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Abstract

Establishing online communities of practice is an important part of the knowledge translation

process in the modern healthcare system, but these online communities are new entity that is

inherently different from traditional communities of practice that are dependent on existing

social structures. The objective of this thesis is to combine communication analysis and

content analysis to delve deeper into the communications within an online community to try

and determine how online communities exist, and how that information can be leveraged

to improve online knowledge translation. Using a novel approach this project will map the

contents of online conversations to a structured medical lexicon (MeSH), and then use the

inherent relationships of that lexicon to calculate term, user and thread similarities within

an online community. These similarities, combined with connection analysis results, will

provide a much deeper understanding of how online communities function. The methods

developed here will then be tested on two separate mailing lists, the Pediatric Pain Mailing

List (PPML) and SURGINET, a mailing list of general surgeons.
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Chapter 1

Introduction

In an evidence-based medical world, there is an expectation that point-of-care decisions

will be informed by established healthcare knowledge, yet research suggests that the body

of healthcare knowledge is largely under-utilized. [2] This under-utilization of knowledge is

leading to poorer healthcare and sub-optimal treatments. [19, 66, 82] 30 to 40% of patients

are not receiving treatment supported by evidence-based medicine, and up to 25% receive

unnecessary or potentially harmful care. [31,73] To ensure that new knowledge is being used

at the point of care, knowledge translation (KT) strategies must be implemented both by

clinicians and by healthcare organizations as a whole.

The Canadian Institutes of Health Research (CIHR) define KT as “a dynamic and itera-

tive process that includes synthesis, dissemination, exchange and ethically-sound application

of knowledge to improve the health of Canadians, provide more effective health services and

products and strengthen the health care system.” [80] Clinicians utilize KT in their daily

practice when they read clinical practice guidelines, participate in journal clubs, or consult

peers about the best mode of treatment for a specific patient. Unfortunately, there are barri-

ers to KT that are beyond the control of the individual. [30] To address this issue of moving

knowledge into practice formal KT frameworks must be implemented at an institutional

level. The focus of these frameworks is to incorporate evidence-based knowledge into daily

practices, and have been shown to be effective in a variety of environments.

One of the challenges these KT frameworks face is how to work with knowledge that

is not evidence based. Knowledge exists in a number of modalities: Explicit knowledge

is the evidence-based knowledge that exists in the literature, experiential knowledge is the

knowledge gleaned from years of working within the community, and tacit knowledge is

the innate knowledge of clinicians, the intuitive knowledge of how things work. Most KT

frameworks focus on moving explicit knowledge into practice, but do not spend sufficient

time or resources addressing the issue of sharing experiential or tacit knowledge. Though

this knowledge is not formally codified or validated it is a vital component of the medical
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community. Incorporating experiential KT into existing KT frameworks to supplement the

traditional KT processes would improve the KT process overall and significantly improve

patient care.

Incorporating the theories behind Communities of Practice [93] into KT frameworks

can provide the tools for facilitating experiential or tacit KT. A community of practice is an

environment in which people gather around a common subject to share ideas and experiences

with the goal of improving daily practice. It can compliment explicit KT strategies by

providing informal communication avenues, allowing clinicians to share their experiences

and seek advice about specific clinical situations.

Communities of practice, and KT in general, are unfortunately hampered by the temporal

and geographical barriers that prevent face-to-face communication, and these problems are

exacerbated in multidisciplinary medical subjects and in remote areas, where clinical experts

are both rare and dispersed throughout the community. Web 2.0 tools can provide the means

to share information when traditional conversations are not feasible. The LINKS model [1]

provides a framework for facilitating KT using web 2.0 tools. Incorporating web 2.0 tools

into the KT process is vital to ensuring quality care.

Using web 2.0 tools to establish communities of practice within medical environments

has the potential to improve the KT practices of the healthcare community in ways that tra-

ditional KT methods cannot. Web 2.0 tools can create larger and more focused communities

by connecting disparate groups from far reaching locations. Asynchronous communication

systems, such as email and discussion forums, allow community members to communicate

without having to coordinate their schedules, eliminating the temporal challenges that often

hinder KT. Web-based KT can be more efficient: face to face conversations may not pro-

vide a lasting imprint on either party, particularly with respect to specific clinical problems.

Being able to recall and review conversations about specific cases while facing that clinical

problem allows the clinician to extract knowledge objects from the conversation and use

them in their daily practice.

Web-based KT practices provide a record of the knowledge being shared and translated,

with insights into the patterns of sharing across the community. These archives create a 2-

mode structure between people and knowledge, allowing for a three-part analytic framework:

connecting people to people, connecting knowledge to knowledge, and connecting people to

knowledge.
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1.1 Facilitating Web 2.0 Communities

Establishing virtual communities of practice is an essential part of facilitating KT within a

modern medical community. A community of practice is defined in part by the connectivity

between its members, therefore establishing connections between members is paramount to

ensuring a strong community, and subsequently a sound KT process. As the size of the

community grows it becomes increasingly challenging to find members that share the same

KT objectives with you, therefore mechanisms need to be in place for finding members of

the community that share your interests.

Tools exist for leveraging network structure and network connections for finding simi-

larities between users. Most of these methods, however, are based in the Social Network

Analysis (SNA) or graph theory literature, and focus on the structure of the network of

connections between users, rather than the content of the messages themselves. The com-

munications within a virtual community of practice contain important experiential and tacit

knowledge, and extracting and representing this knowledge can supplement the traditional

SNA methods by incorporating knowledge-based relationships between users into the tradi-

tional connectivity measures.

1.2 Research Approach and Methods

The objective of this thesis is to improve the online KT process through a combination

of social network and content analysis. Through the LINKS model [1] we have identified

several key areas that need to be addressed when developing an online KT community. The

questions, methods and expected outcomes are presented in table 1.1 (an explanation of the

LINKS model is presented in section 2.3.4 in the background chapter).

The two key components of the LINKS model that will be addressed by this thesis are

establishing a culture of collaboration for KT and directing knowledge with respect to the

users’ context.

A culture of collaboration is essential to building a successful KT community. This thesis

will investigate methods to establish a culture of collaboration through four different ana-

lytic approaches: (a) Isolate detection will identify what knowledge seeking activity within

a community goes unanswered, and determining what could be the cause of the lack of en-

gagement. (b) Response analysis will look at the thread reply patterns to determine the
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Objective Method Expected Outcome
Establishing a Culture
of Collaboration

Isolate Detection Identifying knowledge seeking be-
haviour that goes unanswered, why it
happens, how to fix it

Response Analysis Determining the participation be-
haviours of the community members,
identifying knowledge seekers

Centrality Identifying the most active users, the
community leaders

Connection Clustering Identifying user subgroups, finding sim-
ilar users

Directing Knowledge
Content

Knowledge Maps Mapping the content of the conversa-
tions to common subjects

Thread Clustering Identifying content subgroups, deter-
mining popular subjects, linking similar
threads

Content Clustering Identifying similar users; finding poten-
tial subgroups

Table 1.1: A summary of the research objectives of the thesis

activity levels of both the community as a whole and individual users, to get a broad sense

of how the community performs its KT activities. (c) Centrality represents a set of SNA

metrics designed to identify the most central members of a community, the leaders that are

at the centre of the KT activities. Identifying these key users is important to the develop-

ment and maintenance of a KT community, as they can greatly affect all other members.

(d) Connection clustering looks at the leaders at a macro level, attempting to identify a

core group of users within the community (through core-periphery analysis) or identifying

potential sub groups of users based on their communication patterns (through 1-mode and

2-mode clustering).

Understanding the knowledge content being shared within the community is the second

objective of this research, as this is key to gaining objective insight into the knowledge of

the community members. Our approach is to exploit semantic mapping of the content of the

messages to medical lexicons. Exploring the relationships between these mapped terms can

provide greater insight into the content of the conversations, and the community as a whole.

Content-based clustering of the users and threads can tell us what the most popular subjects

are within the community, where potential subgroups may arise, and provides a second user

clustering based on content instead of connections. The content mappings will also provide
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a method for detecting similarity between users, which can be used to increase connectivity

by connecting users to other like-minded individuals.

Finally, the knowledge content and the culture of collaboration methods can be combined,

which provides the third objective of this thesis. We will investigate how content analysis

and collaboration analysis can be combined to further our understanding of the KT process.

Semantic explorations of the isolates can help explain what types of questions are not being

answered within the community. Comparing the connection-based and content-based clus-

ters can provide additional insight into potential subgroups within the community, and the

content mappings can inform what may be causing the connection clusters. The Balanced

Information Content Genealogy Model will be presented in section 3.3.8.2 as a novel method

for determining similarity between users, and applying SNA methods to this model can pro-

vide further insight into content expertise within the community. Figure 1.1 presents the

analytic methods for the thesis and how the combination of content and connection analysis

can be combined to further our understanding of the KT process.
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Figure 1.1: A broad overview of the connection based and content based analytic methods

1.3 Analyzing Knowledge Translation

The methods developed within this thesis will be applied to two different medical mailing

lists. The Pediatric Pain Mailing List (PPML) is a community of 938 clinicians from around

the world who meet online to discuss issues pertaining to pediatric pain. I have extracted the

archives of the PPML from 2009-02-02 to 2013-02-03, during which time 2505 messages were

shared on 783 threads by 460 community members. The SURGINET dataset is a community

of 865 clinicians from around the world that use the mailing list to discuss general surgical

issues. The community is much more active, sharing over 17,000 messages on 2,111 threads

by 231 users during the period 2012-01-01 to 2013-04-05.
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The knowledge maps will provide a summary of the content that is discussed within

each community. For the PPML an investigation of the issues surrounding non-response will

reveal a potential algorithm for preventing future messages from being ignored by the rest of

the community. SNA metrics will help identify the most active users in both communities,

and will identify the core of each community, those users that are at the centre of the KT

activities. The content mappings for both lists will provide knowledge based representations

of both users and threads, which will be used to find similar users, to find clusters of threads

based on message content, and to attempt to define content expertise.

Chapter 2 will present the background and literature review for the thesis, including a

short summary of KT frameworks (including the LINKS model) and communities of practice,

medicine 2.0 research and semantic mapping tools. Chapter 3 will present the analytic

methods for the thesis in three sections: Social Network Analysis methods, content analysis

methods and integration of the network and content analytic methods. Chapter 4 will apply

the analytic methods to the two test mailing lists, and chapter 5 will outline the conclusions

of the thesis as well as future work.



Chapter 2

Background

This chapter will investigate the principles surrounding the use of online tools for KT within

the medical community. It will investigate two KT frameworks (Diffusion of Innovation [71]

and the PARIHS model [59, 72]), and will explore the LINKS model [1] and Communities

of Practice [94] as tools for performing KT online. It will then investigate the semantic

mapping literature, and in particular the Metamap [5] and Mgrep [74] systems for mapping

unstructured medical text to formal medical lexicon.

2.1 Web 2.0

Web 2.0 was defined in 2004 as “a set of economic, social, and technology trends that col-

lectively form the basis for the next generation of the internet, a more mature, distinctive

medium characterized by user participation, openness and network effects.” [86] Other def-

initions focus specifically on the improved communication web 2.0 can provide via social

networking. [33] In its most simplest terms the move from web 1.0 to web 2.0 is an increase

in interaction: Web 2.0 is the interactive web, in which content is created and modified by

users rather than by the website administrators themselves.

Web 2.0 can be encapsulated by the simplest of interactive web tools: email, mailing

lists, news groups, chatrooms, online discussion forums and online bulletin boards have been

around since the early stages of the internet, yet their ability to facilitate communication

and share information between users puts them into the realm of web 2.0. More modern

and technically advanced web 2.0 tools include instant messaging tools, social networking

sites, and blogs. These tools provide real-time interactivity, and provide the means for users

to present their own views and opinions to a wide audience, sharing information via social

media.

Critics of web 2.0 argue that, since the interactive web is not built on any new technolo-

gies, it is not a revolution but merely a natural evolution of the internet itself. [86] Other

critics argue that the older examples of web 2.0 tools do not truly fall within the realm of

8
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web 2.0 because they fail to function as modern forms of social media.

This thesis considers web 2.0 in its broadest sense, as any internet-based tool that can

be used to facilitate communication between users. Without excluding social media as

an integral part of web 2.0, the focus is on the use of the internet as a tool to improve

communication between users.

The idea of using the principles behind web 2.0 to facilitate social interaction and KT

is a well studied area, dating back before the invention of the term itself. Wellman and

colleagues [92] explored the burgeoning world of internet communities, and how the principles

of social interaction online could be used in personal and workplace interactions. He explored

primitive tools such as email, list servers and usenet groups, but established their potential

for improving communications by bridging physical boundaries.

2.2 Medicine 2.0

The modern internet is flooded with discussion forums and online communities around health.

Some of the largest examples include Patientslikeme (www.patientslikeme.com), Hello Health

(hellohealth.com), IVF clinic [84] and Parkinson Net (www.parkinsonnet.nl). A review of

the medicine 2.0 literature in 2004 found over 24000 health-related discussion groups within

Yahoo! groups alone. [28]

Van de Belt and colleagues [86] performed a systematic review of the medical literature

in 2010 to try and find formal definitions for the terms medicine 2.0 and health 2.0. They

found 46 unique definitions of the terms, the majority of them focusing on health 2.0 over

medicine 2.0. Their results were ultimately not conclusive: Most definitions focused on the

relationships and communication patterns between patients and healthcare professionals, but

some did not include the use of web 2.0 (or the use of the internet at all) in their definition.

Like web 2.0, medicine 2.0 is ultimately a very loosely defined term that may represent a

revolution in the field or may just be the natural evolution of healthcare in an increasingly

connected world. This thesis will consider medicine 2.0 in much the same way it considers

web 2.0, as a tool for facilitating communication between clinicians, patients and all other

healthcare stakeholders.

In a formal evaluation of the effects of medicine 2.0 interventions, Eysenbach and col-

leagues [28] attempted to review the efficacy of discussion forums as a medical intervention,

but found a dearth of quality papers evaluating discussion forums. They found 45 papers
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representing 38 studies, of which only 6 were pure internet-based interventions, the rest

including a discussion forum as part of a larger study. One of the conclusions from the

authors was that there is no robust evidence on the health benefits of virtual communities.

As the number and size of virtual health communities increases, it is vital to understand the

implications of these communities, therefore research into their effects must be done.

One important finding of the Eysenbach review was the suggestion that virtual commu-

nities succeed when there is an “intrinsic desire” to communicate with each other and share

health knowledge and experiences, and that it was very difficult to try and create a commu-

nity. [28] This finding is confirmed in more modern experiences of using discussion forums to

facilitate education and KT. Students in an anatomy class that had 8% of their grade linked

to their participation in a discussion forum actively engaged through the forum, and 83%

of the students found the boards useful, improving their team building and critical analysis

skills. [14] This finding was replicated by Kuhn et al [47] who found that a moderated pretest

discussion forum as a tool for facilitating communication between nursing students signifi-

cantly improved students’ grades. Valaitis et al [85] designed a discussion forum to facilitate

the establishment of a virtual community of practice for community health nurses. For a

disparate community with a dearth of quality information [85] a discussion forum provided a

key KT tool for the participants, providing them with a way to connect to their peers. “The

development of effective CoPs is dependent upon the ability of individuals in the community

to critically interpret, respond and share information with colleagues.” [85]

In contrast, when participation is neither required (via grades) nor requestion by the

community (for KT), participation wanes. In a study comparing online journal clubs to

face-to-face clubs, researchers found a huge gap in participation rates between the two, “...

because of the low participation in the Internet journal club.” [60] Though the authors stated

that the journal clubs were required there was no punishment for not participating. With

no explicit inducement to participate and no intrinsic desire from the residents the forum

faltered.

Using the principles suggested by Wellman and colleagues [92] medicine 2.0 seems like

a natural tool to be incorporated into the formal KT frameworks that are implemented

within the healthcare system, as it can allow healthcare stakeholders to communicate new

knowledge across boundaries that prevent traditional communication.
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2.3 Knowledge Translation Frameworks

Within the world of healthcare KT there has been much research on KT frameworks. Es-

tabrooks and colleagues [27] provide an overview of the options available to the medical

community and try to provide guidance in choosing the best one for specific situations, but

fail to identify an overarching strategy; the Diffusion of Innovation Theory [71] is the closest

to achieving this status. This project has decided to implement the PARIHS framework as

a tool for bringing research to practice, but other frameworks are capable of providing the

necessary tools to facilitate KT.

2.3.1 Diffusion of Innovations

The Diffusion of Innovations, popularized by Everett Rogers [71], attempts to explain how

and why innovations are adopted within a specific community. Rogers’ original work was

based largely on research in agriculture and medical practice, so even though it is designed

for innovation diffusion rather than knowledge diffusion, it can still provide a basis KT.

Rogers’ proposes four main elements that influence the spread of a new idea [71]:

• The innovation, an idea, practice or object that is perceived as new by the unit of

adoption

• The communication channels through which the members of the community share the

innovation

• Time, the rate by which members of the community adopt the innovation

• Social system, the set of interrelated units that are engaged to accomplish a common

goal

New innovations are rarely evaluated from a scientific standpoint, but are instead evalu-

ated subjectively within the community. For knowledge adoption in the medical community

this is particularly important, as it demonstrates that the adoption of new practices is not

always guided by best practices, but by the attitudes and beliefs of the community as a

whole.

There are five stages to the adoption process [71]:

• Knowledge: The initial exposure to the innovation
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• Persuasion: Interested individuals seek information about the innovation

• Decision: Individual decision units (people and/or groups) take the concept and weigh

the advantages and disadvantages of using it, making a decision to accept or reject.

This is the most difficult step to gather evidence on since it is a subjective, individual

decision [71]

• Implementation: The innovation is employed, and its utility is evaluated

• Confirmation: The decision is finalized based on the evidence surrounding its use

The social system plays a key role in the diffusion, as opinion leaders and change agents

exert their influence on the process. Individuals tend to choose to interact with people

that are similar to them, i.e., they chose homophilic relationships. [71] Diffusion requires

heterophily, as people from different backgrounds can bring new material to the community.

The optimal situation for diffusion, therefore, is when two people are homophilous except

for their knowledge of innovation.

The members of the community that are adopting a new innovation can be categorized

into five groups: Innovators, early adopters, early majority, late majority, and laggards. The

adoption rate follows an S-curve (i.e. a logistic curve or an ogive), with very few people in

the innovators and laggards categories.

Though the diffusion of innovation theory is not directly applicable to all KT practices, it

is influential in the way it informs other KT frameworks, such as the Research Development

and Dissemination Utilization Framework [34] and the Ottawa Model of Research Use. [54]

The PARIHS model is another example of a KT framework that leverages the principles of

the diffusion of innovation.

2.3.2 PARIHS

The Promoting Action on Research Implementation in Health Services (PARIHS) framework

is designed to guide knowledge uptake and instigate practice change in health systems [59,72].

It posits that successful implementation of research is dependent on the relationships between

evidence, change context and the method of facilitation. [45]

Under the PARIHS framework evidence is composed of research, clinical experience and

patient choice, i.e., it is not restricted to strictly evidence-based knowledge, but incorporates
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the experiential and tacit knowledge of both clinicians and their patients. Explicit knowledge

is easily extracted from published literature, including journal articles, textbooks, clinical

practice guidelines, et cetera, but identifying and using experiential knowledge is more diffi-

cult. The extraction and leveraging of clinical experience is done through self-reflection on

clinical practices, discussion with peers and critique.

The context of the KT environment is a key component of the process. The KT culture,

the leadership, the evaluation methods and the receptivity of the community all keenly

influence the KT process. The culture represents the status quo in terms of both practice and

knowledge implementation strategies. [59] Leadership within the community is a vital part

of the framework: strong leaders define clear roles, effective team work and a practical and

clear organizational structure. [45] The evaluation dimension of the framework establishes a

need for change by providing baseline measures of knowledge implementation practices, and

then provides mechanisms for evaluating the effectiveness of the KT intervention.

The PARIHS framework operates under an active, multifaceted facilitation process. Ed-

ucation outreach, reminder systems, audits and feedback are all components of facilitation.

Facilitators are unique members of the PARIHS team, distinct from both change agents and

champions. They can either be internal members of the community or external, and their

role is to enable KT rather than direct it. They do not necessarily need content knowl-

edge, but they must be experts in working with others, managing conflict and enabling

others to change. They need to have drive, enthusiasm, strong communication skills and

credibility. [72]

2.3.3 Communities of Practice

Quality knowledge management and KT requires collaboration between different members

of the healthcare team. A knowledge sharing team that includes physicians, nurses, pharma-

cists, researchers, patients and their families brings a larger and more heterogeneous body of

knowledge together, allowing the members of the team to acquire new knowledge that is not

available from their peers. Establishing a community of practice can provide this environ-

ment, allowing healthcare practitioners to meet and discuss healthcare issues. A community

of practice is defined as a group of people who share a common practice, and who interact

with each other to learn to do it better, [94] and is formally defined by three characteristics:

the domain, the community and the practice. [93]
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The domain is the subject area that defines the group, such as a medical specialty.

Bringing people together around this common domain to learn from one another establishes

a community of learning around the subject. The community does not need to necessarily

work together on a daily basis, nor do they need to meet face-to-face; their common interest

in learning from one another and their willingness to communicate around this topic is

sufficient to establish the community. The sharing of common interests within the community

is necessary, but not sufficient in establishing a community of practice. The members of the

community must take the knowledge being shared in the group and use it to improve their

respective practice. The idea behind a community of practice is to build a strong knowledge

base by connecting different practitioners, who share their knowledge and leverage their new

knowledge to improve their own practice.

This third aspect, of taking shared knowledge and implementing it in clinical care, re-

quires a trust. Within the community there must be an inherent trust in the other members

in order for them to be confident in using the advice of their colleagues in their own medical

practice. There is a proliferation of information available to clinicians, but much of it is

unvalidated, and cannot be directly trusted without validation. The validated knowledge is

largely explicit knowledge, and it is often too time consuming to extract the salient infor-

mation for a specific clinical example. A clinician that has a trusted peer group can quickly

ask them about specific treatments, or what part of a clinical practice guideline is pertinent

to their situation, and can then use that information to improve their care with confidence

that the information they are receiving is correct and appropriate.

2.3.4 LINKS Model

The LINKS model provides a conceptual framework to help establish online communities of

practice for specialized knowledge sharing using web 2.0 tools. [1] The LINKS model identifies

the key determinants of an online knowledge sharing environment in order to systematically

conceptualize and implement a purposeful health knowledge sharing environment for an on-

line community of practice. The LINKS model characterizes healthcare knowledge sharing

solutions at three interrelated levels: Conceptual, operational and compliance, as demon-

strated in figure 2.1. The conceptual level stratifies knowledge sharing into three dimensions:

the knowledge modality, the knowledge sharing context, and the knowledge sharing medium.

The operational level addresses technical infrastructure issues pertaining to establishing a
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culture of collaboration between the stakeholders. The compliance level addresses the un-

derlying issue of perceived trust in the system. As the layout of figure 2.1 illustrates, the

three levels are not hierarchical in nature, rather they are inter-related, and each level must

be addressed in order to implement a successful knowledge sharing environment.

Technical
 Infrastructure

CultureTrust Trust

Trust

Healthcare
Knowledge Modalities

Knowledge
Sharing
Context

Knowledge
Sharing
Medium

Conceptual Level
Operational Level
Compliance Level

Figure 2.1: The LINKS model, adapted from [1]

Table 2.1 presents a summary of the LINKS model, illustrating the different levels and

their constituent elements with respect to the reported research. For more detailed informa-

tion about the LINKS model see its original methodological paper. [1]
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Level Element Description
Conceptual
Level

Knowledge
Modality

The knowledge modality characterizes the type of knowl-
edge being shared. Tacit, explicit, experiential and social
knowledge are the key knowledge modalities that are typically
shared through an online knowledge sharing environment

Knowledge
Sharing
Context

The knowledge context aims to define the topics being dis-
cussed, the motivation for knowledge sharing, the temporal
relevance of the knowledge sharing and the orientation of the
discussion stakeholders

Knowledge
Sharing
Medium

The medium determines the range of methods that can be em-
ployed to share knowledge. Implementation of each medium
imposes a different set of operational considerations. Exam-
ples include face-to-face environments, virtual meeting tools,
synchronous and asynchronous messaging systems, et cetera.

Operational
Level

Technical
Infras-
tructure

The technical infrastructure characterizes the technologies
and strategies to be used to develop and deploy the knowl-
edge sharing environment. It is imperative that the technical
implementation of the project adequately addresses the con-
ceptual level, in order to ensure maximum trust and engage-
ment in the system.

Culture of
Collabora-
tion

The culture of collaboration defines the ecosystem in which
the online community of practice engages, collaborates and
perpetuates knowledge sharing. Different community mem-
bers have different levels of expertise, expectations and ex-
periences, and the community must be designed to facilitate
knowledge sharing between these different members.

Compliance
Level

Trust A community of practice engages and shares knowledge when
there is a sufficient degree of trust in (a) the veracity of the
knowledge being explicated and shared; and (b) the pedigree
of the member who is explicating and sharing knowledge. The
aim of the compliance level is to institute mechanisms to es-
tablish trust in the knowledge sharing exercise so that the
community engages in a free flow of knowledge sharing. In
addition, for individuals to freely share knowledge there is a
need to instil trust in the eventual use of the knowledge, i.e.,
that the knowledge will be used for the right purposes and in
the right manner.

Table 2.1: Summary of the LINKS model, adapted from [1]
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2.4 SNA for Understanding Online Communities

Barry Wellman and colleagues were some of the first to propose SNA as a tool for exploring

online communities as social networks, describing methods for better understanding how

people communicate online. [91] These ideas of using social network analysis to understand

online communications were further explored, [17, 35, 36] and the principles for understand

online communities were established.

Aviv et al. [7] explored the use of Asynchronous Learning Networks for knowledge con-

struction by studying the communication patterns within the community using social net-

work analysis. They looked at basic social network analysis metrics along with clique analy-

sis and clustering in an attempt to differentiate between structured and unstructured forum

design and its effect on overall learning. Similar work has been pursued by several other re-

search projects [3,16,21,22,26,44,50,56,57,65,67,69,75,77,83,88,97,98] who used a variety

of SNA methods to understand their communities. Beyond simple SNA metrics such as cen-

trality measures (see section 3.2.2.3 for a detailed explanation) there were a variety of more

advanced metrics that looked deeper into the structure of the community. Clique analysis

was used as an attempt to define clusters of users [50, 88], while other projects approached

clustering using regular or structural equivalence [67,83], core-periphery analysis [16,97], or

k-means clustering [22]. Moving onto modelling techniques, ERGMs or p* models [75], other

regression methods [3, 77, 88], or structural equation models [83] were used to try and gain

insight into what drives a community.

One of the ideas that continually arises in the literature on analyzing online communi-

cations is the need to analyze the content of the messages. Many projects pursue this goal

using content analysis. [7, 50, 56, 67, 88, 97, 98] Content Analysis typically involves manually

processing the messages from the community to code them based on a formal text-coding

schema, and then studying the results of the coding. Other projects leveraged natural

language processing techniques [21, 22, 50], which analyzed the text automatically. Few

projects incorporated the content analysis into their social network analysis, and those that

did [22, 26, 50,67,88] did so only as a stratification factor.

This project is not interested in manual content analysis, as the time-consuming process

of parsing each message manually makes it an impractical tool for large databases. Natu-

ral language processing techniques, including WordNet [61] and the approach described by

Davoodi et al [22] are potential options, but they do not take full advantage of the existing
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semantic mapping techniques that exist within the healthcare community.

2.5 Semantic Mapping and Knowledge Acquisition

In an evidence-based medical world, it is vital that knowledge be available to clinicians at the

point of care. Unfortunately, the lack of organization, proper indexing, aging information

sources and poor distribution have been shown to negatively affect a clinician’s access to

pertinent information. [19, 66, 82] The use of formal semantic languages is a key step in

improving clinician access to medical knowledge, by providing a unified indexing of the

existing medical knowledge.

Clinicians need to be able to leverage the semantic languages, however, in order to make

full use of the formal indexing. Leroy and Chen [49] developed a system that processes gen-

eral medical queries and returns a set of medical keywords from Unified Medical Language

System (UMLS). Cimino et al [15] designed a system that maps clinician queries to a set of

generic queries based on UMLS keywords. Developing tools that can provide semantic terms

to accompany existing, unstructured text can provide a valuable resource, by providing clin-

icians with the formal semantic terms that pertain to the text they are currently processing.

Emails, electronic medical records, news articles and clinical notes can all provide vital in-

formation if they are properly processed to extract the relevant information and provide it

in a formatted, systemic manner.

The process of mapping free text to formal medical lexicons (and specifically to the

UMLS) has been an objective of the medical research community for a long time. The value

of having formal medical representation of ideas combined with the challenge of performing

the task manually has made research into automated approaches very valuable. This problem

is often linked to MEDLINE, which is manually indexed by Medical Subject Heading (MeSH)

terms, and thus provides an objective reason to connect text to UMLS terms. MicroMeSH

[55] was one of the first attempts to do this, by providing a simple system to expand search

queries to MEDLINE and provide a tool where users could browse the MeSH tree around

the terms they searched.

CHARTLINE [62] processed free text of medical records and connected them to relevant

terms in the MeSH lexicon via a direct mapping. This process was improved by SAPHIRE

[37], which explored the idea of processing free text and cleaning it by mapping terms to their

synonyms. This was a valuable addition to the literature, as it normalized the process of
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mapping women to woman. This process was taken up by Nadkarni et al [63] who used this

synonym mapping along with a part of speech tagger to better identify the structure of the

conversations and attempt to identify specific words and phrases in the text. PhraseX [76]

also used this kind of synonym parser to analyze the mapping of MEDLINE abstracts to

the UMLS metathesaurus, in order to evaluate the contents of UMLS itself. Other, similar

approaches include KnowledgeMap [23] and IndexFinder. [100]

The current, gold standard in the industry is Metamap, though another product, called

Mgrep [74] provides a very similar service. The creators of the Open Biomedical Annotator

[41] designed a system that leverages the results of any semantic mapping service (Metamap

or Mgrep) and the ontology relations within the lexicon to produce a more complete semantic

mapping.

2.5.1 Metamap

Metamap uses a special natural language parser called SPECIALIST [5] to find all the nouns

and noun-phrases in a discussion thread, and maps them to one or more UMLS terms. Each

mapped UMLS term is assigned a score that is a measure of how strongly the actual term

mapped to the UMLS vocabulary. The score is a weighted average of four metrics measuring

the strength of the matching, with an overall range in [0,1000], with higher scores indicating

a better match. The formal equation for calculating the scores is:

1000× (Centrality + V ariation+ 2× Coverage+ 2× Cohesiveness)

6
(2.1)

• Centrality: An indicator of whether the matched (source) term is the head of the

phrase

• Variation: A measure of the distance between the matched term and the root word.

For example, if the source word is eye and the match is to the term ocular, the distance

is 2, as ocular is a synonym for eye

• Coverage and Cohesiveness: Measures of how well the source term and the UMLS term

match each other: if the source and UMLS terms are both “pain” then the match is

perfect, but if the source term ocular matches to the UMLS term Ocular Vision then

the coverage and cohesiveness are less than perfect.
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Metamap’s precision and recall in previous projects have varied depending on the format

of the text being processed, from values as high as 0.897 and 0.930 respectively [42] to

values as low as 0.56 and 0.72 [11]. The difference between the precision and recall values

show that Metamap does a good job at returning pertinent MeSH terms, but also returns

impertinent terms as well, i.e., its results are somewhat noisy. Projects that reported low

recall and precision with Metamap acknowledged that many of the problems come from the

inherently ambiguous nature of the text being processed: in processing medical residents’

voice recordings, it was noted that Metamap failed to recognize abbreviations, acronyms or

complex phrases that omitted key terms [12].

For our purposes, the Metamap scoring system provides a baseline measure of how well

the mapped UMLS term represents the original term in the PPML discussion thread. Table

2.2 contains some sample mappings to the MeSH lexicon and their scores.

Despite the inconsistencies in the terms returned by Metamap, it provides a valuable tool

for mapping unstructured messages and conversations to a structured medical lexicon. The

Knowledge Linkage project [78] uses these mappings to try and provide explicit knowledge

links to the experiential knowledge being shared within the community.

