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ABSTRACT 

 

 This research analyzes the sensitivity of watershed attributes, and hydrological 

outputs to LiDAR derived DEM uncertainty introduced through spatial resolution, and 

LiDAR measurement errors. Sensitivity of watershed attributes to spatial resolution was 

determined through a scaling analysis at three sites; Mosquito Creek, Scotty Creek and 

Thomas Brook, with DEMs ranging from 1 to 50 m. Results at Scotty Creek showed the 

highest sensitivity of watershed area to spatial resolution, due to subtle changes in 

elevation which were below DEM uncertainty. Validation of the stream length at Thomas 

Brook showed discrepancies of 3.7 to 24.1% for the 1 to 50 m DEMs, compared to 

independent field observations. Sensitivity of SWAT derived hydrological outputs to 

DEM spatial resolution were determined through a scaling analysis of DEMs (1 - 50 m) 

at Thomas Brook watershed, over a five year simulation period. Results indicated 

monthly water yield was insensitive to DEM resolution, unless a change in area was also 

present. Sediment yield from the 50 m DEM showed a 24% reduction compared to the 1 

m DEM. The 5 - 50 m DEMs also showed a reduction in channel deposition of 45 - 90 t, 

compared to the 1 m DEM.  

 Sensitivity of terrain attributes, watershed attributes and hydrological outputs to 

LiDAR measurement errors were determined at the Thomas Brook watershed through the 

propagation of LiDAR sensor measurement errors with Monte Carlo simulations. Results 

showed that the uncertainty in the DEM, slope, and aspect were below 0.06 cm, 1.5° and 

24.1° in 97.5% of grid cells, respectively. Watershed area and stream length resulted in 

relative standard deviations of <1% and 1.5%, respectively. However, sensitivity of 

watershed area increased in regions with elevation changes below DEM uncertainty and 

stream length uncertainty increased with decreasing stream length. SWAT simulated flow 

and sediment showed minor sensitivity to LiDAR measurement error in high flow 

months, and increased as flow decreased. Simulated sediment showed higher sensitivity 

to LiDAR measurement errors than flow, due to changes in the HRU slope class, which 

can shift the dominant HRU (Hydrological Response Unit) if a minimum HRU threshold 

area is implemented.   
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CHAPTER 1  INTRODUCTION 
 

 

 Hydrological models contribute important information for designing policy to 

promote environmentally and economically sustainable management of water resources. 

A recent example is the Canadian WEBS (Watershed Evaluation for Beneficial 

Management Practices, Stuart et al. 2010) program, a federally funded watershed 

research initiative administered through Agriculture and Agri-Food Canada with a stated 

objective of "assessing the environmental and economic performance of selected 

agricultural beneficial management practices (BMPs)" (Stuart et al. 2010). In the 

execution of this objective, hydrologic modeling was considered one of the primary 

information sources capable of advancing the understanding of the watershed systems of 

interest and assigning BMPs. To ensure hydrologic models will contribute effective and 

defensible BMP policy actions, any source of model uncertainty should be well 

understood and quantified. One source of hydrological model uncertainty can be 

attributed to the DEM (Digital Elevation Model), a primary input data layer required to 

describe the landscape topography, and facilitates watershed delineation and 

parameterisation of process based hydrological models.    

 LiDAR (Light Detection and Ranging) is an active remote sensing technology 

used to observe topographic information to describe the Earth's surface. LiDAR 

technology has experienced robust commercial expansion in the past decade, and is 

replacing competing remote sensing technologies as a source of digital topographic 

information for development of DEMs. The adoption of LiDAR as a leading source of 

topographic information is evidenced by the initiation of several large scale federal 

mapping initiatives. Currently, approximately one-third of the continental United States 

has been surveyed with LIDAR (Stoker, 2013), and several countries have achieved 

nationwide survey coverage such as Denmark, Switzerland, and the Netherlands. The 

popularity of LiDAR technology can be traced to its unique ability to simultaneously 

provide dense   (> 1 pt/m2) and accurate (< dm) coordinate samples of the physical 

terrain, even beneath forest canopy, which can be used to create DEMs with spatial 

resolution at the metre level. To date, the sensitivity of watershed attributes, and 
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simulated hydrologic outputs, to uncertainty in fine resolution LiDAR DEMs has not 

been well established. As the availability of LiDAR DEMs is becoming ubiquitous 

through publically funded national survey campaigns, it is being adopted by the 

hydrological modeling community. Therefore, there is a current need to describe 

hydrological model uncertainty associated with the implementation of fine resolution 

LIDAR DEMs in order to understand the limitations of policy initiatives derived from 

hydrological models. A comprehensive understanding of the sources and magnitude of 

uncertainty will also contribute to the development of best practices and guidelines for 

diligent use of LIDAR information in the hydrological sciences, limiting the potential for 

management decisions based on information of insufficient quality. Currently, best 

standards and practices for use of LiDAR for hydrological modeling are rare, due to the 

lack of research describing LiDAR derived uncertainty.   

 The development of best standards and practices for other application areas does 

exist, setting a precedent for the need to develop similar guidelines for hydrological 

analysis. For example, the Federal Emergency Monitoring Agency (FEMA) has 

developed best standards and practices for the use of LiDAR in the national flood risk 

assessment insurance program. Similarly, the ASPRS (American Society of Remote 

Sensing) and the FGDC (Federal Geographic Data Commission) have guidelines for 

quality assurance of LiDAR observations. While this dissertation does not intend to 

provide an exhaustive set of guidelines for use of LiDAR DEMs with respect to 

hydrological analysis, it contributes to this goal through the quantification of uncertainty 

of hydrological products. The workflow which translates LiDAR observations through to 

predictions of hydrological processes generally includes generation of grid based digital 

elevation model, grid based slope and aspect maps, delineation of watershed area and 

stream networks, and processing with a hydrological model. Knowledge of how each of 

these data layers will react to LiDAR derived DEM uncertainty will aid in recommending 

best standards and practices of LIDAR for use in the hydrological sciences.     

 The research objective of the dissertation is to investigate the sensitivity of 

topographic attributes, watershed attributes and simulated hydrological outputs to DEM 

uncertainty from two sources, 1) the spatial resolution of the DEM and 2) the elevation 

uncertainty of individual DEM grid nodes. The first half of the dissertation (Chapter 2 
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and Chapter 3) describes the sensitivity of watershed attributes, including watershed area, 

the channel network, and topographic derivatives (slope and aspect). These inputs are 

universally required for process-based hydrological models, allowing these results to be 

useful to a broad cross-section of modeling efforts. Specifically, Chapter 2 investigates 

the sensitivity of watershed boundary and stream network delineation to DEM spatial 

resolution ranging from 1 to 50 m, as well as the interpolation of LiDAR three 

dimensional coordinates to DEM grid elevations. The sensitivity of watershed attributes 

is interpreted through a DEM scaling analysis in three distinct topographic environments. 

A scaling analysis will reveal two important conditions related to grid cell size, 1) scale 

dependent irregularities, and 2) scaling relationships, in relation to hydrological quantities 

of interest. The existence of scale dependent irregularities or scaling relationships allows 

inference on the optimum grid scales for watershed boundary and stream network 

delineation. Chapter 2 also includes an accuracy assessment of stream length modeled 

from DEMs with varying resolutions. Modeled stream lengths were compared against the 

field measured stream length obtained from high accuracy RTK GPS observations. The 

field verified stream length provides an independent verification of the ideal grid cell size 

for modeling stream length. A scaling relationship between DEM grid cell size and 

stream length is also investigated, which allows stream lengths to be systematically 

scaled between resolutions. 

 Chapter 3 investigates the sensitivity of topographic attributes (slope and aspect) 

and watershed attributes (stream length, watershed area) to the elevation uncertainty in 

LiDAR derived DEMs. The error in individual LiDAR coordinates is obtained from a 

novel error propagation algorithm based on the sensor hardware measurement errors and 

terrain conditions. The spatial distribution of uncertainty in the DEM, grid-based slope 

and grid based aspect are determined through Monte Carlo error propagation techniques 

and related to the LiDAR flight configuration and terrain conditions. Uncertainty in the 

delineated watershed boundary and stream network is also investigated with the aim of 

identifying regions where a high incidence of uncertainty can be expected. 

 The latter half of the dissertation (Chapter 4 and Chapter 5) focuses on the 

sensitivity of DEM uncertainty to the SWAT (Soil and Water Assessment Tool), a 

process based semi-distributed watershed model. Due to the unique algorithmic 
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conditions of the SWAT, the results are generally confined to only this model. However, 

the methodological framework is valid for furthering the analysis to additional process 

based hydrological models. Chapter 4 investigates the sensitivity of the simulated flow 

and sediment yield in the SWAT (Soil and Water Assessment Tool), a semi-distributed 

watershed model, to DEM grid cell size. The investigation of the sensitivity separates the 

role of the DEM to three distinct functions, 1) defining the hillslope scale, 2) the 

extraction of a hydrologic network, and 3) watershed boundary delineation. The primary 

investigation of Chapter 4 surrounds the response of the SWAT model to DEMs with 

decreasing grid cell sizes, which reach a minimum of 1 m, and whether the increase in 

detail of topographic information is beneficial for the SWAT model design. A secondary 

investigation determines whether each DEM role is optimized at the same resolution.  

 Chapter 5 investigates the sensitivity of the SWAT to LiDAR measurement 

errors. LiDAR measurement errors were propagated through to DEM using the same 

algorithm implemented in Chapter 3. Uncertainty in SWAT flow and sediment were 

determined with a Monte Carlo approach, which required the creation of several SWAT 

models with unique DEMs. Results were compiled at several monitoring stations within 

the Thomas Brook watershed to assess the influence of LiDAR measurement error at 

varying spatial scales. Chapter 6 provides a summary of the main conclusions and novel 

contributions, as well as directions for continuation of the research. 
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CHAPTER 2  SENSITIVITY OF WATERSHED    
   ATTRIBUTES  TO SPATIAL RESOLUTION  
   AND INTERPOLATION METHOD OF  
   LIDAR DEMS IN THREE DISTINCT   
   LANDSCAPES 

 

2.1 Introduction 

 

 To allow modeling of land surface patterns and processes, continuous topography 

must be simplified to a set of discrete values for virtual representation. The process of 

discretizing topography from measured data will inevitably introduce algorithmic and 

scale dependent biases. A DEM (Digital Elevation Model) is a common virtual form of 

topographic information required for automated delineation of watershed boundaries and 

stream networks (O’Callaghan and Mark, 1984; Band, 1986; Jensen and Dominigue, 

1988; Tribe, 1992; Martz and Garbrecht, 1993), because it indicates gravitational 

potential gradients that control the flow of surface water. The discrete structure 

commonly taken by a DEM is a grid of elevations at a constant horizontal spacing in both 

x and y directions (Moore et al., 1991). The horizontal distance between grid locations is 

referred to as the spatial resolution and represents the minimum size of an object that can 

be identified within the DEM and is representative of the DEM scale. LiDAR (Light 

Detection and Ranging) has emerged as one of the most popular tools for acquiring high 

resolution DEM information, as shown by its sustained commercial growth (TMSI, 2005; 

Carey and Associates, 2010). In addition, LiDAR derived DEMs show promise for 

expanded future use given large scale initiatives to acquire LiDAR coverage for entire 

countries (e.g. Stoker et al., 2008). With the availability of LiDAR increasing rapidly, 

appropriate analysis is required to properly assess the implementation of fine resolution 

DEMs for development of watershed boundaries and stream delineations. These products 

require attention because they are primary data layers for use in hydrological models, 

which provide critical information for the efficient management of water resources. 
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2.1.1 Previous relevant research of hydrology and LiDAR DEMs 

 

 Research has begun to assess the benefits of LiDAR technology for watershed 

characterization and analysis. For example, Li and Wong (2010) compared LiDAR 

DEMs at spatial resolutions of 2, 10 and 30 m, a Satellite Radar Topography Mission 

(SRTM) DEM at 30 m of spatial resolution, and National Elevation Dataset (NED) 

DEMs at spatial resolutions of 10 m and 30 m for the purposes of drainage network 

extraction and flood simulation. It was found that the 2 m LiDAR DEM provided 

drainage networks that were the most accurate when compared to networks from the 

National Hydrography Dataset (NHD). However, the LiDAR drainage networks were 

less accurate than the NED DEM derived drainage networks at equivalent resolutions (10 

m and 30 m). Hopkinson et al. (2009) analyzed watershed attributes using three data 

sources (LiDAR, photogrammetry, public digital contour data) at two resolutions (5 m, 

25 m) and found that a watershed area derived from the digital contour derived DEM was 

over-estimated by 15% compared to a LiDAR derived DEM. It was determined that the 

overestimation was related to the ability of the LiDAR acquisition system to more 

accurately depict the terrain beneath the forest canopy as the low data density of the 

photogrammetric and contour sources created erroneous flow paths in forested areas. The 

overestimation of area was not related to DEM resolution, but the accuracy and sampling 

of the terrain surface represented in the DEM. In a similar study of a watershed in the 

foothills of the Rocky Mountains, Murphy et al. (2008) compared a drainage network 

from a 1 m LiDAR DEM and a 10 m photogrammetrically derived DEM. It was found 

that the photogrammetric DEM excluded or reduced the length of first order streams and 

contained significant spatial errors when compared to GPS field sampled observations of 

the stream channel. This indicated that the 1 m LiDAR derived DEM provided the most 

accurate characterization of the stream network. In addition, the LiDAR DEM produced a 

delineated watershed area, which when analyzed through a visual inspection was 15% 

larger and with more detailed boundaries, than that derived from the photogrammetric 

DEM. Remmel et al. (2008) compared a 20 m photogrammetrically derived DEM with a 

5 m LIDAR DEM re-sampled to 2.5 m. It was found that the high spatial resolution 

provided by the LiDAR DEM allowed a better prediction of smaller stream segments, 
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improved definition on watershed extents and provided details on areas of soil saturation, 

which could improve management decisions of forest harvests. Barber and Shortridge 

(2005) reported that LiDAR derived DEMs offered limited advantage for basin 

delineation over medium resolution DEMs as source and resolution resulted in only 

minor differences. The study compared a LIDAR DEM at spatial resolutions of 6 m and 

30 m versus a 30 m NED DEM. They noted low relief landscapes as an exception that 

would benefit from improved elevation accuracies and resolution of LIDAR derived 

DEMs. 

 The existing literature has concurrently focused on comparing the source of DEM 

information (e.g. LiDAR vs. photogrammetry) and spatial resolution for the purposes of 

watershed and stream network delineation. In the assessment of spatial resolution, the 

variation has been limited to at most three different levels. The majority of studies 

conclude that fine resolution LIDAR DEMs will offer the best results compared to lower 

resolution DEMs from alternative sources; however, an optimum DEM resolution for 

LiDAR specific DEMs cannot be concluded due to the complicating factors of alternative 

data sources. Knowledge of the optimum DEM resolution of LiDAR DEMs is desirable 

because it allows for efficient and accurate modeling of watershed attributes, yet 

minimizes acquisition costs and computational burden. 

 The determination of an optimum spatial resolution in the generation of DEMs 

requires careful consideration because the spatial resolution defines the hillslope scale, 

which will influence the quantification of watershed attributes or modeled processes. A 

scaling analysis, consisting of multiple determinations of a modeled process through a 

controlled modification of the DEM resolution, can reveal scale-dependant irregularities 

as well as determine the existence of repeatable patterns across multiple scales (Atkinson 

and Tate, 2000). Knowledge of an irregular response of a modeled process to a particular 

scale can guide users in optimizing DEM resolution to suit their modeling needs. 

Identifying repeatable patterns across multiple scales can indicate whether a process is 

scale invariant, and can be modeled without explicitly requiring data at a specified 

resolution. LiDAR data offers an effective tool for such a scaling analysis because it 

provides sufficiently dense raw elevation information to enable the production of DEM 

elevations across previously unavailable fine spatial resolution supports. 
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 Useful scaling relationships between the resolution of a DEM derived stream 

network and stream network length have been identified in the literature (Tarboton et al., 

1988; Hjelmfelt, 1988; La Barbera and Rosso, 1989) and have shown to be effectively 

modeled through fractal properties. Traditionally, changes in stream network resolution 

were imposed on DEMs of constant resolution by modifying the threshold area for stream 

initiation, as by Tarboton et al. (1988) who implemented a scaling analysis with a 30 m 

resolution DEM. The stream initiation threshold controls the number of required 

cumulative cells draining to a common point to define the first instance of channel flow. 

Decreasing the stream initiation threshold has the effect of increasing the resolution of 

the stream network and vice versa (Tarboton et al., 1988; Helmlinger et al., 1993); 

therefore, the stream initiation threshold area can be used to set a finite scale to the 

landscape (Montgomery and Dietrich, 1988; Montgomery and Dietrich, 1992). Two 

distinct scaling relationships have been observed between the resolution of the stream 

network and stream length. One value for entire drainage networks, which can be 

modeled with a fractal dimension approaching two, and one for single stream channels, 

which can be modeled with fractal dimensions between 1.04 and 1.07 (Tarboton et al., 

1988). Little analysis has been provided on scaling relationships between stream network 

resolution and DEM resolution explicitly through a change in DEM cell sizes from 

source data. Some preliminary analysis on single stream lengths (Hemlinger et al., 1993; 

Garbrecht and Martz, 1994; Wang and Yin, 1998, Thieken et al., 1999) has shown a 

systematic decrease with DEM spatial resolution as fine details of the stream channel are 

lost in coarse resolution DEMs. 

 The selection of DEM interpolation method is also a critical in the generation of 

LIDAR derived DEMs and has shown to affect DEM accuracy (Aguilar, 2005; Chaplot et 

al., 2006; Bater and Coops, 2009; Guo et al., 2010). Interpolation routines are required to 

determine the elevation of DEM grid nodes from raw LiDAR observations, which 

distribute in a pseudo-random ground pattern related to flight configurations and post-

processing filtering routines. Traditional DEM interpolation algorithms are designed for 

determining grid node elevations from intermittent and sparse source data and not dense 

raw elevation point distributions typical of LiDAR surveys. As a result, the traditional 

goal of ‘interpolating’ elevation observations to determine DEM grid nodes is often more 
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appropriately described as ‘re-arranging’, ‘averaging’ or ‘aggregating’ observations in the 

LiDAR scenario since DEM grid nodes can be spaced further apart than source data. 

Therefore, optimum interpolation approaches exploit the available redundancy in the 

source data to reduce random vertical errors, which can conservatively reach decimetre 

levels (Glennie, 2008; Goulden and Hopkinson, 2010a), and also to maintain 

computational efficiency (Pfeifer and Mandlburger, 2009). The choice of interpolation 

method of raw elevations has not been well studied in the context of determination of 

watershed extents and stream channel delineation. The choice of interpolation method for 

DEM generation is often made by LiDAR service providers on the basis of efficiency in 

data processing and not for optimization of the accuracy of the intended DEM products. 

For example, Remmel et al. (2008) indicated the LiDAR DEM implemented in their 

study was created with an unknown interpolation method implemented by the service 

provider. 

 A useful approach for characterizing DEM suitability for drainage network 

extractions was introduced by Gyasi-Agyei et al. (1995) who stated that the ratio of the 

average pixel elevation drop to the DEM vertical resolution should be less than or equal 

to one. Implementing such a ratio in the LiDAR scenario is difficult because research 

dedicated to the quantification of a LiDAR DEM precision is currently active with recent 

studies identifying errors as non-linear combinations of several variables. For example, 

Glennie (2008), Goulden and Hopkinson (2010a) and Goulden and Hopkinson (2010b) 

have investigated the precision of sensor hardware, Bowen and Waltermire (2002), 

Hodgson and Bresnahan (2004), Hopkinson et al. (2005), and Reutebuch et al. (2003) 

have investigated external error sources such as terrain slope and vegetation and Aguilar 

(2010) and Guo et al. (2010) have reported on effects due to interpolation. Therefore, a 

rigorous quantification of DEM precision derived from LiDAR is not available and 

current estimates must rely on documented empirical assessments.  

2.1.2 Objectives 

 

 The purpose of this study it to investigate optimum DEM generation procedures 

for fine-scale LiDAR-derived DEMs for application to the determination of watershed 

boundaries and stream network length determined in ArcHydro (Maidment, 2002). The 
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study is executed through several objectives: (i) to determine if fine spatial resolution 

DEMs derived from LiDAR (1 m to 50 m) show scale-dependent irregularities, which 

affect the determination of watershed area, (ii) to determine if stream length displays a 

systematic relationship with changes in DEM spatial resolution and allows scaling 

through a fractal relationship, (iii) to identify the most appropriate DEM resolution for 

representing stream length, and (iv) to determine if DEM interpolation method will affect 

these relationships. The respective hypotheses are that (i) determinations of planimetric 

watershed area will show unpredictable variations due to the introduction of scale 

dependent features such as anthropogenic landscape modifications (roads), or natural 

gullies or valleys in the landscape as resolution is increased, (ii) that stream length will 

increase with an increase in spatial resolution as additional details in the stream are 

resolved, and that this relationship can be described with a fractal dimension, (iii) the 

most appropriate resolution for characterizing stream length is the highest resolution 

available due to the ability to represent fine details and, (iv) that the interpolation method 

can result in subtle changes in elevation, which will affect watershed area and stream 

length in regions with minor changes in relief. In addition, it is hypothesized that 

interpolation methods, which do not effectively reduce noise, could cause erratic 

behavior in the flow direction, thereby increasing stream sinuosity and total length.  

 As the relative benefits of using LiDAR-derived DEMs have varied across 

different landscape types (Barber and Shortridge, 2006; Jones et al., 2008), the analysis 

was conducted with three case studies displaying distinct landscapes: (i) Mosquito Creek, 

an alpine environment with large elevation change (~2000 m), (ii) Scotty Creek, a boreal 

wetland environment with minimal elevation (~25 m) change and (iii) Thomas Brook, a 

hill to valley floor site with moderate elevation change (~200 m). These landscapes types 

were selected because the Mosquito Creek and Scotty Creek are representative of end-

members in relief variation and Thomas Brook represents an intermediate level of relief 

variation with some anthropogenic modifications. Validation data for verifying DEM-

derived stream lengths is provided for the Thomas Brook in the form of field surveyed 

stream locations. The validation data provide an estimate of the true stream length and 

indicates an ‘ideal’ DEM resolution to model the most accurate estimate of stream length. 

With knowledge of the ideal resolution and an associated scaling relationship, stream 
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lengths determined from DEM information obtained from public sources with a pre-

determined spatial resolution could be scaled to the ideal resolution to improve accuracy. 

GPS validation data of the stream network is not available for Mosquito Creek and Scotty 

Creek due to logistical constraints of access to their remote locations.  

2.2 Background to ArcHydro 

 ArcHydro, (Maidment, 2002) is an add-on to ArcGIS© (ESRI, 2003) that enables 

efficient delineation of watershed extents and stream networks from DEMs. The software 

package is well-used within industry, which ensures the analysis presented here will be 

relevant to a broad cross section of the community. Background information on the 

details of the algorithms for the watershed delineation process can be found in Jenson and 

Dominigue (1988) and are well described and widely used in existing literature. An 

important consideration to the ArcHydro framework is that flow direction is calculated 

using the D8 algorithm (O’Callaghan and Mark, 1984), which directs flow in one of eight 

cardinal directions to a single neighboring cell in the DEM grid lattice that shows the 

steepest descent. More sophisticated algorithms exist that permit flow to be partitioned 

between multiple cells, such as those found in Quinn et al.(1991), Costa-Cabral and 

Burges (1994), Tarboton (1997), Qin et al. (2007) and Seibert and McGlynn (2007). 

Partitioning of flow to multiple cells improves on documented deficiencies of the D8 

algorithm, such as the imprecision imposed by directing flow to only eight directions as 

well as the existence of unrealistic parallel flow paths in convergent topography (Fairfeld 

and Leymarie, 1991). Despite its drawbacks, the D8 algorithm was maintained for this 

analysis because it is simple and efficient to execute, which is an important consideration 

for fine resolution LiDAR DEMs (Murphy et al., 2008) and is the only option available in 

ArcHydro software package. Furthermore, Tarboton and Ames (2001) suggest the use of 

the D8 algorithm when focusing on analysis of drainage networks, to prevent braided 

stream channels and unrealistic flow dispersion in flat landscapes. Additionally, 

McMaster (2002) showed that the spatial accuracy of a stream network had little 

dependency on the choice of either the D8 or D∞, a multiple flow direction algorithm by 

Tarboton (1997). 
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 During the definition of stream channels in the ArcHydro algorithm, the user must 

supply a value for the stream initiation threshold. Competing methods exist, such as 

slope-dependent critical support areas (Dietrich et al., 1992) and a recent method using 

geodesic paths that has been suggested for use with high resolution LiDAR DEMs 

(Passalacqua et al., 2010); however, the area threshold is the only option available within 

ArcHydro. Automated methods are available for predicting appropriate thresholds from 

the DEM (Tarboton, 1989); however field information often provides the best 

information for determining appropriate values for channel initiation parameters 

(Montgomery and Foufoula-Georgiou, 1993). 

2.3 Methods 

 Spatial resolutions were chosen at levels of 1, 5, 10, 25 and 50 m. The 1 m  

resolution limit was selected to because it is the finest resolution allowed by the raw data, 

while the 50 m limit was selected because it was extended the analysis past the 30 m 

resolution limit in several previous studies. Five unique interpolation routines were also 

used to generate the DEMs, including Inverse Distance Weighting (IDW), Moving 

Average (MA), Universal Kriging (UK), Natural Neighbour (NN), and a triangular 

irregular network (TIN). All DEMs were generated in Golden Software’s Surfer© 

application from raw ground filtered LiDAR observations. In total, 75 DEMs were 

generated to include the five interpolation methods, five spatial resolutions and three case 

study sites.  

