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ABSTRACT 
 

Lung cancer is the leading cause of cancer-related deaths among men and women. Non-

Small Cell Lung Cancer (NSCLC) constitutes the most common type of lung cancer and 

is frequently diagnosed at advanced stages. In the past decade, discovery of Epidermal 

Growth Factor Receptor (EGFR) mutations have heralded a new paradigm of 

personalized treatment for NSCLC. Clinical studies have shown that molecular targeted 

therapies, such as EGFR tyrosine kinase inhibitors (TKIs), increase survival, lower 

toxicity and improve quality of life in patients. Despite these advances, the realization of 

personalized therapies for NSCLC still faces a number of challenges including effective 

integration of clinical and genetic data and a lack of clinical decision support tools to 

assist physicians with patient selection. This thesis demonstrates the development of a 

predictive computational model for personalized therapeutic interventions in advanced 

NSCLC. The findings of this research suggest that the combination of patient clinical and 

genetic data significantly improves the model’s predictive performance for tumor 

response than clinical data alone. The decision model is driven by real-world patient data 

and is a promising step in fostering personalized medical decision-making for patients 

with advanced NSCLC. 
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CHAPTER 1: INTRODUCTION 
 

Variability is the law of life, and as no two faces are the same, so no two bodies are 
alike, and no two individuals react alike and behave alike under the abnormal conditions 

we know as disease. 

Sir William Osler (1849-1919) 

 

1.1 The Era of Personalized Medicine 
 

Scientific advances since the completion of the Human Genome Project have confirmed 

that the genetic composition of individual humans has a significant role to play in 

predisposition to common diseases and therapeutic interventions. The translation of 

genetic and genomic data into the knowledge of patient care for prevention, diagnosis, 

prognosis and treatment has introduced a new paradigm for healthcare: personalized 

medicine. The traditional medicine model has relied on best practices emerging from 

large population studies and dictates a one-size-fits-all approach [1]. Although 

synthesized evidence is essential to demonstrate the overall safety and efficacy of 

medical approaches, it falls short in explaining the individual variations that exist among 

patients. Recent advances in genome-wide association studies have revolutionized the 

practice of medicine, causing a shift to a patient-centered model [2] and offering tailored 

diagnostic and therapeutic strategies. 

 

The overarching goal of personalized medicine is for physicians to prescribe appropriate 

medication to the right target of the disease at the right dose for individual patients to 

achieve maximal therapeutic benefit with minimal, tolerable adverse effects 

[3].Personalized medicine, frequently called genome-based medicine, offers many 

distinct advantages over traditional clinical approaches. These benefits include early 

detection of disease, selection of optimal therapy, reduction in adverse drug reactions and 

the improvement in selection of targets for drug discovery [1]. Recognition of 

genetically-determined individual differences to drug response form the cornerstone of 

personalized medicine [3]. In this context, we introduce and define the terms 
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pharmacogenetics and pharmacogenomics, which tend to be used interchangeably in the 

literature. Historically, pharmacogenetics has been defined as the study of germline (or 

inherited) differences in variation that lead to differences in drug metabolism response 

[4]. The evolution of pharmacogenetics into pharmacogenomics was instigated by 

advances in human genome sequencing.  

 

Pharmacogenomics is the study of genetic changes such as the somatic changes in cancer 

tissue or the use of gene expression profiles to predict the likelihood of response to 

medication, its efficacy, or the probability of adverse drug effects. Pharmacogenetics and 

pharmacogenomics seek to improve therapeutic processes through analyzing individual 

differences in genetic variation. The assumption of pharmacogenomics is that although 

commonly occurring diseases such as cancer, diabetes, atherosclerosis may have a 

common clinical phenotype, there are distinct  genetic differences that constitute 

variation in drug response [5].  

 

Complex diseases such as cancer are multifactorial, arising from the intricate interaction 

of genetic and environmental factors. Processes common to the development of 

malignant neoplasms are uncontrolled cell growth and proliferation, angiogenesis, 

invasion of cells into local vasculature, and the spread of cancer cells to distant sites 

(metastasis). Concurrently, the heterogeneity of cancer is acknowledged by the immense 

variations with regards to etiology, pathogenesis, treatment response, prognosis and 

survival. The diversity in malignant cancers is also demonstrated through diverse genetic 

and epigenetic mutations arising in somatic cells and distinct gene-gene and gene-

environment interactions which add to the complexity of cancer risk and tumorigenesis. 

