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ABSTRACT

We present an analysis of the globular cluster NGC 2419, using a polytropic model in modified Newtonian dynamics
(MOND) to reproduce recently published high-quality data on the structure and kinematics of the system. We show
that a specific MOND polytropic model of NGC 2419 suggested by a previous study can be completely ruled out
by the data. Furthermore, the highest likelihood fit polytrope in MOND is a substantially worse model (by a factor
of ∼5000) than a Newtonian Michie model we studied previously. We conclude that the structure and dynamics of
NGC 2419 favor Newtonian dynamics and do indeed challenge the MOND theory.
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1. INTRODUCTION

The well-known discrepancy between the luminous compo-
nents of galaxies and their dynamics has been interpreted as
evidence that vast quantities of some unknown type of dark
(non-luminous) matter surround these celestial structures. Al-
though this dark matter has not yet been directly detected, its
existence is consistent with other astrophysical analyses, includ-
ing the dynamics of galaxy clusters and the formation of large-
scale structure (see, e.g., Springel et al. 2006). However, a very
interesting alternative to this possibility, proposed by Milgrom
(1983), is that our theory of gravity is incorrect or incomplete.
According to this idea, General Relativity (or the Newtonian ap-
proximation to that theory) in the low-acceleration regime below
a characteristic value a0 (∼1.2×10−8 cm s−2) underpredicts the
actual acceleration.

This modified Newtonian dynamics (MOND) theory has
succeeded in passing numerous observational tests over the
almost three decades since it was first proposed (for instance, it is
able to fit the rotation curves of low surface brightness galaxies,
McGaugh & de Blok 1998, and tidal dwarf galaxies, Gentile
et al. 2007, and can fit gravitational lenses, Shan et al. 2008).
Although there are outstanding problems with the predictions of
the MOND theory (the growth of cosmological perturbations,
Dodelson & Liguori 2006; the offset between lensing mass and
baryons in the Bullet Cluster, Clowe et al. 2006; solar system
tests, Milgrom 1983; Sereno & Jetzer 2006; dynamical friction
in dwarf galaxies, Ciotti & Binney 2004; Sánchez-Salcedo et al.
2006; Nipoti et al. 2008; Angus & Diaferio 2009; and the
kinematics and density profile of satellite galaxies, Klypin &
Prada 2009, to list a few), the more widely accepted cold dark
matter (CDM) paradigm has deep-set issues of its own (the
missing satellite galaxies, the possible non-existence of dark
matter cusps, and the high angular momentum of galactic disks;
Binney 2004; Primack 2009).6 Determining which of the two

6 Plausible simulated solutions for these problems with CDM have only
recently been presented, yet they remain untested observationally.

competing theories of gravity represents reality remains a very
important and fundamental task.

Recent improvements in the precision and multiplexing ca-
pabilities of spectrographs have led several teams to study large
samples of stars in Galactic globular clusters as a means to
test MOND on the scale of parsecs up to ∼100 pc (Scarpa
et al. 2003; Haghi et al. 2009; Jordi et al. 2009; Gentile
et al. 2010; Lane et al. 2010). In a recent contribution to
this effort, our team examined the distant halo globular clus-
ter NGC 2419, re-measuring the surface brightness profile de-
rived from Hubble Space Telescope (HST)/Advanced Camera
for Surveys, Subaru/Suprimecam, and Canada–France–Hawaii
Telescope/MegaCam images, and obtaining high-accuracy ra-
dial velocity measurements with the Keck/DEIMOS spectro-
graph (Ibata et al. 2011, hereafter Paper I). We argued that this
globular cluster is by far the best globular cluster target to test
MOND with current instrumentation. Most importantly, it lies
far enough from the Milky Way so as to be relatively isolated,
and so suffers little external acceleration. Furthermore, it is mas-
sive, so it offers a reasonable number of targets within reach of
available high-resolution spectrographs; its velocity dispersion
is large enough to be easily measurable; and it is spatially ex-
tended, meaning that a substantial fraction of the cluster lies in
the low-acceleration regime where MOND differs from Newto-
nian gravity.

