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Abstract: The subtree prune and regraft distance (dSPR) between phylogenetic trees is important both as a general means of 
comparing phylogenetic tree topologies as well as a measure of lateral gene transfer (LGT). Although there has been exten-
sive study on the computation of dSPR and similar metrics between rooted trees, much less is known about SPR distances 
for unrooted trees, which often arise in practice when the root is unresolved. We show that unrooted SPR distance compu-
tation is NP-Hard and verify which techniques from related work can and cannot be applied. We then present an effi cient 
heuristic algorithm for this problem and benchmark it on a variety of synthetic datasets. Our algorithm computes the exact 
SPR distance between unrooted tree, and the heuristic element is only with respect to the algorithm’s computation time. 
Our method is a heuristic version of a fi xed parameter tractability (FPT) approach and our experiments indicate that the 
running time behaves similar to FPT algorithms. For real data sets, our algorithm was able to quickly compute dSPR for the 
majority of trees that were part of a study of LGT in 144 prokaryotic genomes. Our analysis of its performance, especially 
with respect to searching and reduction rules, is applicable to computing many related distance measures.
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1. Introduction
Phylogenetic trees are used to describe evolutionary relationships. DNA or protein sequences are 
associated with the leaves of the tree and the internal nodes correspond to speciation or gene duplication 
events. In order to model ancestor-descendant relationships on the tree, a direction must be associated 
with its edges by assigning a root. Often, insuffi cient information exists to determine the root and the 
tree is left unrooted. Unrooted trees still provide a notion of evolutionary relationship between organ-
isms even if the direction of descent remains unknown.

The phylogenetic tree representation has recently come under scrutiny with critics claiming that it 
is too simple to properly model microbial evolution, particularly in the presence of lateral gene trans-
fer (LGT) events (Doolittle, 1999). A LGT is the transfer of genetic material between species by means 
other than inheritance and thus cannot be represented in a tree as it would create a cycle. The preva-
lence of LGT events in microbial evolution can, however, still be studied using phylogenetic trees. 
Given a pair of trees describing the same sets of species, each constructed using different sets of genes, 
a LGT event corresponds to a displacement of a common subtree, referred to as a SPR operation. The 
SPR distance is the minimum number of SPR operations, denoted by dSPR, that explain the topological 
differences between a pair of trees. It is equivalent to the number of transfers in the most parsimonious 
LGT scenario (Beiko and Hamilton, 2006). In general, dSPR can be used as a measure of the topo-
logical difference between two trees, e.g. for comparing the outputs of different tree construction 
algorithms.

Tree bisection and reconnection (TBR) is a generalization of SPR that allows the pruned subtree to 
be rerooted before being regrafted. Computation of the TBR distance (dTBR) was shown to be NP-hard 
(nondeterministic polynomial-time hard) by Allen and Steel (2001), who also provided two rules that 
reduce two input trees to a size that is a linear functions of dTBR without altering their distance. These 
rules, which reduce common chains and subtrees, also form the basis of algorithms that compute the 
SPR distance between rooted trees (drSPR) (Bordewich and Semple, 2004) as well as hybridization 
number (h) (Bordewich et al. 2007), see Section 3.3. Such algorithms proceed as follows. First the 
distance problem is shown to be equivalent to counting components of a maximum agreement forest, 
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and then it is shown that the application of the rules 
do not alter the number of components in the for-
est. These steps have been successfully applied to 
dTBR, drSPR and h but not dSPR, for which no equiv-
alent agreement forest problem is known. As a 
consequence, the computational complexity of dSPR 
has remained an open problem. We provide a proof 
of NP-Hardness in Section 2. In Section 3, we pres-
ent an effi cient algorithm that relies only on the 
subtree reduction rule to compute the SPR distance 
of unrooted trees. An implementation of this algo-
rithm was tested on a variety of data, and the results 
are analyzed in Section 4. In particular, we show 
that the conjecture that chain decomposition is 
dSPR-preserving for unrooted trees (Allen and Steel, 
2001) is strongly supported by our data.