2.3.1 Study Sites 

 
 2.3.1.1. Scotty creek 

 Scotty Creek is a Northern Boreal wetland environment located in the Northwest 

Territories of Canada approximately 50 km south of Fort Simpson, NWT (Figure 2.1a) at 

approximately 300 m a.s.l. It is characterized by low relief with a drainage structure that 

contains surface flow connecting several lakes. Peat plateaus and wooded upland 

characterize the vegetation and the soil is dominated by an organic layer that is 

approximately 8 m thick (Quinton et al., 2003). Underlying permafrost exists at a depth 

of approximately 0.6 m in late summer and covers a mixture of clay and silt (Ayelsworth 
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and Kettles, 2000; Quinton et al., 2003; Quinton et al., 2008). An elevation change of 

approximately 20 m exists over the total area of 24.5 km2 and 95% of slopes are less than 

6.6° indicating the general trend of subtle changes in relief (Figure 2.1a). The LiDAR 

survey for Scotty Creek was performed in August of 2009 at a flying height of 

approximately 1500 m above ground level. The airborne survey configurations of the 

LiDAR sensor provided an average distance between the closest neighboring 

observations at several sample locations of 0.85 m with 95% of the points being within 

1.30 m of another observation. 

Table 2.1 - Topographic attributes and LiDAR point density of study sites 

 

 Area 

(km2) 

Elevation 

Range (m) 

95th percentile of 

slope histogram (°) 

Point density 

(pts / m2) 

Thomas Brook 7.02 206 18 0.75 

Mosquito Creek 46.33 1190 59 0.31 

Scotty Creek 22.69 15.3 6.6 0.63 

 

 
Figure 2.1 Geographic location of study watershed sites and associated slope  

  histograms. Each slope histogram terminates at the 95th percentile; A) 

  Scotty Creek; B) Mosquito Creek; C) Thomas Brook. 
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2.3.1.2. Mosquito Creek 

 Mosquito Creek watershed is located north-west of Banff, Alberta, Canada and 

forms part of the headwaters of the Bow Valley (Figure 2.1b). It is an alpine environment 

with an average elevation of 2500 m a.s.l. The dominant land cover is forest at lower 

elevations with a thin soils layer approximately 0.25 m in depth. In the upper elevations 

the terrain is predominantly exposed sedimentary carbonate bedrock, with areas of 

metamorphic sandstone, with small hanging glaciers on north-eastern facing slopes. A 

major geologic fault line runs from NW to SE through the basin, which exerts strong 

control over internal drainage characteristics (Hopkinson, 2002). The eastern side of the 

fault is characterized by highly incised drainage gullies in dolostone rock formations 

while the western side is characterized by quarzite rock with overlying forest and glacial 

tills (Hopksinson, 2002). The slope histogram of Mosquito Creek shows that 95% of the 

slopes at the site are below 59° with a peak at approximately 32°, showing the variable 

topography that exists in the alpine environment (Figure 2.1b).The LiDAR survey for 

Mosquito Creek was flown in August of 2010 at a 1700 – 2400 m a.g.l.  The average 

distance between a point and its closest neighbor from a sample area of the Mosquito 

Creek survey was 1.1 m with 95% of the points taken within 1.9 m of another 

observation.  

 2.3.1.3. Thomas Brook 

 The Thomas Brook watershed is located near Berwick, Nova Scotia (Figure 2.1c). 

The headwaters begin on the southern side of a mountain at the northern end of the site 

and flow southerly into the Annapolis Valley. There are two main tributary branches that 

join at approximately one third of the distance from the headwaters to the outlet 

(Jamieson et al., 2003). Soils in the area are predominantly fine-grained reddish sandy 

loams (Cann et al., 1965) and the watershed consists of a mix of agricultural (~70%), 

residential and forested (~30%) land use (Brisbois et al., 2008). The majority of the 

watershed consists of gently sloping topography in the southern area along the valley 

floor (Figure 2.1c) and the majority of the slopes existing in the range of 0-6° and 95% of 

the slopes below 18°. The Thomas Brook LiDAR survey was acquired in August 2006. 
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The aircraft was flown at 900 m a.g.l and this resulted in an average spacing between an 

observation and its closest neighbor of 1.1 m and with 95% of the points having a 

neighbor within 1.5 m. 

2.3.2 DEM preparation 

 

 2.3.2.1 Interpolation routines 

 The IDW algorithm is a univariate interpolator that weights observations based on 

their respective Euclidian distance from the DEM grid node being determined (Bartier 

and Keller, 1996). The weight associated with each sample elevation observation is 

determined through the inverse of the distance from the DEM grid node location raised to 

a selected power. The influence of surrounding points can be controlled by the value of 

the power exponent. High values of the exponent will more rapidly decrease the influence 

of observations at greater distances. A power of two was chosen as it is a typical value 

selected for interpolating elevations within previous studies (e.g. Chaplot et al., 2006; 

Guo et al., 2010). Only elevations located within a circular neighbourhood with a five 

metre radius around the DEM grid node were used. This spatial limit was chosen because 

elevation observations further than this distance may not be truly representative of the 

actual DEM grid node elevation and a sufficient number of sample elevations were 

always available within this limit. A large search radius also creates an overly smoothed 

terrain surface, which can lose important details of the topography. The IDW method is 

commonly used in LIDAR DEM processing because of its simplicity and efficiency for 

large data sets. The moving average (MA) interpolation method is identical in 

implementation to the IDW method except that the weights of all points within the search 

radius are equivalent. 

 The Universal Kriging (UK) interpolation routine has a well studied theoretical 

background within the field of geostatistics (see Cressie, 1993; Chilès and Delfiner, 

1999). Studies which implement Kriging on LiDAR source data such as Lloyd and 

Atkinson (2002), and Guo et al. (2010) have identified that as raw data density decreases 

Kriging interpolators are advantageous within the context of DEM accuracy. However, as 

point densities approach those of typical LIDAR surveys there is negligible gain over 



 

 16 

 

other simpler interpolation methods and large computational requirements. The UK 

algorithm assigns weights to surrounding observations based on their distance from the 

grid node as well as their spatial autocorrelation. The autocorrelation function is 

determined from fitting a semi-variogram model to estimate the correlation of 

surrounding elevation observations. UK is the most general form of point Kriging 

because it allows for a drift in the determination of the variogram (Chilès and Delfiner, 

1999). A linear drift model for the mean was chosen, which was also implemented in 

Guo et al., (2010), as well as a linear variogram model. A search radius of five metres 

was selected as the neighbourhood for the UK algorithm for consistency with the IDW 

and MA algorithms. 

 The natural neighbour (NN) interpolation algorithm (Sibson, 1981) determines the 

interpolated point elevation by creating Theissien polygons associated with observed 

elevation values in the data set. The interpolated elevation is calculated as a weighted 

sum of the elevations of all other points in adjacent Theissien polygons. Weights are 

determined by the ratio of area lost from the pre-existing Thiessien polygons prior to the 

insertion of the point to be interpolated. The averaging algorithm in the NN routine 

differs from IDW, UK and MA in that no search radius is required. The triangular 

irregular network (TIN) interpolation scheme operates by constructing a set of contiguous 

triangles across the entire dataset, in which the triangular edges form linear connections 

between points. The algorithm is constrained by the condition that no triangle can contain 

a point in the dataset. Interpolated DEM grid node elevations are found by overlaying the 

horizontal grid point location onto the triangular mesh and extracting the elevation from 

the triangular facet plane it falls within. The TIN algorithm is traditionally well-used for 

generation of surfaces of topography because it honours the location of the data points, 

assumes minimal information about the terrain surface and identifies surface breaklines. 

The digital surface representation is often left as a triangular mesh and not converted to a 

grid based DEM. Although this conversion to a grid based DEM loses some advantages 

of the triangular mesh surface it is a required conversion for further processing.  
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2.3.2.2 Hydrological enforcement 

 

 Prior to hydrological analysis, DEMs require appropriate hydrological 

enforcement to properly characterize true field conditions. Pit filling was implemented on 

all DEMs according to the algorithm in ArcHydro, which raises the elevation of a pit to 

be equivalent with the lowest neighboring cell. Of the three study sites, Thomas Brook 

was the only watershed which was located in a developed area containing anthropogenic 

modifications to the landscape. Common anthropogenic features, which require 

hydrologic enforcement, are roads which pass over culverts and can incorrectly obstruct 

flow paths (Murphy et al., 2008). At these locations stream paths have to be ‘burned’ into 

the DEMs, to avoid artificial obstructions. The burning process consisted of identifying 

where culverts passed under roads and lowering the elevations of the DEM grid nodes 

across each road to the elevation of the outlet of the culvert. The location of all culverts in 

the Thomas Brook watershed, which required burning were confirmed through field visits 

to the site.  

 Scotty Creek contains no man-made structures; however, artificial and incorrect 

blockages exist at stream outflows near the edge of lakes where low-lying aquatic 

vegetation was not correctly removed during the filtering of non-ground raw elevation 

observations. It has been previously identified by Hopkinson et al. (2005) that an upward 

bias exists in LiDAR DEM elevations surrounding aquatic vegetation. This is due to the 

1064 nm wavelength of the ALTM LiDAR sensor reflecting weakly, or being absorbed 

from water surfaces leaving only returns from the vegetative surface as potential ground 

points (Hopkinson et al., 2005). At Scotty Creek, this creates artificial obstructions to 

flow in the DEM where lake outflows drain into regions of marsh vegetation. The DEMs 

were visually interpreted to determine the location of true lake outflow points and 

channels were burned into the DEM to create a correct representation of flow pathways. 

The delineated drainage network also existed within lake boundaries and flow paths acted 

erratically in these areas due to increased noise levels in LiDAR return elevations over 

water surfaces (Hopkinson et al., 2011). Lakes were manually digitized into polygons and 

the associated stream lengths across the site were removed from the analysis to mitigate 
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errors in total stream network length estimate due to erratic flow paths in open water 

areas.  

2.3.3. Stream delineation 

 

 Field reconnaissance was performed at Thomas Brook during August of 2010 to 

identify the location of the initiation of first order streams during base flow conditions as 

well as the location of any tributary junctions into the main stream channel. Stream 

initiation locations were identified based on the first existence of flowing water at the 

highest elevation on the hillslope. Several constant area thresholds were selected from a 1 

m resolution DEM and a final value was chosen to be 1 ha, which best matched field 

verified locations of channel initiation, and showed the existence of the observed streams 

flowing into the main channel. The 1 ha threshold was implemented consistently for each 

unique combination of spatial resolution and interpolation method at each study site. 

Realistically, a threshold area will not remain consistent for each site; however, this 

assumption was necessary to allow for control in comparisons between the unique 

landscapes. 

 Due to an observed variability in watershed area, changes in the length of the 

entire drainage network were analyzed through drainage density, determined as a ratio of 

the total stream length to watershed area (Horton, 1932). The drainage density normalizes 

the stream length by watershed area and allows for a more suitable attribute for 

comparison between DEMs than stream length. No trends were obvious in drainage 

density results when comparing the spatial resolution and interpolation results 

individually. However, trends between the spatial resolution and drainage density became 

apparent when the interpolation results were averaged for each individual spatial 

resolution. 

 Variability was introduced in the relationship between spatial resolution and 

drainage density due to the necessity of a constant stream initiation threshold. Therefore, 

a single channel for all DEMs at each site was also extracted for length analysis. The 

single stream channel was chosen as the longest path of successively decreasing Strahler 

stream orders (Strahler, 1952) from the watershed outlet to the headwaters. Since the 

Thomas Brook watershed experiences a convergence of two main channels of equal 
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magnitude approximately one third of the distance from the watershed outlet, and 

because each of these main channels were surveyed in field validation, they were both 

included in the analysis. At Mosquito Creek and Scotty Creek only the single main 

channel was considered. 

2.3.4 Thomas Brook GPS field validation measurements 

 

 A field validation was performed to determine the spatial accuracy and overall 

length of the stream network delineation in Thomas Brook. Validation included a ground 

survey of the main river channel, performed with a Real-Time Kinematic (RTK) GPS 

survey during June, July and August of 2011. The ground survey consisted of collecting 

cm level horizontal position and elevation observations along the centreline of the main 

channel in the watershed during base flow conditions. A small portion of channel near the 

outlet was neglected because it had been mechanically straightened and therefore did not 

represent a naturally evolving stream channel.  

 An estimate of the ‘true’ stream length was obtained by summing the linear 

distance between successive GPS observations. The accuracy of the predicted stream 

lengths determined from the DEMs at Thomas Brook was obtained by comparison with 

the length obtained from GPS field measurements. An estimate for the spatial accuracy of 

delineated streams was determined through a ‘buffer analysis’, which determined the 

percentage of the field surveyed GPS locations that fell within a 3 m wide buffer of the 

delineated stream in each DEM.  

2.3.5. Determination of the fractal dimension of stream length 

 

 The existence of a scaling relationship between the DEM spatial resolution and 

the stream length was investigated by determining whether the variables took the 

theoretical form of a power function. In its most simple form, the power function is 

written as (Rodrìguez-Iturbe and Rinaldo, 1997): 

  (2.1)  g x ax
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where g(x) is the stream length, x is the DEM spatial resolution, and a and α are constants 

determined from experimental data. The fractal dimension (D) is related to the exponent 

in the power function as: 

  (2.2) 

The value for D can be similarly determined as the slope of a best fit line through a log-

log plot of the spatial resolution and stream length. An estimate of the fractal dimension 

was obtained for the main channel stream length for all interpolation methods at Thomas 

Brook and Mosquito Creek. Variability in the main tributary channel at Scotty Creek 

prevented a reliable estimate of the fractal dimension. Therefore, the values for fractal 

dimension obtained from each interpolation method at Thomas Brook and Mosquito 

Creek were averaged to achieve a single site independent estimate (Dav). The scaling 

relationship defined by Dav was used to predict stream lengths, which would be obtained 

from the 1 m DEM from the length obtained from the 50 m resolution DEM. The 

accuracy of the re-scaled stream length estimates was described through a relative error 

to the stream lengths obtained from the stream delineations of the 1 m DEM.  

2.4 Results and discussion 

 The results are organized into sections describing the watershed area, drainage 

density, and the single stream analysis, each including all three case study sites. 

Watershed area results discuss observed scale-dependent irregularities, as well as the 

suitability for hydrological analysis according to the Gyasi-Agyei et al. (1995) ratio. The 

suitability test was applied to Mosquito Creek and Scotty Creek, the two end-member 

case studies of possible relief variation. The drainage density section presents observed 

results on potential scaling behaviour of DEM spatial resolution with the length of the 

entire drainage network. The single stream section presents results of the spatial accuracy 

of the main channel stream delineations obtained through the buffer analysis, the 

accuracy of modeled stream lengths, the determinations of the fractal dimension, and the 

predicted 1 m stream lengths from 50 m stream lengths through the observed fractal 

scaling relationship. 

1D  
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2.4.1 Watershed areas 

 
 2.4.1.1 Thomas Brook 

 At Thomas Brook, the coarse spatial resolution DEMs tended to produce smaller 

watershed areas apart from the IDW and MA 50 m DEMs (Figure 2.2). The reduction in 

watershed area in coarse resolution DEMs is attributed to the exclusion of a section of the 

watershed in the south-western corner of the site (Figure 2.3), where the coarse resolution 

DEMs could not represent a drainage ditch and road blockage. The field verified drainage 

network flows easterly in a ditch along the northern edge of the road boundary until it 

reaches the outlet, correctly represented in the 1 m and 5 m DEMs. The DEMs, which 

were 10 m and lower in resolution, contained spacing between grid nodes that was larger 

than the 8 m wide roadbed. At some location along the roadway the lower resolution 

DEM grid nodes are located on adjacent sides of the road at elevations lower than the 

road surface. This allows an incorrect flow path across the road and causes 10% of the 

watershed to diverge to an incorrect outlet point. This error is a combination of both the 

DEM resolution and width of the roadbed. As the roadbed has a defined width of 8 m, the 

error is scale dependent. The 10 m DEM represents the finest resolution DEM tested, 

which could cause this error.  

 2.4.1.2 Scotty Creek 

 Area estimates for the Scotty Creek watershed are highly variable among both 

spatial resolution and interpolation methods (Figure 2.2). The relative change in area 

reached 53%, well above the levels of increase observed at either Thomas Brook or 

Mosquito Creek. This result corroborates existing evidence that determination of 

watershed attributes is difficult in low relief landscapes. For example, Lohani and Mason 

(2001) identified that unacceptable levels of error of commission and omission existed in 

the determination of fluvial channels in tidal flats with a LiDAR derived DEM and the 

D8 algorithm. They identified that errors were due to a high incidence of random error 

and distinctive morphological characteristics of the channels in tidal flats, such as 

enclosure by raised banks (Lohani and Mason, 2001). Uncertainty in watershed area is 

introduced at Scotty Creek through measurement error, resulting from low-lying  
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Figure 2.2 Change in watershed area for each interpolation method and spatial  

  resolution as compared to the area determined from the TIN  

  interpolation method at a 1 m spatial resolution for each study site. 
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Figure 2.3 Watershed delineation of 1 m IDW DEM and 50 m IDW DEM. 

  

vegetation and surface saturation, which biases laser return signals (Hopkinson et al., 

2005). The direction of flow paths and inclusion of areas is biased by elevation 

uncertainty introduced through non-ground objects, which remained after filtering, or 

measurement error introduced through laser reflections with a low signal to noise ratio 

returned from saturated surfaces. Subsequently, irregularities in area result in random 

variability and do not show obvious scale dependence for the tested resolutions or 

relationship to interpolation method. 

 The lack of consistency in the estimates of area can be explained through the 

Gyasi-Agyei et al. (1995) suitability ratio. To quantify this value, an estimate of the DEM 

vertical error is required to estimate DEM precision. Considering the complicated 

interaction of error sources, conclusive error estimations across the Scotty Creek site are 

difficult to predict and no ground validation data is available for empirical error 

assessments due to the remote location of the site. Of the available previous studies, 

which focused on LiDAR error sources, the study performed by Hopkinson et al. (2005) 
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analyzed error in a landscape similar to that of Scotty Creek. In this study the standard 

deviation of height errors ranged from 0.10 m to 0.18 m depending on vegetation type, 

although larger errors have been observed in other vegetation types (Hodgson and 

Bresnahan., 2004). The 1 m TIN DEM of Scotty Creek resulted in the largest overall 

mean slope of 2.6°, which leads to an average drop of 0.05 m per pixel. Therefore, the 

ratio for this pixel drop to DEM precision, assuming an optimistic vertical precision 

(0.10m) observed by Hopkinson et al. (2005), is 0.5. This value is well below the unit 

ratio required for DEM suitability suggested by Gyasi-Agyei et al.(1995). Even under 

ideal flight and terrain conditions, the level of precision required to reach a suitability 

ratio near unity in this landscape is approaching achievable accuracy limits of current 

LiDAR sensors (Goulden and Hopkinson, 2010a). Localized terrain variation below the 

random error in DEM grid nodes will lead to incorrect and random deviations in flow 

paths and boundaries at the local scale. Therefore, the collected LiDAR data may not be 

suitable for detailed accurate hydrological flow path analysis in this landscape using a 1m 

DEM. 

 Increasing the DEM grid spacing increases the average elevation drop per pixel 

by allowing for larger potential changes in relief and relaxes the DEM error precision 

requirements in the Gyasi-Agyei et al. (1995) suitability test. For example, the 50 m TIN 

DEM resulted in an average slope of 0.25°, which corresponds to an average pixel drop 

of 0.22 m and a suitability ratio of 2.2, assuming optimistic error circumstances. The 

improved ratio may seem encouraging, however, the decrease in spatial resolution 

introduces additional uncertainty by ignoring variations in the landscape which are 

smaller than the grid cell size and this can have a large influence on the overall drainage 

area. If LiDAR is intended for analysis in this type of landscape, a potential solution is to 

increase the density of raw observations, which will reduce the magnitude of random 

error and increase the precision of individual DEM grid nodes. However, if elevation 

uncertainty is being introduced through surface cover such as or low lying vegetation an 

increase in data density may prove unsuccessful. To properly characterize the basin 

hydrology improved raw point filtering routines, or alternative stream network processing 

routines are required.  
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 2.4.1.3 Mosquito Creek 

 The Mosquito Creek results show a relationship of increasing watershed area as 

the spatial resolution becomes lower (Figure 2.2). The overall magnitude of the change in 

area is approximately 2.0%. The trends are relatively consistent across all interpolation 

methods, in contrast to the results obtained at Thomas Brook and Scotty Creek. The slight 

increase in the watershed area at the coarse spatial resolution was due to the inclusion of 

a small additional area of the watershed (Figure 2.4). The deviation has a scale 

dependence as the fine resolution DEMs correctly represented a ridge, which caused a 

barrier to flow and excluded the small area while the coarse resolution DEMs permitted 

flow across the ridge. Despite the small deviation, the Mosquito Creek site shows 

consistency, which was not available at either Thomas Brook or Scotty Creek. 

 

Figure 2.4 Mosquito Creek watershed delineation derived from the 1 m NN  

  DEM overlaid on the watershed delineation derived from the 50 m  

  NN DEM. A) overview of the entire watershed, B) magnified view of  

  an area, which showed a discrepancy between the two delineations. 

 

 The consistency at Mosquito Creek can be related to the Gyasi-Agyei et al. (1995) 

ratio. The average slope across the entire site for the TIN DEM at a 1 m resolution is 25°, 

which corresponds to an average pixel drop of 0.47 m. Although LiDAR error levels are 

known to increase in sloped environments due to complications related to the interaction 

of the laser pulse with sloped terrain and inherent horizontal uncertainty, mean errors 

typically do not reach levels near 0.47 m. Therefore the 1 m DEM at Mosquito Creek 
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results in a suitability ratio of greater than one, indicating favorable conditions for 

hydrologic network extraction.    

2.4.2 Drainage density 

 

 A relationship between interpolation method and drainage density did not exist 

with the exception of the MA method, which resulted in the lowest drainage density at 

each site. Therefore, focus is on the relationship between spatial resolution and drainage 

density. Scotty Creek was the only site to demonstrate the hypothesized decrease in 

drainage density with increasing DEM grid cell size (Figure 2.5).  

 

Figure 2.5 Drainage density of each watershed averaged across all gridding  

  methods for each spatial resolution 

  

Thomas Brook exhibits a decrease in drainage density as cell size increases initially; 

however, no significant further decreases occur at the 10, 25 and 50 m resolutions.  

Mosquito Creek shows a decrease at high resolutions (1, 5 m) followed by an increase at 

the 25 and 50 m spatial resolutions. The unexpected increase in drainage density occurs 

in the low resolution DEMs at Mosquito Creek is a result of an increase in total length of 

first order streams (Figure 2.6). 

 The increase in the total length of first order streams is a result of the convergent 

topography at Mosquito Creek, which facilitates attaining the stream initiation area 

threshold at higher elevations on the hillslope (Figure 2.6). In coarse resolution DEMs, 
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the threshold area is more easily met since fewer cells are required to collectively drain to 

a common point. The increase in the likelihood of a small number cells with a large area 

initiating a stream results in the increase in the length of first order streams in coarse 

resolution DEMs. Since Scotty Creek is characterized by divergent topography with 

subtle changes in relief, the likelihood of a meeting the contributing area threshold for 

stream initiation is low, even at coarse resolutions, and the length increase of first order 

streams did not occur. Therefore, the drainage density decreased as expected due to the 

loss of details in the drainage network at coarse resolutions. At Thomas Brook, the 

existence of moderate and subtle changes in relief resulted in drainage density results, 

which were not as extreme as that of Scotty Creek or Mosquito Creek. Therefore, the 

length of the entire drainage network is related to the resolution of the DEM, the choice 

of stream initiation threshold, as well as the topographic landscape characteristics within 

the basin. Due to the interaction between these variables, the hypothesized scaling 

relationship cannot be established between the drainage density of a stream network and 

changes in scale initiated through changes in spatial resolution. 

 

Figure 2.6 Total stream lengths of all stream orders for 1m and 50m spatial  

  resolution DEMs for Mosquito Creek. 
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2.4.3 Single stream analysis 

 2.4.3.1 Spatial accuracy of Thomas Brook watershed stream 

 delineation 

 The 1 m resolution DEM resulted in the most accurate stream delineation with 

approximately 71% of validation points falling within the 3 m buffer (Table 2.2). The 

MA interpolation method was the exception, resulting in the lowest accuracy among the 1 

m resolution DEMs. The inaccuracy of the MA algorithm is attributed to a section of the 

stream in which the delineation followed an erroneous path compared to the field 

validated stream network (Figure 2.7a). The erroneous flow path occurred in an area of 

low relief and is due to a slight perturbation in elevation causing the stream to incorrectly 

deviate. At the 1 m level of spatial resolution the MA interpolation also tended to reduce 

the overall sinuosity of the stream network and additional inaccuracies occurred in 

sections of the river with substantial meanders (Figure 2.7b). The reduction in sinuosity 

of the MA method occurs due to the equivalent weighting of all raw data points in the 

determination of DEM grid node elevations, which created a smoothing effect. 

Inaccuracy at the 1 m level for the remaining interpolation methods was also a result of 

the underrepresentation of meanders in the streams because of the inability of the DEMs 

to represent the stream channel at resolutions finer than the 1 m cell size. As the DEM 

resolution became increasingly coarse, finer details were further lost and the accuracy 

continually degraded, as shown in Table 2.2. At the 50 m resolution the DEM stream 

delineations generally contained only 7% of the validation points.  

 

Table 2.2 Spatial accuracy of stream delineations in Thomas Brook where the  

  percentage represents the number of validation points that fell within  

  a 3 m stream buffer. 
 

 1 m (%) 5 m (%) 10 m (%) 25 m (%) 50 m (%) 

IDW 71.5 40.1 22.2 10.0 6.3 

Kriging 71.6 51.0 22.9 13.5 7.2 

MA 48.1 45.6 28.6 14.5 7.7 

NN 71.0 52.0 23.0 13.7 7.2 

TIN 71.2 52.5 22.3 13.4 7.2 

Mean w/o 

MA 71.3 48.9 22.6 12.7 7.0 
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Figure 2.7 Buffer analysis of the field validated stream locations and delineated  

  streams. A) illustrates the offset between the section of stream   

  derived from the 1 m MA DEM and that surveyed in the field, B) 

  illustrates errors in the MA 1 m stream position due to reduced  

  sinuosity. 

