s inequality). Suppose 1 ≤ p ≤ ∞, where p and q are conjugate

exponents (that is, 1/p + 1/q = 1 when 1 < p < ∞, and p = 1 when q = ∞). If f

and g are measurable functions from X to C, then

‖fg‖1 ≤ ‖f‖p‖g‖q.

The vector-valued versions are proven using the scalar-valued results. Hölder’s in-

equality will be useful in showing that convolution is well-defined.

Continuing our discussion of vector-valued functions, we prove Fubini’s theorem

in the context of the Bochner integral and Hilbert-space-valued functions. For scalar-

valued functions, Fubini’s theorem is as follows:

Theorem 1.4 (The Fubini Theorem). Let (X,M, μ) and (Y,N , ν) be σ-finite mea-

sure spaces, and let f : X × Y → C be in L1(X × Y ). Then

g(x) =

∫
Y

f(x, y) dy ∈ L1(X),

h(y) =

∫
X

f(x, y) dx ∈ L1(Y ),

and ∫
X×Y

f dμ× ν =

∫
X

g(x) dμ =

∫
Y

h(y) dν.

The proof of the vector-valued version makes use of the notion of weak measurability.

We conclude Chapter 2 by discussing convolution of a Hilbert-space-valued func-

tion with an operator-valued kernel, and showing that the resulting function is contin-

uous. We lead up to this with a discussion of the translation- and reflection-invariance
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of the Bochner integral. We mention in passing that with the Bochner integral, one

may define the Fourier transform of a function landing in a separable Hilbert space.

In the latter half of the thesis we move toward trying to prove a vector-valued

version of a classical theorem on singular integrals. There are a few important results

that are needed for this major theorem; we devote the third chapter of the thesis to

these results.

The first of these results is the Calderón-Zygmund lemma. It says that for a

nonnegative function f , we can partition R
n by dyadic cubes into a closed set F on

which f is essentially bounded by α, and its complement F c =
⋃

Qk, and the average

value of f on each cube Qk ⊂ F c is bounded below by α and above by 2nα. This was

first proven in 1952 in Calderón and Zygmund’s paper On the existence of certain

singular integrals [3]. For its proof we follow the one presented in I.3 of Stein [9],

filling in certain details.

The second result included for our discussion of the singular integral theorem is a

special case of the Marcinkiewicz interpolation theorem. This theorem was discovered

by Józef Marcinkiewicz in 1939. The simplified special case we discuss is the one given

in I.4 of Stein [9]. We repeat what is presented there in just slightly greater detail,

including this primarily for convenient reference. We precede the theorem with some

useful terminology.

The third and last of these results is a duality theorem for the Lp space of vector-

valued functions. This theorem we take from Grafakos [6]. The analogous scalar-

valued result is as follows:

Proposition 1.5. Suppose that p and q are conjugate exponents, and 1 ≤ p ≤ ∞.

For f ∈ Lp(Rn,C) we have

‖f‖p = sup
{∣∣∣ ∫ fg

∣∣∣ : g ∈ Lq(Rn,C) with ‖g‖q = 1
}
.

This is a standard result in real analysis, and a proof can be found in Folland [5],

p. 188, for example. In the case of scalar-valued functions, a stronger statement can

be made:

Proposition 1.6. Let p and q be conjugate exponents. Suppose that f : X → C is a

measurable function on a σ-finite measure space, such that fg is integrable for every
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simple function g : X → C supported on a set of finite measure. Suppose further

that

Mp(f) = sup
{∣∣∣ ∫ fg

∣∣∣ : g is simple with finite support, and ‖g‖q = 1
}

is finite. Then f ∈ Lp(X) with ‖f‖p = Mp(f).

A proof of this result can also be found in Folland (p. 189). A vector-valued version

of Proposition 1.6 would be useful for our purposes, but all I have been able to find

is the vector-valued version of Proposition 1.5 presented in Grafakos, and it may well

be that the stronger result is unique to the scalar-valued setting.

In the final chapter of this thesis we attempt to give an application of the Bochner

integral to the theory of singular integrals. Specifically, we attempt to give a vector-

valued version of the following theorem from Stein:

Theorem 1.7 (Theorem from Singular Integrals [9], p. 29 and pp. 34–35). Let K ∈
L2(Rn,C). Suppose that

(i) The Fourier transform of K is essentially bounded, by B say.

(ii) ∫
|x|≥2|y|

|K(x− y)−K(x)| dx ≤ B, |y| > 0.

For f ∈ L1(Rn,C) ∩ Lp(Rn,C), 1 < p < ∞, set

Tf(x) =

∫
Rn

K(x− y)f(y) dy. (1.1)

Then there exists a constant Ap, depending only on B, p, and n, such that

‖Tf‖p ≤ Ap‖f‖p. (1.2)

One can thus extend T to all of Lp by continuity.

Equation (1.1) defines T as a convolution operator on a dense subspace of Lp,

namely L1∩Lp. In our version we assume that T is already known to be some bounded

linear operator from L2(Rn,H1) to L2(Rn,H2), where H1 and H2 are separable

Hilbert spaces, and that T is given by convolution on a different dense subset of Lp,

namely the bounded, compactly supported functions.
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Assumption (i) is used to show that (1.2) holds when p = 2. In the vector-valued

version that we present, we shall simply assume (1.2) for p = 2 from the outset.

Assumption (ii) expresses the singularity of K at the origin.

The techniques employed in Singular Integrals carry over to the vector-valued

setting for the 1 < p < 2 case. The Calderón-Zygmund lemma and the interpolation

theorem given in the preceding chapter are both employed. But the techniques for

proving the 2 < p < ∞ case do not carry over so nicely. For this we introduce some

fairly strong hypotheses.

The reader is expected to have some familiarity with real analysis—a reasonable

familiarity with the material contained in the first five chapters of Folland [5], for

example. A knowledge of the elementary properties of Hilbert and Banach spaces,

and of linear operators on these spaces, is also assumed; the contents of the first three

chapters of Conway [4] would more than suffice. Throughout this thesis we have

attempted to minimize terseness, filling in minor details in arguments taken from

Stein [9] and Grafakos [6], with the hope that the reader will find our presentation

perspicuous yet engaging.



Chapter 2

The Bochner Integral

2.1 Preliminaries

We begin by introducing the Bochner integral—we follow exercise 16 on p. 156

of Folland [5] for this. In order to define this integral we need a few definitions. In

what follows, for any topological space X, BX denotes the Borel σ-algebra on X.

Let (X,M, μ) be a measure space, and let Y be a separable Banach space. For

convenience, let

LY = {f : X → Y : f is (M,BY )-measurable}.

Since y 
→ ‖y‖ is continuous, it is (BY ,BR)-measurable, and hence for any f ∈ LY ,

the composition x 
→ ‖f(x)‖ is (M,BR)-measurable. We define

‖f‖1 =
∫

‖f(x)‖ dμ(x) (2.1)

and we say that f ∈ LY is integrable if the right-hand-side of (2.1) is finite. We also

set

L1(X,Y ) = {f : X → Y : f is integrable}.

Proposition 2.1. LY is a vector space which contains L1(X,Y ) as a subspace.

Moreover, ‖ · ‖1 is a seminorm on L1(X,Y ) that becomes a norm if we identify

functions that are equal almost everywhere.

Proof. Since LY is a subset of the vector space Y X , to show that it is a vector space

it suffices to show that it is closed under addition and scalar multiplication. Let

f, g ∈ LY and define F1 : X → Y × Y by

F1(x) = (f(x), g(x)),

and φ : Y × Y → Y by

φ(y1, y2) = y1 + y2.

6
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So f + g = φ ◦ F1. If π1 and π2 are the coordinate maps from Y × Y to Y , then

π1 ◦ F1 = f and π2 ◦ F1 = g,

so π1 ◦ F1 and π2 ◦ F1 are (M,BY )-measurable. It follows from a result in measure

theory (see Folland [5], p. 44) that F1 is (M,BY ⊗BY )-measurable, where BY ⊗BY

denotes the product σ-algebra on Y ×Y . Since Y is separable, we have—by another

standard result ([5], p. 23)—that

BY ⊗ BY = BY ×Y .

Hence, F1 is (M,BY ×Y )-measurable. Since φ is continuous, it is (BY ×Y ,BY )-measurable,

so we conclude that f + g = φ ◦ F1 is (M,BY )-measurable. This proves that LY is

closed under addition.

Now let f ∈ LY and α ∈ F, where F = R or C. Define F2 : X → F× Y by

F2(x) = (α, f(x)),

and ψ : F× Y → Y by

ψ(λ, y) = λy.

Let π1, π2 denote the coordinate maps on F× Y . Since π1(x) = α for all x ∈ X, we

have for any E ∈ BF that

(π1 ◦ F2)
−1(E) =

{
∅ if α /∈ E

X if α ∈ E,

and therefore π1 ◦ F2 is (M,BF)-measurable. Moreover, π2 ◦ F2 = f is (M,BY )-

measurable. Thus π1 ◦ F2 and π2 ◦ F2 are both measurable, and therefore F2 is

(M,BF ⊗ BY )-measurable. Since Y and F are separable,

BF ⊗ BY = BF×Y ,

and hence F2 is (M,BF×Y )-measurable. Since ψ is (BF×Y ,BY )-measurable (by virtue

of its being continuous), we conclude that αf = ψ ◦F2 is (M,BY )-measurable. Thus

we have shown that LY is closed under scalar multiplication.

We now show that L1(X,Y ) is a subspace of LY , and that ‖ · ‖1 is a seminorm

on L1(X,Y ) that becomes a norm if we identify functions in LY that are equal
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almost everywhere. Let f, g ∈ L1(X,Y ) and α ∈ F. Then since ‖f(x) + g(x)‖ ≤
‖f(x)‖+ ‖g(x)‖ for each x, we have

‖f + g‖1 =
∫
X

‖f(x) + g(x)‖ dx ≤
∫
X

‖f(x)‖ dx+

∫
X

‖g(x)‖ dx = ‖f‖1 + ‖g‖1.

Also, ‖(αf)(x)‖ = ‖αf(x)‖ = |α|‖f(x)‖, so

‖αf‖1 =
∫
X

‖(αf)(x)‖ dx = |α|
∫
X

‖f(x)‖ dx = |α|‖f‖1.

This shows that ‖ · ‖ is a seminorm on L1(X,Y ) and that L1(X,Y ) is a subspace of

LY . If ‖f‖1 =
∫
X
‖f‖ dx = 0, then since ‖f‖ is nonnegative and measurable, ‖f‖ = 0

a.e., and hence f = 0 a.e. Thus, if we identify functions on LY that are equal a.e.,

‖ · ‖1 becomes a norm on L1(X,Y ).

In analogy with the usual notion of scalar-valued simple functions, we now define

simple functions more generally to be maps φ : X → Y of the form

φ(x) =
m∑
j=1

χEj
(x)yj,

where m ∈ N, yj ∈ Y , Ej ∈ M, and μ(Ej) < ∞. For convenience we let FY

denote the set of simple functions. Any simple function φ can be written in the form∑m
i=1 yiχφ−1(yi), where {y1, . . . , ym} are all the nonzero elements in the range of φ. We

call this the standard representation of φ. The standard representation gives a unique

way of writing φ as a finite linear combination of characteristic functions of disjoint

sets, with one characteristic function for each nonzero element in the range of φ.

Proposition 2.2. FY is a subspace of L1(X,Y ).

Proof. We start by showing that FY ⊂ LY . Let φ = χEy, where y ∈ Y and

E ∈ M. Elements of FY are finite sums of functions of this form, and we have

already shown that the set of (M,BY )-measurable functions is closed under addition

(of a finite number of summands), so to show that FY ⊂ LY it suffices to show that

φ is (M,BY )-measurable. For any F ∈ BY we have

φ−1(F ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X if y ∈ F and 0 ∈ F

E if y ∈ F and 0 /∈ F

Ec if y /∈ F and 0 ∈ F

∅ if y /∈ F and 0 /∈ F.
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Therefore, φ−1(F ) ∈ M for each F ∈ BY , so φ is (M,BY )-measurable, and hence

FY ⊂ LY . Moreover, FY is clearly closed under addition and scalar multiplication,

so FY is a subspace of LY .

To see that FY ⊂ L1(X,Y ), let φ =
∑m

j=1 χEj
yj ∈ FY . Then ‖φ(x)‖ =∑m

j=1 ‖yj‖χEj
(x), and hence

‖φ‖1 =
∫
X

m∑
j=1

‖yj‖χEj
(x) dx =

m∑
j=1

‖yj‖μ(Ej).

Thus φ ∈ L1(X,Y ), and since φ ∈ FY was arbitrary, this shows that FY ⊂ L1(X,Y ).

Lemma 2.3. For any normed space X, and j ∈ N with j > 1, if ‖x − y‖ ≤ 1
j
‖y‖,

then ‖y‖ ≤ j
j−1

‖x‖ (and hence ‖x− y‖ ≤ 1
j−1

‖x‖).

Proof. Since ‖x− y‖ ≤ 1
j
‖y‖, we have ‖y‖−‖x‖ ≤ 1

j
‖y‖, which implies (1− 1

j
)‖y‖ ≤

‖x‖. This can be expressed as ‖y‖ ≤ j
j−1

‖x‖.