2. SPR Distance Computation
is NP-Hard for Unrooted Trees
Hein et al. (1996) showed that computing the size 
of a the Maximum Agreement Forest (MAF) of 
two trees is NP-Hard by reducing it from Exact 
Cover of 3-Sets (X3C). Later, Allen and Steel 
(2001) proved that this result is insuffi cient to show 
the hardness of unrooted SPR distance because 
there is no direct relationship between MAF size 
and dSPR, as was previously claimed. Similar tech-
niques have since been used by Bordewich and 
Semple (2004) to show that rooted SPR distance 
is NP-Hard via reduction from X3C to a rooted 
version of MAF. We show that although dSPR can-
not be used to compute | MAF | in general, it can 
for the trees used in the polynomial-time reduction 
from X3C and this is suffi cient to show that dSPR 
is NP-Hard as well. We begin with two preliminary 
defi nitions.

Defi nition 2.1
An agreement forest for two trees is any common 
forest that can be obtained from both trees by cut-
ting the same number of edges from each tree, 
applying forced contractions after each cut. A 
maximum agreement forest (MAF) for two trees is 
an agreement forest with a minimum number of 
components. (Hein et al. 1996)

Defi nition 2.2
The exact cover by 3-sets (X3C) problem is defi ned 
as follows (Garey and Johnson, 1979): Given a set 
X with | X | = n = 3q and a collection C of m 3-element 

subsets of X. Does C contain an exact cover for X , 
i.e. a sub-collection C' ⊆ C such that every element 
of X occurs in exactly one member of C' ?
NOTE: This problem remains NP-Complete if no 
element occurs in more than three subsets. Also 
note that this problem remains NP-Complete if 
each element occurs in exactly three subsets. This 
second property is implied by Hein et al. (1996) 
though never explicitly stated. A supplemental 
proof is provided in Appendix A.

We now review the polynomial-time reduction 
from X3C to MAF provided by Hein et al. (1996), 
clarifying their notation to refl ect that each element 
of X belongs to exactly three subsets in C, i.e. |X| = 
|C| = 3q = m = n, a fact implied but not clearly 
stated in their paper. An instance of X3C is trans-
formed into two rooted phylogenetic trees shown 
in Figure 1. Each element of X is represented by a 
triplet of the form {a, u, v}and each triplet appears 
3 times in each tree, once for each occurrence in a 
subset in C. Tree T1 is illustrated in Figure 1(a). 
Each subtree Ai ∈ T1, shown in Figure 1(b) cor-
responds to a subset ci ∈ C. Each subtree of Ai 
induced by the triple {ai,j, ui,j, vi,j}where j ∈ {1, 2, 3} 
corresponds to a single element of X.

Tree T 2, shown in Figure 1(c), has the same leaf 
set as T 1 but a different topology. Each Di subtree 
of T 2, as seen in Figure 1(e), corresponds to a subset 
in C except only the a-part of each triplet is present. 
Each Bi subtree of T 2, as seen in Figure 1(d), 
corresponds to an element in X. Each such element 
x = {a, u, v} in the set X appears in three different 
subsets of C: cj , ck , and cl . Without loss of general-
ity, assume it consists of the fi rst element of cj, 
second element of ck , and third element of cl . The 
corresponding B tree would have leaves {uj,j′, uk,k′, 
ul,l′, vj,j′, vk,k′, vl,l′} where j′ = 1, k′ = 2, l′ = 3.

(Hein et al. 1996) show that |MAF(T1, T2)| = 
20q + 1 if and only if C contains an exact cover of 
X. Note that we have added the z leaf to these trees, 
unrooting them. This does not have any affect on 
the |MAF| as z can remain attached to x1 in the 
agreement forest without the addition of any new 
components.

Proving that dSPR(T1, T2) = |MAF(T1, T2) − 1| is 
suffi cient to transform any instance of X3C where 
|X| = |C| = 3q to an instance of dSPR. In fact, it is 
suffi cient to show that the inequality dSPR(T1, T 

2) 
� |MAF(T1, T2) − 1| is true as dSPR(T1, T2) �  
|MAF(T1, T2) − 1| follows from Lemma 2.7(b) and 
Theorem 2.13 from (Allen and Steel, 2001). We 
proceed much in the same way as the original 
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Figure 1. Reduction of an instance of X3C to | MAF (T1, T2) | from an {a, u, v} triplet. The instance of X3C has a solution if and only if | MAF (T1, T2) | = 
20q + 1 (where n = 3q).

proof, noting that each SPR operation used to 
transform to T1 to T2 corresponds to a cut required 
to form their MAF.

