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Abstract 

 

Order picking is considered one of the most time-consuming operations in picker-to-parts 

warehouses. Accordingly, more emphasis has been given to the task of improving the 

efficiency of order picking systems in general, and the required travelled distance during 

the order picking operation, specifically. 

In this thesis, we focus on two main factors that significantly affect the efficiency of order 

picking systems: the assignment storage policies, including the full-turnover, nearest-

location and random storage policies; and the warehouse layout structure, in terms of the 

depth and the number of storage aisles. We investigate the combined effects of these two 

factors on the order picking travel distance. 

While previous research compares the full-turnover to the random storage policy, we 

compare the performance of the full-turnover policy to the nearest-location and random 

storage policies over various warehouse layout alternatives. 

For this purpose, we present a methodology for estimating order picking travel distance in 

a single-block, open-ended warehouse, under the assumptions of S-shape routing and 

discrete order policies. 
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Chapter 1  

 

Introduction 

 

Warehouses are a vital component of a company’s supply chain. Warehouses are 

typically used as a means of storing items, whether those items are parts for 

manufacturing processes or finished goods.  Warehouses can hold items that are not fully 

ready for consumption, or items a customer does not presently need but requires quick 

access to when the need arises. The most common benefits of warehouses, according to 

Lambert et al. [14], are that warehouses allow businesses to function more efficiently 

through changing and uncertain market conditions, improve service to customers, and 

take advantage of transportation and production economies of scale, allowing for 

quantity purchase discounts and forward buying.  

Constructing, stocking and staffing a warehouse is an important strategic business 

decision, often featuring high investment and overhead costs. Careful planning and 

design considerations must be done, including determining the warehouse’s impact on 

company goals and day-to-day operations.  

Le-Duc and De Koster [16] classify manual warehousing systems based on their order 

picking operations.  The two main types of systems are picker-to-parts systems, featuring 

manual picking; and parts-to-picker systems, featuring an automated picking system. In 

an automated picking system, a machine stores and retrieves items by moving vertically 

and horizontally along each rack. In contrast, in picker-to-parts systems, an individual 
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order picker navigates through the aisles one at a time, picking items from multiple 

locations within the storage racks. 

Tompkins et al. [23] presents six typical warehouse operations, as depicted in Figure 1. 

These warehouse operations are receiving, transferring and putting away, order 

picking/selecting, accumulating/sorting, cross-docking, and shipping. 

 

 

 

 

 

 

Order picking is the retrieval of items from their storage locations, in order to satisfy a 

number of independent customer orders. The process begins when an order arrives at the 

warehouse, and an order picker is sent into the aisles with the customer’s list, pulling the 

requested items from storage.  

 Tompkins et al. [23] states that order picking is among the most labor intensive and 

expensive tasks that take place in a warehouse, and Coyle et al. [5] estimates that order 

picking represents roughly 65 percent of the total operating costs of a typical warehouse.  

Tompkins et al. [23] breaks down picking-related activities, in terms of the time 

performing each activity, as depicted in Figure 2. There are several activities that take 

Figure 1: Six typical warehouse operations (Tompkins et al. [23], De Koster et al. [6]) 
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significant amounts of time, but an overwhelming majority of the picking time, about    

percent, is spent by the picker as it travels through the warehouse. Therefore, travel time 

is the primary performance indicator used to measure the efficiency of a manual order 

picking process. Warehousing professionals look to order picking as the highest impact 

area of improvement in a warehouse’s operating efficiency, and travel time offers the 

most room for improvement among order picking activities.  

 

 

 

 

 

 

Chan and Chan [4], Petersen et al. [19], and Roodbergen et al. [22] state that the 

performance and efficiency of an order picking system primarily depends on the 

following four tactical and operational decisions: 

 Layout design is a tactical decision; it concerns the layout of both the warehouse 

containing the order picking system and the system itself. 

 Picking policies are operational decisions; they determine how orders will be 

picked by the order picker. Common picking policies utilized in picker-to-parts 

systems include discrete picking, batching, and zoning. 

Figure 2: Typical distribution of order picking time 

(Tompkins et al. [23], De Koster et al. [6]) 
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 Routing policies are operational decisions; they determine the route of an order 

picker as it travels through the warehouse picking an order, as well as the 

sequence in which items are picked. There are numerous routing policies, ranging 

from simple heuristics such as S-shape, return, mid-point, largest gap, and aisle-

by-aisle, to optimal and hybrid procedures.   

 Storage assignment policies are both tactical and operational decisions; they 

determine which products will be allocated in which location, based on given 

storage criteria. Common storage assignment policies include random storage, 

dedicated storage, family grouping, full-turnover storage, volume-based storage, 

class-based storage, and nearest-product storage. 

Improving order picking productivity can be achieved through the implementation of 

more efficient picking, routing, and storage assignment policies in the warehouse. 

Decision makers must always take accurate and appropriate approaches, accounting for 

the relationships between warehouse operating policies.  
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Chapter 2     

 

Thesis Motivation 

 

In this thesis, a methodology for improving the performance of order picking in picker-

to-parts warehouses will be developed. As mentioned earlier, the efficiency of the order 

picking system can be improved through one or more of the four main areas: warehouse 

layout design, storage assignment, picking, and routing policies. This thesis will address 

only two of these areas: layout design and storage assignment policies. 

This methodology aims to assist warehouse professionals in investigating the combined 

effects of the item storage assignment policies and the warehouse shape, in terms of the 

length and number of main storage aisles, on the performance of the order picking 

system, measured in terms of the travel distance, for the purpose of identifying the 

optimal combination of the storage policy and the warehouse layout to be implemented 

for the storing and picking of a group of items, in order to achieve the local minimum 

travel distance among all feasible combinations. Also, this methodology is designed with 

high flexibility, to handle a generic number of items, main storage aisles, and storage 

locations within the warehouse. It can, therefore, be applied to a multitude of practical 

warehouse layout configurations and numbers of allocated items. 

The development of this methodology is based on an open-ended, single-block layout 

structure with double-sided storage aisles. The S-shape routing policy is assumed to 

direct order pickers within the warehouse, and the picking is based on a discrete picking 

policy. 
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This thesis focuses on three storage assignment policies: full-turnover, nearest-location, 

and random storage. These three policies are flexible enough to be implemented in 

different warehouse environments, as they are less information intensive and easier to 

administer than other storage policies such as the class-based, volume-based, and family 

grouping storage policies, which usually require a higher level of detail about the items’ 

attributes to be stored, and more sophisticated warehouse operations management 

systems for continuous tracking and revision. More importantly, the reason for 

considering the full-turnover policy in addition to the other policies in this thesis is the 

limited work done in evaluating and improving the full-turnover storage policy in order 

to improve the efficiency of manual order picking, as will be shown clearly in the 

following chapter. 

2.1 Organization of the Thesis Report 

 

The reminder of this report is organized as follows: 

In Chapter 3, literature review related to picker-to-parts warehouses and improving the 

efficiency of manual picking systems is introduced. 

In Chapter 4, the developed methodology, including its two primary approaches, is 

explained and presented in detail. 

In Chapter 5, the results from implementation of the methodology are presented and 

discussed. 

Finally, in Chapter 6, the overall conclusions derived from this study and directions for 

further work in this area are presented.  
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Chapter 3     

 

Literature Review 

 

The following literature review will introduce the work done in improving the efficiency 

of order picking in picker-to-parts warehouses, with emphasis on contributions regarding 

the implementation and improvement of the full-turnover and the nearest-location storage 

policies.   

3.1 Improving Efficiency of Order Picking in Picker-to-parts 

Warehouses  

 

Le-Duc and De Koster [15] developed an analytical approach for estimating the average 

travel distance of a picking tour in picker-to-parts systems, where items are assumed to 

be allocated into a single-block warehouse layout structure using the ABC-storage 

assignment policy, which means that the items are divided into classes according to their 

pick frequencies. The return routing strategy is assumed to be used in developing this 

approach.  

 

Le-Duc and De Koster [16] extended their approach presented in Le-Duc and De Koster 

[15]; they developed a probabilistic model for estimating the average travel distance of a 

picking tour in a 2-block class-based storage strategy. Also an optimization model is 

developed to optimize the design of the 2-block layout structure by determining the 

optimal distance at which the middle cross-aisle should be placed within the warehouse. 
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Roodbergen et al. [21] developed a model to minimize the average travel distance 

required to complete a given pick list. This model determines the design of warehouse 

layout structures consisting of multiple cross aisles (i.e., multiple blocks) by optimizing 

the number of blocks of which a warehouse layout structure consists. The S-shape policy 

and random storage assignment policy were assumed in developing this model. This 

model was developed to be capable of accommodating any number of blocks, as well as 

any number of aisles. 

 

Vaughan and Petersen [24] investigated the effect of adding middle cross aisles to the 

layout structure on the travel distance required to complete a given pick list by 

developing a model to determine the optimal number of cross aisles, with the purpose of 

minimizing the travel distance of the order picker. Items are assumed to be assigned 

randomly into storage locations within the warehouse. A specifically designed aisle-by-

aisle routing algorithm is developed for multi-block warehouses in this study.  

 

Berglund and Batta [1] revisited the problem addressed by Vaughan and Petersen [24]. 

They developed an analytical model for optimizing the number and positioning of middle 

cross aisles in a warehouse layout structure, in order to minimize the average travel 

distance required to complete a given pick list. The possible combinations of how a given 

pick list might be distributed in the warehouses are found based on generating the fully 

enumerated set of patterns, along with their associated probabilities. The aisle-by-aisle 

routing algorithm developed by Vaughan and Petersen [24] is modified in this model to 

represent a Markov reward process with multiple states, corresponding to the cross aisles. 
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Items are assigned locations in the warehouse using a volume-based storage policy with 

three different cases: diagonal storage, within-aisle storage, and across-aisle storage. In 

this thesis, we utilize the concept of generating all possible patterns to find how a given 

number of picks might be distributed in a single-block warehouse with a given number of 

main storage aisles, despite the obvious differences in the scope and the general goals of 

our frame work and the frame work of Berglund and Batta [1] 

 

Petersen [18] developed a simulation approach to design a single-block warehouse layout 

structure for two different storage assignment policies: the volume-based storage 

assignment policy with two distinctive cases, within-aisle storage and across-aisle 

storage; and the random storage assignment policy; on the total travel distance of an 

order picker. The return routing method for the order picker is assumed in developing 

this approach. 

 

Hall [9] developed an analytical approximation for the expected travel distance under 

each of four routing strategies: the traversal, mid-point return, largest gap return, and 

double traversal, assuming a single-block warehouse and a random assignment storage 

policy. The performance of the four routing strategies is compared with a lower bound 

for the expected tour length, assuming the optimal routing strategy to be a hybrid of the 

traversal and the largest gap strategies. The primary conclusion obtained from this 

comparison is that the largest gap strategy always outperforms the mid-point strategy. 

 

Roodbergen and De Koster [20] developed two heuristics for routing order pickers in a 

warehouse with multiple cross aisles: combined and combined+ heuristics. They 
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compared the performance of five routing heuristics: the S-shape, largest gap, combined, 

and combined+ heuristics, as well as the aisle-by-aisle heuristic, developed by Vaughan 

and Petersen [24]. The comparison was based on 80 different warehouse layout structure 

configurations, with the number of main vertical aisles varying between   and   , the 

number of cross aisles varying between   and   , and the pick list size varying between 

   and   .  The items were assigned randomly. The results showed that the combined+ 

heuristic provided the best results in 74 of the 80 configurations, and that the largest gap 

was found to be effective in layout configurations with two cross aisles and low pick 

frequencies, which is in agreement with Hall [9]. Also, the performance of the five 

heuristics was compared to the results of a branch-and-bound procedure providing 

optimal order picking routes, and the results show that the gap between this optimal 

routing method and the combined+ heuristic varies substantially. 

 

Petersen [17] compared the performance of five routing heuristics: the S-shape, return, 

mid-point, largest gap, and composite, against the performance of an optimal routing 

strategy in picker-to-parts systems. Items are assumed to be assigned randomly in a 

single-block warehouse. He concludes that the best heuristic solution was 5 percent over 

the optimal solution. Also, this study shows that the composite and transversal strategies 

yield shorter travel distances with larger pick lists, while the largest gap and mid-point 

strategies yield shorter travel distances with smaller pick lists.  