Lemma 2.4. Let {yn}∞1 be a countable dense set in Y . For each j ∈ N, let Bn,j =

{y ∈ Y : ‖y − yn‖ < 1
j
‖yn‖}. Then for each j,

⋃∞
n=1 Bn,j ⊃ Y \ {0}.

Proof. Let y �= 0, j ∈ N. Since {yn}∞1 is dense in Y , we have

‖y − yn‖ ≤ 1

j + 1
‖y‖

for some n. By Lemma 2.3, this implies

‖y − yn‖ ≤ 1

j
‖yn‖,

which means that y ∈ Bn,j.

Theorem 2.5. If f ∈ L1(X,Y ), there is a sequence {φn} ⊂ FY which converges to

f in L1(X,Y ) and a.e..

Proof. With the notation in Lemma 2.4, let An,j = Bn,j \
⋃n−1

m=1 Bm,j and En,j =

f−1(An,j), and let gj =
∑∞

n=1 ynχEn,j
. Note that the En,j’s are disjoint, since the

An,j’s are. Moreover, it follows from Lemma 2.4 that

X =
∞⋃
n=1

En,j ∪ f−1{0}, (2.2)
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for if f(x) �= 0 then f(x) ∈ ⋃∞
n=1 Bn,j =

⋃∞
n=1 An,j, whence x ∈ En,j for some n.

The union in (2.2) is disjoint, because 0 /∈ ⋃∞
n=1 Bn,j =

⋃∞
n=1 An,j, and therefore if

f(x) = 0 then x /∈ En,j for any n. Lastly, we note that since the Bn,j sets are open

balls in Y , they are in BY , and hence the An,j sets are in BY as well, and since f is

(M,BY )-measurable this implies that the En,j’s are in M.

Now, if x ∈ En,j and j > 1, we have

‖f(x)− yn‖ <
1

j
‖yn‖, (2.3)

and hence by Lemma 2.3,

‖yn‖ <
j

j − 1
‖f(x)‖. (2.4)

Since

gj(x) =

{
yn if x ∈ En,j

0 if x ∈ f−1{0},
we see that ‖gj(x)‖ ≤ j

j−1
‖f(x)‖ for all x ∈ X, and hence ‖gj‖1 ≤ j

j−1
‖f‖1. Also,

(2.3) and (2.4) give us ‖f(x)− yn‖ < 1
j−1

‖f(x)‖ for x ∈ En,j, which implies that

‖f(x)− gj(x)‖ ≤ 1

j − 1
‖f(x)‖

for all x ∈ X. This in turn gives us

‖f − gj‖1 ≤ 1

j − 1
‖f‖1. (2.5)

We now observe that ‖gj(x)‖ =
∑∞

n=1 ‖yn‖χEn,j
(x), and hence

‖gj‖1 =
∫
X

‖gj(x)‖ dx =

∫
X

∞∑
n=1

‖yn‖χEn,j
(x) dx =

∞∑
n=1

∫
X

‖yn‖χEn,j
(x) dx

by the Monotone Convergence Theorem. Therefore,

‖gj‖1 =
∞∑
n=1

‖yn‖μ(En,j), (2.6)

which in particular shows that μ(En,j) < ∞ for each n, j. Now since gj ∈ L1(X,Y )

for j > 1, we can truncate the sum in (2.6) to make its tail as small as we like. In

other words, for j > 1 there exists Nj such that

∞∑
n=Nj+1

‖yn‖μ(En,j) <
1

j
.
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Now let N1 = 1 and define φj =
∑Nj

n=1 ynχEn,j
. Notice that

gj − φj =
∞∑

n=Nj+1

ynχEn,j
,

and hence

‖gj − φj‖1 =
∞∑

n=Nj+1

‖yn‖μ(En,j) <
1

j
(2.7)

when j > 1. Now since

‖f − φj‖1 ≤ ‖f − gj‖1 + ‖gj − φj‖1 < 1

j − 1
‖f‖1 + 1

j

when j > 1, we see that ‖f − φj‖1 → 0 as j → ∞. Seen another way, this says that

the nonnegative functions ‖f(x) − φj(x)‖ converge to 0 in L1(X,R). This implies,

by a fact from real analysis (see Bartle [1], pp. 69–70, for example), that there is a

subsequence ‖f(x)−ψj(x)‖ which converges to 0 in L1(X,R) and almost everywhere.

In other words, ψj → f in L1(X,Y ) and a.e..

2.2 The Integral

Theorem 2.6. There is a unique linear map
∫
: L1(X,Y ) → Y such that:

(i)
∫
yχE = μ(E)y for y ∈ Y and E ∈ M (with μ(E) < ∞), and

(ii) ‖ ∫ f‖ ≤ ‖f‖1.

Proof. We first define
∫

on FY by
∫ ∑n

i=1 yiχEi
=

∑n
i=1 yiμ(Ei). This is clearly

linear on FY . It is also well-defined, i.e., independant of representation. The proof

of this fact is identical to the proof for scalar-valued simple functions, so we shall

omit it, referring the reader to pp. 51–52 of Stein & Shakarchi [10], for example.

Therefore, in what follows we will work exclusively with standard representations of

simple functions.

Given φ =
∑n

j=1 yjχEj
∈ FY , we have

‖φ(x)‖ =
∥∥∥ n∑

j=1

yjχEj
(x)

∥∥∥ =
n∑

j=1

‖yj‖χEj
(x)
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for each x ∈ X, and hence

‖φ‖1 =
∫
X

‖φ‖ dx =
n∑

j=1

‖yj‖μ(Ej).

Thus, ∥∥∥ ∫
X

φ dx
∥∥∥ ≤

n∑
j=1

‖yj‖μ(Ej) = ‖φ‖1. (2.8)

Now suppose we are given f ∈ L1(X,Y ). By Theorem 2.5, there is a sequence

{φn} ⊂ FY such that ‖φn − f‖1 → 0. Thus {φn} is Cauchy in L1(X,Y ), and hence∥∥∥ ∫ φn −
∫

φm

∥∥∥ =
∥∥∥ ∫ (φn − φm)

∥∥∥ ≤ ‖φn − φm‖1 → 0

as m,n → ∞. Thus {∫ φn} is Cauchy in Y , and since Y is complete this means that

{∫ φn} converges. Define
∫
f to be its limit. Then

∫
is well-defined on L1(X,Y ), for

suppose that {ψn} is another sequence in FY such that ψn → f , and let ε > 0. There

exists an N such that n ≥ N implies

(i) ‖ ∫ φn −
∫
f‖ < ε

2
,

(ii) ‖φn − f‖1 < ε
4
,

(iii) ‖ψn − f‖1 < ε
4
.

Thus for n ≥ N ,∥∥∥ ∫ ψn −
∫

f
∥∥∥ ≤

∥∥∥ ∫ ψn −
∫

φn

∥∥∥+
∥∥∥ ∫ φn −

∫
f
∥∥∥

≤ ‖ψn − φn‖1 +
∥∥∥ ∫ φn −

∫
f
∥∥∥

by (2.8). Using the triangle inequality again,∥∥∥ ∫ ψn −
∫

f
∥∥∥ ≤ ‖ψn − f‖1 + ‖f − φn‖1 +

∥∥∥ ∫ φn −
∫

f
∥∥∥

<
ε

4
+

ε

4
+

ε

2
.

Thus
∫
ψn → ∫

f in Y , so the function
∫

is well-defined on L1(X,Y ). It is easy to

see that
∫
is linear on L1(X,Y ), so it remains only to show that ‖ ∫ f‖ ≤ ‖f‖1, and
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to verify the uniqueness statement. Given f ∈ L1(X,Y ), f = limφn for a sequence

{φn} ⊂ FY , so

∥∥∥ ∫ f
∥∥∥ =

∥∥∥ lim ∫
φn

∥∥∥ = lim
∥∥∥ ∫ φn

∥∥∥ ≤ lim ‖φn‖1 = ‖f‖1.

Thus ‖ ∫ f‖ ≤ ‖f‖1 for all f ∈ L1(X,Y ).

Now, to verify the uniqueness statement, suppose that Ψ : L1(X,Y ) → Y is

another linear map such that

(i) Ψ(yχE) = yμ(E) for y ∈ Y , E ∈ M.

(ii) ‖Ψf‖ ≤ ‖f‖1 for all f ∈ L1(X,Y ).

Let f ∈ L1(X,Y ); then f = limφn for a sequence {φn} ⊂ FY , and since Ψ is

continuous by (ii),

Ψf = Ψ(limφn) = limΨφn.

Now for any φ =
∑n

i=1 yiχEi
∈ FY we have

Ψφ = Ψ
( n∑

i=1

yiχEi

)
=

n∑
i=1

Ψ(yiχEi
) =

n∑
i=1

yiμ(Ei),

by (i). Then by the definition of
∫
, this is equal to

∫ n∑
i=1

yiχEi
=

∫
φ,

which shows that
∫

and Ψ agree on simple functions. Therefore, Ψf = limΨφn =

lim
∫
φn =

∫
f , and we conclude that Ψ =

∫
on L1(X,Y ), proving the uniqueness of

the function
∫
.

The function
∫
: L1(X,Y ) → Y defined in Theorem 2.6 is called the Bochner in-

tegral. We will prove a version of the Dominated Convergence Theorem for L1(X,Y )

functions, but we first verify that certain standard measure-theoretic results still hold

for these functions.

Theorem 2.7. If fn converges pointwise to f , and each fn ∈ LY , then f ∈ LY .
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Proof. Since Y is a separable metric space, a countable collection of open balls is

a base for its topology, and it follows that BY is generated by open balls. Thus, it

suffices to show that the preimage of each open ball in Y under f is in M. To do

this, we first note that constant functions are in LY , for if F (x) = y for all x ∈ X,

then for each E ∈ BY ,

F−1(E) =

{
X if y ∈ E

∅ if y /∈ E,

and thus F is (M,BY )-measurable. We now recall from Proposition 2.1 that LY

is a vector space, and hence fn(x) − y ∈ LY for each n. Since the norm ‖ · ‖ is

continuous, ‖fn(x)− y‖ is (M,BR)-measurable for each n, and ‖fn(x)− y‖ converges

to ‖f(x) − y‖ for each x. By a standard result (see Bartle [1], p. 12), we have that

‖f(x)− y‖ is (M,BR)-measurable. Thus, if we define gy by gy(x) = ‖f(x)− y‖, then
g−1
y

(
B(0, δ)

) ∈ M for each y ∈ Y and δ > 0. But

g−1
y

(
B(0, δ)

)
= {x : ‖f(x)− y‖ < δ} = f−1

(
B(y, δ)

)
.

We have thus shown that the preimage of any open ball in Y is in M, as desired.

Corollary 2.8. Suppose that μ is a complete measure on M. We have the following:

(i) if f is (M,BY )-measurable and f = g μ-a.e., then g is (M,BY )-measurable.

(ii) if fn is (M,BY )-measurable for each n and fn → f μ-a.e., then f is (M,BY )-

measurable.

Proof. Suppose that f = g on N c for some null set N . Then for each E ∈ BY ,

g−1(E) ∩N c = f−1(E) ∩N c ∈ M.

Hence,

g−1(E) = g−1(E) ∩ (N ∪N c)

= (g−1(E) ∩N)︸ ︷︷ ︸
in M since μ is complete

∪ (g−1(E) ∩N c).

Thus g is (M,BY )-measurable. This proves (i).
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Suppose now that {fn} is a sequence of measurable functions which converges to

f on N c, where N is a null set. We define functions Fn and F by

Fn(x) = χX\N(x)fn(x) and F (x) = χX\N(x)f(x).

Now Fn is measurable for each n, because for any E ∈ BY ,

F−1
n (E) =

{
f−1
n (E) ∪N if 0 ∈ E

f−1
n (E) if 0 /∈ E.

Moreover, it is clear that Fn(x) → F (x) for each x ∈ X, so by Theorem 2.7, F is

measurable. Since f = F a.e., (i) gives us that f is measurable.

Proposition 2.9. If μ is a measure on a measurable space (X,M), and μ is its

completion, then a statement P about functions on X is true μ-a.e. if and only if it

is true μ-a.e..

Proof. Suppose first that P is true μ-a.e.. This means that P is true on N c for a null

set N ∈ M. By definition, N = E ∪F , where E ∈ M and F ⊂ N0 for some N0 ∈ M
such that μ(N0) = 0. Moreover, μ(E) ≡ μ(N) = 0. Now since F ⊂ N0, we have

N c
0 ⊂ F c, which implies Ec ∩ N c

0 ⊂ Ec ∩ F c; in other words, (E ∪ N0)
c ⊂ N c. Thus

P is true on (E ∪ N0)
c, where E ∪ N0 ⊂ M, and μ(E ∪ N0) ≤ μ(E) + μ(N0) = 0;

i.e., P is true μ-a.e.. Conversely, if P is true μ-a.e., then P is true on N c, where

N ∈ M ⊂ M, which means that P is true μ-a.e..

In light of this proposition, we may, in speaking about a non-complete measure

μ, say that something holds a.e. without specifying μ-a.e. or μ-a.e..

Proposition 2.10. Given a measure space (X,M, μ) with completion (X,M, μ),

and an (M,BY )-measurable function f , there is an (M,BY )-measurable function g

which is equal to f a.e..