The application of personalized medicine in oncology includes improved diagnosis, 

stratification into molecular subtypes, pharmacogenetics, tailored therapy and predictive 

models [6]. 

In the field of oncology, cancer biomarkers characterize the emerging standard of care in 

personalized medicine [7]. Biomarkers are molecular changes which occur in association 

with disease and dysfunction of biological networks. Prognostic biomarkers are 
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associated with the course of clinical outcomes, such as progression-free survival (PFS) 

and overall survival (OS), independent of the type of treatment [8]. Prognostic 

biomarkers are often used in untreated patients with early stage cancer to help determine 

the use of adjuvant therapy. In contrast, predictive biomarkers help identify 

subpopulations of patients who would most likely benefit from individualized therapy, 

thereby providing information on the efficacy and response from tailored treatment [8]. 

Predictive biomarkers can inform on drug resistance as well as drug responsiveness. 

Successful examples of predictive biomarkers include screening for BRAF V600E 

mutation in advanced melanomas and KRAS in colorectal cancer [9].To further explain 

the role of predictive biomarkers and their success in personalized therapy, we provide 

the example of lung cancer. 

 

Non-Small Cell Lung Cancer (NSCLC) comprises 80-90% of all diagnosed lung cancers 

[10]. Approximately two-thirds of patients are not diagnosed until the late stages of the 

disease, limiting the role of surgical resection as a treatment option. The discovery of 

Epidermal Growth Factor Receptor (EGFR), a key molecule in the growth factor 

signalling pathway advanced our understanding of the molecular basis of lung cancer. 

EGFR is a receptor tyrosine kinase, and thus requires phosphorylation of its tyrosine 

residues in order to activate downstream intracellular signaling pathways [11]. In an 

attempt to target this molecule, agents which compete with ATP binding to the tyrosine 

kinase domain of EGFR were tested and developed [12]. Currently, gefitinib (Iressa®, 

AstraZeneca) and erlotinib (Tarceva®, Roche) are the two EGFR Tyrosine Kinase 

Inhibitors (EGFR-TKI) that have been approved for use in clinical practice [11].  

Furthermore, two landmark studies demonstrated that patients with somatic mutations in 

exons 18-21 of the tyrosine kinase domain of EGFR show marked response to gefitinib 

and erlotinib [13],[14]. These findings encouraged further investigations of EGFR-TKI 

mutations and their role in predicting drug sensitivity. At present, the FDA approves 

erlotinib for the first-line treatment of patients with metastatic NSCLC whose tumors 

have EGFR exon 19 deletions or exon 21 (L858R) mutations [15]. Erlotinib is also 

approved for maintenance treatment of patients with locally advanced or metastatic 

NSCLC whose disease has not progressed after four cycles of platinum-based 
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chemotherapy. Similarly, the European Commission authorizes the use of gefitinib for 

the treatment of adults with locally advanced or metastatic NSCLC with activating 

mutations of EGFR-TK across all lines of therapy [16]. 

 
Clinical response to targeted therapy is a key indicator of the effectiveness of a given 

anticancer treatment. The value and the interpretation of the clinical response must be 

kept in perspective, taking into consideration the context within which it is being 

measured and used. A number of groups have developed strict predefined criteria for 

tumor response evaluation. Of these, the Response Evaluation Criteria in Solid Tumors 

(RECIST) criteria is the most widely used in population studies and clinical trials [17], 

[18]. 

 

The measurement of tumor response to molecular targeted therapy in NSCLC carries 

with it both a therapeutic cost and a financial cost. The therapeutic benefits for patients 

selected on the basis of their EGFR mutation status are favorable toxicity profiles and 

superior survival outcomes when compared with patients receiving standard platinum-

based National Cancer Institute of Canada chemotherapy [19]. In terms of the financial 

cost of targeted therapy, the average one year cost borne by a US health insurer for 

treating advanced stage NSCLC with erlotinib is USD $382,418. This figure was 

evaluated by comparing formularies with and without erlotinib and demonstrated a 

relatively small impact on the annual healthcare budget [20]. Compared to its US 

counterpart, Canada performs a cost benefit analysis of new therapies in order to assess 

the effect on the public healthcare system. According to the (NCIC) Clinical Trials Group 

