
PHYSICAL REVIEW E, VOLUME 63, 041911
Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model
of cardiac sensory neurons
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Regional cardiac control depends upon feedback of the status of the heart from afferent neurons responding
to chemical and mechanical stimuli as transduced by an array of sensory neurites. Emerging experimental
evidence shows that neural control in the heart may be partially exerted using subthreshold inputs that are
amplified by noisy mechanical fluctuations. This amplification is known as aperiodic stochastic resonance
~ASR!. Neural control in the noisy, subthreshold regime is difficult to see since there is a near absence of any
correlation between input and the output, the latter being the average firing~spiking! rate of the neuron. This
lack of correlation is unresolved by traditional energy models of ASR since these models are unsuitable for
identifying ‘‘cause and effect’’ between such inputs and outputs. In this paper, the ‘‘competition between
averages’’ model is used to determine what portion of a noisy, subthreshold input is responsible, on average,
for the output of sensory neurons as represented by the Fitzhugh-Nagumo equations. A physiologically rel-
evant conclusion of this analysis is that a nearly constant amount of input is responsible for a spike, on average,
and this amount is approximatelyindependentof the firing rate. Hence, correlation measures are generally
reduced as the firing rate is lowered even though neural control under this model is actually unaffected.

DOI: 10.1103/PhysRevE.63.041911 PACS number~s!: 87.19.Hh, 05.40.2a
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I. INTRODUCTION

Thresholded biological systems such as sensory neu
and hysteretic neural populations, are exposed to a hos
time varying stimuli in vivo that can be represented by a
aperiodic input with superimposed noisy variations. Ape
odic stochastic resonance~ASR! is the study of how noise in
such systems is able to provoke a response to slowly vary
subthreshold, aperiodic inputs. As such inputs are invol
in neural cardiac regulation@1,2# the study of ASR is impor-
tant to provide insight into noise enhancement of card
control.

A feature commonly used to measure ASR in sens
neurons is the correlation between noisy, slowly varyi
subthreshold aperiodic inputs and the average activity le
generated by such neurons@3–9#. In this paper, the term
‘‘activity level’’ is also variously referred to as a ‘‘firing
rate’’ or ‘‘spiking rate.’’ Concerning sensory neurons su
jected toperiodic inputs@stochastic resonance~SR!#, it is the
relationship between the power spectrum of a noisy perio
input and that of the average firing rate that is thought
characterize the control@10–13#. Analytic expressions for
the correlation between input and neuronal firing rate h
been found based on the canonical Fitzhugh-Nagumo~FHN!
equations@3,4#. The FHN equations describe the resetta
firing dynamics of a sensory neuron and allow for the a
proximation of an action potential as the escape from a
tential well followed by a recovery period within which n
activity can be generated~absolute refractory period! @4#.
The average firing rate of a neuron in the presence of n
then follows Kramer’s escape rate@14# from which the cor-
relation between the noisy input and firing rate is direc
constructed.

The potential-well description defines an energy level t
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must be surmounted in order for a neuron to fire. Since
energy is accumulated from all inputs after the generation
a previous spike, the energy description is capable of pred
ing when, but nothowa spike occurs in the presence of noi
subthreshold inputs. That is, energy formulations are uns
able in identifying the input factors responsible for a spik

The aim of this paper is to replace potential theory with
competition model that is capable of assessing the expe
time to fire~when! as well as cause and effect~how! between
the noisy subthreshold aperiodic inputs and the average
ing rate generated by a neuron~output!. For analytic simplic-
ity, the FHN equations, which approximate the physiolo
cally based Hodgkins-Huxley~HH! equations, are chosen a
a model for the firing of a sensory neuron. This choice
further justified by the experimental observation@2# ~and
others referenced in Ref.@2#! that any model of a cardiac
sensory neuron must include the response of sensory neu
to mechanical and chemical stimuli. Until such a model
constructed and verified with experimental data, there is li
physical preference in this work for either the FHN or H
equations. However, the conclusions drawn in this pap
based upon the FHN equations, must be regarded as b
physiologically qualitative. The method of analysis in th
study ~a detailed description appears in Ref.@15#! is appli-
cable to more complex neural models such as the HH eq
tions @5#.