 

Roodbergen et al. [22] developed an analytical approach to investigate the effects of two 

different routing policies in low-level, picker-to-parts systems: the S-shape routing policy 

and the largest-gap routine policy, on the average length of an order picking route in a 
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one-block warehouse layout structure. Their approach determines the optimal design of a 

single-block layout structure for the two routing policies. The random storage assignment 

policy is assumed for this approach. The primary conclusion found by this study is that 

the largest-gap routing policy yields shorter average route length than or equal to the S-

shaped routing policy if the optimal layout structure is used for each routing policy.  

 

Chan and Chan [4] presented a simulation study of a real class-based and random storage 

assignments problem of a multi-level rack, single-block warehouse that utilizes a picker-

to-parts system. In this study, the items are divided into three classes. The efficiency of 

order picking under three different routing policies: the S-shape, return, and combined, 

along with the class-based and random storage policies, is evaluated and compared by 

considering travel distance as the key performance indicator. The primary conclusion of 

this study is that the case of a combined routing policy, along with class-based storage, 

achieves the minimum travel distance of all policies considered in this study.  

 

Petersen et al. [19] evaluated the performance of the class-based storage (CBS) policy 

relative to the volume-based storage (VBS) policy in low-level, picker-to-parts single-

block warehouses. The traversal routing strategy is considered in this study. The primary 

conclusion obtained from this study is that the VBS policy is generally more effective at 

minimizing the average travel distance than CBS policy. However, the VBS policy is 

information intensive and far more difficult to administer than the CBS policy. Also, this 

study shows that the performance gap between CBS and VBS decreases as the number of 

storage classes decreases; the results indicated that a two-class system attained nearly 80 
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percent of the benefits when compared to the VBS policy, which requires much more 

time and effort to implement properly. 

3.1.1 The Full-turnover and The Nearest-location Storage Policies 

 

Heskett [10],[11] introduced, for the first time, the rule for the placement of items based 

on the ratio of the required storage volume space to the order frequency, which he called 

the cube per-order index (COI). He utilized the COI policy in developing a model for 

minimizing the total variable costs arising from labor work, consisting of picking, sorting 

and stacking items, and the travel costs of fork-lift trucks in distribution centers. 

 

Kallina and Lynn [12] investigated the impact of the COI-based and the popularity-based 

(i.e., demand-based) assignment policies on the total variable costs, including the labor 

work and fork-lift operating costs. They considered a distribution warehouse with three 

staging areas. A primary finding of their study is that the implementation of the COI-

based policy could achieve a saving of 5-10% in total variable costs over the popularity-

based assignment. 

 

Caron et al. [2] compared the performances of the traversal and return routing policies in 

low-level picker-to-parts systems using both analytical and simulation approaches. A 

COI-based full-turnover storage policy was used to allocate the items in a double-block 

warehouse. The primary outcome of this study was that the return policy outperformed 

the traversal policy only for a small-sized pick list. Also, the full-turnover policy was 

found to outperform the random storage policy, with both the traversal and the return 
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routing policies. In this thesis, we compare the performance of the full-turnover storage 

assignment to the performance the nearest-location and the random storage policies in 

single-block, picker-to-parts warehouses, considering the effects of the pick list size and 

the warehouse shape in terms of the number and the depth of its main storage aisles.  

 

 Caron et al. [3] developed an analytical approach for minimizing the expected picking 

travel distance by optimizing the number of main storage aisles of which a warehouse 

layout structure consists. This analytical approach considers a double-block warehouse 

layout structure in a low-level, picker-to-parts system. Items are assumed to be stored in 

the warehouse using a COI-based full-turnover storage policy, and the traversal routing 

strategy for the order-picker is used in developing this approach. In this thesis, we 

provide a comprehensive frame work for determining the optimal storage assignment 

policy among three policies: the full-turnover, the nearest-location, and the random 

storage policies, and the optimal single-block warehouse shape in terms of the number 

and the depth of main storage aisles, under the assumption of the S-shape order picker 

routing strategy, for a given group of items and given ranges of pick list sizes. 

 

Kubasad [13] investigated and compared the effects of three storage assignment policies 

on the picking travel distance in two single-block layout alternatives, in which the first 

alternative is a closed-end layout, and the second is an open-ended layout, where each 

consists of seven aisles and twelve storage aisles. The author developed and applied three 

storage assignment policies and evaluated the layouts based on a probability graph to 

simulate the picker’s traversal path through the block. The first two policies are called the 

north-north and the north-south storage assignment policies. Both of these storage 
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policies start with ranking a given group of items in descending order according to their 

demand, which is also referred to as popularity-based sorting in literature. Then the 

sorted items are assigned into the storage aisles, starting with the left-most aisle closest to 

the depot in a northerly direction within the aisles for the north-north storage policy, and 

in alternating northerly and southerly directions over the storage aisles for the north-

south storage policy. The third storage policy is called the nearest-location storage 

assignment policy; that is, it starts with sorting a given group of items in ascending order 

according to their storage requirements only, and then the sorted items are assigned into 

the available storage location located at the shortest Euclidean distance from the depot, 

without the need to completely fill a given aisle before moving to the next one. The 

primary conclusions of this study are that the open-ended layout always provides a lower 

travel distance than the closed-end layout, the north-north policy outperforms the other 

two policies, and the north-south provides the largest travel among the three storage 

policies. In this thesis, we will present a completely different nearest-location storage 

policy than the one introduced by Kubasad [13]. With our nearest-location storage 

policy, a given group of items are first grouped in ascending order according to their 

storage requirements, and for each group the items are sorted in descending order 

according to their demand, then the sorted items are assigned to storage aisles in a 

northerly direction, starting from the first aisles closest to the depot. The purpose of our 

nearest-location storage policy is to pack the storage aisles closest to the depot with the 

highest number of items while maintaining the highest possible demand weight for these 

aisles at the same time, which achieves both the highest density of items and the highest 

possible demand weight for the aisles located closest to the depot. Also, in this thesis, the 

performance of the nearest-location storage policy is compared with the performance of 
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the full-turnover and random storage policies, considering the effects of pick list sizes 

and the warehouse shape which is not accounted for by Kubasad [13]. 

3.1.1.1 Travel Distance Estimation  

 

Caron et al. [2], [3] developed a travel distance model considering the full-turnover and 

random storage policies in a double-block warehouse; the travel distance is estimated to 

be equal to the multiplication of two values. The first is the expected number of main 

storage aisles visited for the purpose of completing a given number of picks, and the 

second is the overall length of the main storage aisles. The first value is estimated by the 

summation of the probabilities that at least one pick out of a given number of 

independent picks is located in every storage aisle over the total number of aisles, where 

these probabilities are determined based on an analytical function which describes both 

the random and the full-turnover storage policies. The developed travel distance model is 

a function of the number of and length of the storage aisles, and the number of the 

independent picks. Also, the development and the implantation of the developed travel 

distance model are limited only to the full-turnover and the random policies. 

 

Kubasad [13] developed a travel distance methodology based on the concept of the 

probability graph. This travel distance methodology starts with labelling all the ends of 

the aisles (seven aisles are considered in the example) in an open-ended layout structure 

as nodes for the probability graph. Then all possible routes under the S-shape routing 

strategy that the order picker might follow within the warehouse are defined assuming 

that any possible route starts and ends at the depot. The possible routes are defined based 
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on the assumption that the probability of moving from the current node to the successive 

node through a given aisle is equal to the probability of entering that given aisle. The 

probability of entering the storage aisle is defined as the ratio of the total demand of the 

items allocated in a storage aisle to the total demand of all items allocated in the 

warehouse. The overall travel distance was found by calculating the expected travel 

distance of all possible routes defined by the probability graph for the seven aisles in the 

open-ended warehouse. The probability graph-based travel distance approach is limited 

does not account for the number of picks. 

 

In this thesis, we develop a framework for estimating travel distance using a completely 

different approach. Our approach utilizes the concept of generating all possible patterns 

in which a given number of picks might be distributed within a given number of storage 

aisles introduced by Berglund and Batta [1], where each of these patterns indicates a 

possible route to be followed by the order picker under the assumption of the S-shape 

routing strategy. We find the relative weight (i.e., probability) associated with every 

pattern based on the probability of locating a single pick in a particular aisle, which is 

defined as the ratio of the total demand of the items allocated in a storage aisle to the 

total demand of all items allocated in the warehouse, which is mathematically the same 

as the probability of entering an aisle in Kubasad [13]. However, our probability carries a 

different meaning, as it is used to quantify the impact of how the items are positioned 

within the warehouse by the different assignment policies. Also, a Monte Carlo 

simulation approach is developed as a part of our framework, in order to show that large 

problems can be solved for generic numbers of picks, items, storage aisles, and storage 
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locations, rather than only relying on analytical approaches developed in Caron et al. [3], 

and Kubasad [13]. 

 

3.2 Summary 

 

The warehouse layout design has received considerable attention by many authors, 

including Le-Duc and De Koster [15], [16], Roodbergen et al. [21], Vaughan and 

Petersen [24], Berglund and Batta [1], Caron et al. [3], and Petersen [18]. The emphases 

of their work were single-block warehouses with front and rear cross aisles, and multiple-

block warehouses with many middle cross aisles. 

Hall [9], Roodbergen and De Koster [20], Petersen [17], Roodbergen et al. [22], and 

Caron et al. [2] provided research on order picker routing in picker-to-parts warehouses. 

Their work was focused on developing optimal and heuristic routing procedures, 

comparing the performance of the different routing policies, and investigating the impact 

of these routing procedures on the warehouse layout design and the efficiency of order 

picking systems. 

Chan and Chan [4], Petersen et al. [19], and Petersen [18] provided research concerning 

storage assignment that mainly focuses on developing the class-based and volume-based 

storage policies, and comparing their performances along with the random storage policy. 

Previous research in investigating the impact of the full-turnover storage policy on order 

picking travel distance is limited to Caron et al. [2], [3] only, who provided two studies 

for developing and implementing the full-turnover storage policy. The first study 

investigated the effect of the full-turnover storage policy under the S-shape and the return 
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routing policies in double-block warehouses, and the second study optimized the number 

of main aisles in double-block warehouses, using the full-turnover storage policy. 

Previous research in implementing and investigating the impact of the nearest-location 

storage policy on order picking travel distance is limited to Kubasad [13], who compared 

the performance of the nearest-location storage policy with the performance of the north-

north and north-south storage policies in open-ended and closed-end single-block 

warehouse structures with a limited number of seven storage aisles. Therefore, as 

mentioned earlier, we decided to investigate the full-turnover storage policy by 

comparing its performance with the performances of the nearest-location and random 

storage policies in single-block, picker-to-parts warehouses, and investigating the 

combined effects of the full-turnover storage policy and the warehouse layout on order 

picking travel distance, for the purpose of improving the efficiency of order picking in 

picker-to-parts warehouses. 
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Chapter 4  

 

Methodology 

 

In this chapter, the methodology is presented in five sections. The first four sections 

present the main assumptions in developing this methodology, while the last section 

presents the development of two approaches to be utilized in estimating order picking 

travel distance. 

4.1 Items Attributes 

 

Within the explanation of this methodology, all items can be assumed to have main key 

attributes, defined as follows: 

   : the demand of item   per unit of time; 

   : the number of storage locations required to assign item   in an aisle, simply 

referred to as size of item  ; 

     : the demand to size ratio of an item  , equal to 
  

  
; 

     : a uniform random number generated for item  ; 

   : the total demand of the group of items assigned to the warehouse’s storage 

aisles; 

   : the total number of storage locations needed to allocate the group of items to 

the warehouse. 
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4.2 Warehouse Layout Structure 

 

The warehouse on which the approach shall be implemented is depicted in Figure 3. It is 

assumed the warehouse is of a single-block layout with   main storage aisles, each 

containing one level of racks on both sides in which to store products. Every storage aisle 

consists of   equally spaced storage locations. The warehouse is assumed to be open-

ended in layout, featuring front and rear cross aisles. The depot is located within the front 

cross aisle, south of the first main aisle. This approach is developed for picker-to-parts 

systems, in which the picker walks or drives into the aisles containing the items in order 

to pick them. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Warehouse layout with M main storage aisles and two cross aisles 
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The warehouse layout shall be based upon the following parameters: 

  : the number of main storage aisles within the warehouse, where   

{         } represents each individual main aisle; 

  : the number of storage locations on each side of a main aisle; 

   : width of a cross aisle; 

   : center-to-center distance between two adjacent main storage aisles; 

   : width of a storage location. 