Working Group on Economic Analysis, the cost of providing erlotinib to patients 

previously treated for advanced NSCLC is approximately CAD $95,000 per year of life 

gained [21]. The drug may appear to be marginally cost-effective in an unselected 

population, however, when the analysis is restricted to the EGFR mutation positive sub-

group, the incremental cost effectiveness ratio is $138,168 versus $87,994. Cost-

effectiveness takes into account magnitude of survival and cost of targeted agent, 

however, it must be remembered that for the healthcare provider, the cost of drug is a 

negligible factor when compared to the clinical benefit, decreased toxicity and improved 
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quality of life for patients.  Pharmaceutical studies [19] and economic analyses 

demonstrate that clinical outcomes and cost-effectiveness of EGFR-TKIs are markedly 

improved in population subgroups and this underlies the importance of patient selection 

for targeted therapy in advanced NSCLC. 

 
 

There are a number of challenges facing the implementation and widespread adoption of 

personalized medicine in healthcare. These obstacles include the lack of quality assurance 

for genetic sequencing, limited clinical evidence of genomic assays, and restricted 

genetic and genomic knowledge among healthcare providers [22]. Of note, the authors in 

[23], bring to light the following barriers:  

 

1. Although structured medical data allow standardization, the majority of medical data 

exist in an unstructured form [24], including free-text medical records, clinical notes, 

research papers, and clinical trial documentation. As clinical studies are progressively 

accruing molecular profiling and routine clinical patient data, the success of personalized 

medicine is faced with the challenge of integrating structured and unstructured data from 

genomic and clinical sources [25]. 

2. New scientific discoveries infiltrate regular clinical practice in approximately 17 years, 

where the success rate remains less than 15% [26] In addition, the evolution of advances 

in the field of molecular oncology outpace the rate at which clinicians are able to keep up 

with new findings. It is necessary to ensure that proper mechanisms are in place to 

successfully translate research into practice and also keep physicians up to date with the 

latest advances in genomic medicine [27]. The need for supportive clinical decision 

making tools that combine genomic research with clinical data has been identified as an 

essential requirement  for realizing the promise of personalized medicine [28],[29]. 
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1.2 Research Hypotheses  
 

Despite the overwhelming amounts of clinical and genomic data being captured and 

collected, by and large, these data are not being analyzed in a manner that allows for the 

production of actionable information [1]. This represents lost opportunities for making 

data-driven improvements to personalized healthcare. Although clinical practice 

guidelines for NSCLC recommend EGFR testing prior to treatment with EGFR-TKIs 

[30], these evidence-based guidelines are formulated using population-based statistics 

and do not speak to the individual variability of tumor response that is seen among 

NSCLC patients. In the absence of EGFR testing, purely clinical factors are used to 

determine patient selection for TKIs. While, the addition of molecular testing for patient 

selection has been shown to improve the response rates to targeted therapy, the ideal 

combination of factors that most accurately predict tumor response in patients with 

NSCLC has yet to be identified. To address these issues, we formulated the following 

two research hypotheses: 

 

1. Data-driven decision support models can be used to accurately predict tumor response 

to EGFR-TKIs in patients with advanced NSCLC. 

 

2. The combination of clinical and genetic factors can better predict tumor response to 

EGFR-TKIs in patients with advanced NSCLC, than clinical or genetic factors alone. 

 

1.3 Research Objectives  
 

1. Creating a data-driven decision support model for personalized treatment 
selection in advanced NSCLC 

The primary objective of this thesis is to develop a proof of concept data-driven decision 

model for personalized treatment patient selection in advanced NSCLC. The objective is 

to demonstrate that the predictive power of an integrated clinicogenomic model has the 
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potential to serve as a data-driven decision support that can be embedded at the point-of-

care. 

 

2. Identifying frequent patterns of patient characteristics and tumor response in 
advanced NSCLC 

The secondary objective of this research is to determine the relationships that exist 

among predictor attributes (age, gender, smoking status, mutation status) and the 

relationships existing between these predictor attributes and the target attribute of tumor 

response. The aim of this objective is to explore the strength of associations among 

clinical and molecular factors in patients with advanced NSCLC.   

