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Abstract 

The interfacing of analytical measurement instrumentation to small computers for 
the purpose of on-line data acquisition has now become standard practice in the modern 
laboratories.  An important aspect of digital data acquisition is the possibility of 
performing post-run data analysis and signal processing.  There is a large number of pre-
processing methods available including noise reduction, peak resolution, baseline 
removal and complex signal decomposition prior to further data analysis.  Baseline 
artefacts often interfere with the interpretation and quantitation of analytical data by 
signal distortion and can complicate the data analysis.  Hence, baseline subtraction 
methods have become an important pre-processing tool.  

During the last decade, many baseline estimation methods have been proposed, 
but many of these approaches are either only useful for specific kinds of analytical signals 
or require the adjustment of many parameters.  This complicates the selection of an 
appropriate approach for each kind of chemical signal and the optimization of multiple 
parameters itself is not an easy task.  In this work, an asymmetric least squares (ALS) 
approach is used with truncated and augmented Fourier basis functions to provide a 
universal basis space for baseline approximation for diverse analytical signals.  The 
proposed method does not require extensive parameter adjustment or prior baseline 
information.  The basis set used to model the baselines includes a Fourier series truncated 
to low frequency sines and cosines (consistent with the number of channels) which is then 
augmented with lower frequencies.  The number of basis functions employed depends 
mainly on the frequency characteristics of the baseline, which is the only parameter 
adjustment required for baseline estimation.  The weighting factor for the asymmetric 
least squares in this case is dependent mainly on the level of the noise.  The adjustment of 
these two parameters can be easily performed by visual inspection of results.   

To estimate and eliminate the baseline from the analytical signals, a novel 
algorithm, called Truncated Fourier Asymmetric Least Squares (TFALS) was 
successfully developed and optimized. It does not require baseline representative signals 
or extensive parameter adjustments.  The method is described only with parameters 
optimization using simulated signals.  The results with simulated and experimental data 
sets having different baseline artefacts show that TFALS is a versatile, effective and easy-
to-use baseline removal method.  
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Chapter 1 

Introduction 

1.1 Overview 

The success or failure of any data analysis method mainly relies on the acquisition 

of signals consistent with assumptions made by the underlying model.  For any analytical 

technique, the data must be adequately representative of the analyte or system to be 

examined.  All analytical instruments provide indirect measurements of the chemical or 

physical characteristics of an analyte, for example the amount of radiation absorbed, the 

number of gas phase ions produced, or the amount of current produced during charge 

transfer.  These characteristics are measured by a detector and commonly converted to a 

signal response which is a function of some ordinal variable such as wavelength, mass-to-

charge ratio, time or voltage (i.e. a vector or first-order measurement).  The response 

vector not only provides signals characteristic of the analyte(s), but may also include 

some unwanted artifacts, for example signals arising from the matrix or solvent and stray 

radiation.  These artifacts manifest themselves as broad, featureless profiles in the ordinal 

domain (low frequency components in the Fourier domain) as well as sharper, more 

distinct peaks (interferences) and are convolved with higher frequency oscillations of 

lower magnitude associated with instrumental noise.  All of these can alter the ideal 

analyte response and complicate the data analysis.  Of these artifacts, estimation and 

elimination of low frequency components is relatively more important for modeling and 

quantitation due to their relatively high amplitude and overlap with the signal of interest.  

At the same time, such features are more complicated to identify and remove due to the 



2

variable shape of the resulting signal along the ordinal variable.  It is these artifacts that 

are the focus of this thesis.  

1.2 Motivation 

As noted above, analytical experiments that are designed to measure first-order 

signals often result in data that are superimposed with some slowly varying non-specific 

signals, complicating the accurate determination of analytical parameters.  These slowly 

varying components are commonly known as the baseline and sometimes referred to as 

background in the literature [1, 2] and are illustrated in Figure 1.1.  The origin and shape 

of the background depends on the specific measurement approach (see next section for 

details), but often it is slowly varying signal with broad curvature, whereas analyte peaks 

usually have relatively sharp and narrow features that are superimposed on broad 

baselines. 

Figure 1.1  Typical components of a first-order analytical measurement. 
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After signal acquisition, data analysis is the common approach in analytical 

chemistry for peak location identification, integration or modeling.  The presence of 

baseline usually has relatively less effect on the determination of peak location, but it can 

lead to significant complications in quantitative analysis.  Therefore, baseline estimation 

and subtraction is an important component of data analysis. 

Usually experiments are designed to minimize the effects of these non-specific 

baseline components.  For example a “blank” may be subtracted from the signal of 

sample analyte.  However, this is not possible in cases where the blank is unavailable or 

sample dependent, as for biological samples where the matrix is variable.  In addition, 

this experimental elimination step often does not completely remove the baseline.  

Consequently, many approaches exist in the literature, from hardware modifications to 

post-processing of the signal to overcome this problem [3-6].     

Although some baseline problems can be minimized by adjusting instrumental 

parameters [3, 4] or exploiting digital filtering [7] and over-sampling in Fourier transform 

instrumentation [8, 9], post-processing data treatment would be a more general idea for 

baseline correction, since finding the causes of artifacts and ways to eliminate them can 

be a complicated, time-consuming and a non-generalized approach.  Many post-

processing approaches have been employed for baseline estimation in the literature.  

These approaches include model-free approaches [10-44], curve fitting [45-52], removal 

of low frequency components in the frequency domain [53-63] and manual and 

automated baseline estimation in time domain [64], [28-35].  Many of these approaches 

are successfully able to remove the low frequency baseline artifacts, but it has been 

acknowledged that every approach has its limitations and strengths [5, 6].  Some 
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approaches are useful for specific analytical signals, which means they work for certain 

baseline shapes that can be associated with particular analytical signals.  Other 

approaches are good for multiple kinds of signals but have many parameters to adjust and 

these parameters depend on analyte response (signal-to noise-ratio, S/N).  

This thesis report describes a novel approach for baseline estimation that avoids 

some of the drawbacks of existing methods stated above.  The work focuses on the 

development and optimization of the proposed approach, including quantitative 

comparisons with two other existing methods through simulated data sets.  Applications 

are also included for a variety of experimental signal vectors to provide a qualitative 

visual evaluation for real situations where the true baseline is not known.  

1.3 Sources of Baselines in Analytical Measurements 

The position, shape and relative intensity of analyte signals are the basic 

characteristics of interest in any signal vectors to be measured for further analysis, 

including the structural or functional characterization of molecules and determiation of 

analytes.  The determination of these characteristics can be confounded by the presence of 

a slowly varying baseline.  In this section, some baseline problems associated with 

specific analytical techniques will be discussed.  Due to the wide range of analytical 

measurements, this discussion cannot be comprehensive, so the emphasis will be on 

spectroscopic measurements because of their widespread usage.  A few other techniques 

are mentioned as well, however.  

In spectroscopic techniques, a slowly varying baseline signal can arise from the 

radiation source, solvent or matrix contributions, instrumental measurement effects or a 
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combination of these.  A few common sources of baselines in spectroscopic 

measurements are indicated in the literature [1, 2, 65] as follows.  

1) Elastic scattering of the radiation source by the sample cell, solvent or optical 

components. 

2) Radiation reflection by the sample cell, optical components or cell compartment. 

3) Raman scattering by the solvent and its components. 

4) Fluorescence from the solvent and dissolved particles. 

5) Luminescence from the cell wall or optical components. 

6) Stray radiation due to leakage of room light. 

7) Radiation source (flame, light source, plasma etc.) 

Fourier transform (FT) spectroscopy has become a very common and relatively 

standard measurement technique for certain types of analytical instrumentation (infrared 

(IR), Raman, Nuclear Magnetic Resonance (NMR)) due to its fast data acquisition, fewer 

optical elements and better response in comparison to dispersive systems [2].  In the 

dispersive instruments (referred as grating or scanning spectrometers) source energy is 

sent through both a sample and a reference path.  In these systems, the intensity over a 

narrow region around each point in the spectrum can be determined by slowly moving the 

grating.  Then, the separates the wavelengths of light in the spectral range and directs 

each wavelength individually to the detector or alternatively a continuous array of 

detectors is used to measure all the regions simultaneously.  On the other hand, in FT 

instruments, all wavelength channels are measured simultaneously (multiplex system), so 

the time required to collect all the data to form complete spectrum is often drastically 

reduced.   Since all of the frequencies are collected at the same time without dispersion, 
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the wavelengths and their signal intensities are overlapped and are then deconvolved by 

Fourier analysis to form a spectrum.  A limitation of FT instruments is the single beam 

configuration that requires a background correction following a separate background run, 

where possible [1].  

In Fourier transform infrared (FT-IR) spectroscopy, the IR beam passes through not 

only the sample but also through a length of air.  Since air contains two major IR active 

molecules, 2CO and 2H O , absorption from these two molecules is present in every 

resultant spectrum.  The other source of background is the variable intensity of the 

infrared source; the lamp usually has maximum intensity somewhere in the middle of the 

spectrum and gradually diminishes towards either end.  Due to the uneven intensity of 

light source through the entire spectral range, the FT-IR spectrum typically exhibits a 

slowly varying curvature [2]. 

In NMR spectroscopy, the presence of a baseline can be the result of a bad choice of 

measurement parameters, corruption or non-linearity in the instrument condition (such as 

non-linear filter-phase response), an intense solvent signal relative to analyte (called a 

dynamic range problem), a dead time problem in the pulsed NMR, or the discrete nature 

of Fourier transform in FT-NMR [8, 66].  Dead time is the time interval between the 

centre of the excitation pulse and the point where the first sample of the time domain 

signal is obtained.  The dead time in the time domain appears as missing sample points in 

frequency domain and the more missing sample points, the more severe the baseline 

distortion appears in the spectrum.  Otting et al [67] demonstrated that a source of 

baseline in FT-NMR is the incorrect use of the Fourier transform algorithm, the so called 
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‘first data point problem’, and sampling delay.  These baseline distortions in spectra can 

cause incorrect peak integration and peak picking.  Oversampling and digital signal 

processing have been implemented in modern spectrometric hardware to minimize the 

baseline [68], but some broad signals also come from the sample itself.     

Raman spectroscopic signals are also known for background signals.  These 

background signals come from either non-source induced emission processes (e.g. black 

body radiation, room light, etc.) or fluorescence from sources other than the analyte (e.g. 

solvent, optics, matrix) [69].  Raman spectroscopy has been extensively applied in a 

variety of research areas in recent years; however background is a major obstacle in the 

successful implementation.  The non-source emissions can be eliminated by instrumental 

optimization, but the sample fluorescence is almost unavoidable.  It is often observed as a 

broad band background signal that is superimposed on the signal of analyte.  This 

background signal can be an order of magnitude or greater than the Raman signals and 

consequently dominates the spectrum, resulting in very small Raman peaks in the 

spectrum.  Therefore, the subtraction of background is essential to extract reliable 

analytical information from the Raman signals. 

In addition to spectroscopy, other widely used analytical techniques also exhibit 

signals characterized by broad baselines.  In chromatography, baseline variations can be 

caused by changes in the mobile phase composition that affect properties of the eluent, 

such as refractive index or absorptivity (optical detection in liquid chromatography (LC)), 

electrical properties (conductivity detection ion chromatography) or thermal conductivity 

in gas chromatography (GC).  Other sources, such as pump noise or column bleed can 

also play a role.   
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In mass spectrometry, a variety of factors can lead to baseline variations, depending 

on the ion source (e.g. matrix-assisted laser desorption ionization (MALDI), electrospray 

ionization (ESI)) and type of mass spectrometer.  For example the chemical noise 

(referred as baseline in the mass spectroscopic literature [70]) or the unwanted 

interferences due to matrix or chemical impurities in the sample, is totally dependent on 

the type of ionization source (e.g., MALDI, ESI).  Typically matrices are a low molecular 

weight organic acid that is mixed in large molar excess compared to the sample (protein 

or peptide).  The primary role of the matrix material is to absorb laser energy and transfer 

the energy to the sample to ionize the sample molecules without fragmentation.  During 

this process, matrix material vaporises and the gaseous ions are sent to the electric field 

for ion separation.   The interaction of matrix materials with the sample gradually 

decreases its contribution due to molecular ionization and consumption of matrix 

material, giving relatively higher baseline contribution at low m/z ratio regions.  

Consequently, baseline is a mass-to-charge dependent offset on which information-

bearing spectral components are superimposed, complicating the quantitation and also 

affecting peak detection and sample-to-sample comparison [62, 65].  When mass 

spectrometry is used as a detection method for chromatography, baseline variations can 

arise in both dimensions. 

Finally, other techniques where baseline can be a problem include X-ray 

fluorescence, activation analysis and various electrochemical methods, but these will not 

be discussed in detail here. 
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1.4 Baseline Removal Methods 

The literature on baseline estimation and elimination is widely dispersed among 

many fields of research including analytical chemistry and chemometrics [see for 

example 22, 71, 72], nuclear physics [73], X-ray spectroscopy [74, 75], NMR [8-10, 16], 

Raman Spectroscopy [38, 50], and bioinformatics [13, 76, 77].  Early publications on 

baseline correction were mainly based on hardware modifications [3, 4].  The first few 

computer-based approaches were published in late 1960’s for automated baseline removal 

[19, 76].  Later, the development and use of computation and automated approaches were 

accelerated through 1970’s and 1980’s due to the increasing availability of computers 

[45, 67, 80-85].  During the last few decades, due to extensive advances in the field of 

analytical instrumentation and quantitative research, many baseline estimation approaches 

have been published [6 -101].  These approaches range from manual baseline methods to 

semi-automated and automated approaches.  To avoid an extensive detailed discussion of 

individual approaches published in the literature, brief descriptions of some commonly 

used general approaches will be presented within this section, along their advantages and 

drawbacks.  The most common methods are based on the following approaches: the 

adaptive Kalman filter [87-89], window-based approaches [10-22], smoothing and 

derivative methods [23-31], polynomial or spline baseline modeling [45-52,92-101], 

frequency domain filtering using Fourier or wavelet transforms [53-66] and asymmetric 

least squares methods [32-44]. 
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1.4.1 Notations 

In this section and the remainder of the thesis, various equations are presented to 

represent baselines and their manipulation through models.  Because analyte signals and 

baselines are represented as vectors, equations often involve vectors and matrices as well 

as scalars.  Unless otherwise stated, the standard notations will be used as follows:  

Vectors are represented by bold lower case letters and matrices by bold uppercase letters.  

Scalars will be given in italics (upper or lower case).  The transpose of vectors or matrices 

is indicated with a superscript ‘ T ’ and generally, unless otherwise indicated, column 

vectors can be assumed.  Matrix inverses are indicated with a ‘ 1 ’ superscript. 

1.4.2 Adaptive Kalman Filtering 

The application of adaptive Kalman filter to chemistry was proposed by Rutan and 

Brown [84, 85].  While its more successful application has been in multi-component 

calibration and curve resolution [86, 87], Gerow and Rutan used this filter for background 

elimination in 1986 [88].  They used derivatives to reduce the relative magnitude of low 

frequency deviations in conjunction with the adaptive Kalman filter for modeling.  Then, 

in 1988, they used factor analysis to model the spectral profiles of the fluorescence 

background and the adaptive Kalman filter to calculate the weighting factors for each of 

the abstract background components [89].  The adaptive Kalman filter is a modification of 

Kalman filter, proposed by R. E. Kalman for digital data processing in engineering and 

orbital mechanics in 1960 [90].  The Kalman filter in its simple form is a recursive, linear 

least squares filter.  In a recursive manner, it processes the data points one at a time and 

obtains the best estimates of the model parameters (e.g. slope, intercept, mean) using each 
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new measurement. The general Kalman model can be described by the following 

equations; 

, 1 1 (State Model)k k k k kx F x w  (1.1)

T (Measurement Model)z k k k kh x  (1.2) 

In the state model, kx is the 1n state vector at iteration k , which in this case consists 

of the weighting factors for each of n  background components.  Here k corresponds to 

the wavelength channel of the fluorescence spectrum.  The n n matrix F describes how 

the state vector is supposed to change at each iteration, but in this case is set to the 

identity matrix,I , since the baseline estimate is fixed.  The ( 1)n vector kw is the 

noise in the state vector and in this case is set to zero.  The measurement model describes 

how the state vector kx gives rise to the observed measurement at iteration k , ( )z k .  In 

this example, z k is the observed fluorescence at wavelength channel k  and the 1n  

vector kh represents the normalized spectrum of each background component at that 

wavelength.  The scalar quantity k  represents the measurement error in the 

fluorescence measurement at wavelength channel k . 

 Based on these equations and additional definitions for the system noise 

covariance ( 0kQ in this case) and measurement variance ( kR ), the algorithm 

describes how the estimates of the background components x are updated at each 

iteration.  This algorithm is described in the literature [30] and will not be reproduced 

here.  In essence, the Kalman filter fits the background or baseline profiles to each 

spectrum, but the “adaptive” algorithm allows the filter to be turned off when analyte 
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components are present by inflating estimates of measurement noise in those regions, 

effectively performing a weighted least squares fit.  This permits the background to be 

estimated in the presence of analyte peaks.  This approach has strong parallels to the 

asymmetric least squares approach discussed later. 

The major drawback of the adaptive Kalman filter is that it requires an accurate set 

of basis functions to consistently describe the background profiles, which means that 

representative background profiles (spectra) must available and valid for analyte spectra.  

In addition, the recursive implementation is cumbersome and it has largely been displaced 

by other methods.  

1.4.3 Window-based Approaches  

Commonly used window-based approaches detect noise regions and construct the 

baseline curve by interpolating identified noise regions directly or by using curve fitting 

(e.g., polynomial, Gaussian, cubic spline).  In these approaches, median filtering [10-12], 

iterative thresholding [13-20] or statistical entropy [21, 22] methods are commonly 

employed.  

In 1995, Friedrichs used median filtering of signals in moving windows of 32 points 

each for baseline approximation and then applied a Gaussian smoothing function to 

remove any discontinuities [10].  Kourkoumelis used a Fourier transform to reduce the 

high frequency components in the signal and then identified each convex set as a window 

to find the median and locate baseline points [13].  Coombes [15] and Golotvin [16] used 

specific window sizes to identify the noise points by comparing the intensity range of 

small neighborhood with some defined threshold and eliminate peak regions to find the 
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baseline regions.  Krishnan [21] and Phillips [22] used the maximum entropy approach 

for LC-MS and FT-IR spectra to locate the baseline points.  In the former case, the 

baseline of the total ion chromatogram was reduced by including only mass channels with 

low entropy (less than a threshold ), thereby removing channels consisting only of noise.  

In the FT-IR application, signal, baseline and noise components were separated by 

maximizing the entropy of the noise and employing information about signal line shape. 

All of these window-based methods rely heavily on robust noise region 

identification and therefore may not achieve optimal baseline correction in many cases.  

Threshold approaches are based on the detection of noise points by comparing the 

intensity range of a small neighborhood with the standard deviation of noise regions or 

comparing the statistical entropy parameter.  It has been observed that these methods 

occasionally identify the low signal points in some cases as noise [13].  Noise standard 

deviation estimation is also theoretically biased to be smaller than the true value in a 

statistical view, and leads to additional inaccuracy in detection of noise data points [13].  

Another drawback of these methods is that they are often limited to specific signal types 

(e.g. MS, NMR) and data acquisition parameters (e.g. sampling interval) and therefore 

may not be widely applicable. 

1.4.4 Smoothing and Derivative Methods 

Derivatives are also widely used to remove baseline artifacts from the analytical 

signals [23-25].  The simplest form of a first derivative calculation is where each sample 

point is subtracted from its neighboring point.  When performed on the entire signal, the 

first derivative removes the signal which is same between the two points (variables), 
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which in turn attenuates the low frequency baseline.  In principle, the first-derivative 

should completely remove a constant baseline, whereas the second derivative should 

remove linear baseline components.  Since derivatives de-emphasize low frequency 

baseline and emphasize high frequency noise, Savitzky-Golay derivative filters are often 

used to simultaneously smooth the data.  Thus, a properly designed derivative filter 

represents a balance between low and high frequency attenuation, requiring adjustment of 

filter parameters optimum for a particular signal.  However, the biggest drawback of 

signal differentiation is the change in signal shape, which may be undesirable.  For 

example, the first derivative of a signal peak will give positive and negative peaks 

bracketing the original, which may have implications for interpolation, integration, or 

other operations.  Therefore, derivative methods can be a good choice for peak 

identification or data smoothing and noise removal, but for baseline correction it changes 

the peak shape at both ends and makes the signal interpretation difficult for quantitation, 

since derivatives introduce some features at the edges of peaks.  