Proof. Clearly, χE is (M,BY )-measurable for each E ∈ M. By definition, any such

E can be written as F∪G, where F ∈ M and μ(G) = 0. Thus χE = χF a.e., and χF is

(M,BY )-measurable. It follows that the result holds for (M,BY )-measurable simple

functions. By Theorem 2.5, there is a sequence {φn} of (M,BY )-measurable simple

functions that converges a.e. to f ; in other words, φn(x) → f(x) for each x ∈ N c,
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where N ∈ M. For each φn, let ψn be a (M,BY )-measurable simple function which

is equal to φn on Ec
n, where En ∈ M and μ(En) = 0. Letting

N ′ = N ∪
∞⋃
n=1

En and g(x) = lim
n→∞

χX\N ′(x)ψn(x),

we have

N ′ ∈ M with μ(N ′) = 0,

and

g = fχX\N ′ .

The functions χX\N ′(x)ψn(x) are (M,BY )-measurable, and therefore by Theorem 2.7,

g is (M,BY )-measurable. Since g = f a.e., we are done.

Theorem 2.11 (The Dominated Convergence Theorem). If {fn} is a sequence in

L1(X,Y ) such that fn → f a.e., and there exists g ∈ L1(X,R) such that ‖fn(x)‖ ≤
g(x) for all n and almost every x, then there exists a function f ∗ in L1(X,Y ) such

that
∫
fn → ∫

f ∗ and f = f ∗ a.e..

Proof. We treat the general case where μmay not be complete. The fn’s are (M,BY )-

measurable, and fn → f a.e.. Since M ⊂ M, the fn’s are (M,BY )-measurable.

Corollary 2.8 yields that f is (M,BY )-measurable. By Proposition 2.10 there exists

an (M,BY )-measurable function f ∗ which is equal to f a.e.. If μ were complete

to begin with then f would itself be (M,BY )-measurable, and this step would be

unnecessary.

Now for each n, there exists a null set En ∈ M such that ‖fn‖ ≤ g on Ec
n. Let

N0 =
⋃∞

n=1 En. Since fn → f a.e. and f = f ∗ a.e., it follows that fn → f ∗ on N c
1 for

some null set N1 ∈ M. Let N = N0 ∪N1; then

μ(N) = 0, fn → f ∗ on N c, and ‖fn‖ ≤ g on N c for all n.

It follows that ‖f ∗‖ ≤ g a.e., and therefore f ∗ is in L1(X,Y ). Now since∥∥∥ ∫ fn −
∫

f ∗
∥∥∥ =

∥∥∥ ∫ (fn − f ∗)
∥∥∥ ≤ ‖fn − f ∗‖1,

it suffices to show that ‖fn − f ∗‖1 → 0. We know that

‖fn(x)− f ∗(x)‖ → 0 for a.e. x,
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and

‖fn(x)− f ∗(x)‖ ≤ ‖fn(x)‖+ ‖f ∗(x)‖ ≤ 2g(x) for a.e. x and for all n.

Therefore, by the scalar-valued Dominated Convergence Theorem (see Folland [5],

p. 54, for example), ∫
‖fn − f ∗‖ dx →

∫
0 dx = 0.

In other words, ‖fn − f ∗‖1 → 0.

For any normed vector spaces X and Y , we let B(X, Y ) denote the space of

bounded linear transformations from X to Y .

Theorem 2.12. If Z is a separable Banach space, T ∈ B(Y ,Z ), and f ∈ L1(X,Y ),

then T ◦ f ∈ L1(X,Z ) and
∫
T ◦ f = T (

∫
f).

Proof. T is continuous, so it is (BY ,BZ )-measurable, and since f is (M,BY )-measurable

we have that T ◦ f is (M,BZ )-measurable. Moreover, since T is bounded, we have

‖(T ◦ f)(x)‖ = ‖T (f(x))‖ ≤ ‖T‖‖f(x)‖ for each x ∈ X. Therefore,

‖T ◦ f‖1 =
∫

‖(T ◦ f)(x)‖ dx ≤ ‖T‖
∫

‖f(x)‖ dx = ‖T‖‖f‖1, (2.9)

so that T ◦ f ∈ L1(X,Z ).

Now observe that for any φ =
∑n

i=1 yiχEi
, we have T ◦ φ =

∑n
i=1(Tyi)χEi

∈ FZ ,

and hence ∫
T ◦ φ =

n∑
i=1

μ(Ei)Tyi = T
( n∑

i=1

μ(Ei)yi

)
= T

(∫
φ
)
.

If {φn} is a sequence in FY such that ‖f − φn‖1 → 0, we see—using (2.9)—that

‖T ◦ f − T ◦ φn‖1 = ‖T (f − φn)‖1 ≤ ‖T‖‖f − φn‖1 → 0.

Thus, {T ◦ φn} is a sequence in FZ such that ‖T ◦ f − T ◦ φn‖1 → 0, and therefore∫
T ◦ f = lim

∫
T ◦ φn = lim T

(∫
φn

)
= T

(
lim

∫
φn

)
= T

(∫
f
)
.
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A special variant of this theorem occurs when T = ξ ∈ Y ∗. Then we have

ξ
(∫

X

f(x) dx
)
=

∫
X

ξ(f(x)) dx,

where the integral on the left is the Bochner integral, but the integral on the right

is a Lebesgue integral. The proof is identical, except that after we’ve established

‖ξ(f) − ξ(φn)‖1 → 0, we note that in particular this means that
∫
ξ(φn) →

∫
ξ(f),

where these are Lebesgue integrals.

We will make use of this variant in Section 3.3, and refer to it simply as Theo-

rem 2.12.



Chapter 3

The Vector-Valued Aspect

3.1 Weak measurability

Now that we have introduced the Bochner integral, we show how it can be used to

extend some of the standard theory to the context of vector-valued functions. Let H

be a separable Hilbert space. Given a measure space (X,M, μ), a function f : X →
H is called weakly measurable if for each φ ∈ H , the map x 
→ 〈f(x), φ〉 is (M,BC)-

measurable. Note that this is different from the definition of measurability we saw

before in the more general Banach space setting, where a function was measurable

if it was (M,BH )-measurable. With the codomain of f being a separable Hilbert

space, the two definitions are equivalent, as we will now show.

Lemma 3.1. If f : X → H is weakly measurable then x 
→ ‖f(x)‖ is (M,BR)-

measurable.

Proof. Since H is separable, dimH = ℵ0. Let {ei}∞i=1 be a basis for H ; by Parseval’s

identity,

‖f(x)‖2 =
∞∑
i=1

|〈f(x), ei〉|2.

Since weak measurability means that x 
→ 〈f(x), ei〉 is measurable for each i, it follows

that x 
→ ∑n
i=1 |〈f(x), ei〉|2 is (M,BR)-measurable for each n. Since the pointwise

limit of a sequence of measurable functions is measurable, we have that x 
→ ‖f(x)‖2
is measurable, and therefore that x 
→ ‖f(x)‖ is measurable.

Lemma 3.2. Constant functions are weakly measurable. Moreover, if f : X → H

and g : X → H are weakly measurable, and c ∈ C, then cf and f + g are weakly

measurable.

Proof. Given ψ ∈ H , x 
→ 〈ψ, φ〉 is (M,BC)-measurable for each φ ∈ H , since

constant scalar-valued functions are measurable. Thus constant functions are weakly

19
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measurable. If f is weakly measurable and c ∈ C, then the weak measurability

of cf follows from the analogous property for scalar-valued measurable functions,

since 〈cf(x), φ〉 = c〈f(x), φ〉. If f and g are weakly measurable, then the weak

measurability of f + g again follows from the analogous property for scalar-valued

functions, since 〈f(x) + g(x), φ〉 = 〈f(x), φ〉+ 〈g(x), φ〉.
Proposition 3.3. The map f : X → H is (M,BH )-measurable if and only if it is

weakly measurable.

Proof. Suppose that f is (M,BH )-measurable. Since the inner-product 〈·, ·〉 : H ×
H → C is continuous, its sections 〈·, φ〉 are continuous, and are therefore (BH ,BC)-

measurable. It follows that the composition x 
→ 〈f(x), φ〉 is (M,BC)-measurable for

each φ ∈ H .

For the converse we apply the same technique used in Lemma 2.7. Since H is

separable it follows that BH is generated by open balls, and therefore it suffices to

show that the preimage of every open ball in H is in M. If f is weakly measurable,

it follows from the lemmas that gy(x) ≡ ‖f(x) − y‖ is measurable for each y ∈ H .

Since

f−1
(
B(y, δ)

)
= {x : ‖f(x)− y‖ < δ} = g−1

y

(
B(0, δ)

)
,

we are done.

Now consider B(H1,H2), with the norm topology, where H1 and H2 are separa-

ble Hilbert spaces. A function K : X → B(H1,H2) is said to be weakly measurable

if K(x)φ is weakly measurable for each φ ∈ H1. To be pedantic, this amounts to

x 
→ 〈K(x)φ, ψ〉 being (M,BC)-measurable for each φ ∈ H1 and each ψ ∈ H2.

By Proposition 3.3 this is equivalent to requiring that x 
→ K(x)φ be (M,BH2)-

measurable for each φ ∈ H1, and by the continuity of the norm it implies that

x 
→ ‖K(x)φ‖ is measurable for each φ ∈ H1.

Proposition 3.4. If K : X → B(H1,H2) is weakly measurable, then x 
→ ‖K(x)‖
is measurable.

Proof. Since H1 is separable, so is the closed unit ball B(0, 1) ⊂ H1, with countable

dense subset {ψi}∞1 . Now for any x, ‖K(x)‖ = sup‖φ‖≤1 ‖K(x)φ‖, and since K(x) is

continuous, this is the equal to supi ‖K(x)ψi‖. Since x 
→ ‖K(x)ψi‖ is measurable

for each i, x 
→ ‖K(x)‖ is measurable.
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We note that K : X → B(H1,H2) being weakly measurable is not the same

as K being (M,BB(H1,H2))-measurable. However, the latter sense of measurability

implies the former. To see this, observe that for each φ ∈ H1, the map T 
→ Tφ

is (BB(H1,H2),BH2)-measurable, because it is continuous, being linear and bounded.

Then x 
→ K(x)φ is just the composition

x 
→ K(x) 
→ K(x)φ,

so it is (M,BH2)-measurable. Thus if K is (M,BB(H1,H2))-measurable, it is weakly

measurable. I suspect the converse does not hold. At any rate, we cannot imitate

the technique used in Proposition 3.3, for B(H1,H2) may not be separable, even

when H1 and H2 are. For consider B(H ,H ), where H = L2([0, 1]), the space

of equivalence classes of complex-valued square-integrable functions on [0, 1]; this

space is separable (see Folland [5], p. 178). For t ∈ (0, 1] and f ∈ H , consider the

multiplication operator

mt(f) = fχ[0,t].

For s, t ∈ (0, 1] with s < t, we have

‖mt −ms‖ = sup
‖f‖=1

‖(mt −ms)f‖

= sup
‖f‖=1

‖fχ[s,t]‖

= sup
‖f‖=1

(∫ t

s

|f(x)|2 dx
) 1

2

= 1,

since we can always find a function supported on [s, t] such that ‖f‖L2 = 1. But

{mt : t ∈ (0, 1]} is an uncountable subset of B(H ,H ). This shows that any dense

subset of B(H ,H ) must be uncountable, and therefore B(H ,H ) is not separable.

The following proposition will be useful later.

Proposition 3.5. If K : X → B(H1,H2) and f : X → H1 are weakly measurable,

then K(·)f(·) : X → H2 is weakly measurable.

Proof. We first observe that if f : X → H1 and g : X → H1 are weakly measur-

able, then x 
→ 〈f(x), g(x)〉 is (M,BC)-measurable. To see this, observe that by the
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polarization identity we have

〈f(x), g(x)〉 = 1
4

(‖f(x) + g(x)‖2 − ‖f(x)− g(x)‖2

+ i‖f(x) + ig(x)‖2 − i‖f(x)− ig(x)‖2),
and each of the four summands on the right-hand-side is measurable.

We now note that if K : X → B(H1,H2) is weakly measurable, then so is

K∗ : X → B(H2,H1), where K∗(x) is the adjoint of K(x). This is because for any

ψ ∈ H1, φ ∈ H2, and x ∈ X, we have

〈K∗(x)φ, ψ〉 = 〈ψ,K∗(x)φ〉 = 〈K(x)ψ, φ〉,

which is measurable because K is weakly measurable, and complex conjugation is

measurable (being continuous).

Now K∗ being weakly measurable means, by definition, that K∗(x)φ is weakly

measurable for each φ ∈ H2, whence, by what we first showed,

x 
→ 〈f(x), K∗(x)φ〉

is measurable for each φ ∈ H2. But 〈f(x), K∗(x)φ〉 = 〈K(x)f(x), φ〉, so we have

proven that K(x)f(x) is weakly measurable.

3.2 Vector-valued Lp-space

Let B be a Banach space. We define Lp(X,B) in analogy with the usual definition,

that is, with

‖f‖p =
(∫

X

‖f(x)‖pB dx
)1/p

when 0 < p < ∞, and

‖f‖∞ = ess supx∈X‖f(x)‖B.

