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Abstract

in its genome.

Background: Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green
algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the
impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature
as a 'hybrid" of a non-photosynthetic host cell and a secondary endosymbiont.

Results: We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program
designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green
algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae
containing red algal-derived plastids. Phylogenetic analyses of these ‘red lineage’ genes suggest that E. gracilis
acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green
algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid
Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage’ genes

Conclusions: Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for
the presence of these genes in these organisms is that some or all of them were independently acquired by lateral
gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a
secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of
those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the
eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

Background

Photosynthetic eukaryotes are distributed across multi-
ple branches of the eukaryotic tree of life. Currently, six
putative ‘super-groups’ of eukaryotes have been pro-
posed: Opisthokonta, Amoebozoa, Rhizaria, Excavata,
Chromalveolata, and Archaeplastida [1]. The origin of
plastids (chloroplasts) from a cyanobacterial endosym-
biont is referred to as primary endosymbiosis. Primary
plastid-containing eukaryotes, namely green algae and
land plants, glaucophytes and red algae, are classified
into Archaeplastida, of which the monophyly is still
debatable [2-7]. Subsequent to the evolution of primary
plastids, two independent lineages of green algae were
captured by two distinct lineages of phagotrophic
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protists via secondary (eukaryote-eukaryote) endosym-
biosis, giving rise to the green secondary plastid-con-
taining euglenophytes (Excavata) and
chlorarachniophytes (Rhizaria). Chloroplast genome ana-
lyses suggest that the chlorarachniophyte plastid is
derived from a green alga belonging to the ulvophyte-
trebouxiophyte-chlorophyte group, while the ancestor of
the euglenophyte plastid is related to prasinophyte green
algae [8,9].

Red algae have also donated plastids to other eukar-
yotes by secondary endosymbiosis. It is well established
that secondary plastids in many ‘chromalveolate’ taxa
are derived from red algal endosymbiont(s), but the ori-
gin and evolutionary history of ‘chromalveolate’ plastids
are more controversial than those of green algal ancestry
[10-14]. Chromalveolata is composed of four major sub-
groups (stramenopiles, alveolates, cryptophytes and hap-
tophytes) and most sub-groups include non-
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photosynthetic members [1]. Recently, plastid-related
genes and/or putative plastid-like organelles were found
in several non-photosynthetic alveolate protists [15-19],
and a novel photosynthetic lineage Chromerida was
found and suggested to be a sister group of non-photo-
synthetic alveolates such as colpodellids [20,21]. Further-
more, phylogenomic analyses suggest that
Chromalveolata may be a paraphyletic super-group; two
major Chromalveolata lineages, stramenopiles and alveo-
lates, are likely sister to another super-group, Rhizaria,
to the exclusion of cryptophytes and haptophytes
[22,23]. The recent description of Roombia, a new kata-
blepharid, has led to a proposal to establish Hacrobia, a
new taxonomic group that includes many protists for-
merly with uncertain taxonomical affiliations; katable-
pharids, (pico)biliphytes, centrohelids, telonemids and
two traditional Chromalveolata lineages, cryptophytes
and haptophtyes [24]. It was proposed that Hacrobia
included multiple lineages that secondarily lost photo-
synthetic ability, although the existence of cryptic non-
photosynthetic plastids in some hacrobian lineages, like
those seen in some apicomplexans, cannot be ruled out.
These data suggest that the history of plastid acquisition
and loss in ‘chromalveolates’ is much more complicated
than previously thought (reviewed in [5]).

Surprisingly, recent analyses of the nuclear genomes of
the diatoms (stramenopiles; Chromalveolata) showed
that thousands of diatom genes are similar to those of
prasinophyte green algae, an observation that was inter-
preted as evidence for the existence of a cryptic endo-
symbiont of green algal origin in a ‘chromalveolate’
ancestor prior to the secondary endosymbiosis that gave
rise to the extant secondary plastid of red algal origin
[25]. These intriguing data still need to be investigated
further, because the host nuclear phylogeny and the
relationship between green algae and Chromalveolata is
unclear and the host components of these two groups
may be specifically related to one another [2,5].