Savitzky-Golay digital filters [91], or polynomial least squares filters are widely 

known as a noise filters and are considered as standard for data smoothing [26].  The 

general characteristic of smoothing filters is that the lower frequencies, generally 

associated with chemical signals, are passed after filtration, while the high frequency 

components uniquely associated with the noise are attenuated.  The design of Savitzky-

Golay filter requires the selection of the widow size, the order of polynomial and the 

order of derivative.  The simplest Savitzky-Golay filter is the moving average filter (zero-

order, zeroth derivative) which averages points in a symmetric window around the 

filtered points.  In baseline removal applications, smoothing filters such as this are 
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applied with wide windows to remove both signals and noise with frequency components 

higher than that of the baseline.  However, the filtered signal is only a starting point for 

baseline estimation and further refinement is generally necessary, making such methods 

more complex and signal dependent.  For example Schulze et al [27, 28] used small and 

large window zero-order Savitzky-Golay filters in conjunction with peak stripping to 

attenuate the high frequency noise and the signal of interest and isolate the low frequency 

baseline.  The selection of window size and the order of polynomial are highly dependent 

on signal-to-noise ratio and shape of the baseline.  Other moving average approaches fall 

into in the same category, since the average of past data points [29], neighboring data 

points [30], or only two alternate points [31] are taken.  These approaches are usually 

based on the moving average smoother or linear interpolation of a moving average of a 

certain window size.

1.4.5 Polynomial or Spline Baseline Modeling  

Polynomial fitting [45-52] and spline smoothing [92-101] are essential parts of the 

literature in the baseline estimation area.  The simplest version of polynomial fitting 

employs a set of basis functions in the ordinal variables: 0 1 2 3, , , ,......, nx x x x x . For a signal 

vector y , the model for polynomial fitting can be written as,  

1
1 1 0( ) ....n n

n ny x a x a x a x a e  (1.3) 

where a  represents the coefficients to be determined, n  is the order or degree of 

polynomial, and e represents the measurement error. 
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A spline is a smooth polynomial function which is piecewise-defined and holds a 

high degree of smoothness at the connection of two polynomial pieces.  The splines are 

generated on the basis of a sequence of chosen points called nodes.  Usually a third-order 

polynomial (cubic spline), a third-order Hermite polynomial (piecewise cubic spline) or a 

2.5 degree polynomial (spline 2.5) are used for modeling baselines.  Splines fulfill the 

four main criteria:  

1.  Neighboring polynomials should have joint nodes, 1i i i if x f x  

2.  Neighboring polynomials must have same slope at joint nodes (continuous first 

derivative), ' '
1i i i if x f x  

3. Neighboring polynomials must have same curvature at their joining points 

(continuous second derivative), " "
1i i i if x f x  

4.  The start of the first and end of the last polynomial of a curve do not have joint 

points, so the slope is assumed to be zero. ' '
1 1 0i n if x f x  

Many different approaches have been proposed using polynomial fitting or spline 

smoothing; ranging from low-order [48, 49, 101] and multiple polynomial fitting [50, 51] 

to linear [93-96] and cubic [97-99] spline smoothing in the time or frequency domain 

[100].  Polynomials and splines have been used as a baseline estimation tool through 

linear interpolation [60, 68, 93-96], least squares fitting [45, 92, 101] and iterative 

threshold based fitting [50].  Usually, baseline point identification is done prior to the 

function fitting. Many different approaches are used to identify baseline reference points, 

including manual point selection [94, 99], and derivatives for baseline identification [46, 

101].  Manual fitting is not as effective and fast, since it is totally dependent on user’s 
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experience and understanding of the data.  For automated approaches, the performance 

declines for lower signal-to-noise ratio and signal-to-background ratio environments [77].  

Polynomial and spline fitting can provide fairly good baseline estimation for specific 

analytical signals, but cannot be used as a generalized approach for multiple analytical 

techniques.  Moreover, an appropriate choice of the degree of the polynomial is quite 

crucial to reliable baseline estimation. 

1.4.6 Frequency Domain Filtering using Fourier or Wavelet Transforms 

Fourier and wavelet transforms are two powerful tools in signal analysis in 

different areas of study.  Many approaches exist in the literature for baseline correction 

based on these methods [9, 53-57], and these will be reviewed briefly here.  Baseline 

correction based on the discrete Fourier transform first represents the signal using sine 

and cosine functions, transforming the signal into the frequency domain [102]. 

For a discretely and uniformly sampled signal, y t , with N points, the Fourier 

decomposition can be represented in a number of equivalent ways, as shown below. 
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In these equations, , ,n n n nA B C Dand represent coefficients in the Fourier series.  Focusing 

on the last equation, the Fourier transform represents the amplitude nC and phase n as 

a function of the frequency of the sinusoid snf N .  Although the independent 
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variable, t , traditionally represents time (giving rise to the “frequency” interpretation) 

any ordinal variable also works.  The quantity sf  is the sampling frequency, equal to 

1 t , where t  is the interval between measurements. 

Baseline removal with the Fourier transform (FT) works in a manner similar to 

derivative filtering.  Low frequency coefficients associated with the baseline are removed 

or adjusted and the inverse FT is performed.  High frequency (noise) components can also 

be removed.  In practice, this approach can lead to large distortions (like wide-window 

smoothing) and is usually only used for signals originating in the Fourier domain [9]. 

The discrete wavelet transform (DWT) is based on principles similar to the FT, but 

has been more widely applied for baseline removal.  The decomposition with the DWT 

employs a special function called a mother wavelet , the most popular and useful forms 

being the Daubechies, Coifelt and Symmlet families of wavelets [63].  The transformation 

decomposes the signal into two new vectors at each level, referred to as the 

approximation and the detail.  If the original signal has N elements, the approximation 

vector at the first level contains 2N  low frequency coefficients (the result of a low pass 

filter), whereas the detail vector contains 2N  coefficients corresponding to the high 

frequency components (the result of a high pass filter).  The wavelet transform allows 

multilevel decomposition by transformation of every level of the approximation 

coefficients into a new lower level of detail and approximation coefficients.   An 

illustration of wavelet decomposition is presented in Figure 1.2. 
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 There are several variants of this basic approach, such as the wavelet packet 

transform (WPT) and adaptive wavelet transform (AWT).  When used for noise removal, 

the assumption is that the noise dominates in the detail (high frequency) components and 

these are compared to some threshold and removed (hard thresholding) or adjusted (self 

thresholding) before applying the inverse wavelet transform (IWT) to regenerate the 

signal.  For baseline removal several strategies can be employed.  One is to remove the 

low level approximation (low frequency) vector associated with the baseline [55-59] 

before applying the IWT, although this may result in distortion.  Another approach is to 

use the wavelet decomposition to identify peaks or baseline regions and then apply other 

methods (polynomial, spline, etc.) to estimate the baseline [38, 61-63]. 

Figure 1.2  Schematic illustration of wavelet decomposition to obtain 
detail and approximation coefficients at each resolution level.  
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While wavelet transforms have been shown to be useful for baseline removal, their 

largest drawback is the large number of parameters that have to optimized for a given 

system being studied.  These include the mother wavelet to be used, the number of levels 

of approximation and the type of thresholding.  These methods are sensitive to the 

baseline and the noise, and the requirement for optimization is an impediment to general 

applications.  

1.4.7 Asymmetric Least Squares Methods  

In recent years, baseline removal by methods based on asymmetric least squares    

(ALS) [32-42] and other closely related approaches [43, 44] have become popular, as 

evidenced by the large number of citations in a relatively short period of time.  Such 

methods are also most closely related to the technique described in this work so, while a 

brief description is given here, more details are presented in Chapter 2.   

ALS estimation was first introduced in 1987 by Newey and Powell in Econometrics 

[103], and then Boelens et al used the same approach for baseline estimation in 

chromatography [32].  The basic principle behind ALS is to carry out a weighted least 

squares fit of experimental data, y , to a function intended to model the baseline, where 

the baseline estimates are given by z .  The weighted sum of squared residuals is given by 

2
i i i

i
S w y z   (1.6)

To permit the function z  to model the baseline but not the positive peaks, the weights are 

assigned to largely ignore positive deviations from the model by assigning them 

according to the following equation. 
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if

1 if
i i

i
i i

p y z
w

p y z
  (1.7)

Here p is an asymmetry parameter between 0 and 1, such that 0.5p  is equivalent to 

ordinary least squares and 0.5p  will decrease the importance of positive residuals.  

The model parameters for the baseline, with new weights assigned at each iteration are 

determined iteratively.  The baseline function, z  , can be any appropriate function, but in 

the initial application [32], a linear combination of background vectors was used. 

One problem with this original method was the requirement for an explicit baseline 

model.  To solve this, Eilers later combined asymmetric least squares with a Whittaker 

smoother [33], originally introduced by Whittaker [104] in 1922 and also described in the 

chemical literature by Liang et al in 1999 [105].  The combination of the Whittaker 

smoother with asymmetric least squares, also called penalized least squares (PLS), was 

first described in the appendix of a paper on chromatographic time warping in 2004 

[106].  A more complete description is in a draft manuscript that is available online [33] 

but, interestingly, this has never been published.   Later in this thesis, this specific 

baseline correction method, [33] will be termed as asymmetric least squares smoothing 

(ALSS) instead of the generalized term PLS. 

PLS attempts to achieve a balanced combination of two conflicting goals: fidelity to 

the data (remaining close to the baseline) and smoothness.  The approximation result 

requires optimal choice of the ‘order’ of smoothing difference, q  , penalizing factor, 

and the asymmetric weight, p .  It minimizes the penalized least squares function, which 

is the sum of weighted squared residuals and a penalized sum of differentials.  
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22 q
i i i i

i i
S w y z z  (1.8) 

In this equation y  represents the data, w  the asymmetric weight (previously described), 

and z  is the fitted baseline, which is penalized with the roughness penalty (positive). 

The positive and negative residuals get different weights.  The smaller weights (near 

zero) for positive residuals (peak regions) and larger weights for negative residuals 

(nonpeak regions) will tend to follow the baseline.  Therefore, starting with all weights 

equal to 1 and iteratively changing the asymmetric weights with appropriate values of p

and will converge to the baseline estimate.  

The penalty factor, , basically is a balancing factor between the fit and 

smoothness.  The larger the value of , the greater the contribution of smoothing in the 

minimization function and the smoother the baseline approximation will be.  For very 

small values of , the minimization function relies more on the regression function.  An 

extremely high value of lambda leads to a least squares fit to a polynomial of 1q  

degree.  Therefore, the choice of the optimum value of depends on the signal-to-noise 

ratio and becomes crucial. Similarly, the choice of difference order, q , (or differential) 

also depends on the signal-to-noise ratio. 

Since its introduction, PLS and variants of it have been employed in a variety of 

applications for baseline estimation and removal [32-40].  Recently, a mixture model has 

been proposed [41, 42], where the baseline is modeled as a smooth curve using ‘ n ’ cubic 

B-splines and a discrete roughness penalty. 
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Asymmetric least squares based approaches either require baseline representative 

signals or functions for baseline modeling, or the adjustment of parameters that are 

dependent on the characteristics of the analytical signal.  There is a need for a baseline 

approximation approach which would neither require representative baseline data 

(signals) nor extensive parameter tweaking dependent on signal characteristics.    

1.5 Thesis Outline 

From the preceding sections of this chapter, it is apparent that many approaches 

have been developed and used to minimize or remove the slowly varying baseline 

artifacts from analytical signals.  The objective of this work was to develop an algorithm 

to remove baseline artifacts from a wide variety of analytical signals in an automated 

manner without the need for representative baseline signals or human intervention during 

baseline estimation, and requiring minimal parameter optimization. The proposed method 

consists of two steps.  First, basis functions are calculated using a truncated Fourier series 

along with some augmentations.  In the second step, asymmetric weighted least squares is 

used with this basis set to estimate the baseline and reconstruct the baseline removed 

signal.  The study will cover the development, optimization and comparison of proposed 

algorithm with other commonly used approaches.   

The thesis is divided into five chapters.  Chapter 1 has provided an introduction to 

the problem of baselines in analytical signals, the sources of baseline components, and a 

review of current baseline estimation methods, outlining the general approaches and their 

advantages and drawbacks.  The fundamental purpose of this chapter has been to motivate 

the work and put the objectives into perspective.  
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Chapter 2 describes the theoretical principles at each step in the development of 

proposed method.  The choice of the optimal basis set will also be demonstrated with the 

help of simulated data sets.  Finally, the Truncated Fourier Asymmetric Least Squares 

(TFALS) algorithm is presented.  An overview of the TFALS algorithm is presented in 

Figure 1.3  Visual representation of the proposed method for the 
research in this thesis.  
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Figure 1.3.  TFALS requires only two adjustable parameters to be specified in the 

baseline estimation and removal procedure: the number of frequencies, freqn  and 

asymmetric weighting parameter, p . 

In Chapter 3, a comprehensive study is carried out to investigate the dependency of 

the baseline estimation on these adjustable parameters.  It is demonstrated here that 

choice of number of basis functions influences the shape or frequency of the baseline 

estimated, a characteristic that depends on the analytical technique, type of sample or 

analytical conditions.  On the other hand, the optimal value of the asymmetric weight is 

not crucially dependent on analyte signal, but is more of a function of signal noise.  

Chapter 4 will provide a detailed description of the results of applying the TFALS 

algorithm.  This chapter consists of two parts.  The first part focuses on the performance 

assessment of TFALS compared to two other approaches using simulation studies, 

whereas second part demonstrates the successful application of TFALS to experimental 

data sets in a variety of analytical signals, and a visual comparison of TFALS with a 

method from the literature for few experimental data signals will also be presented.  

Finally, in Chapter 5, conclusions are drawn and some recommendations for future work 

are provided. 
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CHAPTER 2 

Baseline Correction Algorithm 

2.1 Introduction 

It has been noted that almost all of the approaches in the literature have obtained 

satisfactory results for baseline removal within specific limitations and drawbacks, as 

documented in Chapter 1.  The approaches employed for baseline correction typically 

require representative signals for the baseline and/or the intervention of the analyst to 

select baseline regions or to adjust parameters (e.g. fit parameters, wavelet basis).  It is 

often not possible to obtain representative baseline signals, as in the case of biological 

samples, where the matrix cannot be separated from the analyte.  Even when such signals 

can be obtained, their acquisition represents an added inconvenience for methods that 

require them.  Likewise the selection of baseline regions and tuning of parameters is a 

time consuming process and requires the expertise of the analyst to achieve satisfactory 

results.  The objective of this work was to develop and study a novel approach that avoids 

or minimizes these requirements for baseline correction.  This chapter will focus on the 

theoretical development of a proposed approach for baseline estimation of analytical 

signals. 

The strategy employed in this work is based on the principles of asymmetric least 

squares, which has become quite popular in recent years for effective baseline removal.  

A drawback of this method is the need for representative baseline signals or mathematical 

functions to act as basis functions.  Eilers [33] developed a method based on the 
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Whittaker smoother to avoid explicit basis functions, but this requires the adjustment of 

three parameters and may not be ideal for all situations, especially at signal edges.  The 

use of an explicit functional form for the baseline has an advantage of having well-

understood constraints, and later Eilers employed a combination of B-spline as basis 

function [41, 42].  However, a natural choice for the baseline basis functions are the 

sinusoidal components of a truncated Fourier series, since the baseline naturally contains 

the lowest frequency signal components.  This was the approach used in the method 

developed here, although it was not without its challenges, as described in the sections 

that follows.  

This chapter is divided into six remaining sections.  The first of these focuses on the 

theory of the continuous and discrete Fourier transform (DFT), with a description of some 

of the limitations of the DFT and ways to minimize those problems.  Section 2.3 covers a 

description and exploration of usage of Fourier series (as a basis set) as an option for the 

baseline estimation.  Section 2.4 describes the linear transformation used to orthogonalize 

the non-orthonormal basis set.  Section 2.5 provides a simulation study to compare and 

optimize the Fourier-based basis sets, with and without augmentation, to approximate the 

slowly varying baseline and Section 2.6 focuses on the asymmetric least squares 

regression approach to estimate the best basis set fit to the baseline corrupted signal.  

Finally, a summary is provided in Section 2.7.  

2.2 Fourier Transforms  

The Fourier transform (FT) is an essential signal processing tool in modern data 

acquisition and processing.  The FT has become an integral part of many analytical 
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instruments (e.g. FT-IR, FT-MS) where it is necessary to perform domain 

transformations, and it has also become a standard method for post-acquisition signal 

processing (e.g. smoothing, deconvolution).  The Fourier transform can be applied to both 

continuous and discrete functions, but the latter dominate in analytical instrumental 

applications where signals are typically digitally sampled at fixed intervals [107].  

Therefore focus of this section will be on the discrete Fourier transform (DFT).  

The general definition of the continuous Fourier transform, F , and its inverse, 

1F , are as given below, 

2( ) ( ) ( )i ftH f h t e dt h tF  (2.1) 

2 1( ) ( ) ( )i fth t H f e df H fF  (2.2) 

Here ( )H f represents the Fourier transform and ( )h t  the signal.  The FT operatorF  

generates the Fourier spectrum from the signal and the inverse FT operator 1F restores 

the signal from the spectrum.  Typically, the signal is defined as a function of the variable 

time, t  , and the spectrum as a function of the variable frequency, f .  However, these 

designations are arbitrary and the independent variable in the signal domain does not need 

to be associated with time.  The FT and its inverse should be regarded as complementary 

domain transformations that transform the same information between two alternate 

representations, arbitrarily referred to as the time (signal) and frequency (spectral) 

domain.  Note that the FT and its inverse are symmetric operators, the only changes being 

the independent variable and the sign of the exponent.   
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 In practice, the measurement of a signal usually gives us a finite number of data 

measurements at discrete intervals.  Consequently, the FT reproduces the signal by the 

addition of finite number of sinusoids at defined frequency intervals with variable 

amplitudes and phases.  Therefore, the infinite integral is replaced by a finite sum from 

2N  to 2 1N , where N  is the number of sample points [108].  The Fourier 

transform calculated in this way is called the discrete Fourier transform (DFT). 

 The spectrum calculated from the discrete signal sampling through the DFT is 

actually an approximation of the continuous Fourier transform of the function underlying 

the data at the sampled points.  The spectrum obtained is 

12
2

2

( ) ( )
N

i fj t

Nj

H f h j t e  (2.3) 

Where h j t represents the signal at t j t  and t  is the sampling interval.  The 

signal is arbitrarily assigned time points from 2N t to 2 1N t for a period of 

T N t .  H f  represents the Fourier transform (spectrum) at frequencies of 

2 ,..., 2 1N N f , where 1f T . 

When time domain signal, h t , contains N points (where N is an even number) the 

FT (spectral domain) also contain N complex coefficients.  Through Euler’s relationship, 

cos sinie i  (2.4) 

These coefficients can be thought of as the coefficients for a series of sinusoids at specific 

frequencies, varying from zero (sometimes referred to as DC, by analogy with electrical 
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direct current) to the Nyquist frequency, 2N sf f , where sf is the sampling frequency, 

1 t .  This combination of sinusoids can reproduce the signal points exactly.  One way to 

present the results of the FT is to plot the real and imaginary parts of the coefficients 

separately as a function of f , referred to as real and imaginary spectra.  More commonly, 

the combination of sines and cosines is transformed into a combination of sines and phase 

angles, and the FT is plotted as an amplitude and phase spectrum, where the amplitude 

gives the total contribution at each frequency.  This is calculated as  

2 2
amp H f real H f imag H f  (2.5) 

Usually, the amplitude spectrum is of more interest than the phase spectrum.  To illustrate 

this, consider the example in Figure 2.1(a), which shows a signal sampled at 32 time 

points at 1 second intervals (Note that the 0,...,31t  on the time axis, although for the 

purposes of equation 2.3, it is transformed to 16,...,15 ).   

The amplitude spectrum produced by the FT is shown in Figure 2.1(b) and shows 

contributions at frequencies ranging from 0.5Hz 0.5Hzto .  Because the original time 

signal is real (not complex), the amplitude spectrum is symmetric for positive and 

negative frequencies and in most applications only the positive half is shown.  The FT 

produces 32 complex coefficients for frequencies of 0.5 0.46875Hzto .  For the 

figure, an additional point has been included at 0.5Hzf by symmetry, so 33

coefficients are actually displayed. 
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Since the DFT is only an approximation of a continuous signal with a finite number 

of data points, it cannot provide the same amount of information as an infinite signal, 

which leads to some unavoidable consequences compared to the infinite case.  One of 

these is referred to as aliasing, where frequencies in the continuous signal that are higher 

than the Nyquist frequency are folded back into lower frequencies within the range of the 

DFT.  Another consequence, that is more important in the current context, results from 

truncation of an infinite series and is referred as spectral leakage [109].  This is discussed 

in the next section.   