2.5.2 Open Biomedical Annotator and MGrep

The Open Biomedical Annotator [41] was developed to automate the process of providing

keywords to datasets that are available on the web. Their process was to take the metadata

from the datasets, pass them through a semantic mapping engine (either Metamap or Mgrep)

and then post-process their output using ontological relationships. The amount of expansion

allowed can be controlled by the user.

1. is a transitive closure: Terms in the UMLS have a tree-like structure, so most terms

have 1 or more parents. Expanding up the tree provides more general semantic terms

than the specific term returned.

2. Semantic Distance: Sibling relationships also exist within the tree. Two semantic

terms are somewhat similar if they have a shared parent, less similar if they share a

grandparent (a parent of a parent), et cetera.

3. Ontology Mapping: Using the UMLS mapping tools the MeSH term returned can be

augmented by the SNOMED or ICD-9 term as well. The terms from other lexicons
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can provide new information.

The authors of the Open Biomedical Annotator performed an experiment to compare

MetaMap to Mgrep [74] in terms of accuracy and speed. They found that Mgrep performed

slightly better in terms of precision and was much faster (1/5th of a second compared to 8

minutes). The authors concluded that, because they were looking for real-time implemen-

tation, Mgrep was was a better option for them, and thus The Open Biomedical Annotator

was implemented using Mgrep.

The details of how Mgrep works are not completely clear, and publications on it have

been limited to conference posters [20]. The authors of the Open Biomedical Annotator claim

that it “implements a novel radix-tree-based data structure that enables fast and efficient

matching of text against a set of dictionary terms” [41]. The scoring algorithm as well is not

completely explained, though it performs a similar expansion scoring to Metamap, where

partial matches and derived matches receive lower scores that perfect matches. Mgrep is

not distributed itself, but is accessed via the OBA: performing a mapping with the OBA

without using the ontological expansions results in a strictly Mgrep-based mapping. Table

2.2 contains some sample mappings from Mgrep.
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The report stated that when music therapy is used, the babies required less pain med-
ication. Does anyone know of any published reports of empirical research demon-
strating the effect?

Metamap Terms Mgrep Terms
Source MeSH

Term
Score Source MeSH

Term
Score

music ther-
apy

Music Ther-
apy

1000 Music Music 10

therapy therapy 10
the babies Infant 966
less pain
medication

Pain 660 Pain Pain 10

less pain
medication

Pharmaceutical
Preparations

827

of any
published
reports

Publishing 694 Report Report 16

Research Research 10
of empirical
research

Empirical
Research

1000 Empirical
Research

Empirical
Research

10

Table 2.2: Sample message and its associated MeSH mappings from both Metamap and
Mgrep

2.6 Conclusion

It is clear that both web 2.0 and medicine 2.0 are somewhat nebulous terms within the

research community. I will take the term web 2.0 as a blanket term to describe those

interactive online tools that facilitate communication. Medicine 2.0, therefore, refers to the

online tools that are used to facilitate communication about health between clinicians. I am

restricting the discussion to clinician-communities because I want to focus on communities

of practice and KT frameworks, and though the online communities that bring patients

together can be a valuable tool in the healthcare process, they do not fall within the same

domain. It is important to draw the clear distinction between these two types of communities,

between open and anonymous online communities and virtual communities of practice that

are embedded within formal KT frameworks.

Social network analysis was proposed as a tool to analyze and understand online com-

munities over 15 years ago. It provides the means to understand online relationships in a
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way that traditional analysis cannot, as it can adapt to the dependent nature of the inter-

personal relationships that challenges traditional statistical methods. Many projects have

explored various SNA methods for analyzing online communities, but these methods have

largely ignored the content of the messages when investigating the structure of the network.

Semantic mapping techniques can provide the means for “understanding” the content of

the messages within the community. Though many tools have been developed to map free

text to structured medical lexicons, Metamap and MGrep seem to be the two best utilities to

date, so they should be investigated going forward. The methods outlined within the Open

Biomedical Annotator [41] should also be explored. Once a tool is chosen, incorporating the

mappings from the tool into the SNA methods will be key in improving our understanding

of online communities.



Chapter 3

Methods

This chapter will outline the methods for measuring the culture of collaboration and directing

the knowledge context of the community. The first section will present network analysis,

including Social Network Analysis (SNA), methods, the second section will present content

analysis methods, the third will evaluate the content analysis methods, and the fourth will

show how the network analysis and content analysis methods can be used in combination to

further our understanding of the community overall.

3.1 Definitions

Throughout the rest of this thesis certain terms will be used with respect to the analysis that

may require explanation to understand their purpose within the analytic framework. The

terms defined below are how they should be interpreted withing the context of this thesis.

Community Leaders are the users within the community that drive the KT practices.

They are not explicitly defined based on roles that are defined by the community (such

as mailing list administrators), they are implicitly identified as community leaders

based on their active participation within the community.

Expertise is defined as being knowledgeable about a specific subject that other users are

interested in. The knowledge within a message is extracted through semantic mapping

techniques, so it is difficult to differentiate knowledge seeking from knowledge sharing

behaviour, but the general thought process is this: User B is interested in a subject,

and user A has spoken about that subject before, therefore user B is interested in

user A. We assign the name expertise to this relationship, even though it may reflect

the true nature of the relationship. The relationship may be asymmetric if user A is

interested in a myriad of topics that user B is not

Correlation and Similarity are measures of how much two users/threads overlap, based

on the semantic mappings of their messages. The assumption in this definition is that

24
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a user’s interests are represented by the content of their conversations. Similarity is

measured on a [0,∞) scale and correlation is a scaled version on a [0, 1] scale

Semantic Similarity is the similarity between two words based on their inherent mean-

ing. Within the MeSH lexicon there is an inherent structure between words, and the

semantic similarity calculations capture this relationship. MeSH only has one type of

relationship, an hierarchical is a relationship, so that is the semantic similarity calcu-

lated in this thesis.

Contextual Similarity is the similarity between words that is not capture in their mean-

ing, but in their application. Within a specific context words may be inherently related

in ways that are not captured in their generic interpretations. When words occur to-

gether consistently it is assumed that there is a strong relationship between them, and

this relationship is captured using contextual similarity.

3.2 Establishing Culture of Collaboration

The nature of online KT is markedly different from face-to-face KT, with larger and more

focused communities, anonymous or quasi-anonymous communication (depending on the

medium), asynchronous communication and the existence of communication archives. Given

the importance of KT and its potential for improving clinical care it is of interest to get

insights about the knowledge sharing dynamics of the virtual community, as it can provide

detailed insight into the collaboration practices of the community members. This section will

investigate methods to establish a culture of collaboration within an online community. The

first step will be isolate detection, followed by response analysis. SNA will provide centrality

measures designed to identify the leaders that are at the centre of the KT activities, and

connection clustering will look at these leaders at a macro level, attempting to identify a

core group of users within the community and potential sub groups of users based on their

communication patterns.

3.2.1 Building a Network From a Mailing List

An online KT community is comprised of users, and the messages they share form threads.

To properly understand the collaboration structure within the community it is important to
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move beyond the individual users and study the community as a whole. SNA utilizes the

principles of graph theory to represent communication networks in terms of actors (nodes)

and ties between actors (edges) [32, 90]. Traditional statistical analysis focuses on actors as

independent units, and analyzes them in terms of their personal attributes. SNA instead

focuses on the structures that emerge out of the relations between actors, and not on the

actors themselves.

The structure of the network is a key component of the analysis process, and there

is no accepted standard in terms of how to design the network to properly represent the

conversations within online discussion forums or mailing lists. Within social network analysis

the network is represented as an adjacency matrix, in which the entry at row i column j

represents the communication from node i to node j. There are three general attributes of

the adjacency matrix that define how to represent the network.

Directed vs Undirected: One would expect that communication is directed. When user

i sends and email to user j, there should be a directed tie from i to j. The challenge

in using this representation, however, is determining the target of the communication

when all communication is public. When someone posts the 8th reply in a conversation

on a mailing list, who should their post be directed to? The person directly before

them? The first person? All 7 people that posted before? The idea of an undirected

communication network is that a tie from user i to j indicates that they have shared

a conversation before. In the analysis of mailing list data a thread is thought of as a

community, and messages are announcements to all members of the community. In this

sense the ties in the adjacency matrix represent shared interest rather than directed

communication. An undirected matrix is an upper triangular matrix (i.e. a symmetric

matrix), as a tie from i to j is the same as a tie from j to i.

Binary vs Valued: The values in a network can either be binary, in which case they can

represent a yes/no value, or they can be valued. In a communication network a value

would represent the number of messages sent between i and j, or the number of threads

shared between the two users. In reality the decision between binary and valued is

dependent on the structure of the data and the values in the network. Valued data

often does not provide more information than binary, and binary data has more analytic

options within the SNA literature. This project will largely employ valued networks,

which will be dichotomized if necessary in certain situations.
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1-Mode vs. 2-Mode Networks: In the majority of network analysis nodes represent a

class of people and ties represent some sort of social construct that connects them:

friendship, advice, work, et cetera. This is referred to as a one-mode network, as

the connections are between a single class of nodes. Two-mode networks, in contrast,

represent two different classes of nodes, and ties exist only between classes. These most

commonly occur when one set of nodes represents people, and the second set represents

events, and ties go strictly from one mode to another (indicating that a person has

attended an event). A two-mode network that represents people and the events they

attend is sometimes called an affiliation network. With online conversations a two-

mode network can be constructed, in which the users are one mode and the threads

they are communicating on are another mode, and ties exist between users and threads

if they have posted to and/or read the thread. A one-mode transformation of the two-

mode network can be made, in which a tie between users indicates that they have

communicated on a thread together.

In order to analyze a network we need to process the communication data and create

a network structure. We will first consider the network data as a series of threads, or

conversations around a specific subject. A thread normally begins with a user making a post

about a specific subject, or asking a specific question, which elicits comments from other

members of the community. We can form a two-mode network between the comments and

the users, where a tie between the user and the thread indicates that the user has commented

on that thread. Figure 3.1 presents a sample thread and the network that evolves from it.
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Figure 3.1: An example of how a network is built from a discussion forum thread. For
mailing lists the same process can be done, where threads are determined via
subject lines.

3.2.2 Measuring Community Member Activity

Simple statistical summaries can provide basic understanding of activity levels within the

community. Number of posts, number of threads, posts per thread, et cetera, can provide

insight into how much the community is used. Looking close at the thread-level activity

can give some insight into the nature of the community. We will investigate isolates and

response rates to identify when messages go unanswered, and we will use centrality metrics

to identify the community leaders.

3.2.2.1 Isolates

Isolate threads are messages to the community that do not receive a reply. They can be

a problem, as a question that goes unanswered can leave the poster feeling alienated and

disconnected, and may result in that user leaving the community. At the same time, many

isolate threads represent threads that warrant no response: announcements, advertisements

and even spam are posts that are not expected to receive a reply, and are very different

from unanswered questions. Identifying isolates is important, but differentiating unanswered
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questions from job advertisements is a key step in understanding the network.

Isolates can be categorized into three groups: broadcasts, errors, and pendants. Broad-

casts are messages that receive no reply because they do not deserve one, such as admin-

istrative messages, conference announcements, job advertisements, et cetera. Errors are

processing and submission errors that cause threads to become disconnected, and are largely

caused by subject-line manipulation and email-client processing problems. Pendants are the

true problems within the community, as they represent knowledge seeking behaviour that

goes unanswered.

What we are keenly interested in is what the effect of pendants are on the community.

There are two basic questions: is there a way to predict a message will be a pendant, and

is there an effect on the user if their message is a pendant. For the first question the worry

is that new users, or users who are not recognized names within the community, are less

likely to receive responses, as this may demonstrate a level of elitism amongst the existing

community members. For the second question we want to investigate a users messaging rate

both before and after their pendant thread, to ensure that not receiving a reply did not cause

them to remove themselves from the community. We will investigate these two problems by

looking at pendants rates based on previous activity level, in order to ensure that messages

are not being left unanswered based on the activity level (i.e. the perceived prestige level)

of the person asking the question.

3.2.2.2 Measuring Thread Participation Levels

Thread participation levels provide an overview of the community activity levels, and can

provide insight into how the users see the community. Fast responses rates are a positive

finding, and suggest that other community members are monitoring the incoming messages

to provide instant feedback. Slower responses are not necessarily a problem within the

community, but represent a more thoughtful and less clinically relevant community.

For threads that receive at least one reply there are two time intervals that are of partic-

ular interest: the time between the initial post and the first reply, and the time between the

initial post and the last reply. Time to first reply will be used to evaluate the overall health

of the community, and to try and help with the detection and prediction of pendants. Time

to last reply provides insight into the attention span of the community, detailing how long

ideas last within the community members.
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There is potential to leverage response times to develop a pendant detection strategy for

the community. For a community manager trying to prevent pendant threads the quantiles

of response times can provide the means for determining when a new message may become

a pendant. The actual time interval is dependent on the nature of the community, but the

general structure of the algorithm is:

1. Find the time-to-first reply for all threads in the community (this could be a rolling

window defined by time or number of threads)

2. Find the 90th or 95th quantile for these times

3. For any future thread that goes beyond that timepoint, attempt to initiate a response

This is a relatively low-effort process that could easily ensure that all threads are receiving

replies in a timely manner, and fits well within the facilitation component of KT frameworks

such as the PARIHS model [59, 72].

The duration of a thread can also provide insight into the nature of both the thread

and the community in general. If most threads receive the bulk of their replies quickly

(where quickly is defined subjectively by the nature of the community) then that may be

evidence of an active community, and also one that is constantly monitoring the contents of

the community for new information. If threads instead stretch out over long periods of time

then the community is providing a different kind of resource: instead of providing up to the

minute information, it is a place where community members can go and discuss interesting

ideas, but not to go to find answers to specific, clinical questions. These issues speak to the

culture of collaboration within the online community, and how the community members are

using the online space for KT.

The total number of replies can also provide some insight into the duration of a particular

thread. Question and answer threads occur when a community member poses a question,

and another member responds in, hopefully, a timely manner with a direct answer to that

question. After the response there are no more posts on the thread, as no further discussion

is warranted. These threads tend to have a short duration and few replies. In contrast

are discussion threads, which start with a question or a statement that is designed to elicit

a discussion rather than a definitive answer. These threads tend to be longer, with many

community members responding with their opinions. The division of the community into
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these two broad categories provides general insight into its utility: if the members are partic-

ipating because they are interested in having meaningful clinical discussions then we would

expect more long threads, while more short threads would demonstrate that the community

members are there to get answers to clinical questions.

Moving beyond simple investigations of the thread data, centrality measures can provide

valuable insight into the overall structure of the network, along with helping identify the

more significant contributors to the community.

3.2.2.3 Identifying Community Leaders

Identifying active users is key to developing and understanding an online community. These

users are the ones who control the flow of knowledge within the community, and are in a

position of power when it comes to what knowledge is shared between community mem-

bers. Analytic methods that can identify the active users are essential to furthering our

understanding of how the community functions.

Centrality measures can provide insight into the most important actors in the network.

For the 2-mode network, degree centrality measures the number of ties an individual node

has, i.e., it is a count of the number of threads a user communicates on. In the 1-mode user

network degree presents the number of other users a single user has communicated with.

Closeness centrality extends the idea of degree centrality beyond a single step: It considers

an actor central to the network if they can reach all other nodes in the network in as few

steps as possible. A node is “close” to another node if it can reach that node in very few

steps, i.e., by traversing very few ties within the network. For both the 1-mode and 2-mode

networks a high closeness indicates that a user can quickly connect to another user through

shared threads.

Betweenness centrality deems nodes central if they are hubs of information. Where close-

ness deems a node central if it can quickly reach other nodes, betweenness deems a node

central if it is used as path between other nodes. A node has a high betweenness score if it

falls on the shortest path of many other nodes. The higher the betweenness score, the more

integral the actor is to facilitating communication between other actors in the network. As

with closeness, betweenness is the same in the 1 and 2 mode networks, with the exception

of how they are normalized.
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All four measures can be normalized to a [0,1] scale for simpler interpretation, see Wasser-

man [90] and Hanneman [32] for the technical calculations of these values, and Borgatti et

al [9] for the adaptation to 2-mode networks.

In section 3.5.4 we will investigate how SNA can be used to understand the BICGM

similarity developed in section 3.3.8.2, so it is worth presenting some directed centrality

measures for analyzing that network. With directed networks the same three centralities can

be adapted to directed relationships, but only degree centrality will be of use to this project.

Degree centrality can be split into two categories: in-degree is the number of connections to

a user, and out-degree is the number of connections from a user.

Within directed networks there is a concept similar to centrality, and that is the idea

of prestige. Since SNA is most often concerned with the idea of receiving ties, prestige is

a way to measure incoming ties in the network. The simplest form of prestige is in-degree,

which counts the number of ties in the network directed at a specific user. Along with in-

degree there are other prestige measures that can provide additional insight into the directed

network.

Proximity prestige extends the idea of degree prestige from all users that connect directly

to user i to all users that can reach user i, and measures the average distance that those users

need to travel to connect with the target user. It can be thought of as a directed version of

closeness.

The idea of rank prestige is that users are prestigious if they are near other users that

are prestigious, much like the idea of coreness (see below). It is a recursive definition that

seems difficult to calculate, but if the adjacency matrix is restricted in certain ways then

eigen-value decomposition can be used to find rank prestige. The details of the process

will not be explained here, but are well explored in Wasserman and Faust’s book. [90] This

process can be related to the idea of hub-authority analysis [46]. In hub-authority analysis

nodes that are the target of many ties are identified as “authorities” in that they must be

the source of much information, and nodes that are the source of many ties are identifies as

“hubs” from which links are directed to valuable information. If the adjacency matrix for

the directed network is A then the first eigenvector of A′A and AA′ are the authority and

hub values respectively.
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3.2.2.4 Knowledge Translation Activities

The centrality indicators provide insight into the active members of the community and

its overall structure, but we want to investigate the users farther, in order to distinguish

what KT roles the users play within the community. Three specific roles are going to be

investigated: knowledge seekers, facilitators and content experts.

Knowledge seekers are those that are using the list to further their knowledge. In some

online communities of practice, such as online discussion forums, we would have access not

only to who has contributed to the conversations but also who has read them. In this scenario

we can identify knowledge seekers as those that consume the knowledge from the community

but do not contribute to it. Previous research we have done has investigated this in a foreign

language community [78], but such analysis is not possible here, as there is no recorded

record of which community members consume content from the mailing list. We therefore

will identify knowledge seekers as those that initiate conversations. Most knowledge-based

messages within a mailing list are questions about a specific problem or paper, and result

in a discussion about the problem. The initiators play an important role in this process, as

their questions are what draws the vital information out of the content experts.

The second role we will investigate are facilitators, those users that encourage further

conversation by their posts. These people respond early in the thread and in a timely manner,

and their replies spur further conversation. They are often more active members of the

community, and their interest in a subject results in other users engaging the conversations.

Facilitators play a vital role in the PARIHS framework [59, 72] and other KT frameworks,

as they are the ones that encourage knowledge uptake and connect seekers to experts.

The final role we will investigate are content experts. These are users that finish conver-

sations by providing answers to specific questions. They respond to question threads with

concrete answers that often end the thread, or else only result in responses by other content

experts.

3.2.3 Identifying Collaboration Groups: Connection Clustering

Within an online community subgroups may be expected to form. These groups may be

separate from the community as a whole, or they may represent the leaders within the

community, but either way identifying potential subgroups within the community is vital

to understanding the KT patterns within the community. Connection clustering will look
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at the network at a macro level, attempting to identify potential sub groups of users based

on their communication patterns (through 1-mode and 2-mode clustering) and identifying a

core group of users within the community (through core-periphery analysis).

3.2.3.1 Detecting Connection Subgroups

In a study of the evolution of online communities, the “death” stage of the cycle has been

partially attributed to the segmentation of the community into disparate subgroups. [39]

The problem with segmentation is that, if you are only interested in a specific sub-topic of

a community then the rest of the messages become “noise”, and eventually the noise will

overwhelm the meaningful content, causing users to ignore all content from the community.

It is vital, therefore, to try and stay ahead of this segmentation by using methods for auto-

matically detecting subgroups within the community, in order to better serve them, perhaps

by splitting your community into smaller communities with a more focused topic. SNA

provides a function for detecting subgroups in the form of blockmodeling.

A blockmodel is a partitioning of the network into exclusive, non-overlapping groups,

such that most communications are within groups rather than between them. Traditional

SNA uses structural equivalence blockmodeling for the undirected 1-mode networks as well

as a more generic hierarchical agglomerative method similar to section 3.3.9, and generalized

blockmodeling for the 2-mode network.

Formally, two nodes are structurally equivalent (SE) if they have the same ties to all other

nodes in the network. If two nodes are SE then one can replace the other without interfering

with the flow of information. In reality true SE is rare, so approximate SE needs to be

measured. There are many different methods used for approximating structural equivalence,

the most simple of which is Hamming distance. The Hamming distance between two nodes

is the number of ties that would have to have to change in order for the nodes to be SE.

Regardless of which SE measure is used, a SE matrix is developed, which records the SE

between all the actors or threads. This SE matrix can be thought of as a distance matrix,

at which point the hybrid clustering methods from section 3.3.9 can be used. There are

two general problems with SE in this scenario, however. The first problem is that, since the

data is very sparse, similarity between active users is rare, and the SE found in the network

will usually only be between users with few posts. SE also fails to capture the difference in

messaging rates between users. A more interesting metric, rather than SE, would be number
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of threads shared. This is captured directly from the 1-mode actor network. Taking the

number of threads shared as a similarity metric results in a user clustering similar to that

in section 3.3.9, only these clusters are based on communication patterns rather than the

content of the communications itself.

In a 2-mode network the question of clustering can go beyond finding what users are

communicating on threads together, but what users are communicating on which threads

together. Generalized blockmodeling [25] can provide the answer to this question, by par-

titioning the network such that the users and the threads are clustered concurrently. The

general idea is to partition the rows and the columns of the matrix into groups such that

the groups are as pure as possible (either all connected or all disconnected). Generalized

blockmodeling is performed using a local optimization procedure [25, 99].

3.2.3.2 Identifying the Core of the Community

In an online community past experience suggest that the bulk of the communication is

performed by a minority of the users. The “Pareto principle” is a theorem that states that

80% of the work is done by 20% of the population. The exact size of the “core” of an online

community varies by application: some studies have found the core to comprise upwards of

50% of the users [64, 87, 88] while other studies have found the numbers to be smaller [8].

Regardless of the specific sizes, the principle is that online communities are expected to have

a core group of users that contribute the majority of the knowledge to the conversations.

This core group of users can be identified using core-periphery analysis.

Core-Periphery analysis assumes that there is a core set of nodes at the centre of the

network, and a periphery set of nodes that connect to that core. [9, 10] It can be used to

identify the community members that are at the centre of the one and two-mode networks.

For the undirected 1-mode member network a measure of “coreness” can be calculated that

is a measure of how central the member is to the network. This coreness can be thought of

as another measure of centrality. With appropriate row/column normalization this coreness

centrality can be determined as the first eigenvector of the adjacency matrix of the 1-mode

network.
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3.2.4 Summary

It is vital to understand how KT is performed within an online community. This section

investigated methods for evaluating online communities to better understand their collabo-

ration patterns. It detected response and thread duration times, and presented a simple and

effective algorithm for preventing threads from becoming pendants that receive no response.

it looked at centrality measures to provide insight into the leaders within the community, and

through clustering and core-periphery analysis it developed methods for identifying potential

subgroups of interest.

The problem with all of these methods is the lack of insight into what is being said within

the messages. In a knowledge-based online community it is imperative that we look beyond

the communication patterns to study the actual content of the messages. The next section

will look at mapping the content of the messages to a formal medical lexicon, where it can

then be used to better understand the users and threads in the community.

3.3 Directing Knowledge Content

Understanding what knowledge is being shared within the community is vital to directing

the KT practices of the community members. This section will use semantic mappings of

the content to a formal medical lexicon to better understand the content being shared using

knowledge maps. The relationships between these mapped terms can provide greater insight

into the content of the users and threads through content-based clustering. The content

mappings will provide a method for detecting similarity between users, which can be used

to increase connectivity by connecting users to other like-minded individuals.

3.3.1 Knowledge Maps

A knowledge-based online community is usually centred around a medical topic: Pediatric

Pain or General Surgery are two examples from this thesis. Within those fields, however,

there is a vast range of potential subjects that may be of interest to the community. Moni-

toring the specific content being shared by the users can provide insight into what the com-

munity members are interested in, and may provide mechanisms for guiding users toward

less popular subjects that the community administrators want to discuss, or for recruiting

new users that may provide valuable insight into particular content. This thesis will present
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this content using Knowledge Maps.

Knowledge maps provide a detailed summary of the general subject areas that the com-

munity expresses an interest in. The semantic terms returned by Metamap [6] (or by any

semantic mapping program) provide a knowledge-based representation of the messages, and

therefore of the community as a whole. Summaries of the mapped terms that make full use

of the inherent relationships within the medical taxonomy can provide detailed insight into

the content being shared.

This project will use mappings to the MeSH lexicon. MeSH is designed in a hierarchical

structure, such that terms may have one or more parents and/or one or more children

within a tree-like structure (a directed acyclic graph). At their root there are 16 different

groups of terms (noted by letters A-N, V and Z) that represent very broad groups of terms

around a single idea. Root A is “Anatomy”, and all the medical terms within that tree

are related to the physical body parts. Root D is “Chemicals and Drugs”, and represents

the chemical components used in medicine, including all natural and synthetic medications.

Combining these 16 roots and their immediate children can provide a broad representation

of the community in terms of what knowledge is most interesting to the community as a

whole.

3.3.2 Content-Based Similarity

In the online KT process establishing similarities between threads or members of the com-

munity is important to facilitating future KT. Linking like-minded individuals within the

community based on the similarity of their communications or identifying threads similar to

the content a user is currently reading can improve the knowledge base of users through lever-

aging the existing archives of the community. This process exploits a semantic mapping of the

content of the online discussions with a standard medical lexicon (MeSH) using Metamap [6].

Metamap standardizes the unstructured messages, and provides a semantically-enriched rep-

resentation of the message content, allowing us to aggregate across messages to represent

users with the content of their messages.

Once the mappings are established different algorithmic approaches to identifying poten-

tial relationships between users or threads based on the content of their online communica-

tions will be used. We will explore Generalized Vector Space Models (GVSM) [95] and the
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Balanced Genealogy Measure (BGM) [29] as two different approaches to calculate these sim-

ilarities. Each method needs to leverage the inherent relationships within the MeSH terms,

resulting in two separate, novel approaches to calculating user or thread similarity. We will

then use those similarity calculations to identify potential clusters within the community.

3.3.3 Notation

A user −→vi is represented by a vector of their semantic terms, tij.

−→v1 = [t11, t12, . . . , t1n]1×n (3.1)

All the users can be combined into a single matrix, V .

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t11 t12 . . . t1n
...

. . .
...

...
. . .

...

tk1 tk2 . . . tkn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
k×n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−→v1
−→v2
...

−→vk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

The user’s semantic terms are extracted from their messages. These terms need to be

scaled in order to avoid biasing issues, so we’ll define a user −→ui by his/her scaled mesh terms

aij, and the matrix of users U .

−→u1 = [a11, a12, . . . , a1n]1×n (3.3)

All the users can be combined into a single matrix, U .

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n
...

. . .
...

...
. . .

...

ak1 ak2 . . . akn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
k×n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−→u1

−→u2

...

−→uk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

Let C be a matrix of similarities between semantic terms. cij is the similarity between

two terms. Note that, since each user was represented by a 1 × n vector there are n terms
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in the corpus overall, therefore the correlation matrix is n× n.

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 . . . c1n
...

. . .
...

...
. . .

...

cn1 cn2 . . . cnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
n×n

(3.5)

A thread can be represented by a vector of semantics terms in the same manner as a

user. Let
−→
hi be the ith thread in the community.

−→
h1 = [t11, t12, . . . , t1n]1×n

All threads can be combined into a single matrix, H.

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t11 t12 . . . t1n
...

. . .
...

...
. . .

...

tm1 tm2 . . . tmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
m×n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−→
h1

−→
h2

...
−→
hm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

Unlike the user-term representation, there is no-need to perform message-level scaling of

the term-representations for the thread-term matrix H. The purpose of the message level

scaling in the user representation was to avoid the potential for particularly long messages to

bias the representation of a user. Since the knowledge in a thread is drawn from the messages

contributed to it, longer messages represent more knowledge contributed to the conversation.

The scaling for users was because users could potentially be interested in several different

knowledge areas, but this is not the case for threads, which should be grouped around a

common subject.

Let H2 = HC be the semantically scaled matrix. The purpose of the H2 matrix is to

incorporate the semantic and co-occurrence correlations into the thread-term representation

in matrix H. The value of the representation H2 is that the columns of the matrix, the

MeSH terms, can now be thought of as being quasi-independent, which makes it easier to

apply clustering methods to them. Below is a simple example of the calculation of H2.
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H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 5 2 1

2 1 0 0 0

4 3 1 0 1

0 0 0 3 0

4 6 3 2 8

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.9 0.1 0.0 0.0

0.9 1.0 0.5 0.0 1.0

0.1 0.5 1.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0

0.0 1.0 0.0 0.0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.5 6.2 5.3 2.0 1.0

2.9 2.8 0.7 0.0 1.0

6.8 8.1 2.9 0.0 4.0

0.0 0.0 0.0 3.0 0.0

9.7 19.1 6.4 2.0 14.0

0.0 1.0 0.0 0.0 1.0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that a user-term semantically scaled matrix could also be created in the same

manner, denoted U2 = UC.

3.3.4 Scaling

The idea of scaling is to modify user-term representation such that the most common terms

do not bias the overall representation. A user or thread with a high density in a particular

term is clearly more represented by that term, but if it is a rare term then it must be a more

powerful representation than common terms. Scaling will occur at two levels: at the user

level, and at the corpus level.

Users are comprised of a set of messages. Each message is then mapped to a set of

semantic terms, which are aggregated to create the user vector −→vi . One of the major chal-

lenges in this representation is the difference in message size within a specific user. If a user

contributes, for example, 5 messages to the community, and one of those messages is signif-

icantly larger than the others, then it will dominate that user’s overall mapping. Consider

figure 3.2, which shows the overall mapping score, i.e., the sum of all the mappings, for each

message for a sample of users, with breaks in each bar indicating an individual message. User

963 has 8 messages, however half of his total mappings come from his two largest messages.

This means that, if the mappings are just added up, the user will be disproportionately

represented by these two messages.

There are three possible options we will investigate for message-level scaling: boolean

scaling, normalization and log scaling. In order to explain the scaling some notation needs

to be introduced. Let user vi have messages mij, j ∈ [1, gi]. For each message a score, sijk, is

recorded, k ∈ [1, n]. Note that, since n is the total number of mapped terms in the dataset,
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Figure 3.2: The total message scores for a sample of users from the PPML. The breaks
within each bar represent a separate message.

most sijk = 0. Figure 3.3 shows the mapping for a particular user with three messages.

Relating back to the notation from section 3.3.3, the representative terms for a user are

aggregated across all the messages, as demonstrated in the equation below.

tij =
gi∑
l=1

silj

We are going to look at three other methods for determining the tij values, starting with

boolean scaling. Boolean scaling reduces all message-level scores to a 1/0, where a 1 indicates

that the message was mapped to that term, and a 0 indicates that it did not. The formal

equation is given in equation (3.7). In this case a user is represented not by the strength of

their messages, but by the number of different messages that map to the same term. If a

user maps to the same term over multiple messages then this should be represented in the

user’s scores, but for users with few messages or short messages, boolean scaling could have
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Figure 3.3: The mappings for a single user stratified by message

the effect of clouding the results by assigning all terms essentially the same score.

tbij =
gi∑
l=1

I(silj > 0) (3.7)

Normalization adapts the idea of boolean scaling, but within a message it assigns a value

on a [0, 1] scale that measures how important that term was to that specific message. This

leverages the boolean scaling principle of multiple messages with the same term being more

important, but adapts to the idea that, within a message, not all terms are necessarily equal.