The relationship of clinical predictor variables such as gender, ethnicity, histology and 

environmental risk factors such as smoking history, to the clinical response has been 

explored by many studies. High response rates are observed in female non-smoking 

patients of East Asian ethnicity with lung adenocarcinoma histology [31-33]. Moreover, 

several biomarkers such as EGFR, KRAS, MET and ALK have been examined for their 

clinical application in molecular targeted therapy for NSCLC. Of these, somatic 

mutations in the tyrosine kinase domain of EGFR are associated with the greatest 

sensitivity to EGFR-TKI response, demonstrated by an 87% response and disease control 

rate [34]. 

 

1.4 Contribution 
 

The success of personalized medicine will depend on the accurate identification of 

patients who can benefit from targeted therapies [35]. This work leverages the research 

on successful predictive modeling in NSCLC that has been previously established by 

several researchers [36-38]. In this thesis, we demonstrate the development of data-driven 

decision support for patient selection in NSCLC using real-world patient data. This type 

of data-driven decision support has the potential to rapidly implement research findings 

into clinical practice and help clinicians accurately plan and deliver individualized 

treatment. Furthermore, accurately identifying patients who will respond to targeted 
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EGFR-TKI therapy will lead to improved patient outcomes, i.e., increased survival, 

decreased drug toxicity, and better quality of life.  

  

1.5 Thesis Organization 
 

The remainder of the thesis is organized as follows: Chapter 2 presents the background, 

research motivation, and core concepts related to the research question. Chapter 3 

outlines the data collection and preparation methodology with a description of the 

dataset. Chapters 4 and 5 describe the application and results from the techniques applied 

on the NSCLC dataset. Finally, Chapter 6 includes a discussion of the major findings and 

limitations of this research, potential directions for future research, and concluding 

remarks. 
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CHAPTER 2: BACKGROUND 
 

2.1 Non-Small Cell Carcinoma 
 

Lung cancer is the most commonly diagnosed cancer worldwide and also the leading 

cause of death among cancers [39]. According to Canadian cancer statistics, in 2012, an 

estimated 25,600 Canadians will be diagnosed with lung cancer and 20,100 will die of it 

[40]. Lung cancer is broadly divided into small cell cancer and Non-Small Cell Cancer 

(NSCLC); 85% to 90% of lung cancers are non-small cell [10] [41].Microscopically, 

NSCLC can be sub classified into adenocarcinoma, large cell carcinoma and squamous 

cell carcinoma, each differing with respect to histological features. Less frequent 

subtypes of NSLC include adenosquamous, pleomorphic, bronchogenic and sarcomatoid 

carcinomas [42]. 

 

Following NSCLC diagnosis, lung cancer staging is used to assess tumor growth.  The 

assessment of tumor size and spread in lung cancer staging helps to determine treatment 

options and disease prognosis. Lung cancer staging for NSCLC is based on the Tumor 

Node Metastasis (TNM) classification of primary tumor size, lymph nodal status and 

metastases and falls between Stages 0-4. Stage 3 cancer is a heterogeneous group which 

is further broken down into Stages 3A and 3B. Stage 3A is considered locally advanced 

cancer where there is spread to lymph nodes on the same side of the chest as the primary 

tumor. Stage 3B cancers have nodal involvement on the opposite side of the primary 

tumor site, whereas in stage 4, there is distant metastasis. Stage 3B and Stage 4 together 

are often referred to as “advanced NSCLC”. Approximately two-thirds of NSCLC 

presents in the advanced stage, where surgery is not an option and chemotherapy remains 

the mainstay of treatment [43]. Overall, the prognosis and survival for advanced NSCLC 

cancer remains poor. 5- year survival rates for Stages 3 and 4 are between 1-14% [44].  
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2.1.1 NSCLC Risk Factors 
 

2.1.1.1 Environmental risk factors  
 

Cigarette smoking is the strongest environmental risk factor for the subsequent 

development of lung cancer. Similarly, smoking light cigarettes, pipes, and cigars have a 

similar effect of the risk of developing lung cancer [45], [46]. Studies show that the risk 

of developing lung cancer increases proportionally to the number of cigarettes smoked 

per day and “pack years”. Prolonged exposure to second hand smoke also increases the 

risk of lung cancer in non-smokers. In NSCLC, smoking history is more common in 

squamous cell carcinoma and is less frequently found in adenocarcinomas. 

In addition to smoking, other environmental risk factors include exposure to radiation, 

radon, arsenic, chromium, nickel, tar, and air pollution. Furthermore, exposure to  a 

combination of these factors may have a synergistic carcinogenic effect, increasing the 

risk of developing lung cancer. 