MAF(T1, T2) is formed by the cutting edges from 
Ai subtrees (and the corresponding subtrees in T2) 
in either of two possible ways (Hein et al. 1996):
1. Cut leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 and then 

prune the remaining subtree formed by leaves 

{ai,1, ai,2, ai,3}. Such a procedure contributes 
7 components to the MAF.

2. Cut the leaves ai,1, ai,2, ai,3 then cut each of the 
remaining two-leaf subtrees: {ui,1, vi,1}, 
{ui,2, vi,2}, and {ui,3, vi,3}. These operations con-
tribute 6 components to the MAF.
We now show that given two trees T1 and T2 

and their MAF, which was created using the above 
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cut operations, there exists |MAF| − 1 SPR 
operations that can transform T1 to T2. In particular, 
for each set of cut operations, there exists an 
equivalent set of SPR operations.
1. Prune leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 from Ai 

and regraft them onto the chain, forming Bi 
subtrees in the required positions. Prune the 
subtree {ai,1, ai,2, ai,3} and regraft into the posi-
tion of Di. In this case, 7 SPR operations are 
performed.

2. Prune the leaves ai,1, ai,2, ai,3 and regraft them 
onto the chain, forming a Di subtree in the 
proper position. Prune the remaining two-leaf 
subtrees: {ui,1, vi,1}, {ui,2, vi,2}, and {ui,3, vi,3} and 
regraft them onto the chain, forming Bi subtree 
components in the required position. 6 SPR 
operations are used.
There is a one-to-one correspondence between 

cuts formed when creating the MAF and SPR 
operations that can transform T1 to T2. Thus 
dSPR(T1, T2) � |MAF(T1, T2)| − 1 and the proof is 
completed.

3. Algorithm for dSPR Computation

3.1. Defi nitions
All trees referred to in this paper, unless otherwise 
stated, are unrooted binary phylogenetic trees. 
Such trees have interior vertices of degree 3 and 
uniquely labeled leaves. Given a tree T, let V (T ), 
L (T ) and E (T ) ∈{V (T) × V (T )} be the vertex, leaf, 
and edge sets of T respectively. A tree can be rooted 
by adding a root vertex of degree 2. A pendant 
subtree of T is any rooted tree T′ such that V(T′) ⊆ 
V(T), L(T′ ) ⊆ L(T ) and E(T′ ) ⊆ E(T ). A SPR 
operation on a tree T is defi ned by the following 

three steps, illustrated in Figure 2. First, an edge 
{u, v}  ∈ E(T ) is removed, effectively pruning a 
pendant subtree rooted at u from T. A new interior 
vertex w is created by subdividing an edge in T and 
the subtree is then regrafted by creating edge 
{u, w}. Finally, the degree-2 vertex v is contracted 
by identifying its incident edges. The SPR distance 
between T1 and T2, denoted dSPR(T1, T2), is the 
minimum number of SPR operations required to 
transform T1 into T2. Furthermore, dSPR is a metric 
(Allen and Steel, 2001).

3.2. Exhaustive search
The reduction rules referred to above only serve 
to transform the original problem into smaller 
subproblems. These subproblems must still be 
solved with an exhaustive search as the problem 
is NP-Hard (see proof in Appendix). Let GSPR(n) 
be the graph such that each vertex in the graph is 
associated with a unique tree topology with n 
leaves, and all possible topologies are in the graph. 
A pair of vertices in this graph are connected if 
their SPR distance is 1. Computing dSPR(T1, T2) is 
therefore equivalent to fi nding the length of the 
shortest path between T1 and T2 on GSPR(n) and can 
be computed through an exhaustive breadth-fi rst 
search beginning at T1. Allen and Steel (2001) 
showed that each tree will have O(n2) neighbors 
in the graph and it follows that the search will visit 
O(n2) trees of distance 1 from T1, O(n4) trees of 
distance 2, up to O(n2k) trees of distance k. A hash 
table is kept to ensure the same tree is not visited 
twice. Assuming that it can be updated in constant 
time, each tree can be processed in O(n) bringing 
the time and space complexity of the search to 
O(n2k+1).