We use Lp(X,B) and L∞(X,B) to denote the space of equivalence classes of (M,BB)-

measurable functions such that ‖f‖p < ∞ and ‖f‖∞ < ∞, respectively. When

1 ≤ p ≤ ∞, ‖·‖p and ‖·‖∞ are norms on Lp(X,B) and L∞(X,B) respectively—that

scaling and nondegeneracy hold is obvious, and the triangle inequality, or Minkowski’s

inequality, follows from the scalar-valued version:
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Theorem 3.6 (Minkowski’s inequality). If f, g ∈ Lp(X,B), 1 ≤ p ≤ ∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. Since ‖f + g‖B ≤ ‖f‖B + ‖g‖B, we simply apply the scalar-valued version to

‖f‖B + ‖g‖B. Thus,∥∥‖f + g‖B

∥∥
p
≤ ∥∥‖f‖B + ‖g‖B

∥∥
p
≤ ∥∥‖f‖B

∥∥
p
+
∥∥‖g‖B

∥∥
p
,

that is,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

It is not hard to verify that the spaces Lp(X,B) and L∞(X,B) are Banach spaces

for 1 ≤ p ≤ ∞; the arguments are the same as for the scalar-valued case, but with

absolute value replaced by norm. This construction works for any Banach space B,

and in the remainder of this chapter we will apply it to Hilbert space, as well as to

the Banach space of linear operators between two Hilbert spaces. We note in passing

that the norm on L2(X,H ) is determined by the inner product

〈f, g〉 =
∫
X

〈f(x), g(x)〉 dx,

so that L2(X,H ) is a Hilbert space.

A vector-valued analogue of Hölder’s inequality follows directly from the scalar-

valued version:

Theorem 3.7 (Hölder’s inequality). Suppose that 1 ≤ p ≤ q ≤ ∞ and that q is

conjugate to p (that is, 1/p + 1/q = 1 when 1 < p < ∞, and p = 1 when q = ∞). If

K : X → B(H1,H2) and f : X → H1 are measurable, then

‖Kf‖1 ≤ ‖K‖p‖f‖q.

Proof. Proposition 3.5 implies that x 
→ ‖K(x)f(x)‖ is measurable. Applying the

scalar-valued Hölder’s inequality to ‖K(x)‖op and ‖f(x)‖H1 yields

‖Kf‖1 ≡
∫

‖K(x)f(x)‖H2 dx ≤
∫

‖K(x)‖op‖f(x)‖H1 dx ≤ ‖K‖p‖f‖q,

as desired.
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3.3 The Fubini theorem

Fubini’s theorem holds in this setting as well; we shall find it convenient to first

review some properties of sections and bounded linear functionals. Recall that when

we are given two sets X and Y , a subset E ⊂ X × Y , and an element x ∈ X, we

define the x-section of E—denoted Ex—by

Ex = {y ∈ Y : (x, y) ∈ E}.

We define the y-section Ey for y ∈ Y analogously. Moreover, for a function f on

X × Y , we define the x-section of f—denoted fx—by

fx(y) = f(x, y).

For y ∈ Y we define the y-section f y analogously. Given two measure spaces

(X,M, μ) and (Y,N , ν), we have the following:

Proposition 3.8. Given E ⊂ M⊗N , all of its x-sections Ex are in N , and all of its

y-sections Ey are in M. Moreover, if f : X × Y → H is (M⊗N ,BH )-measurable,

then each of its x-sections fx is (N ,BH )-measurable, and each of its y-sections f y is

(M,BH )-measurable.

The proof is easy and identical to that of the scalar-valued result; see Folland [5],

p. 65. Now let X be a Banach space, and let X ∗ be its dual.

Proposition 3.9. For each x �= 0 in X , there exists ξ ∈ X ∗ such that ‖ξ‖ = 1 and

ξ(x) = ‖x‖.

Proof. Take x �= 0. It is a useful corollary of the Hahn-Banach theorem that

‖x‖ = sup{|u(x)| : u ∈ X ∗ and ‖u‖ ≤ 1}.

Moreover, this supremum is attained, at v, say. Let ξ = v(x)
|v(x)|v; then ‖ξ‖ = ‖v‖ = 1,

and

ξ(x) =
v(x)

|v(x)|v(x) = |v(x)| = ‖x‖.

Corollary 3.10. If ξ(x) = ξ(y) for all ξ ∈ X ∗, then x = y.
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Proof. If x �= y, select ξ so that

ξ(x− y) = ‖x− y‖.

Then ξ(x) �= ξ(y).

Theorem 3.11 (The Fubini Theorem). Let H be a separable Hilbert space, and

suppose that (X,M, μ) and (Y,N , ν) are σ-finite measure spaces, and that f : X ×
Y → H is in L1(X × Y,H ). Then

g(x) =

∫
Y

fx(y) dν ∈ L1(X,H ),

h(y) =

∫
X

f y(x) dμ ∈ L1(Y,H ),

and ∫
X×Y

f dμ× ν =

∫
X

g(x) dμ =

∫
Y

h(y) dν.

That is,∫
X×Y

f(x, y) dμ(x)× ν(y)

=

∫
X

∫
Y

f(x, y) dν(y) dμ(x) =

∫
Y

∫
X

f(x, y) dμ(x) dν(y).

Proof. Since f ∈ L1(X × Y,H ), it is (M⊗N ,BH )-measurable, which implies that

each of its sections is measurable. Moreover, ‖f‖ and each of its sections is measur-

able. The Tonelli theorem applied to ‖f‖ shows that∫
Y

‖fx(y)‖ dν ∈ L1(X,C) and

∫
X

‖f y(x)‖ dμ ∈ L1(Y,C). (3.1)

Then

‖g(x)‖ =
∥∥∥ ∫

Y

fx(y) dν
∥∥∥ ≤

∫
Y

‖fx(y)‖ dν, (3.2)

so the integral defining g(x) converges for a.e. x. Likewise,

‖h(x)‖ =
∥∥∥ ∫

X

f y(x) dμ
∥∥∥ ≤

∫
X

‖f y(x)‖ dμ, (3.3)

so that the integral defining h(y) converges for a.e. y. In fact, if we knew that g

and h were measurable, then (3.1) together with (3.2) and (3.3) would yield that

g ∈ L1(X,H ) and h ∈ L1(Y,H ).
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Let ξ ∈ H ∗. By Theorem 2.12, ξ(f) ∈ L1(X × Y,C). Hence we may apply

the scalar-valued Fubini theorem to ξ(f) to obtain that [ξ(f)]x ∈ L1(Y,C) for a.e.

x ∈ X, and [ξ(f)]y ∈ L1(X,C) for a.e. y ∈ Y . Moreover, the a.e.-defined functions

γ(x) =
∫
Y
[ξ(f)]x(y) dν and η(y) =

∫
X
[ξ(f)]y(x) dμ are in L1(X,C) and L1(Y,C)

respectively, with∫
X×Y

ξ(f)(x, y) dμ× ν(x, y) =

∫
X

γ(x) dμ(x) =

∫
Y

η(y) dν(y). (3.4)

Note that by Theorem 2.12,

γ(x) =

∫
Y

[ξ(f)]x(y) dν =

∫
Y

ξ(f)(x, y) dν = ξ
(∫

Y

f(x, y) dν
)
= ξ(g(x)),

and similarly, η(y) = ξ(
∫
X
f(x, y) dμ) = ξ(h(y)). Since γ and η are in L1, they are,

in particular, measurable. Since ξ ∈ H ∗ was arbitrary, this proves that g and h are

weakly measurable.

Now since γ = ξ(g) and η = ξ(h), and we’ve established that g and h are in L1,

a final application of Theorem 2.12 to (3.4) yields

ξ
(∫

X×Y

f dμ× ν
)
= ξ

(∫
X

g(x) dμ
)
= ξ

(∫
Y

h(y) dν
)
.

Since ξ can be any element of H ∗, Corollary 3.10 implies the desired equality∫
X×Y

f dμ× ν =

∫
X

g(x) dμ =

∫
Y

h(y) dν.

3.4 Further properties of the Bochner integral; the Fourier transform

In what follows we specialize to (X,M, μ) = (Rn,L,m), that is, Euclidean n-

space with Lebesgue measure. For a fixed element a ∈ R
n we define translation by a

on subsets and functions as follows: for a subset E ⊂ R
n the translation of E by a is

τa(E) = {x− a : x ∈ E} = E − a,

and for a function f whose domain is Rn, the translation of f by a is

τaf(x) = f(x− a).
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We also define the reflection of f by

f̃(x) = f(−x).

The Lebesgue measure m is translation-invariant, meaning that E ∈ L implies

τaE ∈ L with m(τaE) = m(E). It is also reflection-invariant, i.e., E ∈ L implies

−E ∈ L with m(−E) = m(E). It follows that the Bochner integral
∫
: L1(Rn,H ) →

H is also translation- and reflection-invariant. We first prove that the Lebesgue

integral has these properties:

Lemma 3.12. If f : Rn → [0,∞) is measurable, or if f ∈ L1(Rn,C), then
∫
τaf =

∫
f

and
∫
f̃ =

∫
f .

Proof. We prove the result for translation-invariance; the proof of reflection-invariance

is practically identical. For any E ∈ L we have τaχE = χa+E, whence
∫
τaχE =

m(a+E) = m(E) =
∫
χE. It follows by the linearity of the integral that

∫
τaφ =

∫
φ

for any simple function φ. Since f is measurable and nonnegative, it is the limit of an

increasing sequence {φn} of simple functions. Then τaφn increases to τaf pointwise,

and by the Monotone Convergence Theorem
∫
τaφn dm → ∫

τaf dm. Therefore,∫
τaf dm = lim

n→∞

∫
τaφn dm = lim

n→∞

∫
φn dm =

∫
f dm.

The result for f ∈ L1(Rn,C) follows from the definition of
∫
f :∫

f =

∫
(Ref)+ −

∫
(Ref)− + i

∫
(Imf)+ − i

∫
(Imf)−,

and each of the integrands on the right-hand-side is nonnegative.

Remark 3.13. If f ∈ Lp(Rn,H ), 1 ≤ p ≤ ∞, then ‖f̃‖p = ‖τaf‖p = ‖f‖p. For

p = ∞ this is obvious. For p < ∞ this follows directly from the definition of ‖f‖p
and the fact that x 
→ ‖f(x)‖p is measurable.

Proposition 3.14. The Bochner integral
∫

: L1(Rn,H ) → H is translation- and

reflection-invariant.

Proof. We prove translation-invariance. Let f ∈ L1(Rn,H ). Since
∫
χE = m(E)

for E ∈ L, the result holds for simple H -valued functions. By Theorems 2.5 and

2.6, there is a sequence {ψn} of simple H -valued functions such that ψn → f in
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L1(Rn,H ), and
∫
f is defined to be limn→∞

∫
ψn. Now τaψn → τaf a.e., and by

Remark 3.13,

‖τaψn − τaf‖1 = ‖τa(ψn − f)‖1 = ‖ψn − f‖1 → 0.

Therefore, ∫
τaf = lim

n→∞

∫
τaψn = lim

n→∞

∫
ψn =

∫
f.

It is also true that m(δE) = δnm(E) for each δ > 0 and E ∈ L, that is, m is

homogeneous of degree n. It follows that
∫
f(δx) dx = δ−n

∫
f(x) dx, and this holds

for the Bochner integral as well, though we shall omit the proof.

Now that we have covered the invariance properties of the Bochner integral, we

are ready to discuss convolution of vector-valued functions. For conjugate exponents

p and q, if

(i) K ∈ Lq(Rn,B(H1,H2))

(ii) f ∈ Lp(Rn,H1)

(iii) H2 is separable

we define the convolution of K with f—denoted K ∗ f—by

K ∗ f(x) =
∫
Rn

K(x− y)f(y) dy =

∫
Rn

τxK̃(y)f(y) dy,

where the vector-valued integral is the Bochner integral. Since K and f are measur-

able and H2 is separable, it follows from Proposition 3.5 that K(·)f(·) is measurable.

By Hölder’s Inequality we have∫
‖K(x− y)f(y)‖H2 dy = ‖τxK̃f‖1 ≤ ‖τxK̃‖q‖f‖p = ‖K‖q‖f‖p < ∞. (3.5)

Hence, τxK̃f ∈ L1(Rn,H2), so the Bochner integral K ∗ f(x) is indeed well-defined

for each x. For the following proposition we follow Stein and Shakarchi [10].

Proposition 3.15. Suppose that f ∈ L1(Rn,C). Then

‖τhf − f‖1 → 0 as |h| → 0.
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Proof. We shall see later in Theorem 4.11 that integrable functions can be approxi-

mated in L1 by continuous, compactly supported functions. Let g be such a function,

with ‖f−g‖1 < ε
3
. It follows easily from g being continuous and compactly supported

that ‖τhg − g‖1 → 0, so choose |h| < δ small enough that ‖τhg − g‖1 < ε
3
. Then

writing

τhf − f = (τhg − g) + (τhf − τhg) + (g − f)

and applying the triangle inequality yields the result.

Corollary 3.16. K ∗ f is a continuous function from R
n to H2.

Proof. We show that for each x ∈ R
n,

K ∗ f(x+ h) → K ∗ f(x) in H2 as |h| → 0.

We have

‖τ−hK ∗ f(x)−K ∗ f(x)‖H2

=
∥∥∥ ∫ K(x+ h− y)f(y) dy −

∫
K(x− y)f(y) dy

∥∥∥
H2

≤
∫

‖K(x+ h− y)f(y)−K(x− y)f(y)‖H2 dy

= ‖τhτxK̃f − τxK̃f‖1.