Equation (3.8) has the formula for normalization scaling.

tnij =
gi∑
l=1

silj
maxk∈[1,n]silk

(3.8)

Finally, log scaling is taking the log-transform of each message score. This has the effect

of reducing the overall difference between the highest and lowest scoring terms, while also

rewarding terms that occur in multiple messages, as evidenced in equation (3.9). The log

terms are a log-transform of the product of terms occurring across multiple messages. Higher

scoring terms that appear across multiple messages will score much better than high-scoring

terms that occur in only a single message, while still rewarding those terms that score higher.

Note that, because log(0) is undefined, the term score is only calculated over the mapped

terms, and not over all terms. If iterating over all terms is the only option, using log(1+silj)
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would also work.

tlij =
∑

l∈[l,gi]|silj>0

log(silj) = log

⎛
⎝ ∏

l∈[l,gi]|silj>0

silj

⎞
⎠ (3.9)

Of the three methods, normalization seems the most appropriate. Boolean scaling is an

option, but for users with only 1 or 2 messages in the community they end up with little

differentiation between their terms, and it seems like log transforms are strictly better, as,

within a single message, they maintain the differentiation between users. For comparing log-

scaling to normalization, consider figure 3.4, which shows the scores for 7 active users from

the PPML, sorted by overall score. The figure demonstrates the similarity between counts

and log-scaled scores, while maintaining some differentiation between terms that have the

same count-level.

Log-scaling still leaves a large gap between the largest couple of mapped terms and the

rest of the terms, however. It is effective in increasing the importance of terms that map

multiple times, but it should be noted that normalized terms usually spike at the same

points.

I believe that message-level normalization is the most appropriate scaling for the scores.

If a user is represented by what they talk about, then they should be equally represented

by all their messages. Assigning any extra weight to messages that are long implies that

a longer message is inherently more interesting to the writer than short messages, where

in reality the length of the message is dictated by far more than interest in the subject

matter. Message-level normalization significantly rewards mappings to terms from multiple

messages. The risk with this method is the potential for short messages with few mappings

can bias the representation of a user, but we should be able to expect that terms returned

by the mappings are accurate representations of the messages, so even if a message is short

its content is valuable.

Moving on from user-level scaling to corpus level scaling, the most common form of

scaling is Term Frequency - Inverse Document Frequency (TF-IDF) scaling. We will first

define the term frequency, tf(tij, vi). There are two potential definitions we will investigate:

the normalized frequency (equation 3.10) and the log-scaled frequency (equation 3.11).

tf(tij, vi) =
tij

max(tik|k ∈ [1, n])
(3.10)

In the normalized equation (3.10) each user or thread is scaled such that their individual
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scores are on a [0,1] scale, with higher scores indicating more use. This weights all users or

threads on the same scale.

tf(tij, vi) =

⎧⎨
⎩ 0 if tij = 0

1 + log(tij) otherwise
(3.11)

In the log-transformed equation (3.11), each score is scaled down by the log transform.

This reduces the effect of larger terms, while still maintaining the score differences between

two users.

The inverse document frequency, idf(ti, V ), is the ratio of the size of corpus (either the

number of users or the number of threads) divided by the number of users or threads that

mapped to a specific term. For rare terms this number will be large, indicating that it is a

more informative term than the more common terms.

IDF (i, V ) = log

( |V |
| {vj ∈ V ; j ∈ [1, k]|ti ∈ vj}

)
(3.12)

The final scaled value is a product of tf and idf.

aij = tf(tij, vj)× idf(ti, V ) (3.13)
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Figure 3.4: The scores for a user, scaled to a [0,1] scale, as scores will only be compared
relative to one another.
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3.3.5 Directed Similarities: The Balanced Genealogy Measure

The objective of the directed similarity measures is to find a way to calculate the similarity

between users that a) incorporates the inherent relationship between the MeSH terms into the

calculation, and b) captures the asymmetric nature of the relationship. For two users A and

B, A may be interested in B more than B is interested in A, especially if B is a content expert

in a number of fields and A is a junior community member only interested in a specific area.

Ganesan and colleagues [29] suggest two adaptations for calculating asymmetric similarity

between objects whose elements are semantically related. The Balanced Genealogy Measure

(BGM) and the Recursive Genealogy Measure (RGM) provide two different approaches to

finding similarities between users based on their representations by taxonomically related

terms. The BGM method seems more appropriate for our data than the RGM, so it will be

explored in this thesis.

The Balanced Genealogy Measure (BGM) is an iterative method that is an adaptation of

the authors’ own Optimistic Genealogy Measure (OGM). Consider the vector representation

of two users, u1 and u2. Their mappings produce two subtrees of the full MeSH tree, T1 and

T2. We want to determine how similar the two subtrees are.

1. For each leaf l1 in T1 visited in optimal order (more on this later), find the leaf l2

in T2 that has the lowest common ancestor in the tree. This node can be defined as

LCAT1,T2(l1).

2. Increment l2’s match count, i.e., the number of times that this term has been used as

a match for a leaf from T1.

3. Define two equations

optleafsimT1,T2(l1) =
depth(LCAT1,T2(l1))

depth(l1)
(3.14)

leafsimT1,T2(l1) = optleafsimT1,T2(l1)× βmatchCount(l2)−1 (3.15)

The value of optleafsimT1,T2(l1) is the ratio of how well the leaf l1 matches the tree T2.

If l1 is present in T2 then the optleafsimT1,T2(l1) will be 1, and if l1 has no ancestors

present in T2 then optleafsimT1,T2(l1) will be 0. The leafsimT1,T2(l1) value scales the

optimal value by the number of times the leaf it matched to has been used as a match
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within the tree. As explained in the original paper, [29] if multiple elements from one

subtree continually match to the same element in the second tree then the two trees

are less similar.

4. Finally, the similarity between the two users is calculated using equation 3.16, where

W () is the weighting equation for the semantic terms (TF-IDF, for example).

simBGM(u1, u2) =

∑
l1∈U1

leafsimT1,T2(l1)×W (l1)∑
l1∈U1

W (l1)
(3.16)

The BGM algorithm requires the leaves of the tree be visited in optimal order. This means

that they are iterated through such that the similarity between users is as high as possible.

The general approach is to find matches iteratively based on their optleafsim value, i.e., first

find direct matches, then matches with a common parent, then a common grandparent. The

proof is left to the original work [29], but this approach results in an optimal similarity

measure.

The algorithm is dependent on a single coefficient, β ∈ [0, 1] that measures the penalty

for multiple matches. β = 1 suggests that there is no penalty, while β = 0 suggests that a

node in T2 can be used at most 1 time in matching to T1.

Once we investigate semantic correlations and context-based information through Infor-

mation Content (section 3.3.7), section 3.3.8.2 will outline how the BGM method must be

adapted to non-leaf mappings and issues of homonymity, along with extensions to incorporate

context specific information, resulting in a novel correlation calculation.

3.3.6 Symmetric Similarities: Vector Space Models

Detecting similar users or threads within a community is vital to increasing connectivity

between users. The connection clustering in section 3.2.3.1 provides a connection-based

method for detecting similar users, but these methods fail to incorporate the content of the

messages shared. In this section we will investigate a content-based method for detecting

similarity between users that incorporates the relationships between the MeSH terms used

to represent the users and/or threads.

For each user or thread, think of their set of semantic terms as representing them in

n-dimensional space. With any two vectors, their similarity/difference could be measured by

the angle created between the vectors. Vector Space Similarity uses vector and trigonometry
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theory to leverage the cosine of the angle between two vectors to measure their similarity,

given in equation (3.17).

simV SM(u1, u2) =

∑n
i=1 a1ia2i√∑n

i=1 a
2
1i

∑n
i=1 a

2
2i

=
u1 • u2

||u1|| × ||u2|| (3.17)

The problem with equation 3.17 is that it assumes orthogonality of the mapped terms,

i.e., when we represent a user as a vector of their MeSH terms we make an assumption that

the terms are independent of one another, which is clearly not the case for MeSH terms, or

in fact for any medical taxonomy. Common approaches are to apply some sort of Singular

Value Decomposition or eigenvector scaling to normalize the term matrix U or H such that

the new representation is orthogonal, but those methods do not make full use of the inherent

relationships between the dimensions of the user-vectors. Rather than trying to factor or the

dependence between terms we will incorporate the term relationships into the calculation.

Using the term similarity matrix C, we can calculate user or thread similarity using the

Generalized Vector Space Model.

The Generalized Vector Space Model (GVSM) [95] adapts the VSM to deal with the

problem of non-orthogonality between the terms used to represent documents. VSM repre-

sent each vi as a unit vector in n-dimensional space. The GVSM representation maintains

the independence of the representative vectors, but defines the term vectors in 2n space to

account for all possible correlations. It turns out that, though the theoretical representation

is in 2n space, the calculation of these vectors is not needed, only the correlation between

the terms. Equation (3.18) presents the vector form of the equation.

simGV SM(u1, u2) =
u1Cu′

2√
u1Cu′

1

√
u2Cu′

2

(3.18)

The GVSM allows the use of non-orthogonal representations of users or threads, but requires

a term-correlation matrix C. The next section will investigate semantic methods and co-

occurrence methods for calculating the correlation matrix C, as well as introduce our own

custom method for combining the two approaches.
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3.3.7 Calculating Term Similarity

There are several ways that two terms can be related. Because we are mapping to a taxonomy,

there is a natural taxonomic relation between terms. Much research has been done on

calculating correlations between terms within a taxonomy, and section 3.3.7.1 below outlines

some of the methods that have been used. As well, there are co-occurrence relations between

terms. Two terms that are not semantically related may still be correlated if they occur

within the same messages, or within the same threads, or are used by the same user. Section

3.3.7.2 will explore the co-occurrence measures that can contribute to the correlation, and

section 3.3.7.3 will explore the extension of the co-occurrence methods to semantic-based

methods. Finally, section 3.3.8.1 will provide a method for combining semantic and co-

occurrence based correlations into a single correlation framework.

3.3.7.1 Correlations Within a Taxonomy

Within a taxonomy it is somewhat intuitive that terms that are close to one another within

the tree are somewhat correlated, but how is that correlation quantified? Consider the tree

in figure 3.5. Nodes 1, 2 and 3 are similar because they share a common ancestor, as do

nodes x, y and z. How do we quantify that similarity? Are nodes 1, 2 and 3 more similar

than a and b, because they are deeper in the tree? And how do you deal with nodes like

node 2, that have multiple parents (at multiple depths) within the tree?

The literature on semantic distance within ontologies can provide the means to calculate

these semantic similarities. The two approaches that are most used within the literature are

edge-based and information content based, along with efforts to combine the two to create

more sophisticated methods.

Rada and colleagues [68] first explored edge-based methods when they proposed measur-

ing similarity between two nodes within a taxonomy based on the minimum distance between

them (i.e their geodesic). His method is intuitive and simple, but there are inherent prob-

lems with it. Not all edges within a taxonomy are created equal, some nodes are naturally

“closer” to one another than others. Li and colleagues [51] explored modifying the shortest

path calculations between two nodes by combing path length, depth of their lowest common

ancestor (LCA) and the local density at the LCA.

Resnik [70] looked at information-based methods for calculating similarity using Infor-

mation Content. Let p(c) be the probability of encountering an instance of the taxonomy c.
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Figure 3.5: A sample of a subtree within a taxonomy

This probability function is monotonic increasing, so if c1 is a concept that has a parent c2

then p(c1) ≤ p(c2) and p(root) = 1. The information content of a node is the negative-log

transformation of this probability.

IC(c) = −log(p(c)) (3.19)

As the probability of encountering a term within the taxonomy increases then the relative

value of the information it provides decreases. If we define S(c1, c2) as the set of common

ancestors for two nodes c1 and c2 then the similarity between c1 and c2 is the maximum

information content over that set (see equation 3.20), i.e., it is the Information Content of

their lowest common ancestor. Note that this is a similarity and not a correlation, because

it has a maximum value of ICMAX , which is variable and dependent on the implementation.

sim(c1, c2) = maxc∈S(c1,c2)IC(c) (3.20)

One of the major challenges in using information-based methods is the calculation of p(c).

Resnik suggested parsing a large corpus related to the taxonomy to determine the proba-

bilities of encountering any individual term within the taxonomy, and then propagating the

results up the tree to give higher nodes a higher probability. In our corpus (the community
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messages) we are considering threads as the major unit of study, therefore if we let ti be

semantic term i then a natural interpretation of p(ti) is the probability of encountering term

i in a specific thread.

P (ti) =
number of threads with ti

number of threads

And the information content of a term would be given by equation (3.19). Note that, in

order to maintain the mathematical requirements of IC, P (ti) will count all occurrences

of ti or any children of ti. Consider figure 3.6 for a simple example of how the IC will be

calculated for terms in the taxonomy.

With usable information content measures at each of the nodes, the next step is determin-

ing what equation to use for calculating similarity between terms. Resnik’s methods would

provide the simplest method, as given in equation (3.20). Other researchers have explored

adaptations to this method that expand it to incorporate depth and density information.

Jiang et al [40] used information content to provide edge-weights for edge-based counting

methods. Let E(p) be the number of child links for a node p, let E be the average number

of child links per internal node, and let d(p) be the depth of node p. The weight of the link

between a child c and its parent p is given in equation (3.21). The equation is dependent

on two parameters: α ≥ 0 controls the effect of the depth of the parent node on the weight,

and β ∈ [0, 1] controls the effect of local density on the weight.

wt(c, p) =

(
β + (1− β)

E

E(p)

)(
d(p) + 1

d(p)

)α

[IC(c)− IC(p)] (3.21)

The overall distance between two nodes would be the sum of the weights along the shortest

path between the two nodes. Taking the inverse of the distance gives a similarity metric (as

in equation (3.22)). Once again, this is a similarity metric rather than a correlation, as its

minimum value is 1/(2× ICMAX) + 1, so it is once again variable and context-specific.

Dist(t1, t2) =
∑

c∈path(t1,t2)
wt(c, parent(c))

cor(t1, t2) =
1

1 +Dist(t1, t2)
(3.22)

If we set β = 1 and α = 0 to remove the depth and density effect, equation (3.22) can be

reduced to the equation below (note that LCA(t1, t2) denotes the lowest common ancestor
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of the two terms).

sim(t1, t2) =
1

IC(t1) + IC(t2)− 2IC(LCA(t1, t2)) + 1

Lin’s proposal [52] for a semantic similarity calculation is a scaled version of Resnik’s,

as given in equation (3.23). The scaling puts the measure (now a correlation measure) on a

[0, 1] scale, while maintaining all the desired attributes of a similarity measure.

corSEM(t1, t2) =
2×

[
maxc∈S(c1,c2)IC(c)

]
IC(t1) + IC(t2)

(3.23)

The previous approaches all use the lowest common ancestor of two terms to calculate

similarity. This is sufficient for a strict hierarchical taxonomy, but many medical taxonomies,

such as MeSH, are Directed Acyclic Graphs (DAG) rather than strict hierarchies, as nodes

occur in multiple locations within the tree. For terms t1 and t2 there may be several disjoint

paths between them, and all but the shortest (in terms of IC) are removed from the calcu-

lation. Couto et al. [18] developed methods for addressing this problem. For each of the

disjoint paths between t1 and t2, calculate the similarity using whichever of the similarity

calculations you favour, then take an average of those similarities to derive a global similarity

measure between the two terms.

These semantic correlation calculations provide the means to capture the inherent re-

lationships between concepts within a taxonomy, but they do not address the contextual

relationships between terms within a community. Within a knowledge-based community

there will be certain concepts that are not semantically related but will be conceptually

related within the context of the community. The simplest example would be the terms Pe-

diatrics and Pain within the PPML: These two terms do not have any semantic relationship,

but within the context of the PPML they are highly related. The next section will explore

methods for supplementing the semantic correlations with contextual correlations to provide

a context-specific correlation structure.
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Figure 3.6: An example of how IC is calculated. The counts in figure (a) are the number
of threads that each term was mapped to. These are aggregated up the tree in
(b), then made into probabilities by dividing by the number of threads in (c),
then converted to Information Content in (d) using equation (3.19)
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3.3.7.2 Co-occurrence Calculations

Many correlation methods use term co-occurrence within the corpus to provide a measure

of similarity between terms. Within the document retrieval literature, if terms occur in the

same document then they are more likely to be similar than words that do not occur in

the same document. When applying these methods to user similarity, the dimension across

which the co-occurrences are measured is not straightforward.

There are three general ways to calculate co-occurrence within the corpus: Message-level,

user-level and thread-level. Message-level correlation measures how often two terms co-occur

within the same message. This is the smallest and most powerful sense of correlation, as,

if two terms are consistently occurring together within a message then they must be very

similar. This method may be somewhat strict, however, as messages themselves have few

mappings compared to the number of messages overall, so this may result in low correlation

measures with many 0’s.

User-level correlation measures how often a single user uses terms over the course of

their messages. If a user is using terms together consistently then they must also be similar.

This is probably the least effective of the three methods. Users may be interested in multi-

ple subjects, so calculating similarity across different threads within a user would create a

correlation between subjects that may not be related.

Thread-level correlation measures how often terms occur together within a thread. If a

thread is thought of as the embodiment of the knowledge of the community about a specific

subject then co-occurrence within that thread should be representative of the two terms being

related to a common idea. This is probably the best of the three methods: it encapsulates

message-level correlation as well, while being the best measure of correlation within our idea

of a knowledge object.

In order to calculate the similarity between terms we need to introduce additional nota-

tion for the threads. Let matrix M be an n × h term-thread matrix. The rows of matrix

M represent the individual semantic terms ti, and the columns of the matrix represent the

threads, hj. mij = 1 if term ti is present in the thread, and 0 if the term is absent. Note that

this is a binary matrix and not a valued matrix, and can be calculated from the thread-term

matrix H, as M = I(HT > c), or the transpose of the H matrix dichotomized. Since the

mappings have values, they need to be dichotomized by comparing them to some threshold

value c. An appropriate threshold value will be determined in the experimental stage, but
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an initial value of c = 0 is sufficient for now.

The co-occurrence similarity between two terms can be calculated using Jaccard’s Dis-

tance, which is simply the intersection of the term vectors divided by their union (see equation

(3.24)).

corJ(ti, tj) =
|−→ti ∩ −→

tj |
|−→ti ∪ −→

tj |
=

−→
ti
−→
tj

′

−→
ti
−→
ti

′
+
−→
tj
−→
tj

′ −−→
ti
−→
tj

′ (3.24)

Note that Jaccard Distance is only one option, and others exist. Dice similarity [24]

calculates the similarity as two times the size of the union divided by the degree of each term,

while Adamic and Adar [4] use the size of the intersection while scaling each component by

its own degree.

3.3.7.3 Term Correlation Using Network Analysis

Term co-occurrence is one way to calculate the non-taxonomic relations between terms. If

two terms occur together in multiple threads, then there is an inherent relationship between

them, but only considers direct relations between terms and not secondary relations. If

term A and term B are similar because of their co-occurrence, and term B and term C are

similar because of their co-occurrence, what is the similarity between A and C? Consider

the example in figure 3.7, which present a simple network and the similarities between the

elements.

Looking at the figure, the most similar terms should be terms 3 and 4, since they share

2 threads of their 4 total threads, and then threads 1 and 2, as they share 1 of their 3

total threads. Jaccard distance accurately captures this sense of correlation within 1 step,

but what about beyond 1 step? Term 2 has no similarity to term 4, because they share no

common threads. They are both very similar to term 3, however, so one would expect them

to have something in common. The problem with Jaccard similarity is that there is no sense

of transitivity, and in large, sparse matrices Jaccard similarity is going to have many more

0’s in the matrix than is desired.

For terms that do not share a direct connection, their similarity can be calculated based

on the shortest path between them via their neighbours. The similarity between them is the

product of the similarity of the nodes on the shortest path. This is an adaptation of the

ideas first proposed by Huang and Lai [38]. Let Pij be a path between any two nodes i and
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T1

T2

T3

T4

T5

H1

H2

H3

H4

H5

H6 Adjacency Matrix
H1 H2 H3 H4 H5 H6

T1 1 1 0 0 0 0
T2 1 0 1 0 0 0
T3 0 1 0 1 0 1
T4 0 0 0 1 1 1
T5 0 0 1 0 1 0

Jaccard Similarity
T1 T2 T3 T4 T5

T1 1.00 0.33 0.25 0.00 0.00
T2 0.33 1.00 0.00 0.00 0.33
T3 0.25 0.00 1.00 0.50 0.00
T4 0.00 0.00 0.50 1.00 0.25
T5 0.00 0.33 0.00 0.25 1.00

Adapted Similarity
T1 T2 T3 T4 T5

T1 1.00 0.33 0.25 0.12 0.11
T2 0.33 1.00 0.08 0.08 0.33
T3 0.25 0.08 1.00 0.50 0.12
T4 0.12 0.08 0.50 1.00 0.25
T5 0.11 0.33 0.12 0.25 1.00

Figure 3.7: A fictional term-thread network. The Adjacency Matrix presents the network
in matrix form, the Jaccard Similarity is calculated using equation (3.24), and
the adapted similarity is calculated using equation (3.25). The bold terms in
the Adapted Similarity are the ones that are effected by the adapted calcula-
tions (compared to the Jaccard Similarity)

j: < (ti, ti1)(ti1, ti2), , ..., (tic, tj) >. Let P ′ be the set of shortest paths between nodes: there

are often multiple paths of the same length, so each of them must be checked. The similarity

equation is given in equation (3.25), and an example is given in figure 3.7.

corNET (ti, tj) = minP∈P ′

⎧⎨
⎩
∏
tk,tl

cor(tk, tl)

⎫⎬
⎭ (3.25)

3.3.8 Knowledge-Based Methods for Calculating User Similarity

The Generalized Vector Space Model (GVSM) and the Balanced Genealogy Measure (BGM)

provide the best means for calculating user or thread similarity based on medical lexicon
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representations. For the GVSM the construction of the correlation matrix is key to ensuring

the success of the approach. Semantic and network-based methods can provide the means

to estimate the correlation matrix, but neither uniquely captures the relationships between

terms within the community. The combined method outlined below provides a means of

incorporating semantic and co-occurrence relations between terms into a single correlation

matrix to be used in the GVSM model.

The BGM method needs to be adapted to allow for non-leaf mappings, and to deal with

issues of homonymity, neither of which were addressed in the original specification. Once

those are complete, however, the algorithm needs to be improved. The current approach cal-

culates the similarity between two terms in different subtrees based on the distance between

their lowest common ancestor, but this approach suffers for the same reason that the simplest

edge-based semantic similarity measures suffer, that not all edges within a semantic network

represent the same distance. Resnik [70] used the ratio of the information content between

the two terms, and there is potential for that to bring additional, context specific information

to the BGM method. Below we outline an information content based improvement to the

BGM called the Balanced Information Content Genealogy Model.

3.3.8.1 Combining Semantic and Co-Occurrence Correlation

Of the methods reviewed for calculating Information-Content based semantic similarity,

equation (3.23) is our choice for a solution. It adapts the simplicity of Resnik’s approach to

a [0, 1] scale, allowing it to be comparable to the network-based co-occurrence calculations

from equation (3.25).

Previous research into term similarity calculations has focused largely on either semantic

similarity or co-occurrence calculations, and has neglected to focus on combining the meth-

ods, but the case can be made that both are vital for an accurate representation of term

correlation. Working with just the network-based methods ignores the inherent relationships

between similar words. It may be the case that very similar semantic terms are not used

together because it is implicit that when ti is used, tj is also relevant to the conversation.

Conversely, the co-occurrence of specific terms with vastly different semantic meanings is

quite likely an artifact of the specific clinical scenario. The Information Content captures

the significance of individual terms within the corpus, but it does not capture the related-

ness of terms within the corpus. Combining the two measures is the optimal solution for
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determining the context-specific similarity between terms.

The simplest form of similarity would be to take the maximum of the two calculations.

This would have the effect of supplementing the semantic similarity with co-occurrence

similarity for terms that are contextually-related but not semantically related. It would

maintain the [0, 1] scale, and the resulting correlation matrix would have high scores for

terms that are similar and low scores for terms that are dis-similar.

cor(ti, tj) = max [corNET (ti, tj), corSEM(ti, tj)] (3.26)

This equation can be used to populate the term correlation matrix C, after which calcu-

lating user or thread similarity using the GVSM equation (3.18) would be straight-forward.

3.3.8.2 Balanced Information Content Genealogy Measure

Of the two genealogy methods, the BGM is more adaptable to non-leaf mappings, issues

of homonymity and extensions to information content. The sections below outline how to

adapt the current methods, and then how to extend them.

Adaptations to Non-Leaf Mappings The extension to non-leaf mappings should not

drastically alter the BGM method. The structure of the induced subtrees would not change

with the inclusion of internally mapped nodes. Looking at the example in figure 3.9, the

tree would have the same structure whether or not the internal nodes (the diamonds) were

mapped. The only question, therefore, is how to incorporate these internal nodes into the

algorithm, and whether this incorporation is necessary. Looking back to the algorithm in

section 3.3.5, they use the word leaf to iterate and match to all the non-internal nodes in

the tree. Because of the structure of their trees, their leaf nodes are their mapped terms.

There is no reason, however, that the BGM algorithm could not be changed from working

with leaves to working with mapped terms. The algorithm can be modified so that it iterates

over all mapped terms (internal and leaves) without inducing problems.

Homonymity The issue of homonymity within a medical taxonomy can pose a much

larger problem. The challenge with homonyms is that their relationships are not constant

across all their instances. A simple example is the term “cell division” in the MeSH tree, as

demonstrated in figure 3.8. You can see the potential pitfalls of homonyms and when they
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have variable numbers of children. The term Cytokinesis is only related to Cell Division

within the context of Cell Cycle, and not when talking about cell division in the context of

Cell Proliferation. Likewise, Cell Nucleus Division is related to Cell Division only within

the context of Cell Cycle and Genetic Processes. This means that we cannot represent the

MeSH tree as a graph with terms as nodes, because the edges from terms to their parents

are not always constant, but rather are context dependent.

G04.299.134 G04...750 G05.355 G07...750

G04.299.134.220 G04...750.500 G05.355.123 G05.355.105 G07...750.500

G04...220.109 G04...750.500.249 G05.355.105.109 G07...750.500.500

G04...220.220 G05.355.105.220

G04...220.250 G04...220.625 G04...750.500.500 G05.355.105.610 G07...750.500.750

Cell Cycle
Cell Proliferation
Genetic Processes

Cell Division
Clonal Evolution
Asymmetric Cell Division

Cell Nucleus Divison
Cytokinesis
Telomere Homeostasis

Figure 3.8: An example of the challenges that homonyms can be within MeSH
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When we map to a term through a semantic mapping program (like Metamap) we must

map to all possible instances of that term: if Metamap returns the term Cell Division then

we must include all four instances of it in the subtree, as we are unable to determine which

one was mapped. When building the subtree up from the mapped terms, however, we

should only include terms in context. So if Metamap returns the term Cytokinesis then the

resultant subtree contains only one reference to Cell Division, the one at G04.299.134.220.

This means that Cytokinesis is not related to Clonal Evolution even though they are both

related to the concept Cell Division.

This then raises challenges when trying to calculate the BGM for a user. The BGM

requires visiting the leaves of the tree in optimal order, such that the final similarity is as

high as possible. This is a challenge in the face of homonymity as not all the leaves of

the subtree are going to be used in the final calculation. For the cell division example,

whichever of the four leaves has the highest optleafsim value with the second tree will be

the representative leaf for that term. The full tree for user A will be trimmed so that the

highest scoring node for each term will be retained and the rest will be dropped.

Modifying the BGM Algorithm Because of the adaptation to allow for internal-node

mappings, and the trimming due to homonymity, the optimal-visit component of the original

BGM algorithm needs work. It is not clear why an iterative punishment strategy is needed

for the BGM algorithm. The algorithm states that, for the second and third terms that map

to the same leaf node, they be scaled by βk where k is the number of matches-1, but the

result of scaling all three scores by βk should still be the same: the model should still reward

matches between users that do not over-use the same term. The effect of the size of β on

the algorithm overall is different, and generally larger values of β will probably be used, but

the optimal visit order component of the algorithm seems unnecessary.

Even if the iterative punishment component is dropped, there is still a problem with the

original algorithm with respect to multiple children. The original paper [29] is somewhat

vague on the form of the algorithm, and there seems to be the potential for ties that their

instructions do not deal with. Consider figure 3.9 as an example of trying to calculate the

similarity between two users.

The major question using the BGM algorithm is, what is the correct mapping for node

G in User A’s tree. It maps to induced node D in user B’s tree, but that induced node
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User A

A

B C

D E F

G H I J

l

mapped leaf
mapped internal
induced

User B

A

B K C

D E M N F

L O J P Q R

both trees
one tree

Figure 3.9: Subtrees for the mappings of two fictional users. The squares represent leaf-
terms mapped to the user, diamonds represent internal nodes mapped to the
user, and circles represent induced terms. Terms in blue appear in both trees,
and terms in red appear in only 1 tree

has two potential leaves, L and O. This is important for counting mappings. The current

algorithm counts the leaves mapped, but that becomes difficult when internal nodes can also

be mapped. The point of counting mappings is to punish user similarities when one term in

the second tree provides the mapping for several nodes in the first tree. The algorithm will

be adapted such that, when multiple mapped terms contribute to an internal node that is

providing a mapping, the count is split between them. The counting algorithm is as follows:

• Assign direct mappings from each node in tree A to a node in tree B

• For all mappings in tree B that are induced nodes, add their fractional score to their

children. If an internal node in tree B has k children and was mapped to c times, add

c/k to each of the children’s map counts.

• For each induced node in tree B, set their map score as the sum of their mapped child

nodes, scaled by the number of children. From figure 3.9, the score for node C would

be 1
3
countN + 1

3
countQ + 1

3
countR

Figure 3.10 presents the counting algorithm applied to figure 3.9 for calculating the similarity

from user A to user B, and table 3.1 presents the similarity from user B to user A.
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STEP 1: COUNT MAPPINGS

Direct Mappings
user A B D G H I J F
user B B* D* D* E* E* J C

User B Map Counts
Node C L N J O P Q R B* D* E*
count 1 1 1 2 2

STEP 2: PROPAGATE INTERNAL MAPPINGS TO CHILDREN

Direct Mappings
user A B D G H I J F
user B B* D* D* E* E* J C

B-children L,O,J L,O L,O J J - -

User B Map Counts

Node C L N J O P Q R
count 1 1

3
(1) + 1

2
(2) 1 + 1

1
(2) + 1

3
1 1

3
(1) + 1

2
(2)

= 4
3

= 10
3

= 4
3

Node B* D* E*
count 1

3
(4
3
+ 4

3
+ 10

3
) 1

2
(4
3
+ 4

3
) 1

1
(10
3
)

= 2 = 4
3

= 10
3

STEP 3: APPLY MODIFIED COUNTS TO MAPPINGS

Direct Mappings
user A B D G H I J F
user B B* D* D* E* E* J C
counts 2 4

3
4
3

10
3

10
3

10
3

1

Figure 3.10: The step by step process of calculating mapping counts for the example in
figure 3.9. The opposite counts (from user B to user A) are available in table
3.1. The imputed nodes in user B’s tree are denoted with * .

The final challenge with the BGM methods are the lack of context sensitivity. The

calculations of term similarity are outlined in equation (3.14), but they make the same

mistakes that many of the edge-based semantic similarity metrics make by assuming that all

edges within a semantic network are created equal. As the semantic-methods demonstrated,

the difference between ancestors within a semantic tree can be measured by looking at the

ratio of their Information Content (IC). This provides a mechanism for adapting the BGM

to the local context, by replacing equation (3.14) with equation (3.27). The final algorithm

for the modified method is as follows.

1. For each mapped node (i.e. non-induced node) l1 in T1, find the node l2 in T2 with the

highest Information Content (IC) that is an ancestor of l1.

2. Increment l2’s match count, the number of times that this node has been used as a

match
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user B user A1 user A children 3 counts5

L D - 15
7

O D - 15
7

J J - 8
7

P A* (All Leaves) 2

Q C* F 29
7

R C* F 29
7

N C* F 29
7

C C* F 29
7

user A counts2 prop. counts4

B 1
7

1
7

D 2 2 + 1
7

15
7

F 1
7
+ 1

1
(4) 29

7

G 1
7

1
7

H 1
7

1
7

I 1
7

1
7

J 1 1 + 1
7

8
7

A* 1 1
7

(
4× 1

7
+ 15

7
+ 29

7
+ 8

7

)
2

C* 4 1
1

(
29
7

)
29
7

Table 3.1: The step by step process of calculating mapping counts for the example in figure
3.9 (The steps are the exponents in the column headers). The imputed nodes
in user B’s tree are denoted with * .