While it is still an open problem to determine 
if reduction rules can be found to reduce n to k in 

Figure 2. 2(a) Original tree. 2(b) Edge uv is removed, pruning subtree rooted at u. 2(c) Subtree is regrafted, creating new vertex V′. 2(d) 
Degree-2 vertex v is contracted.

v2

6

7

1 3 4 5

u

(a)

u

4

v

6

7

5

32

1

(b)

54

v′

u1

32

v

6

7

(c)

4 v′

u1

32

6

7

5

(d)



21

SPR distance computation for unrooted trees

Evolutionary Bioinformatics 2008:4

both trees by three new leaves with new labels 
correctly oriented to preserve the direction. Allen 
and Steel (2001) showed that maximum application 
of both of these rules reduces the size of the input 
trees to a linear function of dTBR. This result also 
holds for dSPR as dSPR � 2dTBR for two trees since 
each TBR operation can be replaced by 2 SPR 
operations. It is trivial to show that subtree reduc-
tions do not alter dSPR but, unlike dTBR it is presently 
unknown whether or not chain reductions affect 
dSPR, therefore they can not be used in an exact 
algorithm. However, our experimental results, 
further described in Section 4, do support the con-
jecture that chain reductions do not affect SPR 
distance.

In addition to applying reductions on the input 
trees, intermediate trees visited during the breadth-
fi rst search can be likewise reduced. For example, 
if T* is a tree found on the ith iteration from T1 that 
has a common pendant subtree with T2, then that 
subtree can be reduced to a leaf in T* and T2 with-
out affecting dSPR(T*, T2). Accordingly, the shortest 
path from T1 to T2 will still be found by a search 
that applies subtree reductions to the intermediate 
trees. For ease of maintaining the hash table of 
trees visited, in our implementation we fl ag com-
mon subtrees rather than remove them and use 
these fl ags to avoid performing SPR operations 
that would prune from or regraft to fl agged sub-
trees. This process has no adverse effect on the 
asymptotic complexity of the search as common 
subtrees and chains can be detected in O(n). It is 
expected that performing reductions on intermedi-
ate trees will lessen the total number of trees 
searched but we are unable to show that it will 
affect the worst case complexity.

Because the number of trees visited in each 
iteration of the exhaustive search increases expo-
nentially, the asymptotic complexity is bounded 
by the number of trees explored in the final 
iteration. It follows that the order in which these 

the asymptotic complexity above, the value of the 
exponent can be reduced signifi cantly. Observe 
that there must be some tree T′ such that dSPR(T1, T′)  = 
⎣k/2⎦ and dSPR(T2, T′) = ⎡ k/2T′⎤ because dSPR is a 
metric and therefore satisfi es the triangle inequality. 
T′ and, correspondingly, k can be computed by 
performing two breadth-fi rst searches, with origins 
at T1 and T2 simultaneously. During the ith iteration 
of the search, all trees of distance i from fi rst T1 
then T2 are explored and updated into the same 
hash table. T′ is the fi rst tree to be found by both 
searches and dSPR(T1, T2) is 2i  − 1 if T′ is found in 
the search for T1 or 2i otherwise. Pseudocode is 
given in Algorithm 1. The time complexity of this 
algorithm is O(n⎣k/2⎦+1)  + O(n⎡k/2⎤+1)  =  O(nk+2). This 
is a signifi cant reduction from the simple search 
but the complexity is still prohibitive. Fortunately, 
heuristics can greatly speed up many instances of 
the problem while still guaranteeing an exact 
answer.