By Proposition 3.15, this last quantity tends to 0 with h.

Note that ∥∥∥K ∗ f(x)
∥∥∥

H2

≤
∫

‖K(x− y)f(y)‖H2 dy. (3.6)

Together (3.5) and (3.6) show that ‖K ∗f‖unif ≤ ‖K‖q‖f‖p, which shows that convo-

lution with K can be regarded as a bounded linear operator from Lp(Rn,H1) to the

space C (Rn,H2) of continuous functions from R
n to H2. The function K is called

the kernel of this integral operator.

We can define the Fourier transform F on L1(Rn,H ) as usual: Ff = f̂ , where

f̂(y) ≡
∫
Rn

e2πix·yf(x) dx,

and the integral here is again the Bochner integral. This is well-defined, because

‖e2πix·yf(x)‖H = |e2πix·y|‖f(x)‖H = ‖f(x)‖H ,
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and f ∈ L1(Rn,H ). Moreover, f̂ ∈ L∞(Rn,H ), since by Theorem 2.6 we have

‖f̂(y)‖H ≤
∫
x∈Rn

‖e2πix·yf(x)‖H dx = ‖f‖1,

and hence

‖f̂‖∞ = sup
y∈Rn

‖f̂(y)‖H ≤ ‖f‖1.



Chapter 4

Important Results for the Singular Integral Theorem

Before we can attempt to give an application of vector-valued integration to sin-

gular integral theory, we need a few important results, which we shall include in this

chapter. We follow Stein closely in the first two sections, which correspond to sections

I.3 and I.4 in Singular Integrals [9]. We follow Grafakos [6] in the third section.

4.1 The Calderón-Zygmund lemma

The following theorem is interesting in itself, but will also play a part in the proof

of the theorem in the next chapter. For its proof we need the Lebesgue Differentiation

Theorem, which we shall discuss presently. We say that a family F of measurable sets

in R
n is regular at x, or that it shrinks nicely to x, if there is some constant c > 0 such

that each S ∈ F is contained in an open ball B centred at x, with m(S) > cm(B).

For example, using the fact that Lebesgue measure on R
n is homogeneous of degree

n (i.e., for each δ > 0, m(δE) = δnm(E)), one may easily verify that the family of

dilations δE of some bounded set E with positive measure is regular at the origin. We

will see another example in the proof of the next theorem. Lebesgue’s differentiation

theorem says that for almost every x (specifically, for every x in a special set called

the Lebesgue set of f),

lim
S∈F

m(S)→0

1

m(S)

∫
S

f(y) dy = f(x)

for every family F that is regular at x. See page 98 of Folland and §1.8 of Stein for

proofs and discussion.

Theorem 4.1. Given any nonnegative integrable function f on R
n, and any α > 0,

there exists a closed set F ⊂ R
n such that f(x) ≤ α for almost every x ∈ F , and such

that F c is a union of closed cubes whose interiors are disjoint, and with the property

31
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that each such cube Qk satisfies

α <
1

m(Qk)

∫
Qk

f ≤ 2nα. (4.1)

Proof. Throughout the proof we take all cubes to be closed. Since f is nonnegative

and integrable,
∫
Rn f < ∞, and hence for any cube Q such that m(Q) ≥ 1

α

∫
Rn f , we

have
1

m(Q)

∫
Q

f(x) dx ≤ 1

m(Q)

∫
Rn

f(x) dx ≤ α. (4.2)

Partition R
n into cubes of common diameter sufficiently large for (4.2) to hold.

Let Q′ be a fixed cube in this partition, and divide it into 2n congruent cubes by

bisecting each of its sides. For each of these new cubes Q′′, either

1

m(Q′′)

∫
Q′′

f(x) dx ≤ α (4.3)

or
1

m(Q′′)

∫
Q′′

f(x) dx > α. (4.4)

In the second case Q′′ becomes one of the cubes in the statement of the theorem;

the condition (4.1) holds for it because m(Q′′) = m(Q′)
2n

, and hence

α <
1

m(Q′′)

∫
Q′′

f(x) dx ≤ 2n

m(Q′)

∫
Q′
f(x) dx ≤ 2nα.

In the first case we subdivide again, and continue this process ad infinitum, if

necessary. We do this for each of the cubes in our partition of Rn. We let Ω =
⋃

k Qk

be the union of all the cubes for which the second case (4.4) holds. Let F = Ωc; it

remains only to show that f ≤ α a.e. in F .

Let x ∈ F , and notice that each cube in our decomposition which contains x is a

cube for which (4.3) holds. Set F (x) to be the set of all cubes in our decomposition

containing x. We claim that F (x) is regular at x. To see this, fix Q ∈ F (x). Let a

denote its sidelength, and let d =
√
na denote its diagonal length (the maximum dis-

tance between any two points in Q). Let Q∗ be the cube centred at x with sidelength

equal to d (this cube need not be in the decomposition). Note that B(x, d)—the open

ball centred at x of radius d—is contained in Q∗; for if y ∈ B(x, d), then |x− y| < d,

whence y ∈ Q∗. Now,

m(Q∗) = (2d)n = 2n(
√
na)n = 2nnn/2an = 2nnn/2m(Q).
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Therefore,

m(B) < m(Q∗) = 2nnn/2m(Q),

which proves our claim that F (x) is regular at x. We can now apply the Lebesgue

differentiation theorem: for every x in the Lebesgue set of f , we have

f(x) = lim
Q∈F(x)

m(Q)→0

1

m(Q)

∫
Q

f(y) dy.

But each Q ∈ F (x) satisfies condition (4.3), and therefore f(x) ≤ α, as desired.

Remark 4.2. The set F c in the above theorem satisfies m(F c) < 1
α
‖f‖1. To see this,

we first observe that fχ⋃n
1 Qk

increases to fχ⋃∞
1 Qk

, and therefore by the Monotone

Convergence theorem, ∫
⋃∞

1 Qk

f = lim
n→∞

∫
fχ⋃n

1 Qk
.

But ∫
fχ⋃n

1 Qk
=

∫
f

n∑
1

χQk
=

n∑
1

∫
Qk

f.

Therefore, ∫
⋃∞

1 Qk

f =
∞∑
1

∫
Qk

f.

Using this and (4.1), we have

m(F c) =
∑
k

m(Qk) <
1

α

∑
k

∫
Qk

f =
1

α

∫
⋃

k Qk

f =
1

α

∫
F c

f ≤ 1

α
‖f‖1.

4.2 Some terminology, and an interpolation theorem

We begin this section with some terminology:

Definition 4.3. Let H1 and H2 be Hilbert spaces, and let T be a map from

Lp(Rn,H1) to the set of (L,BH2)-measurable functions on R
n, where 1 ≤ p ≤ ∞.

For 1 ≤ q < ∞, we say that T is of weak-type (p, q) if there is a constant A such that

m{x : ‖Tf(x)‖ > α} ≤
(A‖f‖p

α

)q

for all f ∈ Lp(Rn,H1) and all α > 0.
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Definition 4.4. Suppose that T is a map from Lp(Rn,H1) to Lq(Rn,H2), where

1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. We say that T is of type (p, q) if there is a constant A

such that

‖Tf‖q ≤ A‖f‖p
for all f ∈ Lp(Rn,H1).

We also say that T is of weak-type (p,∞) if it is of type (p,∞), so that the

two definitions coincide when q = ∞. Note that if T is of type (p, q), then it is of

weak-type (p, q), for

αqm{x : ‖Tf(x)‖ > α} ≤
∫
Rn

‖Tf(x)‖q dx = ‖Tf‖qq ≤ (A‖f‖p)q.

Lastly, we define Lp1 + Lp2 , for p1, p2 > 0, to be the space of all functions of the

form f = f1 + f2, where f1 ∈ Lp1 and f2 ∈ Lp2 .

Lemma 4.5. For p1 ≤ p ≤ p2, we have Lp ⊂ Lp1 + Lp2 .

Proof. Let f ∈ Lp and fix γ > 0. Now set

f1(x) =

{
f(x) if ‖f(x)‖ > γ

0 if ‖f(x)‖ ≤ γ

f2(x) =

{
f(x) if ‖f(x)‖ ≤ γ

0 if ‖f(x)‖ > γ
.

We have∫
Rn

‖f1(x)‖p1 dx =

∫
‖f(x)‖>γ

‖f(x)‖p1 dx =

∫
‖f(x)‖>γ

‖f(x)‖p‖f(x)‖p1−p dx,

and since p1 − p ≤ 0, this implies∫
Rn

‖f1(x)‖p1 dx ≤ γp1−p

∫
‖f(x)‖>γ

‖f(x)‖p dx,

which is finite because f ∈ Lp. Also,∫
Rn

‖f2(x)‖p2 dx =

∫
Rn

‖f2(x)‖p‖f2(x)‖p2−p dx ≤ γp2−p

∫
Rn

‖f(x)‖p dx,

which again is finite since f ∈ Lp. Thus, f = f1+f2, where f1 ∈ Lp1 and f2 ∈ Lp2 .
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Theorem 4.6. Suppose that 1 < r ≤ ∞, and suppose that T is a map from

(L1 + Lr)(Rn,H1) to the space of all (L,BH2)-measurable functions, such that

(i) T is subadditive, i.e., ‖T (f+g)(x)‖ ≤ ‖Tf(x)‖+‖Tg(x)‖ for all f, g ∈ L1+Lr,

x ∈ R
n.

(ii) T is of weak-type (1, 1), i.e., m{x : ‖Tf(x)‖ > α} ≤ A1‖f‖1
α

for all f ∈ L1.

(iii) T is of weak-type (r, r), i.e., m{x : ‖Tf(x)‖ > α} ≤
(

Ar‖f‖r
α

)r

for all f ∈ Lr,

when r < ∞, and ‖Tf‖r ≤ Ar‖f‖r if r = ∞.

Then T is of type (p, p) for 1 < p < r, i.e.,

‖Tf‖p ≤ Ap‖f‖p for all f ∈ Lp,

where Ap depends only on A1, Ar, p, and r.

Proof. We prove the result for p < ∞. Let f ∈ Lp(Rn,H1). A useful fact from real

analysis is that ∫
Rn

‖Tf(x)‖p dx = p

∫ ∞

0

αp−1λ(α) dα, (4.5)

where λ(α) = m{x : ‖Tf(x)‖ > α} (λ is called the distribution function associated

with Tf ; see Folland, pp. 197–198 for a discussion and a proof of the above equation).

We will estimate λ(α) in terms of an L1 function and an Lr function, for both of

which T has weak-type inequalities by the hypotheses.

As in the lemma, we set

f1(x) =

{
f(x) if ‖f(x)‖ > α

0 if ‖f(x)‖ ≤ α

f2(x) =

{
f(x) if ‖f(x)‖ ≤ α

0 if ‖f(x)‖ > α
,

so that f = f1 + f2, where f1 ∈ L1 and f2 ∈ Lr. Now by subadditivity, we have

‖Tf(x)‖ ≤ ‖Tf1(x)‖+ ‖Tf2(x)‖ for all x.

Therefore,

{x : ‖Tf(x)‖ > α} ⊂ {x : ‖Tf1(x)‖ > α/2} ∪ {x : ‖Tf2(x‖) > α/2},
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whence

λ(α) ≤ m{x : ‖Tf1(x)‖ > α/2}+m{x : ‖Tf2(x)‖ > α/2}.
Therefore by the hypotheses (ii) and (iii),

λ(α) ≤ A1

α/2

∫
Rn

‖f1(x)‖ dx+
Ar

r

(α/2)r

∫
Rn

‖f2(x)‖r dx

=
2A1

α

∫
‖f‖>α

‖f(x)‖ dx+
(2Ar)

r

αr

∫
‖f‖≤α

‖f(x)‖r dx.

Hence by (4.5),∫
Rn

‖Tf(x)‖p dx ≤ 2A1p

∫ ∞

0

α−1αp−1

∫
‖f‖>α

‖f(x)‖ dx dα

+ (2Ar)
rp

∫ ∞

0

α−rαp−1

∫
‖f‖≤α

‖f(x)‖r dx dα. (4.6)

We treat each of the terms on the right-hand-side of (4.6) separately. Ignoring

the constant in front for now, we see that the first term can be written as∫ ∞

0

αp−2

∫
Rn

‖f(x)‖χ‖f‖−1(α,∞)(x) dx dα.

It is easy to verify that χ‖f‖−1(α,∞)(x) = χ(0,‖f(x)‖)(α), and using this together with

the Tonelli theorem we get∫
Rn

‖f(x)‖
∫ ∞

0

αp−2χ(0,‖f(x)‖)(α) dα dx,

which is ∫
Rn

‖f(x)‖
∫ ‖f(x)‖

0

αp−2 dα dx.

This works out to
1

p− 1

∫
Rn

‖f(x)‖‖f(x)‖p−1 dx,

or simply 1
p−1

‖f‖pp.
The second term in (4.6) is dealt with similarly: ignoring the constant in front,

we write it as ∫ ∞

0

α−rαp−1

∫
Rn

‖f(x)‖rχ‖f‖−1[0,α](x) dx dα.