  

 2.4.3.2. Stream length 

 The sum of the linear segments between GPS validation points resulted in a total 

distance of 10,403 m, longer than any of the delineated stream lengths found from the 

DEMs. The 1 m DEMs produced the most accurate estimation of the overall stream 

length (Table 2.3). Similar to the spatial accuracy results, the 1 m DEM generated with 

the MA interpolation algorithm was the most inaccurate and was removed from the 

calculation of average error. The remaining lengths resulted in an average error of only 

3.7%. This suggests that for watersheds at the scale of Thomas Brook (~680 ha) the most 

accurate DEM resolution for stream length analysis is less than 1 m. The 50 m DEMs 

resulted in a length that was shorter than the field verified stream length by nearly 25%. 

Therefore, we can expect that simulated hydrological outputs using typical watershed 

runoff modeling approaches, such as peak runoff volume and timing, or sediment yield 

will incur systematic calibration or prediction errors commensurate with the weighting of 

the stream length parameter. For example, peak timing will tend occur earlier with 

shorter stream lengths along with an increase in peak magnitude. 
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Table 2.3 Percentage error of main channel stream length at Thomas Brook  

  calculated as the ratio of the difference between the DEM observed  

  stream length and the field verified stream length. 

 

 1 m 5 m  10 m  25 m 50 m  

IDW 3.6 11.1 16.6 24.5 25.1 

Kriging 3.8 9.1 15.2 22.3 24.6 

MA 9.3 12.8 16.9 23.2 24.5 

NN 4.1 9.3 15.2 22.2 23.4 

TIN 3.4 9.0 16.0 22.0 23.4 

Mean w/o MA 3.7 9.6 15.8 22.8 24.1 

 

2.4.3.3 Prediction of stream lengths 

 A scaling relationship between spatial resolution and main channel stream length 

was observed at Thomas Brook (Figure 2.8a) and Mosquito Creek (Figure 2.8c). The 

relationship was not identifiable at Scotty Creek (Figure 2.8b) because uncertainty 

introduced by LiDAR sensor measurement error caused deviations in stream location 

between the different resolutions. Table 2.4 summarizes the fractal dimension found for 

each interpolation method at Thomas Brook and Mosquito Creek as well as the average 

fractal dimension of all interpolation methods. The average fractal dimension (Dav) 

between all interpolation methods at both Thomas Brook and Mosquito Creek was 

determined to be 1.059, which agrees with previous determinations for single stream 

channels, such as those reported by Tarboton et al. (1988) to be between 1.04 and 1.07. 

 

Table 2.4 Fractal dimension of stream length due to scaling of spatial resolution 

 

Interpolation Method Thomas Brook Mosquito Creek 

IDW 1.070 1.052 

Universal Kriging 1.066 1.049 

Moving Average 1.051 1.061 

Nearest Neighbour 1.062 1.061 

Triangular Irregular Network 1.062 1.055 

Average 1.062 1.056 
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 Since the 1 m DEM resulted in the most accurate stream lengths at Thomas 

Brook, the Dav (1.059) was used to re-scale stream lengths generated from the 50 m 

resolution DEMs to values that would be expected to be generated from 1 m resolution 

DEMs (Table 2.5). This exercise was undertaken to demonstrate how fractal relationships 

could be used to “correct” stream lengths generated using coarse resolution DEMs. Table 

2.5 contains a length error (in units of metres) and an error percentage of estimates of 1 m 

DEM stream lengths obtained from re-scaling the 50 m DEM lengths using Dav. At both 

the Thomas Brook and Mosquito Creek sites the predicted stream lengths are within 5% 

of the lengths delineated from the 1 m DEM directly. The estimate from the MA 

interpolation algorithm was the least accurate at Thomas Brook, this is not surprising 

considering the spatial inaccuracies that were previously identified. In both the Thomas 

Brook and Mosquito Creek sites the TIN and NN interpolation methods resulted in the 

most accurate predictions. Scotty Creek showed the least accurate overall predictions, 

which were in some cases approximately 10% higher in error than predictions at Thomas 

Brook and Mosquito Creek. The poor performance at Scotty Creek can be attributed to 

the previously identified complication of the stream paths not following repeatable 

channels. Also, it is possible that a different optimum value of fractal dimension would 

be obtained for this landscape had the appropriate stream data been available. Despite 

these complications, a reasonable estimate (< 14% difference) of the lengths obtained 

from the high resolution DEMs could be obtained from the low resolutions DEMs at 

Scotty Creek. 

 

Table 2.5 Absolute error in 1 m estimates based on average estimates of fractal  

  dimension. 

Interpolation Method Thomas Brook Mosquito Creek  Scotty Creek 

IDW 218 (2.2%) 237 (2.4%) 177 (1.5%) 

Universal Kriging 125 (1.2%) 427 (4.2%) 1892 (13.7%) 

Moving Average 453 (4.8%) 143 (1.5%) 1434 (13.6%) 

Nearest Neighbour 67.0 (0.7%) 21 (0.2%) 1577 (11.4%) 

TIN 9.5 (0.1%) 167 (1.6%) 1015 (7.7%) 

Average 175 (1.8%) 199 (2.0%) 1219 (9.6%) 
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Figure 2.8 Variation of DEM spatial resolution with main channel stream length  

  for the Universal Kriging interpolation method, at A) Thomas Brook,  

  B) Scotty Creek, C) Mosquito Creek. 
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2.5 Conclusion 

 Choices surrounding the generation of LiDAR derived DEMs, including the 

spatial resolution and interpolation method, will affect the representative scale of the 

topography and elevation of grid nodes. The spatial resolution will contribute to 

variability in DEM based watershed attributes such as basin area, stream location and 

stream length, while the interpolation method can affect the stream location and length. 

These attributes are important inputs to distributed parameter watershed models, capable 

of simulating the hydrologic response of a basin, and developing sustainable 

environmental planning initiatives. This research investigated i) the existence of DEM 

scale dependent irregularities between watershed extents and stream length in three 

topographically distinct landscapes, ii) a fractal scaling relationship between DEM 

resolution and stream length, iii) the ideal scale for determining the stream length in the 

Thomas Brook Watershed, and iv) the sensitivity of watershed area and stream attributes 

to the DEM interpolation method. 

 At Thomas Brook watershed it was found that watershed area exhibits 

dependence on DEM spatial resolution due to landscape features, which become 

identifiable at different DEM resolutions. These irregularities occurred due to coarser 

DEM resolutions (10-50 m), which created an incorrect drainage path across a road and 

resulted in more than 10% of the true watershed area diverting to a separate outlet. 

Therefore, in areas with urban features the highest resolution DEM available is 

recommended as long as appropriate hydrologic enforcement is applied to correct 

anthropogenic modifications of the landscape. At the Mosquito Creek site a small portion 

of the watershed near the selected outlet was included in the coarse resolution DEMs (50 

m), which caused a slight increase in the overall area (~2.5%). Since only minor changes 

were observed, if watershed area is the only attribute of interest in an alpine environment 

a high spatial resolution DEM is not required and the selection of spatial resolution 

should be based on efficiency and ease of data processing. Scotty Creek exhibited the 

largest overall variation in watershed area containing differences of up to 53% in area. 

The high variability at the Scotty Creek site was not due to scale dependent irregularities, 

but was related to the variability of elevation estimates at DEM grid nodes. DEM grid 

node variability was introduced by land cover conditions, such as low lying vegetation 
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and saturated ground surfaces. Conservative rules for DEM suitability recommended by 

Gyasi-Agyei et al. (1995) detected that 1 m LiDAR DEMs in this environment were 

insufficient for extraction of stream networks given their uncertainty. If fine resolution 

LiDAR DEMs are needed in this type of boreal tundra landscape for hydrological 

analysis, emphasis should be placed on reducing vegetation cover noise and on 

hydrological pre-conditioning of the DEM. Watershed analysts should be aware that the 

high resolution afforded by LiDAR derived DEMs will reduce the uncertainty in the 

determination of watershed area in low relief environments if the noise in DEM grid 

determinations is lower than the relative changes in elevation. 

 The total length of a drainage network, as represented by drainage density, was 

hypothesized to decrease as the DEM spatial resolution became increasingly coarse due 

to the loss of fine scale details in the stream network as previously observed in 

(Hemlinger et al., 1993; Garbrecht and Martz, 1994; Wang and Yin, 1998, Thieken et al., 

1999). This phenomenon was initially observed across all resolutions for Scotty Creek 

and at resolutions of 1 to 25 m for Thomas Brook and 1 to 10 m for Mosquito Creek. 

However, as DEM resolution decreased further at Mosquito Creek, the drainage density 

began to increase due to an average lengthening of first order streams. This is a result of 

the convergent alpine topography at Mosquito Creek increasing the likelihood of stream 

initiation. The consistent decrease in drainage density to DEM resolution observed at 

Scotty Creek was due to the divergent topography preventing surface flow accumulation 

and stream initiation. The results of this research have shown that, in addition to the 

DEM resolution and stream initiation threshold, the topographic characteristics will also 

exert influence on the total length of the drainage network, which prevents the 

determination of a generalized scaling relationship. 

 A comparison of a field observed and DEM simulated main channel stream 

lengths from each resolution DEM at Thomas Brook showed that the 1 m resolution 

DEMs produced the most accurate length, but was approximately 3-5% short. The 1 m 

DEMs also showed the highest spatial accuracy through a buffer analysis of the field 

verified stream location. If stream network length and spatial accuracy are critical 

attributes to be developed from the DEM, than the highest resolution of data available is 

recommended, as the 1 m DEM represented the best available DEM resolution at Thomas 
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Brook. A hypothesized scaling relationship between grid resolution and main channel 

stream length, described by a fractal dimension, was shown to exist. The fractal 

relationship can be exploited to estimate stream lengths at any given scale. The scaled 

estimates of stream lengths at the 1 m DEM resolution showed an agreement of less than 

5% to those delineated from the 1 m DEM.  

 The existence of scale dependent irregularities indicates that careful consideration 

of the major features within a site should be undertaken prior to selection of DEM spatial 

resolution. Additional scale dependent irregularities could exist in other landscapes or 

surface conditions, which were not identified from the three sites tested here. Further 

scaling analyses in a broader cross-section of sites with unique features would be 

beneficial to reveal further irregularities at distinct scales. This would provide more 

robust information for watershed analysts when selecting or acquiring DEM information 

for a site of interest. Although the 1 m DEM was identified to result in the best 

representation of the stream length in Thomas Brook, larger scale watersheds with higher 

stream orders may not show similar results. Further field investigations would be 

beneficial in estimating the ideal scale for stream length analysis in larger scale basins 

with different landscape and topographic conditions prior to implementing the scaling 

relationship. If the ideal scale can be determined, this relationship has practical 

application to distributed watershed modeling as the stream length can be scaled from the 

resolution of the available DEM to the ideal resolution. Corrected stream lengths will 

improve model parameterisation and performance and lead to more accurate simulated 

hydrological model outputs. Higher accuracy simulated outputs will provide improved 

information for designing environmentally sustainable planning strategies and policy. 
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CHAPTER 3  SENSITIVITY OF DEM, SLOPE, ASPECT  
   AND WATERSHED ATTRIBUTES TO   
   LIDAR MEASUREMENT UNCERTAINTY 
 

3.1 Introduction 

 A virtual representation of land surface topography is a fundamental data source 

for paramaterizing rainfall-runoff models as terrain morphology influences surface flow 

processes. The common form of a virtual terrain surface is a grid cell based DEM, which 

can be used to determine topographic attributes such as slope (S) and aspect (𝜓) (Gallant 

and Wilson, 2000), and watershed attributes such as basin area and stream network 

topology (Jensen and Dominigue, 1988; Martz and Garbrecht, 1993). As a measured 

input, the DEM is subject to various sources of error (Gong 2000; Fisher and Tate, 2006; 

Wechsler, 2007), therefore, users should exercise appropriate due diligence should be 

undertaken to understand the reliability of the DEM as well as derived topographic and 

hydrological products. Despite knowledge of the existence of DEM errors, Wechsler 

(2003) identifies that the majority of DEM users do not account for uncertainty in DEMs 

or derived topographic parameters. Ignorance of DEM uncertainty and its influence to 

hydrological model predictions can promote false conclusions and undermine decision 

making for water resource planning initiatives.   

 Due to their high spatial resolution and accuracy, LIDAR (Light Detection and 

Ranging) derived DEMs are increasing in usage for derivation of hydrological products 

as demonstrated by recent research endeavors (e.g. Barber and Shortridge, 2005; Murphy, 

2008; Remmel, 2008; Hopkinson, 2009; Li and Wong, 2010; Beeson et al., 2012; Li et 

al., 2011). As LiDAR derived DEMs are being increasingly used by the hydrological 

modeling community, there is a need to assess the sensitivity of hydrological products to 

LiDAR measurement errors. Several studies have empirically demonstrated the existence 

of errors in LiDAR observations (Huising and Pereira, 1998; Reutebach et al., 2003; 

Hodgson and Bresnahan, 2004; Hodgson et al., 2005; Csanyi and Toth, 2007; Goulden 

and Hopkinson, 2010a), however, no studies have propagated these errors into the 

determination of a LiDAR DEM and derived products, such as primary topographic 
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attributes, or delineated watershed extent and stream networks. A study was performed 

by Lindsay (2006), which investigated the sensitivity of DEM elevation errors to 

hydrologic network extraction with a high resolution LiDAR DEM. Four methods of 

hydrologic network extraction were investigated, including two valley recognition 

techniques, and two channel initiation techniques. Within his analysis, DEM elevation 

uncertainty was simulated using several assumed RMSE values, including 0.10, 0.50, 

1.00 and 5.00 m. These values may not represent the true error characteristics of the 

DEM.  

 To obtain three dimensional ground coordinate errors, primary LiDAR sensor 

measurements can be propagated through the LiDAR direct geo-referencing equation 

(Vaughn et al., 1996). Primary measurements include the sensor position and attitude, a 

scan angle and a laser range. Primary measurement error takes the form of both 

systematic bias and random noise (Wolf and Ghilani, 1997). A systematic bias tends to 

affect all observations similarly, whereas random errors will be variable and 

unpredictable. The source of a systematic bias can often be identified, modeled, and 

eliminated, therefore, does not require treatment here. Random errors act in an 

unpredictable fashion and are unavoidable, therefore, effort is necessarily placed on 

quantifying and understanding their effects to derived DEM products. Procedures for 

placing statistically derived limits on observed three dimensional LiDAR positions due to 

random measurement errors have been developed by Glennie (2008), and Goulden and 

Hopkinson (2010a).  

 Goulden and Hopkinson (2010a) demonstrated that random measurement errors 

of primary LiDAR observations tend to propagate more severely into three dimensional 

coordinate observations as the scan angle and aircraft altitude increases. Previous 

empirical evidence has also identified that LiDAR errors will increase in areas of high 

terrain slope (Huising and Pereira, 1998; Hodgson et al., 2003, Hyyppä et al., 2005). 

Schaer et al. (2007) theoretically identified that an increase in LiDAR coordinate error in 

areas of high slope is related to the incidence angle between the laser pulse and the 

intercepted terrain (Ɵ𝑖). An increase in LiDAR coordinate error with an increase in Ɵi is 

caused by a spread of the laser energy across the terrain (Schaer et al., 2007; Morton and 

Young, 2012), which increases range uncertainty. Hodgson et al. (2005) also discuss an 
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increase in LiDAR elevation coordinate uncertainty in sloped environments according to 

the well-known Koppe formula, which predicts an increase in elevation error on sloped 

terrain due to the existence of horizontal error as 

  (3.1)  

Despite the observed dependence of LiDAR errors on acquisition and terrain variables, 

no attempt has been made to illustrate the spatial distribution of error and its relationship 

to terrain conditions or LiDAR survey acquisition parameters. 

 The objective of this Chapter is to perform an uncertainty analysis of topographic 

attributes (slope, aspect) and watershed attributes (stream length, watershed area) to 

random primary LiDAR measurement errors in a high resolution LiDAR derived DEM. 

Additionally, observed uncertainty was related to survey acquisition parameters and 

terrain conditions in the form of Ɵ𝑖, and terrain slope, respectively. Slope and aspect are 

chosen as topographic derivatives for analysis because of their importance to stream 

network extraction and hydrological modeling. Slope is related to flow velocity, which 

affects peak flow timing and magnitude, as well as the erosive potential of surface flow. 

Aspect was included because of its importance in the derivation of watershed extent and 

stream networks. However, similar analysis could be further applied to additional 

topographic derivatives such as curvature or the topographic index. Watershed area and 

stream length are selected because they are common quantities for estimating rainfall-

runoff relationships and are required for the parameterisation of a broad cross- section of 

distributed and semi-distributed hydrological models. 

 A visual qualitative assessment is provided for the uncertainty in the DEM grid 

node elevations (𝜎𝐷𝐸𝑀), slope (𝜎𝑆), and aspect (𝜎𝜓). The visualisation of uncertainty 

offers a tool for identifying regions with unsuitable uncertainty and provides easily 

interpretable information on the spatial pattern of uncertainty. A spatially explicit 

determination of the Gyasi-Agyei et al. (1995) metric, given by the ratio of DEM 

precision to the average pixel drop, is also provided. As originally proposed, the Gyasi-

Agyei et al. (1995) metric was used to determine a global DEM suitability for stream 

network extraction. The metric was calculated as the ratio of DEM precision to the 

average elevation drop of DEM grid nodes. Given that the analysis presented here 

 *tanElevation HorizontalError Error S
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generates a unique estimate of 𝜎𝐷𝐸𝑀 for each grid cell in the DEM lattice, it allows a 

spatially explicit assessment of the Gyasi-Agyei et al. (1995) ratio. Knowledge of the 

ratio on a cell specific basis allows estimates of hydrologic suitability due to varied 

terrain and acquisition criteria present throughout the DEM, which could allow users to 

detect regions with unacceptable levels of uncertainty for stream network extraction. The 

results of this uncertainty analysis will provide guidance for assessing the suitability of a 

LiDAR derived DEM as a source for DEM information by demonstrating the level of 

expected uncertainty in hydrological products. If the maximum level of uncertainly for a 

given project is known a priori, informed decisions can be made on LiDAR mission 

planning parameters to ensure uncertainty targets are met during data acquisition, or to 

plan alternative measures for collection of higher accuracy topographic information.  

3.2 Methods 

3.2.1 Study site 

 

 The study site chosen for the analysis is the 689 ha Thomas Brook watershed 

located near Berwick, Nova Scotia, Canada (Figure 3.1A). The site consists of a hill to 

valley transition with the headwaters beginning on a northern mountain at an elevation of 

200 m a.s.l. Stream flow is southerly and drops to the valley floor of approximately 10 m 

a.s.l. The majority of the watershed exists on the valley floor where slopes derived from a 

1 m DEM range between 0° and 5° (Figure 3.1B). As the watershed transitions from hill 

top to the valley floor slopes can be as high as 32°, although this is rare as 95% of slopes 

across the entire site are below 18° (Figure 3.1B).Two main channels are initiated at 

headwater locations on a northern mountain and join into a single channel on the valley 

floor at approximately two-thirds of the total length (Jamieson et al., 2003). 
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Figure 3.1 A) The Thomas Brook watershed location within Canada, B) slope  

  map obtained from a 1 m LiDAR DEM, C) map of resulting Ɵi from  

  the Thomas Brook LiDAR survey 

 

 The LiDAR survey of the Thomas Brook watershed was performed in August of 

2006 with an Optech ALTM 3100 system (Optech, 2004). The survey was flown at an 

altitude of 900 m a.g.l. and consisted of over 18 million points from 8 parallel linear 

swaths. The survey flight plan was designed so the edge of one swath reached the centre 

of the adjacent swath, resulting in 50% overlap between swaths. The scan angle was set 
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to 15°, which created values of Ɵ𝑖 that generally ranged between 0° and 15° on flat 

terrain (Figure 3.1C). The laser pulse was generated in narrow beam mode, which 

provides a beam envelop of 0.3 mRad at the 1/e power level (Optech, 2004). The 

minimum spacing between neighboring points was less than 1.46 m for 95% of the 

observations and averaged 1.08 m. Echo returns from non-ground objects such as 

vegetation and buildings were removed in a classification and filtering routine available 

in Terra Scan, a proprietary LiDAR processing software package. RMSE (Root Mean 

Square Error) values for the aircraft trajectory used in execution of error models were 

obtained from Applanix's POSPac MMS (Applanix, 2013) trajectory processing software 

(Table 3.1). 

 

Table 3.1 Average aircraft trajectory RMSE information provided by POSPAC  

  MMS (Applanix, 2013) for the Thomas Brook LiDAR survey 

 

Trajectory component Mean estimated RMSE 

X 0.025 m 

Y 0.025 m 

Z 0.040 m 

Roll 17.3" 

Pitch 17.0" 

Yaw 92.7" 

 

3.2.2 Estimation of DEM uncertainty  

 

 Initial predicted errors of elevation coordinates are determined by applying the 

General Law of Propagation of Variances (GLOPOV; Wolf and Ghilani, 1998) to the 

LiDAR direct georeferencing equation. Error propagation with the GLOPOV requires 

raw range and scan angle observations, detailed trajectory information including aircraft 

attitude (roll, pitch, yaw), three dimensional position and the associated errors of each of 

these observations (Goulden and Hopkinson, 2010a). The initial hardware errors are 

integrated with a model of the terrain slope, determined from the LiDAR observations, to 

predict additional errors due to terrain conditions following Goulden (2009). The 

resulting data set is a compilation of the original observed three dimensional point 

observations, each with modeled elevation coordinate error boundaries.  
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 To propagate the error in elevation coordinates to the DEM, a Monte Carlo 

simulation procedure was implemented. Consider the original observed set of all LiDAR 

coordinate observations in the survey as {So} and additional realizations as {SN}, where N 

represents the realization number. Each {S} will contain every three dimensional 

coordinate observation (xp,yp,zp) in the LiDAR survey, where p represents the point 

number. An elevation error (ep,N) is generated for each zp,N by randomly selecting a value 

from a normal distribution within the modeled error boundaries. Each ep,N was added to 

the appropriate elevation observation to realize all {SN} as follows; 

   (xp,N,yp,N,zp,N)= (xp,o,yp,o,zp,o+ep,N).    (3.2) 

One hundred potential {SN} (N = 1→100) were simulated. From each {SN} a DEM was 

obtained through interpolation with a Triangular Irregular Network (TIN) surface at a 

grid spacing of 1 m. The TIN interpolation routine generates a surface by creating a set of 

triangular facets connecting neighboring coordinate observations in {S}. A grid based 

DEM is extracted from the TIN by obtaining the elevation from the triangular plane, 

which overlays each grid node location. The TIN interpolation routine was selected 

because it best honors the location of input elevations with minimal averaging. By 

honoring the true location of the data points, the TIN method will propagate a worst case 

scenario of ep,N to derived products. DEMs were chosen at a grid spacing of 1 m to best 

minimize uncertainty introduced through interpolation and to represent the finest 

available limit of resolution the density of coordinate observations allowed. The finest 

available limit of resolution is also advantageous because σDEM will most severely 

propagate into topographic attributes than in coarser resolutions (Erksine and Green, 

2007). The values for σDEM were determined on a cell specific basis by calculating the 

standard deviation for each cell from all DEM simulations. 

 Theoretically, both spatial and temporal autocorrelation could exist in the errors 

of the primary LiDAR observations. However, adequate research into the development of 

models to describe the temporal and spatial auto-correlation of primary LiDAR 

observations has not been undertaken. For the analysis presented here, it is assumed that 

errors in the primary LiDAR observations are temporally and spatially independent. 

Empirical evidence has also suggested an increase in LiDAR errors in vegetated areas 

(Hopkinson, 2005; Hodgson et al., 2005; Reutabach et al., 2003), however, theoretical 
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error models to account for vegetative factors have not been investigated. Since 

hydrological analysis requires only returns from the ground surface it is assumed that 

vegetative error sources will have minimal impact on the results presented here. 

3.2.2 Validation of predicted errors 

 

 To validate the modeled elevation error (𝜎𝑧), a comparison was made to elevation 

residuals (rz). The rz were found as the difference between the LiDAR elevations and 

elevations obtained from a higher accuracy source. The error modeling algorithm 

contains assumptions designed to produce ‘worst case scenario’ predicted errors, and 

therefore it is assumed that rz will be below 𝜎𝑧 in 95% of cases, indicating the values for 

𝜎𝑧 represent a two-sigma error boundary. To validate this assumption, a real time 

kinematic (RTK) GPS survey was executed in August of 2010. RTK GPS observations 

were selected as they can be determined to a higher accuracy than obtained through a 

LiDAR survey (< 2 cm). Validation information was observed on a flat roadway, a sloped 

roadway and a sloped forested area. The sites were chosen for their different landscape 

and slope conditions and because it was unlikely the ground surface had been disturbed 

since the 2006 LiDAR survey. A total of 100 three dimensional validation point 

coordinates (xv,yv,zv) were collected and fell within three separate overlapping flight lines. 

Line 5, Line 6, and Line 7 contained 45, 45, and 50 GPS validation points respectively. 

Each flight line was considered to be an independent set of observations allowing three 

empirical validation datasets to be compiled. Since no validation point will be co-located 

with a LiDAR coordinate observation, rz was determined as the elevation difference 

between a continuous terrain surface derived from the LiDAR observations and zv, at 

xv,yv. The surface was generated using a TIN to best honor the location of the true data 

points, while also minimizing interpolation errors. To extract the appropriate 𝜎𝑧 for 

comparison with rz a surface of the modeled elevation errors was also necessary. The 

surface was created with a TIN interpolation routine and 𝜎𝑧 was obtained from the 

modelled error surface at xv, yv. Prior to comparison of rz and 𝜎𝑧, a constant mean 

elevation error bias was averaged from each flight line and removed from rz to isolate the 

random error component. The existence of a mean bias will not adversely affect results 
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presented in this analysis since all elevations will be affected similarly, and will not 

contribute additional uncertainty to the DEM and derived products.  