If R(t) is an external forcing~input!, v(t) is the neural
voltage, w(t) is a slow recovery variable, andf (v)5v(a
2v)(v21), wherea is a parameter, then

e v̇~ t !5 f ~v !2w~ t !1R~ t !,

ẇ~ t !5v~ t !2w~ t !2b. ~1!
©2001 The American Physical Society11-1
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FIG. 1. The numerical solution of the FHN
model~1! is shown along with the inputsR(t). In
the absence of firing, the voltage variablev(t) is
close to the stable fixed point shown as t
heavier solid line. The inputsR(t), are near the
zero expected value@m(t)50# shown as the
heavier dashed line. All variations around th
heavier dashed line are the fast, red noise, fl
tuations. There is little correlation between inpu
and outputs@average firing rate ofv(t)#.
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is the FHN neural model, wherea50.5 andb50.15 are
parameters, while the parametere is taken to be 0.008~this is
same order of magnitude as that chosen in Ref.@3#!. To
determine cause and effect between the noisy inputs and
average firing rate ofv(t), it is necessary to eliminate th
recovery variablew(t) from Eq. ~1! so that the dependenc
of v(t) on the inputsR(t) is explicit. Since the FHN equa
tions are linear in the recovery, variablew(t) is conveniently
eliminated to give

e v̈~ t !1@e2 f 8~v !#v̇~ t !1v~ t !2 f ~v !2b5R~ t !1Ṙ~ t !. ~2!

The elimination of the recovery variable could have be
performed by linearizing around the stable fixed point. T
latter approach is necessary when there is a nonlinear de
dence on the recovery variable~s!, such as occurs in the HH
equations.

In this form, it is clear that the recovery variablew(t)
feeds back the rate of change of inputsṘ(t), to v(t) and is
therefore of primary importance in generating a spike in
presence of noisy subthreshold inputs~high-frequency noise
has large derivatives!. This point is further demonstrated i
Fig. 1. The solution of Eq.~1! is shown along with a noisy
forcing R(t), taken from the solution ofR(t)1Ṙ(t)5m(t)
1sS(t), wherem(t) is the process mean~this is the control
signal!, s is the noise standard deviation, andS(t) is a sta-
tionary Gaussian random process with zero mean, unit v
ance, and exponentially decaying correlation functionr(t)
5exp$22utu/u% ~this form of forcing is also considered i
Ref. @12#!. The correlation scale of fluctuation@16# u, is cho-
sen here to equal the firing time constante50.008 s. At this
u value, the fluctuationsS(t) are ‘‘almost’’ white noises and
will not be confused with the slowly varying ‘‘essential’’ o
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control inputm(t). The ‘‘almost’’ means that the noise var
ance is restricted to a finite value, essentially by band lim
ing its spectral density.

The solution ofR(t)1Ṙ(t)5m(t)1sS(t), is a Gaussian
random noise with a ‘‘red’’ spectral density function~de-
creasing power at higher frequencies! and is referred to here
as ‘‘red noise.’’ In Fig. 1,m(t)50 ands50.6. There is little
pointwise~in time! correlation between the inputR(t), and
the output@average firing rate ofv(t)#. Hence, a question
arises:how are the fast fluctuations in the input causing fi
ing?

The cause and effect description of the FHN equations
the noisy subthreshold forcing regime developed here, is
used to describe a possible role for noisy mechanical fl
tuations in inputs to cardiac afferent neurons. Developin
better understanding of the effects of noise in the card
neural regulatory system is important because this sys
utilizes feedback and feedforward mechanisms involv
spatially localized domains. Control within such a syste
must deal with the effects of noise, ideally using noise to
advantage@15,17#.