Outside of the very central regions, the cluster is circularly
symmetric in projection; furthermore, the cluster does not show
evidence of significant rotation (Paper I). These facts justify
using spherical models to fit the system. The analysis presented
in Paper I first examined Michie models, which are an extension
to King models that allow for anisotropy in the orbits of the
constituent stars of a spherical cluster. We found that a Michie
model in Newtonian gravity (with a core radius of rc = 11.7 pc,
a tidal radius of rt = 331 pc, a central velocity dispersion
parameter of σ0 = 6.36 km s−1, and an anisotropy radius of
ra = 1.5 × rc) gives an excellent representation of the data,
whereas Michie models in MOND have significantly lower
likelihood (the best model being a factor of more than 40,000
worse than the best model in Newtonian gravity).
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We then expanded our analysis to examine a wider range of
models, using a Markov Chain Monte Carlo (MCMC) scheme to
generate kinematic models consistent with the Jeans equation.
The best such model in MOND was again found to be strongly
disfavored compared to the best Michie model in Newtonian
gravity.

However, these conclusions from Paper I were recently
strongly criticized by Sanders (2011, hereafter S11), on the
grounds that other models could reproduce the system well
in MOND. The MCMC procedure mentioned above that we
implemented in Paper I examined one million different kine-
matic models. Nevertheless, it is certainly possible that a good
model in MOND was missed by the MCMC routine. Indeed,
S11 claims to have found a model that provides a counterex-
ample refuting our conclusions, proposing a model in MOND
that supposedly fits the available data. Here we will examine
the particular polytropic model proposed by S11 and extend the
analysis to search for the MOND polytropic model that best fits
the data on NCG 2419.

2. THE POLYTROPES

The model proposed by S11 is a polytrope with polytropic
index n = 10, central velocity dispersion of c0 = 7.5 km s−1,
and central density of ρ0 = 35 M� pc3. These parameters are
related via the polytropic equation

v2
r = c2

0(ρ/ρ0)(1/n) , (1)

where v2
r is the square of the radial velocity dispersion and ρ

is the density. In Paper I, we found that a significant orbital
anisotropy was necessary to reproduce the cluster satisfactorily.
The model proposed by S11 also included anisotropy, modeled
via the Osipkov–Merritt relation (Osipkov 1979; Merritt 1985)

β(r) = 1

1 + (ra/r)2
, (2)

where β ≡ 1 − v2
θ /v

2
r is the anisotropy parameter. The variable

v2
θ is of course the square of the tangential (one-dimensional)

velocity dispersion. As ra → ∞, the models become isotropic.
The value adopted by S11 for the anisotropy radius was
ra = 18 pc. Assuming that the cluster is spherical and static, the
kinematics and structure must obey the spherical Jeans equation

g = −v2
r

r

[
d ln ρ

d ln r
+

d ln v2
r

d ln r
+ 2β

]
, (3)

where r is the radial distance and g is the gravitational accel-
eration. It is straightforward to integrate this system of equa-
tions numerically, using a simple Euler scheme starting from
r = 0. This procedure works both for Newtonian dynamics and
MOND, though to simulate the latter the acceleration g needs
to be altered according to the MOND prescription:

gμ(g/a0) = gN, (4)

where gN is the corresponding Newtonian acceleration that
would result from the mass distribution given by ρ(r), while
μ is the MOND interpolation function. As in S11, we take
μ(x) = x/

√
1 + x2, with a0 = 10−8cm s−2.