Then noting that χ‖f‖−1[0,α](x) = χ[‖f(x)‖,∞)(α) and applying the Tonelli theorem, we

get ∫
Rn

‖f(x)‖r
∫ ∞

‖f(x)‖
αp−1−r dα dx.
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Since p < r, the inner improper integral works out to 1
r−p

‖f(x)‖p−r, and hence the

second term becomes 1
r−p

‖f‖pp.
Altogether, we have shown that

‖Tf‖pp =
∫
Rn

‖Tf(x)‖p dx ≤ 2A1p

p− 1
‖f‖pp +

(2Ar)
rp

r − p
‖f‖pp

=

(
2A1

p− 1
+

(2Ar)
r

r − p

)
p‖f‖pp.

Taking the pth root of both sides, we are done.

4.3 A duality theorem

Let X be a Banach space, and let X ∗ denote its dual. Let 1 ≤ p ≤ ∞, and let q

be the conjugate exponent of p. For f ∈ Lp(Rn,X ) we define θf on Lq(Rn,X ∗) by

θf (g
∗) =

∫
Rn

g∗(x)f(x) dx.

Then θf is well-defined since

f ∈ Lp(Rn,X ) implies ‖f(x)‖X ∈ Lp(Rn,C),

and

g∗ ∈ Lq(Rn,X ∗) implies ‖g∗(x)‖op ∈ Lq(Rn,C);

thus Hölder’s inequality gives us∫
Rn

|g∗(x)f(x)| dx ≤
∫
Rn

‖g∗(x)‖op‖f(x)‖X dx

≤ ‖g∗‖Lq(Rn,X ∗)‖f‖Lp(Rn,X )

< ∞. (4.7)

Therefore θf is well-defined on Lq(Rn,X ∗).

The main objective for this section is proving the following theorem:

Theorem 4.7. The map f 
→ θf is an isometric embedding of Lp(Rn,X ) into

Lq(Rn,X ∗)∗. In other words,

‖f‖p = sup
‖g∗‖Lq(Rn,X ∗)≤1

|θf (g∗)|.
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In order to prove this theorem, we need some preliminary theory. Given a Banach

space X , recall that the set FX of simple functions in X is the set of functions of

the form
∑m

j=1 χEj
xj, where m(Ej) < ∞ and xj ∈ X for all j = 1, 2, . . . ,m. In

Theorem 2.5 we showed that when X is separable, FX is dense in L1(Rn,X ). We

now prove that the density of FX is not specific to L1, but is true of Lp for p < ∞.

We follow the proof given in Grafakos ([6], pp. 323–324).

Proposition 4.8. Let X be a separable Banach space. The set of simple functions

FX is dense in Lp(Rn,X ), 0 < p < ∞. When p = ∞, the set of functions of the form∑∞
j=1 χEj

xj, where {Ej}∞j=1 is a partition of Rn and xj ∈ X , is dense in L∞(Rn,X ).

Proof. We first treat the case p < ∞. Let f ∈ Lp, and let ε > 0. Since f ∈ Lp, there

exists a compact subset K ⊂ R
n such that∫
Rn\K

‖f(x)‖pX dx <
εp

3
.

Let {xj}∞j=1 be a countable, dense subset of X , and let Bj denote the open

ball of radius ε
(
3m(K)

)−1/p
centred at xj. Now set A1 = B1, and for j > 1 set

Aj = Bj \
⋃j−1

i=1 Bi. Thus the Aj are pairwise disjoint, and

∞⋃
j=1

Aj =
∞⋃
j=1

Bj = X .

We now set Ej = f−1(Aj) ∩K. Then {Ej}∞j=1 is pairwise disjoint and K =
⋃∞

j=1 Ej,

whence ∞∑
j=1

m(Ej) = m(K) < ∞.

It follows that for some m ∈ N,∫
⋃∞

j=m+1 Ej

‖f(x)‖pX dx <
εp

3
.

Note that

‖f(x)− xj‖X < ε
(
3m(K)

)−1/p
whenever x ∈ Ej. (4.8)

Consider the quantity∫
⋃m

j=1 Ej

∥∥∥f(x)− m∑
j=1

χEj
(x)xj

∥∥∥p

X
dx. (4.9)
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For x ∈ ⋃m
j=1 Ej we have f(x) = f(x)

∑m
j=1 χEj

(x), and hence

∥∥∥f(x)− m∑
j=1

χEj
(x)xj

∥∥∥
X

=
∥∥∥ m∑

j=1

χEj
(x)[f(x)− xj]

∥∥∥
X

=
m∑
j=1

χEj
(x)‖f(x)− xj‖X .

Thus we have∫
⋃m

j=1 Ej

∥∥∥f(x)− m∑
j=1

χEj
(x)xj

∥∥∥p

X
dx =

∫
⋃m

j=1 Ej

( m∑
j=1

χEj
(x)‖f(x)− xj‖X

)p

dx,

and by (4.8) the right-hand-side of this is bounded by∫
⋃m

j=1 Ej

( m∑
j=1

χEj
(x) · ε(3m(K)

)−1/p
)p

dx. (4.10)

Since the Ej are disjoint,
∑m

j=1 χEj
(x) = χ⋃m

j=1 Ej
(x), and hence (4.10) becomes

εp

3m(K)

∫
⋃m

j=1 Ej

χ⋃m
j=1 Ej

(x) dx =
εp

3m(K)

∫
⋃m

j=1 Ej

1 dx =
εpm(

⋃m
j=1 Ej)

3m(K)
,

and thus we have shown that (4.9) is less than or equal to εp

3
. Now since

⋃∞
j=1 Ej∪Kc

is a partition of Rn, we have∫
Rn

∥∥∥f(x)− m∑
j=1

χEj
(x)xj

∥∥∥p

X
dx =

∫
Rn\K

‖f(x)‖pX dx

+

∫
⋃∞

j=m+1 Ej

‖f(x)‖pX dx

+

∫
⋃m

j=1 Ej

∥∥∥f(x)− m∑
j=1

χEj
(x)xj

∥∥∥p

X
dx

<
εp

3
+

εp

3
+

εp

3
= εp.

It remains only to verify that
∑m

j=1 χEj
(x)xj is (L,BX )-measurable. Note that

each Bj is in BX , and so, therefore, is each Aj. Since K is closed, it is in L, and
therefore by the measurability of f , Ej = f−1(Aj) ∩K is in L. Thus ∑m

j=1 χEj
(x)xj

is in FX , and hence it is measurable.

Now we turn to the statement for p = ∞. Set A1 = B(x1, ε/2), the open ball

centred at x1 with radius ε/2, and for j > 2 set Aj = B(xj, ε/2) \
⋃j−1

i=1 B(xi, ε/2).

Then the Aj are disjoint, and

X =
∞⋃
j=1

Aj =
∞⋃
j=1

B(xj, ε/2).
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Let Ej = f−1(Aj); then {Ej}∞j=1 is a partition of Rn. Consider the function
∑∞

j=1 χEj
xj.

It follows from the measurability of f that Ej ∈ L for each j ∈ N. This implies that

χEj
xj is (L,BX )-measurable for each j, and since the set of (L,BX )-measurable

functions is a vector space, we have that
∑m

j=1 χEj
xj is measurable for each m. Since∑∞

j=1 χEj
xj is the pointwise limit of

∑m
j=1 χEj

xj as m tends to infinity, we conclude,

by Theorem 2.7, that it is measurable.

Finally, since ‖f(x)− xj‖X < ε
2
for x ∈ Ej, j ≥ 1, we have

∥∥∥f −
∞∑
j=1

χEj
xj

∥∥∥
L∞(Rn,X )

=
∥∥∥ ∞∑

j=1

χEj
[f − xj]

∥∥∥
L∞(Rn,X )

≤ ε

2
< ε.

For any vector space X, we let Cc(R
n, X) denote the space of continuous, com-

pactly supported functions from R
n into X. We will show that for any Banach space

X , Cc(R
n,X ) is dense in Lp(Rn,X ) whenever 1 ≤ p < ∞. It follows that for

p > 1 we can just as well take the supremum in Theorem 4.7 over all φ ∈ Cc(R
n,X ∗)

which satisfy ‖φ‖q ≤ 1. To see this, let g∗ ∈ Lq(Rn,X ∗) with ‖g∗‖q = 1. We can

approximate it in Lq(Rn,X ∗) by a sequence φn ∈ Cc(R
n,X ∗). Furthermore, if we

let ψn = φn/‖φn‖q, then ‖ψn‖q = 1, and since ‖φn‖q → ‖g‖q = 1, we have

‖ψn − φn‖q =
∣∣ 1
‖φn‖q − 1

∣∣‖φn‖q → 0.

Hence,

‖ψn − g∗‖q ≤ ‖ψn − φn‖q + ‖φn − g∗‖q → 0.

Thus g∗ can be approximated by a sequence ψn ∈ Cc(R
n,X ∗) with ‖ψn‖q = 1. Now

|θf (g∗ − ψn)| ≤
∫
Rn

‖g∗(x)− ψn(x)‖op‖f(x)‖X dx

≤ ‖g∗ − ψn‖Lq(Rn,X ∗)‖f‖Lp(Rn,X ),

and this tends to 0. Thus, θf (ψn) → θf (g
∗), and therefore

‖f‖p = sup
‖g∗‖Lq(Rn,X ∗)≤1

|θf (g∗)| = sup
ψ∈Cc(Rn,X ∗)

‖ψ‖q=1

|θf (ψ)|.

To show that Cc(R
n,X ) is dense in Lp(Rn,X ) we require a preliminary propo-

sition, and for this proposition we need a version of Urysohn’s lemma:
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Lemma 4.9 (Urysohn’s lemma). If K ⊂ U ⊂ R
n, where K is compact and U is

open, then there exists a continuous function f : Rn → [0, 1] such that f = 1 on K

and f = 0 outside a compact subset of U .

For a proof of Urysohn’s lemma see Folland [5], p. 131.

Proposition 4.10. Characteristic functions of Lebesgue measurable sets can be ap-

proximated in Lp(Rn,C) by continuous, compactly supported functions.

Proof. Let E be Lebesgue measurable, and let ε > 0. By the outer regularity of the

Lebesgue measure there is an open set U such that

m(U)−m(E) <
εp

2
, (4.11)

and by the inner regularity there is a compact set K such that

m(E)−m(K) <
εp

2
. (4.12)

Adding (4.11) and (4.12) we get

m(U)−m(K) < εp.

Now by Urysohn’s lemma there exists a continuous, compactly supported function ψ

such that

χK ≤ ψ ≤ χU .

It follows that

χK − χU ≤ ψ − χE ≤ χU − χK ,

that is,

|ψ − χE| ≤ χU − χK = χU\K .

Hence,

‖ψ − χE‖p ≤ ‖χU\K‖p = (m(U)−m(K))1/p < ε.

Theorem 4.11. When 1 ≤ p < ∞, Cc(R
n,X ) is dense in Lp(Rn,X ).
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Proof. Let f ∈ Lp(Rn,X ). By Proposition 4.8 there exists φ =
∑m

j=1 χEj
xj ∈ FX

such that

‖f − φ‖p < ε

2
. (4.13)

By Proposition 4.10 we may, for each j = 1, 2, . . . ,m, choose a function ψj ∈
Cc(R

n,C) such that

‖χEj
− ψj‖p < ε

2‖xj‖m.

Let g =
∑m

j=1 ψjxj. We have

‖φ− g‖p =
∥∥∥ m∑

j=1

χEj
xj −

m∑
j=1

ψjxj

∥∥∥
p

≤
m∑
j=1

‖(χEj
− ψj)xj‖p.

Now

‖(χEj
− ψj)xj‖p =

(∫
‖(χEj

− ψj)xj‖pX
)1/p

=
(∫

|(χEj
− ψj)|p‖xj‖pX

)1/p

= ‖xj‖X ‖χEj
− ψj‖p.

Therefore,

‖φ− g‖p ≤
m∑
j=1

‖xj‖X ‖χEj
− ψj‖p <

m∑
j=1

ε

2‖xj‖m · ‖xj‖ =
ε

2
. (4.14)

Putting (4.13) and (4.14) together we get

‖f − g‖q ≤ ‖f − φ‖q + ‖φ− g‖q < ε.

The next proposition is also needed for the proof of Theorem 4.7. For a proof, see

Folland [5], p. 188.

Proposition 4.12. Suppose that p and q are conjugate exponents, and 1 ≤ p ≤ ∞.

For f ∈ Lp(Rn,C) we have

‖f‖p = sup
{∣∣∣ ∫ fg

∣∣∣ : g ∈ Lq(Rn,C) with ‖g‖q = 1
}
. (4.15)
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The denseness of Cc(R
n,C) in Lq(Rn,C) has the consequence that for p > 1 in

Proposition 4.12, we may take the supremum instead over continuous, compactly

supported functions of unit norm. The argument is simply a repetition of the one

preceding Theorem 4.11: let g ∈ Lq(Rn,C) with ‖g‖q = 1. As before, there is a

sequence {ψn} in Cc(R
n,C) with ‖ψn‖q = 1 such that ψn → g in Lq(Rn,C). Then by

Hölder’s inequality∣∣∣ ∫ f(g − ψn)
∣∣∣ ≤ ∫

|f ||g − ψn| ≤ ‖f‖p‖g − ψn‖q → 0.