3. calculate optleafsim for each mapped node in T1.

optleafsim∗
T1,T2

(l1) =
IC(l2)

IC(l1)
(3.27)

4. Scaled each optleafsim∗ value by the match-count according to equation (3.15)

leafsimT1,T2(l1) = optleafsim∗
T1,T2

(l1)× βmatchCount(l2)−1

5. The equation for similarity between u1 and u2 is given below. Let u1j be the tf-idf

score for term j from user 1.

simBICGM(u1, u2) =

∑
l1∈u1

leafsimT1,T2(l1)× u1j∑
l1∈u1

u1j

(3.28)
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This final method will be called the Balanced Information Content Genealogy Method

(BICGM). It is a novel adaptation of the BGM that cleans up the unclear components of

the original algorithm, adapts it to issues of internal mappings and homonyms and adds an

Information Content component to provide a more context-specific calculation.

Comparison to GVSM method If we assume that β = 0 (which Ganesan originally

called the Optimistic Genealogy Measure) instead of the BGM, then there are some direct

relations between the GVSM using semantic similarity and the BICGM. First look at equa-

tion (3.16) reparametrized into vector notation. Let li represent the set of leafsim values for

user i and let i be the identity vector, i.e. a vector of 1’s. It’s the simplest way to represent

the sum a vector.

simBGM(u1, u2) =
l1u1

l1i

The entries in li are from equation (3.15). When we compare this equation to the semantic

correlation between two terms (3.23), we see that it is almost the same value, except that

IC(l2) = 0, i.e., it’s a one-sided correlation. If we propagate this assumption through the

tree we can see that The BICGM method can be thought of as an asymmetric version of

the GVSM. This asymmetry has its advantages: a new user may have interests completely

in line with that of a content expert, but that expert may, in addition to those interests,

have interests in other fields. The BICGM similarity between users changes from “how much

do these two users have in common?” to “how much is user i interested in user j?” Both

questions are of value, but they report slightly different things.

3.3.9 Content-Based Clusters

Content-based clustering of the users and threads can tell us what the most popular subjects

are within the community, where potential subgroups may arise, and provides a second user

clustering based on content instead of connections. In terms of threads, we want to know

if and how the threads form into subgroups. Threads are the essential knowledge objects

within the community; they are the unit within which the knowledge shared by the members

is organized around a specific topic. Clustering the threads is a process of detecting the

knowledge-clusters within the community and identifying potential subgroups of interest

within the larger knowledge base. The general structure of the clustering process and the

applied structure for this project is given in figure 3.11. The purpose of the clustering is to
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identify knowledge-based and informative clusters. Whatever specific thread representation,

clustering algorithm, cluster evaluation and cluster representation is used, the final set of

clusters must provide meaningful information to the end users, in terms of a subset of threads

that are semantically related and provide a useful subset of the overall corpus.

Figure 3.11: (a) the general structure of the clustering algorithm. (b) the specific algorithm
decisions made

With the symmetric user or thread similarity matrices generated using the GVSM equa-

tion we have a natural “distance” measure to determine the distance between two users or

threads. The clustering methods in this section assume that there exists within the data an

exclusive clustering of threads, and attempts to find an optimal partitioning using hierarchi-

cal agglomerative clustering along with a dynamic tree splitting method [48]. Once we have

found a suitable set of k clusters we will evaluate the clusters using silhouette coefficients to

assess the quality of the clusters. Finally, for the clusters deemed sufficiently separate from

the rest of the corpus we will investigate the potential semantic terms that define them by

looking at proportional term contributions.

3.3.9.1 Clustering Based on Content Similarities

Applying clustering methods to the GVSM similarities provides a content based clustering

that ties similar users together based on their shared content in an iterative approach. This

type of hierarchical clustering differs fundamentally from other clustering methods (k-means

or information maximization, for example) in that the clusters are not exclusive. Hierarchical
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clustering defines a series of successive clusters (nested clusters) based on the distance be-

tween observations. The process for creating these clusters can be either top-down (divisive

clustering) or bottom-up (agglomerative clustering). One advantage of hierarchical cluster-

ing is that it is based on the distances between observations and not the raw observations

themselves. Any metric that can produce a distance matrix that reports the (symmetric)

distances between all pairs of observations can be used for hierarchical clustering. We can

use the GVSM similarities between users or threads as a distance metric.

In the bottom-up approach each observation is assigned its own cluster. At each step in

the algorithm the two most similar clusters are merged to form a single cluster, and then the

process is repeated. The method for calculating the distance between clusters significantly

effects the resulting structure. Single-link clustering calculates the distance between two

clusters as the shortest of all the distances between elements of each cluster. Complete-link

clustering calculates the distance between two clusters as the longest of all the distances

between elements of each cluster. Average-link clustering takes the mean of all distances

between elements. Ward’s method [89], which uses a minimum variance function that is

similar to an error sum of squares approach.

Top-down clustering starts by assigning each observations to a single cluster, then suc-

cessively splitting the clusters until atomic clusters (i.e clusters with only 1 observation) are

obtained. The decisions that define the splitting are which cluster to split, and what splitting

rule to use. The cluster to split is normally chosen based on some cluster evaluation metric

(several of which are outlined in section 3.3.9.3), and the cluster with the worst metric is

split. Once a cluster is selected, the splitting should be done to try and improve the metric as

much as possible. Bisecting k-means is an example of a method that does this, by performing

a k-means partitioning with k = 2 to split the cluster into 2 subclusters. With bisecting

k-means the process is typically stopped once k clusters are created, so setting k = m for

our thread matrix would result in atomic clusters.

Hybrid Hierarchical Clustering [13] presents a method that combines top-down and

bottom-up approaches to create optimal clusters. Top-down approaches are known to be

better when the number of desired clusters is small, and bottom-up when the desired num-

ber is large, so the hybrid method attempts to combine them to find an optimal solution.

Lin and colleagues used a bisecting k-means approach to cluster citations from MEDLINE

using MeSH terms [53], which was also leveraged by Yoo [96]. The AGNES algorithm [43] was
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used to cluster MEDLINE citations by Struble [81] in a traditional hierarchical agglomerative

clustering approach.

We will use an agglomerative clustering algorithm (specifically the AGNES algorithm

from the R library cluster [58]) to calculate clusters within the thread and user similarity

matrices. This method results in a series of clusters (a dendrogram) that must be split in

order to find an exclusive clustering of the users or threads.

3.3.9.2 Defining Clusters: Splitting Dendrograms

A dendrogram is a simple tree diagram used to demonstrate the hierarchical clustering

process, and splitting a dendrogram at certain points produces exclusive clusters. Figure 4.32

presents a dendrogram for the thread clustering from the PPML. The most common method

of splitting a dendrogram is a static cut, where a height in the tree is chosen and the branches

of the dendrogram are split at that level to produce k clusters. Hierarchical clustering

is known to be sub-optimal at certain levels, however, so the clusters may have spurious

memberships, especially near the cutpoint. Langfelder [48] proposed a novel algorithm called

the Dynamic Hybrid Algorithm, which uses a 2-step, bottom-up approach to splitting a

dendrgram into clusters.

The two step process is as follows:

1. Branches of the dendrogram that meet the following specified criteria are made into

clusters

• The cluster must meet a minimum size, N0

• Objects must not be too far from the cluster. Within the dendrogram this is

controlled by a maximum height for joining a cluster, hmax

• Clusters should be separated from surrounding clusters by a minimum distance,

gmin

• The “core” of the cluster (and core is defined algorithmically) must be sufficiently

dense, defined by a maximum distance (equivalent to a minimum average simi-

larity), dmax

2. The un-matched objects are added to the nearest cluster.
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In controlling the parameters for cutting the tree the authors of the algorithm offer

a variable called deepSplit that sets the gmin and dmax values according to pre-specified

values. The values are presented in table 3.2, and are the ones used for this project. Other

values were also investigated, but none yielded superior clusters, so the default 5 levels were

used. The second decision made was to ignore the second step in the hybrid process, where

the unclustered points are added to the closest cluster. We are most interested in finding

unique clusters of threads, therefore it is not necessary that every thread be assigned to a

cluster, especially if it dilutes the quality of the cluster. With the minimum cluster size at

10 threads this is not a huge issue, as most threads are assigned to a cluster.

deepSplit Value dmax gmin

DS0 0.64 0.27
DS1 0.73 0.2025
DS2 0.82 0.135
DS3 0.91 0.0675
DS4 0.95 0.0375

Table 3.2: The different default values for building the hybrid cuts. The values are given
as fractions of the height of the tree in order to apply consistent factors across
trees of varying heights.

3.3.9.3 Evaluating Cluster Assignments

Regardless of the clustering method used, the result is a set of k distinct clusters. Evaluating

the validity of those clusters is a crucial step in the clustering process. The clustering

algorithms assume that a partitioning of the data into clusters exists and attempts to find

it, but evaluations of the clustering provide the insight into whether these clusters are real

separations of the data.

The Silhouette Coefficient is a method for evaluating the clustering at an individual level.

Let a be the average similarity between an object and all the other elements of the cluster.

For each other cluster, calculate the average similarity to that cluster, and let b be the

largest of those values (i.e., b is the average similarity to the closest cluster). The silhouette

coefficient is defined in equation 3.29.

si =
a− b

max(a, b)
(3.29)
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The silhouette coefficient ranges from [-1,1], where high values are better, and values < 0

indicate that the object is in the wrong cluster. Figure 4.35 presents the silhouette coefficient

for clustering on the PPML.

Finally, Agglomerative Coefficient is an evaluation of hierarchical clustering overall, i.e.

an evaluation of the dendrogram. For each node in the structure di is the dissimilarity

between the node and the cluster it was first merged with, divided by the dissimilarity of the

final merger. The agglomerative coefficient is the average of 1 − di across all the terms. In

general high agglomerative coefficients indicate a better cluster, but the coefficient is highly

susceptible to network size, and therefore should only be used for comparisons between

different methods. We will use it to decided which of the four cluster distance metrics to

use.

3.3.9.4 Evaluating the Content of Clusters

Clusters are useful only if the identified clusters can provide useful feedback to the community

at large. After the clusters are identified and evaluated the mechanism for their clustering

needs to be determined. This is an attempt to determine what the identified threads are

clustering around.

Recall that, in the thread-term matrix H threads are represented by their component

semantic terms, which are TF-IDF scaled. The purpose of TF-IDF scaling is to reduce

the effect of common terms biasing the representation while still maintain some measure of

contribution to the corpus. To evaluate the clusters we are going to looking at the term

contribution for each term in each cluster. For each cluster we will calculate the average

TF-IDF scaled score for each term. Clusters that are formed around terms should have

high TF-IDF values, relative to low values in other clusters. We will study the highest term

contribution values at the end of the next section to see how they can be used to define the

detected clusters.

3.3.10 Summary

Exploring the content of the communications within an online knowledge-based community is

imperative for properly understanding and managing the KT activities within it. Knowledge

maps will provide general summaries of the knowledge being shared within the community,

which can be leveraged to improve the community overall.
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We have explored methods for exploiting the semantic representations of messages to

calculate user and thread similarities within the online community. We have demonstrated

two novel approaches to calculating these similarities: the BICGM for calculating asymmetric

similarities based on semantic relationships between a user’s or thread’s semantic terms, and

a GVSM approach that calculates symmetric similarities based on the semantic and co-

occurrence correlations between semantic terms. We then explored how these similarities

could be used to detect user or thread clusters within the community.

The original specifications for the BGM measure [29] were in need of improvement. We

have adapted it to deal with non-leaf mappings and helped clear up the un-addressed issue of

multiple child nodes for internal mappings. We have also explored the idea of incorporating

the concept of information content into the calculation, in order to better measure the

inherent relationships between terms within a medical lexicon. Other studies [51, 70] have

demonstrated that the effect of measuring distance within a lexicon based on IC instead of

depth-based or edge-based methods improves the similarity calculations, so we posit that

using IC in the BGM (thereby creating the BICGMmethod) will only improve the similarities

between users.

The GVSM requires a term-correlation matrix that measures the similarity between the

terms used to represent users. The semantic correlation measures [51,70] provide an optimal

method for measuring correlation between terms within a medical lexicon, but we believe that

they do not capture the context-specific relationships between concepts that co-occurrence

measures do. Combining the two provides a way to supplement the semantic correlations

when there are relationships between terms (such as Pediatrics and Pain within the PPML)

that do not have explicit semantic relationships.

The next section will evaluate the modifications to both similarity calculations to evaluate

their overall effect on detecting user and thread similarity and clusters.

3.4 Comparing Content Similarity Methods

The previous section presented several approaches to similarity calculations that will need to

be tested in order to determine the best approach. Message-level normalization is required

in order to balance user representation across their messages, and TF-IDF weighting is the

most straightforward and effective term-weighting method. Beyond those decisions there are

four potential methods available for calculating user/thread similarity.
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1. Balanced Genealogy Measure

2. BICGM

3. General Vector Space Model using corSEM from equation (3.23)

4. GVSM using combined correlation from equation (3.26), i.e., supplementing the corSEM

method with the co-occurrence correlations.

This section will compare the four different methods. The first step will be comparing

the two genealogy methods (1 vs. 2), then the two GVSM approaches (3 vs. 4), and finally

comparing the BICGM to the GVSM approach (2 vs. 4).

3.4.1 BGM vs. BICGM

Figure 3.12 presents the distribution of the pairwise differences between the BGM and

BICGM methods for computing similarity for the PPML and SURGINET data. The BGM

method tends to report higher correlations than the BICGM method, but that is not that

significant of a finding, as it merely suggests that the methods function on different scales.

Figure 3.13 presents the distribution of the measurements themselves, along with their

square-root transformations. After looking at the figures, I decided to use a square-root

transformation of both similarity measures, in order to normalize them and put them on a

more manageable scale. With the raw data there is crowding at the low end of the similarity,

causing challenges in interpretation.
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bgm−bicgm

Fr
eq

ue
nc

y

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

0
10

00
0

30
00

0
50

00
0

Comparing BGM to BICGM

bgm−bicgm

Fr
eq

ue
nc

y

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4
0

20
00

40
00

60
00

80
00

PPML Data
BGM-BICGM Count Proportion

< -0.2 176 0.0009
(-0.2,-0.15] 93 0.0005
(-0.15,-0.1] 331 0.0017
(-0.1,-0.05] 924 0.0048

(-0.05,0] 14592 0.0764
(0,0.05] 31620 0.1656

(0.05,0.1] 49257 0.2579
(0.1,0.15] 47978 0.2512
(0.15,0.2] 27031 0.1415

>0.2 18967 0.0993

SURGINET Data
BGM-BICGM Count Proportion

< -0.2 7 0.0002
(-0.2,-0.15] 10 0.0003
(-0.15,-0.1] 51 0.0014
(-0.1,-0.05] 224 0.0060

(-0.05,0] 4432 0.1178
(0,0.05] 9212 0.2448

(0.05,0.1] 8705 0.2313
(0.1,0.15] 7949 0.2112
(0.15,0.2] 3616 0.0961

>0.2 3430 0.0911

Figure 3.12: The distribution of the pairwise differences between the BGM and BICGM
similarities using the PPML data (left) and the SURGINET data (right)



73

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparing distribution of raw values

PPML Data

S
im

ila
rit

y 
M

ea
su

re

BGM BICGM BGM BICGM

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparing distribution of raw values

SURGINET Data

S
im

ila
rit

y 
M

ea
su

re

BGM BICGM BGM BICGM

Figure 3.13: Boxplots of the BGM and BICGM values, along with their square-root trans-
formations, for the PPML data (left) and the SURGINET data (right)
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3.4.1.1 Differences in Individuals

We are going to investigate some individual pairings from the PPML in order to understand

how the BGM and BICGM methods differ. The users selected are S0602 and S0605. User

S0602 has a BGM similarity of 0.79 and a BICGM of 0.85 to user S0605. User S0602

participated in one thread, a discussion about the management of pain due to gum recession.

His MeSH terms and corresponding mapping scores are listed in table 3.3.

Message Text MeSH Term Mapping Score
a really old fashioned remedy - oil of cloves? Clove Oil 800
Gum Recession Gingiva 694
the pain Pain 2000
originating from the exposed dental roots Tooth Root 553
of gum recession. Gingiva 1992
analgesics for the gums, Analgesics 770
gum inflammation. Gingivitis 1000

Table 3.3: The message mappings for user S0602 from the PPML

User S0605 is one of the more active users in the community. He has communicated

19 times on 17 threads, including one thread entitled “Gum Recession From the Dental

Literature”. His mappings from that thread are listed in table 3.4.

Message Text MeSH Term Mapping Score
with oral mucosal pain Mucous Membrane 660
due to cancer Neoplasms 1694
cancer therapy. Therapeutics 861
Oral topical doxepin rinse Mouthwashes 902
Gum Recession From the Dental Literature Gingiva 586
Oral topical doxepin rinse Doxepin 645
analgesic effect in patients Analgesics 604
analgesic effect in patients Patients 604
with oral mucosal pain Facial Pain 740

Table 3.4: The relevant message mappings for user S0605 from the PPML

Of user S0602’s 6 terms, 3 are perfect matches to S0605, MeSH terms Gingiva, Pain and

Analgesics. These mappings receive a matching score of 1 regardless of whether the BGM

or BICGM method is used. User S0602’s three other terms map through common ancestors.

See table 3.5 for how the mapping worked between the two users.
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S0602 S0605 Sim Scores
IC Location Term Term Location IC BICGM BGM

5.544 A14.549.167.646.480 Gingiva Gingiva A14.549.167.646.480 5.544 1.000 1.000
1.364 D27.505...014 Analgesics Analgesics D27.505...014 1.364 1.000 1.000
0.412 G11.561.600.810.444 Pain Pain G11.561.600.810.444 0.412 1.000 1.000
5.033 A14.549.167.900.750 Tooth Root Dentition A14.549.167 4.697 0.933 0.667
6.642 D20.215.784.750.186 Clove Oil Complex Mix. D20 3.347 0.504 0.333
6.642 C07.465.714.258.480 Gingivitis Stomato. Dis. C07 2.881 0.434 0.333

Table 3.5: A sample of the PPML mappings from user S0605 to user S0602. The Sim Scores
in the last two columns are the two different approaches to calculating leafsim
values, IC for the BICGM method, and depth ratio for the BGM method.

For all three imperfect matches, the IC similarity is larger than the depth similarity. This

is because, though the matches are not close to each other within the MeSH tree (3, 5 and 5

steps respectively), within the context of pediatric pain they are rather similar ideas relative

to the overall content of the community. The MeSH term Tooth Root is closer to the term

Dentition than 3/5 steps, because within the context of Dentition most threads contained

the term Tooth Root. Table 3.6 contains the aggregated mappings and thread counts for all

children of the term Dentition within the MeSH tree.

Tree Location Mesh Term Thread Count
A14.549.167.646.267 Dental Cementum 1
A14.549.167.646.480 Gingiva 3
A14.549.167.860 Tooth 1
A14.549.167.900.250 Dental Cementum 1
A14.549.167.900.750 Tooth Root 5

Table 3.6: All the child mappings from the MeSH Term “Dentition”

This example illustrates the potential to use information content to shorten the edge

length between similar terms that may be several steps apart within the MeSH tree. This

example is of a situation where the BICGM similarity is greater than the BGM similarity,

however, and as we saw in figure 3.12 this is not the norm. In the majority of cases the

BGM similarity was higher than the BICGM similarity, suggesting that the IC method is

increasing edge length more often than decreasing.

Users S0875 and S0636 are examples of where IC is lengthening the edges within the MeSH

tree. These two users mapped to only 1 term on the mailing list. In reality they are not good

candidates for indepth study (short, one-mapping messages, no further participation), but
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their mappings demonstrate something important when considering BICGM vs BGM. They

both mapped to the term Chronic Pain at location C23.888.592.612.274, which is a child of

the term Pain at location C23.888.592.612. These two terms are only 1 step apart, so their

BGM similarity would be 5/6, but the IC of the two terms are 2.11 and 0.37 for the child

and parent respectively. The term Chronic Pain is a specific idea, whereas the term Pain,

especially within the context of the PPML, is a very general and common term. If you were

interested in chronic pain within the mailing list then looking at all users who communicated

around the concept of Pain would return far more users than you are personally interested

in. Users S0875 and S0636 have a BGM similarity of 0.913 with 239 users on the mailing

list (all users with a direct mapping to Pain) and a BICGM similarity of 0.415 for the same

users.

A more meaningful example of the effect of IC lengthening edges is for user S0872. For

multiple users S0872 has a BGM similarity of 0.671 and a BICGM similarity of 0.337, and

for all those users it is because of the same sub-tree overlap, listed in table 3.7.

S0872 Target Sim Scores
IC Location Term Term Location IC BICGM BGM

0.412 G11...444 Pain Pain G11...444 0.331 1.000 1.000
2.617 D02....367.652 Ketamine Chemicals and

Drugs
D 0.412 0.186 0.125

4.445 A05.810.890 Urinary Bladder Anatomy A 0.776 0.175 0.250
3.087 G01.750.770.776 Sound Phenomena and

Processes
G 0.486 0.078 0.200

2.325 F04.096.628 Psychology Psychiatry and
Psychology

F 0.150 0.065 0.250

6.642 C23.888.592.900 Urinary Blad-
der, Neurologic

Neurologic Man-
ifestations

C23.888.592 0.242 0.050 0.800

Table 3.7: The similarity mappings for S0872 to a number of target users on the PPML

These mappings are a good example of how far terms near the top of the tree can be

from their roots conceptually. The term Psychology is 4 steps from its root, Psychiatry and

Psychology, so it’s BGM similarity is 1/4, but the tree rooted at Psychiatry and Psychology

(node F) in the PPML is quite large, therefore the IC of the root is very low. This means

that the distance between the term Psychiatry and its root is almost 4 times as far based on

IC as based on node depth. Both similarity measures are designed to punish mappings that

go through multiple ancestors, but also to punish mappings near the top of the tree, but the

penalty of mapping near the top of the tree does not seem to be large enough within the
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BGM model to encapsulate how different some the root nodes in the MeSH tree are from

their children.

Ultimately I think that low similarity scores are appropriate for this user. Of S0872’s 6

terms, four of them mapped through root nodes, and the two that did not map through a root

are mapped through very common terms within the tree, Pain and Neurologic Manifestations.

3.4.1.2 Ranking User Similarities

We can find examples of how BGM and BICGM are different in individuals, and have

demonstrated the potential improvement in similarities based on IC methods, but as we

demonstrated in figures 3.12 and 3.13 there is a difference in the distributions between BGM

and BICGM values, so value-based comparisons may not be the most appropriate. If the

ultimate goal of similarity ranking is to find similar users, then that should be the ultimate

comparison between the methods. The magnitude of the similarity is important, but users

are going to be more interested in their top five most similar users than they are in the size

of that similarity.

To this end we investigated how the two methods differed in their similarity rankings for

individual users. For each user we found their top 5 most similar users based on both the

BICGM and BGM methods. We then checked the top 5 and top 10 of the other method

to investigate the overlap. Table 3.8 contains the overlap between the two methods for the

PPML data and table 3.9 for the SURGINET data.

For the PPML, The table demonstrates that, though the methods are reporting fairly

different numbers (as was evident in figure 3.12), the relative ranking of the two methods

is similar. For 93% of users the top 5 most similar users to them according to BGM were

in the top 10 of the BICGM method, and of those top 5 49% were the same top 5 for the

BICGM, and another 39% had 4 of 5 the same.

The SURGINET results again reflect the similarities between the two methods, with

significant overlap in the way they rank users. The BGM and BICGM methods are clearly

different, but ultimately there is little difference in their final effect on similarity rankings.

Clearly there is a difference between the two methods. Figures 3.12 and 3.13 demonstrate

that the two methods are reporting different numbers, and the investigation into individual

pairs from the PPML demonstrate that the effect of using IC, of shortening some edges and
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BGM
0 1 2 3 4 5

Overlap with BICGM top 10
n 0 0 2 4 29 455

proportion 0.000 0.000 0.004 0.008 0.059 0.929

Overlap with BICGM top 5
n 0 1 7 50 191 241

proportion 0.000 0.002 0.014 0.102 0.390 0.492

BICGM
0 1 2 3 4 5

Overlap with BGM top 10
n 0 0 2 4 37 447

proportion 0.000 0.000 0.004 0.008 0.076 0.912

Overlap with BICGM top 5
n 0 1 7 50 191 241

proportion 0.000 0.002 0.014 0.102 0.390 0.492

Table 3.8: Measuring the overlap between the most similar users per user, for both BGM
and BICGM in the PPML.

lengthening others, has the potential to improve the similarity measures, at least conceptu-

ally. Ultimately, however, the two methods are reporting very similar relative rankings, in

that, regardless of whether you look at your most similar users based on BGM or BICGM

methods, you will get very similar rankings of users you may be most interested in.
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BGM
0 1 2 3 4 5

Overlap with BICGM top 10 n 0 0 0 1 7 186
proportion 0.000 0.000 0.000 0.005 0.036 0.959

Overlap with BICGM top 5 n 0 0 1 12 73 108
proportion 0.000 0.000 0.005 0.062 0.376 0.557

BICGM
0 1 2 3 4 5

Overlap with BGM top 10 n 0 0 0 2 7 185
proportion 0.000 0.000 0.000 0.010 0.036 0.954

Overlap with BGM top 5 n 0 0 1 12 73 108
proportion 0.000 0.000 0.005 0.062 0.376 0.557

Table 3.9: Comparing the overlap between the BGM and BICGM methods for finding the
most similar users on SURGINET

3.4.2 GVSM with Semantic Versus Network Correlations

Within the GVSM method the major challenge is how to measure term correlation. We

have investigated this process in section 3.3.6, and determined that, though the semantic

similarity seems the most appropriate, supplementing it with co-occurrence measures when

no semantic similarity exists may help improve the correlation measures.

This section will begin by directly investigating the correlation values for individual terms,

then will move on to applying both measures within a GVSM to calculate user similarity.

3.4.2.1 Semantic Versus Co-Occurrence Correlations

The distributions of the semantic and co-occurrence correlations are presented in figure 3.14

for the PPML data and figure 3.15 for the SURGINET data. It is clear that the majority of

both correlation matrices are quite low. For the PPML data 96% of the semantic correlations

resulted in a correlation of 0, while 88% of the pairs in the co-occurrence calculations had a

correlation < 0.05, and similar patterns hold for the SURGINET data.

What is more interesting is the terms that scored highly in the co-occurrence relations

and low in the semantic correlations: these are the terms that do not have inherent tax-

onomic relations to one another, but within the context of pediatric pain they are related

via their discussion threads. Figure 3.16 contains the distribution of the differences between
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Figure 3.14: The distribution of the semantic and co-occurrence correlations on the PPML

correlation values in the two matrices for the PPML and SURGINET data, and demonstrate

similar patterns. For the PPML data, table 3.10 contains the pairs that scored lowest in

figure 3.16 from the PPML data, i.e, the pairs that had a high co-occurrence correlation and

a low semantic correlation.

Table 3.10 presents some of the terms from the PPML that have the highest co-occurrence

correlation. These correlations highlight the importance of context in the determination of

term correlations. Low semantic and high co-occurrence correlation suggests that certain

correlations exist within a specific context. For example, the high correlations between the

terms Pain, and both Pediatrics and Child are indicative of the context in which these

messages are being communicated (within a pediatric pain mailing list), but these terms do

not have any inherent relationship within the MeSH taxonomy.

Some of the correlations in table 3.10 represent relationships within MeSH that are not

specifically denoted in the semantic tree. Cystis, for example, has a “scope note” connecting

to Urinary Bladder, and likewise Urinary Bladder has an annotation for Cystis, but they do

not share an hierarchical relationship within the MeSH tree.

Mouthwash and Mucositis are an interesting pairing, and demonstrate the true value

of these context-specific correlations. Mucositis is an inflammation of the mucosa, and

often arises in the mouth, so it is possible that mouthwash could be used to treat it, but
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Figure 3.15: The distributions of the semantic and co-occurrence correlations on
SURGINET

the relationship is not so strong that it warrants a semantic relationship within the MeSH

tree. Within the communications on the PPML, however, the terms have largely appeared

together. Within the entire healthcare community the MeSH term mouthwash can be related

to a myriad of subjects, but within the context of pediatric pain mouthwash is more likely to

be discussed in terms of management of specific diseases such as mucositis. This is a great

example of how the context in which the message is communicated is a vital component of

the correlation calculations. Within SURGINET the terms have no relationship, but within

the context of pediatric pain they are related.

We argue that the co-occurrence correlations represent important relationships between

terms that are either not present in MeSH or not explicitly annotated. Incorporating them

into the correlation calculations provides additional insight into the inherent experiential

knowledge within the community, which is an important facet of KT. In turn, these rela-

tionships can contribute to the overall user similarity calculations.
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Figure 3.16: Differences between semantic and co-occurrence correlations for the PPML
(left) and SURGINET (right) data. The highest bar is significantly truncated
in each figure, as the vast majority of pairs have no semantic correlation and
a very low co-occurrence correlation

Term 1 Term 2 Sem. Cor Co. Cor
Pain (3360) Pediatrics (1443) 0.000 0.516
Pain (3360) Child (1252) 0.000 0.402
Cystitis (42) Urinary Bladder (78) 0.000 0.455
Mucositis (34) Mouthwashes (25) 0.000 0.429
Mucous Membrane (15) Mouthwashes (25) 0.000 0.500
Penis (13) Circumcision, Male (26) 0.000 0.500
Baclofen (20) Muscle Spasticity (14) 0.000 0.455
Pancreatitis (15) Celiac Plexus (17) 0.000 0.500
Pancreatitis, Chronic (13) Celiac Plexus (17) 0.000 0.500
Urinary Retention (25) Urinary Tract (3) 0.000 0.500
Scrotum (12) Inferior Colliculi (15) 0.000 0.667
Gingiva (24) Paint (3) 0.000 0.500
Pancreas (7) Celiac Plexus (17) 0.000 0.600
Immunity (2) Whooping Cough (21) 0.000 0.500

Table 3.10: A sample of the terms with the highest co-occurrence and lowest semantic
correlation on the PPML
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3.4.2.2 User Similarity

We calculated user similarity using two Generalized Vector Space Models, one using the

combined correlation from equation (3.26), the other using only semantic correlations from

equation (3.23). The distribution of user similarity measures, along with comparisons be-

tween them, are presented in figures 3.17 and 3.18 for the PPML and SURGINET data

respectively.

The combined correlations result in larger similarity values for both the PPML and

SURGINET users. What is of particular interest here is the individual users that have high

similarity in the combined correlation calculation and low semantic similarity: these are users

that are being detected due to the adaptations to semantic correlation applied in equation

(3.26).
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Figure 3.17: Distributions of the PPML user similarity measures calculated using a GVSM

We are going to investigate the similarity between two sample users from the PPML that

fell into this group. Users S0493 and S0654 have a semantic-only similarity of 0.292 and a

combined similarity of 0.456. User S0493 has 14 messages in the dataset, while user S0654

has 3. Both users seem interested in the pharmacological side of pediatric pain (table 3.11

presents a sample of their most used mesh terms). User S0493 has 239 distinct mappings,

and user S0654 has 46 distinct mappings.
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Figure 3.18: Distributions of the SURGINET user similarity measures calculated using a
GVSM

The users have four MeSH terms in common (Pain, Analgesics, Pharmaceutical Prepara-

tions and Anxiety), and of the terms that they do not share there are 118 pairings between

them that are semantically related (table 3.12 has a sample of those semantic pairings).

That leaves 9752 pairs of MeSH terms between the two users that have no semantic

relationship. A sample of the terms from this set that have a co-occurrence correlation are

listed in table 3.13. Table 3.13 also lists the term weights (from the TF-IDF calculation) to

provide an idea of how influential those pairs were in the weighting of the final correlation

calculation.