2.2.1 Truncation Effect (Spectral Leakage) 

When the DFT is applied for signal smoothing, the strategy is to remove high 

frequency spectral components and perform the inverse FT to generate the smooth signal.  

The rational for this is that signal information is mainly in the low frequency components, 

whereas white noise is distributed throughout the spectrum, so removing high frequency 

components should improve the signal-to-noise ratio. 

One way to do this is to apply boxcar function, f  , to the real and imaginary 

parts of the FFT.  The boxcar function is a function that is unity at low frequencies and 

zero at high frequencies, the boundary being defined by a cut-off frequency, cf . 

1,
( )

0,
c

c

f f
f

f f
 (2.6) 

Multiplication of the DFT by the boxcar function in the frequency domain is 

equivalent to convolution of the original signal with the inverse FT of the boxcar in the 

time domain. 
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1

1 1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

h t f H f

h t f H f

h t f h t

F

F F

F

 (2.7) 

Here, ( )h t  indicates the smoothed signal in the time domain and “ ” indicates 

convolution.   

The inverse Fourier transform of the boxcar function is 

1 2( )
c

c

f
i ft

f

f e dfF  (2.8) 

1 sin(2 )( ) 2 2 sinc(2 )
2

c
c c c

c

f tf f f f t
f t

F  (2.9) 

Hence, the effect of truncation on the Fourier transforms results in the convolution of the 

true signal with a sinc, or cardinal sine function: 

30 20 10 0 10 20 30

0.2

0

0.2

0.4

0.6

0.8

Figure 2.2 An example of the sinc function for 7 64cf .
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( ) 2 sinc(2 ) ( )c ch t f f t h t  (2.10) 

The sinc function can be regarded as a damped sinusoid centered on 0t .   An 

example of this function for 7 64 and 32 to 32cf t is shown in Figure 2.2. 

The effect of this truncation in the frequency domain is a convolution of the time 

domain signal with the sinc function, resulting in distortions, or ”wiggles”, in the 

appearance of the signal [110].  This is illustrated in Figure 2.1, where a boxcar function, 

indicated by the dashed lines, has been applied to the DFT in Figure 2.1(b), resulting in 

the truncated DFT in Figure 2.1(c).  The inverse FT of this, shown in Figure 2.1(d), 

clearly shows the distortions introduced by the truncation. 

There is an inverse relationship between the width of the truncation function and its 

inverse FT [110], since time scale expansion corresponds to frequency scale compression  

1( ) fh kt H
k k

 (2.11) 

Here, k  is a real constant greater than zero. Hence, if the truncation function is increased 

in length then the sinc  function approaches an impulse.  The more closely the sinc

function approaches an impulse, the less ripple effect will be introduced [110].  

Conversely, when the cut-off frequency is reduced, the extent of distortions becomes 

greater.  This is relevant when the DFT is used for baseline estimation, since cf  is 

adjusted even lower to remove signal and high frequency noise, in principle leaving only 

the baseline.  In practice, however, the truncation leads to a severe distortion of the 

estimated baseline which is not useful (see next section).  For smoothing applications, 
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alternative windows (e.g. Hann, Bartlett or Welch) can be used [111], but these have 

limited utility in baseline removal. 

2.3 Fourier Basis Set for Baseline Estimation 

The Fourier series is an expansion of a periodic function using a sum of sines and 

cosines.  It uses the orthogonality relationships of the sine and cosine functions to build 

an orthogonal basis set.  This orthogonal set of functions can be used to approximate a 

given function which is sampled at discrete intervals.  For a signal vector of length N , a 

Fourier series of finite length can be written as: 

1 1 2 2
2 2 2 2 2 2( ) cos sin cos sin ....

2 2 2 2
cos sin

s s s s
o

s s
n n

f t f t f t f tf t a a b a b
N N N N

N f t N f t
a b

N N

 (2.12) 

This can be written as in general form as: 

2

0

2 2( ) cos sin
N

s s
n n

n

nf t nf tf t a b
N N

 (2.13) 

where sf  is the sampling frequency, N is the number of points sampled, and na and nb are 

the Fourier coefficients.  

The series given above will reproduce the measurements in the signal vector 

exactly since it is simply another representation of the inverse FT.  However, the premise 

of this work is that the low frequency sinusoidal functions in this series can be used to 

model the baseline of the signal in conjunction with asymmetric least squares.  This is 
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analogous to the Fourier smoothing described in the previous section, except that the FT 

is not directly involved, ultimately allowing asymmetric least squares to be employed.  

The first requirement, however, is that the truncated Fourier series be able to fit the 

baseline in the absence of signal peaks.  Unfortunately, least squares fitting gives rise to 

the same spectral leakage problem as in Fourier smoothing, as will be illustrated with the 

following example. 

Figure 2.3(a) shows a typical baseline signal (open circles) of 32 time points (a 

small number was chosen for illustration).  Figure 2.3(b) shows the amplitude spectrum 

of the baseline (positive frequencies only) and Figure 2.3(c) shows the same spectrum 

after applying a boxcar function with a cut-off frequency of 0.15Hz.  The solid black line 

in Figure 2.3(a) shows the reconstructed baseline after applying the low pass filter and 

performing the inverse FT.  Although the reconstructed signal follows the baseline, the 

presence of “wiggles” due to spectral leakage is evident, especially at the edges.  Based 

on the discussion in the previous section, this is expected. 

Another way to fit the baseline is to fit it using sinusoids with the frequencies as 

were employed in the DFT.  Specifically, with five frequency components the fit equation 

is 

0 1 1 2

2 4 4

2 2 2 2cos sin cos

2 2 4 2 4 2sin ... cos sin

s s s
est

s s s

f t f t f ty a a b a
N N N
f t f t f tb a b

N N N

 (2.14) 

where 1Hz,  32,  0,...31s and the 's and 'ssf N t a b  are the coefficients fit by 

ordinary least squares.  These basis functions are shown in Figure 2.3(d), and the fit is 



37

.

Fi
gu

re
 2

.3
  I

llu
st

ra
tio

n 
of

 s
pe

ct
ra

l l
ea

ka
ge

 in
 b

as
el

in
e 

fit
tin

g 
us

in
g 

a 
lo

w
 p

as
s 

Fo
ur

ie
r f

ilt
er

  (
   

   
), 

Fo
ur

ie
r b

as
is

  (
   

   
) a

nd
 

Fo
ur

ie
r 

ba
si

s 
w

ith
 a

ug
m

en
ta

tio
ns

 (
  

  
 )

. (
a)

 B
as

el
in

e 
po

in
ts

 (
op

en
 c

irc
le

) 
an

d 
va

rio
us

 b
as

el
in

e 
fit

s 
(b

) 
FT

 o
f 

ba
se

lin
e.

 (
c)

 
Tr

un
ca

te
d 

FT
. (

d)
 F

ou
rie

r b
as

is
 se

t. 



38

shown by the dotted black line in Figure 2.3(a).  The fit to the baseline is not the same as 

for Fourier smoothing, since the least squares method uses different criteria, but the two 

are very similar in their characteristics, including the spectral leakage that continues to be 

a problem in this approach, and the baseline fit is inadequate for modelling.  For the 

proposed method to work, a better fit to the pure baseline is needed.

One way to improve the fit to the baseline would be to extend the basis set to 

include higher frequencies, but this would then allow the model to fit higher frequency 

signal peaks, which is undesirable.  Another alternative that was investigated was to 

extend the basis set to lower frequencies.  To test this, two additional frequencies were 

added to the model used in Figure 2.3, one at one-half the lowest frequency and one at 

one-quarter of the lowest frequency.  Thus the fitted equation is now 

0 0.25 0.25 0.5

4 4

0.5
1 1

2 0.25 2 0.25 2 0.5
cos sin cos

2 0.5 2 2sin cos sin

s s s
est

s s s
n n

n n

f t f t f t
y a a b a

N N N

f t nf t nf tb a b
N N N

 (2.15) 

The fit using this extended basis set is shown by the solid gray line in Figure 2.3(d).  

A very good fit is obtained, indicating that the extension of the truncated Fourier series to 

lower frequencies is a viable way to model slowly varying baseline. 

The challenge at this point is to determine the optimum basis set or optimum 

frequencies to accurately model the baseline while excluding components of the 

analytical signals.  This involves two questions: (1) How many terms to include in the 

truncated Fourier series and (2) how to expand the basis set at low frequencies (what 

frequencies, how many).  These questions are investigated in the section that follows.  
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First, however, some mathematical complications in the implementation of the augmented 

Fourier series are discussed in the next section. 

2.4 Orthonormal Basis and Transformations 

The fitting of a model to a baseline signal by ordinary least squares or asymmetric 

least squares requires the solution of a system of linear equations involving the inversion 

of an appropriate matrix.  If the basis functions evaluated at N time points are given by an 

N p  matrix X , the estimate of the 1p  vector of model coefficients, ˆ  , is given by 

the following equation. 

ˆ -1T TX X X y  (2.16) 

or ˆ -1T TX WX X Wy  (2.17) 

Here, the first equation applies to ordinary least squares and the second to 

asymmetric least squares, where y  is the 1N  vector of measurements and W  

represents a weighting matrix.  Both equations require the term in the parenthesis to be 

invertible (non-singular) which in turn requires that N p  and X  is non-singular. 

 The truncated Fourier series proposed in the previous section forms an orthogonal 

basis set that requires only normalization to have orthonormal basis set.  A subset

{ , ,...., }1 2 rv v v  of a vector space V  is called orthonormal if 0i jv v  when i j , that is 

the vectors are mutually perpendicular, and they are unit length 1i iv v  [112].  A 

simple example of an orthonormal basis is the standard basis ie  for nR . The vector ie  is 

the vector with all zeros except for 1 at each thi  coordinate.  A rotation or flip through the 



40

origin transforms an orthonormal set to another orthonormal set.  These are the 

transformations which preserve the inner product and are called orthogonal 

transformations. 

 If the matrix of basis functions, X , has orthonormal columns, as it is in the case of 

the normalized truncated Fourier series, it not only ensures that X  is non-singular, but 

also simplifies the least squares solution, since TX X = I , the identity matrix.  

Unfortunately, when the truncated Fourier series is augmented with lower frequency 

components, the columns of X  are no longer orthonormal.  Moreover, in certain cases 

that depend on the number of terms in the truncated series and the frequencies used in the 

augmentation, X  becomes singular.  This means that the columns of X are no longer 

linearly independent and the least squares equations cannot be solved.  For instance, in 

the example presented earlier which used 0,1,2,3,4 augmented by 1 4 ,1 2n n , X is 

still non-singular with the further augmentation of 1 8,3 8n  but then becomes singular 

with the further addition of 1 16n .  This singularity means that one or more of the 

columns of X  is a linear combination of the others to computational precision.  Because 

it is difficult to predict which combinations of truncated and augmented Fourier basis sets 

will lead to singularities when testing for optimal basis functions, an alternative strategy 

was sought through principal component analysis (PCA). 

2.4.1 PCA for Linear Transformation 

Principal component analysis (PCA), also referred to as singular value 

decomposition (SVD), is a widely used tool in different areas of study.  It has been used 

for dimensionality reduction in multivariate regression and calibration and in exploratory 
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data analysis, among other applications.  The basic idea is simple but it has been re-

invented many times and documented in different fields of research over the years [113-

119].  The method itself was first introduced in physics by Cauchy [115] in 1829 then 

formulated by Pearson [116] in 1901 in what is probably the most famous paper.  In 1930, 

Hotelling transformed PCA to its current form [117] in psychometrics.  It was 

popularized in chemistry by Edmund Malinowski [118] as factor analysis; however, it has 

also been claimed that the earliest non-specific reference to PCA was given by Adcock in 

the chemical literature in 1878 [119]. 

 Mathematically, PCA is a linear transformation that transforms the data into a new 

orthogonal coordinate system in such a way that the greatest variance in the data is 

accounted for by the first coordinate (first principal component) and the next greatest 

variance by the second coordinate and so on.  The PCA basis vectors, referred to as 

principal components, eigenvectors or loadings, have two essential properties: all 

components are of unit length and they are all orthogonal to each other.  In other words, 

they form orthonormal basis set.  Visual inspection for orthogonality and unit length is 

feasible for up to three dimensional data sets but for higher dimensions these conditions 

can be satisfied mathematically.  The dot product properties can solve this problem easily. 

Mathematically, these properties can be described as 

1
0

i i

i j

x x
x x

 (2.18) 

In the current context, PCA is used to solve the problem of singularity in the matrix 

of basis functions, X .  When augmentation leads to such singularity, direct calculation of 
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the coefficients is not possible.  Although singularity implies that there is redundant 

information in the basis vectors, it is difficult to select individual basis functions for 

removal to solve the singularity problem.  Instead, the basis vectors in X  are subjected to 

principal components analysis, resulting in a set of orthonormal basis vectors V .  From 

the perspective of baseline fitting, V  contains the same information as X , only it is 

organized into a set of orthonormal basis vectors.  The nature of PCA means that the last 

columns of V can be eliminated (without loss of information) until it is no longer rank 

deficient (singular).  For example, if X has 19 columns but has a mathematical rank of 18 

(the largest number of columns that are linearly independent), the removal of the last 

column of V will give rise to a set of basis vectors that contain the same information but 

are non-singular.  It is important to note that the original augmented Fourier series is still 

being fit to the baseline, but this approach circumvents some of the computational 

problems. 

2.5 Truncated Fourier Basis Set Selection 

It has been noted in Section 2.2 that the truncation function returns a convolution of 

a signal with the sinc function, which gives some artifacts in the signal.  It has also been 

noted that these effects can never be removed completely but can be minimized by 

changing some parameters.  These artifacts can also presumably appear in the 

approximation of a signal or part of a signal, using discrete Fourier series of a finite 

length as a basis.  In approximating the slowly varying baselines of a signal of finite 

length using truncated Fourier basis sets, a truncation effect appears in the estimated 

baseline in terms of some artifacts, as noted in Figure 2.3.  To minimize the truncation 
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artifacts and get a better approximation of low frequency baselines, the truncated Fourier 

basis sets Fourier sets were augmented with additional low frequencies and tested as 

candidate basis functions for baseline approximation and tested using three different 

baseline functions (linear, exponential, sinusoidal).  Six different groups of augmented 

basis sets were tested along with the truncated Fourier basis set (TFB).  Comparative 

approximation results for each basis set group are presented and described briefly, 

followed by the conclusive summary.  The optimization of ALS parameters for the 

selected basis set is presented in Chapter 3.   

2.5.1 Experimental 

It has been shown that a Fourier basis set (FBS) when truncated to low frequency 

components, i.e. a truncated Fourier basis (TFB), and augmented with additional low 

frequency components can provide a good estimation of a slowly varying baseline.  The 

issue that remains is the number of augmented frequencies and their values.  In addition 

to provide a good fit to the baseline using the augmented frequencies with the TFB, it is 

also desirable for model to have as few terms as is reasonable to adhere to principles of 

parsimony and simplicity.  To this end, seven different sets, or groups, of basis functions 

were generated, as described below. 

The first group of functions (designated as group I) was simply the truncated 

Fourier basis set (TFB).  The basis functions can be defined as 

1 2 ( 1)( ) cos .           for odd
2i

i xy x i
N

 (2.19) 

2 ( 1)( ) sin .                for even
2i
i xy x i

N
 (2.20) 
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Here i  is an integer that ranges from max0 to 2  and n x  is an integer that ranges from 

1 to  where N N  is the number of channels.  Thus the TFB includes the frequencies 0  

(DC), 1f  (the lowest non-zero frequency in the FT, or the sampling frequency), 1 12 , 3f f  

etc. up to max 1n f .  The value of maxn  determines the truncation point and is limited to 

 2N .  In this study, maxn  was set to the integer nearest to 40N (5% of the Nyquist 

frequency), which was found to be more than adequate.  Thus the number of frequency 

terms (including DC) for Group I was max 1freqn n . 

Since Group I was not augmented, it was not expected to perform well, but was 

included for reference.  As indicated in Table 2.1, the second group, designated as Group 

II (hi) (for “half interval”) included frequencies of 1 11.5 2.5 ,,f f etc. up to max 10.5n f  

in addition to the TFB, or in other words, max0, 1, 1.5, 2, 2.5,...n n .  for a given value of 

n , the corresponding basis functions were 

2 1 2 1
cos       and      sin

n x n x
N N

 (2.21) 

Note that only the cosine term is used for 0n , so the total number of basis functions is 

Table 2.1 Basis set groups with their arrangements.  

GROUP# n
I [0,1,2,... ]

II(hi) [0,1,1.5,2,2.5,... ]
III(h) [0,0.5,1,2,... ]
IV(q) [0,0.25,0.5,1,2,... ]
V(oe) [0,0.125,0.25,0.375,0.5,...,1,2,... ]
VI(ot) [0.1,0.2,..1,2,... ]
VII(os) [0,0.0625,0.125,0.1875,0.25,...,1,2,... ]

maxn

maxn

maxn

maxn

maxn
maxn

maxn
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max4 1n . 

Since augmentation for slowly varying baselines is likely to be more effective at 

frequencies less than 1f , the third group, designated as Group III(h) (for “half”) 

augmented the TFB (Group I) with a single frequency at 10.5 0.5f f n , adding two 

more basis functions.  This frequency corresponds to a sinusoid with a half-cycle over the 

range of the signal. 

Additional groups were created as indicate in Table 2.1.  Group IV (q) (“quarter”) 

added a frequency of 10.25 f  to Group III, and Group V (oe) (“one eighth”) added seven 

additional frequencies between 0 and 1f  at an interval of 1 8f , as 

1 1 1 1 1 18, 4, 3 8, 2, 5 8,..., 7 8f f f f f f  to Group I.  Group VI (ot) (“one tenth”) 

include nine additional frequencies at uniform intervals of 10.1 f  between 10 and  f .  

Finally, Group VII (os) (“one sixteenth”) added fifteen low frequencies at an interval of 

1 16f  between 0 and 1f as  1 1 1 116, 8, 3 16 15,...,f f f f to the TFB.  

Although other frequency combinations could be incorporated, these groups were 

considered to give a broad representation of the types of combinations that could be 

useful for modeling slowly varying baselines. 

To evaluate the performance of all seven basis set groups for baseline 

approximation, each group was tested individually for individual simulated data set and 

the root-mean-squared errors (RMSE) of estimation were also calculated and tabulated in 

Section 2.5.2 for comparison. 
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2.5.1.1. Computational Aspects 

All data processing was carried out using programs written by the author in 

Matlab®2010b (MathWorks, Natick, MA) under Windows 7 Professional 2009© on a 

2.10 GHz processor with 2.00 Gb of memory. 

2.5.1.2. Data Simulations

Three simulated data sets were used to evaluate the baseline estimation ability of 

each group of basis sets.  These data sets were intended to determine the fidelity of the 

baseline estimation using each basis set group individually and compare the estimation 

errors to obtain the best basis set group for baseline approximation.   Neither peaks nor 

noise was added to these data signals since the only purpose of this study was to compare 

the approximations of individual baseline functions.  

Data Set 1(a) consisted of a vector of 2000 points and Data Set 1(b) consisted of a 

vector of 200 points.  A linear function with a slope of 0.05 for Data Set 1(a) and 0.5 for 

Data Set 1(b) and intercept of zero was used as the baseline function. 

i my x (2.22)

Here m is the slope and ix  ranges from 1 to 2000 or 1 to 200 in steps of unity.  The value 

of slope was chosen to give maximum amplitude of 100.  

 Data Set 2(a) consisted of a vector of 2000 points and Data Set 2(b) consisted of a 

vector of 200 points.  Ten exponential functions were generated as a baseline with ten 

randomly generated with decay rates between 49 10 0.05and using 

2 100 ke xy  (2.23) 
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Here k determines the decay rate of exponential function, corresponding to half-lives 

between about 14 and 770 channels.  The baselines generated in this manner for Data Set 

2(a) are shown in Figure 2.4a.  For Data Set 2(b) the baselines were truncated at channel 

length 200.  

Data Set 3 also consisted of a vector of 2000 points and a vector of 200 points.  Ten 

sinusoidal signals were used to simulate the baselines using random angular frequencies 

between 54 10 0.05and  random phase angles (between and ), employed in 

equation 2.24. 