Thus
∫
fg = limn→∞

∫
fψn, which implies that

‖f‖p = sup
‖g‖Lq(Rn,C)≤1

∣∣∣ ∫ fg
∣∣∣ = sup

ψ∈Cc(Rn,C)
‖ψ‖q=1

∣∣∣ ∫ fψ
∣∣∣.

We now come to the proof of Theorem 4.7. For this too we follow Grafakos ([6],

pp. 324–325).

Proof. We wish to show that for any f ∈ Lp(Rn,X ), 1 ≤ p ≤ ∞,

‖f‖p = sup
‖g∗‖Lq(Rn,X ∗)≤1

∣∣∣ ∫
Rn

g∗(x)f(x) dx
∣∣∣. (4.16)

For any g∗ ∈ Lq(Rn,X ∗) with ‖g∗‖q ≤ 1, (4.7) shows that∫
Rn

|g∗(x)f(x)| dx ≤ ‖g∗‖q‖f‖p ≤ ‖f‖p,

whence we see that the right-hand-side of (4.16) is controlled by the left-hand-side.

Now to establish the more difficult inequality. Let f ∈ Lp(Rn,X ), and let

ε > 0. We know from Proposition 4.8 that there exists a function φ =
∑m

j=1 χEj
xj ∈

Lp(Rn,X )—where m = ∞ when p = ∞, and the Ej are disjoint, measurable subsets

of Rn—such that ‖f − φ‖p < ε/3. Since ‖φ‖X ∈ Lp(Rn,C), we may—by Proposi-

tion 4.12—choose a nonnegative function h ∈ Lq(Rn,C) such that ‖h‖q = 1 and

‖φ‖p <
∫
Rn

‖φ(x)‖X h(x) dx+
ε

6
. (4.17)

When p < ∞, we may—by the remarks preceding Theorem 4.11—choose h to be

continuous and compactly supported, which ensures that h is integrable. The integra-

bility of h when p = ∞ is given, since h ∈ Lq(Rn,C). It follows from Proposition 3.9
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that for each xj there exists an x∗
j ∈ X ∗ satisfying ‖x∗

j‖op = 1 and x∗
jxj = ‖xj‖; in

particular

‖xj‖ < x∗
jxj +

ε

6(‖h‖1 + 1)
. (4.18)

Set G(x) =
∑m

j=1 h(x)χEj
(x)x∗

j . Then G(x) ∈ X ∗ for each x. The measurability

of Ej implies that χEj
x∗
j is (L,BX ∗)-measurable for each j, and it follows that G is

(L,BX ∗)-measurable. Moreover, when q < ∞,

‖G‖q =
∫
Rn

∥∥∥ m∑
j=1

h(x)χEj
(x)x∗

j

∥∥∥q

op
dx

=

∫
Rn

m∑
j=1

χEj
(x)‖h(x)x∗

j‖qop dx

=

∫
Rn

m∑
j=1

χEj
(x)h(x)q dx

≤ ‖h‖qq,

whence ‖G‖q ≤ 1. When q = ∞,

‖G(x)‖op =
∞∑
j=1

χEj
(x)‖h(x)x∗

j‖op =
∞∑
j=1

χEj
(x)h(x) ≤ ‖h‖∞ = 1,

whence ‖G‖∞ ≤ 1.

Now observe that

G(x)φ(x) =
m∑
j=1

h(x)χEj
(x)x∗

j

( m∑
i=1

χEi
(x)xi

)

=
m∑
j=1

m∑
i=1

h(x)χEj
(x)χEi

(x)x∗
jxi

=
m∑
j=1

h(x)χEj
(x)x∗

jxj

>

m∑
j=1

h(x)χEj
(x)

(
‖xj‖ − ε

6(‖h‖1 + 1)

)
by (4.18).

Then

G(x)φ(x) > h(x)
m∑
j=1

χEj
(x)‖xj‖ − h(x)ε

6(‖h‖1 + 1)

m∑
j=1

χEj
(x)

= h(x)‖φ(x)‖X − h(x)ε

6(‖h‖1 + 1)

m∑
j=1

χEj
(x),
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which implies that∫
Rn

G(x)φ(x) dx ≥
∫
Rn

h(x)‖φ(x)‖X dx− ε

6(‖h‖1 + 1)

∫
Rn

h(x)
m∑
j=1

χEj
(x) dx

> ‖φ‖p − ε

6
− ε

6(‖h‖1 + 1)
‖h‖1 by (4.17)

> ‖φ‖p − ε

3
.

Recall that φ was chosen such that ‖φ − f‖p < ε
3
. This implies that ‖φ‖p ≥

‖f‖p − ε
3
. Therefore, the preceding calculation shows that∫

Rn

G(x)φ(x) dx > ‖f‖p − 2ε

3
. (4.19)

Furthermore, since∫
Rn

∣∣G(x)
(
φ(x)− f(x)

)∣∣ dx ≤
∫
Rn

‖G(x)‖op‖φ(x)− f(x)‖X dx

≤ ‖G‖q‖φ− f‖p
≤ ‖φ− f‖p
<

ε

3
,

we have ∣∣∣ ∫
Rn

G(x)φ(x) dx−
∫
Rn

G(x)f(x) dx
∣∣∣ < ε

3
.

Bearing in mind that
∫
Rn G(x)φ(x) dx is nonnegative, this means that∫

Rn

G(x)φ(x) dx <
∣∣∣ ∫

Rn

G(x)f(x) dx
∣∣∣+ ε

3

≤ sup
‖g∗‖Lq(Rn,X ∗)≤1

∣∣∣ ∫
Rn

g∗(x)f(x) dx
∣∣∣+ ε

3
. (4.20)

Putting (4.19) and (4.20) together, we get

‖f‖p < sup
‖g∗‖Lq(Rn,X ∗)≤1

∣∣∣ ∫
Rn

g∗(x)f(x) dx
∣∣∣+ ε.

Letting ε → 0 yields the desired inequality.

Now that we have proven Theorem 4.7, we discuss more specifically what it means

in Hilbert space. For f ∈ Lp(Rn,H ), we define Ff on Lq(Rn,H ) by
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Ff (g) =

∫
Rn

〈f(x), g(x)〉 dx.

Recall the Riesz Representation Theorem:

Theorem 4.13. Given ξ ∈ H ∗, there is a unique vector y ∈ H such that ξ = 〈·, y〉,
and moreover, ‖ξ‖op = ‖y‖H .

Suppose we are given g∗ ∈ Lq(Rn,H ∗). By the Riesz Representation Theorem there

exists, for each x ∈ R
n, a g(x) ∈ H such that

g∗(x) = 〈·, g(x)〉 and ‖g∗(x)‖op = ‖g(x)‖H .

It follows that

Ff (g) =

∫
Rn

〈f(x), g(x)〉 dx = θf (g
∗),

and

‖g‖Lq(Rn,H ) = ‖g∗‖Lq(Rn,H ∗).

It follows that for Hilbert spaces Theorem 4.7 may be expressed as follows:

Theorem 4.14. The map f 
→ Ff is an isometric embedding of Lp(Rn,H ) into

Lq(Rn,H )∗. In other words,

‖f‖p = sup
‖g∗‖Lq(Rn,H ∗)≤1

|θf (g∗)| = sup
‖g‖Lq(Rn,H )≤1

|Ff (g)|.

As usual, by the remarks preceding Theorem 4.11, we may take the supremum in the

above equation over the continuous, compactly supported functions whose Lq norms

are bounded by 1:

‖f‖p = sup
ψ∗∈Cc(Rn,H ∗)

‖ψ∗‖q=1

|θf (ψ∗)| = sup
ψ∈Cc(Rn,H )

‖ψ‖q=1

|Ff (ψ)|.



Chapter 5

Lp Boundedness of a Type of Singular Integral

In this concluding chapter, we present a modified version of Theorem 1 from

chapter II of Stein’s book Singular Integrals [9]. In Singular Integrals there is a

section devoted to showing that a type of singular integral is bounded on Lp. We

attempt to imitate this result and extend it to the vector-valued setting. We follow

Stein closely in the proof of Theorem 5.1.

Suppose that we have a linear transformation T of type (2, 2) from

L2(Rn,H1) to L2(Rn,H2), where H1 and H2 are separable. Suppose further that

for bounded, compactly supported, measurable functions, T may be written as a

convolution

Tf(x) = K ∗ f(x) =
∫
Rn

K(x− y)f(y) dy (5.1)

for x /∈ supp f . The kernel K in (5.1) takes values in B(H1,H2) and is required to

satisfy

(i) K is (L,BB(H1,H2))-measurable.

(ii) K is integrable on any compact set that excludes the origin.

(iii) there is a constant B > 0 such that∫
‖x‖≥2‖y‖

‖K(x− y)−K(x)‖op dx ≤ B; ‖y‖ > 0.

Thus T is a vector-valued function which can be expressed as a convolution operator

on certain functions, with kernel having a singularity at the origin. Condition (iii)

expresses this singularity. Condition (ii) ensures that (5.1) is well-defined for x /∈
supp f .

We would like to be able to assert that T is of type (p, p) for all p ∈ (1,∞). We

were able show that T is of type (p, p) for p ∈ (1, 2), but due to the fact that our

vector-valued Lp duality theorem is not as strong as the scalar-valued result used in

47
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Singular Integrals, we cannot prove Lp boundedness for the case p ∈ (2,∞) without

a fairly strong hypothesis. Specifically, to prove Lp boundedness for p > 2 we need

the hypothesis

(iv) Tf ∈ Lp(Rn,H2) when f is continuous and compactly supported.

Lastly, in order to prove Lp boundedness for p > 2, the differences that arise from

working in the setting of vector-valued functions motivate us to require that

(v) T ∗—the adjoint of T when T is regarded as a bounded linear operator from

L2(Rn,H1) to L2(Rn,H2)—is given in the same way as T but for some kernel

K∗ which satisfies the same requirements as K, say with B′ instead of B in

condition (iii).

Theorem 5.1. Suppose that T is a linear transformation with the properties de-

scribed in the second paragraph above—that is, with kernel satisfying (i) to (iii).

Then for each p ∈ (1, 2) there exists a constant Ap such that

‖Tf‖p ≤ Ap‖f‖p (5.2)

for all bounded, compactly supported f . Each Ap depends only on p, B, and the

dimension n. One can thus extend T to all of Lp(Rn,H2) by continuity, thereby

making T of type (p, p) on Lp(Rn,H2).

Proof. Getting oriented: The first and largest part of the proof consists of showing

that T is of weak-type (1, 1) on the bounded, compactly supported functions. In

other words, we wish to find a constant C, independant of f and α, such that

m{x : ‖Tf(x)‖ > α} ≤ C

α
‖f‖1.

Step 1: Splitting up f into g and b. Establishing a weak-type (1, 1) in-

equality for Tg. Let f be a bounded, compactly supported, H1-valued measurable

function on R
n. Then clearly f ∈ L1(Rn,H1). We apply Theorem 4.1 to the nonneg-

ative integrable function ‖f‖: we have a set F ⊂ R
n such that ‖f‖ ≤ α a.e. on F ,

Ω = F c =
⋃∞

j=1 Qj, and
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m(Ω) <
1

α
‖f‖1, (5.3)

1

m(Qk)

∫
Qk

‖f(x)‖ dx ≤ 2nα. (5.4)

We set

g(x) =

⎧⎨
⎩ f(x) if x ∈ F

1
m(Qj)

∫
Qj

f(x) dx if x ∈ Q◦
j ,

and

b(x) = f(x)− g(x).

This defines g(x) and b(x) for a.e. x. Observe that g is bounded, since ‖f‖ ≤ α on

F , and on F c we have (5.4). Moreover, we can show that g is compactly supported.

Its support is contained in K0 = supp f ∪ {Qk : Qk ∩ supp f �= ∅}. Recall the

partition of Rn into cubes in the proof of Theorem 4.1; consider the cubes at the

top level in the partition—the largest cubes, that is. It follows easily from f being

compactly supported that K0 will be contained in a finite union of these cubes, which

will be closed and bounded. Since supp g = {x ∈ Rn : g(x) �= 0} is a closed subset of

a compact set, it is compact.

Now,

‖g‖22 =
∫
Rn

‖g(x)‖2 dx =

∫
F

‖g(x)‖2 dx+

∫
Ω

‖g(x)‖2 dx. (5.5)

For the first term on the right-hand-side,∫
F

‖g(x)‖2 dx =

∫
F

‖f(x)‖‖f(x)‖ dx ≤
∫
F

α‖f(x)‖ dx ≤ α‖f‖1.

For the second term, note that if x ∈ Ω then x ∈ Qj for some j, and hence

‖g(x)‖2 = 1

m(Qj)2

∥∥∥ ∫
Qj

f(x) dx
∥∥∥2

≤ 1

m(Qj)2

(∫
Qj

‖f(x)‖ dx
)2

≤ 22nα2 by (5.4).

Hence, by (5.3), ∫
Ω

‖g(x)‖2 dx ≤ 22nα2m(Ω) ≤ 22nα‖f‖1.
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So altogether the right-hand-side of (5.5) is bounded by (22n + 1)α‖f‖1, which
shows that g ∈ L2(Rn,H1), with ‖g‖22 ≤ (22n + 1)α‖f‖1. Thus, since T is of type

(2, 2) (and therefore of weak-type (2, 2)), there exists a constant A2 such that

m{x : ‖Tg(x)‖ > α/2} ≤ 4A2
2

α2
‖g‖22 ≤

C0

α
‖f‖1, (5.6)

where C0 = 4A2
2(2

2n + 1).