Algorithm 2 ITERATE (Lin, Lout, H, T )

1: for all t ∈  Lin do
2:  if t ∈ H  then
3:   return TRUE
4:  else
5:   Append set of SPR neighbors of t to Lout
6:   Insert t into H
7:   end if
8: end for
9: return FALSE

Algorithm 1 SPRDIST (T1, T2)

 1: if T1 = T2 then
 2:  return 0
 3: end if
 4: Apply subtree reductions to T1 and T2
 5: d ← 0
 6: H ← empty hash table
 7: L1, LA ← empty lists
 8: Insert T1 into L1
 9: Insert T2 into LA
10: loop
11:  L2, LB ← empty lists
12:  if ITERATE(L1, L2, H, T2) = TRUE then
13:   return d
14:  else
15:   L1 ← L2
16:   d ← d + 1
17:  end if
18:  if ITERATE(LA,  LB,  H,  T1)  = TRUE then
19:   return d
20:  else
21:   LA ← LB
22:   d ← d + 1
23:  end if
24: end loop

3.3. Heuristic improvements
A subtree reduction replaces any pendant subtree 
that occurs in both input trees by a single leaf with 
a new label in each tree as as shown in Figure 3(a). 
A chain reduction, illustrated in 3(b), replaces any 
chain of pendant subtrees that occur identically in 
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trees are searched can have a critical impact on 
the running time. We attempt to increase the 
probability that the tree upon which the search is 
completed is visited near the beginning of an 
iteration by sorting the trees in each iteration 
according to how many leaves are eliminated in 
by subtree reduction. Our hypothesis is that trees 
with larger common subtrees are more likely to 
be near the destination tree. Since at most n leaves 
can be eliminated by subtree reductions, the trees 
can be bucket sorted in O(n) time, leaving the 
asymptotic complexity unchanged. These last two 
heuristics are employed by replacing the call to 
ITERATE in SPRDIST to a call to SORT−ITERATE, 
shown in Algorithm 3.

operation that affects more than one common clus-
ter would not reduce the distance and therefore not 
be part of an optimal solution. Unfortunately, this 
is not the case as evidenced by the counterexample 
given in Figure 4 which presents T1 and T2 that 
share the common cluster {7, 8, 9}. dSPR(T1, T2) = 3 
and 3 SPR operations are shown that transform T1 
into T2, the fi rst of which breaks the common clus-
ter. Indeed an exhaustive simulation showed that 
no 3 sequential SPR operations exist to transform 
the trees that do not break the common clusters. 
This can be more easily seen by observing that any 
such sequence would have to regraft 7 to 9 and only 
2 operations would be left to transform the cluster 
{1, 2, 3, 4, 5, 6} which is clearly insuffi cient.

4. Experimental Results

4.1. Datasets
The datasets were chosen to analyze the merits of 
the heuristics discussed in the previous section as 
well as evaluate our algorithm in a realistic setting. 
To these ends, we bench-marked our algorithm on 
a variety of randomly generated trees, as well as 
trees created by Beiko et al. (2005) in the course of 
analyzing the proteins from the 144 sequenced 
prokaryotic genomes available at the time. Two sets 
of random trees were generated, one by the Yule-
Harding model and the other by random walks. 
Yule-Harding trees are constructed by fi rst creating 
an edge between two randomly selected leaves, then 
randomly attaching the remaining leaves to the tree 
until none are left. The random walk dataset consists 
of pairs of trees such that one of which is generated 
by the Yule-Harding model and the other is created 
from the fi rst by applying a sequence of between 2 
and 8 random SPR operations (Beiko and Hamilton, 
2006). The size of the datasets, along with the aver-
age distances computed by our algorithm are pre-
sented in Figure 5. In some cases, the program ran 
out of memory before finding the solution. 

Figure 3. Reduction rules applied to a tree. 3(a) A subtree is reduced to a leaf. 3(b) A chain of length n is reduced to a chain of length 3.

S x
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1 2 3 nc c c c 321x x x
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Algorithm 3 SORT_ITERATE (Lin, Lout, H, T)

 1: for all t ∈ Lin do
 2:  Flag all subtrees in t that also occur in T
 3: end for
 4:  Bucket Sort Lin in decreasing order by number 

of vertices fl agged
 5: for all t ∈ Lin  do
 6:  if t ∈ H then
 7:   return TRUE
 8:  else
 9:    Append set of SPR neighbors which 

preserve fl agged subtrees of t to Lout
10:  Insert t into H
11:  end if
12: end for
13: return FALSE

A cluster is the leaf set of a pendant subtree. T1 
and T2 share a common cluster C if they contain 
pendant subtrees S1 and S2 respectively such that 
L(S1) = L(S2) = C. Baroni et al. (2006) showed that 
the hybridization number of two trees is equal to 
the total of the hybridization numbers of all their 
pairs of maximal common clusters. Beiko and 
Hamilton (2006) made a similar assumption in their 
heuristic algorithm to measure LGT. Such a decom-
position makes intuitive sense for exact SPR 
distance as well, as it would seem that any SPR 
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The fraction of instances successfully resolved for 
each type of data is listed in the “% Resolved” 
column (Fig. 5(a), 5(c) and 5(e)).