100.sin( )i ty  (2.24) 

  The sinusoidal functions had maximum amplitude of 100 and for Data Set 3(a) 

(2000 points) correspond to about 0.13 to 1.6 cycles, while for Data Set 3(b) (200 points) 

correspond to a range of about 0.013 to 0.16 cycles over the range of the signal.  The 

baseline functions generated are shown in Figure 2.4b.  For Data Set 3(b), the signals 

were truncated at 200 points.
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Figure 2.4  (a) exponential baseline functions for Data Set 2a and (b) sinusoidal 
functions baseline functions for data set 3a.  
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2.5.2 Results and Discussion 

 All three sets of baselines were tested with the seven different groups of designed 

basis functions.  The groups of basis functions described in Section 2.5.1 were truncated 

to the first 5 frequencies ( max 5n ) for data sets having 200 channels and 50 frequencies 

 ( max 50n ) for data sets with 2000 channels.  Estimated and actual baselines were then 

compared using the root-mean-squared error (RMSE) for each simulated baseline vector, 

calculated as given below. 

2

1

ˆ
N

o
i i

i

b b
RMSE

N
  (2.25) 

Here o
ib  is the actual baseline, ˆ

ib  is the estimated baseline at that channel, and N  is the 

number of channels.  The RMSE of estimation is tabulated for each simulated baseline 

vector using all seven groups of basis functions for comparison. 

 Table 2.2(a) shows the RMSE values with each basis set group for the linear 

baseline at a channel length of 2000 (2000 sample points) and  Table 2.2 (b) presents the 

results for a channel length of 200.  It can be clearly deduced from Table 2.2 that the 

truncated Fourier basis (TFB, Group I) gave a very high residual for both channel lengths, 

which means that this set is unable to give a good approximation for linear baselines.  

Group II (one extra set of sine and cosine before every truncated Fourier set) gave a 

relatively lower RMSE values which in turn seemed to be a better choice for linear 

baseline approximation.  Group III (only one extra pair of sine and cosine terms at half 

intervals in TFB) gave relatively lower RMSE values than the TFB (Group I) for 

approximation of linear functions but seems not to be an appropriate choice, especially 
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for smaller channel lengths.  On the other hand, group IV,  V ,  VI and VII gave very 

small RMSE values, which means that these groups provide a very good approximation 

for linear functions, even for smaller channel lengths.  

To compare the results for exponential baselines, the root mean squared errors of 

approximation with each basis set group are tabulated with ten increasing decay rates in 

Table 2.3(a) for a channel length of 2000 and in 2.3(b) for a channel length of 200.   

Table 2.2(a) Comparison of basis set groups results with linear baseline, channel 
length 2000.  

Table 2.2(b) Comparison of basis set groups results with linear baseline, channel 
length 200.  
Slope I II (hi) III (h) IV (q) V (oe) VI (ot) VII (os)

5.00E 01 9.57E+00 1.80E 07 2.30E 02 4.14E 08 1.14E 09 2.73E 14 3.62E 14

Slope I II (hi) III (h) IV (q) V (oe) VI (ot) VII (os)
5.00E 02 3.16E+00 7.54E 14 9.21E 05 7.39E 14 1.11E 13 5.48E 14 7.81E 14

Table 2.3(a) Comparison of basis set groups results with exponential baseline, 
channel length 2000.  

Decay rate I II (hi) III (h) IV (q) V (oe) VI (ot) VII (os)
2.50E 03 1.25E+00 7.55E 08 3.72E 05 2.55E 10 1.93E 13 8.49E 14 8.38E 14
8.58E 03 2.60E+00 2.08E 07 9.81E 05 1.34E 09 1.17E 13 9.83E 14 6.16E 14
1.03E 02 2.76E+00 2.48E 07 1.14E 04 1.93E 09 8.89E 14 1.38E 13 1.13E 13
1.90E 02 3.10E+00 5.65E 07 2.22E 04 9.49E 09 1.02E 13 1.06E 13 1.40E 13
2.35E 02 3.14E+00 8.41E 07 2.96E 04 1.84E 08 1.96E 13 2.07E 13 1.51E 13
2.85E 02 3.16E+00 1.28E 06 3.93E 04 3.46E 08 4.19E 13 4.26E 13 3.35E 13
3.38E 02 3.17E+00 2.00E 06 5.17E 04 6.27E 08 9.06E 13 9.35E 13 7.59E 13
4.29E 02 3.17E+00 4.12E 06 7.80E 04 1.50E 07 2.98E 12 3.08E 12 2.58E 12
4.42E 02 3.17E+00 4.55E 06 8.22E 04 1.67E 07 3.48E 12 3.60E 12 3.02E 12
4.91E 02 3.17E+00 6.57E 06 9.93E 04 2.48E 07 6.05E 12 6.26E 12 5.33E 12
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The TFB (Group I) again gives a very high RMSE and could not provide a 

reasonable approximation for the exponential baselines at either of the two channel 

lengths.  Group III again seems to work better than the TFB, giving smaller RMSE 

values, but the results deteriorate for the smaller channel length.  It can be seen that 

RMSE values increase with increasing decay rate in each of the two channel length cases 

for all the basis groups under study, likely due to the increased difficulty in fitting the 

sharper decays with the lower frequencies in the truncated series.  Overall groups II, IV, 

V, VI and VII are again able to provide a good approximation for exponential baselines 

for both channel lengths.  

The RMSE of approximation for sinusoidal baselines with each basis set groups are 

tabulated for ten increasing frequencies in Table 2.4(a) at a channel length of 2000 and in 

2.4(b) at a channel length of 200.  

Table 2.3(b) Comparison of basis set groups results with exponential baseline, 
channel length 200. 

Decay rate I II (hi) III (h) IV (q) V (oe) VI (ot) VII (os)
2.50E 03 4.67E 01 8.77E 09 1.12E 03 5.34E 07 5.37E 14 4.01E 14 5.76E 14
8.58E 03 1.51E+00 2.84E 08 3.63E 03 1.75E 06 4.05E 14 9.18E 14 5.74E 14
1.03E 02 1.77E+00 3.35E 08 4.27E 03 2.07E 06 4.31E 14 5.27E 14 5.39E 14
1.90E 02 3.03E+00 5.78E 08 7.37E 03 3.71E 06 3.63E 14 4.10E 14 3.69E 14
2.35E 02 3.59E+00 6.91E 08 8.80E 03 4.56E 06 6.64E 14 3.51E 14 5.40E 14
2.85E 02 4.15E+00 8.09E 08 1.03E 02 5.53E 06 3.21E 14 7.72E 14 6.50E 14
3.38E 02 4.69E+00 9.28E 08 1.18E 02 6.64E 06 3.49E 14 5.60E 14 3.64E 14
4.29E 02 5.50E+00 1.12E 07 1.42E 02 8.76E 06 3.10E 14 2.96E 14 3.62E 14
4.42E 02 5.60E+00 1.15E 07 1.45E 02 9.09E 06 4.41E 14 3.12E 14 4.18E 14
4.91E 02 5.97E+00 1.25E 07 1.57E 02 1.04E 05 6.68E 14 3.59E 14 5.04E 14
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Table 2.4(b) Comparison of RMSE values for basis set groups results with 
sinusoidal baselines of varying frequencies at channel length 200.  

It can be observed from the RMSE results, once again, that the TFB (Group I) was 

unable to approximate these low frequency sinusoids, Group III again gives much smaller 

RMSE values than Group I, making it an option for approximation of low frequency 

sinusoids but probably would not be an optimal choice for smaller channel lengths.  

Overall, among all three types of baseline functions used here, Groups I and III seems to 

provide better results for sinusoid baselines than exponential and linear baselines perhaps 

because the Fourier series itself is a combination of sines and cosines.  

Table 2.4(a) Comparison of basis set groups results with sinusoidal baseline, 
channel length 2000. 

Frequencies I II (hi) III (h) IV (q) V (oe) VI (ot) VII (os)
4.59E 05 1.91E 01 1.12E 08 5.55E 06 3.44E 11 1.39E 13 1.41E 13 1.76E 13
1.22E 04 4.52E 01 2.51E 08 1.25E 05 6.24E 11 1.27E 13 1.79E 13 1.06E 13
3.40E 04 7.85E 01 4.23E 08 2.11E 05 9.22E 11 9.30E 14 1.09E 13 1.45E 13
4.90E 04 6.39E 01 3.74E 08 1.85E 05 1.12E 10 6.24E 14 7.25E 14 8.77E 14
5.67E 04 1.15E 01 2.03E 09 5.68E 07 1.30E 11 8.45E 14 1.33E 13 7.29E 14
9.35E 04 4.40E+00 1.59E 07 8.31E 05 2.08E 10 8.01E 14 1.34E 13 9.82E 14
1.70E 03 8.44E 02 2.30E 08 1.33E 05 2.26E 09 9.07E 13 9.13E 13 5.22E 13
2.10E 03 4.30E 01 1.65E 08 9.85E 06 3.77E 10 8.86E 14 1.24E 13 1.07E 13
2.70E 03 2.70E+00 1.76E 07 1.54E 04 1.03E 08 2.21E 13 1.03E 13 1.07E 13
4.20E 03 2.66E+00 1.33E 07 6.72E 05 1.98E 10 8.16E 14 7.80E 14 9.35E 14

Frequencies I II (hi) III (h) IV (q) V (oe) VI (ot) VII (os)
4.59E 05 3.47E 02 6.51E 10 8.33E 05 3.96E 08 4.69E 14 3.94E 14 4.66E 14
1.22E 04 5.01E 01 9.40E 09 1.20E 03 5.71E 07 3.72E 14 5.83E 14 5.17E 14
3.40E 04 8.23E 01 1.54E 08 1.97E 03 9.36E 07 1.26E 14 1.21E 14 1.21E 14
4.90E 04 2.30E 01 4.31E 09 5.51E 04 2.62E 07 1.27E 14 1.24E 14 1.23E 14
5.67E 04 2.53E+00 4.68E 08 5.99E 03 2.72E 06 3.89E 14 4.15E 14 5.21E 14
9.35E 04 1.24E+00 2.32E 08 2.96E 03 1.39E 06 3.98E 14 8.71E 14 4.69E 14
1.70E 03 7.31E+00 1.26E 07 1.63E 02 5.54E 06 2.08E 14 1.86E 14 2.11E 14
2.10E 03 3.70E+00 6.80E 08 8.72E 03 3.85E 06 3.02E 14 2.55E 14 1.98E 14
2.70E 03 5.05E+00 9.16E 08 1.18E 02 4.94E 06 8.69E 15 1.47E 14 9.55E 15
4.20E 03 4.03E 01 7.56E 09 9.67E 04 4.58E 07 3.20E 14 5.74E 14 6.00E 14
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For each of the two channel lengths, Groups II, IV, V, VI and VII again provide 

very small RMSE values, indicating that these groups are able to provide a very good 

approximation for the sinusoidal baselines, and this is consistent with other data sets 

examined.   

2.5.3 Conclusions 

It has been noted that the truncated Fourier basis without augmentation is not an 

appropriate choice to approximate and eliminate the slowly varying baseline functions 

from the simulated analytical signals.  The reason for its poor performance is the 

frequency difference between the first non-zero Fourier basis frequency ( 1f ) and the 

slowly varying baseline.  It has been noted in the above simulation study that including 

just one additional frequency at 10.5 f  set immensely reduced the RMSE values in 

comparison to the TFB, which supports the above statement.  

In comparing the results for all seven groups for all three baseline functions at each 

of two channel length cases, Groups II, IV, V, VI and VII always seemed to provide a 

very good approximation, giving very low RMSE values in the baseline function 

approximation.  To keep the computation time at a minimum while still providing a good 

approximation, the choice of the smallest basis set would seem to be more appropriate.  

Group IV appears to be the best choice in that regard in comparison to the next three 

groups (V, VI, VII ), since Group IV uses a smaller number of augmented basis vectors 

and also provides reasonably low RMSE values in all of the six simulated data sets 

studied.  Group II uses more basis sets at higher frequencies and therefore is not as 

appropriate for estimation of baseline artifacts.  In addition, Group IV also provided a 
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relatively better approximation for all three baseline functions than Group II, which give 

relatively higher RMSE values.  These two groups only compete for exponential 

baselines at a smaller channel length and high decay rate.  

 Therefore, group IV with the augmentation of two pairs of sine and cosine 

between a DC and the first frequency of TFB was selected the best choice for the 

approximation of low frequency baseline functions and used in the implementation of the 

algorithm in subsequent discussions.   

2.6 Asymmetric Least Squares 

The ability to model baseline profiles accurately is only one requirement of a 

baseline removal algorithm, since it also must be constrained so that it does not model or 

remove analytical signals.  In this work, the analytical signals are assumed to occur at 

higher frequencies and will not be fit well by the truncated and augmented Fourier basis 

set.  However, this is not sufficient, since only baseline regions must be included in the 

fit.  For this purpose, asymmetric least squares (ALS) is used.  Whereas ordinary least 

squares assumes a symmetric distribution of residuals around the model, ALS an 

asymmetric distribution in which positive residuals can be much larger than the negative 

ones, since the negative residuals from the baseline contain only instrumental noise, but 

positive residuals are the result of noise and analytical signal.   

Asymmetric least squares or expectile estimation was first introduced by Newey 

and Powell in 1987 [120] as a least squares alternative to regression quantiles and 

described as easily computable and more efficient than quantile regression, which was 

introduced by Koenker and Bassett in 1978 [121]. Later, Eilers (2004) used this idea in 
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baseline estimation [32, 33].  Asymmetric least squares regression is a weighted 

generalization of ordinary least squares regression.  A baseline function, also referred to 

as an expectile curve, is obtained by iteratively re-weighted least squares.  

In ordinary least squares (OLS) the trend is estimated by minimizing the sum of 

squared residuals 

2

1
( )

n

OLS i i
i

SSR y  (2.26) 

where n is the sample size, iy is the response variable and i is the expected value based on 

current model parameters.  In Figure 2.5 (a) simulated analytical data are presented along 

with the trial baseline obtained using OLS with a truncated/augmented Fourier series with

1 4 ,1 2 ,1,2,3,...n  .  Note that, while the basis functions are insufficient to model the 

signal peaks, OLS tries to include them, resulting in an entirely unsatisfactory baseline 

model. 

Analytical signals can be regarded as having two main regions, areas with signals of 

analytical interest (peaks) and those without peaks.  Hence we have more interest in the 

upper and lower boundaries than in the mean trend.  To a first approximation, the area of 

the signal higher than the expected line in Figure 2.5(a) could be regarded as an upper 

boundary containing analytical information and the area lower than the expected line as 

lower boundary containing baseline information.  Asymmetrically weighted least squares, 

which is a weighted generalization of ordinary least squares, would be an appropriate 

choice here to estimate this boundary.  Thus, the baseline can be estimated by minimising  
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2

1

n

ALS i i i
n

SSR w y  (2.27) 

The weights iw are assigned as  

1

i i

i

i i

if yp
w

if yp
 (2.28) 

where iy  is the response variable and i  is the expectile or expected baseline value for 

asymmetry parameter p  with 0 1p .  The final resultant baseline is presented in 

Figure 2.5 (b).  The user usually has to choose the asymmetry parameter p , which gives 

very small weight for the area where an analyte peak is present and a weight of 1 p  for 

negative residuals in areas where peaks are absent.  The final model is obtained 

iteratively, solving least squares problem and re-evaluating the weights at each step until 

there is no further change in weights.  With the set of basis functions  ( )channel basisn nB , 

the expected baseline  ( 1)channeln  is calculated as 

= Bq  (2.29) 

Figure 2.5  (a) Raw signal with expected baseline estimated by OLS.(b) Raw signal 
with estimated  baseline estimated by ALS.

Raw Signal
Estimated Baseline

Raw Signal
Expected Baseline

a b
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-1T Tq = B WB B WY  (2.30) 

Where W is an channel channeln n diagonal matrix of weights.  The basis set matrix is 

calculated as described in the previous section based on the truncation and augmentation 

of the Fourier series chosen.  The number of basis functions, bn , is calculated from the 

number of frequency , freqn parameter that is selected by the user. Starting from unit 

weight, the regression vector (2.23) and consequently expected baseline is calculated 

(2.22). With these results, new weights (2.21) are determined for each data point and a 

new expected baseline is estimated in each iteration until the weights do not change 

anymore. Ordinary least square is a special case of ALS with asymmetry parameter

0.5p . 

2.7 Summary 

Asymmetric least squares is a convenient and effective method for baseline 

estimation, but optimal performance requires a function of appropriate form to model the 

baseline without modeling signal peaks.  A truncated Fourier series, retaining only low 

frequencies consistent with the baseline, is a natural choice for this function but leads to 

artifacts that are a consequence of the truncation.  These artifacts can be mitigated if we 

introduce more basis functions with lower frequencies, eliminating the ripple effect from 

the baseline approximation result.  Since the baseline of a signal is comprised of very low 

frequency components, augmentation with frequencies between DC and the first non-zero 

frequency Fourier component was able to provide a good approximation of low frequency 

baseline components with no ripple effect.  
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The proposed method is referred as Truncated Fourier Asymmetric Least Squares 

(TFALS).  TFALS requires the adjustment of two parameters to obtain the optimal 

baseline estimation.  The relationship of these parameters with the attributes of analytical 

signals is studied and discussed in next chapter, followed by the application of TFALS to 

simulated and experimental data in Chapter 4.  The application of the TFALS to 

experimental data will better demonstrate the appropriateness of TFALS basis set to 

estimate a true baseline. 
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CHAPTER 3 

 Parameter Optimization for Baseline Results 

3.1 Introduction 

In recent years, the most promising methods for baseline estimation have been 

based on the asymmetric least squares (ALS) approach, which has been used in 

conjunction with baseline representative signals as a basis or with a Whittaker smoother.  

In this work, a truncated Fourier series augmented with low frequency components is 

used to model slowly varying baselines in conjunction with ALS fitting.  This approach 

will be referred to as the Truncated Fourier Asymmetric Least Squares (TFALS) method.  

TFALS assumes that the baseline is a combination of low frequency components.  

To model these slowly varying baseline components of the analytical signal vector, a set 

of basis functions is first generated using a Fourier series heavily truncated to the lower 

frequencies along with the augmentation of two additional lower frequency components 

and a DC component.  The total number of frequency components ( freqn ) used to model 

an individual baseline (each frequency resulting in both sine and cosine terms) is chosen 

by the user (number of frequencies).  The total number of basis functions generated,

, 2 1isbasis freqn n since only one term is generated for the DC component.   After 

normalization of the basis functions, singular value decomposition (SVD) is applied to 

obtain the orthonormal basis set that establishes a non-singular matrix of basis functions.  

ALS regression is then applied to get the coefficient vector (regression vector) by 

iteratively changing the weights of each variable point, giving weight near zero p
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around peak areas and 1 p otherwise.  Finally, the product of the basis functions matrix 

and the coefficient vector provide the estimated baseline vector. 

TFALS requires the adjustment of two parameters ( andfreqn p ) for the estimation 

and elimination of slowly varying baseline components from the analytical signals.  It is 

necessary to understand the relationship between the parameters and the characteristics of 

the baseline and signal to choose the optimal values for a specific baseline and obtain a 

baseline corrected signal.  The motivation to study this relationship was to provide a good 

explanation and a better understanding of the choice of parameters for a specific 

analytical signal based on its attributes, since an incorrect choice of parameters could lead 

to suboptimal baseline correction.  

This chapter begins with a complete description of the TFALS algorithm and its 

adjustable parameters (number of frequencies, freqn , and the asymmetric weight, p ) and 

follows with a study of the relationship of these parameters with the analytical signal 

attributes in the context of baseline estimation.  The studies incorporated a variety of 

simulated data sets designed to examine and validate the parameter dependencies.   These 

included the asymmetric weight dependency on signal-to-noise ratio and the relationship 

of both parameters with characteristics of the analyte peak (peak height, peak width and 

peak location).  The effect of both adjustable parameters on baseline estimation for 

various signal attributes was evaluated by error estimation in baseline approximation.  

The estimated errors were then plotted against individual signal attribute values (e.g. 

different baseline amplitudes or different peak heights) and the TFALS parameter values.  
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Two and three dimensional plots of results are included to visualize the individual signal 

attribute effect on TFALS parameters. 

3.2 Truncated Fourier Asymmetric Least Squares Algorithm 

Consider that the measured signals are collected in a raw data matrix

ab chan sn nX  having a number of related samples, sn , measured at a number of equally 

spaced channels, chann .  These channels can be any ordinal variable (e.g. time, 

wavelength), assuming each sample vector 1ab channx is the sum of the baseline bx and 

the analyte signal ax with some noise components. 

ab a bx = x + x  (3.1)  

The subscript ‘ ab ’ represents the raw spectrum (analyte with the baseline), ‘ a ’ 

represents the quantities for analyte only, and ‘ b ’ represents the quantities for baseline 

only.  

