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Abstract

Although the Black-Scholes (BS) model and its alternatives have been widely applied
in finance, their flaws have drawn the attention of many investors and risk managers.
The Black-Scholes (BS) model fails to explain the volatility smile. Its alternatives,
such as the BS model with a Poisson jump process, fail to explain the volatility
clustering. Based on the literature, a novel dynamic regime-switching option-pricing
model is developed in this thesis, to overcome the flaws of the traditional option pric-
ing models. Five macroeconomic indicators are identified as the drivers of economic
states over time. Two regimes are selected among all likely numbers of regimes under
the Bayes Information Criterion (BIC). Both in-sample and out-of-sample tests are
constructed to examine the prediction of the model. Empirical results show that the
two-state regime-switching option-pricing model exhibits significant prediction power.

Keywords: Regime-switching, Option Pricing, Macroeconomic Indicators, Underly-
ing Asset Return, Parameter Estimation, Out-of-sample Test.
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Chapter 1

Introduction

Options are financial securities. The owner of a call option has the right, not an

obligation to buy the underlying asset (such as stock and bond) at the strike price

(K) on or before expiration date (T ). The strike price or exercise price is the price

that is paid for the asset if the option is exercised. Maturity or expiration date is

the day by which the option is exercised. There are two types of options, European

and American. European options have to be exercised on the expiration date, while

American options can be exercised at any time on or before expiration. In this thesis,

we will discuss the pricing of the European Vanilla call.

When the stock price is higher than the strike price,call option holders are more likely

to exercise or sell the call option. On the other hand, if the stock price is lower than

the strike price, the option is not being exercised at maturity date. The value of

the option is almost zero in this case. Therefore, the higher the underlying stock

price, the more valuable the call option is. Assuming the underlying stock price at
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maturity date is ST , the current value of option (C) is equal to the current stock

price (ST ) minus the strike price of the option (K), if ST is greater than K by a big

margin. Otherwise, the value of the option at expiration date (T ) is zero. This can

be expressed as the following fomula:

C = max(ST −K, 0)

Thus, the value of an option at expiration date is determined by the price of the

underlying asset. It’s crucial for investors and risk managers to estimate an accurate

price of the underlying asset and standard linear models are widely used.

The traditional asset pricing models, such as the CAPM model, can characterize the

asset return successfully. However, the economic episodes, such as the Internet bubble

(1999-2001) and the recent economic recession (2008-2009), shows the limitation of the

traditional model: it fails to capture the dynamics of asset returns in the financial mar-

ket. In addition, the standard linear asset pricing models, such as the CAPM model

and Fama-French (FF) model, assume the expected values of the error terms jointly

follow an independent identical normal distribution (homoscedasticity). Although the

normal distribution is widely used in the traditional asset pricing model (see Duffie

(1995), Ingersoll (1988), Karatzas and Shreve (1998), Musiela and Rutkowski (1997),

and Boyle, Broadie, and Glasserman (1997)), it has been very inconsistent with empir-

ical data. Financial data shows that the distribution of asset returns is fat-tailed and

highly skewed. The standard linear model with an independent identical distribution
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is insufficient for characterizing the asset return.

Although option pricing has been an interesting topic in academics and practical fi-

nance since the nineteenth century, the existing options pricing models do not perform

well (Bakshi, Cao and Chen, 1997). The log prices of underlying assets are assumed to

follow a random walk, which is normally distributed innovation. Most of the options

pricing models are based on the Black-Scholes model, which was first published in

1973. However, the Black-Scholes model is designed to capture the price dynamics of

the underlying assets following the geometric Brownian motion model:

dSt

St

= μdt+ σdwt

where μ is the annualized expected return on the asset, σ is the volatility of the

asset return, and wt is the Brownian motion. The expected rate of return and the

volatility are deterministic in the model. The Black-Scholes model cannot capture

the dynamics of the parameters. In addition, the Black-Scholes model fails to capture

the volatility smile or smirk. Specifically, the implied volatility should be constant

according to the Black-Scholes model. However, the empirical results showed that

the implied volatility curve with respect to the maturity of the option resembles a

curve like “smile”. Many researchers have been working to overcome the bias of the

prediction based on the Black-Scholes model. In order to relax the assumption of

constant volatility, Merton (1976), and Hull and White (1990) add a jump diffusion

process to the geometric Brownian motion model. The volatility smile is explained in
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Merton’s model in terms of short-term options. However, it fails to explain volatility

clustering due to the limitation of constant jump over time in Merton’s model. The

GARCH (general autoregressive and conditional heteroscedasticity) model, which can

address the issue of volatility clustering, is widely used to model the volatility (e.g.

Engle, 1982, Bollerslev, 1987, Duan,1995). However, none of these papers characterize

the source of the volatility.

As a result of emerging interests in the aforementioned challenges, regime-switching

models are employed by allowing the parameters of stochastic distribution to change

over regimes. While the ultimate goal of this thesis is to develop a novel dynamic

option-pricing model, there are two steps in building up the option-pricing model.

The first step is to develop an asset pricing model with a broad list of macroeconomic

indicators embedded in a regime-switching auto-regressive mechanism. The second

step is to establish an option-pricing model based on the risk neutral probability

approach.

Many authors have been building for better models for volatility as mentioned above

(e.g. the GARCH model), but these models failed to clarify where the volatility

comes from. For this reason, we select the macroeconomic indicators to character-

ize the risk sources of the asset return process. This research contributes to the

literature by linking the asset returns with the volatility sources, embedded in the

dynamic macroeconomic indicators. The main objective of the fund managers is to

maximize the asset returns using the public information available to them, such as
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the historical aggregate stock market returns and bond market returns. In terms of

the pricing process, all useful information will be incorporated into a pricing mecha-

nism. However, the market regimes generated by the macroeconomic indicators are

unobservable. There is no single way to tell whether the market is bullish or bearish

by observing asset returns directly. For example, market rally can happen both in

bear and bull markets, which are known as bear market rally and bull market rally,

respectively. From historical data, temporary rally can be observed in a bear market

while temporary correction can be observed in a bull market as well. Different future

asset returns in different market regimes can be implicated by similar economic indi-

cator values. More specifically, a downward market with high market volatility may

not be a sure sign of a future bear market. The market regimes, such as bull, bear

and transition market, which are hidden behind the observed regime-dependent pro-

cess reflected in the macroeconomic indicators, are stochastic and uncertain. Because

of these observations, we use the regime-switching model to characterize unobserved

economic regimes.