The possible existence of multiple past endosymbioses
is also debated in another super-group, the Excavata.
Euglenophytes are photosynthetic flagellates belonging
to the Euglenida (Excavata) [1]. The Euglenida include
both heterotrophic and photoautotrophic protists, and
share common ancestry with Kinetoplastea, which
include the human parasites Trypanosoma and Leishma-
nia [1]. Morphological, biochemical and phylogenetic
analyses suggest that only the last common ancestor of
the extant plastid-harboring euglenophytes experienced
the secondary endosymbiosis, but not the common
ancestor of Euglenozoa as a whole (Euglenida, Diplone-
mea and Kinetoplastea) [26]. However, the discovery of
algal-type genes and the specific features of a mitochon-
drion-targeted protein in Kinetoplastea showing similar-
ity to those of euglenophytes led to the hypothesis that
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a plastid was present in the common ancestor of Kine-
toplastea, or Euglenozoa [27]. Previously, we developed
an automated pipeline for single gene phylogenetic tree
construction and found a number of genes showing cya-
nobacterial ancestry in the amoeboflagellate Naegleria
(Heterolobosea, a sister group to Euglenozoa). One pos-
sible interpretation for the presence of these genes is
that the primary endosymbiosis might have occurred in
an ancestor of eukaryotes prior to the divergence of
Excavata [28]. At any rate, among the extant Excavata
lineages, the presence of plastids is thus far only known
in euglenophytes [26].

A preliminary expressed sequence tag (EST) analysis
of the model euglenophyte Euglena gracilis showed a
complex history of nuclear genes in this organism [29],
but many aspects of how the E. gracilis nuclear genome
integrated genes from the green algal endosymbiont via
secondary endosymbiosis are unclear. Moreover, recent
molecular phylogenies suggested the presence of ‘red
lineage’ genes in the nuclear genome of E. gracilis, but
their origins and evolutionary histories have not been
explored in detail [30-33]. Here we provide phylogenetic
evidence for the presence of a number of genes of non-
green algal origins in E. gracilis through an expanded
EST survey using the laterally transferred gene mining
pipeline [28]. We also discuss the possible evolutionary
origins of these genes via lateral and/or endosymbiotic
gene transfer (LGT/EGT).

Results
To understand the nature and extent of genome mosai-
cism in E. gracilis, we searched for E. gracilis genes
showing specific affinity to homologues of photosyn-
thetic eukaryotes other than green algae, the latter being
the unambiguous source of the endosymbiont that gave
rise to the secondary plastid in euglenophytes. First,
using the E. gracilis protein sequences generated from
the EST database as queries, we assembled a set of
sequences showing strong similarity to green algal/plant
proteins in preliminary phylogenetic trees. We then
identified the organisms to which the E. gracilis proteins
showed the smallest distance to the query sequence on
each tree. 528 and 621 E. gracilis queries were found to
be ‘closest’ to the ‘Viridiplantae’ (green plants; namely
green algae and land plants) and the ‘red lineage’ (i.e.,
red algae and secondary algae with plastids of red algal
origin), respectively (Additional file 1: Supplementary
table S1). We further checked the tree topologies of
those putative ‘red lineage’-like matches manually. We
then chose the trees where the E. gracilis query was
nested in, or specifically associated with, the ‘red lineage’
clade as a monophyletic group with high support values.
Finally we identified fourteen protein trees in which
the E. gracilis sequence was monophyletic with the
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‘red lineage’, not ‘green’ (Table 1). Among them, four
trees included E. gracilis sequences placed in the Chro-
malveolata (plus Rhizaria) clade (CR clade) that is sis-
ter to red algal clades (CR+Red type), another two
trees showed monophyletic clades of Chromalveolata
sequences plus E. gracilis branching with green algae
rather than red algae (CR+Green type). In the other
eight trees, the euglenids are monophyletic with CR
clades, but the sister group of the euglenids plus CR is
unclear. Phylogenetic affiliations were sometimes not
directly comparable due to differences in the availabil-
ity of the gene/genome sequence data in each lineage.
Nevertheless, the haptophytes (Emiliania huxleyi) and
stramenopiles are associated with, and sister to, E. gra-
cilis in most of the trees. Two ‘red lineage’ proteins
closely related to the E. gracilis counterparts were
found in the plastid-lacking euglenid Peranema
trichophorum.

CR+Red type genes
We found that the gene encoding homogentisate phy-
tyltransferase (HPT) from E. gracilis branches within
the CR sub-clade, which itself is monophyletic with
the red algal clade (Figure 1A, Additional file 2: Sup-
plementary fig. S1A). These genes were included in the
plastid and cyanobacteria type HPT gene family, and
function in the vitamin E biosynthesis pathway [34].
Specific insertion/deletion sequences (Indels) shared
with E. gracilis and the CR group supported the mono-
phyly of these sequences. (Additional file 2: Supple-
mentary fig. S1B)

E. gracilis was found to possess a gene encoding a
hypothetical protein with a putative oxidoreductase
domain. This protein family is thus far found only in

Table 1 'Red lineage’ genes in E. gracilis
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photosynthetic organisms and conserved in the ‘red line-
age’ including the cryptophyte nucleomorphs, which are
derived nuclei of red algal origin. Green plant sequences
were distributed on a branch separated from the CR
+Red clade including the E. gracilis gene (Additional file
2: Supplementary fig. S2).

