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In the limit of a large duffusivity ratio, spotlike solutions in the two-dimensional Belousov-Zhabotinski
reaction in water-in-oil microemulsion are studied. It is shown analytically that such spots undergo an
instability as the diffusivity ratio is decreased. An instability threshold is derived. For spots of small
radius, it is shown that this instability leads to a spot splitting into precisely two spots. For larger spots, it
leads to deformation, fingering patterns, and space-filling curves. Numerical simulations are shown to be
in close agreement with the analytical predictions.
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Localized patterns such as spots belong to the class of
dissipative structures found far from equilibrium [1]. In
recent years, considerable progress has been made in the
understanding of these systems. The question of stability of
such patterns is central, and the source of instabilities must
be carefully scrutinized. In particular, the occurrence of
instability can lead to the deformation of spots followed by
spot multiplication (also called self-replication) or finger-
ing. This intriguing phenomenon has been the subject of
research since the pioneering work of Pearson [2]. Shortly
after, thanks to the development of open spatial chemical
reactors, self-replication was observed in various experi-
ments such as ferrocyanide-iodate-sulphite reaction [3],
the Belousov-Zhabotinsky reaction [4–6], and chloride
dioxide-malonic-acid reaction [7]. By now, this phenome-
non is believed to be universal [8,9]. It is not restricted to
chemical reactions and occurs in many systems in biology
[10], material science [11,12], and nonlinear optics [13].

Analytically, spot replication is relatively well under-
stood in the one dimensional setting. Nishiura and Ueyama
[14] proposed that self-replication of spikes occurs when
the spike solution disappears due to the presence of a fold
point. A similar explanation has been reported for the box-
like patterns [15]. In two dimensions, a mechanism for spot
instability has been proposed in [8] for general reaction-
diffusion systems; related analysis was performed earlier
in the framework of a piece wise-linear approximation in
[16,17] and more recently in the context of diblock co-
polymer systems [11,12]. See also [18–20] and for a re-
lated approach from the point of view of interface motion.

In this Letter, we perform an analytical and numerical
investigation of the two-dimensional localized spots that
were recently reported for the Belousov-Zhabotinski (BZ)
reaction in water-in-oil microemulsion [5,6]. In the classi-
cal BZ reaction, spiral waves are observed [21], but no
localized spot solutions are possible. Indeed, localized
structures develop only when the ratio of diffusion coef-
ficients is sufficiently large, which occurs in the micro-
emulsion system but not in the classical BZ reaction.

We consider the water-in-oil microemulsion model of
the BZ reaction as described in [5,6]:
 

"0vt � "0Dv�v� �f0z� i0�1�mz��
v� q0

v� q0

�

�
1�mz

1�mz� "1

�
v� v2 (1a)

zt � Dz�z� z� v
�

1�mz
1�mz� "1

�
(1b)

where v, z are dimensionless concentrations of activator
HBrO2 and oxidized catalyst �Ru�bpy�3�3�, respectively;
Dv and Dz are dimensionless diffusion coefficients of acti-
vator and catalyst; f, ", and q are parameters of the stan-
dard Keener-Tyson model [21]; i0 represents the photo-
induced production of inhibitor; and m represents the
strength of oxidized state of the catalyst with 0<mz <
1. This reaction was shown experimentally and numeri-
cally to admit localized spot patterns that persist for a long
time [5,6].

We rescale the variables as z � 1=m�m�3=2w"1, v �
m�1=2v̂, t � "0m

1=2 t̂. In the new variables, after dropping
the hats, we obtain

 vt � "2�v� f�v;w�; �wt � D�w� g�v;w� (2a)

where
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and with the nondimensional constants given by
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In the limit m! 1, f1 ! 0, and �! 0, we obtain the
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reduced system,
 

vt � "2�v� f0
v� q
v� q

� wv� v2

0 � D�w� 1� vw:
(4)

In particular, parameter values used in Fig. 14 of [6] are
f0 � 2:18, i0 � 0, m � 10, "1 � 0:01, "0 � 0:1, and
Dz=Dv � 100 which gives � � 0:3, f1 � �0:007, � �
0:01, so that the simplification (4) is appropriate.

Experimental and numerical evidence in [5,6] suggests
that (1) admits localized spot solutions, such as shown in
Fig. 1. Such spots occur in the regime where "� 1. Our
goal is to describe analytically the radius and profile of
such a spot and then study its stability using singular
perturbation techniques similar to those described in [8].
As we will demonstrate, the instability thresholds appear in
the regime where D	 1. For sufficiently large values of
D, a spot pattern is stable. However, as D is decreased,
instabilities of the form exp��t� cos�m����r�may develop,
where � and r are the angular and radial coordinates,
respectively. We provide the analytic description of the
profile of the spot (7) and (10) and the dispersion relation
(14) between m and �. This relation leads directly to the
estimate for the instability threshold.