3.2.4 Estimation of uncertainty in the DEM, slope and aspect 

 

 The DEM realizations were used to determine 100 slope and aspect grids in the 

ESRI ArcMap GIS (ESRI, 2003) software package, which uses the Horn method (Horn, 

1981). The Horn method determines slope and aspect on a cell by cell basis for a DEM 

by creating a least squares fit of a plane for a cell’s eight neighboring elevations. The 

equation of the plane is used to determine both the slope and aspect. The estimation for 

σS was quantified on a cell by cell basis as the standard deviation of each cell across all 

DEM realizations.  

 The determination of 𝜎𝜓 is not a straightforward calculation due to the cyclical 

nature of 𝜓; the north direction corresponds to 0° and 360°. To overcome this barrier, the 

following algorithm, following Oksanen and Sarjakoski (2005), was implemented. The 

aspect was reduced to horizontal east (x) and north (y) Cartesian vectors with a combined 

length equal to unity as follows 

𝑥 = cos(𝜓)     (3.3) 

𝑦 = sin(𝜓)     (3.4) 

where the associated unit vector (𝑢) can be expressed as 

𝑢 = √𝑥̅ + 𝑦̅     (3.5) 

where 𝑥̅ and 𝑦̅ are the mean of the east and north Cartesian vectors respectively. The 

formulation to solve for  aspect from 3.3 and 3.4 is 

 

𝜓̅ = {
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦̅

𝑥̅
) if|𝑦̅| < |𝑥̅|

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥̅

𝑦̅
) if|𝑥| < |𝑦̅|

 (3.6) 

In order to derive the variance in aspect, the associated uncertainty in the 𝑥 and 𝑦 

components must be propagated through (3.6) with the GLOPOV as follows, 

 
𝜎𝜓

2 = 𝐽𝜓̅𝛴𝑥𝑦𝐽𝜓̅
𝑇 = [

𝛿𝜓̅

𝛿𝑥

𝛿𝜓̅

𝛿𝑦
] [

𝜎𝑥
2 𝜎𝑥𝑦

𝜎𝑥𝑦 𝜎𝑦
2 ] [

𝛿𝜓̅

𝛿𝑥

𝛿𝜓̅

𝛿𝑦
]

𝑇

, (3.7) 
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where J is the Jacobian matrix, and includes the partial derivatives of (3.6) with respect to 

𝑥 and 𝑦. The 𝛴𝑥𝑦 matrix is the variance-covariance matrix containing the values for 𝜎𝑥
2, 

𝜎𝑦
2 and 𝜎𝑥𝑦, which are obtained through the Monte Carlo simulations of the aspect grid 

determined from each DEM realization. After re-arrangement, the final formulation for  

𝜎𝜓
2  can be written as 

 
𝜎𝜓

2 = (
𝑥̅

𝑢̅
)

2

𝜎𝑦
2 + (

𝑦̅

𝑢̅
)

2

𝜎𝑥
2 −

2𝑥̅𝑦̅

𝑢̅2
𝜎𝑥𝑦 (3.8) 

which is a minor simplification of the final formulation given in Oksanen and Sarjakoski 

(2005). The estimation for 𝜎𝜓 was quantified on a cell by cell basis as the standard 

deviation of each cell across all DEM realizations. 

 The local cell by cell Gyasi-Agyei et al. (1995) metric was computed as the ratio 

of 𝜎𝐷𝐸𝑀 to the respective cell's elevation change, triangulated from slope, aspect and the 

cell size. For comparison, a global estimate of the Gyasi-Agyei et al., (1995) ratio for the 

LiDAR DEM of Thomas Brook was also computed. The global estimate requires an 

overall DEM precision and the mean slope of the DEM. The overall DEM precision was 

estimated from the standard deviation of re values obtained from the validation 

observations, and the average pixel drop was triangulated from the average slope of the 

original LiDAR DEM. 

 Results showed the Ɵ𝑖 as a dominant factor in determining 𝜎𝐷𝐸𝑀 and 𝜎𝑆. A linear 

piecewise relationship was fit to describe the behaviour of 𝜎𝐷𝐸𝑀 and 𝜎𝑆 due to Ɵ𝑖. The 

algorithm to determine the best fit model for the piecewise regression was developed 

from Vieth (1989). The Vieth (1989) algorithm determines the parameters of two 

continuous linear regression lines within two distinct domains of the independent variable 

(X) as follows 

 𝑌1 = 𝑎1 + 𝑏1𝑋𝑖       𝑋 ≤  𝑋𝑜 

         = 𝑎2 + 𝑏2𝑋𝑖    𝑋 > 𝑋𝑜 
(3.9) 

where Xo represents the estimated transition point of the linear regression lines, and a1, b1 

and a2, b2, represent the slope and intercept of the first and second linear regression lines 

respectively. Following Vieth (1989), an analysis of variance (ANOVA) test was used to 

determine whether a single regression provides a statistically equivalent model fit as the 

piecewise model, with the following null hypothesis: 
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Ho Piece: a1 = a2 and b1 =b2    (3.10) 

The test for HoPiece was performed through comparison of a test statistic (F) with a critical 

value determined from the Fisher distribution following Vieth (1989). To assess the 

significance of each individual regression line in the piecewise regression, the ANOVA 

methodology was similarly applied to test the null hypothesis: 

Ho Line: a = 0.     (3.12) 

The critical value to test HoLine is also obtained from the Fischer distribution. The tests for 

HoLine and HoPiece were performed at a 99% confidence interval.  

 The results of 𝜎𝜓 revealed a decreasing power law relationship with terrain slope 

of the form: 

 𝜎𝜓 = 𝑒𝑎𝑆𝛼 (3.13) 

To determine the parameters (a, 𝛼) of the power function a log transformation was 

applied to the values of slope and 𝜎𝜓 and fit with a linear regression line. The slope of the 

regression line represented β, while the intercept represented a. HoLine was also applied to 

the log transformed linear regression model to determine the if the regression line was an 

appropriate model. 

3.2.5 Analysis of uncertainty in watershed area and the stream 
network 

 

 Watershed area and the internal drainage network structure were determined from 

the DEM realizations using the ArcHydro tool (Maidmont, 2002) within the ESRI’s 

ArcGIS (ESRI, 2003) framework. The ArcHydro framework follows an algorithm 

outlined in Jensen and Dominigue (1988) and utilizes a single flow direction constraint, 

which allows the continuation of surface flow from each cell in the DEM to one of eight 

surrounding neighbors. Within the algorithm, the only subjective input required by the 

user is the choice of area to define the stream initiation threshold. To determine the 

appropriate value for the stream initiation threshold a field reconnaissance was performed 

in the Thomas Brook watershed, which identified locations of stream initiation as well as 

the location of tributary channels entering the main channel. A 1 ha stream initiation 

threshold area was identified based on the location of running water found at the highest 

elevation areas of the basin. 
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 The Thomas Brook watershed also includes anthropogenic modifications such as 

roads and culverts, which serve to disrupt natural flow paths on an unaltered DEM. To 

correct the flow paths to represent true field conditions a stream ‘burning’ methodology 

was applied, which inserts appropriate drainage pathways at culvert locations by 

manually lowering the elevation of road surfaces to the elevation of the culvert outlet. 

The locations of all culverts within the site were identified through field visits to the site. 

The uncertainty in watershed area and stream network length was calculated as their 

respective standard deviation from all simulations. A total of 25 simulations were used 

for the watershed analysis as the associated standard deviations of watershed area and 

total stream network length displayed negligible change (<5%) with additional 

simulations.  

 Results indicated that the variability in stream length was minor on the scale of 

the entire drainage network, but appeared to increase, as the analyzed area decreased. A 

relationship between the uncertainty in stream length and area was also investigated. This 

was accomplished by dividing the watershed into a grid of equal area square cells and 

determining the total stream length within each cell. The coefficient of variation for 

stream length was calculated for each cell and averaged across all the cells, which 

contained a stream. The coefficient of variation was converted into a relative standard 

deviation for reporting as a percentage. The side of the square grid cells analyzed were 

selected to be 100, 200, 300, 400, 500, 750, and 1500 m. The lower grid cell limit was 

selected because its area is equivalent to 1 ha, which is the minimum area for a single 

agricultural field within the watershed. The 1500 m upper limit was selected because it 

was the highest value, which could contain at least two adjacent cells that spanned the 

east-west extents of the watershed.  

3.3 Hypothesis 

 It is hypothesized that 𝜎𝐷𝐸𝑀 will increase in high slope areas due to the potential 

for high Ɵ𝑖 and due to increased levels of horizontal uncertainty manifesting as increased 

vertical uncertainty following Koppe's relationship. The 𝜎𝐷𝐸𝑀 is also expected to increase 

as the scan angle increases, therefore, 𝜎𝐷𝐸𝑀 will be at a minimum at the centre of a swath 

and increase toward the swath edge. The 𝜎𝑆 is expected to increase with an increase in Ɵ𝑖 
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and will be highest in areas of high slope where the potential for high Ɵ𝑖 is greatest. In 

low slope conditions, 𝜎𝑆 will increase as the scan angle increases following the increase 

in 𝜎𝐷𝐸𝑀. The 𝜎𝜓 is expected to show a strong relationship to the terrain slope, where 𝜎𝜓 

will increase as slope decreases because minor variations in 𝜎𝐷𝐸𝑀 can easily rotate the 

plane determined from the Horn algorithm. 

 It is hypothesized that watershed area will not experience substantial changes 

relative to the total watershed area since only minor variations of inclusion or exclusion 

will occur along the watershed boundary. Stream channels will experience an increase in 

variation in both spatial location and length in regions of the DEM with low relief due to 

the associated increase of 𝜎𝜓 in these areas. Areas with elevation changes greater than 

𝜎𝐷𝐸𝑀 will show consistency in stream location as 𝜎𝜓 is reduced.  

3.4 Results and discussion 

 The results are separated into sections describing 1) the validation of the LiDAR 

elevation error models, 2) σDEM, 3) σS, σψ, and the spatial distribution of the Gyesi-

Ageyi et al. (1995) ratio, and 4) the uncertainty to watershed area and stream length. 

Visualization maps and histograms of σDEM, σS, σψ, and the Gyesi-Ageyi et al. (1995) 

ratio are provided to allow for the qualitative assessment of the spatial patterns of 

uncertainty. The dominant variable in predicting the σDEM nodes and σS was found to be 

Ɵi, while the slope was the dominant variable in predicting σψ. Scatter plots for these 

relationships and associated statistical tests are provided as a quantitative assessment of 

their relationships.   

3.4.1 Validation of error models 

 

 The validation results from flight line 5 show 43 observations of a total of 45 

(~96%) of rz lying below the associated σz, which supports the ‘worst case scenario’ 

design intent of the error predictions (Figure 3.2). Flight line 6 shows 44 of 45 (~98 %) of 

rz lying below the associated σz. Results from this line show that the rz between points 0 

and 25 are all below σz. These validation points are located on a portion of sloped  
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Figure 3.2 Validation of error models, which include observations from flight  

  line 5, flight line 6 and flight line 7. 
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roadway. The low rz in this area is potentially the result of a statistical absence of larger 

errors in the small sample set. It is also possible that the road surface and flight 

configuration in this area will consistently cause an over estimate of σz due to the worst 

case scenario design assumptions of the error prediction routine. Validation results in the 

latter portion of the flight line 6 data set (represented by points 26 to 45), located in the 

sloped wooded region, performed as expected with 19 of 20 (95%) of rz falling below 

associated values of σz. The validation results from flight line 7 show 45 of 50 (90%) 

values of rz lying below the associated σz (Figure 3.2), which are located on the sloped 

roadway and in the sloped wooded region. Also in flight line 7, the σz did correctly show 

a transition from an area of generally lower error (sloped roadway, points 1 to 29) to an 

area of generally higher error (sloped wooded area, points 30 to 50). In total, the error 

prediction routine across all flight lines resulted in 132 of 140 (94%) of rz lying below σz.  

3.4.2 Uncertainty in the DEM 

 

 A histogram of 𝜎𝐷𝐸𝑀 reveals that 95% of values range between 0.025 m and 

0.060 m (Figure 3.3C). The histogram takes a unimodal shape with a skewness of 2.20. 

The positive histogram skew is a result of the increase in 𝜎𝐷𝐸𝑀 as slope increases in the 

upper reaches of the watershed. The high slope region in the northern area of the site can 

be visually identified as an area where an increase in error occurs relative to the southern, 

gently sloping regions (Figure 3.3A). A qualitative assessment of the 𝜎𝐷𝐸𝑀 map reveals a 

hypothesized striped pattern, which follows a NE-SW direction corresponding with the 

direction of the survey flight lines and the pattern of Ɵi (Figure 3.3A).  

 The striped pattern is a result of the errors in the primary LiDAR observations 

propagating more heavily into the LiDAR derived elevation coordinates as the scan angle 

increases. Errors are minimized near the centre of the swath where Ɵi approaches zero on 

the flat terrain of the valley floor. A profile line of 𝜎𝐷𝐸𝑀 perpendicular to the flight lines, 

and along flat terrain, generally ranges between 0.030 and 0.036 m between the swath 
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Figure 3.3 Distribution of DEM elevation error. A) color coded map of   

  the DEM elevation error across the entire survey, B) profile   

  of the error taken across the northern section of the watershed and C) 

  histogram of the elevation standard deviations 

 

centre and swath edges respectively (Figure 3.3B). This range identifies the expected 

increase in 𝜎𝐷𝐸𝑀 due to primary measurement observations without the influence of 

terrain slope. 

 The Ɵi of the laser pulse is related to the magnitude of σDEM (Figure 3.4A) within 

two distinct domains. A piecewise linear regression identifies that a change in slope of 

the regression lines occurs at an incidence angle of 15.6°. The piecewise regression 

function between Ɵi and the 𝜎𝐷𝐸𝑀 produced the following relationship: 

𝜎𝐷𝐸𝑀 = 0.0008Ɵ𝑖 + 0.030     0° < Ɵ𝑖 < 15.6° 

= 0.0025Ɵ𝑖 + 0.004     15.6° < Ɵ𝑖 < 40°  (3.15) 

Ho Piece was rejected indicating that the linear piecewise relationship provides a better 

model than a single regression line. Ho Line was also rejected for each of the individual 

regression lines within the piecewise function indicating that the Ɵi is a significant 

predictor of 𝜎𝐷𝐸𝑀.  

 The intercept of the regression line between 0° and 15.6° is 0.030 m, indicating 

this is the average σDEM that is to be expected under the ideal conditions of a Ɵi equal to 
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zero. This is 0.01 m less than the average RMSE of the elevation coordinate along the 

aircraft trajectory of 0.04 m (Table 3.1). This is to be expected because the contribution 

of the primary LiDAR observations error sources other than the RMSE of the trajectory 

elevation will be less than 10% as Ɵi approaches zero (Goulden and Hopkinson, 2010a). 

The 0.01 m reduction from the RMSE of the trajectory elevation and 𝜎𝐷𝐸𝑀, at values of 

Ɵ𝑖 near zero, occurs due to the averaging of elevation errors in the DEM creation process. 

This shows that the minimum DEM error is largely related to the elevation error of the 

trajectory, which is dictated by the geometric strength of the GPS satellite constellation 

during the survey, the quality of corrections received from the local GPS base station or 

GPS base station network, and the accuracy of the accelerometers in the IMU (Inertial 

Measurement Unit).   

 The break in the piecewise function at approximately 15.6° can be attributed to 

the LiDAR sensor scan angle setting of 15° during the survey. An aircraft with neutral 

attitude (0° of roll and pitch) observing flat terrain can create a maximum Ɵi equivalent 

to the scan angle. For Ɵi to exceed the scan angle, the aircraft must be experiencing a roll, 

pitch, observing sloped terrain, or some of combination these factors. The roll and pitch 

during the survey rarely exceeded 3.97° and 1.80° respectively, therefore, the increase in 

error at high Ɵi ( >15.6°) is primarily due to the sloped terrain.  This indicates that a more 

rapid increase of σDEM occurs due to a unit increase of Ɵi in sloped terrain than flat 

terrain. This is not surprising because the horizontal uncertainty also contributes 

additional elevation uncertainty in sloped terrain according to Koppe's relationship (eq. 

1). 

 A solution to minimizing σDEM in sloped terrain conditions is to fly surveys 

parallel to the contours with a down-slope aircraft position. This allows an opportunity 

for the laser beam direction to be parallel with the terrain normal. A flight configuration, 

which would introduce the largest errors, would consist of flight lines parallel to 

elevation contours and an up-slope aircraft position. The upslope aircraft position would 

cause the pulse to intercept the terrain with a high Ɵi, spreading the laser energy across an 

expanded area of the terrain and increase laser errors. As the striping pattern suggests, the 

survey of Thomas Brook was generally flown perpendicular to the contours of the north 

mountain as opposed to parallel. A flight plan design perpendicular to the contours also 



 

 53 

 

provides for a beneficial configuration, as Ɵi will be dependent on the scan angle as 

opposed to terrain conditions.  

 3.4.3 Uncertainty in slope and aspect 

 

 The σS for each grid node resulted in 95% of the values ranging between 0.6° and 

1.5° (Figure 3.5A). The histogram shows a unimodal distribution with a skew of 1.27. 

The skew is a result of increase in σS in the northern sloped areas where increases in Ɵi 

occurred. The overall low magnitude of σS can be partially attributed to the determination 

of slope with the Horn algorithm. Since the algorithm determines slope by a least squares 

fit of a plane that passes through eight surrounding grid nodes, a reduction in σS through 

averaging occurs. Using 25 m DEMs, Raaflaub and Collins (2006) also found that σS is 

low with the Horn algorithm in comparison to other methods of slope calculation. They 

also noted that σS will be lower in situations of correlated values of 𝜎𝐷𝐸𝑀. The 𝜎𝐷𝐸𝑀 will 

be spatially correlated in the DEMs tested here due to the common usage of raw LiDAR 

points in the generation of triangular facets in the TIN interpolation process. It should be 

noted that the resulting σS is only an indication of the variability due to LIDAR 

observation measurement errors and does not represent an absolute estimate of 

uncertainty in slope, which can also be influenced by algorithmic considerations 

(Raaflaub and Collins, 2006) and grid size dependencies (Chang and Tsai, 1991; Kienzle, 

2004). 

 A qualitative assessment of the σS map reveals the striping patterns related to the 

flight line direction and identifies Ɵi as a predictor of σS. Similar to the results for σDEM, 

the relationship between the Ɵi and σS can be represented with a linear piecewise 

relationship (Figure 3.4B). The break in slope between the two regression lines is located 

at 16.4° and the piecewise equations can be described as 

𝜎𝑠 = 0.0089Ɵ𝑖 + 0.8670     0° < Ɵ𝑖 < 16.4° 

          = 0.0438Ɵ𝑖 + 0.2968     16.4° < Ɵ𝑖 < 40°  (3.16)    

Ho Piece was rejected indicating that the piecewise linear relationship is more suitable than 

a single regression line. Ho Line was also rejected for each individual regression line 

indicating that Ɵi is a significant predictor for the uncertainty in slope. The intercept of  
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Figure 3.4 A) Scatter plot of Ɵivs σDEM, B) scatter plot of Ɵi vs σS, C) scatter  

  plot of slope vs σψ.  
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the line between 0° and 16.4° is 0.87°, indicating this is the minimum σS, which should 

generally be expected.  

 The transition point of 16.4° is related to the 15° scan angle selected for the 

survey. Similar to the results for the relationship between 𝜎𝐷𝐸𝑀 and Ɵi, the breakpoint of 

the piecewise relationship near 15° indicates the beginning of an accelerated rate of 

increase of σS due to Ɵi in sloped terrain. In areas with high slope, the striping pattern 

related to the flight lines is lost as the magnitude of the incidence angle is controlled by 

the terrain conditions as opposed to the scan angle. Therefore, terrain conditions will 

become the dominant factor in defining error patterns as the terrain slope increases and 

becomes the prominent factor in determining Ɵi, and additional uncertainty is introduced 

through Koppe's relationship. 

 The resulting range for σψ shows 95% of the values are between 2.7° and 24.1° 

degrees (Figure 3.5B). The histogram shows a bimodal distribution, in which the peak at 

approximately 10° corresponds to the σψ obtained from the northern mountain, and the 

remaining values in the distribution represent the values of σψ obtained from the valley 

floor. A qualitative assessment of the spatial patterns of σψ reveal it closely matches the 

patterns of slope, which was also reported by Chang and Tsai (1991) and Oksanen and 

Sarjakoski (2005) for other DEM sources. The striped pattern evident in the maps of 

σDEM and σS was not evident in the map of σψ indicating Ɵi is not a dominant factor in 

controlling σψ. The relationship between slope and σψ formed a decreasing power 

function (Figure 3.5B): 

𝜎𝜓 = 𝑒3.9703𝑆−0.9282.     (3.17) 

HoLine was rejected for the log transformed values of slope and σψ, indicating the power 

law relationship forms a statistically significant model. 

 The high levels of σψ are constrained to low slope conditions because minor 

variations in σDEM can easily manipulate the rotation of the plane determined with the 

Horn algorithm. Despite a higher σDEM in areas of high slope, the σψ remains low due to 

large relative changes in elevation in the DEM grid nodes, which overcome 𝜎𝐷𝐸𝑀 and the 

plane determined from the Horn algorithm remains stable. The magnitude of σψ is 
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Figure 3.5 Spatial patterns of A) σS, B), σψ and C) the Gyasi-Agyei et al. (1995)  

  ratio with associated histograms 
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important to consider in terms of the evolution of the stream channel network throughout 

the DEM. The stream flow direction relies on the value of aspect to indicate which of the 

eight surrounding cells the flow will proceed to. Recall that each receiving cell contains 

an angular domain of 45°. In low slope environments σψ is sufficiently large to 

frequently switch the receiving cell location and introduce uncertainty into the stream 

network topology. In higher sloped environments, this could also occur, but will be less 

likely since the mean aspect would have to be near the threshold direction, which divides 

flow between neighboring cells. 

3.4.4 Spatial distribution of the Gyesi-Ageyi et al. (1995) ratio 

 

 Approximately one quarter of the DEM (25.2%) resulted in grid cells with a 

Gyasi-Ageyi et al., (1995) ratio below unity (Figure 3.5C). The entire DEM was 

characterized by a range in which 95% of the cell based Gyasi-Ageyi et al. (1995) ratio 

values were between 0.57 and 9.93. This indicates that, according to the local Gyasi-

Agyei et al., (1995) ratio, approximately 75% of the 1 m LiDAR derived DEM has 

precision suitable for hydrologic network extraction. A global estimate of the Gyasi-

Agyei et al., (1995) ratio resulted in a value of 1.413 following an overall DEM precision 

of 0.067 and a mean pixel drop of 0.095. The local estimates improves on the global 

estimate by allowing identification of specific areas of the DEM which may introduce 

unacceptable uncertainty for stream network extraction. As hypothesized, areas 

characterized by high slope resulted in the highest ratios despite the associated increase 

of 𝜎𝐷𝐸𝑀 in these areas. Regions with low slope tended to result in the lowest ratios even 

though 𝜎𝐷𝐸𝑀 tended to be lower in these elevation areas. The visualization map of cell 

specific Gyasi-Agyei et al., (1995) ratio values highlights areas with potential to 

introduce excessive uncertainty for stream network extraction.  

3.4.5 Uncertainty in watershed area and stream network 

 

 The mean watershed area obtained from the 25 DEM realizations was 692 ha and 

the associated standard deviation was 5 ha, resulting in a variation of less than 1% of the 
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total area. This indicates that the determination of watershed area of the Thomas Brook 

watershed is not sensitive to the measurement errors in the LiDAR survey. The small 

level of variability was due to uncertainty in the boundary located in the south-east corner 

of the watershed, where the terrain experiences changes in elevation less than 𝜎𝐷𝐸𝑀. One 

simulated delineation also contained an additional section in the north east corner of the 

survey, which is also an area characterized by minor changes in elevation. The disputed 

area in the north-east section also fell near the edge of a scan line where 𝜎𝐷𝐸𝑀 was 

increased and surpassed the local change in elevation.  

 Although watershed area was generally stable at the Thomas Brook site, there is 

evidence that sensitivity of watershed area to LiDAR measurements exists where 𝜎𝐷𝐸𝑀 is 

larger than changes in elevation, which can be identified by the local Gyasi-Agyei et al., 

(1995) ratio. Therefore, if a site contains sections with changes in elevation less than 

typical error levels ensuring the observations are sufficiently dense in these regions will 

reduce the uncertainty introduced through measurement and provide more consistent 

results.  

 The average stream network length was 61.8 km and the associated standard 

deviation of the length was 0.95 km, approximately 1.5% of the total length. The 

uncertainty in the stream network length was minor due to the random nature of σz, 

which led to the existence of random behavior in σDEM. The random values of 𝜎𝐷𝐸𝑀 

resulted in slightly varied channel configurations, but as hypothesized, on a spatial scale 

of the entire basin they tended to sum to a similar overall length. Within areas 

characterized by high slope and high values of the Gyasi-Ageyi et al. (1995) ratio, the 

stream channels tended to follow consistent paths (Figure 3.6A). Uncertainty in the 

stream network configuration was evident on the field scale near areas of channel 

initiation (Figure 3.6B). Similar to results reported by Lindsay (2006), the stream 

locations in these areas tended to be variable because channel incisions with bank heights 

greater than σDEM did not exist. Areas near the initiation of streams were also typically 

characterized by low values of the Gyasi-Ageyi et al., (1995) ratio (Figure 3.6B).The 

stream initiation is affected by variability in aspect because similar grid cells will not 

cumulatively contribute to stream initiation at the same location for each DEM realization 

(Figure 3.6B). The difference in the location of stream initiation further increases the 
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Figure 3.6 Steam network delineation uncertainty with grid cell based Gyasi- 

  Ageyi et al., (1995) ratio. A) Displays the stream network delineation  

  from three different DEM realizations in an area with high slope, and 

  B) shows a field plot in an area of low slope with stream channels  

  delineated from three different DEM realizations. 
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variability in the length and position of first order streams. As the stream channel 

advances to higher orders the variability in position and spatial location is reduced as 

channels become more deeply incised and well defined. In these areas, bank slopes 

possessed elevation changes higher than 𝜎𝐷𝐸𝑀, reducing the opportunity for stream 

direction uncertainty.  