Figure 1 shows the surface brightness profile and line-of-sight
velocity dispersion profile resulting from the parameters chosen

Figure 1. Comparison of the surface brightness (top panel) and line-of-sight
velocity dispersion (bottom panel) data from Paper I to the S11 polytropic
model (in MOND). The error bars mark 1σ uncertainties. The surface brightness
measurements are derived from star counts in annular regions containing
between 104 and 910 stars, whereas the velocity dispersions are calculated
from 27 stars per bin (except for the outermost bin which has 31 stars). The
integrated mass of the model is 7.7 × 105 M�, and the mass-to-light ratio has
been adjusted (to M/L = 1.8) to obtain the best χ2 fit to the surface brightness
data. Nevertheless, the fit in panel (a) is exceedingly poor, having χ2 = 1123;
this can be seen more clearly in the middle panel, where we have subtracted the
model from panel (a). The cross marks show the values of the model integrated
over the same radial annuli as the data, taking into account the window function
of the imaging survey. Clearly, this particular model is completely unacceptable.

(A color version of this figure is available in the online journal.)

by S11. The discrepancy with the observations is extremely
large. From the 15 points in the surface brightness profile alone
we obtain a chi-squared statistic of χ2 = 1123. While the S11
model is thus quantitatively completely excluded, it is very
interesting nevertheless to examine whether other parameter
values could provide an acceptable fit. To this end we used a
general-purpose MCMC fitting algorithm to search the space of
solutions of the polytropic models described above. The input
parameters are n, c0, ρ0, and ra, and the code sweeps through
the solutions trying to find the most likely model.

The (log) likelihood is calculated in a similar way to
Paper I, by adding the logarithm of the likelihood of the mod-
els given the surface brightness measurements to the logarithm
of the likelihood of the models given the line-of-sight velocity
measurements of individual stars. The surface brightness data
are derived from star counts measured in annuli over the sur-
veyed area. As detailed in Paper I, the HST and Subaru imaging
of the cluster has significant gaps, so for any accurate model
comparison it is necessary to take into account the missing
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Figure 2. Same as in Figure 1, but for the most likely stable polytropic model
fit using the Markov Chain Monte Carlo algorithm outlined in the text. MOND
gravity is assumed. As before, the mass-to-light ratio has been adjusted to
obtain the best χ2 fit to the surface brightness data. We require M/L = 1.9,

given the total model mass of 7.7 × 105 M�. However, this model provides a
substantially worse fit to the data than the best Michie model reported in Paper I
(see Figure 3): the surface brightness model is a factor of 81 less likely, and the
line-of-sight dispersion profile is a factor of 62 less likely. Note that the velocity
dispersion data displayed in the bottom panel are shown only to guide the eye, as
the likelihoods are calculated directly from the individual line-of-sight velocity
measurements, with their corresponding (individual) uncertainty estimates.

(A color version of this figure is available in the online journal.)

areas. The window function of the imaging survey was
therefore also applied to the models, and the models were
integrated over exactly the same annuli as the data.

The surface brightness data, by their very nature, are binned
averages. However, the kinematic data have much more discrim-
inating power if they are left unbinned as individual line-of-sight
velocity measurements. The likelihood of the model can then
be calculated as the product of the likelihood of each data point
(thus for these likelihood calculations we do not use the binned
velocity dispersion estimates displayed on the bottom panels of
Figures 1–3, which are shown just to guide the eye). For the
dynamical Michie models discussed in Paper I, we integrated
the distribution function to derive the line-of-sight velocity dis-
tribution as a function of radius. However, for the polytropic
models analyzed here we did not attempt to derive the distribu-
tion function, as we judged this an unnecessary complication.
The reason for this is that the observed line-of-sight velocity dis-
tribution closely resembles a Gaussian distribution at all radii
(see Paper I, Figure 14). We therefore assume that the radial
and tangential velocity distributions are Gaussian, and expect
this assumption to be a reasonable approximation to reality.

Figure 3. Same as in Figure 2, but showing the best Michie model derived in
Paper I, assuming Newtonian gravity (no. 17 from that contribution).

(A color version of this figure is available in the online journal.)

Furthermore, it is unlikely that any small deviations from
Gaussianity in the true line-of-sight velocity distributions will
have any significant bearing on the results discussed below. It is
straightforward then to integrate the polytropic model along the
line of sight to obtain the predicted velocity dispersion at the
projected radius of each kinematic datum. The full kinematic
data set (samples A and B of Paper I) is included in the analysis,
since this gives the most favorable case for MOND.