4.2.1 Selection of Feasible Warehouse Layouts 

 

As mentioned earlier, this thesis aims to improve the performance of the order picking 

system by evaluating the combined effects of the storage assignment policies and the 

warehouse shape, in terms of the length and number of main storage aisles, on the 

expected travel distance required to complete a pick list of size  . Accordingly, a set of 

feasible different layouts of the warehouse that would be investigated has to be selected 

in advance, and each of these feasible layouts is evaluated along with the storage 

assignment policies. Eventually, the combination of the layout alternative and the storage 

assignment policy that achieves the local minimum expected travel distance is considered 

the optimal combination among all possible combinations of layouts and storage policies. 

The selection process is performed in such a way that each of these configurations has at 

least the same storage capacity, meaning that       , in order to be able to 

successfully allocate the same group of items to each of these layout configurations. 
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Therefore, an initial arbitrary layout configuration is selected with    and   , followed 

by selection of a second layout configuration that has a fewer number of aisles and higher 

number of storage locations than those in the initial layout, where       and      , 

followed by selection of a third layout configuration that has a fewer number of aisles 

and higher number of storage locations than those in the second layout, where    

      and         . The selection process continues in this manner until a 

predetermined final layout configuration with    and    such as            

   and              , is reached. After completing this selection process, a 

set of the feasible alternatives    containing different pairs of   and   values is formed, 

such that: 

    {(     ) (     ) (     )   (     )} 4.1 

4.3 Routing of Order Pickers  

 

 The S-shape routing strategy is considered for routing order pickers through the single-

block warehouse, as shown in Figure 4. The black squares represent the items to be 

picked, and the dotted line indicates the path taken by the order picker under the S-shape 

routing policy to perform the picking tour through the warehouse. An order picker must 

start the picking tour from the depot, and enter each aisle containing at least one pick, 

regardless of the locations of the pick(s) within the aisle. After completing all the picks in 

the aisle, the picker exits into the opposite cross aisle. The aisles without picks are 

ignored, except when a picker has to return to the depot after the completion of a picking 

tour. 
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4.4 Storage Assignment Policies 

 

A storage assignment policy is defined as a set of rules to be followed in assigning 

groups of items to storage locations within the warehouse. 

Three different storage assignment policies are to be evaluated: the full-turnover with 

two distinct cases, north-north and north-south; nearest-location; and random storage 

assignment policies. The effect of these policies is evaluated with respect to every 

feasible warehouse layout alternative among the set    of all feasible alternatives. 

Figure 4: The S-shape routing policy in a single-block warehouse structure 
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4.4.1 Full-turnover Storage Assignment Policy 

 

The full-turnover storage assignment policy ranks the items to be allocated according to 

their      in descending order. Items with the highest      are located at the more 

accessible storage aisles that are closest to the depot, whereas items with lower      

values are located somewhere towards the back of the warehouse. The advantage of this 

ranking is that items with higher demand but requiring an excessive number of storage 

locations are treated less preferentially than items with a slightly lower demand but 

requiring much fewer storage locations to be assigned. The     -based ranking, used 

here, is functionally similar to the COI-based ranking implemented by Caron et al. [2], 

[3], except that the      considers the number of storage locations needed for each 

item  , while the COI considers the volume of space needed for each item   .The full-

turnover storage assignment policy is applied in this study through two different cases of 

assignment direction: the north-north and the north-south. 

4.4.1.1 North-north Assignment 

 

As illustrated in Figure 5, items are allocated to the main storage aisles in a northerly 

direction; the assignment starts from the south end and moves to the north end of a 

storage aisle. 
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4.4.1.2 North-south Assignment 

 

As illustrated in Figure 6, items in the first aisle are assigned from south to north, but the 

next aisle is assigned in the southerly direction: from north to south. This pattern repeats 

for the remainder of the aisles. 

 

 

 

 

 

 

Figure 5: The north-north assignment direction 

Figure 6: The north-south assignment direction 
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4.4.2 The Nearest-location Storage Assignment Policy  

 

The nearest-location storage assignment policy ranks the items to be allocated in 

ascending order by the number of storage locations,   , required for each item. Items with 

the lowest    are assigned to the more accessible storage aisles closest to the depot, using 

demand as a tiebreaker when two or more items have the same space requirements. This 

type of sorting provides two distinct advantages: the first advantage is that the first aisles 

are stocked with the greatest number of items, as we sort first by    values; the second 

advantage is that the highest possible demand weight can be achieved in the first aisles, 

since the     values are considered secondly. Therefore, the order picker may only need 

to enter the first aisles closest to the depot, most of the time. The nearest-location storage 

policy introduced by Kubasad [13] accounts for the storage requirements only, and does 

not consider the demand of items. Therefore, the nearest-location storage policy of 

Kubasad [13] results in the first aisles closest to the depot being packed with a high 

number of items, but not necessarily carrying the highest weight of demand. Therefore, it 

becomes possible that, for example, the fourth or the fifth aisle has a greater demand 

weight than the first or the second aisles, meaning that the order picker will still need to 

travel to the furthest aisles, rather than only entering the first aisles closest to the depot. 

The items are allocated in order from the south end to the north end of a storage aisle, as 

shown earlier in Figure 5.  
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4.4.3 Random Storage Assignment Policy 

 

The random storage assignment policy arranges items randomly. The policy can be 

simulated by generating a uniform random value     , associated with each item, and 

sorting the items according to these random values in either ascending order or 

descending order. Items are allocated in order from the south end to the north end of a 

storage aisle, as shown earlier in Figure 5.  

4.4.4 Allocating Items into Warehouse Storage Aisles 

 

The three assignment policies differ only in the criteria for sorting a given group of items 

to be assigned, and the assignment direction in the   main double-sided storage aisles. 

Remember, assignment direction must be either always northerly, as is the case in north-

north full-turnover, nearest-location, and random storage assignment policies; or 

alternating northerly and southerly by aisle, as with the north-south full-turnover storage 

assignment policy; but they all share the same procedure for assigning the items within 

each aisle  .  

Each item is placed in an aisle according to its order in the sorted group of all items, 

determined by the storage assignment policy. The first item in the sorted group is placed 

first, followed by the second item, and so on for all items. For each aisle, beginning at the 

first aisle, the closest aisle to the depot, the left-hand side of the aisle is attempted to be 

filled first. If the item will not fit on the left-hand side, then the right-hand side is 

attempted to be filled. If the item will not fit on either side, it is stored in the next aisle 

with enough available storage locations.  
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Items must not be split up across multiple aisles, and must be stored contiguously. Also, 

each aisle must be filled to its capacity before moving on to the next aisle. This means if 

an item   is to be placed in aisle  , but the number of remaining empty storage locations 

in the aisle is not sufficient to place the item, the item is instead placed in the next aisle, 

   , and the remaining empty storage locations in aisle   will be filled with the next 

eligible item following item   in the sorted group.  Using this assignment technique, the 

highest utilization of the warehouse space is achieved.  

In order to make sure that a given group of items has been successfully allocated using 

one of the three assignment storage policies in a single-block warehouse with a given   

aisles, we first determine a rough estimate of the number of storage locations on each 

side of a main aisle,  , sufficient to successfully allocate a group of items with total 

storage requirements,   , using the equation: 

 
  

  
  

 4.2 

Then, based on the given assignment storage policy, we try to assign the group of items 

into the   aisles, and to determine whether the assignment of all items is successful or 

not, we verify whether the total demand of items allocated into the warehouse is equal to 

the total demand of all given items,  , or not, as follows: 

𝐴𝑠𝑠 𝑔  𝑒 𝑡  

{
 
 

 
 ∑     
  𝜖  

   𝑎   
∑       𝜖  

  
    𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

∑       𝜖  

  
   𝑈 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

 4.3 

  where     : represents the demand of item  , assigned to aisle  . 
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If the assignment performed based on the initial rough estimate of   is found to be 

unsuccessful, then the assignment is repeated again after increasing the initial value of  , 

until the successful assignment of all items is achieved. 

For an example of this item allocation procedure, given that there are a group of three 

sorted items with       ,      : the first with       ,     ; the second 

with      ,     ; and the third with      ,     ; all to be assigned in one 

double-sided storage aisle. The initial estimate of   is equal to   . As illustrated in 

Figure 7, the first item is assigned in the storage locations from 1 to 7 on the left side of 

the aisle. The second item, which is to be assigned next, cannot be fit in the remaining 

three storage locations on the left side. Therefore, it is assigned in the storage locations 

from 1 to 7 on the right side of the aisle. The third item is not assigned, because it cannot 

be fit on either sides of the aisle. It is apparent that this assignment is unsuccessful, and 

this is clearly diagnosed by 
∑          

  
      , which less than  . Accordingly, we 

increase the initial value of  , and the assignment is repeated. The new value of      

is used to assign the three items, as illustrated in Figure 8. The new assignment results in 

the first and the third items being allocated to the storage locations from 1 to 13 on the 

left side, and the second item being allocated to the storage locations from 1 to 7 on the 

right side. This assignment is obviously successful, and it can be seen that ∑       𝜖   

    and 
∑          

  
  . 
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4.4.5 Probability of Locating a Pick in a Particular Aisle  

 

This approach assumes the likelihood of a particular pick to be present in aisle   is 

proportional to the ratio of the demand of the items stocked in the aisle   to the total 

demand of all items assigned in the warehouse. Once the items are assigned to specific 

storage locations, it becomes possible to calculate the probability of a single pick being 

located in an aisle  . For example, if after assigning the items in the warehouse using 

one of the three storage assignment policies, aisle   happened to contain items such that 

the aisle’s demand accounts for    percent of the total demand of all items in the 

warehouse, then the probability of locating a random pick stocked in aisle    is equal to 

   percent.  The probabilities for all other aisles are obtained in a similar fashion. These 

probabilities can be represented by a probability mass function, denoted by   ( ) , and 

defined as follows: 

Figure 8: Successful assignment 

based on 𝑩  𝟏𝟑 

Figure 7: Unsuccessful assignment 

based on 𝑩  𝟏𝟎 



31 
 

 

  ( )  {

∑       𝜖  

  
  ≤  ≤  

  𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

 

 

4.4 

 ∑   ( )   

 

 = 

 4.5 

where     : represents the demand of item  , assigned to aisle  . 

The primary role of    ( ) is to quantify the impact of how the three storage assignment 

polices position the items within a given layout configuration on the estimated total 

expected travel distance. 

4.5 Travel Distance Estimation 

 

Two approaches are developed for estimating the total expected travel distance needed to 

complete a pick list of size   in a warehouse with a feasible   and  . The first approach 

is an analytical approach, in which the fully enumerated set of patterns is obtained by the 

pattern generator for a given pair of   and   values.  

The second approach is the Monte Carlo simulation approach. This simulation permits a 

probabilistic examination of the fully enumerated space of patterns, rather than 

considering every single pattern obtained by the pattern generator, which allows for 

examining relatively larger values of   and  . 
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For this study, the primary purpose of using the analytical approach is only to validate 

the Monte Carlo simulation approach. Therefore, the total expected travel distance values 

will be found using the Monte Carlo simulation approach. 

4.5.1 Analytical Approach 

 

 The execution of the analytical approach consists of two primary elements: the pattern 

generator and the pattern-based travel distance estimator. These two elements of the 

analytical approach are utilized together in order to execute an exhaustive check of all 

possible paths the order picker may follow within a given warehouse layout 

configuration to complete a pick list of size  , and return the total expected travel 

distance based on these potential paths and the size of the pick list.  

4.5.1.1 Pattern Generator 

 

A given pick list of size   must be distributed among the   main storage aisles; 

therefore, the idea of the pattern generator is implemented and adopted from Berglund 

and Batta [1]. 

The purpose of the pattern generator is to provide a fully enumerated set of all possible 

patterns in which a given pick list of size   might be distributed within a warehouse of 

  aisles. A specific pattern indicates the number of picks present in each aisle   among 

the   aisles of a feasible warehouse configuration from the set    in Equation 4.1 

(section 4.2.1). The summation of the number of these picks in each of the   aisles in 

every pattern is equal to  .  
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A fully enumerated set for a given pair of   and   that contains    patterns is denoted 

by     
 .  

As mentioned in Berglund and Batta [1], every pattern   is defined as follows: 

   {             } 4.6 

such that ∑     

 

 = 

 4.7 

where   : represents the number of picks existing in aisle  . 

