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Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding
to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental
evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are
amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance
(ASR). Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any
correlation between input and the output, the latter being the average(8pilgng rate of the neuron. This
lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for
identifying “cause and effect” between such inputs and outputs. In this paper, the “competition between
averages” model is used to determine what portion of a noisy, subthreshold input is responsible, on average,
for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically rel-
evant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average,
and this amount is approximateigdependenof the firing rate. Hence, correlation measures are generally
reduced as the firing rate is lowered even though neural control under this model is actually unaffected.
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I. INTRODUCTION must be surmounted in order for a neuron to fire. Since this
energy is accumulated from all inputs after the generation of
Thresholded biological systems such as sensory neuror@sprevious spike, the energy description is capable of predict-
and hysteretic neural populations, are exposed to a host @19 when but nothowa spike occurs in the presence of noisy
time varying stimuliin vivo that can be represented by an subthreshold inputs. That is, energy formulations are unsuit-
aperiodic input with superimposed noisy variations. Aperi-able in identifying the input factors responsible for a spike.
odic stochastic resonan¢aSR) is the study of how noise in ~ The aim of this paper is to replace potential theory with a
such systems is able to provoke a response to slowly varyingempetition model that is capable of assessing the expected
subthreshold, aperiodic inputs. As such inputs are involvedMe to fire(when as well as cause and efféiow) between
in neural cardiac regulatiof,2] the study of ASR is impor- the noisy subthreshold aperiodic inputs and the average fir-

tant to provide insight into noise enhancement of cardiad"d rate generated pya neu_rCuutpuD. Fpr analytic S|mp_l|c- .
control ity, the FHN equations, which approximate the physiologi-
A féature commonlv used to measure ASR in SensorcaIIy based Hodgkins-HuxlegHH) equations, are chosen as

y % model for the firing of a sensory neuron. This choice is

neurons is the co_rre]at_ion between noisy, sIowa_v_arying,f rther justified by the experimental observatif®| (and
subthreshold aperiodic inputs and the.average activity lev thers referenced in Ref2]) that any model of a cardiac
generated by such neurof8-9]. In this paper, the term gonsary neuron must include the response of sensory neurites
“activity level” is also variously referred to as a “firng o mechanical and chemical stimuli. Until such a model is
rate” or “spiking rate.” Concerning sensory neurons sub- constructed and verified with experimental data, there is little
jected toperiodicinputs[stochastic resonan¢8R)], itis the  physical preference in this work for either the FHN or HH
relationship between the power spectrum of a noisy periodigquations. However, the conclusions drawn in this paper,
input and that of the average firing rate that is thought tobased upon the FHN equations, must be regarded as being
characterize the contrdll0-13. Analytic expressions for physiologically qualitative. The method of analysis in this
the correlation between input and neuronal firing rate havetudy (a detailed description appears in REE5]) is appli-
been found based on the canonical Fitzhugh-Nag(fhtN) cable to more complex neural models such as the HH equa-
equationg3,4]. The FHN equations describe the resettabletions[5].

firing dynamics of a sensory neuron and allow for the ap- If R(t) is an external forcindinput), v(t) is the neural
proximation of an action potential as the escape from a povoltage, w(t) is a slow recovery variable, ant{v)=v(a
tential well followed by a recovery period within which no —v)(v—1), wherea is a parameter, then

activity can be generatethbsolute refractory period4].

The average firing rate of a neuron in the presence of noise

then follows Kramer’s escape rafté4] from which the cor- ev(t)="f(v)—w(t)+R(t),
relation between the noisy input and firing rate is directly
constructed. )
The potential-well description defines an energy level that w(t)=uv(t)—w(t)—b. (1)
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FIG. 1. The numerical solution of the FHN
model(1) is shown along with the inputR(t). In
the absence of firing, the voltage variablg) is
close to the stable fixed point shown as the
heavier solid line. The inputR(t), are near the
0.4f . zero expected valu¢u(t)=0] shown as the

heavier dashed line. All variations around the
o.zw
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heavier dashed line are the fast, red noise, fluc-
tuations. There is little correlation between inputs
and outputdaverage firing rate of (t)].
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is the FHN neural model, whera=0.5 andb=0.15 are control inputu(t). The “almost” means that the noise vari-
parameters, while the parameteis taken to be 0.008hisis  ance is restricted to a finite value, essentially by band limit-
same order of magnitude as that chosen in R&f. To ing its spectral density.