The glucokinase (EC 2.7.1.2) gene from E. gracilis was
found to belong to the prokaryote-type gene family,
which was also conserved among primary and secondary
algae (Additional file 2: Supplementary fig. S3). Interest-
ingly, animals, fungi, land plants and the excavates Try-
panosoma and Monocercomonoides possess a different
type of genes for this glucokinase enzyme [35,36], show-
ing no sequence homology to the prokaryote-type genes.
Although another excavate parasite Giardia possesses a
prokaryote-type glucokinase [37], the Giardia intestina-
lis counterpart was sister to eubacteria, separate from
the CR+Red clade in our preliminary analysis (data not
shown). No land plant-like homologues were found in
prasinophyte genomes.

In the E. gracilis EST database, we found a short
fragment showing similarity to the ATP-dependent Clp
protease proteolytic subunit (ClpP) (Additional file 2:
Supplementary fig. S4A). The E. gracilis ClpP was
more similar to nucleomorph-encoded cryptophyte
homologues and the plastid-encoded green algal coun-
terparts than to mitochondrial-localized ClpP homolo-
gues, suggesting that the E. gracilis ClpP may function
in the plastid. Although this fragment is too short (299
bp) to allow construction of reliable phylogenetic trees,
several characteristic amino acid residues are shared
with cryptophyte nucleomorph-encoded proteins and
those of pelagophytes (Additional file 2: Supplementary
fig. S4B).

Cluster ID gene product CR+Red CR+Green other Peranema EST
0505 homogentisate phytyltransferase (HPT) +
1748 hypothetical protein +
5429 glucokinase +
7874 Clp protease proteolytic subunit (ClpP) +
2407 phosphoribulokinase (PRK) +
2525 folate-biopterin transporter (FBT) +
1468 zeaxanthin epoxidase (ZEP) +
2373 fructose 1,6-diphosphatase (FBP), plastidic +
2373 FBP, cytosolic +
4157 6-phosphogluconate dehydrogenase (GND) + +
4273 ADP/ATP transporter + +
5532 GTP-binding protein LepA +
6234 methionine adenosyltransferase (MAT) +
AAQ19605 fatty acid desaturase +

Original cluster IDs had “EEL0000” followed by the 4-digit numbers shown. The accession number is shown for the fatty acid desaturase gene, which was not

found in the EST database.
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Figure 1 Maximum likelihood (RAxML) tree of the ‘red lineage’ proteins found in euglenids. The results of bootstrap analyses using
RAXML (upper) and the Bayesian inference posterior probability values using MrBayes (lower) are shown on each branch. A, the best tree of the
homogentisate phytyltransferase (HPT) family proteins shows that the E. gracilis HPT is closely related to the Chromalveolata and red algal
homologues. B, the ‘red lineage’ genes encoding prokaryote-type ADP/ATP transporter have been found in euglenids and Chromalveolata. Thick
branches represent Bl and ML values not lower than 100 and 95, respectively. Eu, euglenids; CR, Chromalveolata plus Rhizaria; Red, red algae;
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The plastid Calvin cycle enzyme phosphoribulokinase
(PRK) is derived from the cyanobacterial ancestor of the
organelle [30]. Molecular phylogenetic analysis of PRK
genes suggested that extant Chromalveolata genes are
related to their green algal counterparts, not red algae,
and that these genes may not be derived from red algal
endosymbionts engulfed in the ancestor of CR. Our phy-
logenetic analysis of PRK genes recovered the previously
reported kinship [30] between green algal and Chromal-
veolata genes, and confirmed that the E. gracilis PRK
nests within the Chromalveolata clade (Additional file 2:
Supplementary fig. S5).

Folate/biopterin transporter (FBT) genes in CR have
been shown to be most closely related to their counter-
parts in green plants [16,28]. In the FBT protein tree
(Additional file 2: Supplementary fig. S6), the E. gracilis
sequence is monophyletic with proteins from Perkinsus
(Chromalveolata) and Bigelowiella (Rhizaria), and sister
to the clade including the diatom Thalassiosira and pra-
sinophyte genes. Separation of the E. gracilis gene from
these prasinophyte genes is supported with the high sup-
port values (BI/ML = 1.00/100). In the CR assemblage
and land plants, this gene family is highly duplicated and
divergent, and the phylogenetic patterns are complicated.
The tree topology suggests that both gene duplications in
the ancestral lineages of CR and land plants, as well as
more recent lineage specific duplications (or losses) have

occurred. However, no evidence for gene duplication was
found in red algae.