Every pattern   has its own probability to occur denoted by    ( ), and it is calculated 

based on the probability mass function    ( ) obtained from the storage assignment 

policies according to Berglund and Batta [1], as follows: 

 

  ( )  ∏  ( )
𝐾 

 

 = 

 4.8 

such that ∑   ( )   

𝐾 ∈ 𝐾𝑁 𝑀
 

 4.9 

The fully enumerated set      
  for a pick list of   picks and a warehouse of   main aisles 

with   ( )      ,   ( )      , and   ( )      , is presented in Table 1; there are 

27 patterns that cover all possibilities of how the   picks might be distributed among the 

  aisles, along with their associated probabilities,    ( ). It is apparent from the table that 

the summation of all picks for every pattern among the    patterns is always equal to  , 

and the summation of all    ( ) values is 1. 
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Table 1: Set  𝑲𝟑 𝟑
 

 of Fully Enumerated Patterns for N=3, and M=3 

Pattern No. 
Pattern 𝑲 

∑𝑲𝒎  𝑵

𝑴

𝒎=𝟏

 𝐏𝐫 (𝑲) 
𝑲𝟏 𝑲𝟐 𝑲𝟑 

1 3 0 0 3 0.091125 

2 2 0 1 3 0.050625 

3 2 1 0 3 0.06075 

4 2 0 1 3 0.050625 

5 2 1 0 3 0.06075 

6 1 0 2 3 0.028125 

7 1 1 1 3 0.03375 

8 1 1 1 3 0.03375 

9 1 2 0 3 0.0405 

10 2 0 1 3 0.050625 

11 2 1 0 3 0.06075 

12 1 0 2 3 0.028125 

13 1 1 1 3 0.03375 

14 1 1 1 3 0.03375 

15 1 2 0 3 0.0405 

16 1 0 2 3 0.028125 

17 1 1 1 3 0.03375 

18 1 1 1 3 0.03375 

19 1 2 0 3 0.0405 

20 0 0 3 3 0.015625 

21 0 1 2 3 0.01875 

22 0 1 2 3 0.01875 

23 0 2 1 3 0.0225 

24 0 1 2 3 0.01875 

25 0 2 1 3 0.0225 

26 0 2 1 3 0.0225 

27 0 3 0 3 0.027 

Total  1 
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4.5.1.1.1 Repeated Patterns 

 

It is apparent from Table 1 that some of the listed patterns repeat several times within the 

fully enumerated set      
 , such as   {              }, displayed three times. 

The explanation for the repeated pattern is that the pattern only provides how many picks 

each aisle   may include, without referring to the location of individual in each aisle. 

Therefore, some patterns must be repeated in order to cover all possible combinations of 

the locations of the items. For example, assume there are three items  ,  , and  , and 

these items have to be distributed in a warehouse of   aisles according the pattern 

  {              }. The manner in which these items are distributed is that 

aisle   always includes   items, aisle   always includes   item, and aisle   is always 

empty. Three combinations of two items may be present in aisle  :   and  ;   and  ; or 

  and  .  The respective item found in aisle   for each combination is  ,  , and  . Each 

combination is represented by   {              }; therefore, this pattern is 

repeated three times. The pattern itself is used to represent a certain scenario of how   is 

distributed numerically among   aisles, while the repetitions of the pattern are used to 

represent all possible combinations of how potential items may arbitrarily be linked to 

those   picks located in the warehouse. 
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4.5.1.2 Routing Scenarios and Pattern-based Travel Distance 

Estimation 

 

The derivation of the pattern-based travel distance estimator stems from two exclusive 

and distinct routing scenarios which may result from any given pattern: the regular 

routing and the extra exiting distance scenarios. Both scenarios are explained in 4.5.1.2.1 

and 4.5.1.2.2: 

4.5.1.2.1 Regular Routing Scenario 

 

The regular routing scenario occurs when an order picker is able to complete his picking 

tour and return back to the depot without the need to enter any extra aisles.  In the case of 

the S-shape routing strategy, this means that when the last pick is made, the picker must 

be on the same cross aisle as the depot when he exits the picking aisle. 

An example of a regular routing scenario can be represented by   {        

                     }  from the set     
 , for the pair     and    .  

This example is illustrated in Figure 9, along with a detailed distance representation of 

each segment of the path followed. An order picker enters and traverses the aisles  ,  , 

and  , and finally enters aisle   from the rear end, traversing it and exiting into the front 

cross aisle, and returning to the depot. In this described picking path, the four traversed 

aisles account for a vertical travelled distance of  (      ) units, and the lateral 

displacement back and forth between the depot and the last aisle in the given pattern, 

which is aisle   in this case, accounts for a travelled distance of  (   )  units. Therefore 

the pattern-based travel distance is equal to  (      )   (   ). 
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The last aisle entered in this given pattern is also the last aisle on the warehouse layout, 

but it is not mandatory that both are the same every time. For some patterns, the last aisle 

to be entered according to the given   may be any other aisle prior to the last aisle on the 

warehouse layout.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Example picking tour for regular routing scenario 
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4.5.1.2.2 Extra Exiting Distance Scenario 

 

The extra exiting distance scenario occurs when it is necessary for an order picker to 

enter an extra aisle, adjacent to the last aisle in a given pattern, in order to invert his path 

direction to exit into the front cross aisle and return back to the depot. 

An example of an extra exiting scenario can be represented by   {        

                     } from the set     
 , for the pair     and    . This 

example is illustrated in Figure 10, along with a detailed distance presentation of each 

segment of the path followed.  An order picker enters aisles 2 and  , then enters aisle 6 

from the front.  After exiting aisle  , the order picker must enter the prior adjacent aisle, 

which is aisle   in this case, inverting his path direction and exiting to the front cross 

aisle, then returning back to the depot. In this described picking path, the four traversed 

aisles, including the extra aisle account for a vertical travelled distance of  (      ) 

units, and the lateral displacement back and forth between the depot and the last aisle in 

the given pattern, which is aisle   in this case, accounts for a lateral travelled distance of 

 (   ) units. Therefore the pattern-based travel distance is equal to  (      )  

 (   ). 
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4.5.1.2.3 Pattern-based Travel Distance Estimator 

 

Based on the previous two routing scenarios, the pattern-based travel distance estimator 

which intuitively provides the tour length based only on the values of    in a given 

pattern   is defined as: 

  ( )  (𝐶  𝐶 )(      )  𝐶 (   ) 4.10 

where the parameters 𝐶 , 𝐶  , and 𝐶  for a given pattern   are defined as: 

Figure 10: Example picking tour for extra exiting distance scenario 
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 𝐶 :  the total number of aisles for which     . The role of this parameter is to 

count the number of aisles that includes at least one pick;   

 𝐶 : a binary decision variable, defined as {
   𝑓 𝐶   𝑠 𝑎       𝑢  𝑒𝑟
   𝑓 𝐶   𝑠 𝑎  𝑒 𝑒   𝑢  𝑒𝑟

  The 

value of this parameter is determined according to the value of 𝐶 ; when 𝐶  is an 

odd number, the last aisle is entered from its front end and, therefore, an extra 

aisle is needed to reverse the path direction; accordingly, 𝐶  is set to  . When 𝐶  

is an even number, the last aisle is entered from its rear end; accordingly, 𝐶  is set 

to  ; 

 𝐶  : a value equal to    , where   is the number of the last aisle in the given 

pattern, such that            .The role of this parameter is to determine the 

farthest lateral point reached away from the depot. 

4.5.1.3 Estimating Total Expected Travel Distance Using the 

Analytical Approach 

 

Each pattern within the full set     
  leads to a specific picking tour, executed under the 

S-shape routing strategy with an associated probability    ( ). In other words, a given 

pattern is considered a blueprint or map, informing the order picker whether or not to 

enter the aisle   during the order picking tour. Given a general pattern   

{             };      implies that aisle   must be entered to perform one or more 

picks, and      implies that aisle   is not entered, except for the purpose of 

completing the order picking tour and returning back to the depot. 
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 Therefore, the total expected travel distance required to complete a pick list of size   in 

a warehouse with   aisles is obtained from the summation of the expected pattern-based 

travel distances for every pattern in the fully enumerated set     
 , where the expected 

pattern-based travel distance of a pattern is obtained by multiplying the probability of a 

pattern (Equation 4.8) by its travel distance (Equation 4.10). This gives: 

  (    
 )  ∑  ( ) ×    (K)

𝐾 ∈ 𝐾𝑁 𝑀
 

 4.11 

where: 

  (    
 ): the total expected travel distance for a given pair ( ,  ) using the 

analytical approach; 

  ( ): the pattern-based travel distance; 

    ( ): the probability of pattern   to occur. 

4.5.2 Monte Carlo Simulation Approach  

 

In this section, the Monte Carlo simulation approach is presented through four main 

aspects; the need of the simulation approach due to the limitations of the analytical 

approach, the concept of generating random patterns, the estimation of the total expected 

travel distance using the simulation approach, and finally the validation of the Monte 

Carlo simulation approach.    
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4.5.2.1 Limitations of Analytical approach 

 

The analytical approach is theoretically designed to investigate all patterns obtained from 

any given pair of   and  , regardless of the size of the fully enumerated set     
 . 

However, due to practical computational limitations, the analytical approach requires a 

very long processing time to evaluate excessively large or even moderate sizes of     
 . 

The use of large   and   values makes the analytical approach impractical due to the 

excessively large sets of patterns that result. 

Table 2 presents the size of the fully enumerated sets     
  for pick lists of size   

         and   , along with different warehouse layouts of          and   . It is 

clear from the table that a rapid increase in the size of     
  occurs as M and/or N 

increase, due to the exponential-factorial effect. Even with the moderate case of a pick 

list of    picks and a warehouse with      main storage aisles, there are over 

 ×     possible patterns to be evaluated. Therefore, the analytical approach is 

practically limited to investigating   and   values producing reasonably- and 

practically-sized fully enumerated sets, which may be around       million patterns.  
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Table 2: Size of  𝑲𝑵 𝑴
 

 for Various N and M 

Pick list size 

Number of Storage Aisles 

𝑴  𝟏𝟎 𝑴  𝟐𝟎 𝑴  𝟑𝟎 

𝑵  𝟔  ×       ×        ×     

𝑵  𝟏𝟐  ×          ×            ×      

𝑵  𝟑𝟎  ×    0        8  ×    0    8      ×      

𝑵  𝟓𝟎  ×    0     8     ×         8   8  ×      

 

4.5.2.2 Generating Random Patterns 

 

A Monte Carlo simulation approach is developed to overcome the limitations of the 

analytical approach. The idea behind this simulation approach is to substitute the role of 

the pattern generator with a process which randomly generates a predetermined number 

of runs  , where each run represents a random pattern. This random set of runs is 

determined, instead of generating the fully enumerated set     
  for a given  , and   that 

may consist of billions of patterns. 
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For the purpose of generating random patterns, the following function and variables are 

defined: 

 Cumulative distribution function of the probability mass function   ( ): 

 

𝑃 ( )  

{
 
 

 
 
∑   ( ) 

 

 = 

  ≤    

                            
                     𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

 4.12 

  : the total number of random patterns (runs); 

 𝑟 : a random number associated with pick   among   picks. 

The process of generating a random pattern based on a given pick list of size  , and a 

warehouse with   aisles, starts with assigning a random number, 𝑟 , between   and  , to 

each of the   picks. Next, an aisle   is selected to contain each of these picks, by finding 

the first aisle among the   aisles that happens to have a cumulative value of   ( ) at 

least equal to the random value 𝑟  associated with the pick  𝑃 ( )  𝑟 . This process is 

repeated until the   runs are generated. The flow chart in Figure 11 below shows the 

steps in the process of generating   random patterns.  
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Start

Enter the pick list size (N)

Enter the total number of 
storage aisles (M)

Enter the number of 
random runs (R)

Pick number (n) =1 

Aisle number (m)=1

n ≤ N Yes

Run number(Rn) ≤  Total 
Number of runs (R) 

Yes

End

No

Generate random number (rn)

m ≤ M

Random 
number(rn)≤ PM(m)

Yes

Pick number (n)
in aisle number(m)

No

Locate pick number (n) in 
aisle number (m)

Increment pick number (n) by 
1

Yes

Increment aisle
number (m) by 1

No

Run number (Rn)=1

Increment run number (Rn) 
by 1 

No

 

Figure 11: Flow chart for generating R random patterns using Monte Carlo simulation approach 
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A randomly generated set for a given pair of   and   containing   patterns is denoted 

by      
 . Each pattern    is defined as follows: 

    {             } 4.13 

such that ∑      

 

 = 

 4.14 

where    : the number of picks present in aisle  . 