2.1.1.2 Clinical risk factors  
 

Approximately 70% of lung cancer patients are over the age of 65 [47] and the median 

age of diagnosis in NSCLC is 71 years [48]. An analysis of the Surveillance, 

Epidemiology, and End Results registry demonstrated that overall survival is better in 

patients <40 years compared to those who are >40 years [48]. 

In addition to cigarette smoking and other environmental factors, gender differences 

influence the risk of lung cancer [49], [50]. After controlling for smoking, females have 

been shown to carry triple the risk of lung cancer compared to men and non-smoking 

females have higher risk for adenocarcinoma [50]. Evidence supports the biological 

hypothesis that tobacco carcinogens increase the metabolism of steroidal estrogens which 

can modify both tumor suppressor and proto-oncogenes in female smokers [51]. 
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2.1.1.3 Genetic risk factors 
 

In addition to environmental and clinical risk factors, a number of genetic risk factors 

have been shown to contribute to the development of NSCLC. Of these genetic variables, 

three of the most well studied and documented are the Epidermal Growth Factor 

Receptor (EGFR), gene fusion of Echinoderm Microtubule-associated Protein-Like 4 and 

Anaplastic Lymphoma Kinase (EML4/ALK) and Kirsten Rat Sarcoma viral oncogene 

homolog (KRAS). 

Epidermal Growth Factor Receptor  

 

The Epidermal Growth Factor Receptor (EGFR) belongs to the ErbB family of receptor 

tyrosine kinases. Mutations of the Tyrosine Kinase (TK) domain of EGFR results in 

activation of signalling pathways leading to increased proliferation, angiogenesis, 

metastasis, and decreased apoptosis [52]. EGFR TK mutations occur in exons 18-21 and 

are classified into three main categories. Class I mutations are in-frame deletions in exon 

19, where there is usually a loss of 4-6 amino acids (746-752) and these account for 

nearly 44% of all EGFR TK genetic mutations. Class II mutations are single-nucleotide 

substitutions which may occur in any of the four exons of the TK domain, the most 

common of which is the L858R substitution in exon 21.Class III mutations are in-frame 

duplications and/or insertions in exon 20 and these constitute only 5% of mutations in 

EGFR TK domain [53], [54]. Deletions in exon 19 and L858R constitute the classical 

activating mutations in EGFR TK domain [53] which occur in female East Asian never 

smokers with adenocarcinomas [54]. 

 

EML4-ALK 

EML4-ALK results from the fusion of the Anaplastic Lymphoma Kinase (ALK) with the 

Echinoderm Microtubule-Associated Protein-Like 4 (EML4) on chromosome 2p. This 

fusion oncogene occurs in a unique subset of NSCLC patients; mostly young males [55] 

who are never/former light smokers [56], [57]. 
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EML4-ALK translocations occur more frequently in NSCLC adenocarcinoma 

histological subtypes than in squamous cell carcinomas [58]. Patients with EML4-ALK 

are resistant to EGFR-TKI targeted therapy and their clinical response to platinum-based 

chemotherapy is similar to EGFR wildtype patients [55]. ALK inhibitors may serve as 

therapeutic targets for EML4-ALK and ongoing studies will validate their use for this 

distinct cohort of NSCLC [57]. 

 

 KRAS 

 

KRAS is a member of the RAS family of oncogenes, a class of guanosine triphosphate 

(GTP)-binding proteins involved in cellular signalling transduction. RAS activation 

promotes a number of mutagenic events including cell proliferation, upregulation of 

autophagy, and suppression of apoptosis to support oncogenic transformation [59]. 

Mutations in the KRAS protooncogene are found in nearly 30% adenocarcinomas and 

5% squamous cell carcinomas of NSCLC and amino acid substitutions at residues G12 

and G13 are the most commonly reported [60]. 

KRAS , EGFR and ALK mutations are almost always mutually exclusive and the 

presence of  KRAS mutations occurs in EGFR wildtype and EML 4-ALK translocation 

negative  individuals. In advanced metastatic NSCLC , KRAS mutations are negative 

predictors of therapy from EGFR TKIs. Since KRAS mutations occur downstream of 

EGFR, they remain uncontrolled by inhibitors of EGFR TK. 

2.1.2 Histological and Molecular Classification of NSCLC 
 

Traditionally, oncologists have divided lung cancer into small cell and non-small cell. 