In this research, we use macroeconomic indicators to identify the economic states

over time. There are some good reasons to do so. The key reason is that macroe-

conomic indicators can influence both firms’ cash flows and risk-adjusted discount

rates. Chen, Ross and Roll (1986) study the relationship between macroeconomic

variables and stock returns and find that many macroeconomic indicators have signif-

icant influence in predicting security returns, such as unexpected inflation, expected

inflation, the spread between long and short interest rates, credit spread, and growth
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rate of industrial production. Afterwards, many researchers study the impact of dif-

ferent macroeconomic indicators on asset returns. Mark and Aris (2002) study the

daily equity returns by establishing a GARCH model and find that stock returns are

negatively related to inflation and money growth. They find several macro factor can-

didates playing a significant role in asset returns, including the consumer price index

(CPI) and producer price index (PPI). However, none of these studies address the

sensitivity of regime-dependent asset returns to macroeconomic indicators. In much

research that has been done on the Markov-chain regime-switching model in asset re-

turns, macroeconomic indicators are studied to characterize the changing patterns of

asset returns over time, thus reflecting the different regimes of the economic market.

Liu, Zhao, and Xu (2011) added three additional macroeconomic indicators to the

original Fama and French (FF) three factor model to study the selection of Exchange

Traded Funds (ETFs). The additional macroeconomic indicators are the implied

market volatility index, yield spread, and credit spread. They find the sensitivity of

ETFs risk premiums is highly regime varying. Mulvey and Zhao (2011) establish an

investment model under the regime-switching framework and employ eight common

macroeconomic indicators to infer the economic market regimes. The macroeconomic

indicators are the S&P 500 price index, Treasury bond yield, U.S. dollar index, im-

plied volatility index, treasury yield spread, credit spread, aggregate dividend yield

and short-term interest rate. They find that the macroeconomic indicators play a

significant role in driving the stock market from one regime to another and then the

asset returns are highly regulated by the macroeconomic indicators in different market

regimes.
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In the literature, many researchers have documented that the asset returns are highly

regime-dependent. Unobservable regimes in the financial market do exist and as-

set pricing processes change following significant events such as financial shocks (e.g.

Jeanne and Masson, 2000; Cerra, 2005; Hamilton, 2005), changes in consumer pref-

erence (e.g. Veronesi, 1999) and abrupt changes in government policies (Hamilton,

1989; Sims and Zha, 2004; Davig, 2004). In addition, consumer and investors’ be-

haviors, such as decisions, consumption, savings and investment, may differ during

a bull market compare to during a bear market, and may differ for positive news

events compare to negative news events. Norden and Schaller (1993) examine the US

stock market by testing a single regime in the stock market against three different

alternatives and find strong evidence that there are regimes in the US stock market.

Therefore, a model that can capture the hidden regimes in the stock market is in high

demand and should be utilized.

A regime-switching model is a non-linear time series model, first introduced into eco-

nomics by Hamilton (1989). It is designed to model the switching behaviors between

upward shifts and downward shifts of an underlying economic process. Now the

regime-switching model has been widely used in many areas, such as option pricing,

the term structure of interest rate, and return volatility. For example, Naik (1993)

incorporates a regime-switching model into option pricing mechanisms. There are two

regimes in his model, so the parameters of the asset return process will take two sets

of different values depending on the change of market regimes. Several studies have
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been published under the discrete time framework. For instance, the two states model

allows the mean and variance of asset returns to take two sets of values determined

by regimes over time (e.g. Chourdakis and Tzavalis, 2000; Campbell and Li, 2002).

The discrete shifts in the behaviors of financial time series can be characterized by the

switching of the multiple structures of the regime-switching model. The parameters

of the data generating process can take different values depending on the switching

of the regimes over time.

The literature describes many other methods used to capture market break points.

For example, a Kalman filter model with changing alpha and beta is proposed by

Mamaysky et al. (2004). This paper uses a dummy variable to clarify the binary

economic states and the state probabilities cannot be obtained in continuous time.

However, Qiu, Faff, and Benson (2011) use the regime-switching model to obtain the

continuous state probabilities to overcome the flaws of Mamaysky et al (2004).

There is no doubt that the regime-switching model is a much better choice than the

standard linear model to characterize the dynamics of asset returns. Actually, the

standard linear pricing model can be taken as a special case of the regime-switching

model with only single regime in the pricing model, which contains only one set of

parameters for the data generating process. In this case, the regime-switching model

is reduced to the regular mean regression model. However, the mean regression model

approach has been challenged, since it does not always provide a good fit for actual

financial data. As mentioned above, most financial data have shown that asset returns
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are fat-tailed and highly skewed.

The rest of the thesis is organized as follows. Chapter 2 discusses the methodology

that the thesis adopts. Chapter 3 gives a description of the candidate’s data. Then

chapter 4 shows the comprehensive empirical analysis. Finally, the findings and future

studies are concluded in chapter 5.
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Chapter 2

Methodology

2.1 A Vector Autoregressive Regime-switching Model

In this section, we discuss the vector autoregressive regime-switching model for macroe-

conomic indicators and a regime-switching regression model for asset returns. In the

first model, all the macroeconomic indicators are embedded into the regime-switching

model to characterize the dynamics of macroeconomic indicators in different regimes.

The second model includes the selected set of macro indicators, which is used to pre-

dict the regime-dependent asset returns. Based on the existing research, we identify

five macroeconomic indicators that drive the dynamics of market regimes. These

indicators are: the S&P 500 Price Index (STK), the U.S. credit spread (UCS), the

Treasury yield spread (TYS), the Consumer Confidence Index (CCI) and the Leading

Economic Index (LEI). The data are collected from Datastream and Federal Reserve

Bank of St.Louis.
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Let Ft = (Ft1 , Ft2 , . . . , FtJ ) be a set of J macroeconomic indicators. We use Ftj

to denote the jth economic indicator at time t. The indicators follow a vector auto-

regressive process (VAR); the coefficients in this process are changing with the switch-

ing of the regimes.

Ft = αMt + βMtFt−1 + γMtεt (2.1)

We assume that there are M regimes in the market. Mt is a discrete, first order

Markov chain with M regimes. αMt ,βMt , and γMt are set of model parameters deter-

mined by the regimes at time t. α′(α1Mt
, α2Mt

, ..., αjMt
) is a vector of regime-dependent

intercepts of the linear factor model while β is a regime-dependent matrix of the sensi-

tivities of the macroeconomic indicators at time t−1 to the macroeconomic indicators

on time t at regime Mt.

βMt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β11Mt β12Mt · · · β1JMt

β21Mt β22Mt · · · β2JMt

...
...

. . .
...

βJ1Mt βJ2Mt · · · βJJMt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ε is the multivariate independently normally distributed vector of error, with zero

means and unit standard deviations.

Mt is inferred from the macroeconomic indicators over time. Mt can only take discrete
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values such as Mt = 1, 2, 3, ...,M . The transition matrix is given by the probability

of Mt depends on the probability of Mt−1; that is,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 · · · p1j

p21 p22 · · · p2j

...
...

. . .
...

pi1 pi2 · · · pij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Pr(Mt = j|Mt−1 = i,Mt−2 = k, ...) = Pr(Mt = j|Mt−1 = i) = pij is the

transition matrix probability from state i to state j. The joint distribution of the

macroeconomic indicators at time t+1, depends both on the regime-switching model

parameters and the macroeconomic indicators at time t. The distribution of macroe-

conomic indicators at time t follows a mixture normal distribution with a set of mix-

ing model parameters. The distribution of regimes at time t can be updated by the

Bayesian analysis with new information inflows from t − 1 to t under a multivariate

regime-switching model.