Assuming that the baseline vector is a linear combination of predefined functions, it 

is modeled with the user-specified number of orthonormal basis functions that form the 

matrix chan basisn nB . 

ab ax = x + Bq     (3.2) 

Various functions can form the basis set used in B  (e.g. baseline signals, polynomial), 

but in this work, the truncated and augmented Fourier series is used in this capacity.  In 

principle, the estimated regression vector, (1 )basisnq , becomes the Fourier coefficients 
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for the baseline estimate.  In practice, however, singularity restrictions may require a 

redefinition of the basis functions actually used, as discussed in Chapter 2. 

3.2.1 Truncated and Augmented Fourier Basis Set

The TFALS algorithm requires user specification of two parameters, the number of 

frequency terms to use in the truncated/augmented Fourier series, freqn , and the 

asymmetric  weight, p .  The first of these relates to the basis functions used, while the 

second relates to the ALS fitting.  It is the choice of freqn and its relationship to the basis 

functions that is discussed here. 

Given the 1nchann signal vector abx , the corresponding frequencies for the Fourier 

transformed signal will be designed as 0 1 2 /2 0 1, , ,..., , where 0 (DC),  
channf f f f f f  is the 

lowest non-zero frequency component, 2 1 /22 , and nchanf f f  corresponds to the Nyquist 

frequency.  As discussed in Chapter 2, the augmented frequency set used to generate the 

basis functions is 1 1 1 1 10, 0.25 , 0.5 , , 2 ,..., 3freqf f f f n f .  Therefore, the simplest 

baseline 1freqn  would consist of only a baseline offset (DC) component.  The 

addition of increasingly higher frequencies allows the modeling of more complex 

baselines. 

If the matrix of basis functions is given by chan basisn nB then the thj column 

vector of B , designated as jb  represents the thj basis function.  The number of basis 

functions, basisn , is related to the number of frequency components, freqn , by 
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2 1basis freqn n  (3.3) 

since there are sine and cosine terms for each frequency except for zero.  If ijb  represents 

the th element ( 1.... )chani i n of basis function jb , the basis functions for the TFALS 

method are defined as follows. 

1 1 0ib f  (3.4) 

2 1
0.5 1

sin 0.25i
chan

i
b f f

n
 (3.5) 

3 1
0.5 1

cos 0.25i
chan

i
b f f

n
 (3.6) 

4 1
1

sin 0.5i
chan

i
b f f

n
 (3.7) 

5 1
1

cos 0.5i
chan

i
b f f

n
 (3.8) 

For 5j , the basis function is defined as follows. 

1
2 4 1 4sin       even, 

2 2ij
chan

j i jb j f f
n

 (3.9) 

1
2 5 1 5cos       =odd, 

2 2ij
chan

j i jb j f f
n

 (3.10) 

Note that the maximum value for j  is 2 1basis freqn n . 

This raises the question of how many frequency components to include when 

optimizing the TFALS algorithm for baseline removal.  The lower limit, 1freqn , 

corresponds to the simplest case of a constant offset.  The addition of more frequencies 

allows more variation in the baseline signal to be modeled but also runs the risk of 
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modeling analytical signal components (peaks).  In principle, the upper limit approaches 

the Nyquist frequency 1 2chann f , but this would clearly be too far. 

To obtain a more reasonable upper limit for optimization purposes, the following 

argument is used.  The upper limit depends on the width of analytical peaks relative to the 

overall signal.  Narrow peaks on an extended, highly variable baseline would 

tolerate/require higher frequency baseline components than broader peaks over a shorter 

window.  If we assume that a “narrow” peak is a Gaussian peak with a standard deviation 

of 2t  points in the measurement domain, then we can write, 

2 2( ) /2( ) c tn i
tg i h e  (3.11) 

where ( )g i is the signal magnitude as a function of the index, ( 1... )chani i n , th is the 

maximum height of the Gaussian in the time domain, and cn is the index at the centre of 

the peak.  It is known that a Gaussian signal in the time domain produces a Gaussian 

shaped amplitude spectrum in the frequency domain described by, 

2 2 /2( ) tG h e   (3.12) 

where 2 , ( )f G is the amplitude at and  h is the amplitude at 0 .  The 

Gaussian in the frequency domain is centered at 0f  (symmetric for positive and 

negative frequencies) and its width is inversely proportional to the width of the Gaussian 

in the time domain; i.e. broader peaks in the time domain lead to narrow peaks in the 

frequency domain and vice-versa.  If we let j  represent the index of the Fourier 

amplitude in the frequency domain, then we can write 

1
22 2 s

chan

f jf f j
n

 (3.13) 
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where 1f  is the first non-zero frequency and sf  is the sampling frequency.  The result 

was obtained using 1 2 N chanf f n  where Nf  is the Nyquist (maximum) frequency 

given by 2N sf f .  Arbitrarily taking 1 (units don't matter), 1st f and we can write 

2 22 2 2 24 2( ) ft chan jj nG j h e h e  (3.14) 

In this equation, t is the standard deviation of the Gaussian in the frequency domain 

expressed in units of the index in that domain.  Equating the exponents gives. 

2 2 2

2 2
4
2 2

t

chan f

j j
n

 (3.15) 

which lead to  

2
chan

f
t

n  (3.16) 

Thus the analyte peak will be represented a Gaussian with a standard deviation of f

channels in the frequency domain. 

In modeling the baseline, we want to minimize the analyte signal components 

included.  We will arbitrarily set a limit of 10% of the amplitude spectrum (low 

frequencies), for a Gaussian peak, this corresponds to 0.1257z .  Taking 2t ,this 

leads to 

max
0.1257 0.0100

2 2
chan

chan
nj n  (3.17) 

Therefore, for the purposes of the proposed algorithm, the maximum number of 

frequencies included in the maximum number augmented basis set is 

(max) 3 ( 100)freq chann round n  (3.18) 
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In practice, it has been found that the upper limit usually does not need to extend 

this high, since most baselines are slowly varying.  Generally, 4 or 5 frequency terms are 

sufficient to model most baselines, but this provides a rationale for setting an upper limit 

in the optimization process. 

As a final step in the generation of basis functions each basis vector is normalized to 

unit length by dividing each column vector by its Euclidean norm: 

jnorm
j

j

b
b

b
 (3.19) 

While this does not change the shape of the vectors, it may improve mathematical 

stability.   

3.2.2 Orthonormal Basis Set 

As noted in Chapter 2, because of the augmentation of sine and cosine components 

in the Fourier series with lower frequencies that extend beyond the orthogonality interval 

( 2 ), the basis set matrix generated here is no longer orthogonal, which may lead to a 

singularity problem in the least squares estimation.  To obtain a non-singular basis set 

matrix and simplify the least squares problem in the next step, singular value 

decomposition (SVD) it is used to orthogonalize the normalized basis set matrix. 

SVD represents the matrix ( )chan basisn nB as the product of three matrices: the left 

singular matrix, ( )chan basisn nU (orthonormal), the diagonal matrix of singular values,  

( )chan basisn nS , and the right singular matrix, ( )chan basisn nV . 

TB = USV  (3.20) 
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If B is singular, the rank of B can be determined as the point at which the singular values 

in S go to zero to working precision.  If this is the case, the matrix U is truncated to the 

first p columns, where p is the rank of B , resulting in the truncated matrix 

p chann pU .  If B is not singular, then pU U .   The matrix pU is then used as the 

matrix of basis functions for asymmetric least squares. 

3.2.3 Asymmetric Least Squares Approximation 

Having transformed the basis functions in the augmented Fourier series, B , to the 

alternate space in pU , the task now is to use asymmetric least squares in conjunction with 

these basis vectors to estimate the baseline.  The model is 

b px U q e  (3.21) 

Here, bx is the baseline component of the signal 1 ,chann q is the vector of basis 

function coefficients 1  , and  is an error vector 1chanp ne . 

The regression vector q in Equation 2.30 describes the shape and intensity changes 

of analyte signal due to the baseline contribution.  This shape and intensity vector is 

calculated by asymmetric least squares regression, assuming a very small weight p for the 

area where analyte peaks are present and 1 p in baseline regions.  Initially, weights 

are set to one for all channel points.  The regression vector is initially estimated by 

1T T
p p p abq U U U x  (3.22) 

Note that this equation uses abx , the vector of measurements (analytical signal+ baseline) 

rather than the baseline vector, bx , since the later is, of course, unavailable.  The 
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objective is to use weighted regression to fit only the baseline regions, but of course these 

are not known a priori.  The assumption is that analyte signals will have only positive 

residuals, as positive residuals are given a much smaller weight in an iterative process.  

Following the initial fit, the residuals are calculated by  

1 1ˆab pr x U q  (3.23) 

For the second iteration, the weight for measurement ( 1... )chani i n  is assigned to  

p  (small) if the corresponding residual is positive, or to (1 )p  otherwise.  These 

weights are placed on the diagonal of a weight matrix, ( )chan chann nW and used for 

weighted regression in the second step 

1

2 2 2ˆ T T
p p p abq U W U U W x  (3.24) 

Here the “2” indicates the coefficients and weights at the second iteration.  Residuals and 

weights are recalculated and the processes is repeated based on the following equations 

j ab p jr x U q   (3.25)  

         if 0
(1 ) if 0

ij
ij

ij

p r
w

p r
  (3.26) 

j jdiagW w   (3.27) 

1

1ˆ T T
j p j p p j abq U W U U W x  (3.28) 

This process is continued until convergence when no further changes in the weights 

occur.  At that point, the baseline is 

ˆb px U q    (3.29) 
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and the corrected analyte signal is obtained by subtraction 

ˆ ˆa ab bx = x - x  (3.30)

3.3 Parameter Optimization of TFALS 

For the purpose of validation of the proposed algorithm and parameter optimization 

from the statistical perspective, several simulation studies were done to check the two 

parameter dependency on analytical signals. 

3.3.1 Experimental 

3.3.1.1 Computational Aspects 

All data processing was carried out using programs written by the author in 

MatLab® 2010b (MathWorks, Natick, MA) under Windows 7 Professional 2009© on a 

2.10 GHz processor with 2.00 GB of memory. 

3.3.1.2 Data Simulations  

Four simulated data sets were generated in order to examine the effect of the 

TFALS parameter values ( ,freqn p ) on baseline estimation in the presence of signals.  

Each data set considers the individual attributes of analytical signals and was generated 

separately.   

Data set 1 was intended to determine the effect of peak parameters on baseline 

estimation for a single analytical peak in the presence of a baseline.  The nominal signal 

to be modeled consisted of a vector of 4000 points with a Gaussian signal (height, 50h ; 
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standard deviation, 50 ) centered at index 2000.  This was superimposed on a 

sigmoidal baseline generated with the function 

1
x xo

w

Ay x
e

 (3.31) 

where x correspond to the element index (1 to 4000), ox is 2000, A is the amplitude (100), 

and w  determines the slope of the sigmoid and was set to 500.  Normally distributed 

random noise was added to the signal with a standard deviation of 1. 

 Three subsets of data were generated to test the effect of peak height, peak width, 

and peak location.  For Data Set 1a, the peak height was varied between 10 and 100 in 

steps to 10.  For Data Set 1b, the nominal peak height and location were used, but peak 
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width was varied between 10 and 100 in steps of 10.  For Data Set 1c, the nominal peak 

height and width were used, but the peak location was varied between 150 and 3750 in 

steps of 400.  Figure 3.1 represents this simulated data set.  Figure 3.1(a) represents Data 

Set 1a, 3.1(b) represents Data Set 1b, and 3.1(c) represents Data Set 1c.  These data 

subsets were used to examine the dependency of analyte peak height estimation on both 

of the adjustable TFALS parameters (number of frequency terms and the asymmetric 

weight).  

Data Set 2 was generated to determine the relationship between TFALS asymmetry 

parameter, p , and the signal-to-noise ratio.  The nominal signal to be modeled consisted 

of a vector of 2000 points with a Gaussian signal (height, 500h , standard deviation, 

Figure 3.2  Data set 2 with high (lower) and low (upper) signal-to-
noise ratios (other signal vectors not shown).  
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40) centered at index 1000.  Twenty different normally distributed random noise 

sequences were added with the standard deviations ranging from 0.5 to 1 in steps of 0.1, 1 

to 5 in steps to 0.5, and 6 to 30 in steps of 5.  No baseline was added to this signal.  The 

limiting cases of this data set ( 1000 and 17S N S N ) are represented in Figure 3.2. 

Data Set 3 was simulated to study the relationship between the two TFALS 

parameters (number of frequencies, freqn , and asymmetry factor, p ).  The nominal signal 

to be modeled consisted of a vector of 2000 points with five Gaussian signals at specified 

locations (200, 550, 900 1300 and 1750), heights ( 585, 243, 279, 522 and 315) and 

standard deviations (21 , 12, 13, 19 and 14).  Normally distributed random noise was 

added to the signals with standard deviations of 4 and 40.  
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Two sub-sets of data were generated to test the relationship between the two 

adjustable parameters in presence of different baseline features.  For Data Set 3a, a 

combination of Gaussians (heights, 500,700h , standard deviations, 750,250) 

centered at 500 and 2200, was added to the signals as a baseline.  For Data Set 3b, an 

exponential baseline, hxAe  with a decay rate of 0.0045k  and an amplitude of 573A  

was added.  The signals with Gaussian baselines are represented in Figure 3.3(a) and the 

signals with exponential baselines are shown in Figure 3.3(b).  

3.3.2 Results and Discussion 

3.3.2.1 Effect of TFALS Parameters on Peak Height Estimation 

 To test the effect of the number of frequencies, freqn , and asymmetry parameter, p , 

on the estimation of analyte peak heights, three different peak parameters were tested 

individually: peak height, peak width and peak location.  The level of random noise and 

the shape of the sigmoidal baseline were kept the same for all simulated signal vectors in 

this test study and only the peak parameters were changed. 

Ten different peak heights, widths and locations were used to test the dependence of 

each of these peak attributes on the two adjustable parameters ,freqn p  of TFALS.  The 

relationship of each of the three peak attributes with the two adjustable parameters was 

studied and will be presented separately.  To test and visualize the relationships, surface 

and contour plots were used along with two dimensional line plots for each case.  For 

better visualization of estimation errors in these graphs, ‘negative absolute errors’ in peak 
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height estimation were used to measure the estimation error in each case.  The negative 

absolute error was calculated by 

nabs true estimatedE PH PH   (3.32) 

In this equation truePH  is the true height of the analyte peak measured at the maximum in 

the absence of noise and baseline, while estimatedPH  is the peak height of the analyte 

measured after subtraction of the baseline estimated by TFALS from the analyte signal 

(in the presence of noise).  This definition was chosen so that the sign indicates the 

deviation of the estimated baseline: a negative sign indicates that the estimated baseline is 

too low, while a positive sign indicates that it is too high. 

3.3.2.1.1 Effect of Peak Height on Baseline Estimation 

To examine the relationship between the peak height and the two adjustable 

parameters of TFALS, ten simulated signal vectors with identical levels of noise and 

baseline were used.  Each signal vector had a single peak with same position and width, 

but with different peak heights, as previously described for Data set 1a.   

Figure 3.4 shows a surface and contour plot of negative absolute errors in peak 

height estimation for ten different peak heights as a function of the number of frequencies 

used to model the baseline.  The asymmetry parameter, p , was set to 0.021 for these 

calculations.  Figure 3.5 shows the same information in two-dimensional plot to convey 

the quantitative information more clearly.  The general trend is for the errors to increase 

from more negative to more positive as both the peak height and number of frequencies 

increases.   Ideally, one would like to have all of the errors as close to zero as possible.   
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Figure 3.5  Negative absolute errors using number of frequencies from 
2 to 11 at different peak heights.  

Figure 3.4  Surface and contour plots of estimation errors in peak heights for 
signals with different peak heights using different number of frequencies.  
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The largest absolute errors are positive and occur when both the peak height and number 

of basis frequencies is high. 

The behavior observed in Figure 3.4 and 3.5 is the result of the interaction of 

several factors that are a consequence of the asymmetric least squares fitting.  In general, 

because positive weights are much smaller than negative weights, when ALS is applied to 

a pure baseline signal, it will tend to align itself with the negative excursions of the noise, 

as shown in Figure 3.6 

As more and more analytical signal components are added, the positive deviations 

become larger and start to have a greater effect, consequently pulling the estimated 

baseline higher until they are balanced by more negative deviations.  Because higher (or 

wider) peaks increase this effect, the baseline shifts higher in those cases.  The magnitude 

of the changes depend on the asymmetric weighting factor as well (discussed later).  This 

explains why, for example at 4freqn , the baseline starts with a negative error for small 

peaks that turns into a positive error for larger peaks.  Also note that the magnitude of the 

errors in on the same order as the noise ( 1 ) in this case. 

Figure 3.6  Fitting of a noisy baseline by ALS. 
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The characteristics of ALS also relate to the number of frequencies, freqn , and the 

ability to fit the baseline and the analytical signal.  Recall that freqn  is directly related to 

the number of basis functions used.  When the number of frequencies is small ( 2freqn ) 

the basis functions are inadequate to model the baseline and relatively large errors result.  

As the number of basis functions is increased ( 3 to 6freqn ), the baseline is adequately 

modeled and smaller errors result.  However, when the number of basis functions is 

increased even further ( 7 to 11freqn ) the higher frequency components begin to model 

the positive deviations of the analytical peaks to improve the ALS objective function, 

resulting in larger positive errors in the baseline (overfitting).  As already noted, this 

effect will be larger for larger peaks. 

For the present example, optimum performance across the range of peaks appears to 

occur for 4freqn , although other values are also acceptable.  However, this is not 

universal and will depend especially on the shape of the baseline and peaks, as well as the 

number of peaks, asymmetry factor, and signal-to-noise ratio. 

One could also argue in this case that 9freqn  would be a good choice, since the 

relative error (ca. 10% of the peak height) is constant across the range.  While this may be 

true, it is more reliable in the presence of multiple large and small signals to evaluate the 

baseline estimation relative to the absolute noise level than the signal.  This will become 

evident with the example presented at the end of this section. 

  Figure 3.7 shows a surface and contour plots of negative absolute errors in peak 

height estimation for the ten different peak heights as a function of ten different values of 
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the asymmetry parameter, p , (ranging from 0.001 to 0.046 with an interval of 0.005) used 

to model the baseline by TFALS.  For this plot, the number of frequencies used was 

4freqn .  Figure 3.8 presents a line plot of the same information in Figure 3.7.  It is 

observed in this plot that each error estimation line starts with negative errors in the 

baseline and these become more positive with the increment in peak heights.  It is also 

apparent that the signals with higher peaks require a relatively smaller asymmetry 

parameter value and the smaller peak heights require a higher asymmetry parameter 

value.  For a peak height of 100, for example, a value of 0.011p  gives an error near 

zero, while a peak height of 30 requires 0.046p  for an error near zero. 

Figure 3.7  Surface and contour plots of estimation errors in peak 
heights for signals with different peak heights using different 
asymmetry parameters.  
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The reason for the observed interaction between the asymmetry parameter and the 

peak height is as previously described.  For a pure baseline, the estimation by ALS will 

generally be low and on the order of the measurement noise.  As positive analyte signal 

components are added, this estimate will be pulled up to improve the objective function, 

gradually reaching and surpassing the true baseline.  A larger asymmetry factor will cause 

this to happen faster for small peaks, but will result in more positive errors for large 

peaks.  Conversely, a small value of p  will make large positive errors less likely for large 

peaks, but increase the negative errors for small peaks. 
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Figure 3.8  Negative absolute errors using different asymmetry 
parameter values at different peak heights.  
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The choice of an optimum value for p  is difficult because it depends on the number 

and size of analyte peaks.  For the present example, a value of 0.026p  (fifth from the 

top) achieves a reasonable baseline.  However, two points are worth noting.   First, the 

range of errors introduced by changing the choice of p  is much smaller than those 

observed for the choice of freqn , meaning that the selection of this parameter is much less 

critical than choosing the number of frequencies.  Second, since the errors are bounded on 

the low end by the absence of any signal, but not bounded on the high end, it is safer, 

when in doubt, to choose a smaller value of p .  