 As hypothesized, the variability in stream length tended to increase as the area 

decreased (Figure 3.7). At the field scale (1 ha), the stream lengths resulted in a relative 

standard deviation of approximately 28%. Therefore, in hydrological models with a small 

spatial domain, the uncertainty introduced by LiDAR measurement errors could 

introduce substantial uncertainty into relationships requiring flow path length as a 

parameter, such as sediment transport processes in concentrated flow channels. The 

relative standard deviation of stream length did not result in a 5% relative standard 

deviation until the area reached 2.25 km2, which was also the limit for the grid cell areas 

tested. However, the relationship appears to reach a horizontal asymptote near 5% and 

substantial increases in the relative standard deviation do not begin until approximately 

0.5 km2. This level of uncertainty could also be relevant for users of watershed scale 

hydrologic models. Distributed and semi-distributed models typically sub-divide a 

watershed into several smaller spatial units (sub-basins or grid cells). Hydrology is 

analyzed separately within each spatial unit and materials are routed to a selected outlet. 

Unacceptable levels of uncertainty could be introduced to the hydrological outputs at the 

sub-basin or grid cell scale and propagate to the selected watershed outlet. Smaller sub-

basin and grid cells with minor changes in elevation, and near headwater locations should 

be identified as those with a high likelihood of introducing uncertainty to modeled 

outputs. Jha et al. (2004), provided recommendations for sub-basin sizes in the SWAT 

(Soil and Water Assessment Tool, Arnold, 1998), recommending that sub-basins have a 

relative size between 2 and 5% of total watershed area, depending on the hydrological 

output of interest. For the Thomas Brook watershed, 5% of the total watershed area 

would be approximately 35 ha. Sub-basins of this recommended size could contain a 

relative standard deviation of ~20% for the stream length, which may not be an 

acceptable level of uncertainty. This indicates that the absolute area of sub-basins are an 

important consideration during division of a watershed into smaller spatial units for 
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distributed modeling purposes. Consideration of subbasin area only in terms of the ratio 

to overall watershed area could lead to undesirable levels of uncertainty in the stream 

network.  

 

Figure 3.7 Area vs average relative standard deviation of stream length 

 
3.5 Conclusion 

 

 This study investigated the sensitivity of random measurement error of primary 

LiDAR observations to the derivation of a DEM, as well as primary topographic 

attributes (slope, aspect), and watershed attributes (area, stream length and position). 

Topographic and watershed attributes are ubiquitous data sources for paramaterizing 

hydrological models, allowing results to applicable to a range hydrological products. 

Therefore, a comprehensive understanding of the sensitivity of LiDAR measurement 

errors to terrain and watershed attributes is important for conscientious development of 

water resource planning strategies. The analysis was focused on demonstrating the 

overall magnitude of uncertainty, which could be introduced by the random error in 

primary LiDAR observations, as well as the resulting spatial patterns of uncertainty, and 

their relationship to survey acquisition parameters and terrain conditions.   
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 LiDAR derived DEMs were shown to produce spatial error patterns related to the 

flight configuration of the survey, as well as terrain conditions. The σDEM and σS tends to 

be highest on the edge of scan lines and in areas with high terrain slope, due to the 

existence of high incidence angles between the laser pulse and the terrain slope. The 

dominant factor in controlling the 𝜎𝐷𝐸𝑀 and σS was Ɵi, which is a combined factor of the 

scan angle, aircraft attitude and terrain slope. This is contrary to uncertainty analysis on 

DEMs obtained from other sources, which identified terrain slope as a predictor of σDEM 

(Holmes et al., 2000), and σS (Oksanen and Sarjakoski, 2005).  

 Aspect showed a high sensitivity to LIDAR measurement errors with the 

maximum uncertainty reaching nearly 50°, confirming previous theoretical models 

provided in Oksanen and Sarjakoski (2005). The cell by cell based Gyasi-Ageyi et al., 

(1995) ratio provides a visualization of the areas which may be unsuitable for reliable 

hydrological analysis, and require enhanced observations to meet acceptable standards. 

This improves upon previous global estimates of the Gyasi-Ageyi et al., (1995) ratio, 

which predicted the suitability of an entire DEM for stream network extraction. 

 The variability in aspect causes uncertainty in stream network position, the 

location of stream network initiation, and stream length. The effects are pronounced in 

low order stream channels and in smaller field plots, however, the influence of LiDAR 

measurement errors decreases as the considered area increases. Therefore, careful 

consideration should be given to watersheds divided into smaller spatial units for 

modeling purposes, as errors at this scale could potentially propagate unacceptable 

uncertainty to watershed model outputs. Areas with low relief, characterized by low 

values of the Gyasi-Ageyi et al., (1995) ratio, should be identified as the areas with high 

probability for variable stream lengths. 

 In general, the results showed that the flight survey parameters selected during the 

survey acquisition can be an important driver for defining patterns of uncertainty in both 

the DEM and slope estimates. Typical DEM error analysis, which implements random 

fields of DEM error determined through global RMSE estimates and spatial 

autocorrelation parameters (e.g. Hunter and Goodchild, 1997; Holmes, 2000; Oksanen 

and Sarjakoski, 2005; Wechsler and Kroll, 2006; Raaflaub and Collins, 2006; Erksine 

and Green, 2007) would be unable to replicate similar error patterns. This analysis 
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demonstrates how to translate prior knowledge of the terrain shape and survey acquisition 

parameters into predictive capabilities of expected uncertainty in derived products. This 

facilitates the application of appropriate due diligence for assessing uncertainty of 

LiDAR DEMs for specific hydrological project requirements. If deemed necessary, flight 

plans can then be modified to further reduce the uncertainty in derived products. Future 

research will include the propagation of LiDAR primary observation measurement errors 

to the determination of hydrological model outputs such as flow rate and sediment yield.  
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CHAPTER 4  SENSITIVITY OF HYDROLOGICAL   
   OUTPUTS FROM SWAT TO DEM SPATIAL  
   RESOLUTION 

4.1 Introduction 

 Watershed models capable of simulating hydrological processes are an essential 

tool for effective management of water resources. Simulated hydrologic outputs are often 

required for planning and assessing sustainable environmental strategies in response to 

ecosystem impacts, such as agricultural practices, land use development or climate 

change. An accurate virtual landscape representation is a fundamental requirement for 

hydrologic simulations because it controls the transfer of water, sediment, nutrients and 

pollutants within the modeled environment (Moore et al., 1991).  

 Virtual information on landscape shape and structure is typically provided by a 

DEM (Digital Elevation Model), as regularly spaced horizontal grid of elevation values 

(Collins and Moon, 1981; Moore, 1991). The horizontal spacing between grid nodes 

defines the spatial resolution and can be considered representative of map scale. 

Simulated hydrological outputs are known to exhibit scale dependent relationships 

associated with DEM grid cell size (Zhang and Montgomery, 1994), which will affect the 

parameterisations of distributed models (Lin et al., 2010). Scale driven investigations 

conducted under the assumptions and constraints of a particular model structure can 

guide users in selecting an optimum DEM resolutions, where the optimum resolution is 

defined as the resolution which enables accurate simulated outputs, and allow for an 

associated realistic model parameteristation. The model obtained through implementation 

of the optimum DEM resolution will be capable of generating sound and defensible 

evidence to develop environmental policy and implement future water resource planning 

strategies. 

 Previous evidence has shown that DEM resolution will affect hydrologic outputs 

as well as watershed and topographic attributes. Average terrain slope, for example, tends 

to increase as spatial resolution increases (Evans, 1979; Chang and Tsai, 1991; Zhang 

and Montgomery, 1994; Wilson et al, 2000; Kienzle, 2004; Hill and Neary, 2005; Deng 

et al, 2007; Hopkinson et al, 2010). Stream lengths have shown to increase as DEMs 

become increasingly fine (Wang and Yin, 1998; Thieken et al., 1999) while watershed 
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area has shown scale dependent irregularities (Cotter et al., 2003; Chaubey et al., 2005). 

Peak flow rates have been shown to decrease as DEM resolution increases (Quinn et al., 

1991; Zhang and Montgomery, 1994) while the timing of peak flow tends to be delayed 

(Thieken et al., 1999). Simulated sediment loads have shown to both increase (Chaplot 

2005; Cotter et al., 2003; Di Luzio et al, 2005) and decrease (Zhao et al, 2010) as DEM 

resolution increases. Despite the well-established sensitivity of topographic attributes, 

watershed attributes and hydrologic outputs with DEM resolution, no consistent 

guidelines are available for selecting an optimum DEM spatial resolution for simulated 

hydrological analysis. 

 Previous research into investigating the optimum DEM resolution to represent 

basin scale hydrologic outputs suggests that the DEM resolution should reflect the natural 

scale of the hillslope (Quinn et al., 1991; Zhang and Montegomery, 1994; Beven, 1997; 

Hutchinson and Gallant, 2000; McMaster, 2002). A DEM of lower resolution than the 

natural hillslope scale will lose important valley or hill structures. Landscape processes 

occurring within DEM grid elements, such as surface runoff or landscape sediment 

production, will be incorrectly aggregated across distinct spatial divisions and introduce 

model inaccuracy. Conversely, too fine a resolution may include topographic structure 

irrelevant to modeled processes, is expensive to acquire, and is a computational burden 

(Creed and Sass, 2011). Previous studies using Beven and Kirby's (1979) TOPMODEL 

have concluded that DEM resolutions of approximately 10 m are sufficient for modeling 

hillslope scale hydrological processes (Zhang and Montgomery, 1994; Thompson and 

Moore; 1996). While Quinn (1995) suggested coarse resolution DEMs (50 m) were 

sufficient for predicting macroscale hydrographs (50 m) in TOPMODEL, finer resolution 

DEMs (5 m) should be used for predicting internal state processes which initiate flow. 

Tarboton and Ames (2001) identify that an important distinction exists between processes 

on hillslopes and those in channels, which are both required for appropriate assessment of 

hydrology within a basin. Studies into optimum DEM spatial resolution for determination 

of channel attributes have suggested that resolutions finer than typical hillslope scales (up 

to 1 m) are the most accurate (Murphy et al., 2008; Remmel et al., 2008). This indicates 

an inconsistency exists between the ideal spatial resolution for modeling hillslope and 
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channel processes. Therefore, the choice of DEM resolution should reflect the individual 

modeling needs in both channels and hillslopes. 

 The SWAT (Soil and Water Assessment Tool; Arnold et al., 1998) is a popular 

semi-distributed hydrologic and water quality model, which requires a DEM as a primary 

data layer for parameterisation (Gassman, 2007). The SWAT considers hydrology within 

a single basin in two distinct phases: 1) a land phase, which models hillslope processes 

and 2) a routing phase, which considers channel processes (Arnold et al., 1995; Arnold et 

al., 1998; Neitsch et al., 2011). The DEM provides three fundamental functions in the 

parameterisation of a SWAT model including: 

1) representation of the surface topography, which defines hillslope scale, 

2) determination of stream channel attributes, and 

3) delineation of watershed and sub-basin extent. 

The necessary information for a SWAT model parameterisation is obtained from each 

DEM function during the watershed delineation process. This is typically executed as a 

single algorithmic process with a DEM of constant resolution. The process does not 

typically consider that the DEM functions could provide an improved parameterisation if 

implemented at unique resolutions. 

 The objective of this study is to determine the sensitivity of water quantity and 

sediment production of fine to medium scale (1 - 50 m) spatial resolution DEMs within 

the SWAT model framework. The study employs a scaling analysis to determine the 

relative effects of DEM resolutions at 1, 5, 10, 25 and 50 m, to hydrological outputs in a 

small agricultural watershed. The analysis separates the relative dependence of each 

DEM function to the variation in DEM resolution. Subsequently, the relative sensitivity 

of hydrological outputs of each DEM function and resolution are isolated, and the 

potential for implementing the DEM functions at unique resolutions assessed. 

4.1.1 Previous studies on SWAT and DEM resolution 

 

 Previous studies have been conducted that analyze the effects of varying DEM 

spatial resolution on SWAT outputs and have found conflicting results to the sensitivity 

of simulated flow and sediment (Table 4.1). For example, Cho and Lee (2001) compared 

a USGS 1:24000 DEM and 1:250 000 DEM and found a respective decrease of 30% in 
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the volume of runoff predicted from a SWAT model with decreasing resolution. In a 

study of a mixed agricultural and forested landscape, Cotter et al. (2003) determined that 

SWAT outputs exhibited a higher sensitivity to DEM resolution than to the spatial 

resolution of soils and landuse information. The DEM was varied to several levels 

between 30 and 1000 m, and a 27% reduction in flow volume and 81% reduction in 

sediment mass loss were noted between the minimum and maximum tested spatial 

resolution DEMs respectively. It was concluded that to achieve less than 10% of error, 

relative to the 30 m DEM, simulated sediment production required a 30 m DEM and flow 

required a 300 m DEM. Using the same watershed as Cotter et al. (2003), but with a 

different set of calibrated parameters, Chaubey et al. (2005) similarly found that flow 

volume decreased as the spatial resolution was successively reduced from 30 m to 1000 

m. Chaubey et al. (2005) determined that a minimum resolution of 200 m was required to 

achieve less than 10% of relative error in simulated flow in comparison to the 30 m 

DEM. Chaplot (2005) investigated resolutions that varied between 20 m and 500 m, in a 

2183 ha agricultural watershed.  He found minimal effects to runoff, and consistent 

sediment yields between 20 and 90 m resolutions, followed by a gradual reduction in 

sediment yield as resolution further decreased to 500 m. In a comparison of simulated 

hydrologic outputs generated from un-calibrated SWAT models to field observed flow 

and sediment data, Di Luzio et al. (2005) found that models generated from a 90 m DEM 

generally provided a better match than 30 m DEM models in a watershed with small 

alluvial valleys and hilly uplands. Dixon and Earles (2009) tested results from DEMs in 

SWAT that were re-sampled to spatial resolutions both higher and lower than the original 

datasets, in a watershed with moderate elevation change (~46 m) in central Florida. It was 

found that the 30 and 90 m DEMs produced similar monthly flow volumes while a 300 m 

DEM produced a relative increase in flow volume. No advantage was gained through 

resampling lower resolution DEMs to higher resolutions. Lin et al. (2013) analyzed three 

separate DEM sources, ASTER GDEM, SRTM and high resolution digital line graph 

(DLG) information in a primarily forested (96%) mountainous watershed. The ASTER 

GDEM and SRTM were created with spatial resolutions of 30 m and 90 m respectively, 

while the original resolution of the contour data is indicated to be ‘close to’ 5 m. Each 

data source was resampled to resolutions between 5 and 140 m to investigate the 



 

 

 Table 4.1 - Relevant research on DEM spatial resolution and SWAT water and sediment yield. 

 

Study DEM 

resolution 

DEM source Area 

(km2) 

Landscape type Water yield 

(%) † 

Sediment 

yield (%) † 

Cho and 

Lee (2001) 

30, 90 USGS NED  250 Mixed 77% N/A 

Cotter et al. 

(2003) 

30 - 1000  USGS NED 18.90  Pasture (55%) and forested 

(39%) 

73% 19% 

Bosch et al. 

(2004) 

30, 90 EPA, Georgia GIS 

Clearinghouse 

22.1 Forested (67%), row crop (30%), 

pasture (2%) 

60% N/A 

Chaubey et 

al. (2005) 

30 - 1000 USGS NED 18.90 Pasture (55%), forested (39%) 79% N/A 

Chaplot 

(2005) 

20- 500 USDA topographic 

survey 

21.83 Farmland (90%), pasture (3%) 71%* 90% 

Di Luzio et 

al. (2005) 

30, 90 USGS NED 21.3 Rural agricultural land (100%) 88-89% ** 

 

44-60% 

Dixon and 

Earles 

(2009) 

30 - 300 USGS NED  855 Pasture (44%), tree crops (17%), 

shrub (7%), urban, wetland, 

forest (25%) 

13%  N/A 

Lin et al. 

(2013) 

5 - 90 ASTER GDEM, 

SRTM, DLG 

81.7 Mixed forest (96%) ~0% 95% 

Beeson et 

al. (2013) 

3 - 90 LiDAR, SRTM, 

USGS NED 

788 Crop land (corn, soybean, 80%), 

pasture, forest, urban (20%) 

0% 71% 

 †Reported as the percentage obtained from lowest resolution DEM to highest resolution, unless noted otherwise  

 *Results shown are between the 20 and 150 m DEM which contained the largest discrepancy 

 **Results are a range of several tested combinations of land use and soils information 

6
8
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contributions of data source and resolution on the SWAT outputs. Results showed that 

watershed area was not affected by DEM resolution, mean slopes showed a respective 

increase with finer resolution DEMs, and reach lengths showed no obvious trend with a 

decrease in resolution. It was reported that changes in flow seemed to correspond to 

changes in area based on data source, as larger areas also displayed an increase in flow. 

Beeson et al., (2013) investigated the sensitivity of sediment yield within the SWAT to 

DEM resolutions including 3, 10, 30 and 90 m resolutions. They noted an increase in 

mean slope of over 2.5 times between a 3 m and 90 m DEM, which resulted in an 

increase of simulated sediment yield of 130%.  Contrary to results from other studies, Lin 

et al. (2013) found that a variation in DEM resolution resulted in only minor fluctuations 

in sediment output, as the maximum relative difference between the tested resolutions 

and the 5 m DEMs (used as control) was approximately 5%. The minor differences in 

sediment results due to the varied DEM resolutions noted by Lin et al. (2013) was likely 

a result of the primarily forested land cover in the watershed, which would produce 

minimal sediment regardless of DEM resolution. 

 With the exception of Lin et al., (2013) and Beeson et al., (2013), previous SWAT 

studies investigated DEM resolutions no finer than 30 m. The reason for the common 

termination at 30 m is typically the availability of public USGS NED (National Elevation 

Dataset) DEMs (Table 4.1). The NED provides seamless DEM coverage for all of the 

United States at a constant spatial resolution of at least 30 meters with some areas 

benefitting from access to 10 and 3 m DEMs where sufficiently dense source data is 

available (Gesch, 2007). NED DEMs are often used in hydrological studies, where the 

decision of spatial resolution is not prioritized on landscape complexity or local hillslope 

scale leaving the DEM resolution deficient at some locations while satisfactory at others. 

Consequently, unavoidable uncertainty of unknown quantity can be introduced into 

simulated hydrologic outputs that implement NED DEMs. Users are left without the 

ability to assess how processes will react to scale dependencies at finer resolutions. The 

recent availability of high resolution DEM data from contemporary remote sensing 

systems provides the ability to analyze the effects of fine resolution DEMs on models 

parameterised in the SWAT at previously unavailable map scales.     
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4.1.2 Background to the SWAT model framework 

 
 4.1.2.1 SWAT landscape processes 

 SWAT is a semi-distributed watershed model that partitions a catchment into 

spatially discrete sub-basins and further divides the sub-basin into Hydrological Response 

Units (HRUs).  The HRU is a unique and homogeneous area of land use, soil type and 

topographic slope (Gassman, 2007). Each HRU is assumed to act in a hydrologically 

predictable manner, from which input meteorological information can be used to simulate 

hydrologic outputs. The simulated outputs from each HRU in a sub-basin are summed 

and routed into the channel network on a daily time step (Neitsch et al., 2011). The land 

phase of the SWAT framework includes surface runoff, evapotranspiration (ET), 

percolation, lateral flow, and groundwater flow as the major hydrological processes. For 

the parameterisations in this study, surface runoff is generated with the Soil Conservation 

Service (SCS) Curve Number (CN) method (USDA, 2004). Although the CN value can 

be adjusted for slope, a fundamental topographic attribute affected by DEM resolution, 

SWAT assumes a 5% grade of slope for calculation of slope values and does not perform 

an adjustment (Neitsch et al., 2011). ET is determined using the Hargreaves method, and 

does not consider topographic conditions for modeling incoming solar radiation. 

Percolation is calculated through a storage routing method and lateral flow is determined 

with a kinematic storage model developed by Sloan et al. (1983). Groundwater flow is 

divided between shallow aquifers and deep aquifers. Shallow aquifers can contribute flow 

to the main channel or reaches within each sub-basin, and deep aquifers are assumed to 

only affect hydrology outside of the watershed area (Neitsch et al., 2011). 

 Landscape erosion modeling in the SWAT is driven by the MUSLE (Modified 

Universal Soil Loss Equation) developed by (Williams, 1975), which is a modification of 

the USLE (Universal Soil Loss Equation) developed by (Wishmeier and Smith, 1978). 

The USLE is a combination of several empirical relationships of variables, which have 

been shown to significantly contribute to soil erosion.  The formulation of the USLE is as 

follows: 

𝑠𝑒𝑑 = 𝑅𝑈𝑆𝐿𝐸 ∙ 𝐾𝑈𝑆𝐿𝐸 ∙ 𝐿𝑆𝑈𝑆𝐿𝐸 ∙ 𝐶𝑈𝑆𝐿𝐸 ∙ 𝑃𝑈𝑆𝐿𝐸   (4.1) 
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where sed is the amount of soil loss (t/a), RUSLE is a rainfall and runoff factor, KUSLE is a 

soil erodibility factor, LSUSLE is a topographic factor, CUSLE is a cover management factor, 

and PUSLE is an erosion practice factor. The change to MUSLE from the original USLE 

includes substituting RUSLE for a rainfall-runoff factor (Rrunoff) that includes the following 

terms: 

𝑅𝑟𝑢𝑛𝑜𝑓𝑓 = 11.8 ∙ (𝑄𝑠𝑢𝑟𝑓 ∙ 𝑞𝑝𝑒𝑎𝑘 ∙ 𝑎𝑟𝑒𝑎𝐻𝑅𝑈)
0.56

  (4.2) 

where 𝑄𝑠𝑢𝑟𝑓 (mm) is the surface runoff volume, qpeak (m
3/s) is the peak runoff rate, and 

𝑎𝑟𝑒𝑎𝐻𝑅𝑈 (ha) is the area of the HRU. The MUSLE was introduced to better simulate 

sediment production for single precipitation events and provide sediment yields on a 

daily basis.  Within the MUSLE, both the LSUSLE factor and qpeak  are impacted directly by 

DEM spatial resolution due to their reliance on landscape slope. The LSUSLE factor is 

defined as 

𝐿𝑆𝑈𝑆𝐿𝐸 = (𝜆 72.6⁄ )𝑚(65.41𝑠𝑖𝑛2𝜃 + 4.56 𝑠𝑖𝑛𝜃 + 0.065)   (4.3) 

 

where λ is the slope length (m), θ is the slope angle (rad), and m varies between 0.5 and 

0.2 depending on the slope (Weisheimer and Smith, 1978). The value for qpeak is 

calculated in SWAT based on the modified rational method and given as 

 
𝑞𝑝𝑒𝑎𝑘 =

𝛼𝑡𝑐 ∙ 𝑄𝑠𝑢𝑟𝑓 ∙ 𝐴𝑟𝑒𝑎

3.6 ∙ 𝑡𝑐𝑜𝑛𝑐
 (4.4) 

where αtc is the fraction of the daily rainfall that occurs during the time of concentration, 

Qsurf is the surface runoff (mm), Area is the sub-basin area (km2), and 𝑡𝑐𝑜𝑛𝑐 (hr) is the 

time of concentration of the sub-basin. The time of concentration is defined as the length 

of time required for water to flow from the remotest area of the sub-basin to the outlet 

and can be found from 

tconc = tov + tch     (4.5) 

where tov (hr) is the overland flow time of concentration and tch (hr) is the channel time 

of concentration. The overland flow time of concentration is found from 

 
𝑡𝑜𝑣 =

𝐿𝑠𝑙𝑝 ∙ 𝑛0.6

18𝑠𝑙𝑝0.3
 (4.6) 
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where Lslp (m) is the sub-basin slope length, n is Manning’s roughness coefficient and 

slp (m/m) is the average slope in the sub-basin. The channel time of concentration can be 

found as  

 
𝑡𝑐ℎ =

0.62 ∙ 𝐿 ∙ 𝑛0.75

𝐴𝑟𝑒𝑎0.125 ∙ 𝑠𝑙𝑝𝑐ℎ
0.375 (4.7) 

where L (m) is the channel length, slpch is the channel slope (m/m) and Area is expressed 

in km2. 

 4.1.2.2 SWAT channel processes 

 The SWAT routes water as a volume through the main channel of each sub-basin. 