E. gracilis genes with other affiliations
Zeaxanthin epoxidase (ZEP) is involved in the photopro-
tective xanthophyll cycle, catalyzing the addition of an
epoxy group to zeaxanthin to form violaxanthin under
low light conditions [32]. ZEP genes are not found in
cyanobacteria and red algae thus far, and molecular phy-
logenetic studies suggested that ZEP genes in Chromal-
veolata might have been derived from prasinophytes via
gene transfer events ([32] and Additional file 2: Supple-
mentary fig. S7). Multiple duplicated ZEP genes are
found in Chromalveolata genomes, forming various sub-
clades (Additional file 2: Supplementary fig. S7). The E.
gracilis gene was nested within a subclade of these
genes, not affiliated with green plant gene clades.
Fructose-bisphosphatase (FBP) is a key glycolytic
enzyme in eukaryotes and eubacteria. In photosynthetic
eukaryotes, duplicated genes encoding FBP form another
family functioning in carbohydrate metabolism such as
the Calvin cycle in the plastid [31]. Teich et al. showed
that both the plastid and cytosolic genes from E. gracilis
were monophyletic with CR, not green plants [31]. We
confirmed with detailed analysis that both types of E.
gracilis sequences are nested within the CR clades in
the plastid and cytosolic FBP gene families (Additional
file 2: Supplementary fig. S8 and 9, respectively).
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However, the plastid FBP genes were duplicated in sev-
eral lineages and the basal part of the CR FBP clade was
not sufficiently resolved to verify the sister group to the
E. gracilis plus CR clades.

The phylogenetic tree of 6-phosphogluconate dehy-
drogenase (GND) of cyanobacterial ancestry shows that
the euglenid GNDs are monophyletic with the CR
assemblage (Additional file 2: Supplementary fig. S10). A
GND protein from the non-photosynthetic euglenid P.
trichophorum is monophyletic with the E. gracilis coun-
terpart and contained within the euglenid-CR clade.
Thus the GND gene is likely a synapomorphic character
of euglenophytes and non-photosynthetic euglenids
[28,38]. We could not find a N-terminal extension on
the E. gracilis homolog compared to cyanobacterial
homologs (data not shown), thus it is likely that this
enzyme functions in cytosol in this organism.

We found a ‘red lineage’ gene encoding a conserved
protein with an ADP/ATP transporter domain in E. gra-
cilis and P. trichophorum (Figure 1B, Additional file 2:
Supplementary fig. S11). This gene was found only in
euglenids and Chromalveolata among eukaryotes, in
addition to several lineages of eubacteria. Stramenopiles
possess duplicated forms of this gene.

We found another ‘red lineage’ gene, LepA, in E. gra-
cilis. The LepA protein, also known as elongation factor
4 (EF4), is a GTP-binding protein conserved among
eubacteria and eukaryotes. A previous study [39] showed
that eukaryotic LepA genes are distributed in two
clades, a mitochondrial LepA clade and a plastid one,
with the plastid clade genes being sister to cyanobacter-
ial homologues, suggesting that they are likely derived
from the cyanobacterial ancestor of the plastid via EGT.
Although Escherichia coli LepA was shown to catalyze
one-codon backward movement of ribosome complexes
in vitro [39], it has no apparent effect in vivo on the
fidelity control of protein synthesis, rather presumably
playing some role in protein folding [40]. In this study,
the E. gracilis protein was nested in the CR subclade
(BI/ML = 1.00/100) in the plastid clade (Additional file
2: Supplementary fig. S12).

Methionine adenosyltransferase (MAT) catalyzes the
synthesis of S-adenosylmethionine, which is the major
methyl donor and used as a substrate in a variety of
methylation reactions. Genes encoding a divergent form
of MAT, termed MATX, have been found in eugleno-
phytes and CR, and it is suggested that the MATX genes
were acquired via EGT [33]. Although the E. gracilis
MATX is monophyletic with Chromalveolata MATX
counterparts with high support values (BI/ML = 1.00/
100), the origin of the MATX gene family is still unclear
[33,41] (Additional file 2: Supplementary fig. S13).

Tripodi et al. [42] showed that the gene encoding A4
fatty acid desaturase in E. gracilis was closely related to
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the homologues of Thalassiosira and the labyrinthulid
Thraustochytrium (stramenopiles). Although the
sequence of the E. gracilis desaturase gene was not
found in the EST database, we extended the phyloge-
netic analysis of this gene/protein with currently avail-
able data from other taxa. Our results (Additional file 2:
Supplementary fig. S14A) are consistent with the pre-
vious study [42]. Examination of the protein sequence
alignment revealed the presence of indels specific to the
Euglenal Thalassiosira plus Thraustochytrium clade that
are not shared with other excavate proteins from Trypa-
nosoma, Leishmania and Naegleria (Additional file 2:
Supplementary fig. S14B).