The inputs to a cardiac afferent neuron are represente
the sum of two components. First, there is a slowly vary
component, which varies at a 1210 second time scale an
mainly represents chemical stimuli. Second, there is a
fluctuation component that has amplitude fluctuations of
ration 0.0120.1 s that derive from noisy mechanical stimu
representing local muscle strain as transduced by sen
neurites~see Ref.@2# for a literature review and detaile
description!. The fast fluctuations are still an order of ma
nitude more slowly varying than a cardiac afferent acti
potential and this relationship is the basis for the focus in t
paper on red noise fluctuations~Fig. 1!. Furthermore, the
firing rate of a cardiac afferent neuron under noisy subthre
old inputs is typically on the order of 10 Hz@2#. This order
1-2
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of magnitude reduction in activity level, due to a possib
reliance on noisy subthreshold inputs, from a maximal ac
ity of 1002150 Hz in the presence of superthreshold inpu
agrees with that derived from the FHN equations~Fig. 1!.

A main difficulty in understanding cardiac control is th
ability to envision how a large noisy component in affere
neural activity, arising from local muscle strains, could
useful to cardiac neural regulation. Hence, understand
hownoisy inputs cause firing in the FHN equations allows
understanding of the role of fast mechanical fluctuations
cardiac control.

II. NOISY APERIODIC INPUTS AND NEURAL CONTROL

Cardiac afferent neurons provide feedback in closed-l
control of regional cardiac function through variations
their average activity. The investigation of firing in the pre
ence of noise will be performed by first looking at the nois
free problem where the noisy inputR(t) is replaced by a
constant inputr. In the FHN model,~1 or 2! the time be-
tween spikest for a noise-freeconstant inputr in the range
0.11,r ,r * , is t(r ).t* (r * '0.35 andt* '0.8). This is
depicted in Fig. 2. Note thatr .r * results in a monotonic
increasein t. The competition model is described using
threshold definition of the time between spikes taken fr
the inverse,r (t), of t(r ). If a thresholdr (t) is defined, then
an input ofr (t) ensures that within a timet another spike
will occur. For r ,r * , the lower branch of the inverse o
t(r ) is taken (t(r ) increases forr .r * ) and ast is de-
creased tot* from above, the thresholdr (t) monotonically
increases tor (t* )5r * from below. Fort,t* it is neces-
sary, for consistency, to set the threshold tor (t)5`.

The assumption adopted in Sec. I, that randomized inp
satisfy R(t)1Ṙ(t)5m(t)1sS(t), is arbitrary. To investi-
gate the affect of the noise spectral density shape on
neural response, the noise model may be more generally
rametrized as

R~ t !1bṘ~ t !5m~ t !1sS~ t !. ~3!

FIG. 2. Time to fire~interspike interval! for a constant inputr.
04191
-
,

t

g
n
n

p

-
-

ts

he
a-

Choosingb51 yields a red noiseR(t) while the lower limit
b50 gives anR(t) with an almost white spectral density
The effect of variations inb is followed up in the conclu-
sions and it is hereafter assumed thatb51. The slowly vary-
ing input component,m(t), is approximated as being piece
wise constant

m~ t !5(
i 50

`

r i@U~ t2t i !2U~ t2t i 11!#, ~4!

where U(t)50,t,0, and U(t)51,t>0, is the Heaviside
step function, andm(t)5r i over t5t i to t5t i 11.

For s.0, t(r i) generalizes to the expected time to fi
E@T# that is dependent on both the mean inputr i , and the
noise variances2. The piecewise constant model for esse
tial control inputs is useful to present a simple constraint
neural control in the presence of noisy, subthreshold inp
the duration of a levelr i should be long enough to allow th
average firing interarrival time,E@T#, to be established and
the input r i to have the desired effect~at least, t i 112t i
@E@T#). Lone spikes, which may occur at transitions b
tween levelsr i andr i 11, will have a negligible effect on the
expected time to fire.