The most likely model found in this manner has c0 =
7.7 km s−1, n = 17.3, ra = 11.0 pc, and ρ0 = 52.7 M� pc−3.
By starting the MCMC algorithm from several different initial
parameter combinations, we verified that this corresponds to
a global likelihood maximum. However, this fit did not take
into account whether the resulting best model is physically
plausible. We checked that the models obey the Global Density
Slope-Anisotropy Inequality (Ciotti & Morganti 2010), and
also checked for stability by calculating ξhalf , a variant of
the Fridman–Polyachenko–Shukhman parameter (Fridman &
Poliachenko 1984), defined as twice the ratio of radial to
tangential kinetic energy within the half-mass radius (so that
ξhalf = 1 for isotropic systems). Nipoti et al. (2011) have
proposed ξhalf as a stability indicator for spherical stellar systems
in MOND, as the maximum value for stability ξhalf,s is only
weakly dependent on the density distribution and on the internal
acceleration of the system: in particular, for MOND models
of NGC 2419 in Paper I we found ξhalf,s ∼ 1.4–1.5. The
best model above has ξhalf = 1.53, slightly beyond the stable
region. Implementing a prior that forces ξhalf < 1.5 in the fitting
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procedure yields a model with parameters close to the previous
best-fit, with c0 = 7.9 km s−1, n = 17.6, ra = 11.5 pc, and
ρ0 = 58.0 M� pc−3, which has a total mass of 7.7 × 105 M�.
This best (stable) polytropic model is displayed in Figure 2.
The residuals with respect to the surface brightness profile are
very much smaller than for the S11 model, and a first visual
impression is that this is a reasonable model of the cluster.
Nevertheless, the likelihood of this fit is a factor of Λ = 1/5035
lower than the best Michie model fit in Paper I (and shown in
Figure 3): the surface brightness and kinematic data contribute
a factor of 81 and 62 to this likelihood ratio, respectively.7 In
this comparison we have included an 8% component of binaries
to the Newtonian model, as fitted in Paper I; this has the effect
of producing low-level “wings” to the velocity distribution. For
the MOND polytropic model, the highest likelihood occurs with
0% binaries.

Both the polytrope and Michie models have the same number
of parameters: three structural parameters, plus an anisotropy
radius, plus a fitted mass-to-light ratio, and a velocity zero point.
Given that the fits to both models have an identical number of
degrees of freedom, the quantity −2 ln Λ will be asymptotically
distributed as χ2(1) (James 2006). This allows us to exclude the
best MOND polytrope at the 99.996% confidence level.

While we judge the likelihood approach above to provide the
strongest and most reliable method for model comparison, some
readers may prefer the traditional frequentist χ2 hypothesis test.
In the present context, the χ2 method has the disadvantage that
it requires the kinematic data to be grouped into radial bins
to derive the velocity dispersion. Since the individual velocity
measurements come from different radial positions and have
different uncertainties, much information is lost in calculating
the sub-sample moments. Furthermore, the (weighted) velocity
dispersion estimates listed in Paper I have strongly asymmetric
non-Gaussian uncertainties. The following χ2 values are there-
fore presented with these caveats. For the best MOND poly-
trope, we calculate from the 15 surface brightness data points
χ2

SB = 22.55, whereas the best Newtonian Michie model has
χ2

SB = 13.75. From the six velocity dispersion measurements
(shown in the bottom panels of Figures 1–3), we find for the
MOND polytrope χ2

kin = 7.88, and for the Newtonian Michie
model χ2

kin = 6.76. There are a total of 21 data points. The
number of degrees of freedom for both models8 is 15. The prob-
ability of an experiment with 15 degrees of freedom yielding
χ2 = 30.43 (the value for the MOND polytrope fit) or greater
by chance is 1%. Hence the χ2 test (which for the reasons stated
above is a weak statistical test for our kinematic data) allows
us to reject the best polytropic model in MOND at the 99%
confidence level. In contrast, a value of χ2 = 20.51 (the case
for the best Newtonian Michie model) occurs by chance with
15% probability, which is perfectly acceptable. Inspection of
Figure 2(a) shows that the last point in the surface brightness
profile contributes significantly to the model discrepancy. Al-
though there is no reason to doubt the validity of this datum, if
we ignore it, the MOND polytropic model can still be rejected
with 97% confidence.