For an example of how a random pattern might be generated, assume that after assigning 

a given group of items into a warehouse with    , the obtained discrete probabilities 

of a single pick are    ( )      ,   ( )      , and   ( )      . The cumulative 

distribution would be 𝑃 ( )      , 𝑃 ( )      , and 𝑃 ( )   . We are interested in 

generating a random pattern for a pick list of 3 picks in that warehouse, given that the 

randomly generated numbers 𝑟      , 𝑟      , and 𝑟    8  are associated with the 

first, second, and the third picks, respectively. The first pick would be located in the first 

aisle, as (𝑃 ( )     )  (𝑟     ). Similarly, the second pick would be located in the 

first aisle, as (𝑃 ( )     )  (𝑟     ). The third pick would be located in the third 

aisle, as (𝑃 ( )   )  (𝑟   8 ). The resultant random pattern would be defined 

as    {                 }. 
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4.5.2.3 Estimating Total Expected Travel Distance Using 

Simulation 

 

After generating a random set      
 , the expected total travel distance required to 

complete a pick list of size   from a warehouse with   aisles is obtained by averaging 

the summation of the travel distances of every random pattern in      
 , using the 

following function: 

 
 (     

 )  
∑  (  )𝐾𝑆 ∈ 𝐾𝑆𝑁 𝑀

𝑅

 
 4.15 

where: 

  (     
 ): the total expected travel distance for a given pair ( ,  ) using the 

simulation approach; 

  (  ): the travel distance corresponding to pattern   , obtained by the pattern-

based travel distance function given in Equation 4.10.  

4.5.2.4 Validation of Monte Carlo Simulation Approach 

 

 The set       
   always has a large number of randomly generated patterns  . According 

to the central limit theorem, a hypothesis test is conducted to validate the Monte Carlo 

simulation approach.   

The analytical approach is utilized to validate the simulation approach by executing a 

two-sided hypothesis test at a 99 percent confidence level for the expected total travel 
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distance values for given pairs of  , and  , obtained by both approaches. The test is 

described as follows: 

 Hypotheses on the expected total travel distance: 

 H0  (     
 )   (    

 ) 

 H   (     
 ) ≠  (    

 )  

4.16 

 Test statistic: 

 
 0  

 (     
 )   (    

 )

 𝐸( 𝑆𝑁 𝑀𝑅 )/√ 
    4.17 

where  𝐸( 𝑆𝑁 𝑀𝑅 )  
√
∑ ( (  )   (     

 )) 𝐾𝑆 ∈  𝐾𝑆𝑁 𝑀
𝑅  

   
 

   4.18 

 𝐸( 𝑆𝑁 𝑀𝑅 ) is an estimate of the standard deviation of  (  ) values, implied by the 

random patterns in      
  for a given pair of   and  . 

 Decision criterion for rejecting the null hypothesis: 

 𝑃- 𝑎𝑙𝑢𝑒( 0)       4.19 
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Chapter 5     

 

Implementation 

 

In this chapter, 600 items and six feasible layout alternatives have been chosen for 

implementing the methodology, and for performing the desired numerical analysis in 

such a way that the combined effects of the three storage assignment policies and the 

warehouse shape on the efficiency of order picking in terms of the travel distance, as well 

as the performance of each of the three storage polices under consideration, can be 

thoroughly analyzed.   

5.1 Items  

 

The developed methodology is implemented by considering a group of 600 items with 

           items per unit time and         storage locations. A sample of these 

items along with their attributes is presented in Table 3. 

Table 3: Sample of Items Data 

Item No. 𝑫𝒊 𝑺𝒊 𝑫𝑺𝑹𝒊 𝑹𝒊 

1 3357 2 1678.5 0.952524 

2 2136 2 1068 0.560937 

3 3164 1 3164 0.658153 

4 843 2 421.5 0.179097 

5 1463 4 365.75 0.321327 

6 1504 4 376 0.210995 

7 3503 5 700.6 0.692759 

8 3552 4 888 0.977731 

9 1683 3 561 0.206321 

10 3684 5 736.8 0.24869 
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5.2 Warehouse Layout Alternatives 

 

Six different feasible warehouse layout structure alternatives represented by    

{(           ) (           ) (           )    (   8       )   

(          8) (          8)}  are selected to be investigated with the 

three storage assignment policies. All six layout structures share the same dimensional 

parameters of       m,      8 m, and      8 m. A scaled layout representation 

showing the dimensional differences between the six warehouse layout alternatives is 

depicted in Figure 12. 

 

 

 

 

 

 

 

 

 

 

Figure 12: A scaled layout representation of the six layout alternatives in D* 
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5.3 Python Code 

 

The software code for this thesis is developed in the Python language, in order to 

facilitate efficient implementation, and to obtain full sets of results for a wide range of 

scenarios and situations. The Python code is presented in its entirety in Appendix B.  The 

code is explained in the following six sections.     

5.3.1 Input Parameters and Item’s Data 

 

The Python code starts with the function enter_params, which is used to allow the user 

to specify the layout and dimensional parameters of the warehouse including  ,  ,   , 

  , and   . Also, this function allows the user to enter the maximum size of the pick 

list   to be investigated using both the analytical approach and the Monte Carlo 

simulation approach, in addition to the number of random runs,  , to be provided by the 

simulation approach. The function interactive is used at this stage to extract the items 

and their attributes from the sample_data.csv file, and then it generates multiple data 

sets, one for each assignment storage policy. 

5.3.2 Item Allocation 

 

After getting all necessary parameters, variables, and extracting all items and their 

attributes, Aisle and Item classes are used to track and control both the items and the 

aisles during the execution of the item allocation within the warehouse using any of the 

three assignment storage policies. The Aisle class is used to control and track the position 

and the number of assigned items within the aisles indicated by the number of storage 
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locations in which each assigned item is located. Also, the Aisle class is used to track and 

update the current capacity of each side of every main storage aisle in the layout. The 

Item class is used to keep track of individual item attributes including the name, the 

demand, the storage requirements, and its location within the warehouse. Also, the Item 

class is used to facilitate the sorting of the items, as required by the storage assignment 

policies. The function Layout in cooperation with the Aisle class are used to create a 

series of double-sided storage aisles with a number of storage locations in them, based on 

the parameters   and   provided by the function enter_param, which is called from the 

assign function and does not need to be called from the user’s code. The function 

expected_values, in cooperation with the Item class, is used to sort a given group of 

items according to the specific criteria of one of the three assignment storage policies. 

Based on the classes, Aisle and Item, and in addition to the functions Layout and 

expected_values, the function Assign is used to assign the items within a given 

warehouse layout, and to return the probability values   ( ). The function Assign 

includes four sub-functions: one for each of the assignment storage polices. The four 

functions are named assign_FullTurnOverNN, assign_FullTurnOverNS, 

assign_NearestLocation, and assign_Random, which only differ in the final sorting of 

the given items provided by the function expected_values. 

5.3.3 Travel Distance Estimation Using the Analytical Approach 

 

The function possibilities is used to generate the fully enumerated set of all possible 

patterns     
 , along with the probabilities    ( ) associated with the generated  pattern, 

based on the given values of  ,  , and the values of   ( ) provided by the function 

Assign for each of the three assignment storage policies. 
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The function distance is used to calculate the pattern-based travel distance for every 

pattern in the fully enumerated set obtained by the function possibilities. This function is 

represented in Equation 4.10, and takes into account the values  ,   ,   , and   . The 

function total_distance is used to calculate the total expected travel distance for a given 

pair of N and M based on the distances provided by the function distance, and the 

probabilities    ( ) provided by the function possibilities. The function total_distance is 

represented in Equation 4.11. 

5.3.4 Travel Distance Estimation Using the Simulation Approach 

 

The function Monte_carlo is used to perform a series of a predetermined number of 

random runs,  . The outcome of every single run represents a random pattern. Then, 

using the function distance, the pattern-based travel distance associated with each of the 

random patterns is obtained. The function Monte_carlo is used to calculate the total 

expected travel distance by averaging all the distances obtained the function distance.    

5.3.4.1 Validation of the Simulation Approach 

 

The function confidence is used to validate the Monte Carlo simulation approach based 

on the values obtained by the analytical approach. This function is responsible for 

obtaining the mean and standard deviation for a given number of   runs, and then 

performing a two-sided hypothesis test at a specific confidence level; it returns the test’s 

associated P-values.   
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5.3.5 Outcomes and Results 

 

Finally, all of the obtained outcomes for each of the assignment storage policies are 

provided using the function interactive in form of csv files. The outcomes include the 

locations of the assigned items within the warehouse, the   ( ) values, the analytical 

results, and the simulation results along with their validation results. 

5.3.6 Computational Time  

 

The CPU times (seconds) on a 2.5Ghz Intel i5 processor with 6GB RAM required for 

estimating the total expected travel distances under each of the three assignment storage 

policies using either the analytical or the simulation approach for selected values of   

and   are presented in Table 4. 

Table 4: Sample of CPU Times (seconds) for selected pairs of N, and M 

 Analytical Simulation 

N 𝑴  𝟏𝟓,𝑩  𝟔𝟎 𝑴  𝟑𝟎,𝑩  𝟑𝟏 𝑴  𝟏𝟓,𝑩  𝟔𝟎 𝑴  𝟑𝟎,𝑩  𝟑𝟏 

1 <1.00 <1.00 <1.00 <1.00 

2 <1.00 <1.00 <1.00 <1.00 

3 <1.00 1.21 <1.00 <1.00 

4 1.311 39.88 <1.00 10.41 

5 21.60 1300.56 8.72 11.58 

6 365.82 - 9.73 12.77 

7 5487.35 - 11.91 16.17 

8 - - 12.91 17.41 

20 - - 25.39 34.36 

50 - - 54.74 76.33 

90 - - 81.37 126.69 
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5.4 Item Allocation 

 

The same 600 items are allocated into each warehouse layout alternative in the set    by 

implementing all three storage assignment policies, for the purpose of estimating the 

probability of a single pick’s presence in aisle m, represented as   ( ). The values of 

the probability mass function   ( ) obtained under the full-turnover policies, including 

its two distinct assignment directions, north-north and north-south; nearest-location; and 

random storage assignment policies for every aisle   in each layout alternative in    are 

presented in Figure 13. 
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Figure 13 indicates that the full-turnover storage assignment policy results in a declining 

trend of    ( ) values, such that   ( ) is the largest and   ( ) is the smallest, which 

implies that, under the full-turnover policy, the probability of finding a single pick is 

highest in the first aisle and decreases aisle by aisle. This is explained by the manner in 

which the full-turnover policy sorts the items according to their demand to size ratio; 

Figure 13: 𝐩𝐌(𝐦) values of the three storage policies for the six layouts 
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    . Accordingly, the aisles closest to the depot usually contain the items with the 

highest demand. Also, it is important to mention that both north-north and north-south 

assignment directions of the full-turnover policy produce exact   ( ) values. This 

happens because the items allocated in each main storage aisle will be same for north-

north and north-south assignment directions, although their storage locations within the 

main aisle will be different. 

The nearest-location storage assignment policy results in   ( ) values which exhibit 

cyclic, peak-valley behavior along the   aisles. The reason for this behavior is because 

the nearest-product policy incrementally sorts the items according to their storage 

requirements;   .  In other words, items are split into multiple groups based on   , so the 

items in each group share the same   , and then the items in each group are sorted 

according to their demand. Therefore, each of the sorted groups features a peak    ( ) 

value caused by the items with the highest demand in the group, followed by a valley 

   ( ) value caused by the item with lowest demand. 

The random storage assignment policy results in almost leveled   ( ) values among the 

warehouse’s   aisles. This is explained by the random manner in which all items are 

allocated into the aisles with no preference of one over another, regardless of their 

demand and storage requirements.  

The data in Figure 13 suggests that    ( ) values obtained by the nearest-location 

policy approach the ones obtained by the full-turnover policy as the number of storage 

aisles decreases and the number of storage locations in each of these aisles increases 

simultaneously. In other words, the impact of the nearest-location policy approaches the 
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impact of full-turnover as the density of the allocated items per storage aisle significantly 

increases. The   ( ) values obtained by the random storage policy get more balanced 

as the density of picks significantly increases in  . 