2.2 A Regime-switching Framework for Asset Re-

turns

In order to characterize the dynamics of the asset returns, we specify the following
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regime-switching model with M regimes for the asset returns:

Rt = aMt + bMtFt−1 + σMtεt (2.2)

where Rt is a vector of logarithmic returns from time t − 1 to t. The returns at

every time point will be characterized by one of the market regimes (1, ...,M). We

denote the asset price at time t as Pt, the Rt equals lnPt − lnPt−1 with continuous

compounding. Ft is a set of the macroeconomic indicators at time t. The parameters

(aMt , bMt , σMt) are regime-dependent. εMt is the regime-dependent vector of errors

that have a identical independent bivariate normal distribution with zero means, and

unit standard deviations.There are M distinct regimes and all the regimes follow

the first order Markov chain with an initial regime distribution q0 and a constant

transition matrix P = pij, where pij indicates that the transition probability of the

market transfer from regime i at time t− 1 to regime j at time t.

In this research, we combine the economic indicator linear factor model (2.1) with the

regime-switching model for asset returns (2.2). That is, we include Rt (asset return)

as an economic indicator in the linear factor model, which makes the pricing process

more concise.

The regime-dependent conditional expected asset returns, given regimes at time t (Mt),
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are normally distributed as

E(Rt|Mt) = aMt + bMtFt−1

with a variance-covariance matrix σMt .

The established regime-switching parameters and the established vector of regime

indicators are required for the forecasting of asset returns. The conditional expected

asset returns in regime m follow a normal distribution with density fm(t), that is

P (RT |Mt) ∼ fm(t). The joint probability of unconditional expected asset return at

time t follows a multivariate mixture normal distribution: f(t) ∼ ∑K
k=1(pij) · fm(t).

We denote pt(m) as the prior probability of regime m at time t. The prior probability

pt(m) is:

pt(m) =
M∑
i=1

(pim · qt−1(i))

where pim = Pr(Mt = m|Mt−1 = i) is the transition probability from regime i to m,

and qt−1(i) is the posterior probability of regime i at time t− 1.

The unconditional expected asset return from t− 1 to t is the expectation of regime-

dependent expected conditional asset return, with the prior probability pt(m) at

regime m and time t:

E(Rt) = E(E(Rt|Mt)) =
M∑

m=1

(aMt + Ft−1bMt)pt(m)

14



and the variance-covariance matrix is:

V (Rt) =
M∑

m=1

[(E(Rt)− E(Rt|Mt = m))2 + σMt ]pt(m)

Some studies, such as Mulvey and Zhao (2011),use the predicted values of macroeco-

nomic indicators (F̄t ) in their asset pricing models. The reason for this is straightfor-

ward: using the predicted values of the economic indicator can reinforce the linkage

between the regime-dependent asset returns and macroeconomic indicators. However,

in this research, we will use actual observations to construct our in-sample and out-

of-sample tests. The underlying reason is if the result based on this method has a

strong predictability, then the other method using predicted values, which has less

disturbing noises, is expected to be even stronger.

2.3 Optimal Number of Regimes

Having selected the regime-switching framework, we should consider the optimal num-

ber of regimes. Since the regimes are unobservable, a proper criterion must be adopted

to choose the optimal regimes. Intuitively, when we increase the regimes, the number

of parameters in the regime-switching framework will increase correspondingly. Thus,

the likelihood of the data will increase when more parameters are added. The larger

the likelihood, the better fit the model has. However, this intuition is only valid for

our in-sample data. We have to consider the out-of-sample mediations as well. If too
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many regimes are embedded in the model, this could creat problems of over-fitting

or model specification error. In terms of choosing a most parsimonious, accurate,

but no elaborate model, we have to balance between the number of regimes and the

predictability of the model. The Bayes information criterion (BIC)[Schwarz (1978)],

is applied to select the optimal number of regimes. In this research, we employ the

following BIC specification to determine the optimal number of regimes:

BIC(M) = −2 ln(L|M,φ(M)) + f(M,φ(m)) ln(T )

where M is the number of regimes and L is the likelihood function given the number

of regimes. T is the number of observed data points. φ(m) ={αMt ,βMt , γMt , pij} is

a set of parameters while f(M,φ(m)) refers to the number of parameters. By trying

different numbers of regimes M , we select the number which can minimize the value

of BIC(M) as the optimal number of regimes.

2.4 Expectation and Maximization Algorithm

Since the regimes (Mt) are unobservable, the expectation and maximization algorithm

(EM algorithm) will be used to estimate the model parameters. The EM algorithm is

an iterative process between E-step (expectation) and M-step (maximization), which

was first introduced by Arthur Dempster, Nan Laird, and Donald Rubin(1977). The

EM algorithm is efficient for estimating models that have missing data or unobservable
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latent variables. The E-step is used to estimate the missing data on regimes based on

observed data and current estimates by calculating the expected log likelihood with

the updating missing data. The M-step is to maximize the log likelihood function

based on the missing data on regimes found in the E-step.

We denote the model parameters as φ ={αMt , βMt , γMt}, the unobserved regimes over

time as M and the observed indicators as X. The EM algorithm can be summarized

as the following two steps:

E-step: Set an initial parameter value φ0 for the true parameter set φ, calculate

the conditional distribution on regimes, Q(m) = Pr(M |X;φ0), and determine the

expected log likelihood, EQ [lnPr(X,M ;φ)].

M-step: Maximize the expected log likelihood of joint data of X and M with respect

to φ, to obtain an improved estimate for parameter φ. The improved estimate is :

φ1 = argmax
φ

{EQ [lnPr(X,M ;φ)]}

where φ1 is the new initial value for the true parameter φ. The algorithm returns

to the E-step after a new estimate is obtained. As the aforementioned processes are

going on, the parameters are estimated when the log likelihood is maximized.

2.5 Option Pricing with Simulation

An option pricing model can be proposed under the regime-switching framework and
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the risk neutral mechanism.

2.5.1 A Risk Netrual Probabilities and the Black-Scholes For-

mula

In terms of option pricing, most existing models depend either on stochastic discount

factor or risk neutral probability. The option pricing model in this thesis is based

on the concept of risk neutral valuation. Since the underlying asset price mainly

depends on the level of risk that the investors would like to take, it is crucial to know

the investor preference. Unfortunately, it is hard to quantify the investor preference.

Then risk neutral probability is introduced to address this issue. The risk neutral

probability is the probability of future expected returns adjusted for risk, which can

be used to calculate the asset price by simply taking the expectation of future payoff

under the risk neutral probability. The key assumption for calculating the unique risk

neutral probability is that the market is arbitrage free. Mathematically, Cox, Ross

and Rubinstein (1979) define the upward risk neutral probability as

P =
e(r×Δt) − d

u− d

where u is the ratio of moving upward and d is the ratio of moving downward. u and

d depend on the volatility of the asset returns (σ) and the length of time interval.