The three main subtypes of NSCLC include adenocarcinoma, squamous cell carcinoma, 

and large cell carcinoma while the less common subtypes are adenosquamous, 

bronchioalaveolar, carcinoid, and undifferentiated tumors [61]. This traditional 

distinction of small cell and non-small cell is no longer sufficient to diagnose lung cancer 

and there is a need to rethink this traditional paradigm of morphological diagnosis. 
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Molecular sub-classification testing is becoming increasingly important necessity to 

determine the response to targeted therapy. Interestingly, histology often guides 

mutation/biomarker testing since specific mutations occur more commonly in NSCLC 

subtypes [62]. 

Nine lung cancer molecular classifications have been proposed, where tumors are 

grouped according to genetic alterations and molecular pathway aberration.  Each 

division is associated with biomarkers assays, targeted therapies and guidelines for 

clinical decision making. Subtype 1 of this classification consists of NSCLC tumors with 

an EGFR genetic defect or specific protein signature. This includes Class I-III mutations 

described above as well as the T790M mutation in exon 20 [63]. 

 

2.1.3 NSCLC Molecular Therapeutics 
 

Platinum-based chemotherapy has long been the standard of care for advanced NSCLC. 

The advances in tumor biology have led to the discovery of agents which target specific 

molecular defects involved in carcinogenesis, referred to as targeted therapies. EGFR 

Tyrosine Kinase Inhibitors (TKIs) such as erlotinib and gefitinib target EGFR mediated 

signalling and have shown the most promising results for advanced NSCLC in clinical 

trials [14], [31], [32], [64-67]. 

EGFR sensitizing mutations such as exon 19 deletions and L858R have shown the 

greatest benefit in advanced NSCLC and thus molecular testing is increasingly being 

used to determine targeted therapy [68]. A number of studies have examined and 

established the clinicopathological and molecular profile of advanced NSCLC patients in 

association with response to EGFR TKIs. However, there is a lack of predictive and 

prognostic models to assist in this clinical decision making process and achieve better 

health outcomes. 

 

Despite these developments, EGFR mutation testing remains underutilized [ 69] in 

NSCLC patients. The National Comprehensive Cancer Network (NCCN) conducted a 
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survey on clinicians’ patterns of care and preferences for testing of patients with NSCLC 

for EGFR mutations at the time of presentation with locoregional, distant recurrence, or 

Stage 4 metastatic disease. 65% respondents indicated that their patients were 

“sometimes” or “often” tested for EGFR mutations in advanced or metastatic disease 

[70]. 

 

2.2 Data-Driven Decision Models 
 

Data-driven predictive models in medicine have become popular through the use of 

medical informatics. Adequately modeling of clinical domain problems allows predictive 

models to assist clinicians with medical prevention, diagnosis, treatment and 

management. A number of predictive models have been designed for diagnosis and 

prognosis of lung cancer; the following sub-sections describe the evolution of predictive 

modeling in NSCLC using clinical factors and their various combinations with 

pathological and molecular variables. 

2.2.1 Clinical Predictive Models 
 

The most common predictive models in medicine employ patient demographic and 

clinical variables such as age, gender, ethnicity and smoking status. Lee et al used the 

Cox proportional hazard regression model to analyze multiple clinical factors such as 

age, gender, stage, tumor size, neoadjuvant therapy and adjuvant therapy to predict 

recurrence of NSCLC after surgical resection. The resulting model had reliable 

predictability in distinguishing high and low risk recurrence, however the exclusion of 

biologic markers weakened its robustness [71]. Using univariate and multivariate 

analyses, Huang et al identified survival prognostic clinical factors in chemonaive 

advanced NSCLC and constructed a normogram to predict survival [72]. The Cox 

proportional hazards model has been used for both univariate and multivariate analyses of 

clinical prognostic variables in advanced NSCLC. Jeremic et al demonstrated that age, 

gender performance status, pretreatment weight loss,  and number of metastatic sites  

were prognostic indicators of survival in advanced NSCLC [73]. In addition, Mandrekar 
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et al showed that hemoglobin levels and white blood cell count are also prognosticators 

of OS and TTP [74] and Tsao et al found that never-smokers had lower rates of 

progressive disease and improved overall l survival than smokers who received 

chemotherapy or chemoradiation [75]. 