determine cause and effect between the noisy inputs and the The solution ofR(t) + R(t) = u(t) + oS(1), is a Gaussian

average firin_g rate ob(t), it is necessary to eliminate the ,n40m noise with a “red” spectral density functidde-
recovery variablev(t) from Eq. (1) so that the dependence o oaqing power at higher frequendiesid is referred to here
qf v(t) on the mputsR(t) is epr|C|t_. Slnce. the FHN_equa- as “red noise.” In Fig. 1,(t)=0 ando=0.6. There is little
tions are linear in the recovery, variablgt) is conveniently pointwise (in time) correlation between the inp@&(t), and

eliminated to give the output[average firing rate ob(t)]. Hence, a question
arises:how are the fast fluctuations in the input causing fir-
. , . B . ing?
eo()+[e=F'(v)Jo(+v () =Flv)—b=RMO+R(1). (2) The cause and effect description of the FHN equations, in
the noisy subthreshold forcing regime developed here, is also
The elimination of the recovery variable could have bee used to describe a possible role for noisy mechanical fluc-

. o . . ~"tuations in inputs to cardiac afferent neurons. Developing a
performed by linearizing around the stable fixed point. Th'sbetter understanding of the effects of noise in the cardiac

e o e o ¥l reguitory ysen s mportant because s ysem
equations UtI|IZ.eS feedb_ack and f(_eedforward mgchamsms involving

In this .form it is clear that the recovery variable(t) spatially Iocghzed domains. antro_l within s_uch a system

' i must deal with the effects of noise, ideally using noise to its

feeds back the rate of change of inp®&), tov(t) and is  advantagd15,17.
therefore of primary importance in generating a spike in the  The inputs to a cardiac afferent neuron are represented as
presence of noisy subthreshold inputsgh-frequency noise  the sum of two components. First, there is a slowly varying
has large derivatives This point is further demonstrated in component, which varies at a-110 second time scale and
Fig. 1. The solution of Eq(1) is shown along with a noisy mainly represents chemical stimuli. Second, there is a fast
forcing R(t), taken from the solution oR(t)+ R(t) = w(t) fluctuation component that has amplitude fluctuations of du-
+ oS(t), whereu(t) is the process medhis is the control ration 0.01-0.1 s that derive from noisy mechanical stimuli
signa), o is the noise standard deviation, a8ft) is a sta- representing local muscle strain as transduced by sensory
tionary Gaussian random process with zero mean, unit varineurites (see Ref.[2] for a literature review and detailed
ance, and exponentially decaying correlation functigm) description. The fast fluctuations are still an order of mag-
=exp{—2|7/6} (this form of forcing is also considered in nitude more slowly varying than a cardiac afferent action
Ref.[12]). The correlation scale of fluctuati¢@6] 6, is cho-  potential and this relationship is the basis for the focus in this
sen here to equal the firing time constart0.008 s. Atthis paper on red noise fluctuationi§ig. 1). Furthermore, the
0 value, the fluctuationS$(t) are “almost” white noises and firing rate of a cardiac afferent neuron under noisy subthresh-
will not be confused with the slowly varying “essential” or old inputs is typically on the order of 10 H2]. This order
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FIG. 2. Time to fire(interspike interval for a constant input. FIG. 3. The expected time to fir&[ T], is shown for curves of

constanto ranging fromo=0.2 to 0=1.0 with steps ofoc=0.2.
of magnitude reduction in activity level, due to a possibleE[T] found from the differential equation&) (solid lines with
reliance on noisy subthreshold inputs, from a maximal activ-X" Symbols), is compared to that using the competition between
ity of 100— 150 Hz in the presence of superthreshold inputs@verages model developed in Sec. (8blid lines with “o” sym-
agrees with that derived from the FHN equatigrgy. 1). ols).