The upward ratio and downward ratio can be expressed mathematically as
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u = e(σ×
√
Δt) d = e−(σ×

√
Δt) =

1

u

In the risk neutral world, the expected return is the risk free rate r, while the ex-

pected return of stock is μ and the standard error of stock return is σ under the real

probability measurement. The stock price follows the geometric Brownian motion:

dSt = rStdt+ σStdω
∗
t

or in forms of integral:

ST = S0e
(r− 1

2
σ2)T+σω∗

T

where ω∗t = ωt +
μ−r
σ
dt where ω∗t is the stochastic variable under risk neutral measure

and ωt is the Brownian motion.

The European call option with strike price K under the risk neutral probability mea-

sure is priced as:

C(S0) = e−rT · EQ
t [ST −K]+

To be specific,

C(S0) = e−rT
∫ ∞

−∞
(ST −K)+ · f(ST , T |S0)dST
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and the density function f is

f(ST , T |S0) =
1

ST

1√
2πσ2T

e−
[ln

ST
S0

−(r− 1
2σ2)T ]2

2σ2T

Then, the Black-Scholes formula for the European option is given by:

C(S0) = StN(d1)−Ke−rTN(d2)

where

d1 =
lnSt

K
+ (r + 1

2
σ2)

σ
√
T

and

d2 =
lnSt

K
+ (r − 1

2
σ2)

σ
√
T

2.5.2 Regime-switching Option Pricing Model

As we have done in the previous section, the asset return is taken as one of the

macroeconomic indicators in the autoregressive regime-switching model.

Ft = αMt + βMtFt−1 + γMtεt
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Ft is the vector of macroeconomic indicators. By taking asset return out of the process,

we have the asset return simulation process,

Rt = aMt + bMtFt−1 + σMtεt

where Rt = log(St/St−1). St is the price of the stock at time t. Both processes, aMt ,

bMt , σMt are a set of estimated model parameters, depending on the regimes at time

t.

The aim of this section is option-pricing simulation. In the other word, assuming the

initial stock price at time t = 1 (S1) is known, we simulate a realization for stock

price at time t = 2 (S2). The simulation process is one period. Based on the actual

stock price (S2), we repeat the same process to simulate the realization of stock price

at time t = 3 (S3).

The crucial part of option pricing is to find out the risk neutral probability.

We will calculate every set of risk neutral probability of each point in time. For each

note at t− 1, the risk neutral probability (qmt,m = 1, 2, ...M) at time t is

minV arQ[R] =
∑

[(R̄m
t − rt)

2 × qmt]

subject to

1. qmt � 0
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2. q1t + q2t + ...+ qMt = 1

3. R̄1t × q1t + R̄2t × q2t + ...+ R̄Mt × qMt = rt

where m is the number of regimes (1, . . . ,M), qmt is the risk neutral probability of

regime m in time t. R̄mt is the expected conditional asset return in regime m at time

t. Here comes a problem: what is rt ? In this case, rt can be LIBOR rate and taken as

an exogenous variable. Also, rt can be taken as an endogenous variable and derived

from the above quadratic programming minimization process. In this research, both

approaches will be discussed.

In the existing research, the LIBOR rate is widely used for option pricing. If the

LIBOR rate is used as the risk free rate rt, the objective function becomes:

min
qmt

V arQ[R] =
∑

(R̄2
mt × qmt)− r2t .

where rt is only depend on time t and not varying with regimes. The conditional

expected asset returns at time t (R̄mt) can be obtained from the expected asset return

simulation process

E(R|Mt, Ft−1) = R̄Mt = αMt + βMt × Ft−1

The extreme cases may exist in some points in time: the LIBOR rate may smaller

or larger than all the regime-dependent expected asset returns (R̄mt). Thus, the

last constraint cannot be satisfied and there is no optimal solution in this linear

programming problem. A proper way must be adopted to address this issue. In this
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thesis, the LIBOR rate is adjusted as the average of the conditional expected returns

over regimes in the extreme cases, to make sure the solutions at very time point can

be obtained.

Instead of using the LIBOR rate, rt can be infered from the minimization process.

The objective function becomes

min
qmt,rt

V arQ[R] =
∑

((R̄mt)
2 × qmt)− r2t .

Since rt is established from the quadratic programming method, we refer rt is as model

rate.

Intuitively, the model rate is more suitable for option pricing simulation process, since

the model rate has already been determined optimally in the quadratic programming

method. The applicability of both methods will be compared in the empirical part.

After addressing the problem of risk free rate, we further overcome the risk neutral

probabilities qmt, m = 1, ...,M . The density function of unconditional asset returns

at time t can be expressed as

R̃t ∼
M∑

m=1

(qmt × fmt(r))

where fmt(r) is the density function of asset return (R̃t) conditional on the regimes

at time t(1, . . . , T ), fmt(r) = f(Rt|mt). The risk neutral probability is used to weight

the density fucntions of conditional expecetd returns across regimes. Hence, the
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uncontional expected return from time t− 1 to t is

E(Rt) = E(E(Rt|Mt−1, Ft−1)) =
M∑

m=1

((αMt + Ft−1βMt)q
mt)

with an expeceted variance-covariance matrix

ΓR = V arQ[R] = EQ[V arQ(R|M)] + V arQ[EQ(R|M)]

To be specific,

ΓR =
M∑

m=1

(qmtΣm) +
M∑

m=1

((E[Rt|MT = m]− E(Rt)
2)qmt)

where qmt is risk neutral probability at time t. Assume R is a vector, Σm is variance-

covariance matrix for conditional expected VAR process at regime m.

The realized stock price at time t is S̃t = St−1 · eR̃t . A set of realizations S̃t from t = 2

to T can be obtained by repeating the same one period process, assuming that the

initial asset return (S1) is known.

We have discussed the boundary condition for the European call option previously:

VT = max{ST −K, 0}
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Therefore, the option pricing simulation process is:

C = e−rT × EQ(S̃t+1 −K)+

where K is the strike price at the expire date T . Five different strike prices are chosen

at each point in time. The option pricing simulation process can be expressed as

Ci = e−rT
∫ +∞

−∞
[(S0e

r −Ki)
+ ·

M∑
m=1

qm · fm(r)]

By substitute the density function fm(r) into the above equation, the process is sim-

plified into:

Ci =
M∑

m=1

qm(S0e
(μm−r−D)TN(dm)−Kie

−rTN(dm − σ
√
T ))

where

dm =
ln S0

Ki
+ (μm −D + 1

2
σ2)T

σ
√
T

μm is the conditional expected return on regime m, and D is the dividend yiled.