Expected firing timesE@T# from Eq. 2 are depicted in
Fig. 3, as the solid curves with ‘‘x’’ symbols, for variou
levelsr i and fluctuation levelss, wheres50 ~not shown! is
the same result as Fig. 2 for noiselessr (t)5r i,r * . All of
the expected time to fire curves in Fig. 3 are estimated fr
1000 interspike intervals and numerical solutions are
tained using a fourth-order Runge-Kutta scheme. The s
curves with ‘‘o’’ symbols are the expected times to fire pr
dicted from the competition between averages described
low.

FIG. 3. The expected time to fire,E@T#, is shown for curves of
constants ranging froms50.2 to s51.0 with steps ofs50.2.
E@T# found from the differential equations~2! ~solid lines with
‘‘x’’ symbols !, is compared to that using the competition betwe
averages model developed in Sec. III~solid lines with ‘‘o’’ sym-
bols!.
1-3



u
g

n-
oe
r

re
r
im
In

s
s

ie

is

or

e

a

ifie
to

s

ite

m

ib
na
po

er-

s

.

e.

e
m-
par-

of
re-

sh-

-
d

in
k

ring

ub-

r-
-

s

KEMBER, FENTON, ARMOUR, AND KALYANIWALLA PHYSICAL REVIEW E 63 041911
III. COMPETITION BETWEEN AVERAGES

A cause and effect relationship between the noisy inp
and average firing rate is found by backwards local avera
~see Ref. 15! of Eq. ~2! over the time interval fromt to t
2W ~whereW is the averaging window width!. If v(t) is
near the stable fixed point~not firing, see Fig. 1!, then
f W(v)' f (vW) ~the subscriptW denotes the width of the
backwards moving average! and, to first order,

e v̈W~ t !1@e2 f 8~vW!#v̇W~ t !1vW~ t !2 f ~vW!2b

5@R~ t !1Ṙ~ t !#W , ~5!

for all t.W.
A local average taken over a finite window will not ge

erally equal its expectation. However, the averaging d
reduce the overall variance of the local average by a facto
g(W), ~see Ref.@15#! where at zero window widthg51 and
at large window width, whereW@u, g approachesu/W. All
averaging of Eq.~2! for a level r i is taken over the time
interval (t i ,t i 11#.

The hypothesis here is the same as that for a hyste
population of neurons@15#: the expected time to fire unde
noisy external forcing can be expressed in terms of the t
to fire t(r i), in theabsenceof noise, as discussed above.
the presence of noise, firing will occur at timet if anyof the
backward local averages from timet to time t2W exceeds
r (W) @0,W,t andr (W) is the input threshold, which lead
to a first spike after timeW#. Hence, each instant in time ha
a range of local averaging windows, 0,W,t, from which to
draw a ‘‘winning’’ threshold exceedance,RW(t).r (W).
This is the competition between averages.

A further assumption is made concerning the barr
r (W): The time to fire,t(r ), ~Fig. 2! is modeled as the sum
of a variable activation time when the external forcing
actively causing a spike, and an absolute refractory time,t r ,
during which no spiking is possible~a recovery takes place!.
The minimum time to fire ist* 5ta1t r , where ta is a
minimum activation time. Therefore, the absolute refract
time t r is removed from the time to firet(r ) in Fig. 2 by
shifting this curve downwards byt r . The minimum of the
shifted t(r ) curve is equal to the minimum activation tim
ta . The inverse of this curver (t) now forms the variable
barrierr (W). Unless explicitly stated it is now assumed th
t(r ) and r (W) are the appropriately shifted curves.

The above hypothesis and assumption are clearly ver
in Fig. 3. Monte Carlo simulation of the expected time
fire, found from the FHN differential equation~2!, is com-
pared to the same found from the competition model~using a
different generator seed!. The absolute refractory time i
chosen ast r'0.3 giving a minimum activation timeta
'0.5. The differential equation is forced with almost wh
noise (u50.008) superimposed onr i .

The description of cause and effect arising from the co
petition model is rooted in the averaging windowW since
this tells how much of the recent past has been respons
for a spike. This description is best clarified by a semia
lytical model of the expected times to fire and is based u
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the following restatement of the competition between av
ages~details are in Ref.@15#!.