A main difficulty in understanding cardiac control is the

ability to envision how a large noisy component in afferentChoosingB=1 yields a red nois&(t) while the lower limit
neural activity, arising from local muscle strains, could beg=0 gives anR(t) with an almost white spectral density.
useful to cardiac neural regulation. Hence, understandinghe effect of variations i3 is followed up in the conclu-
hownoisy inputs cause firing in the FHN equations allows ansions and it is hereafter assumed tBat1. The slowly vary-
understanding of the role of fast mechanical fluctuations iring input component(t), is approximated as being piece-

cardiac control. wise constant
II. NOISY APERIODIC INPUTS AND NEURAL CONTROL “
. . . )= ri[Ut—t)—U(t—t; , 4
Cardiac afferent neurons provide feedback in closed-loop ) igo LU=t ~U =t @

control of regional cardiac function through variations in

their average activity. The investigation of firing in the pres-

ence of noise will be performed by first looking at the noise-where U(t)=0t<0, and U(t)=1t=0, is the Heaviside

free problem where the noisy inp&(t) is replaced by a step function, angk(t) =r; overt=t; tot=t; .

constant input. In the FHN model,(1 or 2 the time be- For 0>0, 7(r;) generalizes to the expected time to fire

tween spikes- for a noise-freeconstant input in the range  E[T] that is dependent on both the mean inpyt and the

0.11<r<r*, is 7(r)>7* (r*~0.35 and7*~0.8). This is  hoise variancer®. The piecewise constant model for essen-

depicted in Fig. 2. Note that>r* results in a monotonic tial control inputs is useful to present a simple constraint for

increasein 7. The competition model is described using aneural control in the presence of noisy, subthreshold inputs;

threshold definition of the time between spikes taken fronthe duration of a levet; should be long enough to allow the

the inverser (1), of 7(r). If a threshold (7) is defined, then ~average firing interarrival timez[T], to be established and

an input ofr(7) ensures that within a time another spike the inputr; to have the desired effecat least,t; ;—t;

will occur. Forr<r*, the lower branch of the inverse of >E[T]). Lone spikes, which may occur at transitions be-

7(r) is taken @(r) increases for>r*) and asr is de- tween levels; andr;, 1, will have a negligible effect on the

creased tar* from above, the threshold 7) monotonically ~ €xpected time to fire.

increases ta (7*)=r* from below. Forr<r* it is neces- Expected firing time<E[T] from Eq. 2 are depicted in

sary, for consistency, to set the threshold (@) = . Fig. 3, as the solid curves with “x” symbols, for various
The assumption adopted in Sec. I, that randomized inputi¢velsr; and fluctuation levelsr, whereo=0 (not shown is

satisfy R(t) +R(t)= u(t) + oS(t), is arbitrary. To investi- € same result as Fig. 2 for noiselegs) =r;<r*. All of
gate the affect of the noise spectral density shape on thtge expected time to fire curves in Fig. 3 are estimated from

neural response, the noise model may be more generally p&QOO mtgrsplke intervals and numerical solutions are op—
rametrized as tained using a fourth-order Runge-Kutta scheme. The solid

curves with “0” symbols are the expected times to fire pre-
_ dicted from the competition between averages described be-
R(t) + BR(t)= u(t) + oS(1). (3) low.
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ll. COMPETITION BETWEEN AVERAGES the following restatement of the competition between aver-

. . _ ages(details are in Ref[15]).
A cause and effect relationship between the noisy inputs A local average of widthV moving forward in time, has

and average firing rate is found by backwards local averages Do -
(see Ref. 1bof Eq. (2) over the time interval front to t 4 known upcrossingfiring) rate over a threshold=r (W)

. . . ) . —r; given by »(W) (see Ref.[15]), where W>§. For a
—W (whereW is the averaging window widjh If v(t) is 'Y . : .
near the stable fixed poinot firing, see Fig. J then Gaussian noise process with threshad 0, upcrossings

_ . ! will approximately follow a Poisson point procefhe ap-
ng:ll)(\)/va:égmrgof/tizz Z\ljgrsaclgg:]\/(;/ ?:?icr);(tezrgheer width of the proximation improves ad increasep The timeT to thefirst

upcrossing of the threshold by the local average process

() +Le— T () Jowd(t) + vw() — F (o) —b [R(t)+ R(t) Jw. Is given by

. 1
[R(H)+R) ]w, 5 E[TIW]=7+W+ W) (6)
for all t>W.