C is a set of prices of European call option in our option pricing simulation. We will

compare the simulation option prices with the actual prices to see whether actual

option price is undervalued or not. The BS model will be taken as the benchmark

and compared with the new option pricing model. In addition, the out-of-sample test

will be constructed to test the effectiveness of the new option-pricing model.
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Chapter 3

Data

This chapter reports a comprehensive analysis of the dataset including summary

statistics, the data resources and measurement of all the dynamic macroeconomic

indicators.

3.1 Data Description

In this thesis, five macroeconomic indicators are used for identify market regimes.

These macroeconomic indicators include the S&P 500 Price Index (STK), Trea-

sury yield spread (TYS), U.S. credit spread (UCS), U.S. Consumer Confidence In-

dex (CCI), and U.S Leading Economic Index (LEI). All of the indicators have been

studied in the literature and utilized to characterize the dynamics of economic states

over time. TYS is the difference between the yields on 10 year Treasury bond and 2

year Treasury bond. UCS defines the spread between the 3-month LIBOR rate and
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3-month treasury rate. A different measurement for UCS is adopted in this thesis,

which is the difference between the yields on A rated corporate bond and B rated

corporate bond. Some evidence shows that higher yield spread and higher credit

spread are more likely to be associated with financial turmoil. Investors are motived

to find potential investment opportunities based on the movement of the historical

yield and credit spreads. The full sample period is from 1973/02 to 2013/06, while

the in-sample period is from 1973/02 to 2010/12 and the out-of-sample data is from

2011/01 to 2013/06. The good economic reason to choose this in-sample period is

that this in-sample period covers the dot-com bubble (1997-2000) and the recent fi-

nancial crisis (2008-2009). These significant financial difficulties are expected to be

captured in the empirical analysis, which shows that the model has good predictability

of selected macroeconomic indicators.

The data are monthly. Table 3.1 gives the detailed description of the dataset, including

variable name and their abbreviation, data sources and data description.
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3.2 Summary Statistics

The summary statistics of the full sample data from 1978/02 to 2013/06 are shown

in Table 3.2. The data are measured in term of percentage; the summary statis-

tics are also in terms of percentage. The mean value of stock return is 0.5426 while

the standard deviation is 4.6197, indicating the high volatility in stock returns. All

macroeconomic indicators exhibit some excess kurtosis and skewness. Kurtosis mea-

sures the heaviness of the tail of a distribution. All kurtosis values of the indicators

are greater than the value (3) to the normal distribution. The distributions of the

data are more likely to have extreme values than the normal distribution has, with

the evidence of fat tails. Skewness measures the level of asymmetry of a distribution.

All skewness values are negative except for that of UCS. Thus, the distribution of

UCS is right skewed and has more values concentrating on the left of the mean while

the distributions of other values are all left skewed. Therefore, the financial data are

highly skewed. In addition, the JB (Jarque-Bera) test shows that the data are not

normally distributed. Therefore, standard linear pricing models cannot capture the

stock return well enough.

What we aim to establish is an option pricing model taht can take into account of the

properties of our data. In order to better visualize the distribution of stock returns,

both stock returns and their histograms are plotted in Figure 3.1. The lower figure

shows that the amplitude of stock returns changes over time, indicating the risk level

are time varying. Around year 2000 (internet bubble) and year 2008 (financial crisis),
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Figure 3.1: Histogram and Magnitude of Stock Returns

Figure 3.1:The upper graph shows the distribution of stock return with estimated
in-sample mean and standard deviation. The lower graph plots the magnitude of stock
return of in-sample data.
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the return volatility is much greater than other time periods, inferring the risk level

is high during the big financial events. In addition, low returns tend to be followed

by low returns while high returns are likely followed by high returns. Volatility clus-

tering appears clearly in stock returns. The full sample historical performance of five

macroeconomic indicators is displayed in Figure 3.2.

In Figure 3.2, the upper figure shows the changing patterns of STK, CCI, and UCS

over time. Wider credit spread is always associated with higher stock aptitude and

downward market states. The lower figure shows the changing patterns of TYS and

LEI. It is obvious that the two indictors moves in the opposite direction and are

negatively correlated over time. There is always an increase in TYS right after a

decrease in LEI. Large TYS is highly correlated with economic recession. This is

consistent with some previous evidence in the literature, such as Chen et al. (1986).

The macroeconomic indicators reflect the overall financial market reasonably well.

However, the stock market performance cannot be simply determined by observing

the dynamic movements of macroeconomic indicators. The market performance, such

as the market volatility and stock return, is likely to be regime-dependent over time.

If so, it is critical to characterize the financial market by regimes. Otherwise, some

information will be averaged across market regimes.
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Figure 3.2: Historical Performance of Economic Indicators

Figure 3.2: The upper graph shows the dynamic changes of stock return, consumer
condident index and U.S. creadit spread over the full sample period. The lower graph
shows the patterns of treasury yield spread and leading economic indicator over the full
sample. The full sample period is from 1973/01 to 2013/06
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Table 3.2: Summary Statistics of the Macroconomic Indicators

STK TY S UCS CCI LEI
Panel A
mean 0.5426 1.1172 1.1207 -0.0714 0.0816

standard deviation 4.6197 0.4722 1.841 8.9372 0.5718
median 0.9514 0.97 1.42 0 0.2
skewness -0.7395 1.6623 -1.1956 -0.2674 -1.3277
kurtosis 6.0083 6.4045 4.8369 8.7324 6.8158
JB-test 0.001 0.001 0.001 0.001 0.001
Panel B

Correlation
STK 1
TYS -0.0395 1
UCS 0.0738 0.0226 1
CCI 0.3901 -0.0126 0.1506 1
LEI 0.3743 -0.26 0.4146 0.3593 1

Table3.2 shows the summary statistics of five macroeconomic indicators including mean,
standard deviation, median, skewness, kurtosis, Jarque-Bera test and correlation. The null
hypothesis of the JB-test is that the macroeconomic indicators indicators follows the
normal distribution while the alternative hypothesis is that the indicator does not come
from the normal distribution. The significance level is the 5 %. We can reject the null
hypothesis at 5% significance level for all macroeconomic indicators.
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Chapter 4

Empirical Analysis

We report empirical analysis in this chapter. The chapter has five sections: the

optimal number of regimes, interpretation of the regimes, regime-switching model

estimation, out-of-sample performance and the performance of option pricing model.

4.1 Optimal Number of Regimes

In order to choose the optimal number of regimes, we set a range for K, i.e K =

1, 2, 3, 4, 5, 6. An information criterion is utilized to determine the optimal number of

regimes. A detailed application to choose the regimes in joint distribution of bond

yield and stock returns is provided in a research paper by Guidolin and Timmermann

(2005). In their research, a four-state model is chosen based on the Bayes information

criterion (BIC). The maximized log likelihood function and the values of BIC for

different numbers of regimes are displayed in Table 4.1.
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Table 4.1: MLL and BIC for Different Regimes

Regime 1 2 3 4 5 6
MLL -3189 -2717.2 -2589.7 -2493.7 -2419.0 -2336.2
BIC 6653.4 6003.4 6054.3 6180.4 6361.4 6538.5

Although the maximized log likelihood function appear to increase monotonically as

the number of regimes increases, the most parsimonious model appears to be the two-

regime model based on the lowest value of BIC. Therefore, the number of two regimes

is selected under the selected macroeconomic indicators.