There are some interesting findings in table 3.13. The similarity between Clonazepam

and Intracranial Hypotension and between Histidine and Anxiety seems to be a result of side

effects of both drugs. The pairing between Acetaminophen and both Morphine and Opioid

Analgesics along with the pairing between Ketamine and Anti-Inflammatory Agents, Non-

Steroidal (NSAIDs) is not surprising, as a pain-based mailing list is often discussing pain

relief, and though these are different types of pain relief, in the context of pediatric pain

they are quite similar, and they often arise together in conversations. The correlations to

Pain at the bottom of the table are a demonstration of why TF-IDF weighting is important.
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S0493 S0654
Score Term Score Term
9582 Pain 2968 Vitamin B 12
7111 Pharmaceutical Preparations 2790 Folic Acid
6288 Morphine 2606 Anticonvulsants
6173 Analgesics, Opioid 2515 physiology
5177 Child 2381 Acetaminophen
4593 Ketamine 2000 Monitoring, Physiologic
3790 Thinking 1722 Analgesics
3482 Constipation 1722 Kidney Diseases
3440 Analgesics 1654 Kidney
3368 Methotrimeprazine 1618 Long-Term Care
3262 Adult 1000 Reading
3138 Disease 1000 Kidney Failure, Chronic
3004 Neoplasm Metastasis 1000 Intracranial Hypotension
3000 Clonidine 1000 Blood Cell Count
3000 Biological Assay 827 Dietary Supplements
2991 Pediatrics 812 Serum
2856 Histidine 804 Pharmaceutical Preparations
2684 Helping Behavior 790 Anti-Inflammatory Agents, Non-Steroidal
2465 Typhlitis 753 Tears
2390 Pain Management 753 Therapeutics

Table 3.11: A sample of terms used by the PPML users S0493 and S0654

Co-occurrence with the term Pain is common on a pain mailing list but not overly informa-

tive, and the weight ensures that it will not have a significant influence on the correlation

calculation.

Table 3.13 also demonstrates the potential risks of mapping with Metamap and co-

occurrence correlations. The terms Hip and Tears should not have a relationship, but the

phrase hip labral tear has arisen in a conversation on the mailing list. This phrase has

incorrectly mapped to Tears, as in what is produced when you cry, which has created a

relationship between terms that are not related. This sort of mis-mapping when using se-

mantic mapping programs is a known risk, and must be considered when interpreting the

similarity measures reported. The assumption is that the poor mappings are out-weighed

by the accurate mappings, resulting in little influence of incorrect terms.

The correlation between Swimming Pools and Blood Cell Count is an example of how

rare terms can result in spurious similarities. Swimming pools have only arisen twice in the
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Term 1 Term 2 Sem. Cor
Pain Pain 1.000
Analgesics Analgesics 1.000
Pharmaceutical Preparations Pharmaceutical Preparations 1.000
Anxiety Anxiety 1.000
Sensation Pain 0.951
Analgesics, Opioid Analgesics 0.922
Urinary Bladder Kidney 0.788
Cystitis Kidney Diseases 0.744
Porphyria, Acute Intermittent Hepatitis E 0.717
Infertility Kidney Diseases 0.680
Cystitis Kidney Failure, Chronic 0.658
Pain Management Therapeutics 0.628
Emotions Anxiety 0.627
Analgesics Anti-Inflammatory Agents, Non-Steroidal 0.621
Thalamus Dura Mater 0.610

Table 3.12: A sample of the semantic correlations between the PPML users S0493 and
S0654

archives, and both times were about the same patient, who experienced pain relief while

swimming. Since this patient also had blood counts mentioned in their messages, there

is a co-occurrence between the two terms, despite their lack of similarity. This is one of

the short-comings of co-occurrence correlations, and why semantic correlations are generally

preferred where available, however the overall value of co-occurrence correlations in table

3.13 outweighs their risk.

This example demonstrates the power that co-occurrence correlations can lend to the user

similarity process. By supplementing the semantic correlations with co-occurrence correla-

tions users with similar interests that use different lexicons may still be able to be connected.
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S0493 Term Weight S0694 Term Weight Corr
Mitochondrial Diseases 3.33 Anticonvulsants 2.82 0.167
Clonazepam 2.08 Intracranial Hypotension 2.87 0.167
Hip 2.18 Tears 2.51 0.182
Mucopolysaccharidosis III 2.70 Blood Cell Count 1.30 0.200
Domperidone 1.07 Anticonvulsants 2.82 0.167
Hypertension 1.02 Intracranial Hypotension 2.87 0.250
Hip 2.18 Blood Cell Count 1.30 0.222
Dyskinesias 1.97 Blood Cell Count 1.30 0.200
Transport Vesicles 1.80 Blood Cell Count 1.30 0.167
Swimming Pools 1.78 Blood Cell Count 1.30 0.200
Analgesics, Opioid 1.82 Acetaminophen 1.17 0.186
Analgesics 1.75 Acetaminophen 1.17 0.175
Leg 1.53 Blood Cell Count 1.30 0.182
Morphine 1.70 Acetaminophen 1.17 0.168
Histidine 2.23 Anxiety 0.89 0.155
Pharmaceutical Preparations 1.85 Analgesics 1.05 0.178
Adult 1.78 Analgesics 1.05 0.158
Morphine 1.70 Analgesics 1.05 0.172
Fungi 0.98 Pain 0.37 0.200
Thinking 1.33 Pain 0.37 0.158

Table 3.13: A sample of the co-occurrence correlations between the PPML users S0493 and
S0694

3.4.2.3 Ranking User Similarities

As with the comparison of the BGM vs BICGM methods, we are ultimately interested in

whether the two methods return a different set of most similar users for each member of the

community. Table 3.14 presents the overlap between the top 5 most similar users returned by

one method and the top 10 returned by the other method for the PPML, and table 3.15 for

the SURGINET data. The table demonstrates far more difference between the two methods

than between the BICGM and BGM methods, though they still have significant overlap.

50% of users would find their top 5 most similar users according to the combined method in

the top 10 of the semantic list, and another 29% would find at least 4 of them.

I explored potential explanations for why some users experience large overlap and others

experience a small overlap. For the PPML data figure 3.19 presents the relationship between

overlap and number of messages and mappings per user to see if the more prolific users are

more or less likely to experience overlap, along with a comparison to the user’s mapping
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Combined Similarity
0 1 2 3 4 5

Overlap with Semantic top 10
n 0 8 21 72 140 249

proportion 0.000 0.016 0.043 0.147 0.286 0.508

Semantic Similarity
0 1 2 3 4 5

Overlap with combined top 10
n 0 6 35 89 155 205

proportion 0.000 0.012 0.071 0.182 0.316 0.418

Table 3.14: Comparing the overlap of most similar users on the PPML returned by each
function

Combined Similarity
0 1 2 3 4 5

Overlap with Semantic top 10 n 0 0 1 10 47 136
proportion 0.000 0.000 0.005 0.052 0.242 0.701

Semantic Similarity
0 1 2 3 4 5

Overlap with Combined top 10 n 0 0 2 21 64 107
proportion 0.000 0.000 0.010 0.108 0.330 0.552

Table 3.15: Comparing the overlap between the most similar users on SURGINET returned
by each function

score (normalized at the message level) to the term Pain, to see if specific terms are causing

overlap. As the figure demonstrates, none of the relationships produced any meaningful

outcomes.

For the SURGINET data figure 3.20 presents the relationship between overlap and num-

ber of messages and mappings per user, and reveals a noticeable trend, in that more active

users are more likely to experience overlap between their methods. This means that, for

the SURGINET data, as a user’s activity level increases then the differences between the

semantic correlation and the combined correlation diminish. This pattern may not have

been present in the PPML because of the increased activity levels of the SURGINET users,

or because of the comparatively smaller user pool on SURGINET. This results does suggest

that supplementing the semantic correlations with co-occurrence correlations is of most value

to the users that are less active within the community, even though this result was not borne

out in the PPML data.
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Figure 3.19: Exploring the potential causes of overlap (top 5 combined vs. top 10 semantic)

The effect of adding co-occurrence correlations to the semantic methods seems to be

producing changes to the GVSM process. The examples above demonstrate the potential

power of including these co-occurrence methods, particularly for the less active members of

the community.
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Figure 3.20: Studying the relationship between GVSM and BICGM overlap and network
activity on SURGINET

3.4.3 GVSM vs. BICGM

The GVSM and BICGM approaches are measuring different relationships between two users.

The BICGM method is asymmetric, so it measures how interested user A is in user B. If

all the subjects that user A is interested in also interest user B then he would have a high

BICGM similarity to user B. The converse is not necessarily true, however. If user B is much

more prolific then she might not be as interested in user A, as he only covers part of user

B’s overall field of interest. Table 3.16 presents the nature of the relationships between users

based on their BICGM values.

GVSM methods, on the other hand, measure how similar two users are. If a third party

BICGM [j, i]
low high

BICGM [i, j]
low indifferent CE→student
high student→CE peers

Table 3.16: The theoretical relations between users based on their BICGM values (CE =
Content Expert
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were to look at the communications within the community and want to identify users that

have similar knowledge bases, GVSM would provide that information.

We are interested in this section in investigating the nature of the relationship between

BICGM and GVSM values. Figures 3.21 and 3.22 presents the pairwise differences between

GVSM and BICGM values for the PPML and SURGINET data respectively.
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Figure 3.21: The pariwise differences between GVSM and BICGM values (left) and the
linear relationship (right) for the PPML data

In general the BICGM values seem larger than the GVSM values, though this is mostly

because the BICGM values were scaled larger to improve their distribution in the previous

section. The figure also demonstrates that there is a difference between the methods.

The GVSM values are moderately correlated with the BICGM values. Since GVSM is

symmetric and BICGM is asymmetric they cannot be compared directly, but the BICGM

correlation matrix can be split into two symmetric matrices, one that records the larger of

the two BICGM values for a pair, and one that records the smaller. For the PPML data

the GVSM values have a correlation of 0.69 with the higher of the two BICGM values, and

a correlation of 0.81 with the lower of the two BICGM values, while the SURGINET data

has similar correlation values of 0.66 and 0.86 for the same pairs.

The figures also demonstrate the linear relationship between GVSM and the two BICGM

values. When the smaller of the two BICGM values is low, the GVSM value ranges from

low to moderate (left side of the figure). In the context of table 3.16 we’re in the first



92

Comparing Two Methods
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Figure 3.22: The pairwise differences between GVSM and BICGM values (left) and the
linear relationship between GVSM and BICGM (right) for the SURGINET
data

row, suggesting that the GVSM values are going to be low to moderate when one user is

uninterested in the other. As the minimum value in the pair increases we move from the first

to the second row of the table, and we see that the potential GVSM values both increase

and narrow in range. At high BICGM minimum values we see high GVSM values. This is

the bottom-right scenario in the table, where both users are interested in the work the other

is doing.

Investigating the PPML examples from the previous sections can provide more insight

into the nature of the relationship between the two methods. User S0602 had a BICGM

similarity of 0.848 to user S0605, but user S0605 only had a value of 0.193 back. This is

because S0605 has participated on a number of threads about a variety of topics, and is

therefore less interested in the user that has only participated in a single thread about gum

recession. The GVSM value for this pair is 0.178, indicating a low similarity between the

two, which is expected, as there is a lot of content that S0605 has shared that S0602 is not

interested in.

We investigated user S0872’s BICGM value of 0.337 with a number of users. The reverse

BICGM value, along with the GVSM value, are listed in table 3.17. The BICGM values in

both directions are low, indicating that the pairs do not have much in common. Since there
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is little interest in either direction, it is not surprising that the GVSM value is also low.

S0504 S0602 S0702 S0735 S0783 S0814 S0857 S0888 S0937
BICGM [i, j] 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337 0.337
BICGM [j, i] 0.297 0.357 0.373 0.303 0.331 0.245 0.237 0.360 0.278

GV SM 0.164 0.047 0.045 0.161 0.137 0.148 0.127 0.149 0.171

Table 3.17: The BICGM and GVSM similarities between PPML user S0872 and several
other users

In only 2.6% of pairs does the GVSM exceed both BICGM values. In cases where the

GVSM is higher, it is likely due to the co-occurrence similarity that is not captured by the

BICGM model. Looking back at figure 3.21 there is a column of GVSM values at BICGM=0.

Users whose MeSH subtrees did not overlap at all have a BICGM similarity of 0, but if their

terms had a large co-occurrence similarity then there is potential for them to have a GVSM

similarity. Consider users S0582 and S0736, who mapped to only 7 and 2 terms respectively

(sample terms listed in table 3.18).

S0582 Terms
treeLocation term
D02.455.426.392.368.367.652 Ketamine
D26 Drugs
E01.370.520 Monitoring, Physiologic
E02.760.190 Critical Care
F02.463.902 Volition
H02.403.670 Pediatrics
N02.278.421.556.437 Hospitals, Pediatric
N02.421.585.190 Critical Care

S0736 Terms
treeLocation term
I02.903 Teaching
I03.946 Work

Table 3.18: The mappings for PPML users S0582 (left) and S0736 (right)

When you compare these terms to the terms there is no overlap between their MeSH

trees, therefore they have BICGM similarities of 0. However, in the co-occurrence matrix

the term Teaching had co-occurrence correlations > 0.1 with the terms Pediatrics, Drugs

and Pediatric Hospitals, resulting in a GVSM similarity of 0.181.

3.4.3.1 Ranking User Similarities

As before, what is most interesting is whether the methods return the same sets of rankings.

Table 3.19 presents the overlap in rankings between the top 5 from one method and the top
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10 from another for the PPML data. Unlike the BGM vs BICGM comparison in table 3.8

and similar to the two GVSM methods in table 3.14 there are significant differences between

the GVSM and BICGM methods, and the differences are even more pronounced. 25% of

users have a top 5 most similar users that don’t appear in their BICGM top 10, and only

3% find all 5 of them there. Similar patterns hold for the SURGINET data, presented in

table 3.20

GVSM
0 1 2 3 4 5

Overlap with BICGM top 10
n 123 153 96 71 30 17

proportion 0.251 0.312 0.196 0.145 0.061 0.035

BICGM
0 1 2 3 4 5

Overlap with GVSM top 10
n 139 139 99 72 41 0

proportion 0.284 0.284 0.202 0.147 0.084 0.000

Table 3.19: Measuring the overlap between individual rankings of the GVSM and BICGM
similarity measures on the PPML

GVSM
0 1 2 3 4 5

Overlap with BICGM top 10 n 22 38 54 37 22 21
proportion 0.113 0.196 0.278 0.191 0.113 0.108

BICGM
0 1 2 3 4 5

Overlap with GVSM top 10 n 13 37 74 49 21 0
proportion 0.067 0.191 0.381 0.253 0.108 0.000

Table 3.20: The overlap between individual rankings of the GVSM and BICGM similarity
measures on SURGINET

What is more novel about the GVSM-BICGM overlap is its relation to number of mes-

sages and mapped terms, presented in figure 3.23 for the PPML data and figure 3.24 for the

SURGINET data. We can imagine message count and number of mapped terms as a proxy

for activity in the network. The users with multiple mapped terms are the more active in

the community. When we considered the similarity between user S0602 and S0605 above

we noted that S0602 would be interested in S0605 because all the subjects that S0602 had

discussed had also been discussed by S0605, but the converse BGM or BICGM value would
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be low, because S0605 is interested in several topics that S0602 has not participated in. The

users that a particular user has a high BICGM similarity with are likely to have as many

or more messages and mappings in the community. As your personal participation levels

increase, the number of users more active than you decreases, therefore you are more likely to

be paired with someone at a similar activity level, who in turn may have a converse BICGM

value that is high. As we saw earlier in this section, when both BICGM values between a

pair of users are high, the GVSM value is also likely to be high.
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Figure 3.23: Comparing the relationship between community activity and overlap in
BICGM and GVSM similarity on the PPML

The relationship outlined in both figures seems to be confirming the interpretation of the

differences between BICGM, which measures how interested A may be in B’s knowledge,

and GVSM, which measures how similar two users may be.
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Figure 3.24: Comparing the relationship between community activity and overlap in
BICGM and GVSM similarity on SURGINET

3.4.4 Summary

We have explored two different approaches to measuring user similarity within an online

community, the BICGM and the GVSM. The two methods answer slightly different questions.

The BGM and BICGM methods provide a user with the other community members that

could be a resource to them: they are the users that have the most overlap in terms of

communication locations. It is an asymmetric relationship, in that the relationship between

A and B says nothing about the relationship between B and A. The GVSM is different, in

that it symmetrically suggests which users are the most similar, in terms of the content they

have communicated.

The evaluation of the BICGM at a micro level revealed some significant instances in

which the addition of information content to the BICGM improved the term similarities,

but at the user level there was little difference found between the two methods, suggesting

that the information content did not affect the relationships enough to significantly alter

the BGM method. For the GVSM the addition of co-occurrence correlation did significantly

affect both individual term correlations and the user network as a whole, so moving forward
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the GVSM with semantic and co-occurrence correlations should be used.

The comparison between the BICGM and GVSM methods are complex, as they are not

measuring the exact same metric. We did discover a potential relationship, however, between

GVSM and both pairs of a BICGM correlation. The evidence seems to suggest that if both

users have a high BICGM value for the other then their GVSM value will be high, but if the

BICGM values are different, or if both are low, then the GVSM value will also be low.

3.5 Combining Collaboration and Content Analysis

In figure 1.1 the analysis was split into two sections: the red section presented the analytic

methods based on communication patterns, and the blue presented analytic methods based

on knowledge content, but it is in their combination (the purple section) that real insight

into the community at large can be made. The collaboration analysis provided the tools

for finding pendants, but the content analysis will provide the means for investigating the

potential causes for messages going unanswered. The semantic summaries can be used to

summarize the connection-based clusters to identify if the clusters that were detected based

on communication patterns may be attributable to specific knowledge areas.

The two methods for detecting user clusters (first based on communication patterns,

second based on communication content) can be compared to see if there is any overlap, and

any insights into the clustering can provide more insight into how the community functions.

Finally, the BICGM correlations can be used to create a directed network, which can then

be used to identify content experts based on centrality measures.

3.5.1 Understanding Pendants

Comparing the semantic content in the pendants compared to the other conversations may

provide suggestions for why the questions were unanswered: The pendants could be covering

a subject area that is not common on the list, the number of mapped terms could either be

too high or too low, suggesting that the question was either lacking in medical details, or was

too complex for the community to respond. Some mailing lists are going to have pendants

for no discernible reason, but it is vital to ensure that messages are not being ignored based

on systemic problems with the community.
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3.5.2 Semantic Summaries of Communication Clusters

The communication clusters from section 3.2.3 are based on communication ties within the

community, but what we are particularly interested in is the content of these clusters. The

content of the messages within these clusters may provide insight into what is causing the

clustering pattern to occur. Some of the divisions are going to be caused by network effects,

high density clusters that are not based on content but are instead based on communication

patterns. Beyond the clusters defined by network density, however, there is additional insight

to be gleaned from the clustering. Even if the network exhibits a strong core-periphery

structure there may be sub-clusters within the periphery defined by content, or there may

be content guiding clustering within the core.

Section 3.3.9.4 outlined how to summarize the content of clusters based on the threads

within them. We will apply these methods first to compare the user clusters and 2-mode

clusters based on content, and then we will look at the content produced by the core versus

the periphery to see if there is a difference in the terms being used by the power users

compared to the rest.

3.5.3 Comparing Clustering Methods

There are three different methods for calculating user clusters: the 1-mode connection clus-

ters, the 2-mode clusters (generalized blockmodeling) and the content clusters. These three

clustering methods provide three different ways to find clusters in the network, so comparing

their components may provide additional insight into the structure of the community. The

clusters are formed in fundamentally different ways, so there may be no meaningful overlap

in their structures, but the overlap may also help to better understand the clusters and reveal

additional insights about the community.

3.5.4 Detecting Content Experts with BICGM Correlations

The Balanced Information Content Genealogy Model (BICGM) produces an asymmetric

correlation matrix. The interpretation of the BICGM values are different than the GVSM

results: The GVSM results are a measure of how similar two users are, while the BICGM

results are a measure of how interested user i is in user j (with a separate value for the

converse relationship).
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This asymmetric relationship can be well represented in a directed network, using the

directed network methods from section 3.2.2.3. We can create an expertise network from the

BICGM correlations by creating an edge for every BICGM correlation above a minimum

threshold d. The resulting adjacency matrix can be considered an expertise matrix R, in

that an edge between i and j means that user i is interested in the content that user j has

communicated. The choice of the threshold is subjective and dependent on the nature of the

BICGM values for the network.

Within these directed networks the centrality indicators take on very specific interpre-

tations. In-degree in the expertise network is the number of users that consider target user

an expert. Proximity prestige extends the idea of in-degree beyond one step, as the premise

is that, if user A considers B and expert, and B considers C an expert then A should also

consider C an expert. This transitive property may not necessarily true, but is a concept

worth investigating within the community. The final directed centrality to be investigated

is rank-centrality, which is the concept that users are experts if they are considered experts

by other experts. Whether we use the raw eigenvector decomposition or the authority mea-

sure from hub-authority analysis makes little difference, and either should provide a strong

indication of who the content experts are within the community.

3.6 Conclusion

The objective of this thesis is to improve online KT practices through better understanding

of the existing knowledge sharing dynamics within the community. We have isolated two

major components of the LINKS [1] model that must be evaluated and monitored within a

community in order to ensure a healthy KT environment: the culture of collaboration and

the knowledge content. For the culture of collaboration we have presented network-based

analytic methods for detecting and preventing pendants, for identifying knowledge seekers

and community leaders, and for identifying the core of the community.

To understand and control the knowledge context of the community the content of the

messages being shared must be analyzed. Using a semantic mapping program such as

Metamap [5] we can represent a message, a user or a thread by their formal medical terms

instead of the unstructured text. At a corpus level summarizing these mappings provides

the knowledge maps for the community, a high-level summary of the knowledge being shared

by the users, which can be used to better understand what is being discussed, as well as
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identifying potential growth areas within the community.

Moving beyond the corpus level to the user/thread level, the term-based representations

of the users and threads can be used to calculate similarities between both. There are a

myriad of approaches to calculating these similarities in the literature, but most fail to fully

incorporate the relationships between the medical terms used in the representation. Using

MeSH as a sample medical lexicon, we have developed two novel approaches to calculating

user and thread similarities: an asymmetric similarity using the BICGM and a symmetric

similarity using a GVSM with a term correlation calculated using semantic and co-occurrence

correlation. We evaluated these new methods through both individual investigations and

network-level comparisons. At the individual level we found that both methods can improve

the calculation of the correlation between users, but at the network level the BICGM was

not found to be overly different from the BGM. Comparing the GVSM to the BICGM reveal

some interesting correlations between the two, where users with high GVSM values tended

to have high BICGM values, but differences in either BICGM value caused the GVSM values

to drop.

The incorporation of the knowledge context analysis into the collaboration analysis is the

final component of the project. Identifying the components of the culture of collaboration

within the community is important, but the content analysis allows us to move beyond

identification to investigate the nature of these components. The term mappings can provide

insight into the nature of pendants and of the clusters and cores identified through SNA.

Comparing and contrasting the different approaches to user clustering may provide insight

into the nature of the community, and the BICGM can be converted into a directed network,

through which content experts can be detected through directed centrality measures.

The next chapter will apply the methods developed in this chapter to our two sample

datasets, the PPML and SURGINET, to evaluate their utility in the real world.
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Results

In this chapter we are going to apply the methods outlined in chapter 3 to two mailing lists:

the Pediatric Pain Mailing List (PPML), a mailing list around the subject of pediatric pain,

and a general surgeon mailing list (SURGINET). We will start by exploring the semantic

mappings of both lists, studying the knowledge map that each mapping provides. From there

we will study the network patterns of both lists to get insight into the culture of collaboration

within the community. After that we will investigate the user and thread similarity methods.

We will explore four different ways to calculate the similarities between users, and will also

investigate the user and thread clustering methods on both mailing lists.

4.1 Data

There are two datasets that will be used for this project. The PPML is a community of 460

clinicians from around the world who meet online to discuss issues pertaining to pediatric

pain. The archives of the PPML from 2009-02-02 to 2013-02-03 were extracted, during which

time 2505 messages were shared on 783 threads.

The SURGINET dataset is a community of 865 clinicians from around the world that use

the forum to discuss general surgical issues. The community is much more active, sharing

over 17,000 messages on 2,111 threads by 231 users during the period 2012-01-01 to 2013-

04-05.

The SURGINET community is more active that the PPML, but they are also more likely

to have non-medically relevant conversations. On the PPML all messages are medically rele-

vant: there are a mix of conference announcements, job advertisements and medical content.

SURGINET does not appear to have many job advertisements or conference announcements,

but it has a number of strictly non-medically relevant conversations: many humorous posts,

or political discussions, or arranging meetups with other community members. This is not

necessarily a problem, and one could make the argument that it may strengthen the com-

munity, but for the purposes of identifying medical knowledge within the community these

101
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threads are “noise”, and can bias the results of the semantic mapping and SNA significantly.

Because of the size of the SURGINET sample manually culling the non-medical threads

was not feasible. 300 random threads were reviewed and noted as medically relevant or

irrelevant. Figure 4.1 presents boxplots comparing the overall mapping score for each thread

to relevance. The boxplots suggest that there might be a cutoff that can at least partially

predict relevance.
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Figure 4.1: Comparing relevance to overall thread score

To determine the optimal cutoff value 1001 bootstrapping samples were taken from the

list. For each sample an ROC was fit, and the optimal cut-point (determined by the phi-

coefficient, or the highest sensitivity+specificity value) was found. Once the optimal cutpoint

was fit it was tested on the observations that were not included in the fitting sample, and

the accuracy of the classifier was found. Figure 4.2 presents the accuracy of classifiers by

their cut-value.

The figure reveals three potential cutoffs: the average cutoff value, 16944, the average of

the cutoffs that returned an accuracy > 80%, 16180, or the most commonly reported cutoff,

15182. Looking at the figure, the most common cutoff, 15182, and the one next to it, 15185,

report the highest accuracies, and are the most conservative, i.e., they are the least likely to
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Figure 4.2: The results of bootstrapping to determine the optimal cut value

remove pertinent conversations, therefore I decided to drop all threads that had a cumulative

thread score < 15182. In the sample of 300 threads there were 115 non-relevant threads and

a cutoff of 15182 correctly classified 98 of them (specificity=85.2%). Of the 171 relevant

threads, the cutoff correctly identified 137 of them (sensitivity=80.1%). A manual review

of the content of these threads revealed that most of the threads incorrectly classified as

irrelevant (i.e. dropped despite being medically relevant) were because of processing errors

or incorrect separation from their source thread, and were a technical problem rather than an

algorithmic one. The other misclassifications, irrelevant threads being reported as relevant,

found long, non-medical conversations. There were some subject-line clues that could help

in further cleaning, which helped improve the final dataset.

Finally, there was a small problem with thread-reuse, i.e., separate threads being grouped

together by common subject lines. This was do largely to ambiguous subject lines (ex:

“What would you do?”, “Need Help”, “Article Request”) that were re-used multiple times.

These threads were also removed to prevent further confusion in the analysis, and future

work on the mailing list should focus on useful and descriptive subject lines rather than
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uninformative, generic ones.

The result was a set of 13404 messages on 948 threads with 50597 total semantic map-

pings.

4.2 Knowledge Maps

There were 50597 terms mapped to the SURGINET data, compared to 27924 terms mapped

to the PPML data. Figure 4.3 presents the number of mappings per thread and per message

for each dataset.
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Figure 4.3: The number of MeSH terms per thread (left) and number of MeSH terms per
message (right), sorted and log-scaled

4.2.1 Comparing Knowledge Maps

If the semantic mappings returned for each mailing list are thought of as the representation

of the knowledge map that each list occupies, then studying the map that each mailing list

occupies can provide further insight into the content within each community. Figure 4.4

compares the mappings of each mailing list at the root mesh level, where there are 15 classes

of terms. The term labels are presented in table 4.1.

SURGINET has significant mappings to Anatomy (A) and Analytical, Diagnostic and

Therapeutic Techniques and Equipment (E), while the PPML maps a lot to Chemicals and
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Root Root Name
A Anatomy
B Organisms
C Diseases
D Chemical and Drugs
E Analytical, Diagnostic and Therapeutic Techniques and Equipment
F Psychiatry and Psychology
G Phenomena and Processes
H Disciplines and Occupations
I Anthropology, Education, Sociology and Social Phenomena
J Technology, Industry, Agriculture
K Humanities
L Information Science
M Named Groups
N Health Care
V Publication Characteristics
Z Geographicals

Table 4.1: The MeSH Tree Roots

Drugs (D), and both mailing lists map significantly to Diseases (C). We will investigate each

of these subtrees in more detail.
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Figure 4.4: Comparing the overall (left) and proportional (right) mappings for each mailing
list at the MeSH root level

4.2.1.1 Anatomy (A)

The terms most mapped to in the Anatomy section are presented in figure 4.5, and show

that the categories A01: Body Regions and A03: Digestive System are the most commonly

mapped terms on SURGINET. Figure 4.6 presents the breakdown of each of these these

categories.

Body Regions seems to have mapped to four major terms: Breast, Amputation Stumps,

Back and Abdomen. This is in contrast to Digestive System, which has no single dominant

term, but many mappings to different components of the gastro-intestinal tract (A03.556).

These terms represent areas that are often the target of surgical procedures, and thus their

presence in SURGINET is not surprising. Pediatric pain patients rarely have the same

targeted discussions about specific body parts: the issues that raise the most discussion on

the PPML are pain problems that are difficult to isolate, and therefore anatomy issues rarely

arise.
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Figure 4.5: The section mappings for the Anatomy section for both SURGINET and the
PPML
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Figure 4.6: The components of the two most popular subgroups of the Anatomy tree for
SURGINET (breaks within each bar represent individual terms)
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4.2.1.2 Diseases (C)
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Figure 4.7: The section mappings for the Disease section for both SURGINET and the
PPML

The mappings for the subsections of Disease (C) are presented in figure 4.7, and reveal

that both lists map significantly to C23: Pathological Conditions, Signs and Symptoms.

Beyond that very common subgroup the PPML discusses C10: Nervous System Diseases

more, while SURGINET discusses C06: Digestive System Diseases more.

C06 is driven largely by C06.405: Gastrointestinal Diseases, and in particular by Appen-

dicitis, a very common surgical procedure.

C10.597.617 is one of the codes for Pain, so the prevalence of terms mapped to C10 is

driven completely by the mappings to the term Pain in the PPML.

Figure 4.8 presents the components of mappings to C23. For the PPML the mappings

are again driven by the term Pain (C23.888.646), but SURGINET is more spread out,

with no single sign or symptom driving the mappings. In the process of discussing surgical

procedures a number of Signs and Symptoms (C23.888) are discussed, so it not surprising

that the surgeons discuss a number of terms from this list.



110

C23.300 C23.550 C23.888

SURGINET −  C23

MeSH ID

C
um

ul
at

iv
e 

S
co

re

0
50

00
10

00
0

15
00

0
20

00
0

C23.300 C23.550 C23.888

PPML − C23

MeSH ID
C

um
ul

at
iv

e 
S

co
re

0
50

00
00

15
00

00
0

25
00

00
0

Figure 4.8: The components of mappings to C23: Pathological Conditions, Signs and
Symptoms for both SURGINET and the PPML (breaks within each bar rep-
resent individual terms)

4.2.1.3 Chemicals and Drugs (D)

Figure 4.9 presents the mappings to the Chemicals and Drugs subgroups for both SURGINET

and the PPML. Two terms in particular drive the PPML’s dominance of these mappings,

D03: Heterocyclic Compounds and D27: Chemical Actions and Uses. Figure 4.10 presents

the proportional contributions to each component of D03 and figure 4.11 presents the con-

tributions to the components of D27..

D03 is driven by four terms for specific pain relievers: Morphine, Fentanyl, Clonidine

and Codeine, while D27 is driven by analgesics: Analgesics, Opiod Analgesics and NSAIDs.