4.2. Performance
The algorithm described in Section 3 was imple-
mented in C++ and benchmarked on a 2.6Ghz 
Pentium Xeon System with 3G of RAM. The 
source code is available at http: //morticia.cs.dal.
ca/lab_public/?Download. This program was 
executed for all pairs of trees described in Figure 5 
with and without the various heuristic optimiza-
tions discussed previously. Graphs 6(a), 6(c) and 
6(e) in Figure 6 display the effectiveness of the 
reduction rules’ ability to reduce the input trees. 
As could be expected, the trees in the protein and 
random SPR walk datasets are reduced more than 
the two random datasets as their ratios of size to 
distance are much higher. In all cases, the amount 
of reduction increases in correlation to the mean 
distance rather than n. Our method is essentially a 
fixed parameter tractability (FPT) approach 
(Downey and Fellows, 1998) and our experiments 
indicate that the running time behaves similar to 
FPT algorithms. Also encouraging is the fact that 
the reduction rules perform much better in practice 
than the worst-case analysis by Allen and Steel 
(2001), which predicts a reduction in size to a fac-
tor of 28 times the distance. For example, in the 
random SPR walk dataset whose mean distance is 
roughly 2, the reductions are effective for n � 4 
whereas in the worst case it is only guaranteed to 
work for n �= 56. Similar results are visible in the 

protein dataset graphs as well. As can be seen in 
these graphs, chain reductions accounts for only a 
small portion (well under 10%) of the overall gain 
with subtree reductions making up the rest. We 
also note that of the roughly 20,000 pairs of trees 
tested, application of the chain reduction rule did 
not once affect the SPR distance.

The performance of the remaining heuristics is 
displayed in terms of running time in graphs 6(b), 
6(d) and 6(f) in Figure 6. Applying the reductions 
to intermediate trees provided very little perfor-
mance gain, implying that the search space is 
dominated by trees with few common subtrees and 
chains. However, sorting the trees visited in each 
iteration of the search by the number of leaves 
reduced had a signifi cant impact on the running 
time for all of the harder cases (dSPR � 4), speeding 
up the computation by nearly a factor of 6 for some 
of the larger protein tree pairs.

5. Conclusion
The computation of SPR distances between 
unrooted phylogenetic trees can be used to compare 
the evolutionary histories of different genes and 
provide a lower bound on the number of lateral 
transfers. Little previous work has been done on this 
problem though many related tree metrics have been 
relatively well studied in the literature. The reason 
for this appears to be primarily due to less insight 
into the problem’s structure (no known MAF reduc-
tion) rather than lack of interest. In this paper we 
revisited the problem of unrooted SPR distance, 
showing that it is NP-Hard and providing an 

Figure 4. Example of trees whose common clusters cannot be maintained by a minimal SPR path. T1 4(a) and T2 4(b) have a SPR distance 
of three but all possible sequences of SPR operations of this length (one is shown by the dotted lines) break the common cluster {7, 8, 9}.
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Figure 5. Size, success rate and distance distributions for each dataset. For the protein data, no trees of size greater than 60 were 
resolved.

optimized algorithm and implementation to solve 
it exactly. The algorithm is based on dividing the 
problem into two searches and making use of heu-
ristics such as subtree reductions and reordering. 
This algorithm was able to quickly compute the 
exact distance between the majority of proteins 
belonging to 144 available sequenced prokaryotic 

genomes and their supertree. Our method can also 
be used to improve the brute force search component 
of TBR and rooted SPR distance computation.

Though a polynomial time solution is unlikely 
due to its NP-Hardness, some possible avenues of 
future work on this problem remain. One is to 
show that chain reductions do not affect the 
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distance, a conjecture that is supported by our 
experimental results but for which an analytical 
proof remains absent. This result would be suffi -
cient to show that unrooted SPR distance is fi xed 
parameter tractable, being exponential only in 
terms of the distance and not the size of the trees. 