4.2 Interpretation of the Regimes

After obtaining the optimal number of regimes, we relate each regime to market

sentiments. Since the number of regimes is two, the estimated transition matrix is a

2-by-2 matrix.

P =

⎛
⎜⎜⎝ p11 p12

p21 p22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ 0.8625 0.1375

0.0509 0.9491

⎞
⎟⎟⎠

The transition matrix gives the probabilities that the market moves from one regime

to the other conditional on the existing regime. In this case, the unobserved market

states are transiting between those two regimes over time. From the transition matrix,

the transition probability from regime 1 to regime 2 is 0.1375 and from regime 2 to

regime 1 is 0.0509, indicating that the probabilities of transfer between regimes are
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pretty low. Among them, the probability from regime 1 to regime 2 is relatively higher

than the probability from regime 2 to regime 1, which means the market is more likely

to transfer from regime 1 to 2 than the other direction. Moreover, Both regimes are

highly persistent, as they have a very high retaining probability, 0.8625 for regime1

and 0.9491 for regime2. Table 4.2 shows the summary statistics of macroeconomic

indicators and correlation matrix by regime. The different characteristics of these

indicators across regimes are the key to define these regimes. The mean return of

STK is negative and the standard deviation is relatively high (6.887) in regime 1.

While regime 2 has a positive mean return and a low standard deviation (3.4156).

We can infer that the regime 1 is a bear state and regime 2 is bull state from the

performance of STK. In addition, the value of UCS is larger in regime 1 than in

regime 2, which is a reinforcement of what we would expect. The CCI and LEI in

regime 1 are both negative while they are positive in regime 2, indicating that regime

1 is bear and regime 2 is bull. As expected, the TYS is smaller in regime 1 than in

regime 2.The yield curve is likely to be upward sharply during a bull market while

it is likely to be downward sharply during a bear market. Therefore, regime 1 can

be labeled as the bearish state, and it should coincide with all financial turmoil and

crises from 1973 to 2013, including the oil crisis in the 1970s, the black Monday on

1987, the dot-com bubble during 1997 to 2000 and the financial crisis in 2008. Since

all the characteristics of regimes 2 are reversed from those in regime 1, regime 2

can be labeled as bullish state. The correlation between indicators also is changed

significantly by regimes. In the full sample period, the correlation between STK and

UCS is negative (-0.0395) without regimes. After addressing the market regimes,
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the correlation in the in-sample period becomes positive in both regimes, at 0.058

(regime1) and 0.0131 (regime2). The correlations between STK and CCI increased

in regime 1 while the correlations of them decreased in regime 2, compared to the

correlations without characterizing regimes.

The bull market is more stable than the bear market, and has a relatively high re-

taining probability. If the market regime shifts, it is more likely to shift from the bear

to bull market. The average steady probability reflects the mean time of the market

staying at each regime in the long run and is found to be 0.2703 (regime1/bear) and

0.7297 (regime2/bull), respectively. Therefore, the market stays more often in the

bull regime rather than in the bear regime in the long run. In order to visualize the

regimes over time, Figure 4.2 shows the frequency of the market regimes over time.

The probability of bear regimes is high from year 1973 to 1975, showing the two oil

crises in the early 1970s. After that, the market stepped into the bull regime and it

lasted until the end of the 1970s. Generally, the market stayed at the bull regime,

consistent with the transition probability. In 1998, there was turmoil in the stock

market, so the probability of the bear regime started to rise, capturing the Internet

bubble. Afterwards, the bear state stayed from 2004 to 2006. The probability of the

bear regime rose sharply in 2008, corresponding to the 2008 financial crisis. There-

after, the market had been recovering until the end of 2010, shown in the gradually

falling probability of bear regime. Figure 4.1 plots the state probability for regime-

switching model to better visualize the dynamic changing patterns of unobserved

market regimes.
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Figure 4.1: Posterior Probabilities of Regimes
Figure 4.1 shows the in-sample implied posterior probability of two regimes. The left figure
is the implied posterior probability for the bear market while the right graph is the implied
posterior probability for the bull market.

4.3 Model Estimation

The performance of the regime-switching model needs to be estimated. Table 4.3

documents the estimated parameters of the RS and SR models, while Table 4.4 docu-

ments the standards errors of corresponding estimated parameters of the RS and SR

models. In terms of the SR model, only TYS and LEI have some predictive power for

stock returns. None of other macroeconomic indicators has any significant predictive

power for stock returns. While in the RS model, most macroeconomic indicators ex-

hibit some predictive power in a high significant level. It is interesting to note that

some indicators have some regime-dependent predictive power. While the variable is

significant in one regime, it would be insignificant in the other. For example, UCS

shows such characteristic. UCS is statistically significant at the 1% level in regime

2, while it is insignificant in regime 1. In addition, it is surprising to see that CCI

is insignificant in neither the RS nor SR model for stock returns. Also, CCI is likely
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to be insignificant in other processes most of the time as well. For example, CCI is

insignificant in its own autoregressive process both in the RS and SR models. There-

fore, CCI shows relatively weak predictability overall. In general, the significance of

parameters in the RS model is substantially different from that in the SR model. The

RS model has more significant parameters in predictability than the SR model has.

Figure 4.3 compares five macroeconomic indicators under the SR and RS models

with actual observations in in-sample period. As we can see from this figure, the

predicted values from both the SR and RS models fit the actual data well. Among

them, the predicted values from the RS model are much closer to actual observations

than that from the SR model. The first graph of Figure 4.3 shows the fitted stock

returns in the RS and SR models, and actual stock returns. Fitted stock returns in

the RS model are weighted by the posterior probability of each regime over time. It

gives a visual comparison of the fitness of the RS and SR models. There is no doubt

that the cumulative predicted stock returns of the RS model are closer to the actual

stock returns than that of the SR model. In particular, the RS model captures the

dynamic movement of cumulative stock returns well at the end of 1990s. Visually,

the predictability of the RS model is better than that of the SR model. Predictive

accurate rate is used to provide statistical support for the above observation. The

prediction accurate rate, which measures the uniformity of the prediction and actual

stock returns movement directions (upwards and downwards) one step forward under
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a model, to further evaluate the findings. For example, if stock returns are predicted

to move up one step forward under a model, meanwhile, the actual stock returns move

as predicted. The prediction accurate of the model is thought to be as high. For our

in-sample data, the prediction accurate of the RS and SR models are calculated. Table

4.5 demonstrates the prediction accurate rate of five indicators.