 

2.2.2 Clinicopathological Predictive Models 
 

Pathological variables such as TNM staging and histological sub-typing are critical for 

cancer diagnostic assessment and clinical decision making. Highlighting the importance 

of these variables, a number of researchers have incorporated them into their predictive 

models. For example, a predictive model combining clinicopathological factors involved 

in peri-operative mortality of NSCLC was developed by Strand et al [76] using 

multivariate analyses with multiple logistic regression models. In another study, five 

clinicopathological factors (vascular invasion, lymphatic permeation, histological 

subtype, papillary carcinoma component, and smoking status) involved in the recurrence 

of small adenocarcinomas of male patients were identified in a logistic predictive model 

by Sakuma et al [77]. Other studies have also reported on the role of combining 

demographic, clinical and pathological variables to produce predictive models [78-81]. 

2.2.3 Gene Expression Prediction Models 
 

Several gene signatures derived from microarray expression profiling have been 

identified to predict clinical outcomes in NSCLC [82-87]. Gene signatures for the 

histological classification and post-surgery survival of NSCLC patients were developed 

and validated by Hou et al using Cox proportional hazards regression analysis [88]. A 4-

gene Cox model was developed by Mitra et al to determine the prognostic outcome of 

Stages 1-3 non-small cell carcinoma using microarray profiling of American and Korean 

patient tumor samples. These markers were associated with recurrence in both 

demographics and remained independent of patient clinical characteristics [89]. Baty et al 

demonstrated that a 13-gene metagene obtained using expression profiling from 
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bronchoscopic and surgical biopsies was correlated with both histological classification 

and prediction of survival in NSCLC. These 13 genes were independent predictors of 

survival when compared with International Union against Cancer, 6th edition (UICC) 

stages, especially in patients with less than 1-year survival [90]. Although gene 

expression profiling holds remarkable potential for personalized cancer prediction 

models, its application is currently limited by the reliability and reproducibility of results 

for the diagnosis, classification and prognosis of NSCLC. 

2.2.4 EGFR Mutation Prediction Models 
 

Advanced NSCLC patients with somatic mutations of EGFR show dramatic response to 

treatment with EGFR-TKIs.  At present, only two EGFR-TKIs are approved specifically 

for treatment of NSCLC: erlotinib (Tarceva®) and gefitinib (Iressa®). The National 

Comprehensive Cancer Network (NCCN) clinical practice guideline recommends EGFR 

mutation testing for advanced NSCLC patients who are candidates for TKI therapy such 

as erlotinib and gefitinib [30]. Following this update, the American Society of Clinical 

Oncology (ASCO) also issued a provisional clinical opinion recommending EGFR 

testing for patients considering TKI chemotherapy with a view to improving response and 

progression-free survival in this cohort. EGFR mutations have been used for genotype-

oriented risk prediction and therapeutic response to TKIs in NSCLC [91-96].  

 

2.2.5 Integrated Predictive Models 
 

In the era of genomic and personalized medicine, the development of predictive models 

that integrate molecular and clinical data can provide guidance and recommendations to 

clinicians on individualized risk classification and disease management to help improve 

health outcomes. The analysis and impact of complex factors involved in disease 

development and progression carries with it both predictive and prognostic value. 

 
Predictive models that combine both clinical and molecular patient information have 

been successfully developed in many areas of oncology including breast cancer 
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recurrence [97], large B-cell lymphoma survival [98], and prostate cancer recurrence 

after radical prostactectomy [99]. In lung cancer, mixed models that fuse the 

multifactorial features have been shown to provide superior prognostic benefit [100-103]. 

A few of these composite predictive models that combine anatomical, clinical, and 

molecular factors have been developed specifically for NSCLC. Lopez et al developed a 

prognostic survival model for early stage NSCLC using a supervised learning 

classification algorithm and clearly demonstrated that the prognostic discrimination of 

integrated models surpasses that of individual risk factors [36]. Spira et al constructed a 

gene expression biomarker model to predict lung cancer in smokers and then tested it in 

combination with clinical information, suggesting that an integrated model provided 

superior specificity for diagnosis[37], [38].Furthermore, a number of studies have 

explored the interaction of clinical features, EGFR mutations and TKI treatment response 

using logistic regression [104]. Many clinical trials have investigated factors associated 

with TKI sensitivity, suggesting that sensitizing EGFR mutations are associated with 

response to TKIs and an improvement in overall survival in NSCLC patients [92], [105], 

[106]. Multivariate logistic regression analysis is the most popular technique to test the 

impact of clinicopathologic variables and genetic mutations on response as assessed by 

disease control rate or objective response. 