A local average taken over a finite window will not gen-
erally equal its expectation. However, the averaging doe
reduce the overall variance of the local average by a factor o
v(W), (see Ref[15]) where at zero window widtly=1 and
at large window width, whergv/> 6, y approache®/W. All E[T]=E[E[T|W]]~ 7, +E[W]+E
averaging of Eq(2) for a levelr; is taken over the time
interval (t;,t; . 41]. "

The hypothesis here is the same as that for a hysteretic = Tf+J wH(w) dW+J
population of neuron§l5]: the expected time to fire under 0 0
noisy external forcing can be expressed in terms of the time
to fire 7(r;), in the absenceof noise, as discussed above. In WhereH(w)=H(w;r;,0) is the probability density function
the presence of noise, firing will occur at tih& anyof the ~ of W, the averaging window width associated with a spike.
backward local averages from timeo time t—W exceeds Although the lower limits are zero in Ed7), there is no
r(W) [0<W<t andr (W) is the input threshold, which leads contribution to these integrals below=r,, since H=0
to a first spike after tim&V]. Hence, each instant in time has When 0<w<,; the window width cannot go below the
a range of local averaging windowss<QV<t, from which to minimum activation time. This is a restatement of the com-
draw a “winning” threshold exceedanceRy(t)>r(W). petition between averages. It means that the likelihood a par-
This is the competition between averages. ticular average of the inputs over a window width[R(t)

A further assumption is made concerning the barrier+R(t)],,, causes a spike, is given by(w). Therefore,
r(W): The time to fire,7(r), (Fig. 2) is modeled as the sum cause and effect resides in the probability density function of
of a variable activation time when the external forcing isW, H(w), which characterizes the amount of past input re-
actively causing a spike, and an absolute refractory tige, sponsible for a spike.
during which no spiking is possibl@ recovery takes plage A numerical description oH (no analytical results are
The minimum time to fire ist* =r,+ 7., wherer, is a  availablg is used to describe its properties in the subthresh-
minimum activation time. Therefore, the absolute refractoryold ranger;<0.11, where the noise levets are associated
time 7, is removed from the time to fire(r) in Fig. 2 by  with low firing rates €[ T]>1). Simulation for subthreshold
shifting this curve downwards by, . The minimum of the inputs shows thaltl is approximately lognormal, but is trun-
shifted 7(r) curve is equal to the minimum activation time cated tow= r,~0.5. The fitted lognormal distribution and
7. The inverse of this curve(7) now forms the variable the numerically derived normalized histogram are shown in
barrierr (W). Unless explicitly stated it is now assumed thatFig. 4. It is also clear thaH has a complicated, but weak
7(r) andr (W) are the appropriately shifted curves. dependence upan ando. The weak dependence Hfupon

The above hypothesis and assumption are clearly verified, and the noise levetr implies that the window width of
in Fig. 3. Monte Carlo simulation of the expected time to noisy subthreshold inputs responsible for the average firing
fire, found from the FHN differential equatiof®), is com-  rate is approximatelyndependendf the average firing rate
pared to the same found from the competition mddsinga  (Sec. I\). The semianalytical formulatioi7) and the com-
different generator se@dThe absolute refractory time is petition between averages are compared in Fig. 5 for sub-
chosen asr,~0.3 giving a minimum activation timer,  threshold inputs.
~0.5. The differential equation is forced with almost white  For superthreshold inputs,>0.11, H is strongly depen-
noise (¢#=0.008) superimposed an. dent onr; and o. However, in this case it tends to be nor-

The description of cause and effect arising from the com:mally distributed to first order aroung(r;), and so a reason-
petition model is rooted in the averaging winddi since  able approximatiorinot shown of the expected time to fire
this tells how much of the recent past has been responsibis E[T]=7(r;), taken from Fig. 2. This approximation is
for a spike. This description is best clarified by a semianaanticipated by the first-order independenceEpfT], at su-
lytical model of the expected times to fire and is based upomperthreshold inputs, our.

This conditional expectation is a function of tlieandom
averaging window widthV of inputs responsible for a spike.
aking expectations with respect W yields