Bordewich et al. (2007) used a decomposition by 
common clusters was used with signifi cant practi-
cal success. We showed that such a technique 
cannot be directly applied to the problem of 
unrooted SPR distances but perhaps a variation of 
this technique can.

Figure 6. Experimental evaluation of the different heuristics on the three datasets. The effect of the reduction rules on the input tree sizes 
is displayed on the left. The improvements to the running time made by reducing and sorting intermediate trees are displayed on the right.
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The contributions of this paper can thus be 
summarized as follows: (1) We show that SPR 
distance computation is NP-hard for unrooted trees. 
(2) We present an effi cient heuristic algorithm for 
this problem and benchmark it on a variety of 
synthetic datasets. Our algorithm computes the 
exact SPR distance between unrooted trees, and 
the heuristic element is only with respect to the 
algorithm’s computation time. Our method is a 
heuristic version of a fi xed parameter tractability 
(FPT) approach (Downey and Fellows, 1998) and 
our experiments indicate that the running time 
behaves similar to FPT algorithms. For real data 
sets, our algorithm was able to quickly compute 
dSPR for the majority of trees that were part of a 
study of LGT in 144 prokaryotic genomes. (3) Our 
analysis of its performance, especially with respect 
to searching and reduction rules, is applicable to 
computing many related distance measures. (4) In 
Bordewich et al. (2007), a decomposition by com-
mon clusters was used with signifi cant practical 
success. We show that such a decomposing by 
common clusters cannot be used to compute exact 
SPR distance for unrooted trees (Fig. 4) which is 
somewhat counterintuitve.
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Appendix A

X3C remains NP-complete when 
each element occurs in exactly 3 
subsets
In this appendix we verify that X3C remains NP-
Complete in the special case where each element 
occurs in exactly three subsets. Consider an 
instance of X3C in which no element occurs in 
more than three subsets. We provide a polynomial 
time reduction from such an instance, known to be 
NP-Complete, into an instance in which each ele-
ment occurs in exactly three subsets. Let:

Y1 ⊆ X : Elements of X that appear in exactly 
one subset

Y2 ⊆ X : Elements of X that appear in exactly 
two subsets

Y3 ⊆ X : Elements of X that appear in exactly 
three subsets

So |Y1| + 2|Y2| + 3|Y3| = |X| = 3q
For each element to appear in exactly three subsets, 

we must add 2|Y1| + |Y2| elements to subsets in C.
Let multiset Z = {z0,  z1, ... , z3p−1} = Y1 + Y1 + Y2 

be these elements we have to add. Note that |Z| = 
3p where p = 2(q − |Y3|) − |Y2|.

Let X′ = {x′0, x′1, ... , x′3p–1} be a set of new ele-
ments such that |X′| = 3p and X ∩ X′ = φ.

We now create a collection C′ of new subsets 
out of Z and X′ so that each element in X ∪ X′ 
appears in a subset in C + C′ exactly three times.

For each i = 0, 3, ... , 3p − 1, we add four subsets 
to C′:

                  c′4i = {x′i, x′i+1, x′x+2}
c′4i+1 = {zi, x'i, x'i+1}
  c′4i+2 = {zi+1, x'i+1, x'i+2}
c′4i+3 = {zi+2, x'i+2, x'i}

We now show that X ∪ X′ and C + C′ form an 
instance of X3C such that every element of X ∪ X′ 
appears in 3 subsets in C + C' and X has a cover in 
C if and only if X ∪ X′  has a cover in C + C′.

(if): If X has a cover in C, then X ∪ X′ has a 
cover in C + C': Let S ⊆ C be the cover of X. Then 
S + c'0+ c'4+ c'8+ ...  + c'12p−1 is a cover X ∪ X′.

(only if ): If X ∪ X′  has a cover in C + C′, then 
X has a cover in C: Similar to above, the only way 
to cover X′ is with c′0+ c′4+ c′8+ ...  + c′12p−1 and no 
other elements of C′ can be part of an exact cover. 
This means that X is covered entirely by subsets 
in C so X is exactly covered by C.
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