We begin by constructing a stationary (time-
independent) spot-type solution on a two-dimensional
unit disk fx:jxj< 1g. We assume that D	 1. Then to
leading order, w
 w0 is a constant to be determined, and
the solution for v consists of an interface located at jxj 
 l
which connects two nearly spatially homogeneous layers.
To find the profile of such an interface and its location l, let
us rescale near l as v�x� � V�y� with y � �r� l�=" and
r � jxj. For the steady state, we then obtain, to leading
order, V00�y� � f�V;w0� � 0. The interface solution corre-
sponds to a heteroclinic orbit of this ODE. The existence of
such an orbit is only possible whenever the equations

 f�V�;z0� � 0� f�V�;w0�;
Z V�

V�
f�s;w0�ds� 0 (5)

are simultaneously satisfied for some values V� < V�.
Since q� 1, we have V� 
 0, and (5) can be written as

 f0� f1w0
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Next, we ignore the O�q� terms and integrate V 00�y� �
f�V;w0� � 0 to obtain

 v


8<
:V�tanh2

� �����
V�
6

q �
r� l
"

��
; r < l

0; r > 0
(7)

with V� and w0 given by (6) and where r � jxj. This
formula describes the profile of the interface in the limit
q! 0. Its thickness is of O�"V�1=2

� �. To determine its
location l, we integrate the second equation in (2a). Zero-
flux conditions then yield

R
g � 0 so that

 g�V�; w0�l2 � �1� l2�g�0; w0� 
 0: (8)

In the limit of the reduced system (4), we obtain
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To determine the correction to w, we write w �
w0 �D

�1w1 �O�D
�2� to obtain �w1 � g�w0; v0� � 0.

Imposing continuity at the interface r � l, the solvability
condition w1�l� � 0, and using (8) and g�0; w0� � 1, we
then obtain

 w
 w0 �
1

4D

8>>><
>>>:
�
�1� l2��l2 � r2�

l2
; r < l

2 ln
�
r
l

�
� l2 � r2; r > l

: (10)

An example of a localized spot and its radial profile is
shown in Fig. 1.

When decreasing the diffusion coefficient D of the
recovery variable, numerical simulations show that the
spot becomes unstable. To compute the threshold associ-
ated with this instability, we linearize around the localized
spot solution (7) as
 

v�x; t� � v�x� � exp��t� cos�m����r�

w�x; t� � w�x� � exp��t� cos�m�� �r�

where v and w are given to leading order in (7) and (9), m
is an integer, �,  � 1 and (r, �) are the polar coordinates
of x. Substituting into (1), we then obtain
 

�� � "2

�
�rr �

1

r
�r �

m2

r2 �
�
� fv�� fw (11a)

�� � D
�
 rr �

1

r
 r �

m2

r2  
�
� gv�� gw : (11b)

Note that vr satisfies that "2�vrrr � 1=rvrr � 1=r2vr� �
fvvr � wrfw � 0. Therefore, multiplying (11b) by vr and
integrating by parts, we obtain
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FIG. 1. (a) Radially symmetric, stable spot solution of the
reduced BZ system (4) in the BZ system on a unit disk.
(b) Radial profile of v (solid curve) and its asymptotic approxi-
mation (dashed curves) given by (7). Insert: a blowup showing
the profile of the interface. (c) Radial profile of w (solid curve)
and its two-term asymptotic approximations (dashed curves)
given by (10). Parameter values are D � 20, f0 � 2:0, " �
0:02, q � 0:005.
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Z
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where we have assumed that to leading order,�
 vr, ��

1,  � �. Since vr is exponentially small outside the
interface, we simplify

R
vrfw� �wr�
�� �l��wr�l���RV�

0 fw�v;w0�dv. We estimate wr�l� 
 �1=�2D�g�V�; w0�
and to determine  �l�, we integrate (11b) over the interface
l to obtain D rjl

�

l� 
 �g�0; w0�=l2 where we have used
�
 vr and (8). Keeping only leading order terms in D,
we then obtain the following problem for  :

 

0 �  rr �
1

r
 r �

m2

r2  � 0; r � l (13a)

 0�0� � 0 �  0�1�;  0�l�� �  0�l�� � �
1

Dl2
g�0; w0�:

(13b)