In a mailing list focused on pain relief the prevalence of a myriad of pain relievers is not

surprising. Particularly within the realm of pediatric pain there is not always a consensus

solution to every pain problem, and thus main discussions can arise.
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Figure 4.9: The section mappings for the Chemicals and Drugs section for both
SURGINET and the PPML

Mappings to the category D03: Heterocyclic Compounds

MeSH ID

C
um

ul
at

iv
e 

S
co

re

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

4e
+0

5
5e

+0
5

6e
+0

5

D03.066 D03.383 D03.494 D03.605 D03.830
D03.132 D03.438 D03.549 D03.661

Figure 4.10: The components of D03 in the PPML (breaks within each bar represent in-
dividual terms)



112

D27.505 D27.720 D27.888

Mappings to the category D27: Chemical Actions and Uses

MeSH ID

C
um

ul
at

iv
e 

S
co

re

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

Figure 4.11: The components of the two subgroups D27 in the PPML (breaks within each
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4.2.1.4 Analytical, Diagnostic and Therapeutic Techniques and Equipment (E)
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Figure 4.12: The section mappings for the Analytical, Diagnostic and Therapeutic Tech-
niques and Equipment section for both lists

Figure 4.12 presents the components of the mappings to Analytical, Diagnostic and Ther-

apeutic Techniques and Equipment (E) section of the MeSH tree. SURGINET has far more

terms in this section of the tree, driven by E01: Diagnosis and E04: Operative Surgical

Procedures. Neither of these results are surprising at all, as the presence of more surgical

procedures on a surgical mailing list compared to a pain mailing list is expected. E01 is

driven by the terms Biopsy, Sentinel Lymph Node Biopsy and Laparoscopy, while E04 has

a number of procedural terms present: Mastectomy, Laparoscopy, Laparotomy, Drainage,

Appendectomy, etc.... Figure 4.13 presents the components of each term.



114

E01.370 E01.390 E01.410 E01.789

Mappings to the category E01: Diagnosis

MeSH ID

C
um

ul
at

iv
e 

S
co

re

0
50

00
00

15
00

00
0

Mappings to the category
E04: Surgical Procedures, Operative (Truncated)

MeSH ID

C
um

ul
at

iv
e 

S
co

re

0
20

00
00

60
00

00
10

00
00

0
14

00
00

0

E04.014 E04.062 E04.085 E04.176 E04.199
E04.035 E04.074 E04.100 E04.188 E04.210

Figure 4.13: Exploring the components of terms E01 and E04 in SURGINET (breaks
within each bar represent individual terms)

4.2.2 Individual Mappings

Beyond comparing knowledge maps, comparing individual mappings can provide some valu-

able insight into the structure of the communities. SURGINET mapped to 2711 individual

MeSH terms, while the PPML mapped to 2485 terms. Of those terms there are 1199 that

appear in both lists, and the correlation between the mapping scores of the terms in both lists

is 0.46, which represents a moderate amount of agreement. Figure 4.14 plots the mapping

scores of terms that appear in both lists against one another.

In both lists we see the individual terms that we would have expected from the previous

section. The PPML maps to Pain, Child and Pediatrics more, along with Opiod Anal-

gesics representing one of the many pain relievers that are present in the mailing list. For

SURGINET the elevated level of Patients and Thinking is odd, but the presence of Drainage

and Appendicitis is what would have been expected from the previous analysis.

What is also interesting is the terms that did not appear in one list and were quite

prevalent in the other. Table 4.2 presents the highest scoring terms in one list that were not

present in the other.

The highest scoring SURGINET terms that are not present in the PPML are procedure

specific: Bile, Fistula, Mastectomy, Labarotomy, Breast. Breast is interesting here, as breast
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Figure 4.14: The mapping scores for terms that appeared in both lists

feeding is obviously a term in the PPML (0.027% of scores), but the ability of Metamap to

differentiate Breast from Breast Feeding left the term Breast out of the PPML.

PPML terms that are not in SURGINET are about specific pain relievers: Methadone,

Ketamine, Clonidine, Pain Measurement/Management, Chronic Pain. Oddly, General Surgery

appears in the PPML, but not in the surgery mailing list. This is an example of implied

language, as the surgeons do not use the term general surgery: they would never say “contact

General Surgery” because they are general surgery, so the specific term never arises despite

it being the context of the entire community.
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SURGINET
MeSH Term Proportion of Mappings
Mastectomy 0.315
Bile 0.331
Laparotomy 0.355
Fistula 0.389
Duodenum 0.395
Carbidopa 0.432
Breast 0.681
Cholecystectomy 0.707

PPML
MeSH Term Proportion of Mappings
General Surgery 0.373
Clonidine 0.430
Organization and Administration 0.494
Methadone 0.597
Chronic Pain 0.612
Pain Measurement 0.657
Weights and Measures 0.768
Ketamine 0.787
Methods 1.168
Pain Management 1.769

Table 4.2: The most prevalent terms from each list that were not present in the other

4.2.3 Conclusion

The user of knowledge maps has provided detailed insight into the structure of both com-

munities. The PPML is, not surprisingly, focused on pain, but within the context of pain

they discuss medications and chemical solutions to manage pain more than any other sub-

group, and spend less time on pain-specific conditions, and neurological aspects of pain.

SURGINET seems to focus on the details of surgical procedures and surgical locations. An

investigation of the specific surgical areas that are present and absent from the list of popular

terms may provide some insight to the community at large about what they are discussing

and ignoring, but that content is beyond the scope of this thesis. The significant overlap in

C23 demonstrates what would most likely be true of all medical mailing lists, which is the

significant overlap of diagnostic questions and criteria, along with signs and symptoms of

disease.
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4.3 Identifying Collaboration Patterns

The first step in understanding the KT patterns in the community is understanding the

collaboration patterns at a network level. This section will investigate the issue of unresolved

knowledge seeking behaviour (pendants), and will investigate the general activity rates of

the two lists to get a sense of how the community members are participating within the

community.

There are 1121 threads in our database from the PPML and 3596 messages, resulting in

an average number of messages per thread of 3.2 (median of 2, range of 1-37). The PPML

has 493 users, which means that the average messages per user is 7.3 (median of 3, range

of 1-180). Figure 4.15 presents the distribution of number of messages per thread and per

user, and we can see that the number of messages is much more skewed per user than per

thread, demonstrating a significant difference between the most and least active users in the

community.
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Figure 4.15: The number of messages per user (left) and per thread (right) on the PPML

For the SURGINET data threads had an average of 14 messages (median of 11, range of

2-77), while users averaged 68 messages each (median of 12, range of 1-1632). Figure 4.16

present the distribution of the messages per thread and per user.

The SURGINET community is more active that the PPML, but shows a similar pattern

of having a couple of threads and a couple of users that are significantly more active than

the rest.
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Figure 4.16: The number of messages per user (left) and per thread (right) on SURGINET

4.3.1 Isolates

There are 525 messages on the PPML that did not receive a response in the database.

Through a combination of automated subject-line checking and manual review I stratified

the isolates into three categories: There were 373 administrative messages, 74 error messages

(mostly incorrect out-of-office messages, along with some mis-classification) and 78 true

messages that did not receive a reply, i.e, pendants. When we factor out the other isolates

that leaves 674 threads in the community, of which 11.5% did not receive a reply.

What we are particularly concerned about is that pendants occur due to exclusion by

the community. To investigate this potential problem we looked at pendant rates relative

to initial posting rates. Of the 453 community members, 149 had their first message on

the mailing list be a new thread (as opposed to replying to an existing thread). Of those

149 new threads, 19 were pendants, which means that the pendant rate amongst new users

was 12.7%,, roughly the same as the overall pendant rate of 11.5%. This suggests that the

community is not discriminating against new users, and that their initial threads are just as

likely to be replied to as existing users’ new threads.

An investigation of the terms used in the pendants compared to the first message in

non-pendant threads did not reveal any evidence that the pendants contained significantly

different semantic terms than the non-pendants. The most common terms used in pendant

threads were pain relievers (Morphine, Opioid Analgesics) along with general terms (Pain,

Patients, Hospitals, Pain Management), with no prevalent terms outside what is normally
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seen in the mailing list.

The number of mapped terms per message was similar between pendants and non-

pendants with median total scores of 8417 and 8436 respectively (p-value = 0.2208), so

there is no evidence to suggest that pendants are shorter messages than threads that re-

ceived replies. Overall there does not seem to be any discernible cause of pendant messages.

This can be seen as both an advantage, in that there is no systemic bias causing messages to

go unanswered, and a disadvantage, in that without a discernible cause it is more difficult

to find a solution. The empirical methods for detecting pendants based on response times

can be used to identify pendants in process, but the lack of explanation may warrant further

investigation.

SURGINET does not suffer from the same issue of isolates that the PPML does. Of the

nearly 18,000 messages within the community only 500 were isolates, and the majority of

them were technical errors in parsing the archives rather than actual pendants. Due to the

cleaning processes outlined above all the isolates were removed from the dataset, but even if

they were retained the active nature of SURGINET precluded any pendants arising within

the community.

4.3.2 Response Times

For the PPML figure 4.17 presents the time from initial post to time to first response for all

596 threads that received at least 1 response. The response times for the mailing list seem

quick, with 34% of threads receiving their first reply within an hour, and 88% receiving their

first reply within the first day. In fact, of the 596 threads that received a reply, only 47 had

to wait more than 2 days, and only 26 had to wait more than 4.

Because of its higher activity level SURGINET has much faster first-response times than

the PPML. Figure 4.18 presents the time to first reply for all the threads in the dataset.

66% of threads receive their first reply within an hour and 98.5% of the threads receive their

first reply within 24 hours.

Figure 4.19 presents the message times for each of the threads that received a response

on the PPML. 10% of threads last about an hour, and over 55% of threads last a day or

less. Some threads stretch on longer, with 25% of threads lasting 75 hours (about 3 days) or

more. The SURGINET thread lengths are remarkably similar to those on the PPML, with

the majority completing within 2 days, and a few stretching on significantly longer. Figure
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Quantile 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Time To First 0.32 0.42 0.52 0.63 0.75 0.90 1.05 1.30 1.46 1.78
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Time To First 2.19 2.75 3.82 5.08 7.76 10.87 18.03 26.91 91.84

Figure 4.17: Presenting the time to first reply on the PPML. The colors are there to
differentiate hourly intervals, i.e, the large black cluster at the start of panel
b) represent the threads with < 1 hour for response, red for 1−2 hours, etc...

4.20 presents the SURGINET thread durations.

The similarity in attention spans is interesting, as the SURGINET threads have the same

durations as the PPML despite having far more messages on average. This pattern suggests

a global thread duration, which may be helpful in facilitating KT. If after three days or so

a question does not seem resolved it may need additional facilitation work done by the list

administrators to ensure that it maintains its space within the community.
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of panel b) represent the threads with < 1 hour for response, red for 1 - 2
hours, etc...
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response. The colors are only to distinguish time intervals



124

4.3.3 Conclusion

The collaboration pattern analysis provided detailed insight into the issue of pendants within

the PPML (the same methods were applied to SURGINET, but due to their activity levels no

pendants were found), but found no evidence of any systemic bias related to either the user

or the content of the messages themselves. We have identified potential screening methods

(2 days of inactivity) for preventing pendants from occurring. In the response analysis both

mailing lists seemed to have fast initial responses and similar, three-day durations, suggesting

that the average active lifetime of a thread may be consistent across mailing lists.

4.4 Community Leaders: Individuals and Groups

In order to properly understand the KT nature of a community it is important to identify the

community leaders. Centrality metrics will provide the means to identify individuals, and

clustering methods (blockmodels and core-periphery analysis) will attempt to find dominant

groups and other potential subgroups within the community.

4.4.1 Identifying Leaders: Centrality Measures

Figure 4.21 presents the centrality distributions for the PPML data. With the exception

of closeness they are all significantly right-skewed, indicating that there are a couple of

users that dominate the centrality measures based on their much higher posting rates. The

exception is closeness, which demonstrates that the majority of users can be considered

somewhat close to the rest of the community. The strong relationships between the measures

are a known attribute of centrality measures; they are highly correlated to one another in

most scenarios. The users that are central in terms of degree tend to also be central in terms

of betweenness, closeness and coreness.

Table 4.3 presents the top users in each of the 5 centrality categories. As you can see

the top users are repeated in each category. These users represent the “power users” in

the community: the highly active members that are central to the community because of

their activity levels. The centrality measures do not provide much more insight into the

community other than the fact that active users are central, but the overall distribution of

the centralities nevertheless provides valuable insight into the community as a whole.

The SURGINET centrality measures are presented in figure 4.22 and table 4.4. They
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Figure 4.21: The distributions and relationships between PPML centrality measures. Note
that the betweenness measures are scaled up by a factor of 1000 to ease
presentation, and their true values are minuscule.

present results that are similar to those on the PPML, in terms of correlation between

metrics, but there are some differences. The degree and coreness measures are less skewed

on SURGINET, indicating a larger group of power users. The other issue of note is the

disparity between 2-Mode degree and the number of messages reported in figure 4.16. This is

because the network structure of the community records multiple messages to a single thread

as a single contribution. This means that users are often contributing multiple messages to

the same thread, which was not the case in the PPML. SURGINET users seem to engage

in conversations more than their PPML counterparts, who compose longer, more concrete

responses to questions rather than engaging in dialogue.
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senderID deg deg2M bet eigen close
S2509 245 119 0.272 1.000 0.673
S2340 165 93 0.088 0.815 0.584
S2119 143 62 0.073 0.719 0.570
S2100 161 55 0.103 0.762 0.580
S2105 155 52 0.081 0.751 0.573
S2523 152 54 0.080 0.763 0.584
S2111 150 45 0.062 0.784 0.575
S2236 140 39 0.075 0.708 0.565
S2085 139 39 0.062 0.713 0.556
S2122 139 44 0.075 0.703 0.565
S2155 125 41 0.079 0.608 0.548
S2153 122 39 0.060 0.661 0.551
S2176 132 37 0.041 0.702 0.556
S2271 114 37 0.057 0.628 0.546
S2130 111 35 0.031 0.615 0.540
S2198 108 27 0.042 0.592 0.542
S2239 105 30 0.032 0.608 0.531
S2201 104 26 0.037 0.583 0.529
S2225 104 29 0.026 0.606 0.539
S2091 103 27 0.026 0.586 0.527
S2078 99 26 0.030 0.509 0.528
S2410 97 25 0.018 0.565 0.524
S2520 97 22 0.015 0.595 0.529
S2095 100 19 0.024 0.612 0.529
S2566 93 26 0.063 0.496 0.528

Table 4.3: The “top” members of the PPML in terms of centrality indicators
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Figure 4.22: The centrality distributions for the members of SURGINET
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senderID deg deg2M bet eigen close
S0951 177 572 0.348 1.000 0.919
S0952 160 409 0.201 0.961 0.851
S0971 170 396 0.244 0.994 0.890
S0959 153 289 0.149 0.954 0.826
S0989 161 278 0.210 0.972 0.855
S0998 159 264 0.217 0.965 0.847
S0968 153 255 0.166 0.947 0.826
S0970 143 246 0.109 0.921 0.792
S0977 146 210 0.128 0.938 0.802
S0950 146 198 0.093 0.949 0.802
S0992 142 189 0.098 0.928 0.789
S0966 143 187 0.101 0.937 0.792
S0972 134 176 0.072 0.910 0.764
S0956 145 162 0.099 0.945 0.798
S0980 145 159 0.117 0.939 0.798
S0953 133 149 0.063 0.908 0.761
S0957 142 144 0.077 0.943 0.789
S0975 128 135 0.073 0.883 0.746
S0954 122 124 0.060 0.861 0.729
S0993 131 117 0.071 0.885 0.755
S1020 124 115 0.058 0.861 0.735
S0955 117 109 0.038 0.844 0.716
S1022 122 109 0.053 0.858 0.729
S1009 122 100 0.039 0.877 0.729
S0979 116 89 0.040 0.854 0.713

Table 4.4: Centrality measures for the most active 25 users on SURGINET
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4.4.2 Knowledge Translation Activity

We identified three archetypes that community members may fill within the community:

Knowledge seekers are those that initiate knowledge-based conversations, facilitators are

those that encourage conversation, and content experts are the community leaders in terms

of expertise in a specific field. Knowledge seekers are the simplest of the three roles to

determine, as they are those that initiate the conversations. Counting the number of threads

initiated relative to the number of threads participated in can tell us who the most active

knowledge seekers are within the community. Figure 4.23 presents the number of threads

initiated relative to the number of threads participated for the PPML data, and table 4.5

presents the number and proportion of threads initiated in the 3rd and 4th columns.
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Figure 4.23: The initiation rate relative to the number of threads participated in on the
PPML. The line through the plot represents the maximum possible initiation
rate, and the colour of each node represents that proportion from blue (low)
to red (high).

As the table and figure demonstrate there are some active knowledge seekers within the

community. From the table there are several users that have initiated multiple threads

without contributing to others, demonstrating a clear pattern of knowledge seeking. At the
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ID Threads Threads Initiated Prop. Initiated First Reply Avg Reply Position
S2318 8 8 1.000 0
S2299 5 5 1.000 0
S2378 9 8 0.889 0 10.667
S2290 15 12 0.800 1 4.000
S2395 13 10 0.769 0 4.714
S2090 19 13 0.684 4 6.300
S2304 21 14 0.667 2 4.700
S2111 45 20 0.444 5 7.892
S2153 39 13 0.333 8 4.034
S2119 62 18 0.290 12 4.259
S2130 35 10 0.286 3 5.727
S2200 18 5 0.278 5 5.188
S2155 41 10 0.244 9 4.200
S2122 44 8 0.182 9 6.980
S2100 55 9 0.164 19 4.629
S2236 39 5 0.128 10 4.811
S2509 119 14 0.118 37 4.862
S2523 54 5 0.093 13 6.552
S2085 39 1 0.026 9 6.500
S2198 27 0 0.000 9 4.971
S2242 13 0 0.000 4 8.167
S2348 13 0 0.000 2 4.385

Table 4.5: A sample of the initiation and reply patterns for some users from the PPML.

opposite end of the table are users that participate a lot without initiating, taking on a more

passive role as a content expert. These users contribute to the community when knowledge

is needed, but do not initiate conversations themselves.

For the SURGINET users, figure 4.24 presents the initiation rate relative to the overall

participation for the SURGINET members. There is a similar pattern to the PPML data,

with the exception of a single power user with a huge number of initiations.

Table 4.6 presents a sample of the initiation rates for users. There are some users who

have only initiated threads, i.e., only come to the community with questions, while at the

other end there are users that have largely responded to threads without initiating many

conversations.

There does not seem to be the same density of users that are only knowledge seekers

within SURGINET, as there are fewer users that have initiated a high number of threads

relative to their overall number, which may indicate that the community is more mature and
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Figure 4.24: The initiation rate relative to the number of threads participated in on
SURGINET. The line represents the theoretical maximum.

populated with content experts rather than junior members.

The first reply count and average reply count were investigated to try and identify the

facilitators, those that reply early to initiate conversation, and the content experts, those

that reply late to end conversations, but no definitive pattern was found. Figures 4.25 and

4.26 presents the distribution of average response position in the conversation per user for

the PPML and SURGINET data respectively.

For the PPML there is a pretty clear regression to the mean, with most users varying from

the mean due to random error. The reply position is an interesting metric for SURGINET

because the community has such fast response times. Given that the community operates in

several timezones and surgeons often perform procedures that last for several hours, response

position may be less about facilitation and more about availability. The figure presents the

average response positions, and demonstrates less regression to the mean than was present in

the PPML. Even at the high activity levels there are some users that consistently reply early

and others that reply late, but due to the fast response times and the member availabilities



132

ID Threads Threads Initiated Prop. Initiated First Replies Avg Reply Position
S0995 3 3 1.000 0 7.000
S1014 3 3 1.000 1 17.429
S1043 2 2 1.000 0 18.250
S0964 3 3 1.000 2 8.556
S1109 2 2 1.000 0 20.308
S1084 8 6 0.750 0 3.000
S0962 4 3 0.750 0 7.429
S1045 12 8 0.667 0 10.882
S0973 36 18 0.500 3 16.615
S0965 51 22 0.431 1 16.838
S0958 21 9 0.429 0 2.000
S1032 60 20 0.333 5 6.483
S1041 22 7 0.318 30 11.606
S1027 13 4 0.308 1 10.222
S0998 264 26 0.098 3 12.500
S0968 255 23 0.090 32 8.589
S0989 278 19 0.068 0 5.000
S0971 396 27 0.068 3 15.036
S1022 109 5 0.046 79 12.967
S0992 189 6 0.032 130 9.316
S0977 210 6 0.029 0 11.694
S0952 409 8 0.020 2 12.975

Table 4.6: A sample of the initiation and reply patterns on SURGINET

this difference is difficult to attribute to facilitation.

Knowledge seekers can be easily identified in a mailing list in the way they initiate

conversations, but facilitators and content experts are more difficult to identify with simple

network methods. Content experts will be investigated in the BICGM directed network in

section 4.6 below.
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Figure 4.25: The distribution of the average response position per user (left) and the in-
dividual values (right) on the PPML.
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Figure 4.26: The average response position per user (left) and individual values versus
participation level (right) on SURGINET.
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4.4.3 Identifying Leadership Groups: Connection Clusters

Clustering and core-periphery analysis are both methods designed to find subgroups of users

within the community. The objective is to identify potential groups of power users within

the community based on their shared communication ties.

PPML Connection Clustering The clustering (using Ward’s Distance) of the shared

threads between PPML users is presented in figure 4.27. Looking at the cluster it appears

that there is a large, inactive group and a small active group. The active group (far right)

can be split into 3 subgroups, and the inactive group may have a subsection that is slightly

more active. The DS1 or DS2 splits seem to be the most optimal.
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Figure 4.27: Results of clustering the PPML 1-mode user co-occurrence matrix using
Ward’s method

Table 4.7 presents the densities of each of the clusters in terms of average number of

threads shared between the users. From the densities it appears that the smallest cluster

(D/f depending on the clustering method) is a cluster of the most active users, with not only

the highest in-cluster average, but with more shared threads with other clusters than their
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DS1

A (397) B (26) C (23) D (22)
A (397) 0.02 0.10 0.06 0.24
B (26) 0.10 0.75 0.30 1.80
C (23) 0.06 0.30 0.56 1.30
D (22) 0.24 1.80 1.30 5.06

DS2

a (297) b (86) c (14) d (26) e (23) f (22)
a (297) 0.01 0.01 0.01 0.05 0.04 0.13
b (86) 0.01 0.10 0.03 0.26 0.12 0.60
c (14) 0.01 0.03 1.00 0.16 0.20 0.33
d (26) 0.05 0.26 0.16 0.75 0.30 1.80
e (23) 0.04 0.12 0.20 0.30 0.56 1.30
f (22) 0.13 0.60 0.33 1.80 1.30 5.06

Table 4.7: The average number of shared threads in each PPML cluster from figure 4.27

own in-cluster averages. This is in concordance with other findings that the PPML does not

have any significant segmentation, but is rather dominated by a group of super users that

respond to a majority of threads.

The next step in studying the content clusters is to investigate the terms being used

within them using term presence. If you look at the connection-based clustering of the

PPML in figure 4.27 there is some significant overlap between the DS1 and DS2 clusters.

The large cluster A has been split into three sub-clusters a, b, c while the other three clusters

are the same in both divisions. Table 4.8 presents the term presence and most common

terms in cluster A and how those values break down in the smaller clusters, while table 4.9

presents the same values for the other three clusters in both methods.

The split of cluster A into sub-clusters a, b, c are not overly informative. The larger cluster

a again seems to be a catch-all cluster much like A is, with low term values and no general

direction. Cluster b may be of interest, as the terms within it demonstrate some interest in

pain management, including discussion of care facilities, Complex Regional Pain Syndromes

(CRPS), chronic pain and helping, but that may be a stretch. Cluster c is small (only 14

users) and demonstrates one of the risks of SNA clustering. The 14 users within the cluster

all participated in a single conversation, a thread entitled “Withdrawal tools and Weaning

Protocols”, but beyond that specific thread there is no real pattern in the messages. With

SNA clustering a single, large thread amongst users without a lot of other communication
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(a)
A a b c

1.74 1.50 3.03 3.18
1.76 1.52 3.11 3.25
1.84 1.53 3.12 3.30
1.91 1.54 3.14 3.64
1.93 1.61 3.14 3.76
1.94 1.67 3.26 3.98
2.05 1.71 3.28 4.37
2.08 1.80 3.34 4.53
2.10 1.80 3.37 5.08
2.10 1.85 3.62 12.70

(b)
A a b c
Medication Clinical Trials as Topic Thinking Fever
Chronic Pain Pain Helping Behavior Analgesics, Opioid
Hospitals Pain Management CRPS Ventilators, Mechanical
Work Work Work Cells
Thinking Hospitals Child Proline
Pain Management Thinking Pediatrics Happiness
Pediatrics Pediatrics Ambulatory Care Anemia, Sickle Cell
Child Helping Behavior Pain Management Interleukins
Helping Behavior Child Methods Gene Library
Patients Patients Chronic Pain Weaning

Table 4.8: The most common terms in the PPML user connection clusters A and a, b, c

(no user in that cluster has > 11 messages) can result in users clustering around a specific

thread, and can falsely find a meaningful cluster. There is not a cluster of users related to

“weaning” on the PPML, but rather a single discussion of “weaning” along with a number

of other unrelated messages.

The other three clusters present somewhat separated contents. Cluster B/d seems to

be based around pain management, with 7 terms related specifically to pain management

drugs. Cluster C/e is related to injections (issues of phlebotomy, needle stick injuries, veins,

TIPS) and some drug issues. Cluster D/f is harder to define, with issues related to pain

measurement (including faces scales, weights and measures and publishing) along with gen-

eral pain issues. These three clusters are the three most active clusters of users (see table

4.7) suggesting that stability of the content of the connection clusters is dependent on a

reasonable level of activity.
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(a)
B/d C/e D/f
7.49 6.85 11.82
7.81 6.98 12.00
8.08 7.17 12.01
8.28 7.18 12.15
8.69 7.22 12.19
8.96 7.33 12.21
9.07 8.13 12.52
9.08 8.41 12.78
9.40 8.89 12.79
9.53 11.59 12.97

(b)
B/d C/e D/f
Bandages Drug Tolerance Aptitude
Hydromorphone Phlebotomy Sleep
Fentanyl Methods NSAIDs
Infant Veins Face
Analgesics, Opioid Hospitals, Pediatric Weights and Measures
Epidermolysis Bullosa Buffers TIPS
Clonidine Needlestick Injuries Single Person
Morphine Lidocaine Blood
Ketamine Weights and Measures Publishing
Methadone TIPS Pain Measurement

Table 4.9: The most common terms in the PPML connection clusters B,C,D and d, e, f

SURGINET Connection Clustering For the SURGINET data Ward’s distance was

also used to cluster the 1-mode network data, and the clusters are presented in figure 4.28.

Once again there seems to be a large, sparse group of users, along with 2-4 smaller, tighter

clusters (depending on the clustering depth chosen). Table 4.10 presents the densities of the

clusters, and results in the same, strong core that was present in the PPML, with much

higher density disparities than before.

The next step is to investigate the content of the SURGINET clusters. Table 4.11 presents

the content of each of the four clusters in DS3 along with the average TF-IDF scores of those

terms. Cluster d is interesting, in that several of the terms seem to be related specifically

to hernias of the stomach and gastrointestinal tract, while three (Walking, Dreams and

Carbidopa, a drug) seem to be completely unrelated. Further investigation reveals that the

members of this cluster were all participants in a couple of threads about hernia surgeries
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Figure 4.28: Results of clustering the 1-mode user co-occurrence matrix for the
SURGINET data

(a common subject on the mailing list), and a single thread about Carbidopa and its side

effects, which include trouble sleeping.

The other interesting cluster is b, which has several terms unrelated to medicine (Un-

employment, Poverty, Running, Reading and Homosexuality), reflecting the sometimes non-

medical nature of the SURGINET conversations. The users in this cluster seemed to partic-

ipate disproportionately in these long, non medically relevant conversations.
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DS3

a (18) b (21) c (130) d (26)
a (18) 0.97 2.08 0.20 7.26
b (21) 2.08 3.53 0.39 13.60
c (130) 0.20 0.39 0.04 1.36
d (26) 7.26 13.60 1.36 49.52

DS2

A (39) B (130) C (26)
A (39) 2.26 0.31 10.68
B (130) 0.31 0.04 1.36
C (26) 10.68 1.36 49.52

Table 4.10: The average number of shared threads in each SURGINET cluster from figure
4.28

(a)
a b c d

4.75 6.15 1.30 11.02
4.76 6.16 1.30 11.04
4.81 6.17 1.33 11.09
4.87 6.19 1.34 11.12
4.92 6.33 1.40 11.18
4.94 6.39 1.45 11.26
4.97 6.65 1.47 11.29
5.01 6.78 1.52 11.43
5.08 6.79 1.55 11.51
5.27 7.26 1.55 11.55

(b)
a b c d
Thinking Internet Emotions Duodenum
Wound Healing Neoplasm Metastasis Histidine Omentum
Fluorides Unemployment Work Needles
Drainage Poverty Sutures Ileus
Work Running Breast Hernia, Inguinal
Fasting Appendix Patients Fistula
Hospitals Laparotomy Helping Behavior Carbidopa
Comprehension Reading Cholecystectomy Walking
Eating Homosexuality Abdomen Dreams
Paper Appendicitis Thinking Herniorrhaphy

Table 4.11: The most popular terms in each of the four SURGINET connection clusters.
(a) has the highest scores, and (b) has the corresponding terms
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4.4.3.1 Coreness

Cluster analysis on the shared threads on both mailing lists revealed a single strong, con-

nected core followed by a set of weakly connected periphery groups. Core-periphery analysis

looks for a single, highly connected core group of users and a large set of secondary users

that contribute much less to the community.

The coreness measure can be thought of as a centrality measure, so it is presented as

eigenvector centrality in table 4.3 and figure 4.21 for the PPML, and table 4.4 and figure

4.22 for SURGINET. These coreness measures can be used to re-arrange the shared threads

network as in figure 4.29 for the PPML data and figure 4.30 for the SURGINET data.

Figure 4.29: A plot of the shared threads in the PPML 1-mode network. This heatmap
uses the shared threads re-arranged by coreness (with the most core members
in the center). The left plot is all users, and the right is zoomed in on the
center

The coreness plots demonstrate that the majority of users have not had interactions with

one another on threads. The interaction seems to occur between a tight group of users at

the center of the community. One interesting finding from the PPML is that the users with

the highest coreness measures branch out father into the community, giving the center of

the heatmap its “star” shape rather than the more circular form visible in the SURGINET

data.
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Figure 4.30: Shared threads between users of SURGINET. The zoomed-in version is of the
75 most active users

The actual assignment of a “core” group of users is difficult, as the eigenvector centrality

did not produce a clear gap in the users. Figure 4.31 and table 4.12 present four potential

cutpoints for the PPML data that are made subjectively by looking at where the divide is

within the data. The procedure is done for the SURGINET data in figure 4.31 and table

4.13, again somewhat subjectively, and even more difficult to differentiate.

Cutoff n messages % Messages threads % Threads
0.745 6 418 0.150 290 0.420
0.695 11 639 0.229 373 0.540
0.650 12 678 0.243 387 0.560
0.550 24 1026 0.368 460 0.666

Table 4.12: The resulting contribution of the 4 potential cores in the PPML

At its smallest definition the core of the PPML is made up of 6 users, who account for

15% of the messages within the community and have communicated on 42% of the threads.

As the core grows the contributions increase proportionally. What is interesting is that even

at the largest core only 37% of the messages and 67% of the threads are represented, so

though there does not appear to be any communication outside the core in figure 4.29 in

reality the majority of the individual messages come from outside this small group.
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Figure 4.31: The PPML coreness values (left) and the SURGINET coreness values (right),
sorted, with cutpoints made somewhat subjectively

cutoff n messages propMessages threads propThreads
0.840 26 5253 0.715 939 0.991
0.601 59 6578 0.895 947 0.999
0.520 77 6883 0.936 947 0.999

Table 4.13: The resulting contribution of the 3 potential cores of SURGINET

For the SURGINET users the three cutpoints in the figure are based on the DS2 clusters

from before. The cores of the SURGINET data are much larger, the tightest of which having

26
195

= 13% of the community overall. These “core” users represent a significant portion of

the communication on the community, and between them have communicated on almost

every thread, but their size relative to the overall community is much larger than it was for

the PPML.