Discussion

Evolutionary history of the ‘red lineage’ genes in
euglenophytes

We have shown that a number of E. gracilis genes are
monophyletic with ‘red lineage’ genes and that some of
them are nested within the CR clade, suggesting that
the E. gracilis genes were acquired from algae in this
group via LGT. In addition to the fact that no reports
show a close phylogenetic relationship between the host
cell components of euglenids and Chromalveolata (plus
Rhizaria), the apparent absence of homologues of these
E. gracilis genes in the available genome sequences of
close relatives such as Kinetoplastea and the heterolobo-
sean amoeboflagellate N. gruberi further suggest that the
gene transfer events occurred in an ancestral lineage of
euglenids, rather than euglenozoans as a whole.

If the LGT scenario discussed above is true, what kind
of eukaryote-to-eukaryote LGT could have occurred?
One possible and most likely scenario is LGT from prey
to predator, as suggested in an EST-based analysis of
the mixotrophic chlorarachniophyte Bigelowiella natans
[43]. Although phagotrophy has apparently been lost in
their phototrophic offspring, the ancestor of eugleno-
phytes was likely a eukaryovorous euglenid protist [26].
Morphological and ultra-structural analyses have
demonstrated that Peranema-like eukaryovorous eugle-
nids are similar in size to photosynthetic euglenophytes
and are capable of ingesting algal prey by phagocytosis,
which is presumably a necessary prerequisite for the
eventual establishment of a secondary plastid [26]. A
study using video microscopy illustrated two types of
feeding in P. trichophorum: engulfment of a prey cell
whole (phagocytosis) as well as sucking out the prey cell
cytosol through the feeding apparatus (myzocytosis)
[44]. The presence of ‘red lineage’ genes in Peranema
(Additional file 2: Supplementary figs. S10, 11) supports
the idea that the LGT might have occurred prior to the
divergence of euglenophytes and at least some eukaryo-
vorous euglenids, but after the branching of eukaryovor-
ous euglenids from bacteriovorous ancestors [26]. In
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Figure 2 Hypothesized evolutionary history of the ‘red lineage’ genes in euglenids. In this model, the 'red lineage’ genes have been
acquired by the common ancestor of euglenophytes and eukaryovorous euglenids.

this scenario, the ancestor of euglenids might once have
ingested algae with ‘red lineage’ secondary plastids as
prey, and some genes might have been transferred from
the prey to the nuclear genome of the ancestor of eugle-
nids (Figure 2).

What kind of relationship might have existed between
the above-mentioned LGT donors and recipients? Our
data are consistent with the notion that these ‘red line-
age’ genes were acquired multiple times independently
via LGT from multiple sub-groups within the CR assem-
blage [43,45,46]. Under this view, some genes would
have been lost while others happened to acquire a func-
tion in the host organism, perhaps ultimately contribut-
ing to the successful integration and functioning of the
green algal endosymbiont that eventually became the
current euglenophyte secondary plastid. Importantly,
these genes were retained in the euglenophyte nuclear
genome (at least in E. gracilis) without being replaced
by the EGT-derived genes from the secondary green-
algal endosymbiont, which gave rise to the ‘modern-day’
secondary plastids in extant euglenophytes.

A previous study illustrated a remarkable example of
LGT from non-green algae to euglenophytes. Triose-
phosphate isomerase (TIM) genes from euglenophytes
have been shown to be monophyletic with red algal
homologues, and only distantly related to green algae,
Excavata and Chromalveolata, suggesting an LGT from
red algae to euglenophytes [47]. Interestingly, we found
that the TIM genes from the chlorarachniophyte Bigelo-
wiella natans, a member of another algal lineage

harboring secondary plastid of green algal origin, were
also nested within the red algal clade (Additional file 2:
Supplementary fig. S15A). A unique insertion found in
red algae and euglenophytes [47] was also shared with
the B. natans gene (Additional file 2: Supplementary fig.
S15B). For consistency, we did not designate TIM as a
‘red lineage’ gene due to the absence of Chromalveolata
genes in the euglenid plus red algae clade. Future ana-
lyses will hopefully uncover the true history of this enig-
matic gene family.