Figure 3.9 shows the practical consequences of the TFALS parameters on the 

simulated signals.  Figure 3.9a shows a small signal (height =10) with the true baseline 

(green) along with baselines estimated with 4freqn  (blue) and 11freqn  (red), both 

estimated with 0.021p .  It is clear that both baseline estimates are similar.  In contrast, 

Figure 3.9b shows the same results with a larger peak (height=100).  Here it is clear that 

the larger number of basis functions ( 11freqn ) overfits the peak and leads to poor 

baseline estimation.  This effect of peak modeling increases and becomes visually 

apparent with the increase in peak heights but is also present for small peaks.  Therefore, 

the choice of optimal number of frequencies, freqn , is not dependent on the peak heights 

but rather the shape of the baseline, and the wrong choice of freqn could lead to incorrect 

baseline estimation and peak stripping in the signals. 
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Figure 3.9c shows the effect of the asymmetry parameter, p , on the small peaks 

with values of 0.001p  (blue) and 0.046p  (red) compared to the baseline (green) 

using 4freqn .  A similar plot for the large peak is shown in Figure 3.9d.  It can be 

clearly observed from the two plots that, for the small peak, the red line (representing

0.046p ) is relatively closer to the true baseline, but both values would provide an 

acceptable result, whereas for large peak an asymmetry parameter between the two values 

presented would be a better choice.  Again, however, both estimated baselines would be 

acceptable.  It is clearly seen from both baseline estimation plots that the difference in 
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peak height estimation using two different asymmetry values is not crucially different.  

Hence, the choice of optimal asymmetry parameter is relatively robust and independent of 

peak height.   

3.3.2.1.2 Effect of Peak Width on Baseline Estimation 

For testing the TFALS parameters’ relationship to peak width, ten simulated signal 

vectors with identical levels of noise and baseline and different peak widths were used 

and tested individually as in the previous section.  

 Figure 3.10 shows a surface and contour plots of negative absolute errors in peak 

height estimations for ten different peak widths as a function of number frequencies used 

Figure 3.10  Surface and contour plots of estimation errors in peak 
heights for signals with different peak widths using different numbers of 
frequencies.  
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Figure 3.11  Negative absolute errors using number of frequencies 
from 2 to 11 at different peak widths.  

to model the baseline.  The value of p  was set to 0.021 for these calculations.  It is 

apparent that the estimation errors are minimal at the same number of frequencies used to 

model the data for all ten peak widths as in the previous section, which probably is the 

optimal number for that specific shape of baseline; however the estimated error seems 

relatively higher at higher peak widths, specifically using higher number of frequencies.   

Figure 3.11 shows a line plot with the same information continued in Figure 3.10.  

For this specific data set, the third line from the bottom ( 4freqn ) seems to be an optimal 

choice, having small slope near the zero line.  It is not surprising that this is consistent 

with the previous section since the baseline and noise are the same.
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The interpretation of these figures is similar to those in the previous section.   For a 

given set of basis functions ( freqn ), increasing the peak width increases the amount of 

positive values.  For narrow peaks, the effect of increasing the number of frequencies is 

relatively unimportant, since the basis functions do not contain sufficiently high 

frequencies to model the analyte peak.  For wider peaks, however, this ability to fit the 

analyte peaks becomes important at lower and lower frequencies, resulting in larger 

positive errors (higher baselines) for wider peaks.  

Figure 3.12 presents surface and contour plots of negative absolute errors in peak 

height estimation for ten different peak widths as a function of the asymmetry parameter,

p , values (ranging from 0.001 to 0.046 with an interval of 0.005) used to model the 

Figure 3.12  Surface and contour plots of estimation errors in peak heights 
for signals with different peak widths using asymmetry parameters.  
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baseline with 4freqn .  It is apparent from the surface and the contour plots that the 

modeling of small peaks required relatively higher asymmetric weight, whereas for wider 

peaks, a smaller asymmetry parameter provides a good peak height estimation.   

  Figure 3.13 presents a line plot of these results for greater clarity.  It is observed 

from this plot that each error estimation line starts from a negative value and gradually 

increases with the increment in peak widths.  It is also apparent that for peak widths close 

to 100, smaller asymmetry parameter value (0.001) provides zero absolute error and the 

largest asymmetry parameter value (0.046)used in this study gave zero error for signal 

having peak width of 30.  
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Figure 3.13  Negative absolute errors using different asymmetry parameter 
values at different peak widths.  
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The decrease in the optimum asymmetry factor with increasing peak width is 

analogous to the effects observed for peak height.  Wider peaks, like higher peaks, 

increase the positive signal regions of the objective function higher, thereby pulling the 

estimated baseline higher.  The asymmetry factor balances this effect against the natural 

tendency of the baseline estimates (in the absence of analyte peaks) to be low, so the 

optimum will depend on the nature of the analyte signal.  As in the previous section, 

however, the range of errors for this parameter is not very large, so baseline estimation is 

not critically dependent on its value. 

 Figure 3.14 represents the results of the simulated signals using different 

parameters of TFALS for the baseline removal.  Figure 3.14a shows the raw signal vector 

having a narrow peak (peak width=10) with true baseline (green) along with estimated 

baseline using 4freqn (blue) and 11freqn  (red) and both estimated with 0.021p .  It 

is clear that both estimates are similar for small peak width.  In contrast, Figure 3.14b   

shows the same results with a wider peak (peak width=100).  For wider peak, it is clear 

that the larger number of basis function ( 11freqn ) over-fits the peak and provides poor 

baseline estimation.  This effect of peak modeling is also present for narrow peak but is 

extensively apparent with the increment in peak width.  Therefore the choice of optimal 

number of frequencies, freqn , is not relatively dependent on the peak widths, however the 

wrong choice of freqn could leads to an incorrect baseline estimation and peak stripping, 

this effect becomes critical in the signals having wider peaks particularly. 
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Figure 3.14c represents the effect of asymmetry parameter, p , on the narrow peak 

with the asymmetry values 0.001p  (blue) and 0.046p  (red) compared to the true 

baseline (green), using 4freqn .  Figure 3.14d shows a similar plot for the wider peak.  

By comparing the two plots, it can be clearly observed that for the narrow peak red line 

0.046p  is relatively closer to the true baseline but the blue line  ( 0.001p ) still 

seems to provide an acceptable result, whereas for wider peak, the blue line ( 0.001p ) 

seems to provide a very good peak height estimation and red line ( 0.046p ) seems not 
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Figure 3.14  Signal vectors ( ) for narrow peak (a, c) and widest peak (b, 
d) along with true ( ) and estimated baselines. Figure (a) and (b) show the 
effect of using 4freqn ( ) and 11freqn ( ). Figure (c) and (d) show 

the effect of 0.001p ( ) and 0.046p  ( ). 
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an ideal choice.  It is clearly seen from both of these plots that the difference in peak 

height estimation using two different asymmetry values is not crucially different.  

Therefore, the choice of optimal asymmetry parameter is relatively robust and 

independent of peak widths.    

3.3.2.1.3 Effect of Peak Position on Baseline Estimation 

To test the TFALS parameters relationship with peak location, ten simulated signal 

vectors with identical levels of noise and baseline and different peak locations were used 

and tested individually as in the previous sections.   

Figure 3.15 shows surface and contour plots of negative absolute errors in peak 

Figure 3.15  Surface and contour plots of estimation errors in peak 
heights for signals with different peak locations using different numbers 
of frequencies. 
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Figure 3.16  Negative absolute errors using number of frequencies 
from 2 to 11 at different peak locations.  

height estimations for ten different peak locations as a function of the number frequencies 

used to model the baseline with 0.021p .  It appears on initial inspection that the 

optimum number of frequencies is the same in this case as for the previous sections, 

which is not surprising given the baseline and peak shapes are the same. However the 

estimated error seems relatively higher for the peaks located at both ends, and this effect 

seems more obvious using a higher number of frequencies, freqn , to model the baseline via 

TFALS method.    

 Figure 3.16 presents the same results as a line plot.  It is apparent that the peaks at 

both ends of the signal range give relatively higher estimation errors using individual 

freqn values.  For this specific data set, the third line from the bottom seems to be an 
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optimal choice, having errors nearest to the zero line across the range, representing the

4freqn as in the previous sections. 

The pattern of behavior in this case is somewhat different from those in the previous 

sections in that there is no constant trend.  Ideally, we would expect that all of the lines 

should be flat, since the same peak shape is being used in each case and only the location 

is changing.  This is generally the case for peaks toward the middle of the range only, as 

expected, there is an increasing positive error in the baseline as the number of frequencies 

is increased and the algorithm attempts to fit the analyte peak.  These errors are generally 

larger for peaks near the ends.  The reason for this is the sinusoidal nature of the basis 

functions.  When high frequency components in the baseline model adapt to fit the peaks, 

this is usually accompanied by negative-going oscillations on either side of the peak that 

penalizes the ALS objective function and reduces the extent of analyte peak fitting.  At 

the limits of the range, however, one side of the oscillations is missing, so the baseline is 

permitted to extend higher into the peak, giving larger positive errors. 

Another interesting feature of Figure 3.16 is the oscillatory nature of the errors 

when the number of frequencies is insufficient to model the baseline ( 2,3freqn ).  In 

these cases, the baseline is under-fit, so the fitted baseline will make wide sweeps above 

and below the true baseline.  Small errors will result if a peak is near one of those 

crossing points, but otherwise the errors will be large. 

Figure 3.17 presents a surface and contour plots of negative absolute errors in the 

peak height estimation for ten different peak locations as a function of asymmetry 

parameter, p , values (ranging from 0.001 to 0.046 with an interval of 0.005) used to 
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model  the baseline with 4freqn .  It is apparent from the surface and the contour plots 

that the estimation error changes abruptly with the peak locations and there is no specific 

relationship between the peak locations and asymmetry parameter, p .  

Figure 3.18 shows a line plot of the results in Figure 3.17.  It is observed from this 

plot that each error estimation line gives a relatively more positive estimation error for the 

peaks closer to the ends.  The behavior observed in this plot is closely related to that 

observed for Figure 3.16.  For peak positions near the middle, the baseline error behaves 

as expected.  For small values of p  , baseline estimates are low, and these shift upwards 

as the asymmetry parameter is increased.  The same trend is observed for peaks near the 

Figure 3.17  Surface and contour plots of estimation errors in peak heights 
for signals with different peak locations using different asymmetry parameter 
values.  



91

ends, but they start at a more positive value.  This is because , as before, the terminal 

positions allow the sinusoidal terms more freedom in modeling the analyte peak, since 

they are not constrained to fitting a baseline on two sides.  Therefore, the estimated 

baseline will tend to go higher in these regions.  Despite this pattern of behavior, 

however, it should once again be noted that the magnitude of the effect introduced by the 

asymmetry parameter is quite small. 

Figure 3.19 presents some results to support the observations.  In each subplot, the 

raw data are shown together with the true baseline.  Figure 3.19a – c illustrate the effect 

of the number of frequencies selected, with the calculated baseline for 4freqn    shown 

Figure 3.18  Negative absolute errors using different asymmetry parameter 
values at different peak locations.  
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in blue and 11freqn  in red ( 0.021p ).  It is clear in all three subplots that the blue line 

fits the true baseline fairly well, but the red line uses excessive number of functions and 

attempts to fit the analyte peak to reduce the objective function.  In doing so, negative 

oscillations on either side of the peak, as in Figure 3.19b, generate positive residuals that 

limit the extent of fitting that can occur.  However, at the end locations, shown in Figure 

3.19a and c, one side of these oscillations is removed, allowing the baseline to extend 

higher into the peak.  This is the reason that a greater positive error is observed when the 

peaks are located at the end. 
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Figure 3.19  Baseline fit for different peak positions. (a) - (c) show the effect of 
the number of frequencies with 4freqn  (blue) and 11freqn  (red) compared to 

the true baseline (green). (d) shows the effect of the asymmetry parameter with 
0.001p  (blue) and 0.046p  (red) compared to the true baseline (green). 
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 Figure 3.19d illustrates the effect of the asymmetry parameter at the three 

locations, with 0.001p  (blue) and 0.046p  (red) for 4freqn .  As discussed 

previously, increasing p  raises the baseline, but the effects are larger near the ends of the 

signal range, at both extremes, however, the baseline estimates are still reasonable.

3.3.2.2 Asymmetric Weight Relationship to Signal-to-Noise Ratio 

To examine the relationship of the signal-to-noise ratio to the asymmetric weighting 

parameter, twenty signals were generated with different signal-to-noise ratios.  The 

baseline for all signals was kept at zero and only one peak with the same height 

( 500),h  standard deviation ( 40 ) and location (centered at 1000 points) was used.  

Only the noise levels were changed to get different vectors having different signal-to-

noise ratio.  Baselines for each of the fifteen signals were estimated with 40 different 

asymmetry parameters, p .   The values of p were used between 0.005 to 0.02 with an 

interval of 0.001, and between 0.02 to 0.068 with an interval of 0.002.  In applying 

TFALS, the number of frequencies used was 1freqn , since no baseline function was 

added.   

Figure 3.20 shows a plot of the “Negative Absolute Error” (NAE) as a function of 

the S/N ratio (reciprocal of relative standard deviation) and asymmetry parameter.  As 

observed previously, increasing p  raises the baseline from its initial point (positive of 

negative errors) to more positive values.  For low S/N, the larger values of p  give better 

results, but the effects are very small.  For high S/N, however a large value of p causes a 

positive baseline error of about 10 times the measurement noise and this will increase 
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linearly with the S/N.  Therefore in general, it is advisable, when uncertain, to choose a 

small value of p .  While this is more likely to produce a baseline that is underestimated 

over the range of the measurements, it will tend to keep the absolute errors more constant 

relative to the baseline noise. 

3.3.2.3 Relationship of TFALS Parameters 

So far, the studies carried out have varied the two adjustable TFALS parameters 

independently, fixing one and examining the behavior of the other.  To test the 

interdependence of the two parameters on each other, two sets of signals were generated 

Figure 3.20  Results of asymmetric weight dependency on signal to 
noise ratio.  
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with the same Gaussian baseline and low and high signal-to-noise ratios, and    two sets of 

signals were generated with the same exponential baseline and low and high signal-to-

noise ratios.  The same set of five Gaussian analyte peaks (height=585, 243, 279, 522, 

315; standard deviation=21, 11, 12, 20, 14; location=200, 550, 900, 1300, 1750) were 

used for each signal vector.  The noise standard deviations were 4  (high S/N) and 

40  (low S/N). 

Figure 3.21 shows the results of simulation for the Gaussian baseline and a low S/N.  

In this case, the results are plotted as the RMS error (RMSE) in the baseline as a function 

of the number of frequencies, freqn  and the asymmetry parameter, p , where the RMSE is 

defined as, 

2

1(baseline)

N

est true i
i

b b
RMSE

N
 (3.33) 

Here est true i
b b  is the difference between the estimated and the true baseline at channel  

i .  The RMSE is a measure of the “average” difference between the estimated and the 

Figure 3.21  (a) Surface and (b) line plot of RMS error in baseline estimation for 
signal with Gaussian baseline and low signal-to-noise ratio using different values 
of TFALS parameters.  
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true baseline and ideally has a value of zero, but this would not be the case even in the 

absence of analyte peaks and noise, since the baseline functions cannot model the 

baseline exactly. 

Several points are worth noting regarding Figure 3.21.  First, although there is a 

relationship between the two parameters, the interaction is small and they are largely 

optimized independently.  Second, the dependence on asymmetry parameter is relatively 

small, while the errors introduced by an incorrect number of frequencies are larger, 

especially when an insufficient number of frequencies has been employed.  A third point 

worth noting is that, when a sufficient number of frequencies is used ( 3 to 5)freqn  a 

minimum RMSE has not been achieved even when 0.1p , which is larger than the 

values that have been used thus far.  This is contrasting however, because the current 

figure measures the agreement with the true baseline, whereas previous studies 

considered the errors in peak height.  When the asymmetry parameter is low, the 

estimated baseline will tend to “hug” the negative transients of the noise.  This gives an 

error on the order of the noise and is consistent with the results shown here, where an 

RMSE of about 50 at 0.01p corresponds roughly to the noise level of 40 as p is 

increased, the baseline will rise closer to the true value, but at the expense of errors in the 

peak heights as previously shown.  Therefore, a perfect match with the baseline is not 

necessarily desirable.  Figure 3.22 shows the same results for the Gaussian baseline in the 

high S/N ratio situation, and similar observations can be made.  As before, a higher 

dependence on number of frequencies than on the asymmetry parameter is observed, and 

the intersection between the parameters is small.  It should also be noted that the RMS 

errors in the baseline are smaller and pass through a minimum within the range of 
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asymmetry parameters used (unlike the previous case).  These observations are consistent 

with the lower noise level, which places the “bottom” of the noise closer to the true  

baseline to start and also requires less “adjustment” by the asymmetry factor to move it 

even closer.  The lowest level of RMSE also approaches the noise level ( 4 ).  

However, even if the noise level becomes very small, there is a limit beyond which the 

RMSE cannot reach, as it is determined by the lack of fit to the true baseline. 

Figure 3.23 and Figure 3.24 show results analogous to those in Figures 3.21 and 

3.22, but using an exponential instead of a Gaussian baseline.  The interpretation of these 

results is consistent with those presented earlier and shows that the general behavior is not 

tied to the type of baseline, although the optimum number of frequencies may vary with 

the baseline characteristics. 

Figure 3.22  (a) Surface and (b) line plot of RMS error in baseline estimation for 
signal with Gaussian baseline and high signal-to-noise ratio using different values 
of TFALS parameters.  
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It is clear from these studies that the two parameters are not highly dependent on 

each other.  While there is always an optimal value for each parameter for a particular 

data set to obtain the best baseline corrected signal, the choice of the asymmetry factor is 

not very crucial, although it does depend to some extent on signal-to-noise ratio.  The 

Figure 3.23  (a) Surface and (b) line plot of RMS error in baseline estimation for 
signal with exponential baseline and low signal-to-noise ratio using different values 
of TFALS parameters.  

Figure 3.24  (a) Surface and (b) line plot of RMS error in baseline estimation for 
signal with exponential baseline and high signal-to-noise ratio using different 
values of TFALS parameters.  
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choice of the number of frequencies is most closely connected to the nature of the 

baseline 

3.4 Conclusions 

The TFALS method uses only two adjustable parameters to estimate low frequency 

baselines and these two parameters are not highly dependent on signal attributes. The first 

parameter, the number of Fourier frequencies used, is completely dependent on the nature 

of the baseline.  It has been shown from the results presented here that the selection of 

number of frequencies is largely independent of the analyte signal.  Therefore, slight 

changes in the amplitude of baseline or signals of the analyte, which can be commonly 

seen in replicate data signals or signals of similar analytical samples taken at the same 

analytical conditions, would provide the same optimal results with the same number of 

frequencies.  Further results of experimental data will be provided in Section 4.4.1 to test 

this hypothesis.  

 The results presented in this study also demonstrated that the second adjustable 

parameter, the asymmetry parameter is also independent of the analyte signal itself 

although it has a small dependence on signal-to-noise ratio.  It has been noted that the 

signals with lower signal-to-noise ratio require relatively higher asymmetric weight for 

better estimation, whereas data with higher signal-to-noise ratio can normally be 

estimated with a very small asymmetric weight.  It has also been found that the two 

tweaking parameters are not dependent on each other and that acceptable results can often 

be obtained with a range of parameters. 
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 The application of the optimal selection of these parameters for different types of 

simulated baseline functions and different experimental signals will be presented and 

further discussed in Chapter 4.  
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Chapter 4 

Applications of TFALS  

4.1 Introduction 

In chemical signal analysis, the point of interest for quantitation is generally the 

acquisition of accurate analyte peak height, peak area, or the signal amplitude 

information.  To achieve acceptably accurate quantitative information, elimination of 

unwanted high frequency noise and high amplitude, highly variable, low frequency 

baseline components is necessary as discussed in Chapter 1.  Since the baseline is 

relatively variable over the duration of the acquired signal, it can complicate both the 

absolute and relative (e.g. peak height ratios) quantitation of the analyte.   To avoid this 

complication it is often necessary to choose an approach that can approximate the 

baseline as closely as possible over the entire signal duration and especially over the 

region of analyte peaks to provide accurate analyte signal for quantitation. 

 Many approaches published in the literature to estimate the low frequency baseline 

have been already discussed in Chapter 1 along with their strengths and weaknesses.  

Baseline estimation using asymmetric least square regression is a relatively recent 

approach that has been extensively studied and highly reported during the last decade.  

Since this approach has been studied by many groups and the proposed method in this 

thesis is also based on the same approach, this chapter will provide the comparison of 

proposed method with two existing and frequently cited asymmetric least squares based 

methods in the literature; asymmetric least squares smoothing (ALSS), [33], and adaptive 

iteratively re-weighted penalized least squares (airPLS), [37].   