A local average of widthW moving forward in time, has
a known upcrossing~firing! rate over a thresholdd5r (W)
2r i given by n(W) ~see Ref.@15#!, where W@u. For a
Gaussian noise process with thresholdd.0, upcrossings
will approximately follow a Poisson point process~the ap-
proximation improves asd increases!. The timeT to thefirst
upcrossing of the thresholdd by the local average proces

@R(t)1Ṙ(t)#W , is given by

E@TuW#5t r1W1
1

n~W!
. ~6!

This conditional expectation is a function of the~random!
averaging window widthW of inputs responsible for a spike
Taking expectations with respect toW yields

E@T#5E@E@TuW##'t r1E@W#1EF 1

n~W!G
5t r1E

0

`

wH~w! dw1E
0

`S 1

n~w! DH~w! dw, ~7!

whereH(w)5H(w;r i ,s) is the probability density function
of W, the averaging window width associated with a spik
Although the lower limits are zero in Eq.~7!, there is no
contribution to these integrals beloww5ta , since H50
when 0,w,ta ; the window width cannot go below th
minimum activation time. This is a restatement of the co
petition between averages. It means that the likelihood a
ticular average of the inputs over a window widthw, @R(t)
1Ṙ(t)#w , causes a spike, is given byH(w). Therefore,
cause and effect resides in the probability density function
W, H(w), which characterizes the amount of past input
sponsible for a spike.

A numerical description ofH ~no analytical results are
available! is used to describe its properties in the subthre
old ranger i,0.11, where the noise levelss are associated
with low firing rates (E@T#@1). Simulation for subthreshold
inputs shows thatH is approximately lognormal, but is trun
cated tow>ta'0.5. The fitted lognormal distribution an
the numerically derived normalized histogram are shown
Fig. 4. It is also clear thatH has a complicated, but wea
dependence uponr i ands. The weak dependence ofH upon
r i and the noise levels implies that the window width of
noisy subthreshold inputs responsible for the average fi
rate is approximatelyindependentof the average firing rate
~Sec. IV!. The semianalytical formulation~7! and the com-
petition between averages are compared in Fig. 5 for s
threshold inputs.

For superthreshold inputs,r i.0.11, H is strongly depen-
dent onr i and s. However, in this case it tends to be no
mally distributed to first order aroundt(r i), and so a reason
able approximation~not shown! of the expected time to fire
is E@T#5t(r i), taken from Fig. 2. This approximation i
anticipated by the first-order independence ofE@T#, at su-
perthreshold inputs, ons.
1-4



d
pu
o

H
r

c
ll

e of
g,

-

-

ge
ral
e
or-
ny
ses.
ues

of
ut
ion
.
n-
eu-
ved
age

y,
ed-

the

ese

is

is

f t

COMPETITION MODEL FOR APERIODIC STOCHASTIC . . . PHYSICAL REVIEW E 63 041911
IV. SUMMARY AND CONCLUSIONS

The competition model presented here has been use
provide an understanding of cause and effect between in
and the average firing rate, within the noisy, subthresh
input regime for the FHN equations.~Note, the FHN equa-
tions approximate the more physiologically accurate H
equations, and to this extent the conclusions drawn here
garding cause and effect are physiologically qualitative.! The
connection between cause and effect in this regime is cru
to understanding how neural control can be meaningfu

FIG. 4. The normalized histogram of the averaging window d
tribution H(w;r i ,s) is shown for three sets ofr i and s:
H(w;0.03,0.6) as solid lines with ‘‘x’’ symbols,H(w;0.04,0.4) as
solid lines with ‘‘1’’ symbols, H(w;20.05,0.8) as solid lines with
‘‘o’’ symbols. The respective expected times to fire areE@T#
'3.5, E@T#'7, andE@T#'8. A fitted lognormal distribution is
also shown as a solid line nearly superimposed upon each o
numerically derived H(w;r i ,s). There is little variation in
H(w;r i ,s) despite large changes in the expected time to fire,E@T#,
and the dependence ofH upon r i ands is weak.
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exerted in spite of a near absence of any~pointwise! corre-
lation between the inputs and the average firing rate. Us
the competition model allows the drawing of the followin
physiologically relevant conclusions:

~i! An approximatelyconstantamount of input, is respon
sible, on average and at lower firing rates, for a spike~Sec.
III !. This feature of the FHN equations~which may not be
true for other neural models!, is due to the approximate in
dependence of the probability density functionH from the
essential inputsr i and the noise levels as demonstrated in
the previous section~Fig. 4!.