Endosymbiotic versus lateral gene transfer

Phagocytosis of prey cells, endosymbiosis and, ulti-
mately, establishment of an organelle is a complex pro-
cess that is difficult to understand from genomic data
alone [48], and at the earliest stages of organellogenesis,
the distinction between LGT and EGT is blurred.
Nevertheless, several lines of evidence from our study
are consistent with the possibility that at least some of
the ‘red lineage’ genes in euglenids are derived from
EGT rather than LGT. First, some of the ‘red lineage’
genes appear to have plastid-related functions (e.g.,
Additional file 2: Supplementary figs. S5, S7 and S8).
Second, Peranema possesses ‘red lineage’ genes (Fig. 1B,
Additional file 2: Supplementary figs. S10, S11) and the
basic morphological characteristics believed to be neces-
sary for establishment of a secondary plastid: Peranema-
like euglenids are larger than other bacteriovorous and
Dinema-like eukaryovorous euglenids, comparable in
size and in the number of strips around the cell
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periphery (a well-established taxonomic character) to
several phototrophic euglenophytes such as Euglena and
Eutreptiella [26]. Genomic data from Peranema-like
eukaryovores are currently very limited. Regardless,
although morphological and phylogenetic analyses sug-
gest that aplastidic (osmotrophic, bacteriovorous and
eukaryovorous) euglenids are paraphyletic in euglenid
phylogenies, Peranema-like eukaryovores are sister to
phototrophic euglenophytes and possibly form a mono-
phyletic group with them [49]. Third, although tree
topologies are certainly dependent on taxon sampling
(and the number of genome sequences available), the
genes we have characterized can be interpreted as hav-
ing come from an ancestral lineage within the broader
CR assemblage, rather than one or a few specific
lineages. On balance, it is thus possible that the incor-
poration (phagocytosis and perhaps endosymbiosis) of
an alga harboring a secondarily derived ‘red lineage’
plastid could have occurred in a Peranema-like eukaryo-
vorous ancestor (Figure 2).

Under the EGT scenario, retention of genes encoding
plastid-targeted proteins such as PRK, ZEP and plastid-
type FBP (Additional file 2: Supplementary figs. S5, S7
and S8, respectively) suggests that the secondary green
plastid might have replaced the ‘red lineage’ tertiary
plastid or succeeded it within a short period of time
after plastid loss (Figure 2). This may be comparable to
the situation seen in the ‘green’ plastid-harboring dino-
flagellate Lepidodinium chlorophorum, where phyloge-
netic mosaicism of the nuclear-encoded plastid-targeted
proteins derived from both the ancestral peridinin-type
plastid, which is the most common plastid in dinoflagel-
lates, and the ‘new’ secondary plastid of green algal ori-
gin, which is thought to have been acquired by plastid
replacement [46].

From our data alone, it is difficult to distinguish
unambiguously between the LGT and EGT hypotheses
for any given gene. The data do, however, represent
an interesting case study for discussing which hypoth-
esis is most likely and under what conditions. If multi-
ple phylogenetic trees suggest that the genes in
question are most closely related to different organ-
isms, the “independent LGT” scenario is most likely
correct. However, if the tree topologies are consistent
with one another and all the genes appear to be
derived from the same source, then “ancient EGT” can
be considered. Nevertheless, consistent tree topologies
inferred from multiple genes/proteins do not necessa-
rily prove that all the genes have a single origin, as
phylogenetic artefacts can be misleading and taxon
sampling is often insufficient to allow fine-scale reso-
lution. On a gene-by-gene basis, LGT and EGT are
indistinguishable on the basis of phylogenetic tree
topology alone.
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Endosymbiosis can be considered a specific and
extreme case among numerous types of prey-predator
relationships [50]. Assuming that genes are repeatedly
transferred from the same prey organism and very close
relatives during the transition from endosymbiont to
organelle, an “ancient EGT” scenario entails stricter con-
ditions on the nature of the organism engulfed by the
host. Thus, based on parsimony, regardless of the num-
ber of transferred genes identified, “ancient EGT” would
seem to be less likely than multiple LGTs form a single
donor lineage, or “single-origin LGT”. However, this
parsimony-based argument does not necessarily apply in
every biological context. For instance, when the host cell
retains an endosymbiont that shares a recent common
ancestor with the source organism of the transferred
genes, “EGT” would be regarded as the most parsimo-
nious interpretation. Even when the host cell does not
possess such an endosymbiont, if the frequency of the
gene transfer correlates with the length of the period
when the prey is retained in the host cell, increasingly
large numbers of transferred genes would increasingly
favor the “EGT” scenario. One can also argue that if the
presumed functions of the transferred genes are
assumed to be reflective of the relationship between the
source organisms and the host cell, and if those genes
possess plastid-related functions, “ancient EGT” would
also seem to be a likely scenario. There are at present
no known criteria with which to quantify and compare
the probabilities of LGT and EGT from genomic data,
and further study will be necessary to verify whether the
above assumptions are biologically reasonable.