The determination of the cross-sectional area of the channel, Ach (m2) is of significance 

here because it is dependent on the length of the channel, which is affected by the DEM 

spatial resolution. It is calculated as 

 
𝐴𝑐ℎ =

𝑉𝑐ℎ

𝐿𝑐ℎ
 (4.8) 

where Vch is the volume of water in the channel (m3) and Lch is the length of the channel 

(m). The depth of water in the channel is a function of Ach and the stream channel 

dimensions. From this information, the hydraulic radius (𝑅𝑐ℎ) of the channel (m) can be 

determined as  

 
𝑅𝑐ℎ =

𝐴𝑐ℎ

𝑃𝑐ℎ
  (4.9) 

where Pch (m) is the wetted perimeter. Subsequently, the channel flow rate, qch (m3/s), 

and flow velocity, vc (m/s) are based on Manning’s Equation can be calculated as; 

 
𝑞𝑐ℎ =

𝐴𝑐ℎ ∙ 𝑅𝑐ℎ
2 3⁄

∙ 𝑠𝑙𝑝𝑐ℎ
1 2⁄

𝑛
 (4.10) 

 

 
𝑣𝑐 =

𝑅𝑐ℎ
2 3⁄

∙ 𝑠𝑙𝑝𝑐ℎ
1 2⁄

𝑛
 (4.11) 

 

The flow rate is then utilized to determine the routing of water through channels. The 

variable storage routing method (Williams, 1969) and the Muskingum method are 

available, and the variable storage routing method was selected for this study.  
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 Several methods exist for determining channel sediment transport processes in the 

SWAT 2005; however, the default method is based on Bagnold’s stream power equations 

(Neitsch et al., 2011). The Bagnold method determines sediment transport by first 

estimating the maximum concentration (concmax) of sediment that can be transported 

(kg/L) as 

concmax = csp ∙ vch,pk
spexp

    (4.12) 

where spexp and csp are user defined parameters and vch,pk is the peak channel velocity 

(m/s) determined as 

 
𝑣𝑐ℎ,𝑝𝑘 =

𝑝𝑟𝑓 ∙ 𝑞𝑐ℎ

𝐴𝑐ℎ
 (4.13) 

where prf is a user defined peak rate adjustment factor. Combining equation 10, 11 and 

13, vch,pk  can be expressed as follows 

 
𝑣𝑐ℎ,𝑝𝑘 =

𝑝𝑟𝑓 ∙ 𝑞𝑐ℎ ∙ 𝑉𝑐ℎ
2 3⁄

∙ 𝑠𝑙𝑝
1

2⁄

100 ∙ 𝐿𝑐ℎ∙
2 3⁄ 𝑃𝑐ℎ∙

2 3⁄ 𝑛
. (4.14) 

The result of concmax is compared with the initial sediment concentration in the reach 

(concsed), based on landscape and upstream inputs. At each time step, if concsed is less 

than concmax then the dominant process in the stream reach is erosion, and previously 

deposited material is eroded first. If concsed is greater than concmax, deposition will be the 

dominant process. If deposition is the dominant process, the amount of material deposited 

is based on of difference between concsed and concmax and the volume of water in the 

channel segment. If erosion is the dominant process, the amount of eroded material is 

based on the product of the difference between concsed and concmax, the volume of water 

in the channel segment, and two additional parameters termed the channel erodibility 

factor and the channel cover factor. (Neitsch et al., 2011) 

4.1.3 Research questions and hypotheses  

 

 1) How does a change in hillslope scale defined by DEM resolution affect 

simulated flow and sediment? The redefinition of hillslope scale with a controlled stream 

network and sub-basin delineation in experiment one, is hypothesized to exert only minor 

sensitivity to flow outputs because the CN method for generating surface runoff is not 
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directly influenced by changes in slope introduced through variations in DEM resolution. 

Additionally, precipitation totals, ET and groundwater sources are not directly related to 

changes in DEM resolution. Subtle variations could exist in water yield due to subtle 

modifications of HRU size, and land-use/soil/slope distribution. Landscape erosion is 

expected to increase in fine resolution DEMs due to an expected increase in topographic 

slope, which will serve to increase the 𝐿𝑆𝑈𝑆𝐿𝐸 of the MUSLE factor while all other 

variables remain constant.  

 2) Do changes in stream length and slope introduced through a change in DEM 

resolution affect flow and sediment channel processes in the SWAT?  Changes in Lch due 

to DEM resolution in experiment two are hypothesized to have negligible effect to 

surface runoff because the CN method is not affected by stream attributes. Landscape 

erosion will show minor sensitivity to modifications in Lch due to changes in tconc and tov 

in (4.5) and (4.6) respectively. The flow rate will decrease with an increase in DEM 

resolution due to the relationships between Ach, Lch, slpch and qch given in equations (4.8) 

– (4.10). An increase in Lch, due to an increase in DEM resolution, will tend to decrease 

slpch, Ach and 𝑣𝑐ℎ,𝑝𝑘 and decrease the maximum carrying capacity of the stream as shown 

in equation (4.13). Therefore, increase in channel length will increase channel deposition 

if concsed is greater than concmax, or decrease the channel erosion if concsed is less than 

concmax.  

 3) Does the variation in DEM resolution affect the watershed delineations and 

subsequently simulated flow and sediment? The redefinition of the watershed boundary 

and sub-basin extents are hypothesized to affect both the landscape and channel phases 

through a reorganization of sub-basin boundaries and stream network. A decrease in 

overall watershed area will cause a decrease in the overall water yields and flow rates as 

well as sediment yield. Similar to the hypothesis from experiment two, an increase in Lch 

with an increase in DEM resolution, will decrease vch,pk, which will increase channel 

deposition if concsed is greater than concmax, or decrease the channel erosion if concsed is 

less than concmax. A re-organization of HRUs into different sub-basins and routed through 

different sections of the stream network could result in unpredictable behavior to both the 

flow rate and sediment yield.  
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4.2 Study site and methods 

4.2.1 Thomas Brook watershed study site 

 

The 689 ha Thomas Brook watershed is located in the Annapolis Valley near Berwick, 

Nova Scotia, Canada (Figure 4.1). The site is part of the Watershed Evaluation of 

Beneficial Management Practices (WEBs) program administered by Agriculture and 

Agri-Food Canada (Stuart et al. 2010), and has stream flow and sediment yield 

monitoring between January 1st 2004 and December 31st 2008.  

 

Figure 4.1 Thomas Brook watershed location, topography and boundaries. 

 

 The headwaters of Thomas Brook begin on the North side of the Annapolis 

Valley, termed the North Mountain, and flow southerly into the Annapolis Valley. The 

selected outlet point for the watershed is located at a culvert that passes under a road in 

the southern portion of the watershed (Figure 4.1). Two main tributary branches begin at 

separate locations in the headwaters and join at approximately one third of the distance 

from the selected outlet (Jamieson et al., 2003). The majority of the landscape slope is 

between 0 and 6° with 95% of slopes existing below 18° as determined from a 1 m DEM. 

The slope of the stream network averages 3.5% across the entire watershed; however, it 

can be as high as 30% on the North Mountain and as low as 0.5% on the valley floor 

(Sinclair et al., 2009). The stream width generally ranges from 2-3 m throughout the 
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network. Based on field observations, streams are generally degrading and incised within 

the valley floor and stable as they descend into the valley. The soils within the watershed 

are varied but consist predominately of fine grained sandy loams (Cann et al., 1965).  

Land use within the watershed consists of a mix of agricultural (~70%), residential (4%) 

and forested areas (~26%) according to a GIS layer collected by Agriculture and Agri-

food Canada. The primary agricultural products of the watershed include corn, 

strawberries and grains (Sinclair et al., 2009).  

4.2.2 DEM generation 

 

 Raw elevation information required for DEM generation was obtained from a 

LiDAR survey of Thomas Brook watershed, executed in August of 2006 with an Optech 

ALTM 3100 sensor. The aircraft was flown at an average elevation of 900 m above 

ground level (a.g.l), which resulted in an average spacing between raw elevation 

observations and their closest neighbor of 1.08 m, and 95% of the points having a 

neighbor within 1.45 m. Raw LiDAR observations were combined with a differentially 

corrected GPS airborne trajectory that contained high accuracy aircraft position and 

orientation information in REALM (Optech, 2006), a proprietary software package 

produced by Optech, to produce real-world coordinated elevation observations in a UTM 

mapping frame.  

 Raw LiDAR elevation information contains echo returns from both the physical 

terrain and natural and man-made structures on the surface. For hydrological analysis, 

only the physical terrain surface is desired. Non-ground information, such as vegetation 

and buildings, was filtered in proprietary LiDAR post-processing software. Background 

information on raw LiDAR observation filtering routines can be found in Pfeifer and 

Mandlburger (2009). The raw filtered LIDAR observations exist in a pseudo-random 

pattern that is related to flight conditions and sensor acquisition criteria and required  

interpolation to generate the regular grid structure of the DEM. This was performed in 

Golden Software’s Surfer (Golden Software, 2012) with a natural neighbor (NN) 

interpolation routine at spatial resolutions of 1, 5, 10, 25 and 50 m. The NN routine was 

selected because it is an averaging interpolator and is computationally efficient (Sibson, 

1981). Averaging within the interpolating algorithm is advantageous because it exploits 
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the redundancy of multiple observations to reduce the influence of random errors present 

in individual raw observations (Pfeifer and Mandlburger, 2009); these errors have been 

shown to reach decimetre levels in ideal conditions (Goulden and Hopkinson, 2010a) and 

can be higher in the presence of slopes or vegetation (Hodgson and Bresnehan, 2004; 

Hopkinson et al., 2005).  

4.2.3 Parameterisation of SWAT models 

 

 SWAT models were formed in ArcSWAT (Di Luzio et al., 2002), a third party 

addition to the ESRI ArcMap (ESRI, 2003) GIS software package. Land use information 

was classified from aerial photographs and field validated, and publically available soils 

data was available from Holstrom and Thompson (1985). The digital GIS layers for land 

use and soils were generated in house at Agriculture and Agri-food Canada (Figure 4.2). 

A slope map was determined from each DEM resolution and classified into five discrete 

slope classes, the maximum number of discrete classes allowed by the SWAT. The limits 

of the slope classes were set between 0 and 2°, 2 and 4°, 4 and 8°, 8 and 15° and greater 

than 15° (Figure 4.2). The area for HRU creation was limited to 1 ha because it is the 

minimum area of an agricultural field plot within the watershed. In addition, the 1 ha 

limit eliminates HRUs with minor hydrological significance, maintaining efficiency 

during model execution. Within agricultural areas, thirteen separate detailed crop 

management rotation cycles were implemented based on reported farming practices in the 

area. The management cycles include tillage, planting, fertilizer application, grazing, 

harvesting, and harvest and kill operations, or some combination of these. Specific details 

of the crop rotation procedures implemented within the Thomas Brook watershed can be 

found in Ahmad et al. (2011). The SWAT will automatically generate channel widths and 

depths, however field observations identified that these quantities were incorrect along 

the main tributary channels and were manually modified to correspond with observed 

field data. Meteorological forcing data (temperature, precipitation) is supplied from a 

weather station operated by Environment Canada in Greenwood, Nova Scotia, which is in 

close proximity (<25 km) to the watershed in a similar topographic conditions. 

 The delineation of the watershed and stream networks is performed with 

algorithms existing in the ArcHydro (Maidment, 2002) software package, which follows 
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methods designed by Jenson and Dominigue (1988). This included pit filling, which 

raises the elevation of a pit to be equivalent with the lowest neighboring cell. During the 

delineation process the user must select an area threshold, which controls the initiation of 

stream networks. The choice of the threshold area remained consistent at 4 ha for all 

delineations of the stream network. The 4 ha value was chosen because it was the 

minimum value SWAT allowed and best correspond to in-situ field observations of the 

main tributary channels and headwater locations conducted in August 2011. The location 

of the initiation of streams was based on the appearance of flowing water at the highest 

elevation areas in the watershed from ground observations. Appropriate hydrological 

enforcement, which included filling sinks as well as stream-burning across road 

boundaries, was implemented in each DEM resolution to ensure appropriate flow paths 

were followed. 

 The SWAT is capable of simulating output for un-gauged basins; however, the 

outputs are typically inaccurate due to measurement limitations and spatial scaling 

approximations associated with parameter definition (Beven, 2001; Eckhardt and Arnold, 

2001). To improve accuracy, a calibration procedure is implemented that involves a 

systematic modification of model parameters to match simulated outputs with observed 

historical field data (Gupta et al, 1999). The 1 m DEM was selected for calibration 

purposes because it represents the most accurate and precise resolution available for this 

study, providing a benchmark for relative comparison purposes. Chaubey et al., (2005), 

Cotter et al (2003) and Lin et al. (2013) also implemented a similar approach of 

calibrating with the highest resolution DEM when comparing the effects of varied DEM 

spatial resolution in the SWAT. 



 

 

 

 

 Figure 4.2 Land use, soils and slope GIS information used to determine the HRUs. Slope information obtained from  

   the 1m DEM.   

7
9
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 Field data collected for model calibration included both stream flow and 

suspended sediment transport at a monitoring station located approximately 1.5 km from 

the watershed outlet (Figure 4.1) for five years between January 2004 and December 

2008. Stage measurements were acquired through pressure transducers, which monitored 

water depth on 60 second intervals. Several discharge measurements using the velocity 

area method (Canada General Standards Board, 1991) were made throughout each year 

and used to develop stage discharge relationships. Composite suspended sediment 

samples were collected over three-four day periods using auto-samplers with six hour 

sampling intervals during non-winter months (April - December), and discrete grab 

samples were gathered on a weekly basis during winter months (January – March). 

Sediment samples were analyzed using APHA method 2540 D (APHA, 2000) to 

determine TSS (total suspended solids) concentrations. Since sediment data was not 

available on a daily basis, both flow and suspended sediment data were aggregated to 

monthly totals for calibration purposes. Initially, the model was manually calibrated 

using parameter values obtained from a previous calibration detailed in Ahmad et al. 

(2011). Following the manual calibration, an auto calibration was implemented for flow 

and sediment simultaneously using the PARASOL method, outlined in van Grivenson 

and Meixner (2007). The PARASOL technique involves iteratively modifying selected 

model parameters to minimize a statistical assessment criterion between simulated 

outputs with observed field data.  

 A total of 20 years were executed during model simulations, including a 15 year 

spin-up period followed by a five year assessment period used to simulate results.  

Therefore, presented results were obtained from the same final five years as used for the 

calibration period. Model success was determined using statistical tools and qualitative 

ratings outlined in Moriasi et al. (2007) that included the RMSE-observations standard 

deviation ratio (RSR), Nash-Sutcliffe coefficient (NSE), and percent bias (PBIAS) 

between the simulated outputs of flow rate and sediment yield and field observed data. 

Differences between DEM resolutions were quantified on a monthly basis and, in some 

cases, quantified using a relative difference (RD) metric as: 

RDtest = (xtest-xref) / xref     (4.15) 
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where x is the simulated variable (flow, sediment) ref is the 1 m DEM and test is either 

the 5, 10, 25 or 50 m DEM. 

4.2.4  Experimental design 

 

 Three separate experiments were conducted to assess the sensitivity of 

hydrological outputs of the three DEM functions to changes in DEM spatial resolution 

(Table 4.2). Experiment one tested the sensitivity of hydrological outputs to a 

modification of hillslope scale. This was accomplished by maintaining a consistent 

watershed boundary, stream network delineation and calibrated parameter set from the 1 

m DEM, and varying the spatial resolution of the underlying DEM. The controlled 

modification of only the hillslope scale was realized in the ArcSWAT watershed 

delineation tool by eliminating the delineation process of the stream network and sub-

basin boundaries for the 5, 10, 25 and 50 m DEMs and imprinting the existing stream 

network and sub-basin boundaries obtained from the 1 m DEM. Experiment two tested 

the effects of spatial resolution on stream length and stream slope. One method of 

obtaining updated stream network lengths for each spatial resolution DEM would be to 

execute distinct delineations. However, a distinct delineation would introduce 

uncontrolled variability due to changes in the spatial location of the simulated stream and 

sub-basin boundaries. To control for the sub-basin boundaries and stream network 

location, a systematic scaling relationship between the stream length and DEM resolution 

was exploited. The relationship is mathematically described with the following power 

law:  

𝑔(𝑥) = 𝑎𝑥𝛼     (4.15) 

where g(x) is the stream length, x is the DEM spatial resolution, a is a constant equivalent 

to the stream length determined from the 1 m DEM, and α is a decay constant previously 

determined to be -0.059 in Goulden et al., (2012). Both the longest flow path and stream 

reach within the sub-basin were manually modified, which correspond to variables 

CH_L(1) and CH_L(2) in the SWAT theoretical documentation (Neitsch et al., 2011). 

The slope values associated with the longest flow path and stream reach, corresponding 

to CH_S(1) and CH_S(2) in the SWAT theoretical documentation respectively, were also 

modified. The values for CH_S(1) and CH_S(2) represent the overall slope from the 
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beginning to the end of the stream reach and do not consider variations of slope within 

the reach. Therefore, the modification of slope can be triangulated from the amended 

stream length and elevation change between the beginning and end of each stream reach. 

The elevation change was obtained from the 1 m DEM model and remained consistent as 

there was little variation in the elevation changes within the sub-basin for the remaining 

DEM resolutions.  

 The third experiment varied the landscape scale, the delineation of the stream 

network, and watershed boundary, sub-basin boundaries and HRU definitions with DEM 

resolution in order to analyze the effects of the three DEM functions simultaneously. This 

was achieved by executing a distinct delineation of the watershed from each spatial 

resolution DEM. The spatial location of each sub-basin outlet point determined in the 

delineation of the 1 m DEM model were generally maintained in the delineation of the 

other DEMs. However, due to differences in the watershed boundaries and spatial 

locations of the stream network, some outlet locations could not be located at repeatable 

positions. This introduced variation in the resulting sub-basin boundaries and stream 

length.  

 

Table 4.2 Control of DEM function variables in each experiment 

 

 Variables held constant Variables allowed to vary 

Experiment 1 Stream length, stream slope, sub-

basin boundaries 

Hillslope scale 

Experiment 2 Sub-basin boundaries Hillslope scale, stream length, 

stream slope 

Experiment 3 None Hillslope scale, stream length, 

stream slope, sub-basin boundaries 

 

4.3 Results and discussion 

 The results are organized into sub-sections, which describe the sensitivity of slope 

classes, watershed attributes and hydrological outputs, including flow rate and sediment 

production. A sub-section is devoted to changes to the distribution of slope classes 

because it is a fundamental topographic parameter, which affects HRU creation, and will 
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subsequently affect results from each experiment. The section reporting on the sensitivity 

to watershed attributes is only relevant to the third experiment, since the sub-basin 

boundaries and stream network were allowed to vary in this case. Sections describing 

flow rate and sediment output include the results from each experiment, and are separated 

into results from the landscape and channel phases of the SWAT. The parameter 

calibration obtained from the 1 m DEM, and applied to all of the SWAT simulations 

resulted in acceptable performance metrics for both simulated flow and sediment results 

(Table 4.3). 

 

Table 4.3 Performance metrics, based on Moriasi (2007), of the SWAT model  

  calibration for Thomas Brook watershed using the 1 m DEM 

 

Variable RSR NSE PBIAS 

Flow 0.57 (Good) 0.76 (Very Good) 4.8 (Very Good) 

Sediment 0.64 (Satisfactory) 0.71 (Good) 4.8 (Very Good) 

 

4.3.1 Slope classes 

 

 The increase in DEM resolution resulted in an increase in the proportion of area 

represented by high slope classes (Figure 4.3). The largest change occurs between the 1 

m and 50 m DEMs in the lowest slope class (0-2°), where the area distribution is 34% 

and 55% respectively. The 1 m DEM also had the largest proportion of the highest slope 

class, due to the resolution enabling representation of fine-scale topographic details of the 

landscape, while low resolution DEMs tend to smooth the landscape and cannot 

characterize minor topographic variations. When implementing DEMs at the 1 m level, 

the effects of random vertical errors caused by sensor measurement errors must also be 

considered. Random elevation error will increase the incidence of high slope in fine 

resolution DEMs due to the introduction of noise into DEM grid node elevations. In 

DEM cell sizes which are small, elevation error will propagate into the calculation of 

slope resulting in a higher proportion of area in the highest slope class. As seen in Section 
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3.4.3, it is not unusual for noise in a DEM grid node to reach 0.05 m of elevation 

deviation. Subsequently, slopes typically varied up to ~1.5°, which could shift a cell to a 

higher slope classes. The effect of noise is not as prevalent in low resolution DEMs 

because the level of vertical error is low relative to DEM cell size. Therefore, the slope 

calculation will experience a reduced sensitivity to elevation errors as DEM resolution 

decreases. An effect of the pit filling algorithm in ArcHydro could also be to increase the 

absolute proportion of the low slope class in each DEM resolution, as filled pits will be 

flat surfaces. 

 

Figure 4.3 Percentage area of the respective slope classes obtained from each  

  spatial resolution DEM and used to develop HRUs in the SWAT  

  model 

4.3.2 Watershed attributes 

 

 The third experiment uniquely delineated the watershed from each tested DEM 

resolution, which resulted in changes to the area, stream length, number of sub-basins, 

and number of HRUs (Table 4.4). The largest change in watershed area is the reduction 

which occurs with 10, 25 and 50 m resolution DEMs which experience a reduced area of 

7.7, 6.7 and 7.0% respectively compared to the 1 m DEM. This reduction in area is due to 

a section of the watershed in the southwest corner incorrectly draining across a road and 

diverting from the true watershed outlet also identified in Section 2.4.1.1. The erroneous 

flow path is due to a scale related dependency of the DEM to the road width. The road is 
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8 m in width, allowing the 10, 25, 50 m DEMs to smooth the road feature and incorrectly 

permit drainage across to an adjoining field, diverting flow from the true outlet. 

 

Table 4.4 Summary of watershed attributes for each DEM spatial resolution 

DEM spatial 

resolution (m) 

Area (km2) Stream length (m) Number of Sub-

basins 

Number of 

HRUs 

1 6.899 19,515 28 275 

5 7.015 19,470 28 281 

10 6.367 17,190 26 252 

25 6.434 15,400 26 262 

50 6.412 14,750 25 274 

 

 The observed reduction in stream length as the DEM resolution decreases is a 

result of a continuous loss of fine resolution details of the stream network. The largest 

decrease occurs between the 5 m and 10 m DEM, as this decrease is also supplemented 

by the reduction in watershed area that also occurs between these two resolutions. The 

reduction in the total number of sub-basins in the 10, 25 and 50 m DEMs is also a result 

of the reduction in the overall area because the missing sub-basins no longer existed 

within the watershed. A substantial decrease in the number of HRUs occurs with the 

decrease in area, which experiences a minimum at the 10 m resolution, and increased for 

the 25 and 50 m resolutions. The rise in the number of HRUs at the 25 and 50 m 

resolutions is a result of a more even distribution of slope classes in these DEMs (Figure 

4.3). The more even distribution of slope classes results in a greater likelihood that HRU 

combinations with multiple slope classes will exist with sufficient area to form an HRU. 

4.3.3 Flow 

 

 The modification of hillslope scale in experiment one produced negligible 

variability in the simulated flow on a monthly time scale (Figure 4.4). Table 4.5 shows 

that the average relative difference maximized at 2.5% for RD50. A small number of 

months resulted in high values of RD (>5%) in each of the tested resolutions; however, 

these were always associated with a low monthly flow. In these months, such as 

September of 2004 (Figure 4.4), only very minor standard deviations result in high values 

of RD. The insensitivity of flow to DEM resolution result has similarly been observed by 
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Di Luzio et al. (2005) and Li et al. (2012). The minor variability which did exist, was due 

to slight changes in HRU distribution and size, which subtly altered CN values, the 

amount of ET, and ground water recharge contributions. 

 

Figure 4.4 Flow relative difference for the sixty month simulation period for all  

  DEM resolutions, compared to the 1 m DEM, for experiment 1 

 

Kienzle (2010) identified in the Agricultural Catchments' Research Unit (ACRU) model, 

that an underestimation in true surface area in sloped regions, could have influence over 

ET and runoff predictions. This result infers that as DEM resolution decreases, the 

associated decrease in mean slope would create an underestimation of the true surface 

area and influence total water yield. A similar result was also observed in high relief 

glacierised catchments by Hopkinson et al. (2010). The SWAT considers only 

planimetric area, therefore, the slope-area relationship had no influence over flow results. 

This result confirms the hypothesis that surface runoff predictions based on the SCS 

Curve Number Method in the SWAT will show negligible variability to a change in 

hillslope scale initiated through a change to DEM resolution.  
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Table 4.5 Experiment 1 and experiment 2 mean relative differences for flow of  

  all DEMs compared to the 1 m DEM over the 60 month simulation  

  period 

 

DEM resolution Experiment 1 mean  

flow RD (%) 

Experiment 2 mean  

flow RD (%) 

5 m 1.1 1.4 

10 m 1.7 1.9 

25 m 2.1 2.4 

50 m 2.5 2.8 

 

 The modification of the channel lengths and their respective slopes in experiment 

two also produced negligible change to simulated flow on a monthly time scale. Results 

from Table 4.5 show that the maximum mean RD occurred with the 50 m DEM reaching 

only 2.8%. The existing variability was due to slight changes in HRU distribution and 

size, which subtly altered CN values, levels of ET and ground water recharge 

contributions. The modification of the channel lengths and their respective slopes in 

experiment two also produced negligible change to simulated flow on a monthly time 

scale. The resulting insensitivity can be attributed to the small scale of the Thomas Brook 

watershed, which is characterized by travel times within the sub-basin reaches of less 

than a day, the minimum time step in SWAT. For example, the 1 m DEM experiences the 

longest flow paths, and of the sub-basins along the main tributary channels the longest 

travel time during the five year period is 27 hours. A travel time of 27 hours, just over 

one day, is rare for a subbasin within the Thomas Brook model, as the average travel time 

for this sub-basin is 13.9 hours. Since the SWAT calculates flow on a daily time step, 

water yield will not be sensitive to stream length if the travel times are less than a single 

day, regardless of resolution effects to stream length. Since flow results are output as a 

monthly average to correspond with available calibration data, a rare anomalous 

incidence of travel time over the daily threshold will have little effect to the monthly 

average. Drainage basins containing larger sub-basins, which commonly experience 
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travel times longer than a day, and analyzed on a daily time step, may show a sensitivity 

to simulated flow due to DEM induced changes in stream length. 