102

This chapter is divided into two parts.  The first part provides a comprehensive 

simulation study for the qualitative and quantitative comparison of TFALS with the 

ALSS and airPLS approaches.  Tables and figures are also included to validate the results 

of individual approaches for each data set.  The second part of this chapter consists of the 

application of TFALS to experimental data sets.  Results of different analytical signals are 

included to validate the baseline approximation appropriateness by TFALS, and for 

several data sets these results are qualitatively compared to published results from airPLS.   

4.2 Experimental  

4.2.1 Computational Aspects 

All data processing was carried out using programs written by the author in 

MatLab® 2010b (MathWorks, Natick, MA) under Windows 7 Professional 2009© on a 

2.10 GHz processor with 2.00 GB of memory.  The two comparison algorithms were 

downloaded from online sources [122, 123]. 

4.2.2 Simulated Data Sets 

Simulated data sets were intended to provide a qualitative and quantitative 

comparison of the TFALS with the two comparator methods.  The nominal signal 

consisted of a vector of 2000 points with five Gaussian peaks (peak heights of 585, 243, 

279, 522, 315; peak standard deviations of 28, 14, 16, 25 and 17; and peak locations of 

200, 550,900, 1300 and 1750.  Normally distributed random noise was added to the signal 

with a standard deviation of 6.   
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This signal was then superimposed on five different baseline functions: linear, 

sinusoidal, exponential, Gaussian and the sum of linear, Gaussian and exponential 

functions.  The linear baseline function was generated with a slope of 0.174 and an 

intercept of 123.5 with x  ranging from 1 to 2000.  The exponential baseline was 

generated using a decay rate of 0.004 and an amplitude of 573.  The sinusoidal baseline 

was generated using an angular frequency, 47.5 10 and an amplitude of 250.   The 

Gaussian baseline was generated using a combination of two Gaussian functions (heights,

500,700h , standard deviations, 750,250) centered at indices 500 and 2200.  A sum 

of previously generated linear, exponential and Gaussian functions is used as a 

combination baseline.  

4.2.3 Experimental Data Sets 

Four sets of experimental data were used to demonstrate the performance of 

proposed method for baseline elimination.  The first data set included in this study 

consists of three consecutive Raman spectra of DNA on a gold surface.  The gold surfaces 

used were Sphere Segment Void (SSV) nano-structured surfaces as described in the 

literature [124].  Following preparation, the surfaces were immersed in Tris buffer 

containing 1 M NaCl  and 1 M DNA, to allow adsorption of the DNA molecules to the 

gold surface [127].  The SERS (Surface Enhanced Raman Spectroscopy) data were 

collected using a Renishaw 2000 microscope with a 633 nm He-Ne laser, a 5 m spot size 

and a 30 second accumulation time.  These three spectra were considered as replicates 

and supposed to have similar but not identical baseline features.  Therefore, this data set 
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was used to visualize the results and test the hypothesis that the same parameters can be 

used for replicate data.  

The second data set consists of replicates of X-ray fluorescence spectra of tea [128].  

This data set was also used to confirm that same TFALS parameter values provide the 

optimum results for replicates and also as an example of data taken from different 

analytical instrument source for baseline removal via TFALS.  Since no standard data 

were available, only visual interpretation will be provided.  The experiment was 

performed using a bench-top X-ray fluorescence instrument, the Shimadzu EDX 700 

(Kyoto, Japan).  For spectra acquisition, 200 mg of solid samples were put into a Teflon 

cell.  This cell had an orifice diameter of 5 mm and samples were covered with a 3 m

thick Mylar film.  In all cases spectra were recorded from 0 to 40 keV , with a resolution 

of 0.02 keV , resulting in 2047 points per spectrum.   

The third data set, referred as the Raman minerals data, consists of Raman spectral 

data of six different minerals.  These spectral data were taken from the Handbook of 

Minerals Raman Spectra [127].  The excitation wavelength was 514 nm for first five and 

532 nm for the last spectrum, at an unstated power for this set of spectra.  This spectral 

data set was used to demonstrate the application of proposed baseline elimination 

approach for different low frequency signals since these signals consists of visually 

different baseline artifacts.  The first five minerals spectra have already been used by 

Rowlands for baseline removal [101]. 

The last set of data, taken from an online source [122], consist of NMR, 

chromatographic and Raman data, developed and used by Liang et al [37] for baseline 
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removal via the airPLS method.  Three visually different Raman signals and one selected 

signal each for the NMR and chromatographic data are included to visually compare the 

results of two approaches and show the applicability of TFALS for experimental data.   

4.3 Results and Discussion - Simulated Data Sets 

Simulated data sets with different baseline functions were studied to test and 

validate the application of proposed baseline removal approach for different baselines. In 

addition, two other methods were compared in this study based on five different aspects; 

visual comparison of simulated data results, individual peak height estimation based on 

baseline approximation and total absolute error of peak height estimation, RMS error over 

the entire channel length of each signal, computation time for each estimation method, 

and number of adjustable parameters. Comparative results for each of these aspects will 

be presented and discussed in the following sections in detail. 

4.3.1 Simulation Results - Qualitative 

4.3.1.1 Visual Comparison 

The baselines were estimated for all five simulated signals having different 

baselines using three methods: TFALS, airPLS and ALSS.  The parameters for each 

signal were optimized using a grid search approach for all three baseline removal 

algorithms.  The optimal parameters were chosen based on the minimum RMS error in 

baseline estimation (although this does not necessarily produce the smallest peak height 

errors).  In this section, baseline estimation results of all five signals will be presented 

using three approaches by using their respective optimal parameters.  The estimated 
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baselines, along with the raw signals and baseline corrected signals, will be presented for 

each signal using all three baseline approaches separately.   

The first simulated signal is presented in Figure 4.1, having a linear baseline and 

uncorrelated white noise.  The estimated baseline and baseline corrected signals using all 

three baseline estimation algorithms (TFALS, airPLS, ALSS) are shown in Figure 4.1.  

Figure 4.1(a) shows the result of TFALS, 4.1(b) shows the results of airPLS approach and 

Figure 4.1(c) is shows the baseline estimation and baseline corrected results for the linear 

baseline using asymmetric least squares smoothing approach.  It is apparent from the 

estimated baseline and resulting corrected signals that all three approaches were able to 

provide very good results for the linear baseline.  It is evident that the airPLS method 

forces the baseline to travel at the bottom the signal in contrast to the TFALS and ALSS 

approaches, where baseline seems to travel somewhere in the middle of the noise.   

Figures 4.2(a), 4.2(b) and 4.2(c) represent the simulated signal with an exponential 

baseline and white noise, and the estimated and baseline corrected signals using TFALS, 

airPLS and ALSS algorithims respectively.  All three methods produces a corner effect at 

the left hand side as a result of underestimating the baseline near channel 1.  This is not 

surprising as the rapid decay of the exponential contains high frequency components not 

typical of a baseline.  The greatest corner effect is exhibited by ALSS.  TFALS also 

shows a small corner effect on the right hand side.  All three methods tend to 

underestimate the baseline under the second peak by about the same amount.  All three 

methods give similar good estimates of the baseline, but both airPLS and ALSS seem to 

slightly overestimate the baseline for peak 4 (where the baseline is nearly flat) and airPLS 

underestimates the baseline for peak 5.   
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Figure 4.1  Raw signal with linear baseline, estimated baseline and baseline 
corrected signal using (a) TFALS (b) airPLS and (c) ALSS approaches.  
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Figure 4.2  Raw signal with exponential baseline, estimated baseline and baseline 
corrected signal using (a) TFALS (b) airPLS and (c) ALSS approaches.  
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As before, airPLS tends to follow the bottom of the noise, especially between the 

peaks, and this has the effect of providing “humps” between the peaks.  Overall, TFALS 

method seems to provide the most consistent modeling of the baseline between and under 

the peaks for this data set. 

Figure 4.3 represents a simulated signal having sinusoidal baseline and white noise 

in gray.  Dotted lines show the estimated baselines, and the baseline corrected signals are 

shown in black using TFALS, airPLS and ALSS approaches in Figures 4.3(a), (b) and (c) 

respectively.   

It appears that all three approaches were able to estimate the sinusoidal baseline 

satisfactorily; however, airPLS again seems to force the baseline to stay at the bottom of 

noise whereas the estimated baselines for TFALS and ALSS travel closer to the middle of 

the noise, with ALSS perhaps the better of the two.  Therefore, the estimated baseline via 

airPLS would probably affect the peak height estimation and give relatively higher peak 

height errors, as well as a higher RMS error in baseline estimation.  These two errors in 

estimation will be analysed and presented in Sections 4.3.2 and 4.3.3. 

 Figure 4.4 presents a simulated signal having a combination of two Gaussians as a 

baseline with random noise.  Dotted lines represent the estimated baselines, and the 

baseline corrected signals are shown in black using TFALS, airPLS and ALSS 

approaches in Figures 4.4(a), (b) and (c), respectively.   
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Figure 4.3  Raw signal with sinusoidal baseline, estimated baseline and baseline 
corrected signal using (a) TFALS. (b) airPLS and (c) ALSS approaches.  
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The baseline signal corrected using TFALS shows a minor corner effect on the left hand 

side and also underestimate the baseline slightly for the second and third peaks.  

Otherwise, the estimated baseline seems to pass through in the middle of the noise for the 

remainder of the signal.   

The estimated baseline using airPLS, represented by the dotted line in Figure 4.4(b), 

once again seems to pass close to the bottom of the noise in the regions between the peaks 

and then rises slightly upward in the peak regions.  This effect is more evident in wider 

peaks (first and fourth peaks from the left).  It is the expected that this is the effect of 

second-order differential term in the objective function, since the trial baseline in the first 

step of airPLS algorithm uses equal weights in the penalized least squares.  Due to this 

effect, the baseline corrected signal exhibits small amplitude arcs between the peaks and 

this might leads to higher errors in the peak height estimation.  This aspect is discussed in 

Section 4.3.2. 

The estimated baseline using ALSS method, represented by the dotted line in Figure 

4.4(c), also seems to give this differential effect in first and fourth peaks from the left but 

the corrected signal shows smaller distortions between peaks than the airPLS corrected 

signal.  This could be because the estimated baseline travels closer to the middle of the 

noise.  The ALSS method also exhibits a corner effect, but in contrast to TFALS, it 

occurs on the right side. 
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Figure 4.4  Raw signal with Gaussian baseline, estimated baseline and baseline 
corrected signal using (a) TFALS (b) airPLS and (c) ALSS approaches.  
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Figure 4.5 shows the raw signals with the combination baseline and random noise, 

along with the estimated and baseline corrected signals using TFALS, airPLS and ALSS 

algorithms.  The baseline for this signal is a combination of linear, exponential and 

Gaussian functions.  The dotted line in Figure 4.5(a) represents the estimated baseline 

using the TFALS method.  It is the only one of the three methods that does not produce a 

noticeable corner effect on the left, but it does underestimate the baseline for peaks 2 and 

3, as with the Gaussian baseline.  Otherwise, the baseline seems to pass through the 

middle of the noise.  The baseline subtracted signal, represented in black, confirms these 

observations.  The estimated baseline using airPLS approach is represented by the dotted 

line in Figure 4.5(b).  A relatively high corner effect is observed on the left and once 

again in this case the baseline follows the bottom of the noise between the peaks, leading 

to distorsions in the corrected signal.  Overall, however, the baseline under the peaks is 

well-estimated.  The estimated baseline using the ALSS approach is almost identical to 

that estimated by airPLS in this case, so the same comments apply.  In this combined 

baseline case, the estimated baseline seems to stay at the lower edge of the signal because 

the smallest RMS error in baseline estimation was provided by using an asymmetry 

parameter value that was very small (0.001) and order of difference was 3.  Th small 

asymmetry parameter tends to push the baseline down, as previously noted. 

In overall visual comparison, all three baseline correction methods appeared to give 

generally satisfactory results.  Although certain methods appeared to work better in 

certain cases, it is difficult to make definitive conclusions based on visual observations.  

In several cases, corner effects were observed, but no one method was superior in this 

regard and the effect is mainly aesthetic. 
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Figure 4.5 Raw signal with combination baseline, estimated baseline and baseline
corrected signal using (a) TFALS (b) airPLS and (c) ALSS approaches.
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For all five simulated signals, airPLS seems to force the baseline to stay at the 

bottom of the signal noise and as a consequence this produced some distorsion in the 

corrected signal between the peaks and was more evident for wider peaks.  On the other 

hand, esimated baselines for TFALS and ALSS usually pass through in the middle of the 

signal noise.  Error measurements in peak heights estimation will provide better 

comparative results in next section. 

It is important to note that the comparisons made here were based on parameters 

optimized to fit the baseline, but such an optimaization is not possible for real signals.  

Therefore factors such as the number of adjustable parameters is an important 

consideration.  Also, these simulations could have been optimized using other criteria, 

such as peak height estimation, but closeness to the true baseline seemed to be the more 

natural choice.  More quantitative comparisons are made in the next section. 

4.3.2 Simulation Results - Quantitative 

4.3.2.1 Errors in Peak Height Estimation

To quantify the errors in peak height estimation, several matrices were used.  In 

addition to the total error in peak height estimation for each peak, it was of interest to 

distinguish between the precision and bias (accuracy).  In other words, it is useful to 

know whether methods were producing consistently low or high errors for each peak, or 

if the errors were more random in nature.  Ten replicate data sets were employed  

( 10repN ) for each type of baseline evaluated.  For each replicate, the signal and 
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baseline components remained the same, along with noise level ( 6 ), but a different 

realization of the noise sequence was used.  For a given method and baseline, the error in 

peak j for replicate , ,iji e  was calculated as 

ˆ ˆo o o o
ij j ij j j j ije h b h b b b  (4.1)  

Here, o
jh  is the peak height for peak j  with true baseline, o

jb , but without the noise 

(i.e.( o o
j jh b )) is the true peak heak height) and îjb is the estimated baseline for peak j  

and replicate i .  For a given peak, method and baseline, bias was assesed using the mean 

error, e . 

1mean error

repN

i
i

rep

e
e

N
 (4.2) 

The standard deviation in this value, es , was also calculated. 

2

1

1
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i
i

e
rep

e e
s

N
 (4.3) 

This allowed as assesment of whether or not the bias was significantly different from 

zero.  The total error can be evaluated by the root-mean-squared error (RMSE) around 

zero. 

2

2 2 2 21
1

repN

i
repi

e e
rep rep

e N
RMSE s e s e

N N
 (4.4) 

As an overall assessment accross the five peaks for each method and baseline, the average 

RMSE is calculated from the individual RMSE for each peak, jRMSE . 
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avg

RMSE
RMSE  (4.5)  

 These results are presented in Table 4.1. 

  It is noticeable that the mean errors are highly variable in sign and magnitude 

among the different peaks, methods and baselines, ranging from -28 to +18.  For 44 out of 

75 cases the mean errors are positive (low baseline), indicating that the baseline is more 

often under-estimated than over estimated.  This is not surprising because of the nature of 

asymmetric least squares that tends to give smallest weight to the peak regions.  For most 

of the cases, 69 out of 75, the largest component of the error arising in the baseline was 

the bias as opposed to the variance, giving significant differences in the peak height 

estimation.  On observation of mean errors for individual peak, the direction of error 

Table 4.1  Mean errors with standard deviation of mean in peak height estimation using 
three approaches for five different signals, and average RMS error in estimated peak 
heights using each of three approaches. 

1 2 3 4 5
Actual PH 585 243 279 522 315

TFALS 3.78±0.41 0.41±0.22 0.43±0.23 2.46±0.26 0.98±0.3 1.65
airPLS 2.82±1.59 7.30±1.39 8.01±1.22 6.00±1.50 7.87±1.26 6.57
ALSS 3.10±0.38 0.52±0.17 1.28±0.24 0.50±0.24 2.15±0.32 1.54
TFALS 18.63±0.56 13.64±0.62 4.55±0.77 0.17±0.48 0.57±0.57 7.63
airPLS 1.44±3.73 11.38±2.97 9.96±2.23 3.10±4.29 9.88±2.83 8.22
ALSS 28.58±0.49 8.66±0.59 3.29±0.52 9.29±0.37 1.19±0.47 10.23
TFALS 5.66±0.41 4.66±0.26 2.31±0.27 2.50±0.24 2.01±0.33 3.44
airPLS 0.94±1.09 11.19±0.78 10.31±0.81 6.73±0.64 7.75±0.80 7.50
ALSS 6.48±1.16 3.07±0.43 3.67±0.33 2.89±0.90 2.87±0.51 3.86
TFALS 18.40±0.63 17.48±0.78 5.43±0.79 3.13±0.45 1.03±0.53 9.40
airPLS 20.52±2.39 3.21±1.32 1.66±0.58 14.29±1.26 0.25±0.94 8.22
ALSS 26.22±0.91 2.78±0.81 0.54±0.50 17.45±0.61 12.35±0.69 11.93
TFALS 15.02±0.57 20.23±0.71 6.28±0.77 0.43±0.51 0.50±0.63 8.60
airPLS 26.1±2.11 3.48±1.21 1.85±0.72 14.23±1.48 1.23±0.82 9.49
ALSS 18.64±3.03 10.15±5.15 7.12±3.75 6.00±3.37 5.62±5.02 10.34

Exponential

Sinusoidal

Gaussian

Combination

Baseline
Function

Estimation
Method

Peak Number/Mean Error ± SD
Average
RMSE

Linear
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seems to be correlated to some extent with the position of the peak.  For example, peak 1 

exhibited negative errors (high baseline) for 14 out of 15 cases, while peak 2 and 5 

exhibited positive errors (high baseline) for 13 out of 15 cases.  This is consistent with the 

visual observations.  In terms of overall average RMSE, TFALS gave the smallest values 

for three of the five baselines types and ranked second in the other cases.  ALSS and 

airPLS gave smallest values for one case each.  ALSS gave highest average RMSE error 

in three case and airPLS gave in the remaining two cases.  Therefore, it can be concluded 

that the TFALS gives consistently good performance for peak height estimation. 

4.3.2.2 RMS Error in Baseline Estimation 

The RMS error in the baseline ( bRMSE ) is the root-mean-squared (RMS) 

difference between the approximated and actual baseline at each sample point over the 

entire channel length.  

2

1

ˆchanN
o
i i

i
b

chan

b b
RMSE

N
 (4.6) 

Here îb is the estimated baseline at channel i , o
ib is the actual baseline at channel i , and 

N the number of channels  The RMS error in the baseline measures the fidelity of the 

estimated baseline with the true baseline across the entire signal rather than just at the 

peaks.  It is an indication of the “average” baseline error. 

 The results are tabulated in Table 4.2 for signals having different baseline 

functions along with each estimation approach.  As previously noted, the adjustable 

parameters for each method were optimized to minimize the RMS error in the baseline, so 
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these should be optimum values for each method.  The fit to the baseline will be affected 

by two factors.  The first is the asymmetric or penalized least squares aspect, which will 

tend to push the fitted baseline below the true baseline, a common feature of all methods.  

The second is the ability of the underlying model to fit the true curve in the absence of 

noise.  For TFALS, this is determined by the basis functions selected, while for the other 

methods it is imbedded in the smoothness criterion. 

Of the methods and baselines examined, TFALS gives the lowest RMS error for 2 

out of 5 cases (exponential and combination) and never gives the highest; instead, it is 

always very close to the best results (linear, sinusoidal and Gaussian).  In contrast, airPLS 

gives the highest RMSE in the baseline for 2 out of 5 cases and gives the lowest errors 

only for the mixed Gaussian baseline.  Its poor performance is likely due to its tendency 

Table 4.2  RMS error in the baseline with each of three 
approaches for each baseline. 

TFALS 2.711
airPLS 6.287
ALSS 1.823
TFALS 9.140
airPLS 10.581
ALSS 13.775
TFALS 3.365
airPLS 9.238
ALSS 3.320
TFALS 10.589
airPLS 10.264
ALSS 14.442
TFALS 10.122
airPLS 13.147
ALSS 15.301

Gaussian

Combination

Estimation
Method

RMS
Error

Linear

Exponential

Sinusoidal

Baseline
Function
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to model the bottom of the noise due to large weights imposed on negative residuals.  

Where it does perform better than other methods, this is likely due to the suppression of 

corner effects, but additional parameters need to be specified in the algorithm to achieve 

this.  It can be concluded that, for the conditions examined in this study, TFALS seems to 

provide the most consistent estimation of the baseline by providing the best or close to the 

best overall fidelity with the true baseline. 