Table 4.5: Accurate Rate of the RS Model

Model STK UCS TYS CCI LEI
RS 0.6233 1 0.9537 0.5308 0.7819
SR 0.5925 1 0.9537 0.5176 0.7577

None of the prediction accurate rates from the RS model are less than those rates from

the SR model model. The predictive accurate rate for the RS model is 0.6233 against

0.5925 under the SR model. The predictive accurate rate of a model is important

for investors. Investors can make decisions to rebalance their portfolios to minimize

the risk and maximize the returns based on the prediction accurate rate. The root

mean standard errors (RMSE) measures the difference between predicted values under

a model and actual values. It is a good measurement of accuracy across different

models. RMSE is defined mathematically as RMSE =

√∑N
1 (xi−x̄i)2

N
, where xi is the

actual value and x̄i is model predict value. N is the number of observations. Table

4.6 shows the RMSE in prediction for five macroeconomic indicators.
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Table 4.6: RMSE for Risk Factors

Model STK UCS TYS CCI LEI
SR 0.044 0.0012 0.0057 0.849 0.0043
RS 0.0019 0.000001399 0.000030837 0.007 0.00001437

The values of RMSE are incomparable among macroeconomic indicators under a same

model. However, RMSE for all macroeconomic indicators under the RS model are

lower than RMSE under the SR model and the differences are substantial for model

prediction errors. In summary, the performance of the RS model is superior than that

of the SR model in the in-sample data as expected.
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Figure 4.3: In-sample Predictions of and Actual Observations of the Economic Indi-
cators

Figure 4.3 shows the in-sample comparison of predicted macroeconomic indicators by
the RS and SR model, and actual obeservations. From left to right and up to down, the
graphs represent SKT,UCS,TYS,CCI and LEI,respectively.
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4.4 Out-of-sample Performance

As the in-sample evidence has shown that the RS model perform better in predictions

than the SR model does, the out-of-sample test is constructed to further investigate

the RS model performance. The out-of-sample period is from2011/01 to 2013/06.

Figure 4.4 provides the out-of-sample comparison among actual observations, pre-

dicted values under the RS and the SR models for the five macroeconomic indicators.

The first graph shows the cumulative return. Most of the time, the predicted returns

form the RS models are below actual returns, but the RS model can still capture

the dynamic movements of returns over time. The predicted stock returns under the

SR model are relatively consistent with the trend of the actual observations. How-

ever, the RS model shows better prediction performance when the stock market goes

down. Out-of-sample predicted values of UCS and TYS are not as close to the actual

observations as the predicted values in the in-sample period, but they are still much

better than predicted values of other macroeconomic indicators in the out-of-sample

data. The fitness of predicted CCI is the worst one among five macroeconomic indica-

tors, which is consistent with the findings in Table 4.3. Predicted values of CCI from

both the RS and the SR models do not fit the actual values of CCI. With respect to

LEI, the RS model has better prediction power than the SR model before the middle

date of the out-of-sample data (2012/03), while the SR model fit actual data better

afterwards. Overall, the out-of-sample performance of RS model is not as good as

expected. However, to some extent, the RS model still shows strong prediction power.
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Figure 4.4: Out-of-sample Predictions and Observed Factors

Figure 4.4 shows the out-of-sample comparison of predicted macroeconomic indicators
by the RS and SR models, and actual obeservations. From left to right and up to down,
the graphs represent SKT, UCS, TYS, CCI and LEI.
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4.5 The Option Pricing Model

In this section, results on the option pricing model will be discussed. The data of

option prices of S&P 500 are collected from Datastream. Option Index is from 2006

to 2013. The in-sample period is from 2006 to the end of 2010 due to the availability of

option data. The dividend yield on S&P 500 Index is usually modeled as a constant.

We assume that the dividend yield is identical across regimes. The out-of-sample

period is from 2010/12 to 2012/10. The regime-switching option pricing model with

model rate (RSMR) and regime-switching option pricing model with LIBOR rate

(RSLR) are compared with the standard Black-Scholes model (BS) option-pricing

model, with both volatility index (VIX) and historical volatility.

The selection of strike prices is not random. As mentioned in Chapter 2, five sets

of strike prices (k1, k2, k3, k4, k5) are selected around the price of underlying assets

at each time period, with a price interval of 25. From the highest strike price to the

lowest one, we label them as deeply out of the money, out of the money, at the money,

in the money and deeply in the money. Since what we study is the call option, the

definition of “in the money” is fairly intuitive. For a call option, if the strike price is

lower than the market price of the underlying asset, it is called “in the money” (ITM).

“Out of the money” (OTM) is the opposite of in the money. “At the money” (ATM)

is when the strike price is the same as the spot price of the underlying asset. Five

situations are considered and compared with actual option prices individually. Both
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in-sample and out-of-sample tests are constructed to test the validity of the option

pricing model. Since there are not many out-of-sample empirical comparison of option

pricing models, the out-of-sample test here is itself a contribution to the literature. In

addition, the regime-switching option pricing model with two different discount rates

(RSMR and RSLR) are discussed in Chapter 2. The LIBOR rate is considered as a

common discount rate while the model rate is an endogenous variable derived from

the model.

We use figures to visualize the comparison of option prices across the strike prices for

the option pricing models. Figure 4.5 shows the in-sample comparison of actual option

prices and predicted prices under RSMR and RSLR over five different strike prices.

Figure 4.6 demonstrates the patterns of actual option price, predicted prices under

the BS model with the VIX index, and predicted prices under the BS model with

historical VIX data. Figure 4.7 and Figure 4.8 give the corresponding out-of-sample

performances to Figure 4.5 and Figure 4.6, respectively. To start up with in-sample

data, it is easy to notice that the BS model with VIX index gives higher predicted

option prices than actual ones across five strike prices. No matter how actual prices

move, the predicated option prices under the BS model with VIX index always move

above actual ones. Therefore, the BS model with the VIX index overvalues the option

price. Generally, the predicted prices under BS model with historical VIX data have

an upward trend from the beginning of in-sample data (2006/05) to the end of in-

sample data (2010/12). While actual option prices move up and down over time and

peak at the middle of in-sample period (2008). By and large, the BS model with
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historical VIX data undervalues option prices in the first half of the in-sample period

and overvalues option price at the last half period. The regime-switching option

pricing model has a different perspective when compared with the BS model. The

unobservable market state is divided into two regimes (bullish and bearish) under

the RS framework. Instead of simply averaging the information of regimes over time,

the RS model can capture the shift of market regimes. Options are separately priced

under different regimes and weighed with the risk neutral probabilities. The two

option pricing models, which are nested in the RS model, exhibit similar prediction

price patterns in the first half of the in-sample period and showed some differences

in the later part of period. By capturing the market shifts1 over time, the model

predicted prices move up and down around actual prices, except for the middle of the

in-sample period.

Out-of-sample performance is considered as the true measurement of model pre-

dictability. Parameter estimated from time t is used to predict the option price at

time t + 1. Basically, the BS model with the VIX index is consistent with its per-

formance in the in-the-sample data. It overvalues the option pricing model over time

and across different strike prices. The BS model with historical VIX data overvalues

option prices as well, except for the middle of out-of-sample data. RS nested models

show different characteristics across different strike prices.