 Experiment three, where full delineations of the watershed were produced from 

each DEM, was the only experiment to show variability in simulated flow on a monthly 

time step. The 1 m and 5 m DEMs simulated similar, and higher, flow volumes than the 

10, 25 and 50 m models. The difference in simulated flow can be attributed to the scale 

dependent planimetric area reduction that occurred in the 10, 25 and 50 m delineations, 

which excluded an area of the watershed because of an inability to represent the 8 m wide 

roadbed. The largest discrepancy in flow existed between the 1 and 50 m DEMs (Figures 

4.5A and 4.5B). The largest RD of flow between the 1 m and 50 m DEM occurred in 

month 55, which reached approximately 20%. The majority of monthly flow rates 

resulted in differences of flow between 10 and 15% with the minimum occurring at 

month 12 at approximately 6%. Cotter et al. (2003), Chaubey et al. (2005) and Di Luzio 

et al. (2005) similarly observed a decrease in flow as DEM resolution decreased. Cotter et 

al. (2003) attributed the decrease in flow with coarse resolution DEMs to smaller stream 

slopes, longer slope lengths and a reduced watershed area. The reduction in flow 

observed in the Thomas Brook watershed appears to be exclusively related to the change 

in planimetric watershed area, as the smaller stream slopes and lengths had negligible 

effect in experiment two.  
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Figure 4.5 A) Absolute difference between observed flow rate of the 1 m and  

  50  m DEMs and, B) the relative difference of flow between the 1 m  

  and 50 m DEM models for the third experiment 
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4.3.4 Sediment yield 

 4.3.4.1 Landscape sediment yield 

 The 1 m DEM resulted in the largest simulated cumulative sediment yield, which 

reached approximately 850 t over the simulated 60 months. As hypothesized, total 

suspended sediment yield decreased with a decrease in resolution (Figure 4.6A). The 50 

m DEM resulted in the least amount of simulated sediment at approximately 650 metric 

tons over the 60 month time period; 76% of the total yield generated by the 1 m DEM. 

The reduction in the landscape sediment yield is caused by the shift in distribution of the 

slope classes within the HRUs. The 1 m DEM resulted in the largest number of HRUs 

with the highest slope class and an increase in landscape erosion followed. This is 

theoretically justified in equations (1) through (6), that relate the increase in sediment 

predictions of the MUSLE due to increases in slope, specifically from LSUSLE and Rrunoff 

through 𝑞𝑝𝑒𝑎𝑘, 𝑡𝑜𝑣, and 𝑡𝑐ℎ.    

 A discrepancy in sediment production occurred in the hypothesized trend of 

decreasing sediment output with DEM resolution between the 10 m and 25 m DEM 

models. The simulated sediment yield in these models are nearly equivalent (Figure 

4.6A). Investigation into these models reveals that a single anomalous HRU in a north 

east sub-basin of the 25 m DEM model is responsible. The HRU in question contains an 

erosive ‘harvest and kill’ crop management procedure that reduces ground cover and 

produces a high level of simulated erosion. In addition, the HRU from the 25 m DEM 

resulted in a higher overall slope than the HRU from the 10 m DEM model. Obtaining a 

higher slope class from a lower resolution model is rare, and it is due to the grid nodes of 

the 10 m and 25 m DEMs not being spatially coincident. The non-overlapping grid nodes 

in the 25 m DEM identified a ridge or valley feature in the HRU, which was not 

identified in the 10 m DEM and caused a higher slope. The higher slope class, coupled 

with the erosive crop management procedure caused erosion levels that overcame the 

differences in sediment yield produced throughout the remaining areas of the watershed. 

To show the general trend of decreasing simulated sediment yield with decreasing 

resolution, the slope of the problematic HRU in the 25 m DEM model was modified to be 

equivalent of the identical HRU in the 10 m DEM model. The resulting output displayed  
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Figure 4.6 A) Cumulative sediment totals at the watershed outlet for each of the  

  spatial resolutions; note the 10 m and 25 m results are nearly   

  coincident, B) cumulative sediment totals with an HRU from the 25 m  

  resolution model modified to a level of slope equivalent to the identical 

  HRU in the 10 m resolution model. 



 

 92 

 

the expected decrease of simulated sediment yield with DEM resolution (Figure 4.6B). 

This discrepancy in sediment production shows that the general trend of decreasing 

sediment yields with resolution may not exist under conditions of non-overlapping DEM 

grid nodes in areas with high propensity for erosion.  

 The modification of the stream lengths in experiment two did not affect simulated 

landscape erosion (Figure 4.7A). Theoretically, the MUSLE is dependent on CH_S(1), 

which is used to determine the tconc, a factor of 𝑞𝑝𝑒𝑎𝑘. However, because 𝑡𝑐𝑜𝑛𝑐 is shorter 

than the minimum daily time step of SWAT under all the tested stream lengths, simulated 

landscape erosion was not sensitive to the changes in stream length. However, a decrease 

in landscape erosion was observed with the full delineations performed in experiment 

three (Figure 4.7A). The decrease observed in the 10, 25 and 50 m DEM models is a 

result of the reduced area of the watershed. Conversely, the 5 m DEM showed a decrease 

in landscape erosion despite an increase in total watershed area. This is attributed to the 

specific areas of the watershed that changed between the 1 m and 5 m DEM models. 

Although the overall area was larger in the 5 m model, areas that contained high erosion 

activities were reduced, while areas with a low propensity for erosion increased. For 

example, the ‘Rock Outcrop’ class of soil type has very little potential for erosion and 

existed in higher quantities in the model delineated from the 5 m DEM. This highlights 

that a change in area doesn’t necessarily result in an increase in sediment production. The 

nature of erosion potential of the land use and soils within areas that have been changed 

will be a factor in sediment uncertainty between DEM resolutions. 

4.3.4.2 Sediment transport in channels 

 In each experiment the simulated sediment transport in all channels resulted in 

negligible levels of channel erosion and high levels of deposition. The exclusive 

existence of deposition is likely due to excessive simulated landscape erosion, which 

overwhelmed the stream channels. The 1 m DEM model resulted in the largest amount of 

channel deposition with a cumulative total of 171 metric tons for the 60 month simulation  
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Figure 4.7 A) Differences in landscape soil erosion and, B) channel deposition  

  for each spatial resolution DEM of each experiment compared to their 

  respective results from the 1 m DEM 

 

period. Models generated in experiment one showed a decrease in channel deposition 

with decreasing DEM spatial resolution (Figure 4.7B). The decrease is related to the 

previously discussed reduction in overall available sediment entering the streams from 

the landscape erosion simulated through the MUSLE. 
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 Results from experiment two showed the hypothesized decrease in channel 

deposition as the spatial resolution decreased. The 50 m DEM from experiment two 

resulted in the largest decrease, totaling 90.0 t over the five year simulation period. The 

largest discrepancy in channel deposition between experiment one and experiment two 

with identical resolution DEMS occurred with the 50 m DEMs simulations, which 

showed a decrease of 33 t in experiment two. The decrease in channel deposition with 

decreasing stream length is caused by the increase in vch,pk (equation 14), which serves to 

increase the sediment transport capacity of the stream channels. 

 The results from experiment three show the 10, 25 and 50 m delineations 

exhibiting a trend of decreasing channel deposition with a decrease in spatial resolution; 

however, a relative increase was experienced at these resolutions compared to the 

respective results from experiment one and experiment two. The observed relative 

increase in deposition for the 10, 25 and 50 m DEMs, compared to results from 

experiment one and experiment two, is related to a decrease of the slope in several 

tributary channels, which reduced the sediment transport capacity of the streams. An 

additional small decrease can be attributed to the elimination of two headwater sub-

basins, which reduced the total stream length where deposition could occur. It is also 

possible that a re-organization of HRUs into different sub-basins between the 

delineations was partially responsible for the increase in deposition. For example, if a 

particularly erosive HRU originally existed in a sub-basin with a short and steep tributary 

channel with low propensity for deposition, and then moved into a sub-basin with a 

longer, flat channel with high levels of deposition it could cause an overall increase in 

channel deposition. Such re-organization of HRUs are likely to exist; however, their 

effects are unpredictable and difficult to isolate and therefore cannot be conclusively 

associated with the changes. 

 

 4.3.4.3 Calibration of PUSLE 

 It should be identified that Quinn (1995) and Lin et al (2010), in a study of 

TOPMODEL, found that uniquely calibrated flow outputs from varied DEM resolutions 

exhibited equifinality. Equifinality conditions (Beven and Binley, 1992) occur when 
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parameter modifications determined in the calibration process compensate for the 

variations introduced by DEM resolution. A similar result of equifinality would likely be 

observed at Thomas Brook, where an optimum parameter set obtained from different 

resolutions DEMs would provide results similar to the 1 m DEM parameterisation. This 

suggests that the DEM resolution is not critical as long as a statistically acceptable 

parameterisation can be achieved. However, in terms of the observed sediment outputs, it 

is important to identify that the LSUSLE represents a ratio of soil loss relative to a standard 

plot of 72.6 ft in length and a uniform 9% slope (Wishmeier and Smith, 1978). Values for 

LSUSLE were empirically tested on plots ranging from 30 to 300 ft (9.1 to 91.4 m) in 

length, with uniform 3 to 18 percent of slope steepness (Wishmeier and Smith, 1978). 

Therefore, the slope length defined by a 1 m DEM is finer than the original field plots 

tested for the LSUSLE. It is likely that uncertainty is introduced to the MUSLE through the 

spatial scaling of the original test plots, resulting in an overestimation in the amount of 

simulated landscape erosion. To compensate for the spatial inconsistency, the final 

calibrated value of the PUSLE factor was reduced to 0.12. Acceptable calibrations with the 

25 m or 50 m DEMs, which have spatial scale within the spatial limits of the field plots 

tested, are possible with  PUSLE values of 0.20 and 0.23 respectively. 

 Although uncertainty boundaries are not available for the PUSLE factor, we must 

consider that the design intention of PUSLE factor is to account for sediment reduction 

through farming practices such as strip cropping or terracing (van Vliet, 2002). It is 

identified by van Vliet (2002) that terracing is the only practice, which can reduce the 

PUSLE factor as low as 0.1. Within Thomas Brook, no terracing is occurring. Therefore, a 

PUSLE factor of 0.1 should be considered an unrealistic modification, despite a statistically 

valid calibration. Values of 0.2-0.23 for PUSLE are an improvement, but are also low for 

the conditions at Thomas Brook. One of the conditions that allows PUSLE as low as 0.2 is 

cross-slope farming (van Vliet, 2002), which does occur in several areas of the 

watershed, although it is not ubiquitous. The consistently low calibrated values of PUSLE 

are likely due to existing practices designed to reduce sediment transport and are not 

included in the definition of PUSLE, such as riparian buffer strips. 

 The existence of unrealistic parameter values should be treated with caution as it 

undermines future planning efforts within the watershed to achieve management goals. 
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For example, if additional practices designed to reduce sediment transport were initiated, 

the artificially low PUSLE factor prevents their correct incorporation into the model. Since 

these changes cannot be adequately simulated, it inhibits an assessment of the future 

environmental or economic viability of the modifications. The ability to achieve an 

improved parameterisation of the Thomas Brook model with the low resolution DEMs 

indicates they are a more appropriate choice for defining the hillslope scale.   

4.4 Conclusions 

 Prior to parameterizing a SWAT watershed model a decision must be made on the 

spatial resolution of the DEM to be included. The spatial resolution of the DEM will 

define the representative hillslope scale, and affect the watershed boundary and stream 

network position and length. Proper selection of the appropriate DEM resolution will 

contribute a meaningful and scientifically defensible model parameterisation, which will 

provide more effective water resource planning strategies. This study demonstrated the 

sensitivity of water and sediment yield produced in the SWAT to DEM resolution 

changes. The effects of DEM resolution changes to hillslope scale, stream network 

delineation and boundary delineation were isolated in three separate experiments.      

 A primary effect of variation in landscape scale through DEM resolution is a 

redistribution of watershed area to relevant slope classes within the SWAT. The highest 

slope class size tends to increase as DEMs increase in resolution. Simulated flow results 

were not sensitive to the changes in the slope; however, simulated sediment loads from 

the lowest resolution DEM were 76% of the loads obtained from the highest resolution 

DEMs.  The change in simulated sediment loads were related to changes in slope through 

the MUSLE variables qpeak and LSUSLE. Similar to Beeson et al., (2013), the highest 

sediment loads were obtained with the highest resolution DEM tested. High sediment 

loads from the 1 m resolution DEM created difficulties in calibrating the SWAT model. 

Model parameters related to landscape erosion, such as the PUSLE, had to be reduced to 

unrealistic values. This indicates that the spatial scaling of the original USLE plot sizes to 

fine resolution DEMs is inappropriate as it tends to overestimate simulated erosion. 

 The second experiment exploited a scaling relationship relating a decrease in 

spatial resolution to a decrease in stream length. The most striking effect was a reduction 
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in sediment deposition as DEM resolution decreased. The changes in deposition are 

governed by the sediment transport processes as predicted by Bagnold’s stream power 

equations whereby reduced stream lengths caused an increase in 𝑣𝑐ℎ,𝑝𝑘. This increased 

the predicted sediment transport capacity of the stream, thus reducing the amount of 

sediment deposition. The 50 m DEM resulted in the largest overall decrease in deposition 

of 90 tons over the five year simulation period. Given the varied results with stream 

length, the 1 m DEMs are recommended for model parameterisation because they render 

the most accurate prediction of stream length (e.g. Murphy et al., 2008). Typically, fine 

resolution DEMs are the most difficult to obtain, and if a DEM of suitable resolution is 

not available, stream lengths can be modified using the scaling relation defined in 

equation (4.1) to determine stream attributes for a desired resolution. Although a 1 m 

DEM is ideal for Thomas Brook, different resolutions may be ideal for other watersheds.  

 In the third experiment, original watershed boundaries and stream networks were 

delineated from each resolution of DEMs. The coarsest resolution DEMs (10, 25 and 50 

m) resulted in a 10% reduction of area due to a section in the southeast corner incorrectly 

draining to a separate outlet point. The delineations with reduced areas showed an overall 

decrease to simulated flow. Landscape erosion also decreased due to the reduction in 

watershed area in the 10, 25 and 50 m DEMs. Despite the reduction in area and total 

stream channel length, deposition increased in these models due to a decrease in the slope 

of the tributary channels in several sub-basins. This indicates that when using coarse 

resolution DEMs, barrier features such as roads, which are below the scale of the DEM 

resolution must be considered potential sources of errors in area. Any error in area 

determination will affect flow rates and sediment yield. If the watershed does not contain 

features, which are below identification capabilities set by the DEM resolution, errors 

related to area should not be a concern. Therefore, additional expense and computing 

burden should not be introduced with high resolution DEMs if water yield is the only 

variable of interest and there is no reason to suspect area discrepancies will occur.  

 Traditionally, the parameterisation of a hydrological model with a DEM involves 

using the same spatial resolution for each individual input required from the DEM. 

However, this research has shown that hydrologic outputs, especially those related to 

simulated sediment output, will have specific responses to a variation in spatial resolution 
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associated with each DEM function. The relative importance of each DEM function can 

be used to prioritize decision making of DEM resolution. With respect to the watershed 

models developed for Thomas Brook, the importance of the DEM functions in terms of 

their sensitivity to simulated sediment output can be ordered as follows:  

1. definition of hillslope scale,  

2. watershed and sub-basin boundary delineation, and 

3. stream attributes. 

Previous literature has suggested that resolutions that mimic the natural scale of the 

landscape are optimum for hydrologic modeling, with a general rule indicating that 10 m 

is the minimum resolution required for satisfactory results (Zhang and Montgomery, 

1994; Creed and Sass, 2011). However, fine resolution DEMs tend to produce the most 

accurate delineations of the boundary and stream network (Murphy et al., 2008; Remmel 

et al., 2008). Given the varied responses of the individual DEM functions to simulated 

outputs it is recommended that a multi-scale approach is implemented for parameterizing 

SWAT watershed models. This follows a similar suggestion by Quinn (1995) for 

TOPMODEL, who proposed nested DEMs of differing resolution for separately 

modeling basin-wide hydrographs and finer scale internal processes. Nested DEMs may 

prove cumbersome within the SWAT framework, therefore a multi-scale approach is 

more readily achieved within SWAT by utilizing an underlying DEM with resolution 

similar to the natural scale of the landscape for the determination of topographic slope, 

and using the highest resolution DEM for the delineation of stream networks and sub-

basin boundaries. Paramaterizing a SWAT model with multiple scales for each DEM 

function will aid in generating accurate outputs with a more realistic parameter set, thus 

facilitating conscientious implementation of watershed models. For example, the model 

of Thomas Brook Watershed tested here would benefit from a delineation of the stream 

network and sub-basin boundaries from the 1 m DEM, and a coarser DEM for defining 

the hillslope scale. Ideally, the choice of resolution for defining hillslope scale should be 

selected to produce a calibration, which does not require unrealistic changes to 

parameters.  

 Future work in this area involving the SWAT should include a similar analysis in 

a larger scale watershed, or with different topographical and hydrological settings. A 
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different site should be chosen to specifically investigate the effects of DEM resolution 

on flow and sediment in a basin with travel times greater than the minimum daily time 

step of the SWAT. Additionally, obtaining sufficient calibration information to allow for 

daily simulations could provide better information on the simulated response of specific 

storm events. It is hypothesized that under conditions of increased travel time, simulated 

flow and timing will show a higher sensitivity to the variation of DEM spatial resolution, 

especially when analyzed on a daily time step. For other modeling environments which 

heavily rely on topographic information, the DEM spatial resolution would show an 

increased impact. For example, flood inundation models require high resolution 

information on flow blockages, especially in urban areas (Haile and Rientjes, 2004), and 

for the parameterisation of surface roughness (Lane, 2005; Casas et al., 2010). Flood 

wave travel times have shown to be sensitive to DEM resolutions between 10 m and 1000 

m (Horritt and Bates, 2001), indicating further sensitivity could exist at the finer DEM 

resolutions achievable with LiDAR.    

 The updated SWAT 2009 now includes physically based algorithms for routing 

sediment in channels. For example, the Yang sand and gravel method (Yang, 1996) 

algorithm for sediment deposition depends explicitly on the tributary stream length 

(equation 7:2.2.33, Neitsch et al., 2011). Therefore, future work will investigate the 

sensitivity of the other available sediment transport algorithms. It is hypothesized that 

algorithms, which are directly affected by an estimate of stream length will have a higher 

sensitivity to modifications of DEM resolution than the Bagnold algorithm. Future work 

is also planned for investigating the effects of DEM resolution to simulated water quality 

outputs of the SWAT, such as bacteria and nutrient loads.  
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CHAPTER 5  SENSITIVITY OF THE SWAT TO    
   MEASUREMENT UNCERTAINTY IN LIDAR  
   DERIVED DEMS 

 

5.1 Introduction 

 Hydrologic simulation models are informative for planning and management of 

water resources due to their ability to predict basin response to simulated alterations. This 

knowledge allows informed design of environmental planning strategies to facilitate 

economic and environmental sustainability. Due to constraints of representing 

complicated natural systems virtually, hydrological models will contain several sources 

of uncertainty which cause model results to deviate from reality. The sources and 

consequences of uncertainty introduced to a hydrological model should be well 

understood to allow for conscientious use of model outputs, and in the development of 

reliable environmental planning initiatives. Inadequate understanding of the uncertainty 

associated with simulated hydrologic outputs will ultimately undermine planning 

strategies, and could serve to produce ineffective policy actions.  

 Topographic information, virtually represented as a DEM (Digital Elevation 

Model), is a common data source used for the parameterisation of distributed 

hydrological models. The most common form of a DEM is a regularly spaced horizontal 

grid of elevation values (Collins and Moon, 1984; Moore, 1991). As a measured input, 

the DEM is subject to various sources of uncertainty, which will propagate through a 

hydrological model to simulated outputs. Wu et al., (2008) identify two primary sources 

of DEM uncertainty, 1) the DEM grid cell size and, 2) the elevation uncertainty at DEM 

grid nodes. Studies describing the response of simulated hydrological outputs due to 

DEM grid cell size uncertainty are available (see Chapter 4), however, few studies have 

reported on uncertainty estimates of simulated hydrological outputs due to elevation 

uncertainty of DEM grid nodes (Wu et al., 2008). 

 Kenward et al., (2000) tested the sensitivity of the DHSVM (distributed 

hydrology soil vegetation model) to three DEMs with unique error characteristics of the 

7.2 km2 USDA-ARS WE-38 experimental watershed. The DEMs included a USGS 30 m 

DEM, a reference 5 m DEM derived from aerial photography, and a 30 m DEM derived 
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from space-borne interferometric SAR (InSAR). Empirically derived estimates of the 

mean and standard deviation of vertical error at each DEM resulted in 1.8 m and 4.4 m 

for the 5 m photogrammetric DEM, 6.7 m and 6.8 m for the 30 m USGS DEM, and 4.0 

and 13.5 m for the 30 m InSAR DEM. They found DEM accuracy did influence 

hydrologic predictions as mean annual predicted runoff volume from the USGS and 

InSAR DEMs showed relative respective increases of 0.3% and 7.0%, compared to the 5 

m reference DEM. The change of simulated annual flow from the InSAR DEM was 

attributed to an increase in basin area of 3.6%. Hydrographs of the InSAR DEM also 

showed lower peak runoff, and delayed timing in peak runoff, compared to the reference 

DEM.  The discrepancy in hydrographs was attributed to differences in the topographic 

index and longer channel lengths across the watershed in the InSAR DEM, caused by a 

rougher landscape. The increase in landscape roughness and channel lengths was likely 

caused by the high incidence of noise observed in the InSAR DEM. It was concluded that 

a DEM with error characteristics similar to the InSAR DEM was not appropriate for 

simulating hydrographs of individual storm events, but could be used for runoff 

predictions over longer time periods. Although this analysis demonstrated the influence 

of hydrologic models to DEMs with different accuracy levels, from different acquisition 

sources, it does not provide an indication of the level of internal variability expected from 

a single DEM source.  

 In a study of a single DEM source, Wu et al., (2008) analyzed the variability in 

hydrological simulations of TOPMODEL (Beven and Kirkby, 1979) to systematically 

varied DEM errors in a USGS 30 m DEM. The DEM was perturbed according to 

elevation errors of four selected RMSE values, including 2.0, 5.0, 10 and 15 m. An auto-

correlation model was applied, however, details of the algorithm and parameters were not 

provided. Model executions without a unique parameter calibration showed that the mean 

simulated flow at the watershed outlet decreased, and uncertainty in flow increased, as 

the elevation RMSE increased. When TOPMODEL parameters were uniquely calibrated 

for each execution, equifinality conditions were observed yielding negligible variation in 

simulated outputs. The results from Wu et al. (2008) provide only preliminary 

information on the sensitivity of simulated hydrology to uncertainty in a DEM, given 

several deficiencies exist; 1) the tested RMSE values were only a general approximation 
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of the true magnitudes of DEM error, 2) the RMSE values were assumed constant 

throughout the DEM, whereas the RMSE is likely to vary spatially and be correlated to 

acquisition or terrain conditions, 3) the analysis was performed with a medium resolution 

DEM (30 m), 4) the analysis only considered flow . 

 The objective of this study is to determine the sensitivity of SWAT simulated 

flow and sediment outputs to a fine scale (1 m) LiDAR derived DEM. The analysis is 

unique within available literature because the DEM elevation uncertainty is obtained 

through a rigorous deterministic error propagation algorithm of the LiDAR sensor 

measurement errors. This provides a realistic and spatially variable model of DEM 

uncertainty and a more accurate approximation of the uncertainty in simulated hydrologic 

outputs. Additionally, the analysis considers the sensitivity of both flow and sediment 

yield, in the presence of detailed agricultural inputs.  

 The uncertainty results of SWAT model outputs are intended to provide enhanced 

decision making capabilities when selecting an appropriate source of DEM information 

for parameterisation of a SWAT model. Knowledge of the magnitude of uncertainty of 

simulated hydrologic outputs allows for robust risk assessments of management 

decisions. Consequently, if the uncertainty in simulated flow and sediment outputs from 

SWAT introduced through LIDAR DEMs is found to be too large, accommodations can 

be made to reduce measurement errors prior to data acquisition. If a LIDAR DEM shows 

a level of accuracy higher than required, a lower accuracy, more cost-effective DEM can 

be obtained without consequence. 

5.2 Study site and methods 

5.2.1 Thomas Brook watershed 

 

 The analysis was conducted at the Thomas Brook watershed (Figure 4.1). Details 

of the site description relevant to SWAT model parameterisation can be found in Section 

4.2.1.  
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5.2.2 The SWAT 

 

 The required background information on the algorithmic processes of the SWAT 

model can be found in Section 4.1.2. 

5.2.3 Generation of DEM realizations 

 

 Multiple DEM realizations were determined through the error propagation 

techniques of LiDAR measurement errors outlined in Section 3.2.2. DEMs  were created 

from raw LiDAR coordinates using the TIN interpolation method, described in Section 

2.3.2.1. A limit of 25 DEM realizations were created because additional simulations did 

not introduce a change to uncertainty estimates of more than 5%, rendering further 

simulations unnecessary.  

5.2.3 Generation of SWAT model realizations 

 

 A unique SWAT model was determined from each of the 25 DEM realizations. 

The parameterisation of the SWAT models followed the same procedure outlined in 

Section 4.2.3. Consequently, the same calibrated parameters used in the SWAT models of 

Chapter 4 were also used in all SWAT models developed for this analysis. It should be 

noted that variability in channel paths between DEM realizations caused minor deviations 

in the spatial location of sub-basin outlets. The location of subbasin outlets between DEM 

realizations were maintained as near as possible to the outlets selected in the first 

simulated DEM realization to eliminate the introduction of additional variability in the 

subbasin boundaries and channel characteristics (channel slope and channel length).   

5.2.4 Assessment of simulated flow and sediment uncertainty 

 

 The mean (𝑥̅𝑡), standard deviation (st) and coefficient of variation (CV) for all 

SWAT simulations (N) were determined for each month (t), for variables of interest (x) as 

follows: 
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𝑥̅𝑡 =
1

𝑁
∑ 𝑥𝑡𝑁

𝑁

1

 (5.1) 

 

𝑠𝑡 =
1

𝑁
∑(𝑥̅𝑡 − 𝑥𝑡𝑁)2

𝑁

1

 (5.2) 

 𝐶𝑉𝑡 =
𝑠𝑡

𝑥̅𝑡
 (5.3) 

 

Final values of CV were used as the descriptor of uncertainty, and were multiplied by 100 

for reporting as a percentage. Results were generated at five locations throughout the 

Thomas Brook watershed (Figure 5.1) to demonstrate the relationship between the 

drainage area and uncertainty. The locations selected for analysis were coincident with 

several pre-existing sampling station sites, and station 5 is located at the selected 

watershed outlet.    