4.3.2.3 Computation Time

The baseline estimation algorithm presented in this thesis is simple and converges 

relatively quickly.  Computation times for each of three approaches were recorded with 

the simulated data set for different baseline functions and same channel lengths.  Five 

different channel lengths of linear baseline were also used to estimate the relationship 

between the channel length and the computation time for individual approaches.    

The computation time tests were performed under Windows 7 Professional 2009© 

on a 2.10 GHz processor with 2.00 GB of memory. The results of computation times for 

different channel lengths and different baseline functions with same channel length are 

tabulated in Table 4.3. 

It can be noted from Table 4.3 that airPLS and TFALS computation times are 

comparable in all the cases; even for higher channel lengths, the TFALS computation 

time is very close to airPLS and their run times are also in the neighborhood of each other 

for different baseline functions at same channel length.  On the other hand, ALSS can 

estimate the baselines only up to specific length.  In this specific case of processor speed 

and memory, ALSS was unable to compute at channel lengths of 10,000 or higher.  
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Moreover, computation time for ALSS is at least 200 times more than TFALS for 

different baseline functions and observed channel lengths.  

 

4.3.2.4 Number of Adjustable Parameters 

 So far, the discussion has focused on methods where the parameters have been 

optimized by a grid search method to ensure that the comparisons are made under the best 

conditions for each method.  However, this optimization is tedious and only possible 

under simulation conditions where the true baseline is known.  In practice, the parameters 

must be optimized through a visual assessment of the estimated baseline and this becomes 

more difficult as the number of adjustable parameters increases and their interaction 

Baseline
Function

Estimation
Method

Run
Time (sec)

Linear
TFALS 0.0495
airPLS 0.0413
ALSS 13.111

Exponential
TFALS 0.0429
airPLS 0.0395
ALSS 8.7410

Sinusoidal
TFALS 0.0426
airPLS 0.0387
ALSS 9.3864

Gaussian
TFALS 0.0395
airPLS 0.0377
ALSS 10.476

Combination
TFALS 0.0402
airPLS 0.0362
ALSS 10.4756

Channel
Length

Estimation
Method

Run
Time (sec)

1000
TFALS 0.059
airPLS 0.074
ALSS 2.484

5000
TFALS 0.104
airPLS 0.074
ALSS 178.082

10000
TFALS 0.116
airPLS 0.119
ALSS Out of mem

50000
TFALS 0.320
airPLS 0.321
ALSS Out of mem

100000
TFALS 0.365
airPLS 0.260
ALSS Out of mem

Table 4.3  Computation times for each of the three approaches at different 
channel lengths (left) and with different baseline functions (right).  
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becomes more complex.  Since baseline removal should be a routine and simple task, 

increased time spent on parameters is undesirable. 

Table 4.4 lists the adjustable parameters required for each of the method compared 

here.  TFALS has the advantage of requiring only two adjustable parameters, the number 

of frequencies used and the asymmetry factor.  Moreover, it was demonstrated in Chapter 

3 that the two parameters have little interaction and the dependence on asymmetry 

parameter is small.  This greatly simplifies the optimization of parameters for the 

proposed method. 

The ALSS method requires three adjustable parameters to be optimized, an 

asymmetry parameter like the TFALS method, plus the penalty factor, , and the order of 

differential for the smoothness term.  It could be argued that the order parameter is 

generally set to 2 and does not have a great range of values in any case, so the number of 

parameters is really only two.  However, in this case, the optimization of the two 

parameters is closely linked since the negative residuals and the smoothness term balance 

each other.  This interaction means that the parameters cannot be optimized 

independently, making the optimization more difficult. 

Table 4.4  Adjustable parameters  required for baseline correction methods.  

Estimation
Method

Number of
Parameters Parameters

TFALS 2 Asymmetricweight, number of basis functions

airPLS 4 Asymmetricweight, penalty factor, order of difference,
weight exception proportion for for both ends

ALSS 3 Asymmetricweight, penalty factor,
order of difference
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Based on the original paper [37], the airPLS method should have only two 

parameters to be optimized, the penalty factor and the order associated with the 

smoothness term.  The penalized least squares uses an exponential weight for negative 

residuals and a zero weight for positive residuals.  However, the algorithm available in 

the public domain has two additional parameters.  This is because a weighting parameter 

is applied to the positive residuals at the beginning and end of the signal, presumably to 

avoid corner effects.  This requires the specification of the weighting factor and the 

fraction of the signal at the start and in to which it is to be applied.  Thus, a total of four 

parameters need to be specified, all with some interaction.  This makes the airPLS method 

the most demanding in terms of optimization. 

4.4 Results and Discussion - Experimental Data 

In Section 4.3, simulated data sets were used to demonstrate the performance of 

TFALS and compare it with two other approaches in the literature. While the TFALS 

method performs very well for simulated data, this does not guarantee that the proposed 

approach will also provide acceptable baseline estimation for experimental data, since 

experimental data often exhibit more complex artifacts.  In this section, data sets from 

variety of analytical instruments containing visually different baseline artifacts are used to 

check the application and limitations of TFALS for experimental data.  Since no standard 

baseline removed data were available, only a visual assessment of the results will be 

provided.   
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4.4.1 Replicated Data 

It has been noted in Chapter 3 that the optimum number of frequencies used in 

TFALS is not highly dependent on peak height, width or location, whereas the optimum 

asymmetric weighting parameter is only mildly dependent on the signal-to-noise ratio.  

Here it is hypothesized that the same set of parameters would provide optimal results for 

replicate data obtained from same instrument under same analytical conditions.  To 

validate this assumption, data sets from two different analytical approaches were used: 

Raman and X-ray fluorescence spectroscopy. 

4.4.1.1 DNA Raman Spectra  

 Figure 4.6 shows the raw spectra (gray), estimated baselines (gray-black) and 

baseline corrected (black) Raman spectra of DNA.  The two parameters for baseline 

estimation in TFALS were kept the same (number of frequencies, 3freqn  and weighting 

parameter, 0.009p ) for all three signals.  It can be noticed that all three signals have 

somewhat different artifacts, which were successfully removed by TFALS using same 

parameters. 
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4.4.1.2 X-ray Fluorescence Spectra 

  Figure 4.7 shows the results of replicate X-ray fluorescence replicate spectra with 

two different settings for the number of frequencies included in TFALS.  In this data set, 

replicates contain minor differences in baseline features that are not apparent in the figure 

Figure 4.6  Original and baseline-corrected Raman spectra of DNA on a 
gold surface with the estimated baselines included. 
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and shown as a single condensed signal, but some interesting features of TFALS results 

Figure 4.7  Results of three replicates of X-ray fluorescence 
spectra of tea with (a) 4 and (b) 5 baseline frequencies.  
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can be noted here using different values of number of frequencies parameter.  It is 

apparent from the raw signals that only part of the signal contains baseline artifacts.  

Figure 4.7 (a) shows the results with 4 frequency values and asymmetry parameter of 

0.005, whereas 4.7 (b) shows the results using 5 frequencies and the same asymmetry 

parameter.  It can be noted from the two results that 4 frequencies were able to remove 

part of the baseline and left the non-peak area of spectra flattened, whereas 5 frequencies 

were able to completely remove the baseline artifacts from the peak area and resulted in a 

flat signal around peak area but left some artifacts in non-peak regions where no baseline 

were present in the raw signal.  Hence, TFALS was able to remove baseline artifacts 

from the X-ray fluorescence replicate spectra effectively using same parameter values.  

However, it left over part of the baseline between 250 and 800 kev using 4freqn  or 

alternatively left some artifacts in non-peak areas using 5freqn  in the raw signals. This 

is one of the short comings of TFALS that will be further examined and discussed in the 

next section using signalscontaining a variety of baseline artifacts and signal-to-noise 

ratios. 

4.4.2 Raman Minerals Data 

A quantitative performance analysis of the proposed algorithm on experimental 

data is not possible in this case since no data were available in the absence of a baseline, 

but the performance of TFALS will be documented through a visual demonstration. The  

Raman signals of all six minerals and their baseline corrected signals are presented in 

Figure 4.8. The raw signals were offset slightly upward to clearly show the signal features 

and separate the baseline corrected signal.  It appears that all six signals have somewhat 

different baseline artifacts.  
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Figure 4.8  TFALS baseline correction results on Raman spectra of minerals. 
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It is evident that TFALS is able to remove the slowly varying baseline artifacts in 

the signals, although a few residual artifacts are apparent.  For albite (4.8a) it could be 

argued that some residual baseline remains at the very right hand side of the signal, but 

without knowing the true signal, it is unclear whether there are small peaks on a rising 

baseline or components of a larger cluster of peaks.  For signals 4.8 b-d, there appear to 

be no serious artifacts.  For Kyanite in Figure 4.8e, the exponentially rising baseline at the 

right hand side is not completely removed and a slowly rising artifact (a “hump”) is 

created in the flat region on the left hand side.  Although distinguishable from the true 

peaks and in a region that contains no information, the appearance of this feature is still 

undesirable.  Although its fundamental cause is unknown, it is speculated that it is a 

consequence of employing higher frequencies to model the rapidly decaying exponential 

on the right.  This speaks to the difficulties of modeling extended baselines with mixed 

frequency components.   

A similar small hump is observed on the left hand side for Fluorapatite in Figure 

4.8 f.  In this case, the source of the problem is likely to be the large peak cluster at the 

very left.  As shown in the simulation in Chapter 3, peaks at the signal limit are 

problematic, since TFALS is more likely to attempt to model the peaks because there is 

no penalty region on the other side.  As observed in simulations, this produces a negative-

going oscillation on the near side of the peak, which can give rise to the observed artifact. 

It was shown in the preceding chapter that the optimal asymmetry parameter in 

TFALS is dependent on the signal-to-noise ratio.  Therefore, it is not surprising that 

Brucite, Figure 4.8 b, with a relatively lower signal-to-noise ratio, required a relatively 
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higher asymmetric weight ( 0.01p ), whereas smaller weighting parameter values 

( 0.001p to 0.005)  usually provided acceptable results for the rest of the signals. 

 For this data set, three to five frequency components were enough to provide 

visually acceptable results.  In the proposed augmented and truncated design, five 

frequency components corresponds to frequencies of 1 1 1 10, 0.25 , 0.5 , 2andf f f f .  In the 

observed results, the artifacts seem to correspond to the higher frequency components of 

this sequence, as speculated in the discussion.

4.4.3 airPLS Data for Comparison 

Raman, NMR and chromatographic data sets were taken from an online source used 

by the author [122, 37] in order to provide a comparative study of TFALS with an 

existing approach using experimental data.  In this section, a visual comparison of 

TFALS with the airPLS method is provided using same parameter values provided by the 

author [96].  To provide a concise visual comparison, only a few signals were selected 

from all three experimental data sets as described in the experimental section.  

One raw NMR signal with the baseline corrected signals using airPLS and TFALS 

is presented in Figures 4.9(a) and 4.9(b), respectively, along with the zoomed view of part 

of the signal with the estimated baselines.  Both of the approaches seem to provide 

acceptable baseline removal; however on closer inspection of the estimated baseline for 

the two approaches, it is observed that airPLS follows the base of the peak and then cuts it 

off abruptly, resulting in a discontinuous baseline that includes a significant proportion of 

the peak.  This type of behaviour was reported in the original paper as well.  The amount 

of the peak that is removed depends on the peak height and width (since this approach 



131

depends on the order of difference (see Section 1.3.7)).  On the other hand, TFALS 

produces a much smoother estimate of the baseline that follows the signal more naturally.  

It is expected that the behavior of airPLS would be more likely to generate negative errors 

in the estimate peak height. 

Similar results were observed from the chromatographic data.  Out of eight 

chromatographic signals, only one signal is presented here to closely compare the results 

of the two approaches.  The raw and baseline-corrected chromatographic signals using 

airPLS and TFALS are presented in Figures 4.10(a) and 4.10(b) along with a zoomed 

view of the raw signal and estimated baselines with each approach.  It can be clearly 

noted here that TFALS provided very smooth baseline whereas airPLS again removes a 

substantial portion of the base of the peak and as a result provides a relatively rough 

baseline with sharp features.   

Figure 4.9  Raw and baseline corrected NMR signals using (a) airPLS and (b) TFALS 
algorithms along with a small zoomed view of the raw signal and estimated baseline.  
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 The third data set consisted of three Raman spectra taken from the same data 

group published in the literature [96].  Estimated baselines using airPLS and TFALS are 

presented along with the raw signals in Figure 4.11(a) and 4.11(b) respectively. Here 

TFALS seems to exhibit minor corner effect at the left hand side, but overall the 

estimated baseline is very smooth and provides a very good approximation using identical 

Figure 4.10  Raw and baseline corrected chromatographic signals using (a) 
airPLS and (b) TFALS algorithms along with a zoomed view of raw signal and 
estimated baseline.  

Figure 4.11  Raman spectra and estimated baselines using (a) airPLS and (b) 
TFALS algorithms.  
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parameter values for all three signals.  On the other hand airPLS again seems to generate 

discontinuities in the baseline under peak regions.    

4.5 Conclusions 

In this chapter, the performance of TFALS was compared to two widely used 

methods using simulated and experimental data. Visually, all three methods provided 

acceptable results for five different simulated baselines.  All methods displayed some 

“corner effects” (a deviation of the estimated baseline at the end of the signal) under 

certain conditions, but these were largely inconsequential.  Quantitatively, all three 

methods were evaluated according to errors in peak height estimation and fidelity with 

the true baseline.  In both aspects, all methods were roughly comparable, but TFALS 

most often produced the lowest RMS error in peak estimation and exhibited the most 

consistent baseline fidelity.  Computation time and optimization efficiency were also 

considered.  Asymmetric least squares smoothing (ALSS) was at a severe disadvantage in 

terms of its computational efficiency for large data sets, where TFALS and airPLS were 

both fast and comparable in their execution times.  In terms of parameter optimization, 

TFALS has the smallest number of parameters to optimize and, because these are largely 

independent, it is likely to be the simplest method to use.  

In the application to experimental data sets, TFALS appeared to perform well on a 

variety of data sets, although no quantitative comparisons could be made.  For several sets 

of experimental data, TFALS was compared to airPLS.  For high signal-to-noise data, the 

latter method seemed to incorporate part of the peak into the baseline and also produced a 

baseline estimate with discontinuities. 
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Chapter 5 

Conclusions 

5.1 Conclusions 

The work presented in this thesis has described the development and optimization 

of a novel baseline estimation algorithm, called truncated Fourier asymmetric least 

squares (TFALS).  It is often essential to estimate and remove the slowly varying, high 

magnitude baseline features from analytical signals prior to further data analysis.  TFALS 

uses asymmetric least squares (ALS) along with the truncated and augmented Fourier 

basis functions to model the slowly varying baseline.  Chapter 1 introduced the 

limitations and drawbacks of existing baseline estimation approaches.  The challenge was 

presented as being able to estimate the baseline without extensive parameter adjustment 

or the requirement of representative baseline signals.  Multiple parameters and the 

complex inter-dependency of these parameters can complicate the choice of optimal 

parameter values, and the acquisition of representative baseline signals is not always 

possible.   

The development of an algorithm for baseline estimation using truncated Fourier 

functions along with some extra augmentations as basis functions for slowly varying 

baselines was described and it is shown that the use of augmented Fourier basis functions 

in conjunction with asymmetric least squares (ALS) provide an effective estimation of 

baselines.  It was noted that TFALS uses only two adjustable parameters and that the 

optimum values of these parameters are not highly dependent on signal attributes.  The 

optimum value of the first parameter, the number of frequencies, freqn  , is dependent on 
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the nature of the baseline and largely independent of the analytical signal.  The optimum 

value of the second parameter, the asymmetry parameter, p , is also independent of the 

analytical signal, although it has a small dependence on the signal-to-noise ratio.  It was 

found that the two parameters are not highly dependent on each other and can be 

optimized individually.   

A qualitative and quantitative comparison of TFALS with the other two approaches 

showed that all three methods are roughly comparable, but TFALS most often produced 

the lowest RMS error in peak height estimation and also exhibited the most consistent 

fidelity with the baseline.  Computation time to estimate the baseline via TFALS is also 

very small and comparable to the fastest of the other approaches.  In terms of parameter 

optimization, TFALS seems to be the simplest approach, having only two largely 

independent parameters to optimize.  Applications to a wide variety of experimental data 

sets were also presented and a qualitative comparison was included with another method 

in the literature for signals from three different analytical measurement systems.  TFALS 

appeared qualitatively to perform well on a wide variety of data sets and perform better 

than the literature method in the experimental comparison study as well.   

To estimate the slowly varying unwanted components of analytical signals, no 

additional baseline measurements or blank runs are required for the estimation of baseline 

using TFALS.  Overall, it is a good general approach that requires minimal user input and 

parameter adjustments with fast execution.  
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5.2 Future Work 

 With the development and optimization of TFALS algorithm described in this 

work and its application to a wide variety of analytical data sets, there are a number of 

challenges that remain.  It has noted that the augmentation of extra basis sets between DC 

and first Fourier frequency extensively improved the approximation of low frequencies 

(linear, sinusoid functions) in the absence of analyte peaks.  However some artifacts 

remain in the presence of peaks in a few instances.  These artifacts seem to appear when 

the gradient of baseline changes significantly or when the frequency difference between 

parts of the signal is high.  These artifacts can be minimized by giving different 

asymmetric weights for those data points.  Methods to provide a generalized criterion to 

choose the number of data points required to have different weights and asymmetry 

values for those points is one area that remains to be explored. 

Although a quantitative simulated study is included in this thesis experimental 

calibration would give a better idea of TFALS accuracy in experimental conditions.  In 

order to experimentally calibrate the proposed baseline estimation approach, a dependable 

experiment is required to perform relative quantitation.  A pre-defined analyte 

concentration, peak area or peak height can be compared with the estimated results for 

this purpose.  Relative percentage measurement error would provide the measure of 

accuracy in the baseline estimation by TFALS.   

Finally, a persistent problem with all of the ALS methods studied here is the 

tendency to underestimate the baseline by following the lower limits of the baseline noise.  
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It would be useful to modify the proposed approach to allow it to track the centre of the 

baseline more reliably. 
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Appendix A 

TFALS.m MatLab® Code 
 

%  TFALS  Truncated Fourier Asymmetric Least Squares method of baseline estimation 
%  TFALS estimates the baseline of a signal vector xab. 
%  Returns the estmated baseline xb and basline corrected vector xa 
% 
%  Input: 
%  xab=Raw signal vector [variable,sample];Column vector 
%  nf=Total number of frequency components needs to accomodate baseline 
%  p=Asymmetry parameter (0.001>=p<=0.1) 
% 
% Choice of nf depends on the shape/frequency of baseline; linear baseline usually  
% requires nf=2, more variable baseline requires higher value of nf.  
% 
%  Value of p depends on the noise level of raw signal vector; Reletivly lower p 
%  value require for signal with high noise or higher value for vice versa 
% 
%  Output: 
%  xb=(Estimated baseline) 
%  xa=(Baseline corrected data) 
% 
function [xa,xb]=TFALS(xab,nf,p) 
if nargin==2 
    p=0.001; 
end 
  
%% Normalized Fourier basis sets 
N=size(xab,1);   % Calculate number of data points in xab 
t=0:N-1; 
nb=nf*2+1; 
z=zeros(nb,N); 
z(1,:)=ones(1,N); 
fs=0.25; 
for i=1:nf 
    z(2*i,:)=cos((2*pi*fs*t)/N);    % calculate basis functions 
    z(2*i+1,:)=sin((2*pi*fs*t)/N);  % calculate basis functions 
    if fs<0.5 
        fs=0.25+fs; 
    elseif fs==0.5 
        fs=0.5+fs; 
    else 
        fs=1+fs; 
    end 
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end 
for m=1:nb; 
    z(m,:)=z(m,:)/norm(z(m,:));  % Normalize basis functions 
end  
 
%% Orthonormal Basis sets 
[~ , ~, P]=svd((z),'econ');  % Orthogonalize basis functions 
%% Asymmetric least squares 
w=ones(N,1); 
target=1; 
while target 
    W=spdiags(w,0,N,N);             % Generate sparse matrix of asymmetric weights    
    bw=(P'*W); 
    q=(bw*P)\(bw*xab);              % perform least squares fit 
    xb=P*q;                         % Estimate baseline  
    w0=w; 
    w(xab>(xb))=p; 
    w(xab<=(xb))=(1-p); 
    target = sum(abs(w - w0)) > 0; 
end 
xa=xab-xb;                          % Calculate baseline corrected signal vector 
 
 