1
v(W)
1

©
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5 ' ' ' ' ' ' ' ' exerted in spite of a near absence of &pgintwise corre-
) lation between the inputs and the average firing rate. Use of
the competition model allows the drawing of the following,
physiologically relevant conclusions:
. (i) An approximatelyconstantamount of input, is respon-
sible, on average and at lower firing rates, for a sp&ec.
lII). This feature of the FHN equatiorferhich may not be
true for other neural modelsis due to the approximate in-
_ dependence of the probability density functiBnfrom the
essential inputs; and the noise levelr as demonstrated in
the previous sectiofFig. 4).
. (ii) Given (i), correlation between the input and average
firing rate (outpud is generally unsuitable to measure neural
control. At lower firing rategi) implies that, on average, the
fraction of inputs responsible for a spike is inversely propor-
tional to the time to fire and this forces a reduction in any
correlation measure as the expected time to fire increases.
FIG. 4. The normalized histogram of the averaging window dis-This reduction is an artifact because neural control continues
tribution H(w;r;,o) is shown for three sets of; and o: to be exerted through an approximately constant length of
H(w;0.03,0.6) as solid lines with “x" symbolsii(w;0.04,0.4) as  input per spike. Hence, the tuning or modulation of input
solid lines with “+" symbols, H(w; —0.05,0.8) as solid lines with noise levels to increase correlation levels with the intention
“0” symbols. The respective expected times to fire &@T]  of improving control performancfs], may be unnecessary.
~3.5, E[T]~7, andE[T]~8. A fitted lognormal distribution is  Thijs |ast observation is important since it allows the exten-
also shown as a solid line nearly superimposed upon each of thgjon of ASR-based control to situations, such as cardiac neu-
numerically derived H(w;r;,o). There is litle variation in 5| control, where noise modulation has not been observed
H(w:r;, o) despite large changes in the expected time toBfd], 4.4 Jittle correlation is observed between inputs and average
and the dependence bf uponr; and o is weak. firing rate.
(iii) The recovery variable \t), is predicted as being
primarily responsible for neural firing in the regime of noisy,
The competition model presented here has been used subthreshold inputs. The recovery variable does this by feed-
provide an understanding of cause and effect between inputsg back the input derivative to the voltagét) [Sec. I, Eq.
and the average firing rate, within the noisy, subthreshold2)]. This property of the FHN equations arises due to the
input regime for the FHN equationéNote, the FHN equa- wide separation of the slovirecovery and the fast{firing)
tions approximate the more physiologically accurate HHtime scales and may differ in the HH equations where these
equations, and to this extent the conclusions drawn here réime scales are less separat&dl
garding cause and effect are physiologically qualitativhe (iv) Given (iii), this sensitivity of the voltage(t) to the
connection between cause and effect in this regime is cruciahput derivative, seen in Ed2), also implies that forcing of
to understanding how neural control can be meaningfulljthe FHN equations by almost “white” Gaussian noise is

IV. SUMMARY AND CONCLUSIONS

12r

FIG. 5. The expected time to fir&[ T] from
the competition between averageslid lineg is
compared to the same predicted from the semi-
analytic model(7) (dashed linesfor two values
of o. The fitted log-normal distributions,

E[T] o H(w;0.04,0.4) and4(w; —0.05,0.8)(see Fig. 4
are, respectively, used in the evaluationEpfT ]
(sec) (7) for c=0.4 ando=0.8. The dependence bf

onr; is neglected in computing[ T]. The closer
agreement between the semianalytical model and
the competition, near;=—0.05 andr;=0.04, is
due to the use of the correspondid§w;r; ,o) at
those locations.
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likely to be less physical since it greatly increases the gradiscured by the fact that most afferent neural activity, basic to
ent of the expected time to fire with respect to the nois€eedback information for cardiac neural regulation, has a
level. Specifically, with respect to E@2), the standard de- large noisy component arising from sensory neurites re-
viation of white-noise forcing, 3=0, is a factor of sponding to fast fluctuations in local muscle strajis?).
J1+2m/6? [16] greater than the red noise forcing found However, when considered in light of ASR-based control,
when 8=1. In addition, this noise magnification factor is the model considered here suggests that noisy fluctuations
typically large and unknown since the correlation scalé is could well serve to amplify subthreshold essential control
<1 (taken to be the firing time constaat=0.008 hergand  inputs, derived mainly from chemical stimuli operating at
difficult to estimate. It is felt that such a white-noise model|onger time scales. Such extension of cardiac neural control
runs counter to control performance requirements and sg subthreshold input levels would certainly be useful in im-
seems unlikely to be implemented in the actual biologicalproving cardiac control performance. The understanding of

model. these points will aid the design of experiments to uncover the
Given (i)—(iv), it is clear that a useful feature of the com- details of cardiac regional control.

petition model is the capability to form much more precise,

physiologically based, comparisons between neural models
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