Alternative explanations and limitations in data
interpretation

As noted above, combined with the potential to be mis-
led by phylogenetic artifact, insufficient taxon sampling
is also a concern when interpreting the phylogenies pre-
sented herein. A previous study suggested that the plas-
tid-bearing ancestor of E. gracilis is related to the
prasinophyte genus Pyramimonas (Pyramimonadales)
[9], from which a complete nuclear genome sequence is
not yet available. If so, the E. gracilis genes would be
expected to be basally branching within the green plant
clade, or branching between green plants and other pri-
mary plastid-containing lineages (red algae and glauco-
phytes). However, only two genera, Ostreococcus and
Micromonas (Mamiellales), were included in our data-
base among prasinophytes, making interpretation
difficult.

A recent genome-wide phylogenetic study demon-
strated the presence of over 100 genes of apparent algal
affinity, probably derived from LGT events, in the choa-
noflagellate Monosiga brevicollis [51]. The red algal-like
glucokinase analyzed herein (Additional file 2:
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Supplementary fig. S3), which was not identified in the
previous study [51], may provide another example of
LGT-derived algal genes in M. brevicollis. Nevertheless,
given that other eukaryotes (animals, fungi, land plants
and some excavates) possess a different type of enzyme
for phosphorylating hexose [35,36], our data do not rule
out the possibility of differential loss of multiple gene
families with overlapping functions early in eukaryotic
evolution.

It is also important to recognize that the Euglena and
Peranema EST data are far from complete gene reper-
toires and that nuclear genome sequences, especially of
basally branching green algae and euglenids, would be
helpful to better resolve the early history of plastids in
euglenophytes and other photosynthetic eukaryotes.
Wider and richer taxon sampling will also help to
reduce the impact of phylogenetic artifacts, e.g., long-
branch attraction, stochastic variation or directional
biases of evolutionary signals.

As discussed above, recent studies have suggested that
the ancestor of Chromalveolata possessed a considerable
number of genes showing affinity to green plants
[2,5,25,32]. If chromalveolates are a monophyletic group,
how would such ‘green’-type genes be expected to
behave in phylogenetic trees relative to the EGT-/green
algal-derived genes of euglenids and chlorarachnio-
phytes? ‘Green’-type genes in euglenids and CR could be
monophyletic due to phylogenetic artifacts (as could the
‘red’-type ones) and we set aside trees in which their
monophyly was weakly supported and/or the phyloge-
netic patterns were too ambiguous. It is notable that
phylogenetic patterns such as those seen in the FBT and
ZEP trees (Additional file 2: Supplementary figs. S6 and
S7, respectively) could be interpreted as a result of LGT
from CR specifically to prasinophytes, which is in the
opposite direction to the model proposed in previous
studies [25,32]. Thus, it is important to recognize that
the directionality of LGT events can be difficult to dis-
cern with confidence and greatly impact how we inter-
pret global patterns of plastid gain and loss. Regardless,
despite numerous uncertainties our data clearly indicate
that euglenid nuclear genomes are evolutionary mosaics,
the result of a complex past in which LGTs from (i) CR
to euglenids, (ii) from green plants to CR (and the
reverse), as well as (iii) EGTs from red algae to CR and
(iv) from green algae to euglenids, appear to be overlaid
upon the ‘host lineage’ phylogeny. It is essential that our
understanding of the evolutionary histories of these be
reevaluated regularly and cautiously as more genomic
data accumulate.

Conclusions
We have identified a number of ‘red lineage’ genes in
the phototrophic euglenophyte E. gracilis, an organism
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that harbors a green algal-derived secondary plastid, as
well as in the plastid-lacking eukaryovorous euglenid P.
trichophorum. 1t is likely that these genes have been
acquired via eukaryote-to-eukaryote LGT, giving rise to
a complex pattern of genome mosaicism in euglenids.
The possible sources of these genes are from prey
organisms, and, possibly, the presence of a cryptic ‘red
lineage’ tertiary endosymbiont in an ancestral euglenid.
Such LGT- and/or EGT-derived genes may have con-
tributed to the successful integration and functioning of
the green algal secondary plastid in modern-day
euglenids.

Methods

cDNA library and sequencing

P. trichophorum cells were co-cultured with Chlorogo-
nium sp. as described previously [52]. The total RNA
was extracted using SV Total RNA Isolation (Promega,
WI, USA), and a cDNA library for P. trichophorum was
constructed and end-sequenced (TAKARA BIO Inc.,
Shiga, Japan). The prey Chlorogonium cells were
depleted in the cultures when the Peranema cells were
collected. For E. gracilis genes, 3’ end sequences were
amplified by rapid amplification of cDNA ends (RACE)
using the Omniscript RT kit (Qiagen, CA, USA). The E.
gracilis LepA and P. trichophorum ADP/ATP transpor-
ter gene fragments were deposited in DDBJ/EMBL/Gen-
Bank under the accession numbers AB617525 and
AB617526, respectively.