5.5 Validation of the Monte Carlo Simulation Approach 

 

The Monte Carlo simulation approach is validated against the analytical approach. Two-

sided hypothesis tests are performed to determine whether or not the total expected travel 

distance,  (    
 ), and  (     

 ) values obtained by both approaches, are similar at a 

   percent confidence level. Therefore, limited and practical ranges of   values among 

all six warehouse layout alternatives in    are considered to obtain the  (    
 ), and 

 (     
 ) values. 

The results of the simulation approach validation based on the total expected travel 

distance values required to complete pick lists of sizes            from the final 

layout in    with     , and      8 are presented in Table 5. The results clearly 

suggest a conclusion that the values of both approaches are similar at a    percent 

confidence level, as all p-values are larger than the significance level of      percent. 

Also, the test indicates that the maximum absolute difference between the values 

resulting from the two approaches does not exceed        . 
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Table 5: Validation Results Based on Final Layout,  𝑴𝒇 = 5 and 𝑩𝒇 = 178 

N 

Full-turnover (NN & NS) The Nearest-location Random 
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%
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1 

341.845 341.843 0.00043 0.86 348.731 348.731 0.00012 0.96 362.281 362.278 0.00077 0.78 

2 

355.585 355.603 0.00526 0.03 365.125 365.130 0.00143 0.57 379.886 379.886 0.00003 0.99 

3 

461.689 461.701 0.00261 0.80 495.775 495.728 0.00945 0.35 530.609 530.582 0.00517 0.58 

4 

539.268 539.279 0.00199 0.83 581.854 581.824 0.00514 0.54 621.011 620.950 0.00974 0.15 

5 

592.559 592.547 0.00203 0.80 637.400 637.401 0.00009 0.99 675.515 675.571 0.00824 0.12 

6 

630.670 630.581 0.01416 0.04 678.220 678.156 0.00947 0.12 717.552 717.483 0.00955 0.07 

7 

659.518 659.500 0.00276 0.66 711.671 711.707 0.00512 0.39 755.703 755.658 0.00603 0.28 

8 

682.616 682.594 0.00319 0.59 741.245 741.223 0.00293 0.62 791.498 791.502 0.00051 0.93 

9 

702.035 702.057 0.00315 0.59 768.012 767.930 0.01061 0.08 824.409 824.412 0.00027 0.96 

10 

719.002 719.047 0.00622 0.29 792.333 792.290 0.00537 0.38 853.773 853.763 0.00117 0.83 

11 

734.247 734.226 0.00284 0.63 814.449 814.489 0.00493 0.41 879.286 879.302 0.00172 0.75 

 

In similar manner, the simulation approach is validated based on the other five feasible 

layout alternatives in   . The validation results, obtained for each of the five layout 

alternatives, show that both approaches provide similar values at a 99 percent confidence 

level. The complete analysis of the five feasible layouts is presented in Appendix A. 
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5.6 Analysis of the Estimated Total Expected Travel Distance  

 

The Monte Carlo simulation approach is utilized to estimate the total expected travel 

distance  (     
 ) required to pick all items on pick lists of sizes          from 

each set of layout parameters   and   in   , with the assumption that the S-shape 

routing policy is to be used.  

5.6.1 Effects of Storage Assignment Policies and Pick list Size  

 

The total expected travel distances versus the pick list size under each of the full-turnover 

policies, including the north-north and north-south assignment directions; nearest-

location; and random storage policies for the layouts (           ), (   

        ), (           ), (   8        ), (          8), and 

(          8) are presented in Figure 14. 
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By comparing the total expected travel distance values from all six layouts using the 

three different policies, as illustrated in Figure 14, the effects of the three storage 

assignment policies can be determined. The full-turnover policy, in which its two distinct 

assignment directions, north-north and north-south, have similar outcomes, results in the 

lowest total expected travel distances. This is due to the declining trend of the   ( ) 

Figure 14: 𝐄(𝐃𝐒𝐍 𝐌
𝐑 ) values of the three storage policies for the six layouts 
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values obtained by the full-turnover policy.  In other words, the order picker is more 

likely to enter the first few aisles, which are the closest to the depot and have the highest 

  ( ) values, rather than entering all   aisles, including other aisles with lower    ( ) 

values, to retrieve the   picks.  

The nearest-location policy results in moderate total expected travel distances, compared 

to the full-turnover and the random policies. This is caused by the cyclic behavior of 

   ( ) values among the aisles, which means that the order picker is more likely to 

enter aisles with a peak    ( ) value than the other   aisles, including aisles with 

valley   ( ) values, to retrieve the   picks. Also, in this case, the number of aisles to 

be entered is always higher than those in the full-turnover policy, which is why the full-

turnover policy generally results in shorter total expected travel distances than the 

nearest-product policy.  

The random storage policy results in the largest total expected travel distances among the 

three storage policies. This is due to relatively even   ( ) values, meaning an order 

picker is likely to enter more of the   aisles to retrieve the   picks, when compared to 

the previous storage policies.   

The results also clearly indicate that the total expected travel distance values obtained by 

a policy generally approach the values of the other policies as the size of the pick list 

increases. A larger pick list size results in a higher density of picks per storage aisle, 

which eventually necessitates the order picker to enter most of the   aisles, regardless of 

the storage policy applied.  

 



63 
 

5.6.2 Effect of Warehouse Shape 

 

For the purpose of magnifying and maintaining the effect of the warehouse’s shape, the 

pick list size of range          is divided into eight ranges of picks:         , 

         ,           ,           ,           ,           , 

           ,and            . 

The  (     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values obtained for each of the eight   ranges under the three storage 

assignment policies for each of the six feasible warehouse layout alternatives in    are 

presented in Figure 15. 
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Figure 15:  𝐄(𝐃𝐒𝐍 𝐌
𝐑 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   values of the three storage policies for the eight ranges of N 
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Figure 15 illustrates the fact that the  (     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values for the eight ranges of   under 

each of the three storage policies exhibit a concave up behavior over the six feasible 

layouts in   , in sequence from the initial layout to the final layout.   

For instance, the pick list size ranges,           ,           , and    

       , can be used to explain how the variations in the warehouse shape result in the 

concave up behavior of the  (     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values. A comparison of the graphs in Figure 15 

indicates that the averaged total expected travel distance gradually decreases over the 

initial, second, third, fourth and fifth layouts. This decrease is caused by the reduction in 

the number of storage aisles in each of the five layouts the order picker may have 

traversed to complete a given number of picks. Although this reduction is coupled with a 

simultaneous increase in the number of storage locations in each of these aisles, resulting 

in an extension of the length of each aisle, in the case of these five layout alternatives, the 

reduction in travel distance due to decreasing the number of   aisles overcomes the 

simultaneous increase in travel distance due to extending the length of the vertical aisles, 

eventually leading to an overall reduction in the averaged total expected travel distance. 

The described reduction behaviour no longer occurs in the final layout alternative. This is 

because the reduction in the travel distance due to reducing the number of total storage 

aisles is no longer sufficient to overcome the increase in travel distance caused by 

increasing the depth of the aisles. The result is a rapid increase in the averaged total 

expected travel distance. For the exact same reasons, the concave up behavior is repeated 

for the ranges         ,          ,           ,           , and    

       , in which the reduction behavior no longer occurs after the second and the third 

layouts for   ,   ,   , and   ,   , respectively. 
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Figure 15 also indicates that, under the full-turnover storage policy, the second layout 

alternative with             achieves the local minimum averaged total expected 

travel distances of     m,   8 m and     m, for the pick list sizes of ranges    

     ,          , and           , respectively; the third layout alternative with 

            achieves the local minimum averaged total expected travel distances 

of     m, and 8   m for the pick list sizes of ranges,           , and    

       , respectively; and the fifth layout alternative with           8  achieves 

the local minimum averaged total expected travel distances of 8   m, 8   m, and 8   m 

for the pick list sizes of ranges           ,           , and           ,  

respectively.  
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5.6.3 Performance Differences of the Storage Assignment Policies 

 

The percentage differences in the performances of the three policies for the eight pick list 

size ranges in the six warehouse layout alternatives are presented in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Percentage difference in performance of the three storage policies 
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Based on Figure 16, it can be seen that the difference in performance between the three 

storage assignment policies decreases gradually over the eight pick list size ranges, 

beginning with           , and ending with           , and this is explained by 

the fact that the density of picks per aisle m increases as the pick list size increases. This 

means that the order picker will enter more aisles to perform the required picks, 

regardless of the storage assignment policy applied in allocating the items. The largest  

difference in performance between the full-turnover and the random storage policies 

starts at about       with         , and ends at about       with           ; 

the largest  difference in performance between the full-turnover and the nearest-location 

policies starts at about       with         , and ends at about      with    

       ; and the largest difference in performance between the nearest-location and the 

random storage policies starts at about       with         , and ends at about      

with           . The smallest difference in performance between the full-turnover 

and the random storage policies starts at about    8  with         , and ends at 

about      with             the smallest difference in performance between the 

full-turnover and the nearest-location policies starts at about      with         , and 

ends at about      with           ; and the smallest difference in performance 

between the nearest-location and the random storage policies starts at about   8  with 

        , and ends at about      with           . 

 

 



69 
 

5.7 Special Case: Pick List Sizes Follow an Exponential 

Distribution 

 

In the case when all pick list sizes of the range             are equally weighted, this 

means that the   ( ) values are identical for all pick list sizes. Therefore,  ( ) is 

defined according to a discrete uniform probability distribution defined as follows:  

 

 ( )  {
 

8 
  ≤  ≤   

  𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒
 5.1 

 

In some practical real-life situations, it might happen that the pick list sizes are 

exponentially distributed with a given mean,  , which means that the relative weights of 

the pick lists of sizes            are no longer identical. In fact, in this case, the 

relative weights of every pick list of size N are determined by an exponential probability 

density function. Therefore,  ( ) is defined as follows: 

 

 ( )  {

 

 
𝑒
− 
𝛽   ≤  

  𝑂𝑡ℎ𝑒𝑟𝑤 𝑠𝑒

 5.2 
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Accordingly, the averaged values of the total expected travel distances,  (     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

obtained for each of the three storage assignment policies for pick lists of sizes   

       are calculated as follows: 

 

 (     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ∑  (     

 ) ×  ( )

 =90

 = 

 
5.3 

where: 

  (     
 ): the total expected travel distance required to pick all items from a pick 

list of size   in a warehouse layout with   aisles, obtained through the use of the 

Monte Carlo simulation approach; 

  ( ): probability that the pick list has a particular size  , which is chosen to be 

either equally weighted or exponentially distributed according to the functions 

given in Equations 5.1 and 5.2, respectively. 

Represented in Figure 17 are two cases in which the pick list sizes are exponentially 

distributed; the first case assumes a mean pick list size of    picks (i.e.,     ), while 

the second case assumes a mean of    picks (i.e.,     ). These two cases are graphed 

with equally distributed pick list sizes, relative to the probability of   for the full range 

of pick list sizes. 
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Considering the fifth layout in    with           8, the averaged values of the 

total expected travel distances,  (     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, obtained under the three storage assignment 

policies for completing a pick list of sizes         , with  ( ) values based on 

exponential distributions with       and      , in addition to the equally weighted 

 ( ) are presented in Figure 18. 

 

 

 

 

Figure 17: Probability of pick-list of sizes 𝑵  𝟐   𝟗𝟎 based on exponential and uniform distributions 
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It is apparent from Figure 18 that the   (     
 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ values are influenced by the relative 

weight of the pick list sizes in a given warehouse. Accordingly, warehouse professionals 

must pay attention to two primary aspects: the average size of the pick list, and the 

manner in which the relative probabilities (i.e., weights) of pick list sizes are distributed. 

  

 

  (𝑫𝑺𝑵 𝑴
𝑹 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  m 

 

Figure 18: Averaged 𝐄(𝐃𝐒𝐍 𝐌
𝐑 ) values of the three storage policies for the fifth layout based on exponential 

and uniform distributions 
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Chapter 6     

 

Conclusions and Further Research 

 

We have presented a new methodology consisting of two primary approaches, the 

analytical approach and the Monte Carlo simulation approach, for estimating the total 

expected travel distance of a picking tour in a single-block, open-ended, picker-to-parts 

warehouse. Through the use of these approaches, we evaluated the combined effects of 

three storage assignment policies and the warehouse layout configuration, in terms of the 

depth and the number of storage aisles. In doing so, we were able to determine the 

optimal combination of the storage policy and the warehouse layout which achieves the 

local minimum travel distance among all feasible combinations. Also, we compared the 

performance of the full-turnover, the nearest-location and the random storage policies for 

many warehouse layout configurations. This can be considered a contribution in the area 

of improving the efficiency of order picking in picker-to-parts warehouses, and more 

specifically, in implementing and evaluating the full-turnover storage assignment policy, 

because the literature regarding the full-turnover storage policy in the context of order 

picking travel distance is limited to the work performed by Caron et al. [2], [3], in which 

he only compared the performance of the full-turnover policy to the performance of the 

random storage policy in double-block, picker-to-parts warehouses. In addition, he 

developed an analytical model for optimizing the number of storage aisles in double-

block warehouses, considering the full-turnover storage policy.  
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Our experimental evidence shows that the order picking travel distance is strongly 

influenced by each item’s attributes, including their demand and storage requirements, 

pick list size, warehouse layout in terms of the number and depth of its storage aisles, and 

the storage policy used to allocate the items within the warehouse. 