4.4.3.2 Generalized Blockmodelling

The idea of generalized blockmodeling is that we are not only interested in which users are

clustering, but what they are clustering around. The results of the generalized blockmodeling

for the PPML are in table 4.14. The idea behind generalized blockmodeling is to permute

the user-thread matrix such that blocks of users are either all present (1-block) or all absent

(0-block). For the PPML data the generalized blockmodeling found 6 user clusters (with 1
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cluster being user S2509, the most active in the community), and 7 thread clusters. The

table presents both the density (a) and total counts (b) for the clustering, along with a

comparison of the overlap with the DS2 clustering.

The results of the 2-Mode clustering for the PPML data provide additional support to

the 1-Mode clustering. Looking at table (c), 17 of the 22 users from the “super-user” cluster

from the 1-mode clustering are in the 2-Mode cluster U3, which suggests that that cluster is

again a set of super-users. The most active user, however, was split out into her own cluster.

Comparing the communication patterns of U3 to U5, we see that they are both very active

in thread cluster T7, but the U3 cluster is much more active in cluster T5, while the U5

cluster is far more active in thread cluster T3. What the algorithm seems to have done is

to parse out the high-density cluster by recognizing that the most active user has a slightly

different communication pattern than the rest of the core users.

The thread clusters seem to be driven somewhat by the patterns of the users. T1 has

no contribution from either U3 or U5 which represents the core of the community. This

suggests that the threads in cluster T1 are periphery threads. These are short conversations

(472 total messages in 236 so exactly two messages per thread) that did not engage any of

the central users to the community.

Cluster T3 is notable in that all 93 threads have a contribution from the most active

user, so the driving force behind that cluster is obvious. As well the last cluster, T7 has

full contribution from U5 and significant contribution from U3. It also has 372 messages on

26 threads, or an average of just over 14 messages per thread, which suggests that it is the

cluster of very active threads.

There are 6 user clusters and 7 thread clusters, or 42 total cells. Because of some 0-cells

the total number is less, but the analysis still requires content summaries of 34 cells, which

is a difficult task. Tables 4.15, 4.16 and 4.17 present summaries of the highest scoring terms

for all 34 cells.

The summaries of the two-mode clusters do not provide much insight into the community.

This was somewhat expected. The 2-mode clusters split the threads across multiple user

clusters, which means partitioning the primary knowledge object within the community

across multiple user clusters. The network structure that arose out of the two mode data

is of interest, with the identification of the periphery threads and the isolation of the most

active user, but the contents of the cells is not of any particular interest.
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(a) Cluster Densities
T1(n=236) T2(n=228) T3(n=93) T4(n=55) T5(n=46) T6(n=7) T7(n=26)

U1(n=326) 0.0032 0.0022 0.0033 0.0026 0.0041 0.0000 0.0065
U2(n=48) 0.0087 0.0120 0.0240 0.0180 0.0250 0.0000 0.0580
U3(n=17) 0.0000 0.0770 0.0640 0.0340 0.2000 0.2000 0.3100
U4(n=21) 0.0150 0.0150 0.0230 0.1000 0.0340 0.2200 0.0970
U5(n=1) 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000
U6(n=55) 0.0041 0.0063 0.0059 0.0060 0.0150 0.1600 0.0210

(b) Cluster Participation Counts
T1 T2 T3 T4 T5 T6 T7 Total

U1(n=326) 247 165 101 47 62 0 55 677
U2(n=48) 98 126 105 47 55 0 72 503
U3(n=17) 0 299 101 32 157 24 136 749
U4(n=21) 74 71 44 121 33 32 53 428
U5(n=1) 0 0 93 0 0 0 26 119
U6(n=55) 53 79 30 18 37 63 30 310

Total 472 740 474 265 344 119 372 2786

(c) Overlap with DS2 clusters
U1 U2 U3 U4 U5 U6

a 286 5 0 0 0 6
b 40 22 0 1 0 23
c 0 0 0 0 0 14
d 0 15 0 8 0 3
e 0 6 0 8 0 9
f 0 0 17 4 1 0

Table 4.14: Results of the 2-Mode clustering. (a) presents the densities of each cluster,
but (b) is more informative, as densities are skewed lower by cluster size. Part
(c) presents the overlap between the 2-Mode clustering of the users and the
Hybrid Clustering of the actor network (DS2 from table 4.7)
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Looking just at the columns of the clustering, i.e., the clustering of the threads, however,

could provide some insight. Table 4.18 presents a summary of the thread clusters.

The scores in part (a) of the table confirm what had been expected before, with thread

clusters T1 and T2 being catch-all clusters without any legitimate pattern. T3 was the cluster

that the most active user contributed to every message, and the content of the cluster seems

to be based strongly around pain management medications. Clusters T4 and T5 are the

other two thread clusters that were contributed to by the core users, but there does not

seem to be any strong pattern to them. Finally, cluster T7 is the one that seems to be

centred around long threads, and the contents are quite general, with terms that are very

pertinent to almost any pediatric pain scenario. One interesting finding is that the term

Safety is very prominent, which has not been the case in any previous summary of users or

threads.



146

T1 T2 T3 T4 T5 T6 T7
U1 2.20 1.95 2.42 3.18 2.38 2.98

2.28 2.00 2.43 3.27 2.50 3.14
2.64 2.44 2.63 3.84 2.81 3.18
2.78 2.44 2.69 4.21 2.95 3.55
2.92 2.71 3.00 4.29 2.96 4.23
3.26 3.10 3.20 4.44 3.21 4.31

U2 1.81 2.09 2.42 2.94 2.52 2.79
2.01 2.14 2.50 2.94 2.61 2.81
2.10 2.31 2.64 2.97 2.63 2.90
2.18 2.36 3.14 3.39 2.75 2.94
2.63 2.39 3.25 3.64 2.94 3.27
2.68 3.31 3.33 3.65 3.15 4.03

U3 1.86 2.37 2.31 2.23 5.62 2.32
1.91 2.46 2.35 2.27 6.02 2.50
2.13 2.79 2.51 2.36 6.38 2.62
2.55 2.94 2.54 2.42 7.05 2.97
2.67 3.24 2.66 2.65 7.71 2.98
2.96 3.72 2.78 2.94 8.00 3.93

U4 2.49 2.44 2.79 2.13 3.28 3.81 2.74
2.51 2.74 3.07 2.23 3.33 4.51 2.80
2.53 2.77 3.29 2.59 3.40 4.52 2.95
3.01 2.84 3.33 2.94 3.45 4.55 3.21
3.16 2.88 3.98 2.95 3.63 5.08 3.51
3.55 3.00 4.20 2.99 5.22 7.41 4.25

U5 2.91 4.37
3.08 4.62
3.33 4.91
3.40 5.12
3.61 5.33
3.74 5.83

U6 2.29 2.09 2.64 3.14 2.98 3.44 3.49
2.39 2.15 2.78 3.32 2.98 3.66 3.80
2.56 2.23 3.45 3.64 3.02 4.12 3.81
3.01 2.29 3.80 3.71 3.07 4.27 4.02
3.26 2.42 3.87 4.56 3.11 4.82 4.07
3.26 2.50 4.46 4.89 3.66 5.51 4.15

Table 4.15: The highest TF-IDF values for each user-thread cell in the PPML 2-Mode
clustering
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T1 T2 T3 T4
U1 Adolescent Pain Management Thinking Methods

Work Child Patients Child
Helping Behavior Pediatrics Erythromelalgia Attitude
Child Helping Behavior Analgesics, Opioid Helping Behavior
Pain Patients Morphine Videotape Recording
Pediatrics Pain Helping Behavior Needles

U2 Analgesics, Opioid Methadone Morphine Pain
Patients Thinking Methadone Videotape Recording
Methods Pain Patients erythritol anhydride
Midazolam Hospitals Pain Nasopharynx
Pain Analgesics, Opioid Ketamine Helping Behavior
Pediatrics Patients Thinking Codeine

U3 Child Pain Management Child
Pain Management Pain Pediatrics
Helping Behavior Thinking Face
Pain Analgesics, Opioid Pain Measurement
Analgesics, Opioid Patients Pain
Patients gabapentin Codeine

U4 Child Analgesics, Opioid Pain Infant
Infant, Newborn Patients Analgesics, Opioid Internet
Research Org. and Admin. Morphine Child
Pain Pain Pain Management Helping Behavior
Internet Pediatrics Constipation Pain
Pediatrics Medication Patients Pediatrics

U5 Pain Management
Lidocaine
Clonidine
Thinking
Therapeutics
Analgesics, Opioid

U6 Internet Pediatrics EMLA headline
Relate Gene Library Solutions Hospitals, Pediatric
Syringes Pain Measurement Chest Tubes Garbage
Analgesics, Opioid Patients Hearing Health Facilities
Pain Management Medication Clonidine Videotape Recording
Volition Pain Pain Management Stress, Psychological

Table 4.16: The most common terms in each of the PPML 2-Mode clusters (for thread
clusters 1-4)
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T5 T6 T7
U1 Child Pediatrics

Pain Management Pain Management
Cells CRPSs
Patients Spinal Puncture
Ondansetron Methods
Hospitals Epidermolysis Bullosa

U2 Pruritus Patients
Patients Pediatrics
Child Codeine
physiology CRPSs
Pain Chronic Pain
Cold Temperature Child

U3 Pain EMLA CRPSs
Helping Behavior Needlestick Injuries Child
Work Pain Measurement Pain Management
Electromagnetic Radiation TIPS Patients
TIPS Sleep Spinal Puncture
Patients Weights and Measures Methods

U4 Pain Pediatrics Pain
Behavior, Addictive Teaching Epidermolysis Bullosa
Clinical Coding Education NSAIDs
Skin Aging Pain Measurement Pediatrics
Pain Management Sleep Child
Infant Peeling skin syndrome, acral type Acetaminophen

U5 Recovery Room
Analgesics, Opioid
CRPSs
Defibrillators
Child
Acetaminophen

U6 Needlestick Injuries Needlestick Injuries Patients
Electromagnetic Radiation TIPS Codeine
Sleep Weights and Measures Spinal Puncture
Monitoring, Physiologic Peeling skin syndrome, acral type Methods
Naloxone Pediatrics Pediatrics
Respiratory Rate Weaning Pain Management

Table 4.17: The most common terms in each of the PPML 2-Mode clusters (for thread
clusters 5-7)
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(a)
T1 T2 T3 T4 T5 T6 T7

1.60 2.19 3.59 3.09 4.20 8.80 6.79
1.62 2.20 3.63 3.14 4.30 9.15 6.94
1.67 2.26 3.66 3.16 4.30 9.30 6.96
1.67 2.27 3.76 3.23 4.45 9.35 7.08
1.72 2.33 3.82 3.26 4.55 9.41 7.11
1.72 2.36 3.90 3.59 4.57 10.49 7.18
1.83 2.41 3.93 3.65 4.70 10.51 7.20
1.86 2.70 3.97 3.75 4.79 10.58 7.27
1.92 2.73 4.26 3.86 4.82 10.67 7.58
2.30 2.75 4.41 4.10 5.03 14.52 7.93

(b)
T1 T2 T3 T4
Pain Therapeutics Morphine Clinical Trials
Adolescent Child Clinical Trials as Topic Work
Methods Pain Management Ketamine Attention
Internet Work Pain Management Palliative Care
Pain Management Medications Clonidine Internet
Work Helping Behavior Analgesics Child
Chronic Pain Thinking Medications Infant
Helping Behavior Analgesics, Opioid Therapeutics Helping Behavior
Child Patients Analgesics, Opioid Hospitals, Pediatric
Pediatrics Hospitals Thinking Pediatrics

T5 T6 T7
Hospitals Hearing Pharmaceutical Preparations
Child Lead Pain Management
Patients Research Learning
Infant Advanced Practice Nursing Organization and Administration
Pain Management Ventilators, Mechanical Publishing
Hospitals, Pediatric Facial Expression Thinking
Adult Health Facilities Exploratory Behavior
Work Vital Signs Hospitals, Pediatric
Education Hospitals, Pediatric Lead
Aptitude Congresses as Topic Safety

Table 4.18: The most common terms in the thread clusters (b) and their average TF-IDF
scores (a) from the PPML 2-mode clustering
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SURGINET Generalized Blockmodelling The SURGINET 2-Mode clusters are pre-

sented in table 4.19. The 2-mode clustering for the SURGINET found 3 user and 4 thread

clusters. The results confirm the previous suggestion of a larger, tight core, with the core

users identified from before being split into a small,active group of 7 users and a slightly

less active group of 19 users. The thread clusters provide very little insight, with no dis-

cernible patterns in which clusters were participating on which threads. When you compare

the user-threads from the 2-mode clustering to the dendrogram in figure 4.28 you can see

where the split of cluster c most likely occurred, but beyond that the 2-mode clustering does

not provide much additional information about the community. Content summaries of the

3 × 4 = 12 clusters were pursued, but nothing of interest was obtained, so the summaries

are not presented here.

(a)
T1(n=375) T2(n=323) T3(n=175) T4(n=75)

U1(n=169) 0.0089 0.0110 0.0160 0.0370
U2(n=19) 0.0930 0.1300 0.2100 0.4300
U3(n=7) 0.1700 0.4100 0.6100 0.6500

(b)
T1(n=375) T2(n=323) T3(n=175) T4(n=75) Total

U1(n=169) 561 590 481 465 2097
U2(n=19) 665 793 713 619 2790
U3(n=7) 441 931 751 340 2463

Total 1667 2314 1945 1424 7350
(c)

U1 U2 U3
a 39 0 0
b 130 0 0
c 0 19 7

Table 4.19: Results of the 2-Mode clustering for SURGINET. (a) is the cluster densities,
(b) is the cluster counts and (c) compares the user clusters from the 1-mode
and 2-mode clusters

4.4.4 Summary

The objective of this section was to evaluate methods for identifying community leaders.

The centrality measures provide several simple metrics for evaluating who the most active

members in the community are. The clustering, both the 1-mode and 2-mode methods,
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were not overly successful, as they failed to find significant clustering beyond the strong

core structure that core-periphery analysis identified in both communities. The PPML

community has a smaller core than the SURGINET community, but there is also more

activity by the periphery. Whether the failure of the clustering methods is due to the

methods themselves or due to the lack of existing clusters in either mailing list is not clear.

4.5 Knowledge Based Subgroups and Similarities

The knowledge maps demonstrated how a knowledge-based representation of the messages

within an online community can provide insight into the knowledge context of the community.

In this section we will use knowledge-based representations of the users and threads to try and

identify potential subgroups of knowledge within the community. The Generalized Vector

Space Model (GVSM) using the combined semantic and co-occurrence correlation seems to

be the most appropriate method for calculating similarity within the PPML. For both the

users and the threads in the community similarities can be calculated, which will then be

used to try and identify knowledge-based clusters in the data. The correlation matrices

will be constructed and then clustered using hierarchical agglomerative clustering. Figure

3.11, part (b) presents the methods. We will investigate a number of parameters at each

step, including what link method is most appropriate for the clustering method (single,

average, complete or Ward), exploring the components of the dynamic hybrid cut algorithm,

specifically cluster size, gap and max core distance, evaluations of the potential clusters

using image matrices and silhouette coefficients, and attempting to label the clusters using

proportional term contributions.

4.5.1 Content-based Thread Clustering

We investigated the hierarchical clustering using four different distance metrics for each

dataset. The results for the PPML are presented in figure 4.32 as dendrograms (the results

for SURGINET are similar and were omitted). Each of the methods is accompanied by

an agglomerative coefficient that measures the quality of the clustering. From the figure it

is clear that single-link clustering is not an option, and average link also did poorly, but

both Ward’s distance and complete link seem to provide decent clusterings of the data. The

decision was made to use Ward’s distance as the metric, because its coefficient is better, but

investigations into complete link methods were also pursued, and no significant improvements



152

were found.
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Figure 4.32: Four different approaches to clustering the PPML threads

4.5.1.1 Content Clustering on the PPML Threads

Figure 4.33 presents the results of the cutting of the dendrogram using both static cuts along

with 4 different hybrid cuts. As the deepSplit values increase (see table 3.2 for the splitting

parameters), the cores are required to be tighter and the allowable merge distance decreases,
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resulting in smaller, tighter clusters. This is evident by the size and number of clusters across

the 5 levels in figure 4.33.
0

10
20

30
40

Static (3)

Static (7)

DS0

DS1

DS2

DS3

DS4

1 2 3 4 5 6

A B C D E F G H I J

a b c d e f g h i j k l m n o p

Figure 4.33: The partitioning of the PPML threads along with 7 different cuts of the data

Of the hybrid cuts, DS0, DS1 and DS2 seem to be the best options, as the higher deep

splits reduced the data into too many clusters. The DS0 clustering is almost identical to the

static cut with 7 groups, except that 1 group (the first one) was split into two sub-clusters.

We can see again when we move from DS0 up to DS1 how some of the larger clusters are

segmented into 2 or more subclusters, while other clusters (clusters 1, 2 and 5) were reduced

in size, and the same pattern moving from DS1 to DS2.

The densities of the clusters from DS0, DS1 and DS2 are given in figure 4.34. For all

three figures there seems to be a bipartite partitioning of the data into a high-density set of

clusters (bottom-right corner) and a low density corner with a high-density diagonal. None

of the splits provide evidence of strong clustering, as for most clusters there is a stronger

relationship to the densest cluster (5/G/m) than within cluster. This suggest that the core-

periphery structure detected in section 3.2.3.2 is a more appropriate structure than here. If

we ignore the high-density “core” structure then the within-cluster densities (the diagonals



154

0.10

0.15

0.20

0.25

0.30

0.35

0.40
1 (164)

2 (148)

3 (50)

4 (104)

5 (104)

6 (117)

1 
(1

64
)

2 
(1

48
)

3 
(5

0)

4 
(1

04
)

5 
(1

04
)

6 
(1

17
)

DS0

0.1

0.2

0.3

0.4

0.5
A (108)

B (56)

C (63)

D (85)

E (50)

F (104)

G (36)

H (68)

I (67)

J (50)

A
 (1

08
)

B
 (5

6)
C

 (6
3)

D
 (8

5)
E

 (5
0)

F 
(1

04
)

G
 (3

6)
H

 (6
8)

I (
67

)
J 

(5
0)

DS1

0.1

0.2

0.3

0.4

0.5
a (47)
b (20)
c (41)
d (26)
e (30)
f (63)
g (66)
h (19)
i (21)
j (29)
k (69)
l (35)

m (36)
n (68)
o (67)
p (50)

a 
(4

7)
b 

(2
0)

c 
(4

1)
d 

(2
6)

e 
(3

0)
f (

63
)

g 
(6

6)
h 

(1
9)

i (
21

)
j (

29
)

k 
(6

9)
l (

35
)

m
 (3

6)
n 

(6
8)

o 
(6

7)
p 

(5
0)

DS2

Figure 4.34: The similarity densities of the PPML clusters created using DS0, DS1 and
DS2

topleft to bottomright) are a good finding as, for example, we see that cluster C in DS1

(and its equivalent e in DS2) are a high density cluster amongst low-density colleagues.

Further investigation into the content of these clusters will hopefully reveal similarities in

their semantic terms.

The silhouette coefficients for the clusters (see figure 4.35) confirmed our findings, with all

clusters having negative silhouette coefficients, demonstrating that most elements are closer

to a different cluster than their own. This again demonstrates the core-periphery structure

of the threads, with a cluster of large threads dominating the community.

Even though we have detected a core-periphery structure rather than a real clustering,

the presence of a comparatively strong diagonal (and thus some within-cluster similarities)

suggests that the threads in clusters are more related to each other than to their non-core

neighbours. An investigation of the contents of the threads may reveal some suggestion as

to why these clusters formed. Table 4.20 summarizes the DS0 split and table 4.21 does for

the DS1 (DS2 is omitted as no new interesting patterns were found).

For the DS0 split all 6 clusters have reasonable term presence values (part (a) of the

table). Looking at the actual terms reveals some patterns: cluster 2 seems to be grouped

around pain medications, cluster 4 around a similar but different class of pain medications,

perhaps related to the management of migranes. Cluster 5 (the densest cluster) seems to

center around health care facilities (hospitals, ICUs and facilities) along with some general

pain medication issues.

When looking at the DS1 split we are most interested in where the splitting function

divided existing clusters. Cluster 2 was split into clusters C and D. Cluster D seems to have
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maintained and infact strengthened its focus on medications, while cluster C seems more

interested in management (emotions, theapeutics, trials and organization) while still have

some medication presence. Cluster 5 was split into G and H and again seems to have parsed

the medication threads from the management threads.

We will ignore the indepth investigation into the DS2 split. The resulting clusters are

very small, which produces some unexpected and largely meaningless results, with the only

meaningful clusters having been the same as those produced by the DS1 split.
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Figure 4.35: The Silhouette coefficients for the three potential thread clusterings of the
PPML data
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(a)
1 2 3 4 5 6

1.86 4.71 1.77 2.13 4.54 3.08
1.93 4.78 1.90 2.17 4.56 3.22
2.02 4.83 2.14 2.20 4.94 3.27
2.03 4.83 2.30 2.24 4.96 3.32
2.15 5.07 2.96 2.43 4.99 3.55
2.52 5.17 3.29 2.46 5.06 3.72

(b)
1 2 3
Child Clinical Trials as Topic Delivery, Obstetric
Pain Clinics Methadone Pediatrics
Hospitals Anxiety Computers
Helping Behavior Therapeutics Copying Processes
Research Ketamine Personality Disorders
Methods Thinking Disclosure
Volition Pharmaceutical Preparations Internet
Internet Clonidine Congresses as Topic
Pain Measurement Analgesics, Opioid Human Body
Pediatrics Morphine Postal Service

4 5 6
Neuralgia Thinking Helping Behavior
Diagnosis Aptitude Pain Management
Lidocaine Work Internet
Migraine Disorders Morphine Research
Wounds and Injuries Health Facilities Work
Patients Intensive Care Units Hospitals, Pediatric
Abdominal Pain Pain Management Education
Analgesics, Opioid Pharmaceutical Preparations Pediatrics
Headache Hospitals Infant
Acetaminophen Analgesics, Opioid Child

Table 4.20: The TF-IDF scores for the highest scoring terms in each PPML cluster (a) and
the terms themselves (b) for the DS0 thread cut
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(a)
A B C D E F G H I J

2.30 1.87 5.45 4.20 1.77 2.13 6.85 4.66 3.68 4.64
2.30 2.52 5.53 4.23 1.90 2.17 6.90 4.94 3.70 4.64
2.36 2.61 5.57 4.33 2.14 2.20 7.07 5.00 3.76 4.87
2.41 2.65 5.59 4.90 2.30 2.24 7.37 5.34 3.76 5.01
2.47 2.73 5.69 5.06 2.96 2.43 7.57 6.41 3.94 5.44
2.57 3.08 6.32 6.21 3.29 2.46 7.61 6.49 4.23 5.66

(b)
A B C
Pain Clinics Patients Adolescent
Helping Behavior Pulse Emotions
Research Carbon Dioxide Therapeutics
Health Facilities Oximetry Clinical Trials as Topic
Methods Pain Measurement Organization and Administration
Pain Measurement Capnography Thinking
Weights and Measures Monitoring, Physiologic Adult
Pediatrics Volition Ketamine
TIPS Pediatrics Pharmaceutical Preparations
Internet Analgesia, Patient-Controlled Morphine

D E F G
Patients Delivery, Obstetric Neuralgia Aptitude
Neoplasm Metastasis Pediatrics Diagnosis Org. and Admin.
Ketamine Computers Lidocaine Teaching
Methadone Copying Processes Migraine Disorders Self Report
Medication Personality Disorders Wounds and Injuries Hospitals, Pediatric
Thinking Disclosure Patients Pain Management
Morphine Internet Abdominal Pain Chronic Pain
Hydromorphone Congresses as Topic Analgesics, Opioid Weights and Measures
Analgesics, Opioid Human Body Headache Pain Measurement
Clonidine Postal Service Acetaminophen Education

H I J
Intensive Care Units Child Needles
Ketamine Interdisciplinary Studies Child
Running Education Pharmacies
Hydromorphone Research Floors and Floorcoverings
Methadone Ambulatory Care Facilities Methods
Hospitals Pain Clinics Equipment and Supplies
Pharmaceutical Preparations Rehabilitation Needlestick Injuries
Fentanyl Pediatrics Sucrose
Morphine Chronic Pain TIPS
Analgesics, Opioid Internet Infant

Table 4.21: The TF-IDF scores for the highest scoring terms in each PPML cluster (a) and
the terms themselves (b) for the DS1 thread cut
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4.5.1.2 Content Clustering on the SURGINET Threads

As with the PPML, the threads will be clustered using a hierarchical agglomerative approach

using Ward’s method, and then split using the dynamic method presented in section 3.3.9.2.

The results of the clustering and a couple of potential cut points are presented in figure 4.36.
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Figure 4.36: The results of the thread clustering on SURGINET, and several different
potential cut points.

The clustering presents a 6-cluster partitioning of the data, with a potential split in one

of the clusters. The image matrix of the DS0 split is presented in figure 4.37, and presents a

network that has a surprisingly strong core structure, with two thread clusters representing

a significant portion of the communication. This is a similar pattern to what was found

within the PPML data, but the SURGINET data identified a potential partitioning of the

core threads into two separate subgroups.

Figure 4.37 also has the silhouette coefficients for the clustering, and confirms our finding

that there are two tight thread clusters within the core that seem to dominate the network.

The contents of these clusters are presented in table 4.22. The focus of the table is

clusters 5 and 6, which represent the core of the threads in the community. They seem to
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Figure 4.37: The image matrix (left) and silhouette coefficients (right) for the DS0 cluster
of the threads within SURGINET

be grouped around two different issues, with the first interested in laproscopic surgeries and

the areas they may be applied to. The second cluster, in contrast, seems to be much more

general, and with mappings to emotions, sensation, love and happiness may be focus on

more general issues related to surgery than specific surgical procedures.

Both clustering methods identified a core group of threads that dominate the traffic, but

within the core the SURGINET data was partitioned into to separate groups, while within

the PPML data the periphery threads were slightly more active. This conforms to some

of the connection-based user clustering, which suggested that the PPML core of users was

smaller that SURGINET, but also that its periphery was more active.
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(a)
1 2 3 4 5 6

2.05 1.40 2.28 2.66 4.56 4.46
2.06 1.44 2.33 2.67 4.59 4.51
2.11 1.46 2.50 2.73 4.64 4.82
2.19 1.47 2.74 2.87 4.70 5.12
2.21 1.48 2.82 2.89 5.15 5.40
2.74 1.57 3.03 3.19 5.34 5.41

(b)
1 2 3 4
Disease Malaria Running Pain
Neoplasms Helping Behavior Wine Drainage
Thyroid Gland Printing Hospitals Disease
Sentinel Lymph Node Biopsy Internet Paper Hernia
Patients Cholesterol Medication Helping Behavior
Hemorrhage Pediatrics Printing Clinical Trials as Topic
Medication Paper Work Biopsy
Breast Medication Happiness Diagnosis
Biopsy Histidine Internet Hemorrhage
Mastectomy Fractures, Bone Reading Abdomen

5 6
Appendectomy Emotions
Cholecystectomy Hospitals
Bile Comprehension
Colon Sensation
Sutures Love
Laparoscopy Learning
Pain Happiness
Intestines Histidine
Abdomen Speech
Drainage Reading

Table 4.22: The highest MeSH scores (a) and the MeSH terms (b) for the 6 thread clusters
in SURGINET
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4.5.2 Content-based User Clustering

As with the thread clustering we investigated four different distance metrics, and once again

Ward’s distance was the most appropriate.

4.5.2.1 Content Clustering on the PPML Users

The splitting dendrogram is available in figure 4.38, done using both static cuts and the

dynamic tree cut method.

0
10

20
30

40
50

Static (3)

Static (7)

DS0

DS1

DS2

DS3

DS4

A B C D E F

a b c d e f g h i

Figure 4.38: The dendrogram for clustering the PPML user semantic measures, along with
several potential cut lines.

The clusters seem more stable in the user than the thread clustering, with less variation

from DS0 − DS2. The static method only differs from the DS1 method in the splitting of

a single cluster, D. DS2 has more clusters, splitting the D and E clusters from DS1 into

subgroups of 3 and 2 clusters respectively. The image matrices in figure 4.39 present the

user similarity densities for both sets of clusters.

As with the thread clustering, and in concordance with the core-periphery results, the

clustering seems to again have detected a core cluster, and the other clusters have a stronger
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Figure 4.39: The similarity densities from the two hybrid clusterings of the PPML data

relationship to the core than their own cluster. This has again caused the silhouette coeffi-

cients to largely be negative, with the exception of the core cluster (see figure 4.40).

When we look beyond the core-cluster, however, we can see that the clusters do have

some inter-cluster density, suggesting some pattern. Comparing the cluster D from DS1

to d, e, f from cluster DS2 we can see that they are all strongly related, but perhaps more

inter-related within the smaller clusters than between the small clusters. This split took a

tight-nit group and found 3 potential sub-groups within it. The second split, E into g, h

seems to have parsed out a smaller sub-group from the larger population.

The overlap between the connection and semantic clusters for the PPML data is presented

in table 4.23 (the semantic user clustering itself is presented in figure 4.38 and tables 4.24

and 4.25).

There is clearly no significant overlap between the two clustering methods. Comparing

the DS1 semantic cluster, we can see that the largest SNA cluster (a, the one that was

thought of as “the rest” of the users) is spread relatively evenly between the 6 semantic

clusters. Likewise the largest SNA cluster (f , the one with the most central users) is part of

the largest and least specific semantic cluster.

There is a theoretical difference in how the two clusters are formed. The SNA clusters

are traffic clusters, so they identify users that communicate with each other (or around each
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DS1 Semantic Cluster
A B C D E F

a-sna 77 41 40 19 88 21
b-sna 10 20 18 26 9 2
c-sna 2 2 2 3 2 3
d-sna 1 0 1 24 0 0
e-sna 1 0 3 19 0 0
f-sna 0 0 0 22 0 0

DS2 Semantic Cluster
a b c d e f g h i

a-sna 77 41 40 5 13 1 25 63 21
b-sna 10 20 18 12 14 0 5 4 2
c-sna 2 2 2 0 3 0 0 2 3
d-sna 1 0 1 11 2 11 0 0 0
e-sna 1 0 3 5 8 6 0 0 0
f-sna 0 0 0 1 1 20 0 0 0

Table 4.23: Comparing the DS1 connection clusters (rows) to the DS1 and DS2 semantic
clusters for the PPML data

other, as no communication is directed). The semantic clusters, in contrast, are content

clusters, so they identify things that people have said in common.

In the traffic clusters (SNA clusters) you are rewarded for many messages, regardless

of what they are, because that increases your presence in the community. For the content

clusters (the semantic clusters) multiple messages around a variety of topics makes you less

classifiable because you do not fit into a specific group. The users that are unclustered in

the traffic clusters because they have few messages may be tightly clustered in the content

clusters because the content of their messages is homogeneous.

Tables 4.24 and 4.25 present summaries of the most prevalent terms in each of the content

clusters, based on the highest average TF-IDF scaled score for each user in the cluster.

The clusters present some interesting findings. From DS1 cluster D is the strongest, and

seems to be grouped around Opiate pain medications, with several terms related to strong

pain management medications, measurments and side-effects. Cluster C is similar, with a

similar but different set of pain medications. Cluster B is the other relatively strong cluster

presence, but seems more interest in pain management, with terms around chronic pain an

psychology, pain clinics, and questions about research and behaviour.