To determine which model has better performance than another, MSRE is used for

1Market shift from bullish to bearish market or from bearish to bullish market.

51



comparison.

Table 4.7: RMSD for Various Option Pricing Models

K RSMR RSLR BS (VIX index) BS (historical VIX )
K1 7.6182 7.7638 9.9112 5.7489
K2 11.8209 12.0618 12.0610 7.4308

In Sample K3 15.8262 16.0865 13.0110 8.2406
K4 19.3792 19.6248 13.3442 8.0693
K5 22.8040 23.4516 12.2422 7.4768
K1 9.6490 9.7333 9.1721 7.7518
K2 13.3229 13.7473 11.8554 11.1610

Out of Sample K3 16.1555 16.8050 13.1474 13.5203
K4 18.0298 18.8555 12.8741 14.5677
K5 18.6462 19.7365 11.9288 14.7888

Table 4.7 gives the MSRE of the BS nested models and RS nested models varying different
strike prices.

With respect to the in-sample period, the BS model with historical VIX data is the

winner of the four models. It has the smallest MSRE across five strike prices for the

in-sample data. For DOTM and OTM, the RS models perform better than the BS

model with the VIX Index. While the BS model with the VIX index has smaller

MSRE than the RS models when option is ATM, ITM and DITM.

In the out-of-sample evaluation, the BS model with historical VIX data has the small-

est MSRE when option is DITM and ITM. Instead, the BS model with the VIX index

is the winner when option is DOTM, OTM and ATM. The RSMR model has smaller

MSRE than RSLR model both in-sample and out of sample. So among all RS nested

models, RSMR has better performance. Overall, different models have their own ad-

vantages and disadvantages when pricing options with different strike prices. The BS
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nested model performs better out of sample. One explanation is that the BS model

is widely used to price options by traders, and, hence, option pricing model emerge

to those of the BS model. In addition, Kolmogorov Smirnov tests (K-S test) are con-

structed to evaluate the overall performance of option pricing models. The K-S test

can be used to measure the distance between two empirical distributions. The null

hypothesis for the K-S test is the difference between the two distributions is zero.

Table 4.8: K-S Tests for Option Pricing Models

RSMR RSLR BS(VIX) BS(h)
In Sample: h 0 0 1 0

p-value 0.1695 0.0599 0.0001 0.0929
Out of Sample: h 0 1 1 1

p-value 0.1312 0.0034 0.0001 0.0001

Table 4.8 shows the results of K-S tests over BS and RS option pricing models. h = 0
means the null hypothesis is not rejected at the 1 % significance level while h = 1 means
the null hypothesis is rejected at the 1 % significance level

We note that only RSMR fails to reject the null hypothesis statistically in sample and

out of sample at the 1% significance level. The RSLR and BS model with historical

VIX data fail to reject the null hypothesis at the 1% significance level in sample, but

reject the null out of sample. The BS with VIX index model performs even worse.

The null can be rejected at the 1% significance level both in sample and out of sample.

The K-S test shows that the RSMR model has the best performance overall, which is

as expected.
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Figure 4.5: In-sample Comparison of RSMR,and RSLR predictions and Actual Option
Prices
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Figure 4.5 shows the in-sample comparison of RSMR, RSLR and actual option prices.
From left to right and up to down, the graph represents DOTM, OTM, ATM, ITM and
DITM
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Figure 4.6: In-sample Comparison of the BS Model Predictions and Actual Option
Prices
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Figure 4.6 shows the in-sample comparison of the BS model predictions and actual option
prices. From left to right and up to down, the graph represent DOTM, OTM, ATM, ITM
and DITM

55



Figure 4.7: Out-of-sample Comparison of RSMR,and RSLR Predictions and Actual
Option Prices
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Figure 4.7 shows the out-of-sample comparison of RSMR, RSLR and actual option prices.
From left to right and up to down, the graph represents DOTM, OTM, ATM, ITM and
DITM
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Figure 4.8: Out-of-sample Comparison of the BS Model Prediction and Actual Option
Prices
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Figure 4.8 shows the out-of-sample comparison of BS model predictions and actual option
prices. From left to right and up to down, the graph represents DOTM, OTM, ATM, ITM
and DITM
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Chapter 5

Conclusion

The standard linear asset pricing model is found to have many flaws, especially after

the financial turmoils, such as the oil crisis in 1970s and recent financial crisis in 2008.

As shown in many pervious studies, asset returns are highly regime-dependent. By

ignoring the probability of changing regimes, the information among various states

will be simply averaged. The Markov regime-switching model is employed to address

the issue by characterizing the dynamic nature of data generating process over time.

In this thesis, in-sample and out-of-sample tests are both constructed to evaluate the

performance of the dynamic regime-switching option-pricing model. The in-sample

period spans from 1973/01 to 2010/12 while the out-of-sample period is from 2011/01

until 2013/06. The in-sample data shows clearly that the predictabilities of regime-

switching VAR model is much better than the standard linear VAR model. This

result is consistent with the findings by Gray (1996). He shows that using a regime-

switching model to forecast is more sensible than using a constant-variance model.
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With respect to the out-of-sample performance, the regime-switching model does not

perform as well as relation to the in-sample model. The regime-switching model has

less pricing errors than the traditional linear factor model does in general. Economic

indicators are the key information source that the regime-switching model based on.

The changing patterns of these indicators drive the market switching from one regime

to the other, from the bearish state to the bullish state and vice versa. All macroe-

conomic indicators are selected based on previous studies. Many papers have shown

the strong evidence that these indicators have significant correlation with the mar-

ket, either positive or negative. However, there are still some biases in the selection of

macroeconomic indicators. A further research can be constructed in selecting macroe-

conomic indicators with respect to the regime-switching option pricing model.

Risk neutral valuation is employed to price options under the fundamental theory

for asset pricing. After adjusted by the risk neutral probability, the expected payoff

in the future will be discounted as zero. This concept is heavily used in financial

security pricing. In this research, a result worth of noting is the selection of risk free

rate. Both the LIBOR rate and model rate are tested in pricing options. LIBOR rate

is collected from Datastream and it is available from 1986/02 to 2013/06. Therefore,

the in-sample data is rearranged from 1986/02 to 2010/12. The model rate is inferred

from the quadratic programming process together with risk neutral probabilities. The

empirical analysis shows the expectation that the model rate is more consistent than

the LIBOR rate. In addition, comparison between the RS and BS models has been

done. Different models exhibit a difference prediction power across different strike
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prices. But in general, the distribution of the predicted values under RSMR option

pricing model is the same as that of actual option prices. The limitations of the

regime-switching model in this thesis are (1) the regime dependent constant variance-

covariance matrix and (2) the constant transition matrix over time. These limitations

will be addressed in the future studies.
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