The results obtained from applying all three storage policies in various feasible 

warehouse layout alternatives indicate that the full-turnover policy, including its two 

assignment directions, the north-north and the north-south, always outperforms both the 

nearest-location and the random storage policies, while the nearest-location policy 

always outperforms the random policy. Accordingly, the random policy always results in 

the highest order picking travel distances. Based on our experiments based on a group of 

600 items allocated into six different feasible warehouse layout alternatives, we 

concluded that the largest difference in performance between the full-turnover and 

random storage policies is about           , the largest difference in performance 

between the nearest-product and random storage policies is about          , and the 

largest difference in performance between the nearest-location and random storage 

policies is about          . 

We found that the layout shape significantly affects the order picking travel distance. 

Under all three storage policies, a reduction in the travel distance occurred as a result of 

decreasing the number of storage aisles the order picker may need to enter, until the 

instance that the extra travel distance due to the corresponding extension in the depth of 

the aisles, as needed to maintain the desired storage capacity of the warehouse, exceeded 

the travel distance reduction due to lowering the number of storage aisles. 
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6.1 Directions for Further Research 

 

Future research to extend this study could involve evaluating the impact of various 

routing policies including the return, mid-point, and largest gap policies.  Also, a future 

study could compare the current three storage policies to other policies, including the 

class-based and the volume-based storage assignment policies. Another important 

extension to this study would be to evaluate the impact of adding one or more middle 

cross aisles to the current layout structure on the order picking travel distance. 
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Appendix A:   Validation of Monte Carlo Simulation 

 

The results of the simulation approach validation based on the initial layout of    

  ,      , and        ; the second layout of      ,      , and        ; 

the third layout of      ,       , and        ; the fourth layout of    8, 

      , and       8; and the fifth layout of      ,      8, and        ; 

are presented in Tables 6-10, respectively. The results clearly suggest the conclusion that 

the values of both approaches are similar at a    percent confidence level, as all p-values 

are larger than the significance level of     . Also, the tests indicate that the maximum 

difference between the values resulting from the two approaches does not exceed 

    8    percent. 

 

Table 6: Validation Results Based on Initial Layout, 𝑴𝟏= 30 and 𝑩𝟏 = 31 
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1 

261.923 261.876 0.01795 0.33 309.734 309.792 0.01862 0.33 385.388 385.401 0.00361 0.81 

2 

347.977 348.035 0.01674 0.22 416.070 416.099 0.00695 0.60 488.810 488.863 0.01071 0.26 

3 

450.658 450.680 0.00472 0.65 529.963 529.921 0.00794 0.42 595.552 595.557 0.00097 0.88 

4 

493.569 493.555 0.00295 0.72 577.839 577.825 0.00249 0.75 632.565 632.518 0.00756 0.14 

5 

554.331 554.262 0.01232 0.10 643.708 643.798 0.01394 0.04 696.022 696.067 0.00648 0.14 
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Table 7: Validation Results Based on Second Layout, 𝑴𝟐 = 15 and 𝑩𝟐 = 60 

N 

Full-turnover (NN & NS) The Nearest-location Random 
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217.088 217.015 0.00333 0.39 237.165 237.127 0.01623 0.18 282.523 282.509 0.00515 0.62 

2 

261.114 261.128 0.00541 0.56 288.776 288.829 0.01851 0.05 335.936 335.947 0.00344 0.63 

3 

364.193 364.223 0.00823 0.34 398.110 398.120 0.00254 0.75 449.134 449.151 0.00369 0.52 

4 

404.640 404.647 0.00170 0.79 438.962 438.978 0.00377 0.51 482.608 482.591 0.00345 0.36 

5 

457.401 457.387 0.00307 0.64 495.684 495.695 0.00222 0.71 546.308 546.330 0.00398 0.37 

6 

500.023 499.976 0.00940 0.11 539.394 539.423 0.00547 0.29 588.280 588.273 0.00122 0.73 

 

Table 8: Validation Results Based on Third Layout, 𝑴𝟑 = 10 and 𝑩𝟑 = 90 

N 

Full-turnover (NN & NS) The Nearest-location Random 
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232.733 232.738 0.00234 0.74 246.184 246.157 0.01074 0.17 274.315 274.325 0.00360 0.62 

2 

261.658 261.646 0.00435 0.49 280.489 280.484 0.00181 0.78 310.224 310.217 0.00247 0.64 

3 

371.991 371.997 0.00145 0.87 399.286 399.346 0.01510 0.07 440.010 440.003 0.00162 0.80 

4 

422.933 422.937 0.00098 0.88 449.844 449.820 0.00538 0.34 484.581 484.573 0.00169 0.65 

5 

471.339 471.344 0.00098 0.88 503.344 503.374 0.00586 0.33 546.345 546.318 0.00495 0.33 

6 

515.638 515.593 0.00872 0.17 551.604 551.577 0.00502 0.39 600.040 600.031 0.00159 0.73 

7 

554.022 554.036 0.00261 0.67 592.678 592.695 0.00288 0.60 644.120 644.106 0.00203 0.63 
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Table 9: Validation Results Based on Fourth Layout, 𝑴𝟒 = 8 and 𝑩𝟒 = 112 

N 

Full-turnover (NN & NS) The Nearest-location Random 
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255.276 255.275 0.00050 0.92 265.940 265.927 0.00501 0.39 284.639 284.643 0.00129 0.82 

2 

278.214 278.206 0.00287 0.54 293.358 293.377 0.00664 0.19 313.137 313.106 0.00990 0.02 

3 

391.441 391.469 0.00709 0.46 416.714 416.673 0.00980 0.27 452.181 452.202 0.00471 0.53 

4 

451.289 451.299 0.00239 0.73 476.645 476.610 0.00724 0.25 508.457 508.425 0.00638 0.16 

5 

498.555 498.563 0.00148 0.82 528.004 528.001 0.00053 0.93 566.803 566.786 0.00293 0.58 

6 

540.794 540.765 0.00528 0.42 575.271 575.209 0.01080 0.08 623.139 623.144 0.00079 0.88 

7 

578.269 578.244 0.00429 0.51 616.734 616.674 0.00966 0.11 670.447 670.454 0.00108 0.83 

8 

610.923 610.946 0.00385 0.54 652.274 652.268 0.00088 0.88 709.396 709.343 0.00746 0.10 

 

Table 10: Validation Results Based on Fifth Layout, 𝑴𝟓 = 6 and 𝑩𝟓 = 148 

N 

Full-turnover (NN & NS) The Nearest-location Random 
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300.357 300.355 0.00058 0.86 308.199 308.175 0.00793 0.04 325.750 325.753 0.00082 0.82 

2 

317.278 317.300 0.00697 0.03 328.441 328.448 0.00219 0.52 346.933 346.920 0.00377 0.18 

3 

429.336 429.255 0.01873 0.07 457.129 457.113 0.00350 0.72 495.385 495.367 0.00378 0.66 

4 

501.264 501.208 0.01122 0.18 531.824 531.891 0.01249 0.09 570.666 570.638 0.00493 0.38 

5 

550.572 550.605 0.00606 0.40 584.044 584.100 0.00972 0.13 624.562 624.498 0.01032 0.05 

6 

588.857 588.883 0.00436 0.51 627.914 627.944 0.00466 0.46 675.236 675.227 0.00134 0.81 

7 

621.088 621.027 0.00972 0.13 666.820 666.828 0.00129 0.84 722.039 722.039 0.00008 0.99 

8 

649.336 649.354 0.00274 0.67 701.197 701.169 0.00401 0.52 761.916 761.998 0.01071 0.04 

9 

674.502 674.521 0.00286 0.65 731.052 731.089 0.00504 0.40 793.651 793.646 0.00070 0.88 
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Appendix B: Python Code 

 

from __future__ import division 

from math import * 

 

def erfcc(x): 

    z = abs(x) 

    t = 1. / (1. + 0.5*z) 

    r = t * exp(-z*z-1.26551223+t*(1.00002368+t*(.37409196+ 

     t*(.09678418+t*(-.18628806+t*(.27886807+ 

     t*(-1.13520398+t*(1.48851587+t*(-.82215223+ 

     t*.17087277))))))))) 

    if (x >= 0.): 

     return r 

    else: 

     return 2. - r 

 

def ncdf(x): 

    return 1. - 0.5*erfcc(x/(2**0.5)) 

 

import random, csv, math 

 

powers_of_2 = [2 ** n for n in range(32)] 

 

class Aisle: 

    def __init__(self, aisle, size, north): 

        self.name = "Aisle #{0}".format(aisle)   

        self.size = size     

        self.left = size     

        self.contents = []   

        self.north = north    

 

    def add(self, item): 

         

        if item.size > self.left:    

            return False 

 

        if self.north: 

            item.bin = self.size - self.left + 1 

        else: 

            item.bin = self.left + 1 - item.size 

 

        self.left -= item.size       

        item.aisle = self            

        self.contents.append(item)   

        return True              

 

    def __str__(self): 

     

        if self.contents:        

            return self.name + " : " + ", ".join([str(item) for item in self.contents]) 

 

        return self.name + " empty"  

    def __repr__(self): 

        

        return "Name:{0} Size:{1}, Left:{2} Contents:{3}".format(self.name, self.size, 

self.left, self.contents) 

           

    def __nonzero__(self): 

 

        return self.left > 0 

     

    def probability(self, total_demand): 

        

        total_probability = 0.0 

 

        for item in self.contents: 
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            total_probability += item.probability(total_demand) 

 

        return total_probability 

 

class Item: 

 

    def __init__(self, name, demand, size): 

        

        self.name = name        

        self.demand = demand     

        self.size = size        

        self.expected = demand / size 

        self.chance = 0          

        self.aisle = None        

        self.bin = 0             

        self.rnd = random.random() 

 

    def __str__(self): 

        if self.size == 1: 

            return "{0} ({1})".format(self.name, self.bin) 

        return "{0} ({1}-{2})".format(self.name, self.bin, self.bin + self.size - 1) 

 

    def __repr__(self): 

 

        aisle = "Not stocked" 

        if self.aisle: 

            aisle = self.aisle.name 

        return "Name:{0} (Demand:{1}, Size:{2}) Bin:{3} {4}".format(self.name, 

self.demand, self.size, self.bin, aisle) 

 

    def __lt__(self, other): 

     

        return self.expected < other.expected 

 

    def probability(self, total_demand): 

 

        self.chance = self.demand / total_demand 

        return self.chance 

 

def possibilities(n, m, probabilities = None): 

 

    if m == 1:   

        yield 1, [n] 

        return 

    if not probabilities: 

        probabilities = [1 / m] * m  

 

    maxval = (2 ** n) - 1    

    combination = [0] * m    

    indices = [0] * m       

    maxvals = [maxval] * m   

    powers = powers_of_2[:n]     

    for i in xrange(maxval, -1, -1):     

        indices[0] = i 

        combination[0] = len([n for n in powers if i & n])   

        left = [n for n in powers if ~i & n]    

 

        for j in range(1, m - 1):    

            indices[j] = 0 

 

        while True:                  

            remaining = left[:]     

            for j in range(1, m - 1):   

                maxvals[j] = (2 ** len(remaining))   

                k = indices[j]       

 

                remaining = [remaining[n] for n in xrange(len(remaining)) if ~k & 2 ** n]    

                combination[j] = len([n for n in powers if k & n])   