 

Figure 5.1 Thomas Brook watershed showing the location of stations where  

  results were generated  
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5.3 Hypothesis 

 It is hypothesized that the flow rate simulated from the SWAT will show 

negligible variability across SWAT model realizations. This result is inferred because 

flow has shown a previous insensitivity to changes in terrain slope or to stream 

characteristics at Thomas Brook, following results given in section 4.3.3. An exception is 

expected if a DEM realization leads to variability in drainage area, which will result in an 

increase in the variability in flow results. Sediment outputs are expected to show higher 

variability compared to flow outputs due to a greater reliance on topographic conditions 

and their associated variation, as detailed in equations 4.1 through 4.7. The topographic 

variability will also modify HRU distributions creating higher variability in sediment 

results.  

5.4 Results 

 The results for flow are presented first, followed by sediment. Results in the flow 

and sediment sections are initially focused at station 5, since it is the location with the 

greatest implication to management decisions. Results are then expanded to include 

intermediate stations throughout the watershed. 

5.4.1 Flow 

 At station 5, monthly flow 𝑥̅𝑡 values ranged between 0.006 m3/s and 0.46 m3/s 

during the five year simulation period. The associated st lead to flow CVs that were less 

than 5% in 46 of the 60 simulated months (Figure 5.2A). The months which resulted in 

CVs above 5% commonly showed low 𝑥̅𝑡 values, where even minor st lead to high CVs 

(Figure 5.2B). The existence of high CVs in only low flow months indicates an overall 

insensitivity of simulated flow results to LiDAR measurement errors during high flow 

periods. The overall low sensitivity to flow was expected, as it has been shown in Section 

4.3.3 that sensitivity to flow within the SWAT to grid cell based DEM uncertainty is  
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Figure 5.2 A) Mean flow at station 5, highlighting months resulting in CV < 0.05  

  B) Monthly CVs at station 1 and station 5. 
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largely associated with changes in area. The variability in drainage area, shown in Table  

5.1, indicates a minor sensitivity to LiDAR measurement errors at the selected outlet, 

similar to results in Section 3.4.5. 

 Flow variability results at station 1 show CVs at the selected watershed outlet 

(Table 5.1) which are all above the 5% level, a maximum monthly CV of nearly 29%, and 

a mean of all monthly CVs of 14.5% (Figure 5.2B, Table 5.1). Station 2, which represents 

a drained area nearly 24 times larger than station 1, shows a reduction in the mean CV of 

flow to 4.4% (Table 5.1). The reduction in the mean monthly flow CV at station 2, 

relative to station 1, follows an increase in the total drained area and reduction in area CV 

(Table 5.1). Station 3 drains an area 15% larger than the area drained by station 2, and 

resulted in the smallest observed area CV and the lowest mean monthly flow CV. The 

lowest area CV occurred at station 3 because the drainage area consists primarily of high 

slope terrain. This follows results in Section 3.4.5, which demonstrated low variability 

exists in LiDAR DEM derived drainage areas in high slope regions. This suggests a 

variation in SWAT simulated flow will exist due to LiDAR measurement error if there is 

a corresponding uncertainty in the drainage area, which typically occurs in low slope 

regions.  

 To place the sensitivity of flow and sediment uncertainty due to a LiDAR derived 

DEM in a broader context, comparisons against previous analyses of hydrological model 

uncertainty can be investigated. Previous uncertainty analyses in SWAT has typically 

focused on the uncertainty of model parameters, for example, Sexton et al., (2011) found 

a mean flow CV of 15.2% through a deterministic error propagation approach of 

parameter uncertainty. Using Monte Carlo simulations, with a latin hypercube sampling 

routine, Sohrabi et al., (2003) determined a flow CV of 28.6% due to parameter 

uncertainty. These results indicate that parameter uncertainty is potentially a higher 

source of variability in simulated flow than the DEM. Cho et al., (2009) analyzed the 

sensitivity of SWAT flow due to raingauge distribution, another spatial input layer. In a 

334 km2 watershed, they found different scenarios of spatial raingauge distribution and 

subbasin size lead to average CVs of 5.2%, 4.5%, and 2.3% at three different stations. 

The lowest flow CV resulted from the delineation with the largest number of subasins. In 

an analysis of the uncertainty in the landuse classification, another spatial input, using the 
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Kinematic Runoff and Erosion Model (KINEROS2) (Smith et al., 1995; Goodrich et al., 

2002), Miller et al., (2007) found near negligible variability (< 1%) in runoff predictions 

during five and ten year storm events. Comparison of the sensitivity of SWAT 

hydrological results due to LiDAR measurement errors with those of Cho et al., (2009) 

and Miller et al., (2007), indicate that the DEM uncertainty may be one of the largest 

contributors to flow variability of spatial inputs.   

 

Table 5.1 Area statistics and simulated flow and sediment CV 

 

 Mean drained  

area (ha) 

Area drained 

CV (%) 

Flow CV (%) Sediment CV (%) 

Station 1 5.3 14.5 11.3 11.3 

Station 2 117.5 4.4 6.5 13.5 

Station 3 135.2 0.32 4.0 16.8 

Station 4 491.2 0.70 4.1 9.6 

Station 5 692.5 0.73 4.0 5.8 

5.4.2 Sediment 

 At station 5, the resulting sediment 𝑥̅𝑡ranged between 0 and 70 tons over the five 

year simulation period (Figure 5.3A). The sediment st ranged between 0 and 2.5 tons, and 

29 of 60 months resulted in sediment CVs below 5%. Overall, the resulting sediment CVs 

ranged between 2.5% and 28% (Figure 5.2B), with the highest monthly sediment CV of 

28% occurring in April 2007. Similar to the flow results, the highest monthly sediment 

CVs occurred during months which also had low values of sediment 𝑥̅𝑡. Overall, average 

sediment CVs were higher than the average flow CVs at each station, indicating a higher 

sensitivity of sediment to LiDAR measurement errors than flow. The largest range of 

sediment results at station 5 from all DEM simulations was 8.7 t, occurring in November 

of 2005. November 2005 resulted in a relatively high sediment 𝑥̅ of 63.2 t, yielding a 

ratio of the range in sediment output to mean sediment output of 0.14.   

  



 

 109 

 

 

 

 

Figure 5.3 A) Mean sediment at station 5 with months resulting in CV< 0.05  

  identified, B) Monthly CVs at station 1 and station 5. Discontinuities  

  in the results for station 1 represent months in which all simulations  

  showed zero sediment output. 
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Previously documented variability in simulated sediment results due to parameter 

uncertainty has shown a higher sensitivity than DEM uncertainty. For example, Sexton et 

al. (2011) found a mean sediment CV of 28.3% in a 340 ha watershed through a 

deterministic error propagation approach. Sohrabi et al., (2003) implemented Monte 

Carlo error propagation with latin hypercube sampling of model parameters, which 

resulted in a sediment CV of 35.8%. This indicates that in order to improve simulated 

sediment accuracy, greater effort should be placed on reducing parameter uncertainty 

than LiDAR derived DEM uncertainty. However, if parameter accuracy is successfully 

maximised through well-known statistical calibration routines, DEM uncertainty may 

play a larger role in the overall uncertainty of model outputs.     

 Contrary to the CVs of the flow results, the sediment CVs did not show a 

relationship with area variability, as shown in the results of Table 5.2. The largest mean 

sediment CV occurred at station 3, which also resulted in the lowest variability in 

drainage area. The high level of variability in simulated sediment at station 3 can be 

sourced to the creation process of HRUs, and the development of the slope classes. The 

given hypothesis (Section 5.3) infers that the variability in simulated sediment export 

results from variability of the slope class areas, which would change the area of HRUs, 

and subsequently their associated landscape sediment production. However, analysis of 

the total area for each slope class within the watershed reveals only minor variability in 

the area of each slope class. The area CVs for the 0-2°, 2-4°, 4-8°, 8-15°, and 15-90° 

classes were only 0.09%, 0.07%, 0.05%, 0.08% and 0.05% respectively. The low CVs of 

the individual slope class areas indicate an associated low variability in landscape 

sediment production. However, due to the algorithmic process of HRU creation, 

variability in the area of HRUs cannot be directly related to the variability of slope class 

area. The low variability in the area of slope class distributions retains potential for 

introducing variability through the HRU creation algorithm which aggregates HRUs 

during model pre-processing.  

 Recall from Section 4.2.3 that the assignment of a unique land use, soil and slope 

required to form an HRU was constrained to a minimum threshold area of 1 ha. If an 

HRU does not meet the 1 ha limit, it is amalgamated with an existing HRU of the same 

land use. All HRUs below the 1 ha limit with common land use will be aggregated into a 
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final, representative HRU. The resulting representative HRU will be defined with a land 

use, soil and slope definition of the HRU with the largest area. Under the correct 

conditions, a minor variability in the area of a slope class can shift the representative 

HRU definition between different land use, soil and slope configurations. If there are 

several HRUs with common landuse below the 1 ha threshold, the shift in HRU 

distribution could involve a sizeable proportion of the subbasin area. If the competing 

HRUs have different soil, and slope conditions, a large difference in simulated sediment 

export will occur. A representative example of this phenomenon is provided for 

simulation 3 and simulation 9, of subbasin 9 in Table 5.2, which identifies all HRUs for 

the timothy grass with manure fertilization (TMAN) agricultural rotation landuse. 

 

Table 5.2 HRU distribution for subbasin 9 in simulation 3 and simulation 9. LU  

  designates HRU landuse, Cbld represents Cumberland soils, Kent  

  represents Kentville soils. 

 

Simulation 3 Simulation 9 

HRUs in Sub-basin 9 

LU / Soil / Slope 
HRU Area 

HRUs in Sub-basin 9 

LU / Soil / Slope 
HRU Area 

TMAN/Cbld/0-2     

TMAN/Cbld/2-4     

TMAN/Cbld/4-8     

TMAN/Cbld/8-15    

TMAN/Cbld/15-90 

TMAN/Kent/0-2      

TMAN/Kent/2-4      

TMAN/Kent/4-8     

TMAN/Kent/8-15     

TMAN/Kent/15-90  

0.0406 

0.1246 

0.4281 

0.1764 

0.0019 

0.0042 

0.0251 

0.2451 

0.4695  / 1.71† 

0.0839 

TMAN/Cbld/0-2     

TMAN/Cbld/2-4     

TMAN/Cbld/4-8     

TMAN/Cbld/8-15    

TMAN/Cbld/15-90 

TMAN/Kent/0-2      

TMAN/Kent/2-4      

TMAN/Kent/4-8      

TMAN/Kent/8-15     

TMAN/Kent/15-90  

0.1912 

0.1537 

0.4681 / 1.82† 

0.0443 

0.0013 

0.0055 

0.0274 

0.2484 

0.4659 

0.0832 

†Indicates both the area of the representative HRU before HRU amalgamation and 

after HRU amalgamation 
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 The representative HRU with the largest area in simulation 3 was the TMAN 

landuse, Kentville soil group and slope class of 8-15° (TMAN/Kent/8-15° in Table 5.2). 

The reaming HRUs in simulation 3, which contained the TMAN landuse class, and were 

below 1 ha, were aggregated into the representative HRU, resulting in a total area of 1.71 

ha. The variations to the DEM implemented in simulation 9 caused a slight increase in 

TMAN landuse, Cumberland soil and 4-8° slope class (TMAN/Cbld/4-8° in Table 5.2). 

Subsequently, in simulation 9 the TMAN/Cbld/4-8° HRU became the representative 

HRU with a total area of 1.82 ha. The Kentville and Cumberland soil types have different 

soil parameters, which serve to generate different estimates of simulated erosion, as 

Kentville soils have a higher propensity for erosion. The different slope classes also 

introduce variation to the estimates of simulated erosion, as the higher slope class results 

in an increase in simulated erosion through the MUSLE equation (4.1).  

 As the example in Table 5.2 displays, the thresholding behavior of representative 

HRU leads to a substantial impact on the simulated sediment outputs, despite only a 

minor variability in the area of the slope classes. Due to the resulting differences in the 

representative HRU of the TMAN landuse, and several other landuses within Subbasin 9, 

the range of sediment yield across all DEM simulations within the subbasin reached 0.75 

tons. The mean sediment output of subbasin 9 is 1.70 tons, leading to a range that is 44% 

of the mean total. SWAT users should be aware of this thresholding behavior and the 

potential impacts introduced by the DEM uncertainty. The magnitude of the simulated 

sediment differences will be related to the area threshold selected during HRU creation, 

as well as the area distribution of the different landuses and soil classes within the 

subbasin. Minimal uncertainty will be introduced if all HRU combinations are well above 

the HRU creation area limit. Uncertainty introduced by changes in the representative 

HRU will be more prevalent in watersheds with a large diversity of land uses. 

Investigation into the potential for uncertainty introduced through amalgamation into a 

single representative HRU can be performed by creating HRUs with no area limit and 

analyzing the associated distribution of HRUs areas. If multiple HRUs with common land 

use have similar area, the potential exists for changes to the representative HRU.  
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5.5 Conclusion 

 Uncertainty in watershed simulation models is a critical consideration for 

developing sound and defensible environmental management decisions. A DEM plays a 

crucial role in parameterising semi-distributed hydrological models, however the impacts 

of uncertainty in the elevation of individual LiDAR derived DEM grid nodes are not well 

understood in terms of simulated hydrological outputs. This analysis characterizes the 

sensitivity of the SWAT watershed model to DEM grid node elevation uncertainty due to 

LiDAR measurement errors. This allows users of watershed simulation models to gauge 

whether the impact of the uncertainty introduced by a LiDAR derived DEM is acceptable 

for their modeling needs. If necessary, appropriate accommodations to generate a DEM 

with increased accuracy can be made, or the selection of a lower accuracy, more cost-

effective DEM can be investigated.  

 Total watershed area showed minor variability to LiDAR measurement errors, 

which also lead to a negligible sensitivity in water yield predicted from the SWAT. 

However, small, predominately flat areas could generate unacceptable levels of flow 

uncertainty if they are associated with variability in drainage area. Sediment uncertainty 

was related to alterations in the configuration of HRUs due to changes invoked in the 

slope class distribution and representative HRU definitions. Sediment results showed 

high levels of uncertainty, which could warrant consideration when interpreting results 

from the SWAT. Maximum observed ranges in simulated monthly sediment export 

between all simulations reached 14% of the mean monthly sediment results. This 

indicates that planning strategies developed from SWAT simulation results, 

parameterized from LiDAR DEMs, must consider this level of potential variation.  

 Previous work by Wu et al., (2008), using TOPMODEL, has identified that 

unique hydrologic model calibrations using individual DEMs in error simulations will 

show equifinality conditions. Therefore, a unique parameterisation for each DEM 

realization could potentially absorb any uncertainty introduced by the DEM. In this 

analysis, flow showed only minor sensitivity to the DEM uncertainty at the selected 

outlet, indicating the parameter calibration would not be largely affected by the DEM 

uncertainty. However, if flow parameters are calibrated at stations which are draining 

primarily low relief areas, such as station 1, more considerable uncertainty could be 
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introduced to model parameters. Therefore, attempting a multi-site calibration (such as in 

Zhang et al., 2008) for the SWAT Thomas Brook model could be problematic if station 1, 

located in a low relief subbasin, is included. The increase of uncertainty at this station 

may cause inter-station inconsistencies between calibrated parameters, causing 

difficulties in convergence of statistical assessment criteria. It is currently unknown 

whether the sediment parameters in SWAT would also display equifinality conditions if 

each DEM realization was uniquely calibrated. If equifinality conditions are reached, the 

level of introduced uncertainty to sediment parameters would be important to 

characterize for comparison with previously documented uncertainties in parameter 

uncertainty. If the uncertainty introduced to sediment parameters allowed an unrealistic 

range of a parameter values, the DEM uncertainty should be a concern. This is similarly 

identified in Section 4.3.4.3, which showed that the uncertainty introduced by grid cell 

size of a 1 m LIDAR DEM reduced the USLEp to an unrealistically low value for the 

conditions in Thomas Brook. Therefore, investigation of the uncertainty introduced to 

sediment parameter calibration is a valuable direction for a continuation of this analysis.  

 Further work should also be considered in DEMs with different grid cell sizes and 

terrain conditions. It is possible that the topographic derivatives in coarser resolution 

DEMs will be less influenced by elevation errors, as shown in Erksine and Green (2007). 

Therefore, it is hypothesized a similar reduction of simulated sediment uncertainty may 

be observed in models parameterised from coarse resolution DEMs. It has also been 

shown in Section 3.4.3 that high resolution DEMs are not an appropriate choice for 

defining the hillslope scale within a SWAT model due to spatial scaling of the MUSLE 

relationships. The potential reduction in sensitivity of SWAT results to LiDAR 

measurement uncertainty in a coarse resolution DEM could also provide evidence that 

high resolution DEMs are not the optimum choice for SWAT parameterisation. 

Therefore, comparison of multiple resolution DEMs also presents an avenue for future 

research, which would provide additional guidance for the optimum selection of a DEM 

resolution for SWAT model parameterisation. Additional case study sites with different 

topographic conditions could also serve as a valuable future research direction. 

Watersheds with predominately low slope conditions are hypothesized to show a high 

sensitivity of flow to DEM uncertainty, and minor sensitivity to sediment, contrasting 
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results at Thomas Brook. This result is inferred because the low relief area would tend to 

produce higher variability in drained area, which is the key variable that affects the 

variability in flow results. Since slopes would be predominately low, only minor levels of 

landscape erosion and associate variability would likely be observed.   
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CHAPTER 6  CONCLUSION 

 
6.1 Main findings and novel contributions  

The main findings of this work, and their novel contribution to the geomatics, terrain 

analysis and hydrological communities can be summarized as follows: 

 

 The influence of fine to medium (1 - 50 m) DEM resolutions to watershed 

attributes in distinct topographic landscapes had not been previously assessed in a 

controlled manner. Fine spatial resolution DEMs displayed scale dependent 

behavior at Thomas Brook, related to the scale of local anthropogenic 

modifications. Scale dependent relationships also existed in a predominately 

alpine environment, although their effects to delineated watershed area were 

minor. This contrasted results at Scotty Creek, a primarily flat landscape, where 

the effects caused by elevation uncertainty overcame scale dependent behavior. 

Therefore, uncertainty in DEM grid nodes due to spatial resolution or 

interpolation method should be considered in the context of local changes in 

elevation. If uncertainty levels are higher than changes in local DEM grid node 

elevations, uncertainty in watershed area, and subsequently modeled flow, can be 

introduced. 

 Scaling laws, which permit the transfer of stream length between DEM 

resolutions, have not been previously established. Due to the complications of 

implementing a constant area threshold within the ArcHydro framework, it was 

determined that entire drainage networks cannot be scaled between DEM 

resolutions. However, it was shown that if the spatial location of a single stream 

channel is consistent, a fractal based scaling law allows the transfer of stream 

channel lengths between DEM resolutions. 

 Accuracy assessments of stream lengths derived from LiDAR DEMs within the 

literature have been rare, leaving modelers without guidance for selecting a DEM 

resolution for modeling stream length. An accuracy assessment using high 

accuracy differential GPS measurements at Thomas Brook watershed, containing 

a 3 m wide stream, showed the best available tested DEM resolution was 1 m.  
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 Previous studies analyzing the sensitivity of watershed attributes to LiDAR DEMs 

have not considered a broad cross-section of interpolation routines. It was found 

that the interpolation method of raw LiDAR observations to DEM grid nodes has 

little effect on the delineation of watershed boundaries or stream networks; 

however, the MA method was an exception, which tended to under-predict stream 

lengths at high resolutions.  

 The spatial pattern of LiDAR derived DEM, slope, and aspect uncertainty due to 

LiDAR measurement errors has not been previously documented. It was found 

that LiDAR-derived DEM uncertainty and slope uncertainty will increase with an 

increase in the incidence angle of the laser pulse, with high slope regions 

initiating a more rapid increase. LiDAR-derived aspect uncertainty will decrease 

with an increase in terrain slope according to a power function. 

 The sensitivity of the delineation of watershed boundaries and stream network to 

LiDAR measurement uncertainty has not been previously reported. It was found 

that watershed area experienced minor variability due to LIDAR measurement 

errors, unless the terrain slope was predominately low. Stream network length 

experiences minor variability to LIDAR measurement errors on the spatial scale 

of the Thomas Brook watershed, however, the variability of stream network 

length to LiDAR measurement errors will increase as the drainage area decreases. 

 Changes in simulated SWAT outputs due to DEM spatial resolution have been 

previously obtained with watershed parameters obtained from a single DEM 

resolution. Experiments here were conducted to separate individual DEM 

functions and it was determined that  

 

i. Flow derived from SWAT in a small scale watershed does not exhibit 

sensitivity to a modification of DEM resolution from 1 to 50 m unless the 

change in resolution initiates a change in area. 

ii. Landscape sediment yield derived from SWAT in a small (689 ha), 

primarily agricultural watershed, will increase as DEM resolution 

increases. Due to this, the calibrated sediment parameters of a SWAT 

watershed model may become unrealistic at fine DEM resolutions. 
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iii. Channel processes in SWAT are sensitive to changes in DEM resolution 

due to changes in stream length and stream slope. Peak flow rates tend to 

decrease in fine resolution DEMs due to an associate increase in stream 

length and decrease of stream slope, causing an increase in channel 

deposition, or reduction of channel erosion. 

iv. A SWAT model of the Thomas Brook watershed benefits from a multi-

scale DEM parameterisation, in which the stream network and watershed 

boundaries are determined from a high resolution DEM, and the hill slope 

scale is determined from a lower resolution DEM. 

 The sensitivity of SWAT flow and sediment outputs to LiDAR measurement 

errors has not been previously quantified. Flow derived from SWAT shows minor 

sensitivity to LiDAR measurement uncertainty. However, the flow sensitivity will 

increase in regions where the DEM uncertainty causes variability in the drainage 

area. Sediment derived from SWAT shows a higher sensitivity to LiDAR 

measurement errors than flow. The sediment uncertainty can be traced to the 

creation of different representative HRU combinations. Different representative 

HRUs are caused by the varied slope class areas and the high density of 

agricultural landuses, which are near the limit of minimum HRU areas in the 

Thomas Brook watershed. 

6.2 Directions for future work 

 

 The fractal dimension of stream networks should be researched in relation to 

DEM resolution and stream geomorphology. Theoretically, a stream will increase 

its fractal dimension with an increase in complexity. An increase in stream 

complexity can be introduced through an increase in stream sinuosity. Therefore, 

as stream sinuosity increases due to geo-morphological constraints, an increase in 

the fractal dimension is hypothesized to follow. This indicates that a single global 

value of fractal dimension may not be appropriate for scaling stream lengths in 

different landscapes.  
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 Although the stream length of entire drainage networks could not be scaled due to 

complications associated with stream initiation threshold, each site did appear to 

show some unique systematic behavior between stream length and DEM 

resolution. Investigation into a relationship between landscape complexity, which 

can be described with a fractal dimension between 2 and 3, and changes in the 

total length of the drainage network could be an avenue to better understand this 

relationship. Knowledge of a more robust scaling law would enable modification 

of stream network lengths that is not restricted to single stream channels, and may 

provide additional insight into the selection of an optimum DEM resolution. 

 

 Additional research is required on methods or procedures that enable consistent 

area and stream length results in environments with subtle changes in relief, such 

as Scotty Creek. This could involve improvements to LiDAR raw point filtering 

routines, which would increase the fidelity of observations in these environments.  

 

 Investigation into the sensitivity of additional hydrological models to LiDAR 

measurement errors is required. The results obtained in Chapter 3 provide a 

valuable basis for developing hypotheses of the sensitivity of hydrological models 

with terrain inputs to LiDAR measurement error. Analysis should focus on 

distributed or semi-distributed models with a high reliance on topographic 

information. As uncertainty appears to have the largest effect in regions with 

minor changes in relief, flood inundation models would serve as an ideal 

candidate for additional testing. The current predictions of sea level rise due to 

climate change indicate there is an urgent need to study this application area due 

to immediate economic and environmental interests. Additionally, LiDAR is a 

data source used in FEMA's federal flood insurance risk mapping program. A vast 

amount of public LiDAR information has been collected for this purpose in the 

continental United States making existing data sets readily available for testing. 
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 Research on the implications of DEM resolution in the domain of 1 to 50 m is 

required with the SWAT model on larger scale watersheds. In particular, 

watersheds with travel times longer than the minimum daily time step are 

required. It is hypothesized that flow magnitude and timing would experience a 

greater sensitivity in a larger watershed system due to DEM grid cell size induced 

changes in stream length. Testing of this nature should ensure that all DEM 

resolutions result in stream lengths with modeled travel times greater than a single 

day. Therefore, during experimental design, the travel time of the lowest 

resolution DEM should be verified first. 

 

 Access to daily calibration information would allow for analysis of the sensitivity 

of SWAT outputs to DEM uncertainty on a daily time step. The reduction from a 

monthly to daily time step would enable better analysis of the response of the 

system to DEM resolution during individual storm events. 

 

 The uncertainty introduced to SWAT outputs from the DEM needs to be 

considered in terms of equifinality conditions and parameter uncertainty. A 

quantification of the uncertainty introduced by the DEM to model parameters 

would aid in placing the DEM influence into a broader context of hydrological 

uncertainty introduced from other sources. The newly developed automated 

calibration routine for SWAT, SWAT-CUP, produces parameter uncertainty 

estimates during the calibration process. Uncertainty introduced by the DEM 

could be determined though unique calibrations of DEMs, with systematically 

varied grid cell sizes and randomly varied elevations according to LiDAR 

measurement errors. Uncertainty introduced by the DEM could be compared 

against the typical levels of uncertainty obtained during calibration to assess the 

overall relevance of the DEM uncertainty. If minor significance is observed, it is 

an indication that model improvement should focus elsewhere. If uncertainty 

introduced by the DEM is significant, it suggests efforts would be placed on 

eliminating or reducing the uncertainty introduced by the DEM.      
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