~ii ! Given ~i!, correlation between the input and avera
firing rate ~output! is generally unsuitable to measure neu
control. At lower firing rates~i! implies that, on average, th
fraction of inputs responsible for a spike is inversely prop
tional to the time to fire and this forces a reduction in a
correlation measure as the expected time to fire increa
This reduction is an artifact because neural control contin
to be exerted through an approximately constant length
input per spike. Hence, the tuning or modulation of inp
noise levels to increase correlation levels with the intent
of improving control performance@6#, may be unnecessary
This last observation is important since it allows the exte
sion of ASR-based control to situations, such as cardiac n
ral control, where noise modulation has not been obser
and little correlation is observed between inputs and aver
firing rate.

~iii ! The recovery variable w(t), is predicted as being
primarily responsible for neural firing in the regime of nois
subthreshold inputs. The recovery variable does this by fe
ing back the input derivative to the voltagev(t) @Sec. I, Eq.
~2!#. This property of the FHN equations arises due to
wide separation of the slow~recovery! and the fast~firing!
time scales and may differ in the HH equations where th
time scales are less separated@5#.

~iv! Given ~iii !, this sensitivity of the voltagev(t) to the
input derivative, seen in Eq.~2!, also implies that forcing of
the FHN equations by almost ‘‘white’’ Gaussian noise

-

he
i-

,

nd
FIG. 5. The expected time to fire,E@T# from
the competition between averages~solid lines! is
compared to the same predicted from the sem
analytic model~7! ~dashed lines! for two values
of s. The fitted log-normal distributions
H(w;0.04,0.4) andH(w;20.05,0.8)~see Fig. 4!,
are, respectively, used in the evaluation ofE@T#
~7! for s50.4 ands50.8. The dependence ofH
on r i is neglected in computingE@T#. The closer
agreement between the semianalytical model a
the competition, nearr i520.05 andr i50.04, is
due to the use of the correspondingH(w;r i ,s) at
those locations.
1-5
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likely to be less physical since it greatly increases the gra
ent of the expected time to fire with respect to the no
level. Specifically, with respect to Eq.~2!, the standard de
viation of white-noise forcing, b50, is a factor of
A112p/u2 @16# greater than the red noise forcing foun
when b51. In addition, this noise magnification factor
typically large and unknown since the correlation scale iu
!1 ~taken to be the firing time constante50.008 here! and
difficult to estimate. It is felt that such a white-noise mod
runs counter to control performance requirements and
seems unlikely to be implemented in the actual biologi
model.

Given ~i!–~iv!, it is clear that a useful feature of the com
petition model is the capability to form much more precis
physiologically based, comparisons between neural mo
such as the Hodgkins-Huxley and the Fitzhugh-Nagu
equations; their treatment of cause and effect in the no
subthreshold regime can now be directly evaluated. For
ample, the possibility, that neural models may behave dif
ently in the noisy subthreshold regime, has recently begu
be investigated@18,19#.

Understanding of cardiac regional control has been
o-
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scured by the fact that most afferent neural activity, basic
feedback information for cardiac neural regulation, has
large noisy component arising from sensory neurites
sponding to fast fluctuations in local muscle strains@1,2#.
However, when considered in light of ASR-based contr
the model considered here suggests that noisy fluctuat
could well serve to amplify subthreshold essential cont
inputs, derived mainly from chemical stimuli operating
longer time scales. Such extension of cardiac neural con
to subthreshold input levels would certainly be useful in i
proving cardiac control performance. The understanding
these points will aid the design of experiments to uncover
details of cardiac regional control.
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