 

            combination[m - 1] = len(remaining)     

            probability = 1.0    
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            for j in range(0,m): 

                probability *= probabilities[j] ** combination[j]    

            yield probability,combination        

            index = m - 2            

            indices[index] += 1     

            while index > 0 and indices[index] >= maxvals[index]:    

                indices[index] = 0   

                index -= 1           

                indices[index] += 1 

 

            if not index:            

                break 

 

def bysize(item): 

    return -item.size, item.demand 

 

def byhash(item): 

    return item.rnd 

 

def expected_values(items, order = None): 

 

    values = [Item(key, items[key][0], items[key][1]) for key in items if items[key][1]] 

    values.sort(reverse = True, key=order)   

    return values    

 

def layout(num_aisles, num_bins, alternate, initial_left = False): 

     

    north = True                

    if alternate:                

        north = False            

 

    bins = [(None, Aisle(1, num_bins, True))]  

    end = num_aisles // 2        

    last_aisle = end - 1         

    if num_aisles % 2:          

        last_aisle += 1         

    current = 0                  

 

    if initial_left:             

        current = -1             

        bins = []               

        north = True             

        if num_aisles % 2:       

            end += 1             

        else: 

            last_aisle += 1      

 

    for aisle in range(end):     

        current += 2             

        if aisle == last_aisle:  

            bins.append((Aisle(current, num_bins, north), None)) 

        else: 

             

            bins.append((Aisle(current, num_bins, north), Aisle(current + 1, num_bins, 

north))) 

        if alternate:            

            north = not north    

 

    return bins                  

 

def assign(items, num_aisles, num_bins, initial_left, alternate = False, order = None): 

     

    expected = expected_values(items, order) 

    aisles = layout(num_aisles, num_bins, alternate, initial_left) 

    current = -1                 

    left = None                  

    right = None                 

    for item in expected:        

        if not left and not right:   

            current += 1        

            if current == len(aisles):   
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                break 

            left = aisles[current][0]    

            right = aisles[current][1]   

        if left and left.add(item):      

            continue                     

        if right and right.add(item):   

            continue 

        for check_left, check_right in aisles[current+1:]:   

            if check_left and check_left.add(item):  

                break 

            if check_right and check_right.add(item):    

                break 

 

    total_demand = sum(item.demand for item in expected)   

 

    probability = [] 

    for left, right in aisles: 

        probability_either = 0.0 

        if left is not None: 

            probability_either += left.probability(total_demand) 

        if right is not None: 

            probability_either += right.probability(total_demand) 

        probability.append(probability_either) 

 

    return aisles, probability                   

 

def assign_FullTurnoverNN(items, num_aisles, num_bins, initial_left = True): 

    return assign(items, num_aisles, num_bins, initial_left) 

 

def assign_FullTurnoverNS(items, num_aisles, num_bins, initial_left = True): 

    return assign(items, num_aisles, num_bins, initial_left, True) 

 

def assign_NearestLocation(items, num_aisles, num_bins, initial_left = True): 

    return assign(items, num_aisles, num_bins, initial_left, True, bysize) 

 

def assign_Random(items, num_aisles, num_bins, initial_left = True): 

    return assign(items, num_aisles, num_bins, initial_left, True, byhash) 

 

def distance(constants,pattern): 

    width, bins, bin_width, vertical = constants 

 

    travelled = 0    

    aisle_length = bins * bin_width + vertical  

    aisle = 0    

    even = True  

    for current,visit in enumerate(pattern):     

        if visit:    

            aisle = current + 1  

            even = not even      

            travelled += aisle_length 

 

    travelled += aisle * width * 2   

    if not even:     

        travelled += aisle_length    

 

    return travelled 

 

def total_distance(constants, n, m, probabilities = None): 

    

    travelled = 0   

    for probability,combination in possibilities(n, m, probabilities): 

        length = distance(constants,combination)   

        travelled += length * probability   

    return travelled 

 

def monte_carlo(constants, runs, n, m, probabilities = None, expected = 0): 

    

    travelled = 0    

    threshold = [] 

    combination = [] 

    total_probability = 0 
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    deviation = 0 

 

    if not probabilities: 

        probabilities = [1 / m] * m  

 

    for probability in probabilities: 

        total_probability += probability 

        threshold.append(total_probability) 

        combination.append(0) 

    for run in range(runs): 

        for i in range(len(combination)): 

            combination[i] = 0 

        for i in range(n): 

            rnd = random.random() 

            for j,probability in enumerate(threshold): 

                if rnd < probability: 

                    combination[j] += 1 

                    break 

        length = distance(constants,combination)     

        deviation += (length - expected) * (length - expected) 

        travelled += length / runs   

    deviation /= runs 

    deviation = math.sqrt(deviation) 

    return travelled, deviation 

 

def read_val(prompt, default, numeric = True): 

    while True: 

        try: 

            val = raw_input("{0} ({1}):".format(prompt, default)) 

            if not val and val != "0": 

                return default 

            if numeric: 

                return float(val) 

        except: 

            if numeric: 

                print "Please enter a numeric value (or enter for {0})".format(default) 

    return val 

 

def enter_params(): 

     

    params = {} 

    params["csvfile"] = read_val("Enter the name of items data file:", "sample_data.csv", 

False) 

    params["num_aisles"] = int(read_val("Enter the number of main storage aisles:", 5)) 

    params["num_bins_per_aisle"] = int(read_val("Enter the number of storage locations:", 

250)) 

    params["size_of_each_bin"] = read_val("Enter the width of the storage location:", 10) 

    params["width_of_each_aisle"] = read_val("Enter the width of each cross aisle:", 20) 

    params["distance_to_aisle"] = read_val("Enter the width of the main storage aisle:", 

5) 

    params["max_value_of_n"] = int(read_val("Enter the maximum pick list size for 

validating the Monte Carlo simulation approach:", 5) + 1) 

    params["n_increment"] = int(read_val("Enter the increment desired in the range of the 

pick list sizes for validating the Monte Carlo simulation approach:", 1)) 

    params["monte_carlo"] = int(read_val("Enter the desired number of runs to be executed 

by the Monte Carlo simulation approach:", 100000)) 

    params["simulation_items"] = int(read_val("Enter the maximum pick list size to be 

obtained by the Monte Carlo simulation approach only:", 100) + 1) 

    return params 

 

def interactive(): 

    params = enter_params() 

    items = {} 

    with open(params["csvfile"], "rU") as f: 

        reader = csv.reader(f) 

        reader.next() 

        for row in reader: 

            items[row[0]] = (int(row[1]), int(row[2])) 

    assignment_policy = {"FullTurnoverNN.csv" : assign_FullTurnoverNN, 

                         "FullTurnoverNS.csv" : assign_FullTurnoverNS, 

                         "NearestLocation.csv" : assign_NearestLocation, 
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                         "Random.csv" : assign_Random} 

    for policy in assignment_policy: 

        aisles, probability = assignment_policy[policy](items, params["num_aisles"], 

params["num_bins_per_aisle"]) 

        print policy[:-4],probability,sum(probability) 

        with open(policy, "wb") as f: 

            out = csv.writer(f) 

            out.writerow(["Name", "Aisle", "Bin #", "Demand", "Size"]) 

            for left, right in aisles: 

                if left is not None: 

                    for item in left.contents: 

                        out.writerow([item.name, left.name, item.bin, item.demand, 

item.size]) 

                if right is not None: 

                    for item in right.contents: 

                        out.writerow([item.name, right.name, item.bin, item.demand, 

item.size]) 

        with open(policy[:-4] + "_probability.csv", "wb") as f: 

            out = csv.writer(f) 

            out.writerow(probability) 

        constants = (params["width_of_each_aisle"], 

                     params["num_bins_per_aisle"], 

                     params["size_of_each_bin"], 

                     params["distance_to_aisle"]) 

        with open(policy[:-4] + "_distance.csv", "wb") as f: 

            out = csv.writer(f) 

            out.writerow(["Number of items", "Expected distance"]) 

            for n in range(1, params["max_value_of_n"], params["n_increment"]): 

                expected_distance = total_distance(constants, n, len(probability), 

probability) 

                print n, expected_distance 

                out.writerow([n, expected_distance]) 

        with open(policy[:-4] + "_montecarlo.csv", "wb") as f: 

            out = csv.writer(f) 

            out.writerow(["Number of items", "Expected distance"]) 

            for n in range(1, params["max_value_of_n"], params["n_increment"]): 

                expected_distance, deviation = monte_carlo(constants, 

params["monte_carlo"], n, len(probability), probability) 

                print n, expected_distance 

                out.writerow([n, expected_distance]) 

 

confidence_values = { 90 : 1.645, 95 : 1.96, 98: 2.326, 99: 2.576 } 

 

def confidence(): 

    params = enter_params() 

    params["confidence"] = int(read_val("Select the statistical confidence level desired 

for Validating the Monte Carlo simulation approach (90, 95,98,99) (99):", 99)) 

    confidence_value = confidence_values[params["confidence"]] 

 

    items = {} 

    with open(params["csvfile"], "rU") as f: 

        reader = csv.reader(f) 

        reader.next()   

        for row in reader: 

            items[row[0]] = (int(row[1]), int(row[2])) 

    assignment_policy = {"FullTurnoverNN.csv" : assign_FullTurnoverNN, 

                         "FullTurnoverNS.csv" : assign_FullTurnoverNS, 

                         "NearestLocation.csv" : assign_NearestLocation, 

                         "Random.csv" : assign_Random} 

    for policy in assignment_policy: 

        aisles, probability = assignment_policy[policy](items, params["num_aisles"], 

params["num_bins_per_aisle"]) 

        print policy[:-4],probability,sum(probability) 

        with open(policy, "wb") as f: 

            out = csv.writer(f) 

            out.writerow(["Name", "Aisle", "Bin #", "Demand", "Size"]) 

            for left, right in aisles: 

                if left is not None: 

                    for item in left.contents: 

                        out.writerow([item.name, left.name, item.bin, item.demand, 

item.size]) 
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                if right is not None: 

                    for item in right.contents: 

                        out.writerow([item.name, right.name, item.bin, item.demand, 

item.size]) 

        with open(policy[:-4] + "_probability.csv", "wb") as f: 

            out = csv.writer(f) 

            out.writerow(probability) 

        constants = (params["width_of_each_aisle"], 

                     params["num_bins_per_aisle"], 

                     params["size_of_each_bin"], 

                     params["distance_to_aisle"]) 

        analytical_values = {} 

        with open(policy[:-4] + "_distance.csv", "wb") as f: 

            out = csv.writer(f) 

            out.writerow(["Number of items", "Expected distance"]) 

            for n in range(1, params["max_value_of_n"], params["n_increment"]): 

                expected_distance = total_distance(constants, n, len(probability), 

probability) 

                analytical_values[n] = expected_distance 

                print n, expected_distance 

                out.writerow([n, expected_distance]) 

        with open(policy[:-4] + "_montecarlo.csv", "wb") as f: 

            out = csv.writer(f) 

            out.writerow(["Number of items", "Expected distance", "Deviation", 

"Accept/Reject", "z", "p"]) 

            for n in range(1, params["max_value_of_n"], params["n_increment"]): 

                expected_distance, deviation = monte_carlo(constants, 

params["monte_carlo"], 

                                                           n, len(probability), 

probability, 

                                                           analytical_values[n]) 

                z = (expected_distance - analytical_values[n]) / ( deviation / 

math.sqrt(params["monte_carlo"])) 

                p = 2*(1-ncdf(abs(z))) 

                accept = "reject" 

                if abs(z) < confidence_value: 

                    accept = "accept" 

                print n, expected_distance, deviation, accept, z, p 

                out.writerow([n, expected_distance, deviation, accept, z, p]) 

        with open(policy[:-4] + "_montecarlo_only.csv", "wb") as f: 

            out = csv.writer(f) 

            out.writerow(["Number of items", "Expected distance"]) 

            for n in range(1, params["simulation_items"], params["n_increment"]): 

                expected_distance, deviation = monte_carlo(constants, 

params["monte_carlo"], 

                                                           n, len(probability), 

probability) 

                print n, expected_distance 

                out.writerow([n, expected_distance]) 

 

        if False: 

            with open(policy[:-4] + "_montecarlo_runs.csv", "wb") as f: 

                out = csv.writer(f) 

                header = ["Run"] 

                for n in range(1, params["simulation_items"], params["n_increment"]): 

                    header.append("n=" + str(n)) 

                out.writerow(header) 

                monte_carlo_csv(constants, params["monte_carlo"], 

params["simulation_items"], 

                           len(probability), out, header, params["n_increment"], 

probability) 

 

if __name__ == "__main__": 

    confidence() 

    raw_input("Press enter to exit") 