Using the continuity of  at r � l, we get

  �l� 

1

2Dml
g�0; w0��1� l2m�

and substituting into (12), we obtain

 �
l2

"2 
 1�m2 � A
�

1� l2 �
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m
�1� l2m�

�
(14)

where
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FIG. 2. (a), (b) Comparison of numerical computations of �
given by (11) (diamonds) with the analytical result (14) and (16)
(dashed line) for the reduced model (4) on a unit disk. Parameter
values are q � 0:01, " � 0:01, and (a) D � 3; f0 � 1:3;
(b) m � 2; f0 � 1:3. (c) Simultaneous solution of � � 0 �
d�=dm, showing the first value ofD for which instability occurs.
The system is stable above the curve and unstable below it. To
compute � numerically, (11) was reformulated as a boundary
value problem by adjoining the equation d�=dr � 0 along with
fixing  �1�. Maple’s numerical boundary value problem solver
was then used with initial guesses � � vr, � � 0, and  � the
solution of (13). All computations are correct to four significant
digits.
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FIG. 3. (a) Bifurcation diagram for (4) in D and f0 with " � 0:05, q � 0:01: Solid dots represent deformations of a spot without
topological change. Points marked by ‘‘2’’ represent spot-replication into two spots. An empty circle represents spot-to-ring bifur-
cation and an empty circle with a number inside represents spot-to-ring-to-spots bifurcation. A solid line represents the boundary of
spot-to-ring replication which occurs at the fold point of the radially symmetric steady state. The bifurcation diagram was obtained by
solving the full two-dimensional system (4) using the finite element package FLEXPDE [23] with zero-flux boundary conditions and 800
elements on a quarter-disk. For initial conditions, (7), (9), and (10) was used, but with r replaced by r�1� 0:05 cos2��. The solid line
was obtained by solving for the fold point of the radially symmetric steady state using Maple’s boundary value problem solver. (b) Full
numerical simulations starting from a spot-state (7) and (10) as initial conditions. First row: spot deformation, f0 � 1:3, D � 0:35.
Note that the final steady state of the system is a deformed blob shown here at t � 4000. Second row: self-replication, f0 � 2:2,
D � 0:24. Third row: spot-to-ring bifurcation, f0 � 1:3, D � 0:1. Fourth row: spot-to-ring-to-spots bifurcation, f0 � 2:6, D � 0:1.
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For the reduced model (4), we obtain an explicit result

 A

35=421=25

64

1

f3=4
0 "D

� 0:43622
1

f3=4
0 "D

: (16)

In Fig. 2, the analytical prediction given by (14) is found to
be in good agreement with the numerical computations of
problem (11). Full numerical simulations of (4) also agree
with this prediction. For example, when taking " � 0:03,
f0 � 1:3 and q � 0:01, slight spot deformation corre-
sponding to mode m � 2 is observed when D � 1:0 but
not when D � 1:3. This agrees well with D
 1:1, the
threshold predicted by (14).

From (14) and (16), it is clear that the mode m � 1 is
always stable and that for large enough D, all modes m �
1 are stable. As D is decreased, instability sets in when
D � O�"�1�. The threshold value is found by simulta-
neously solving � � d�=dm � 0. The resulting graph is
shown on Fig. 2(c). In particular, note that the system is
stable if D"> 0:038, independent of the value of f0. In the
limit of small radius l! 0, the first unstable integer mode
is m � 2 corresponding to A � 6, so that the spot of small
radius becomes unstable whenever "Df3=40:0727. More
generally, by eliminating A, we find that there exist con-
stants l1 < l2 < . . .< 1 such that the first unstable mode is
m provided that lm�1 < l < lm, where l1 � 0, l2 � 0:491,
l3 � 0:667, l4 � 0:753, and lm 
 1� 0:937=m asm! 1,
where 0.937 is the root of e�2z�3� 2z� � 3� 4z � 0.

Numerical computations indicate that self-replication is
more prevalent for spots of small radius (see Fig. 3). For
larger spots, a deformation usually leads to the so-called
‘‘finger growth’’ and space-filling curves. Others studies
have shown the occurrence of fingering instabilities lead-
ing to labyrinthine patterns [8,18,22]. The question of
whether the self-replication or fingering instability occurs
first is still open.

For smaller, O�1� values of D, there is also a different
instability mechanism that can lead to splitting of a spot
into a ring as illustrated in Fig. 3. Unlike spot multiplica-
tion, this instability is radially symmetric and is caused by
the disappearance of the steady state solution—whereby
the steady state solution ceases to exist due to the presence
of a saddle-node bifurcation—rather than by its lateral
instability. Numerical simulations suggest that spot repli-
cation occurs only for spots of smaller radius, whereas
spot-to-ring instability is dominant for larger spots.

To conclude, we have estimated analytically for which
value of diffusion D spot deformation first occurs. As D is
decreased further, self-replication and/or spot-to-ring in-
stability is observed. As evidenced by numerical simula-
tions, we conjecture that spot deformation is the precursor
to this phenomenon.
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