We note finally that it would have been possible to perform
all the analysis described above by first de-projecting the
surface brightness distribution to estimate the three-dimensional
density ρ(r), as was suggested to us by the anonymous referee;
the model comparison would then have rested purely on the

7 The highest likelihood fit ignoring the stability criterion has Λ = 1/4538.
8 Here we use the simpler Newtonian model without binaries.

kinematic measurements. However, the significant uncertainties
in the surface brightness profile at large radius mean that there
is no single unequivocal solution to ρ(r), and any uncertainty
estimates of this function would involve problems of correlated
noise. Hence, our choice to project the models into the space of
observables should be viewed as a statistically simpler option.

3. CONCLUSIONS

In the analysis presented above we have derived the highest
likelihood polytropic model of NGC 2419, fitting to the observed
kinematics and structure of this globular cluster assuming
MOND and allowing also for the possibility of anisotropy
in the stellar orbits. The model is compared to a previously
fitted model in Newtonian gravity. NGC 2419 is probably the
best target for this analysis, since its extreme Galactocentric
distance (87.5 kpc, Di Criscienzo et al. 2011) means that it
is relatively unaffected by the external field due to the Milky
Way (as confirmed by the N-body experiments presented in
Paper I), while its large mass and luminosity allow us to resolve
the radial velocity dispersion profile with a useful sample of
stars. However, we have found that this best-fit polytropic model
in MOND is a factor of ∼5000 less likely than the best Michie
model fit in Newtonian gravity, and can be rejected with high
confidence.

S11 suggests that a MOND model deviating slightly from the
polytropic relation might improve the fit. However, we would
like to point out that in MOND as in Newtonian gravity, given
the density profile of a spherical model, its velocity dispersion
profile is fully determined by the anisotropy profile (in other
words two different distribution functions generating the same
density profile give different velocity dispersion profiles only
if the corresponding anisotropy profiles are different). Thus,
given an observed surface brightness profile, for a choice of
M/L and β(r), there is only one possible velocity dispersion
profile for each theory of gravity. In this sense, the experiment
undertaken in Paper I, where we searched through a vast number
of possible stable anisotropies at different M/L, is the definitive
test to evaluate the relative likelihood of models. The fact that
the polytropic models in MOND fare badly in comparison to the
Newtonian Michie model was anticipated by that experiment.
Furthermore, it must be noted that the best MOND model
found with the MCMC analysis in Paper I, which was shown
to perform poorly with respect to the best Newtonian Michie
model (being less likely by a factor of ∼350), turns out to be
more likely than the S11 model (by a factor of ∼10238), but
also than the best MOND polytrope studied here (by a factor of
∼14). It follows that Sanders’ (2011) suggestion to use MOND
polytropes, though interesting, did not lead to finding MOND
models of NGC 2419 better than those already considered in
Paper I. These results reinforce the conclusions presented in
Paper I: unless NGC 2419 is significantly non-spherical (for
which there is no evidence from the projected measures we have
access to), or has a radially dependent mass-to-light ratio (which
Dalessandro et al. 2008 argue against, based on the distribution
of Blue Straggler Stars), or is out of equilibrium, it provides a
very strong challenge to MOND theory.

The alternative to this deduction, suggested by S11, is that it is
unwise to rely on formal statistical tests given that our data and
physical analysis may be “plagued by systematic effects.” While
we have made the upmost effort to try to understand and take
into account the noise properties of the instruments employed in
this study (see Paper I), it is of course conceivable that random
and systematic uncertainties bias our results. However, no such
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problems have yet been brought to light, and in the absence of
such evidence (which we are aware is not evidence of absence),
we are unwilling to give up the objective tool that is statistical
inference.
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