When we move onto DS2 cluster D is split into subclusters d, e, f which all seem sim-

ilar though not identical. The divide of this single cluster into three clusters may not be

appropriate, as the sub-clusters seem to be grouped around the same concepts.
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(a)
A B C D E F

1.61 2.74 3.17 6.17 0.92 1.36
1.62 2.76 3.28 6.26 0.93 1.38
1.65 2.78 3.29 6.27 1.01 1.38
1.72 2.80 3.66 6.30 1.02 1.43
1.72 2.88 3.79 6.39 1.06 1.48
1.74 3.11 3.83 6.47 1.11 1.51
1.75 3.35 3.90 6.50 1.13 1.60
1.79 3.52 3.94 6.50 1.17 1.60
1.98 3.66 4.25 6.63 1.27 1.61
2.17 3.79 4.82 7.75 1.32 1.97

(b)
A B C
Pediatrics Pain Clinics Pharmaceutical Preparations
Pharmaceutical Preparations Research Emotions
Methadone Behavior Fentanyl
Clinical Trials as Topic Work Lidocaine
Methods Psychology Analgesics, Opioid
Pain Management Pediatrics Patients
Thinking Child Transdermal Patch
Patients Education Thinking
Helping Behavior Ambulatory Care Facilities Morphine
Child Chronic Pain Acetaminophen

D E F
Morphine Wounds and Injuries Vascular System Injuries
Weights and Measures Infection Myelin-Associated Glycoprotein
Sleep Methods Silicon Dioxide
Work Videotape Recording Weaning
Ketamine Computers Hospitals, Group Practice
Organization and Administration Pain Hospital Planning
Methods Helping Behavior Interleukin-11
Pharmaceutical Preparations CRPS Thoracic Injuries
Aptitude Internet Rupture, Spontaneous
Analgesics, Opioid Pediatrics Cells

Table 4.24: The highest average TF-IDF score within each cluster (a) and the highest
scoring terms (b) for the DS1 user clusters on the PPML
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Figure 4.40: The silhouette coefficients for the PPML user clusters
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(a)
d e f g h i

6.18 4.94 9.04 1.55 0.97 1.36
6.59 4.95 9.06 1.75 0.98 1.38
6.62 4.96 9.10 1.80 1.05 1.38
6.67 5.12 9.32 1.84 1.06 1.43
6.71 5.60 9.38 1.86 1.10 1.48
7.12 5.62 9.52 2.11 1.11 1.51
7.26 6.14 9.76 2.29 1.14 1.60
7.32 6.18 9.77 2.31 1.33 1.60
8.51 6.81 9.96 2.38 1.34 1.61
9.13 7.34 10.07 3.03 1.47 1.97

(b)
d e f
Work Pain Clinics Ambulatory Care Facilities
Emotions Adult Clinical Trials as Topic
Thinking Analgesics, Opioid Lead
Midazolam Organization and Administration Weights and Measures
Nausea Pain Management Hydromorphone
Pharmaceutical Preparations Aptitude Publishing
Methadone Hearing Fentanyl
Morphine Sleep NSAIDs
Analgesics, Opioid Weights and Measures Codeine
Ketamine Pain Measurement Analgesics, Opioid

g h i
Restaurants NLM Vascular System Injuries
Computers Pain Myelin-Associated Glycoprotein
Rehabilitation Thinking Silicon Dioxide
Volition Helping Behavior Weaning
Epidermolysis Bullosa Needles Hospitals, Group Practice
Fruit Wounds and Injuries Hospital Planning
Pediatrics Catheters Interleukin-11
Internet Infection Thoracic Injuries
CRPS Methods Rupture, Spontaneous
Postal Service Videotape Recording Cells

Table 4.25: The TF-IDF scores for the highest scoring terms in each cluster of the PPML
data (a) and the terms themselves (b) for the DS2 user cut. Clusters a, b and
c were omitted, as they are the same as A,B and C respectively from the DS1

cut, table 4.24
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4.5.2.2 Content Clustering on the SURGINET Users

The user clustering is presented in figure 4.41, and presents a network that seems to be

partitioned into 4 or 5 clusters (DS1 or DS2).
0
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Figure 4.41: The SURGINET user clustering along with several potential cuts in the den-
drogram

The image matrices for the two potential cuts are presented in figure 4.42, and the present

the same large-core structure that was discovered in the SNA, which was to be expected.

The silhouette coefficients (figure 4.43) demonstrate this same structure, with cluster A/a

representing the core of the community.

As with the PPML data, comparing the content based clusters with the connection

clusters from section 4.4.3 reveals no significant overlap between the two methods. Table

4.26 presents the overlap. We can see that the core group from the connection clusters (D)

is all part of a single content cluster, along with 21 other users from the other two small

clusters. The large, sparse connection cluster (C) is spread relatively evenly across the other

clusters.

The content of the SURGINET content clusters DS2 are presented in table 4.27. The
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Figure 4.42: The densities of the user-clusters in SURGINET

DS1 Semantic Cluster
A B C D

A 6 10 2 0
B 15 5 1 0
C 0 38 32 59
D 26 0 0 0

DS2 Semantic Cluster
a b c d e

A 6 10 2 0 0
B 15 5 1 0 0
C 0 38 32 21 38
D 26 0 0 0 0

Table 4.26: Comparing the connection clusters (rows) to the content clusters (columns) for
the SURGINET users

strong core-periphery structure of these clusters precludes strong conclusions about the con-

tent, but there are still some interesting findings. Clusters a and b are the densest (which

mirrors the results from figure 4.42), and both seem to be centred around general surgery

contents. Cluster c seems to focus on surgery as well, though more around side effects (Hem-

orrhage, fractures, necrosis) and d and e seem to have no noticeable pattern, though that

is largely due to the lack of density in those clusters, i.e., there are not many meaningful

threads in the smaller clusters.
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(a)
a b c d e

8.35 3.04 1.51 1.45 0.88
8.38 3.07 1.52 1.45 0.88
8.38 3.08 1.55 1.46 0.89
8.45 3.14 1.62 1.48 0.89
8.48 3.16 1.66 1.51 0.91
8.57 3.23 1.72 1.56 0.93
8.57 3.29 1.84 1.60 0.95
8.62 3.30 1.91 1.61 0.96
8.70 3.80 1.93 1.64 0.96
8.72 3.99 1.98 1.70 1.32

(b)
a b c d e
Sound CT as Topic Hemorrhage Angioedema Schizophrenia
Appendix Reading Lifting Satellite Viruses Erythromycin
Fistula Laparoscopy Uridine Ambulances Claudins
Dissection Happiness Fractures, Bone Traumatology Epithelial Cells
Drainage Cholecystectomy Patients Bronchial Spasm Carotid Artery Thrombosis
Abscess Back Colectomy Pancreatic Elastase Angiogenesis Inhibitors
Running Work Necrosis Balloon Occlusion Single-Payer System
Appendicitis Pain Rectum Spinal Fractures Ribosomes
Ileus Abdomen Cholecystectomy Hemodynamics Risperidone
Liver Thinking Intestines Quinine Helping Behavior

Table 4.27: The highest average TF-IDF score within each cluster (a) and the terms (b)
for the content-based SURGINET users clusters
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4.5.3 Summary

The knowledge-based clustering has produced some mixed results. The communication clus-

tering suggested that the users in the community formed more of a core-periphery structure

than a clustering structure, and this was confirmed with the content analysis. One of the

problems with trying to cluster users based on their content is that the most active users

are heterogeneous in their knowledge, so trying to fit them into only one cluster is a difficult

task, and may result in tightly clustering the homogeneous users, which are the users that

are less active within the community.

The thread clusterings again revealed a core-periphery structure, with tight clustering

around a small group of threads. Within the PPML data there was some evidence, even

among the periphery, of contextual knowledge clusters, which is a promising finding. The

SURGINET data revealed a larger and partitioned core, with some threads around specific

surgical ideas and other being more general, which does summarize the community well.

Beyond the core, however, there is little evidence of strong activity.

4.6 Detecting Content Expertise: A Network Analysis of the BICGM

One of the objectives of the research was to identify content experts. The communication

pattern analysis did not reveal any satisfactory definitions of content expertise, but the

BICGM network, in which a tie between user A and B measures how interested A is in

B’s content, may provide the means for identifying expert users within the community. The

BICGM network was used to construct a directed network by creating a directed tie between

all users with a BICGM value > 0.5, the expertise network described in section 3.5.4.

The directed centrality metrics for the PPML are presented in figure 4.44 and the highest

scoring users are presented in table 4.28. The table and figures present a network with,

again, a small number of elite users that make up a central core. The users with the highest

authority measures are similar to the users with the highest coreness measures, but there are

some variations. Figure 4.45 compares the coreness and authority measures, colour-coded

by the difference between the two scores. With a correlation value of 0.86 the coreness and

authority are highly related to one another, but looking at the figure there are a couple of

notable differences. At the high end of both centrality measures are the same users, those

power users that are at the centre of both the communication network (coreness) and the
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expertise network (authority). Moving beyond the highest level there are some users that

have a moderately high value in one metric and a low value in the other. The red dots

represent users that have high authority but low coreness, which suggests that they are

experts in a certain field, but their overall contribution rates are low, and thus they have

low coreness centrality. Conversely, the blue dots represent users that have low authority,

so they have not demonstrated expertise in any particular field, but their contributions are

higher so they have higher coreness measures.

Out Degree In Degree Proximity Authority
S2509 8 485 0.498 1.000
S2122 17 484 0.498 0.999
S2100 19 476 0.494 0.990
S2523 13 475 0.493 0.987
S2105 18 473 0.492 0.985
S2176 23 470 0.491 0.982
S2340 21 471 0.491 0.980
S2078 18 467 0.489 0.978
S2225 20 461 0.487 0.974
S2111 24 462 0.487 0.970
S2132 24 462 0.487 0.969
S2101 23 452 0.482 0.959
S2271 27 452 0.482 0.949
S2155 30 442 0.478 0.944
S2130 24 441 0.477 0.943
S2119 40 440 0.477 0.941
S2236 30 438 0.476 0.940
S2085 38 427 0.471 0.928
S2153 29 421 0.468 0.910
S2410 31 399 0.458 0.879
S2578 22 404 0.460 0.877
S2095 46 386 0.452 0.862
S2161 21 388 0.454 0.844
S2091 33 370 0.446 0.830
S2121 29 365 0.444 0.820

Table 4.28: The most central PPML users in the directed network, sorted by authority
centrality

User S2578 is the darkest red point in the figure, with a coreness of 0.241 and an authority

of 0.877. He has shared 21 messages on the mailing list on 15 threads, but the threads he has

communicated on have not been overly popular, so he is only connected to 41 other users in
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the shared threads network (the 1-mode network), resulting in the low coreness measure. His

messages themselves, however, have been knowledge rich, with an average of 13.7 mapped

terms per message (greater than 81% of the other users), so his knowledge contribution has

been much higher than his network connectivity. From a knowledge perspective he is much

more important to the community than his collaboration patterns would suggest.

At the opposite end of the spectrum is the darkest blue point in the figure, user S2237

with a coreness of 0.366 and an authority of 0.053. She has shared only 8 messages (on 8

threads), but they have been much more active threads, so her shared threads network has

55 total connections. Her messages contributed to the community have been short (only 4.2

mappings per message), and looking through the content of the messages she seems to have

largely responded to knowledge seeking activity with short answers that directly answer

a question, or facilitation-type responses that direct the knowledge seeker to the correct

knowledge sources.

Both users contribute to the community. Users with high authority are contributing

more knowledge to the community, but those users like S2237 that are participating in the

community without contributing as much knowledge are still important. She is facilitating

and participating in active conversations with important but short contributions.

For the SURGINET data the distribution of metrics are presented in figure 4.46 and

the highest scoring users are presented in table 4.29, and present a similar pattern to the

PPML data. The correlation between authority and coreness is 0.82, so similar. Due to

the distributions of the two centrality measures the raw comparison does not make sense

(left side of figure 4.47), but the right side comparing the relative rankings of the measures

presents the same pattern, with a users in the middle level of the rankings on with either

high coreness and low authority or vice versa.
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outDeg inDeg proximity auth
S0951 23 193 1.000 1.000
S1020 33 192 0.995 0.998
S0952 32 192 0.995 0.997
S0968 32 191 0.990 0.996
S0959 26 190 0.985 0.995
S0998 33 192 0.995 0.995
S0956 33 190 0.985 0.993
S1009 32 189 0.980 0.990
S0992 31 189 0.980 0.990
S0989 33 189 0.980 0.989
S0970 30 191 0.990 0.989
S0966 34 188 0.975 0.986
S0972 32 188 0.975 0.986
S0993 33 187 0.970 0.980
S0980 33 187 0.970 0.980
S0957 33 185 0.960 0.978
S1008 33 185 0.960 0.977
S0953 33 185 0.960 0.974
S1037 36 184 0.955 0.972
S0969 36 184 0.955 0.970
S1022 34 184 0.955 0.970
S0971 35 183 0.951 0.965
S0977 33 183 0.951 0.964
S0975 32 184 0.955 0.962
S0950 35 181 0.941 0.959

Table 4.29: The most central users in the SURGINET BICGM network, sorted by author-
ity centrality
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Figure 4.45: Comparing the PPML collaboration centrality (coreness) to the knowledge-
based centrality from the BICGM network (authority). The colour of the
points denotes the difference between the two values, with blue indicating
higher coreness to red indicating higher authority
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Figure 4.47: Comparing the coreness and authority measures on SURGINET. The left
figure presents the raw values, but due to the distribution of the two metrics
the raw differences are not as informative as the right figure, which compares
the ranks of the two metrics.
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4.7 Conclusion

This chapter has evaluated the methods presented in the previous chapter on two test

datasets. For the PPML the isolate analysis has detected pendants and determined an algo-

rithm for preventing future pendants, but an investigation into the cause of pendant threads

found no evidence of systemic bias based on either user activity levels or pendant content.

The response analysis determined that the communities have similar attention spans, which

is an interesting finding for two communities with vastly different activity levels.

The clustering of the knowledge-based user similarities was not overly successful, but the

clustering of the threads identified some potential clusters within both communities. The

core-periphery structure identified amongst the users was also present amongst the threads,

but for the PPML the non-core threads demonstrated some clustering, and the core of the

SURGINET data could be relatively well partitioned into two disparate groups.

The BICGM network provided the means to build a knowledge-based expertise network,

a directed network in which an authority measure could be calculated to study which users

are considered the experts within the community. Comparing this measure to the core-

ness measure revealed the similarities and differences between leadership detected based on

communication patterns and communication content.



Chapter 5

Discussion and Conclusion

KT is a vital component of the modern healthcare community, and online communication

tools can provide a valuable addition to the KT process by providing a venue for community

members to meet and discuss clinically relevant issues in a way that bypasses the traditional

obstructions to face-to-face communication. In order for these communities to function,

however, they must be guided by formal implementation guidelines, and the LINKS model

[1] provides such a framework. The objective of this thesis was to develop methods for

understanding and improving the culture of collaboration and the knowledge context of a

LINKS-guided online community of practitioners. Through a combination of communication

and content analysis we have developed methods that address these two issues, providing

a more detailed understanding of the community as a whole and developing the means for

guiding the KT process.

This chapter will summarize the thesis in two sections. The first will discuss the methods

developed in this thesis, explore how they addressed the original objectives of the research

and how the combination of SNA and content analysis can provide unique insights into KT

processes. The second section will investigate the applications of this research, how the

methods developed here fit into KT frameworks, where future research may go, and the

limitations of the methods developed here and how to address them.

5.1 Summary of Methods

The objectives for this thesis were given in table 1.1, and the analytic approach for answering

them was given in figure 1.1. This figure demonstrates how communication and content

analysis can be used to answer questions about the community, and also how they can

combine to provide additional insights that SNA and content analysis cannot provide on their

own. Table 5.1 presents the objectives from table 1.1 along with how they were answered in

this thesis, and what the overall contribution of these methods is to the KT process. The

following sections will investigate these four objectives in a detailed manner, investigating
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the results from the application of the methods to the two test datasets (the PPML and

SURGINET).

Objective Method(s) Contribution Impact on KT
Identifying
Community
Leaders and
Content Ex-
perts

Coreness and
authority

Methods for identifying
community leaders based
on communication pat-
terns or communication
content; identification of
content experts and facil-
itators through authority
analysis

Identifying opinion lead-
ers, change agents, con-
tent experts and facilita-
tors

Calculating
User/Thread
Similarity

GVSM and
BICGM corre-
lation

Two novel methods
for calculating content-
based similarities be-
tween users

Providing advanced
archive and community
navigation tools for
improved connectivity

Detecting Clus-
ters

SNA clustering;
GVSM cluster-
ing

Content investigations of
SNA clusters and con-
trasts of SNA vs GVSM
clusters provides insight
into potential structure
of subgroups

Preventing segmen-
tation and monitor-
ing/managing potential
sub-groups

Content sum-
maries

Knowledge
Maps

Providing high level in-
sight into the content be-
ing discussed within the
community

Ensuring that the knowl-
edge context of the
project is being met

Isolate Detec-
tion

Detection algo-
rithm; content
analysis

Algorithm of preventing
pendants; methods for
studying causes of pen-
dants

Increasing connectivity
and ensuring a culture of
collaboration

Table 5.1: Contributions of the methods developed in this thesis

Many of the methods in this thesis are dependent on the mapping of the unstructured

text in the messages to MeSH terms using Metamap to provide formal representation of the

knowledge contained within the threads. These mappings are the basis for the GVSM and

BICGM correlations and they provide the detailed insight into the content of the pendants

and the SNA clusters along with the knowledge maps.
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5.1.1 Identifying Community Leaders

Community leaders are the guiding forces of the knowledge sharing practices within the

community, so identifying and engaging them is essential to furthering the KT process.

Coreness (section 3.2.3.2) is a measure of how central a user is to the community based

on the communication patterns, while authority (section 3.5.4) is a measure of how central

a user is to the community based on the content of their messages. When compared to

one another the metrics provide the means to separate facilitators, those with high coreness

and low authority, from inactive content experts, low coreness and high authority, with core

members having high values of both metrics.

When applied to the PPML and SURGINET the coreness and authority measures re-

vealed a core group of users that dominate the bulk of the communication within both

communities. Both networks demonstrated a core-periphery structure, though the PPML’s

structure was tighter, with fewer core members and a slightly more active periphery. Figures

4.45 and 4.47 compare the coreness and authority metrics and the three groups of users

named (facilitators, inactive experts and core members) can be seen in both figures. This

type of insight provides added information not available in previous studies [16, 21, 26] that

looked only at the centrality measures as indicators of leadership within the community.

5.1.2 Calculating Content-based Similarities

The content mappings provide an improved method for calculating user and thread simi-

larities than network based methods because they are based on what the users have said

and not only where they said it. The BICGM and GVSM are two different approaches to

calculating user or thread similarity that make full use of the taxonomic structure of the

MeSH lexicon. The BICGM took the BGM [29], improved upon the existing algorithm,

and adapted it to incorporate context-specific relationships using information content. The

GVSM similarity is dependent on a term correlation matrix, and this thesis developed a

term correlation calculation that combines the semantic and context-specific relationships

between MeSH terms to fully capture the relationships between them. When plugged into

the GVSM calculation the result is a set of user similarities that fully reflect the inherent

relationships between the representative MeSH terms. The effect of the BICGM adaptation

was evident in the specific examples provided, but at the macro level it did not differentiate

from the adapted BGM in the way it ranked users. The adaptation to the term correlation
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was found to have a significant effect at both the individual and the macro level, suggesting

that it is having a positive effect on the calculation of user and thread similarity.

Section 3.4 compared the new methods to more traditional approaches. In both the

GVSM and BICGM examples specific cases were found where the new metrics provided an

improved measure from the traditional values. For the BICGM the overall effect seemed to

be minor compared to the BGM, but for the GVSM the addition of contextual similarity

was found to significantly influence the list of similar users. Future work should pursue

these differences via survey-based evaluation of the community (see section 5.2.2 for a more

detailed exploration of these tests).

5.1.3 Finding User and Thread Clusters

The clustering of the users within the PPML and SURGINET was disappointing, as no real

clusters were detected. More advanced clustering algorithms may provide a result (though

several methods were investigated in this project beyond what was presented), but ultimately

clustering methods only work when there are true clusters within the data, and the nature of

mailing lists may preclude user clustering. Since every user receives every message, there may

be a tendency for the leaders in the community to dominate the conversations, creating a

homogeneity of knowledge. This is not necessarily a problem, as the objectives of establishing

a community of practice are to bring interested users together around a common subject,

so in that scenario the existence of clusters would represent the amalgamation of multiple

communities that may be better off split into their own KT groups. Perhaps larger or more

diverse communities would provide a better test bed for clustering methods.

At the thread level both networks resulted in a surprisingly strong core-periphery struc-

ture, but within those clusters there were some valuable findings. The PPML network had

a core centred around generic pediatric pain management content, but in the periphery

there were loose clusters around specific concepts, suggesting the potential for some slight

subgroups within the community. For SURGINET the core-periphery structure was much

stronger with no real pattern in the periphery, but the core was divided into two clusters,

one focused on procedure-specific content and the other on more general information that

was less surgery-specific. This is representative of the SURGINET community as a whole,

which is less context-focused than the PPML, and the clustering reflected that finding.
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5.1.4 Presenting Content Summaries

The knowledge maps identified what content each community spent their time discussing.

SURGINET conversations centred more around anatomy and surgical procedure issues, while

the prevlance of pain and medications was popular within the PPML. Both mailing lists had

a significant presence of terms related to the diagnosis of diseases, suggesting that there

might be some overlap between the two communities. Summarizing these mappings using

knowledge maps provides a broad overview of the content of the conversations within the

community, and can be used in future research to identify desired knowledge areas in which

the community seems to be lacking.

5.1.5 Detecting and Analyzing Pendants

Combining pendant and response analysis resulted in a pendant detection algorithm that

could be used to prevent future pendants from occurring. The pendant detection algorithms

were applied to the PPML (no pendants were present in SURGINET), and though they

identified both the pendants and a way to prevent future pendants, no systemic bias was

detected in the community based on either the pendant author’s activity history or the

content of the pendants themselves. The two worries with pendants are that they are not

being responded to because the sender is not a respected member of the community, or

because the content of the messages are not in concordance with the knowledge base of the

community, but neither of those problems arose on the PPML. The content analysis was used

to supplement to pendant analysis in this section to go beyond looking at what messages

were pendants to try and determine why they were pendants. The lack of findings in this

section suggests that there are no systemic causes of pendants within the community, and

the methods developed here could be applied to other medical communities.

5.2 Applications to KT Programs

The use of KT frameworks is becoming increasingly common within the medical community,

and supplementing these frameworks with online tools is an important next step toward

ensuring a healthy and active KT process, but without methods to understand the online

KT process we cannot fully leverage it or incorporate it into the KT process as a whole.

Answering the objectives stated in table 1.1 are important to improving our understanding
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of KT overall, and this thesis has outlined specific analytic methods for addressing those

objectives in table 5.1 that have not previously been explored within the literature.

From a methodological perspective the BICGM and the term correlation methods devel-

oped in this thesis are an important contribution to the literature both within and beyond

the KT community. The BGM [29] was a useful theoretical model, but the methods in

the original specification needed clarification in certain spaces and improvement in others.

This thesis has adapted the BGM to non-leaf mappings and issues of homonymity, and

clarified specific issues in the original specification that were not clear. Most importantly,

it has improved the model by moving from edge-based to information-content based mea-

sures of term similarity. The analysis of the adaptation suggest that, at a macro level, the

information-content adaptations may not have been as significant an outcome as was initially

hoped, but even using edge-based methods the BGM needed improvement that this thesis

has provided. Even without empirical evidence for an effect the movement from edge-based

to information-content-based methods is a theoretical improvement.

Little work has been done on using the semantic mappings from programs like Metamap

[5] to calculate similarities, but those that have usually ignored the semantic relationships

between MeSH terms. The GVSM is designed to leverage those similarities, but needs a term

correlation matrix to function. The calculation of the term correlation matrix in this thesis,

using a combination of semantic similarity and contextual similarity, leverages the inherent

relationships between terms while incorporating the context-specific relationships between

terms. With the methods combined the GVSM applied to the user and thread representations

makes full use of all the knowledge about the users/threads. Both the GVSM and BICGM

correlations can be applied to any project that uses semantically similar terms to represent

objects and needs to calculate similarities between them.

5.2.1 Augmenting the KT Process

The LINKS model [1] provides a framework for developing online KT environments. In order

for the LINKS model to be successful it needs analytic tools that can provide feedback to the

community members, ensuring that their KT needs are being met. This thesis has developed

methods to monitor two components of the LINKS model, the knowledge sharing context

and the culture of collaboration. Table 5.2 presents the components of the LINKS model

addressed by this thesis. These same components can be directly tied to parts of the PARIHS
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Level Element Contribution
Conceptual Level Knowledge Modality

Knowledge Sharing Context Knowledge Maps; Content Experts;
User/Thread Correlations

Knowledge Sharing Medium
Operational Level Technical Infrastructure

Culture of Collaboration Community Leaders; Pendants; Sub-
groups; User/Thread Clusters

Compliance Level Trust

Table 5.2: Summary of the contributions to the LINKS model [1]

framework as well. The PARIHS framework considers KT as a 3-part process (see figure

5.1) involving evidence, context and facilitation [72]. This thesis has developed methods for

directly addressing the facilitation and context components, providing feedback on how the

community functions and what may need to be done in order to improve knowledge sharing.

Figure 5.1: The PARIHS Model [72], supplemented with the analytic additions from this
thesis

The PARIHS framework depends on leaders and facilitators for transmitting knowledge

through the community [72], so detecting leaders is paramount to facilitating KT. For expe-

riential knowledge in an online community these leadership roles are filled organically rather

than explicitly, so identifying who fills these roles is important to monitoring the commu-

nity. The coreness and authority metrics are two measures that can provide insight into

who forms the core of the community, who the content experts are and who the facilitators
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are. An analytic framework could be developed to apply to online communities or mailing

lists to identify these users so that the community can be better understood and future

knowledge-based interventions can be applied in an optimal manner.

Detecting user and thread similarities provides important additional connections within

the community. Identifying similar users can facilitate the interaction component, and iden-

tifying similar threads can help identify what specific subjects are being discussed, helping

to understand what drives the community. In order to fully leverage the user and thread

similarities there needs to be a viable way to navigate the archives of the community. Within

the archives similar users could be presented to community members as “potential collabo-

rators”, and similar threads could be presented to supplement the knowledge in the current

thread.

Clusters are a potential problem within a KT-based community, as research has suggested

that the segmentation of communities leads to the “death” of those communities [39], and

identifying and separating clusters can ensure that the “common subject” component of the

Communities of Practice is maintained [94]. Clusters can be identified using the methods

presented in this thesis, and if the content area is found to be sufficiently different then the

cluster can be split off into its own group. Within an online community this could be a

matter of creating a new area within the community, while segmentation in a mailing list

may require the spawning of a new mailing list around a more specific subject.

The content summaries provide important insight into the knowledge context of the

community. The knowledge maps provide insight into the content of the community, and

linking these summaries to the archives of the community could provide a novel archive

navigation tool that could increase the connectivity of the community as a whole. Finally,

detecting and preventing pendants is essential to establishing a culture of collaboration within

the LINKS model [1]. The algorithm presented in this thesis can provide the means for

preventing messages from going unanswered, and monitoring of the content of the potential

pendants using the methods presented here can provide insight into potential explanations

as to why these messages may not have been resolved.

Overall online communication media can provide an alternative avenue to face-to-face

communication for facilitating KT, bypassing communication barriers, connecting disparate

groups and providing archives of KT activities, but there are challenges in moving to a

new communication venue. Without face-to-face communication establishing trust-based
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connections is a challenge, and the presence of a larger community, though a potential benefit

overall, can be overwhelming and a challenge to navigate. The methods presented in this

thesis provide the means for improving the online KT process and addressing the issues that

may arise in implementing and using such a system. Combining the analytic methods here

with the LINKS model in implementing online KT using the PARIHS framework can ensure

optimal connectivity between community members and an improved sharing environment

overall.

5.2.2 Future Work

The creation of usable, navigable archives is paramount to making full use of the knowledge

shared within the communities, and several of the approaches for leveraging the methods in

this thesis require the use of navigable archives. It is not feasible to consume all conversations

within an active community, particularly as the majority of conversations last less than three

days, which results in the same questions arising multiple times. For online communities

these archives are normally present, and the methods presented above can improve the

navigation of those communities, but for mailing lists there is a need for an online archive

that can be linked to the conversations to provide a usable archive of previous threads.

The application of all methods presented in this thesis could be applied to online discus-

sion forums, and forums have the additional details of who consumed knowledge (i.e. who

read specific threads), providing another level of both network and semantic information. It

is difficult to incorporate users without them contributing to a conversation, but “Lurkers”,

those that read the contents of online communities without contributing, are a large part of

the community, and incorporating them into the analysis could provide additional insight.

Our previous research [79] investigated the roles of lurkers in a foreign language community,

and combining those methods with the content-based methods developed here would be a

valuable extension of this research.

As with all algorithmic research there is always the potential for improving the details of

the algorithms. There are coefficients and components of the term correlation and BICGM

algorithms that could be tweaked and studied. Other clustering algorithms could be inves-

tigated for detecting content-based clusters of users or threads, and more advanced SNA

methods may provide additional insight into the community.

The methods presented in this thesis look at the communities in a cross-sectional manner
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(with some temporal investigations of individual threads), but there is a larger temporal

structure within the communities that may be worth investigating. Studying the evolution

of a community, both at the user level and at the community level as a whole, may provide

methods for measuring the growth of knowledge within the community, for observing users

transforming from knowledge seekers to content experts, or for detecting the development of

subgroups.

This thesis addressed two major components of the LINKS model, the culture of col-

laboration and the knowledge context, but other dimensions warrant further investigation.

Looking at figure 2.1 and table 2.1 the Knowledge Sharing Medium and Technical Infras-

tructure are not issues that need to be studied, as they are specified and implemented at

the beginning of a project, but evaluating the Knowledge Modality and the Trust in the sys-

tem are components that may warrant further investigation in future studies. Studying the

knowledge modality involves parsing the content of the messages and determining what kind

of knowledge is being shared, while evaluating trust requires contacting community mem-

bers to determine if their practice is changed based on the knowledge they received from the

mailing lists. Both projects require a different analytic approach than the methods in this

thesis and are therefore beyond the scope of this work, but future investigation into those

components could be combined with this research to provide a complete analytic framework

for the LINKS model.

There are several results in this thesis that could be validated through engagement with

the communities themselves. A survey to evaluate the utility of the GVSM and BICGM

similarities could be useful. There are many approaches to take for this kind of project, but

the objective is to determine if the BICGM rankings are better than the BGM rankings,

and if the contextual supplement to the term correlation improves the similarities. The

community members would be presented a list of users and asked “how similar are these

users to you?” along with a second question “who are your peers in the community?”, and

these results would be compared to the rankings. The issue of community leadership would

be investigated by a similar survey, in which the users are asked “who are the community

leaders?” and “what is a leader?”. The second question is particularly interesting, to see

if users lean toward a coreness or authority-oriented definition. Engaging the community

could also provide feedback on the best way to provide a usable archive of old conversations,

and how best to present additional information (similar threads, for example) in the most
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effective format possible.

5.2.3 Limitations

There are limitations to this research that should be addressed. The methods developed

within this thesis have not been incorporated into a KT framework at the process level.

This chapter has outlined how the methods can be used to supplement KT, but future work

should investigate the process of incorporating them into a KT framework and deploying

them in a real-world environment.

Most of the methods described here are dependent on semantic mapping programs like

Metamap [6], and therefore the majority of the methods here cannot be extended beyond

the healthcare community. Some of the communication analysis would be applicable to

non-medical communities, and extensions to non-medically oriented lexicons like Wordnet

[61] may be possible, but the methods here are designed largely for medical communities.

Specifically, the methods here are most useful for closed, professional communities. Non-

professional communities, such as physician-patient or patient-patient communities, are very

common, but the language used within these communities is different so semantic mapping

approaches are more difficult, and the objectives of these communities are often very different

from the KT communities that are the focus of this thesis. The objective of this thesis is

to improve KT in online communities, so if KT is not the objective then these methods are

not optimal. The response analysis and coreness metrics would still work, and for certain

communities the content mapping may be successful, but the implications of a non-secure

community, or a community in which the trust dimension of the LINKS model is not present,

are wide ranging and warrant their own research pursuits.

MeSH was used as the target semantic language for this project over potentially more rich

medical lexicons like SNOMED or UMLS. The decision was made to use MeSH because it is

the same lexicon that is used to index PubMed, which was used in a previous project [78].

The theoretical implications are minimal: Other lexicons still have a hierarchical (or at

least somewhat hierarchical) structure of relationships between terms, and most of them can

be mapped to using Metamap or other semantic mapping programs. The major effects of

using a different and potentially more complex lexicon are the calculations of the semantic

correlation from equation 3.23, the information content for the BICGM in equation 3.27,

and the aggregation of terms in the knowledge maps. These issues could all be addressed
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without altering the theoretical structure of the thesis, but comparisons of the effect of using

MeSH, SNOMED or other lexicons on the outcomes may be pursued in future work.
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