Step 2: establishing a weak-type (1, 1) inequality for Tb. We wish to find

an analogous estimate for Tb, so that, putting the two estimates together, we will

have that T is of weak-type (1, 1). We first make some observations about b:

∫
Qj

b(x) dx =

∫
Qj

f(x) dx−
∫
Qj

g(x) dx

=

∫
Qj

f(x) dx−
∫
Qj

1

m(Qj)

∫
Qj

f(y) dy dx

=

∫
Qj

f(x) dx− 1

m(Qj)

∫
Qj

1 dx

∫
Qj

f(y) dy.

Thus,

b(x) = 0 for all x ∈ F, and

∫
Qj

b(x) dx = 0. (5.7)

Sub-step: A modified decomposition of the domain into cubes. Now

we consider cubes Q∗
j with the same centre yj as the cubes Qj, but with sidelength

expanded by a factor of 2
√
n. We let Ω =

⋃
j Qj = F c, Ω∗ =

⋃
j Q

∗
j , and F ∗ = (Ω∗)c.

Then Ω ⊂ Ω∗ and F ∗ ⊂ F . Moreover,

m(Ω∗) ≤ (2
√
n)nm(Ω), (5.8)

since

m(Ω∗) ≤
∞∑
j=1

m(Q∗
j) =

∞∑
j=1

(
2
√
n sidelength(Qj)

)n
,

and ∞∑
j=1

(
sidelength(Qj)

)n
=

∞∑
j=1

m(Qj) = m(Ω).
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A geometric argument shows that if x ∈ (Q∗
j)

c and y ∈ Qj, then

‖x− yj‖ ≥ 2‖y − yj‖. (5.9)

For if we let s denote the sidelength of Qj, then y ∈ Qj means that

|yi − yji | ≤
s

2
for all i = 1, 2, · · · , n.

Therefore

‖y − yj‖ =

( n∑
i=1

|yi − yji |2
)1/2

≤
( n∑

i=1

(s
2

)2
)1/2

=

√
ns

2
.

Moreover, if x /∈ Q∗
j , then by definition, |x�−yj� | > 2

√
ns
2

=
√
ns for some � = 1, · · · , n,

and hence

‖x− yj‖ =

( n∑
i=1

|xi − yji |2
)1/2

≥ |x� − yj� | >
√
ns.

Thus we have that ‖x− yj‖ ≥ 2‖y − yj‖.

Sub-step: splitting up b. We now define bj by

bj(x) =

{
b(x) if x ∈ Qj

0 if x /∈ Qj.

Then b(x) =
∑∞

j=1 bj(x) for a.e. x, and moreover,

Tb(x) =
∞∑
j=1

Tbj(x) for x ∈ F ∗. (5.10)

To verify this we first observe that b is compactly supported (because g and f are),

with supp b ⊂ Ω ⊂ Ω∗ by (5.7). So for x ∈ F ∗ we have

Tb(x) =

∫
Rn

K(x− y)b(y) dy.

Now
∑N

1 bj(y) → b(y) for a.e. y, and since K(x− y) is continuous,

N∑
j=1

K(x− y)bj(y) → K(x− y)b(y)

for a.e. y. Now

N∑
j=1

K(x− y)bj(y) =

{
K(x− y)b(y) if y ∈ ⋃N

1 Qj

0 if otherwise,
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and hence ‖∑N
1 K(x − y)bj(y)‖ ≤ ‖K(x − y)b(y)‖ ∈ L1. Thus, by the dominated

convergence theorem for the Bochner integral,

Tb(x) = lim
N→∞

∫
Rn

N∑
j=1

K(x− y)bj(y) dy =
∞∑
j=1

∫
Rn

K(x− y)bj(y) dy.

In other words, Tb(x) =
∑

Tbj(x).

Sub-step: Estimating
∑∞

j=1

∫
Qj

‖bj(y)‖ dy. Observe that for y ∈ Qj,

‖bj(y)‖ = ‖b(y)‖ =
∥∥∥f(y)− 1

m(Qj)

∫
Qj

f(y) dy
∥∥∥

≤ ‖f(y)‖+ 1

m(Qj)

∫
Qj

‖f(y)‖ dy

≤ ‖f(y)‖+ 2nα by (5.4).

Hence, ∫
Qj

‖bj(y)‖ dy ≤
∫
Qj

‖f(y)‖ dy + 2nαm(Qj),

and since by (5.4) again,
∫
Qj

‖f(y)‖ dy ≤ 2nαm(Qj), this gives us∫
Qj

‖bj(y)‖ dy ≤ 2n+1αm(Qj).

Therefore,
∞∑
j=1

∫
Qj

‖bj(y)‖ dy ≤ 2n+1α
∞∑
j=1

m(Qj) = 2n+1αm(Ω).

By (5.3), this means
∞∑
j=1

∫
Qj

‖bj(y)‖ dy ≤ 2n+1‖f‖1.

Sub-step: Weak-type estimate for Tb on F ∗. Now, since by (5.7)
∫
Qj

bj(y) dy =

0, Theorem 2.12 gives us
∫
Qj

K(x− yj)bj(y) dy = 0, and therefore

Tbj(x) =

∫
Qj

[K(x− y)−K(x− yj)]bj(y) dy, (5.11)

for x /∈ Qj. Now by (5.10),∫
F ∗

‖Tb(x)‖ dx =

∫
F ∗

∥∥∥ ∞∑
j=1

Tbj(x)
∥∥∥ dx ≤

∫
F ∗

∞∑
j=1

‖Tbj(x)‖ dx
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where we are using the continuity of the norm. By the monotone convergence theorem,∫
F ∗

∞∑
j=1

‖Tbj(x)‖ dx =
∞∑
j=1

∫
F ∗

‖Tbj(x)‖ dx.

Also, since F ∗ = (Ω∗)c = (
⋃

Q∗
j)

c =
⋂
(Q∗

j)
c ⊂ (Q∗

j)
c, we have∫

F ∗
‖Tbj(x)‖ dx ≤

∫
x/∈Q∗j

‖Tbj(x)‖ dx,

and then by (5.11)∫
x/∈Q∗j

‖Tbj(x)‖ dx ≤
∫
x/∈Q∗j

∫
Qj

‖K(x− y)−K(x− yj)‖‖bj(y)‖ dy dx.

By Tonelli’s theorem this becomes∫
Qj

‖bj(y)‖
∫
x/∈Q∗j

‖K(x− y)−K(x− yj)‖ dx dy.

Recalling (5.9) we know that {x : x /∈ Q∗
j} ⊂ {x : ‖x−yj‖ ≥ 2‖y−yj‖}, and therefore

∫
x/∈Q∗j

‖K(x− y)−K(x− yj)‖ dx ≤
∫
‖x−yj‖≥2‖y−yj‖

‖K(x− y)−K(x− yj)‖ dx.

Make the substitutions x′ = x− yj and y′ = y − yj. By the translation-invariance of

the integral we have

∫
‖x−yj‖≥2‖y−yj‖

‖K(x− y)−K(x− yj)‖ dx =

∫
‖x′‖≥2‖y′‖

‖K(x′ − y′)−K(x′)‖ dx′,

and by our hypothesis (iii) this is bounded by B. So altogether we have∫
F ∗

‖Tb(x)‖ dx ≤
∞∑
j=1

∫
F ∗

‖Tbj(x)‖ dx ≤ B
∞∑
j=1

∫
Qj

‖bj(y)‖ dy.

Therefore, by the preceding sub-step,∫
F ∗

‖Tb(x)‖ dx ≤ B2n+1‖f‖1. (5.12)

It follows directly from (5.12) that

m{x ∈ F ∗ : ‖Tb(x)‖ > α/2} ≤ 2

α
· 2n+1B‖f‖1.
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Sub-step: controlling the size of (F ∗)c. This follows easily from (5.3):

m((F ∗)c) = m(Ω∗) ≤ (2
√
n)nm(Ω) ≤ (2

√
n)n

α
‖f‖1.

Concluding sub-step: the weak-type (1, 1) inequality for Tb. Clearly,

m{x : ‖Tb(x)‖ > α/2} ≤ m{x ∈ F ∗ : ‖Tb(x)‖ > α/2}+m((F ∗)c).

We have already found estimates in terms of 1
α
‖f‖1 for each of the terms on the

right-hand-side of this inequality, so that

m{x : ‖Tb(x)‖ > α/2} ≤
(2n+2B

α
+

(2
√
n)n

α

)
‖f‖1 = C1

α
‖f‖1, (5.13)

where C1 = 2n+2B + (2
√
n)n.

Step 3: The weak-type (1, 1) inequality for Tf . Since T is linear, we have

Tf = Tg + Tb, which implies ‖Tf‖ ≤ ‖Tg‖+ ‖Tb‖. It follows that

{x : ‖Tf(x)‖ > α} ⊂
{
x : ‖Tg(x)‖ >

α

2

}
∪
{
x : ‖Tb(x)‖ >

α

2

}
,

which implies

m{x : ‖Tf‖ > α} ≤ m{x : ‖Tg‖ > α/2}+m{x : ‖Tb‖ > α/2}. (5.14)

This, together with steps 1 and 2, gives us

m{x : ‖Tf(x)‖ > α} ≤ C

α
‖f‖1,

where C = C0+C1. This proves that T is of weak-type (1, 1) on compactly supported,

bounded functions.

Step 4: Interpolating to obtain the type (p, p) inequality for 1 < p < 2.

Now that we have shown that T is of weak-type (1, 1) and of weak-type (2, 2) on

bounded, compactly supported functions, we may apply the interpolation theorem.

First note that T is linear and hence subadditive on bounded, compactly supported

functions. Given such a function f , we can write f = f1 + f2 as in the proof of Theo-

rem 4.6, and f1, f2 are also bounded and compactly supported. Then T satisfies the

weak-type (1, 1) inequality for f1 and the weak-type (2, 2) inequality for f2. Looking

at the proof of Theorem 4.6, we see that this is all that is needed to conclude that

‖Tf‖p ≤ Ap‖f‖p for 1 < p < 2, where Ap depends only on B, p, and n.
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We turn to the case where 2 < p < ∞.

Theorem 5.2. Suppose that T is as in Theorem 5.1, and additionally satisfies the

conditions (iv) and (v) discussed at the beginning of this chapter. Then in addition

to satisfying the conclusion of Theorem 5.1, T is of type (p, p) for 2 < p < ∞. That

is, T is of type (p, p) for all p ∈ (1,∞).

Proof. Let f ∈ Cc(R
n,H1). By Theorem 4.14,

‖Tf‖p = sup
g∈Cc(Rn,H2)

‖g‖q=1

∣∣∣ ∫
Rn

〈Tf(x), g(x)〉 dx
∣∣∣.

By the Cauchy-Schwarz inequality,

|〈Tf(x), g(x)〉| = |〈f(x), T ∗g(x)〉| ≤ ‖f(x)‖‖T ∗g(x)‖.

Thus by Hölder’s inequality,∫
Rn

|〈Tf(x), g(x)〉| dx ≤
∫
Rn

‖f(x)‖‖T ∗g(x)‖ dx ≤ ‖f‖p‖T ∗g(x)‖q.

Now since T satisfies (v), and 1 < q < 2, we have

‖T ∗g(x)‖q ≤ Aq‖g‖q,

where Aq depends only on B′, p, and n. Putting these facts together we get∫
Rn

|〈Tf(x), g(x)〉| dx ≤ Aq‖g‖q‖f‖p.

Taking the supremum yields the desired type (p, p)-inequality for continuous, com-

pactly supported functions:

‖Tf‖p ≤ Aq‖f‖p.

Extending by continuity to all of Lp yields the result.



Chapter 6

Conclusion

We have seen that the Bochner integral is the natural extension of the Lebesgue

integral for vector-valued functions, in that it is the unique continuous map defined on

simple functions in the same way as the Lebesgue integral. Important results such as

Hölder’s inequality, the Dominated Convergence Theorem, and Fubini’s theorem were

seen to carry over to the vector-valued setting. We saw that the Fourier transform

can be defined in the obvious way with the Bochner integral.

The notion of weak measurability proved useful for establishing the measurability

of functions of the form K(·)f(·), where K is an operator-valued function and f

is a vector-valued function. This allowed us to define convolution for vector-valued

functions. Weak measurability was also useful in proving the vector-valued version of

Fubini’s theorem.

When we tried to prove a vector-valued version of a theorem about singular inte-

grals with the Bochner integral, we saw that certain results do not carry over easily

to the vector-valued setting. As discussed in our introduction, the Lp duality theorem

invoked in the proof of the singular integral theorem may not hold for vector-valued

functions; the proof presented in Chapter 4 of the weaker version of the Lp duality

theorem is more involved than the proof of the analogous scalar-valued result. I do

not know whether anyone has proven a stronger vector-valued Lp duality theorem, or

whether a stronger version can be proved.

We could not directly imitate the proof found in Stein [9] of the singular integral

theorem, and to achieve the same conclusion for vector-valued functions we needed

to modify and supplement the hypotheses. I do not know whether an elegant version

of the theorem exists for vector-valued functions.
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