Data mining and phylogenetic analysis

The genome sequence data and phylogenetic tools used
in the similarity search and tree construction were as
described in our previous study [28]. The EST
sequences of E. gracilis were obtained from TBestDB
(http://tbestdb.bcm.umontreal.ca/) and all other
sequences were from the NCBI GenBank refseq data-
base (http://www.ncbi.nlm.nih.gov/), the JGI genome
database (http://genome.jgi-psf.org/) and the Galdieria
sulphuraria whole genome data (A.P.M. Weber, unpub-
lished). We excluded amitochondrial and/or parasitic
eukaryotes, which might cause long branch attraction
artifacts due to unusual nucleotide compositions and
accelerated rates of sequence evolution [53,54].

For the first screening step, amino acid query
sequences derived from E. gracilis genes (8651 queries)
were automatically subjected to BLAST searches against
the GenBank non-redundant (nr) database using NCBI
netblast and EFetch utilities, extracting the genes show-
ing the E-value smaller than 10e-5 to ‘Viridiplantae’ by
BLASTP. For the second step, the selected query
sequences (2632 queries) were subjected to BLASTP
analysis against ‘refseq-protein’ to fetch homologous
sequences with E-values less than 0.001, up to 500 hits
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at a maximum. Multiple alignments, phylogenetic tree
constructions and laterally transferred gene mining were
carried out using a gene mining pipeline that we devel-
oped in a previous study [28]. Briefly, multiple align-
ments were then performed using MUSCLE [55],
followed by automated removal of indel-rich sites and
taxa. Bootstrapped neighbor-joining trees were produced
using QuickTree [56]. To diminish the sampling bias, all
the OTUs except for one representative OTU in a
monophyletic clade exclusively composed of OTUs from
a single genus were removed, and the trees were re-con-
structed for calculating the distance between the query
and any taxon of interest on the tree. In addition to the
automatic process, trees for genes previously published
as the putative photosynthetic endosymbiont-derived
genes, but not detected in our analysis, were manually
re-constructed.

Candidate ‘red lineage’ genes in E. gracilis were manu-
ally selected, and their homologues were collected based
on the BLASTP scores, and then subjected to multiple
protein sequence alignments using MUSCLE. Phyloge-
netic analyses were performed with maximum likelihood
(ML) using RAXxML [57] and with Bayesian interference
(BI) using MrBayes [58]. ML and BI were based on the
WAG substitution matrix, which gave high scores for all
proteins in model selection using ModelGenerator [59],
with options of four gamma-distributed rate categories
and estimate of invariable sites (plus empirical base fre-
quencies in ML). ML branch support was evaluated
with 1000 bootstrap replicates, and BI posterior prob-
ability values were calculated from the MCMC run data,
which summarized when the average standard deviation
of split frequencies reached less than 0.01. Except for
the trees of which monophyly was confirmed by pre-
vious studies, threshold values to assess the monophyly
of E. gracilis gene clades were 70% on ML bootstrap or
0.9 on BI posterior probability values.

Additional material

Additional file 1: Taxonomical distribution of the ‘closest gene’ to
the E. gracilis genes in distance on the first screening NJ trees.

Additional file 2: The HPT protein family. A, RAXML tree of the HPT
proteins. The RAXML bootstrap values (upper) and the MrBayes posterior
probability values (lower) are shown on each branch. Thick branches
represent Bl and ML values not lower than 100 and 95, respectively.
Different phylogenetic affiliations are represented as follows: blue,
Excavata; orange, Chromalveolata plus Rhizaria; magenta, red algae;
green, green plants; gray, unikonts; sky blue, cyanobacteria. B, Partial
amino acid alignments showing the unique Indels in the HPT family
proteins. RAXML tree of hypothetical proteins. RAXML tree of GLK
proteins. ClpP protein family. A, RAXML tree of ClpP proteins. B, Partial
amino acid alignments showing the conserved amino acid residues in
the ClpP family proteins. RAXML tree of PRK proteins. RAXML tree of FBT
proteins. RAXML tree of ZEP proteins. RAXML tree of paltidic FBP proteins.
RAXML tree of cytosolic FBP proteins. RAXML tree of GND proteins.
Glaucophytes are represented in blue-green. RAXML tree of ADP/ATP
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transporter proteins. RAXML tree of LepA proteins. RAXML tree of MAT
proteins. Fatty acid desaturase protein family. A, RAXML tree of fatty acid
desaturase proteins. B, Partial amino acid alignments showing the unique
Indels in the fatty acid desaturase family proteins. TIM protein family. A,
RAXML tree of TIM proteins. B, Partial amino acid alignments showing
the unique Indels in the TIM family proteins.
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