2.3 Predictive Analytics and Clinical Intelligence in NSCLC 
 
In an effort to support clinicians and oncologists in medical decision-making, commercial 

and freely available products are being developed to promote the utility of pertinent and 

actionable information by clinicians at the point of care. The Vanderbilt-Ingram Cancer 

Center’s approach to address the challenge of translating genomic discoveries to the 

bedside is the integration of a clinical decision support system into their electronic health 

record which uses My Cancer Genome as a knowledge base. This knowledge base is 

continuously updated with NSCLC driver mutations, their clinical significance, genome 

directed therapies and relevant clinical trials at both at Vanderbilt and world-wide centers 

[107]. IBM has signed a recent collaboration with Memorial Sloan Kettering Cancer 

Center, to build an intelligence engine using natural language processing capabilities to 

convert the medical center's free text consult notes into usable data. Their first project 
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focuses on NSCLC, in which the technology will use 14-20 data elements including 

patient tumor size, metastasis, and genetic mutations to return a list of possible diagnostic 

tests and chemotherapy protocols to choose from [108]. 

 

2.4 Chapter Summary 
 

Currently, the rate of production and collection of biomedical data surpasses current 

resources to determine its actionability in clinical practice. There is a demand to develop 

clinical decision support tools as genetic variations and their associations to disease 

subtypes and treatment response are discovered [109]. Using statistical and 

computational approaches, predictive tools can assimilate rich sources of data from 

patient records and biomedical databases to analyze therapeutic options and their 

effectiveness.  A review of the literature reveals that Cox proportional hazard models 

have been used to relate several risk factors considered simultaneously, to survival time 

in advanced NSCLC patients. Additionally, multiple regression analysis is extensively 

employed to demonstrate the impact of clinical, pathological and genetic risk factors on 

objective response to EGFR-TKI therapy. Despite these developments, limited studies 

have explored the role of predictive modeling using EGFR mutations and 

clinicopathological risk factors in advanced NSCLC. The wealth of NSCLC patient data 

can be transformed into novel, potentially useful and understandable information using 

knowledge discovery methods. The subsequent interpretation, visualization and 

consolidation of this discovered knowledge will support scientific and ultimate healthcare 

goals. 

 

This work illustrates the integration of various sources to create a small but representative 

sample of advanced NSCLC, complete with demographics, pathological diagnosis, and 

EGFR mutation data. It then presents the application of knowledge discovery techniques 

on this integrated dataset to detect associations and patterns which may be indicative of 

biomedical relations. This process is valuable not only to validate many of the recognized 

associations, but to reveal new and unexpected connections between variables affecting 

EGFR-TKI response. The research demonstrates and confirms the additional predictive 
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power of classifiers using integrated data versus clinical parameters alone to predict 

responsiveness to EGFR-TKIs in advanced NSCLC. Specifically, the significance and 

explanatory power of decision trees in designing a learning model for clinical 

management is explored. 
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CHAPTER 3: DATA COLLECTION AND PREPARATION 
 
This chapter will present the strategy that was devised to collect, collate, and prepare data 

based on the practical approach to successful secondary data analysis [110]. The data 

collection strategy involved the use of secondary sources of data to generate research data 

sets suitable for answering the research questions.  

Data collection begins by first defining the attributes of interest. In order to do this, steps 

from evidence-based medicine (EBM) and practice were borrowed, as depicted in Figure 

3.1. The first step is the identification of the clinical problem and the development of 

specific research question(s). Following this step, the research question is decomposed 

into its constituent concepts in order to facilitate a focussed literature review which is 

conducted using the highest levels of evidence. Next, systematic reviews and meta-

analyses guided the determination of the most relevant attributes to further explore 

pursuing the research question. After identification of attributes, multiple secondary 

sources of data were ascertained. The data extraction processes from each of these 

sources is described, followed by their integration to formulate a single dataset. To 

prepare the dataset for use, a series of data pre-processing steps were taken including 

dimensionality reduction, discretization and imputation of missing values.  

3.1 Determination of Attributes 
 

Before commencing data collection, steps were taken to determine the attributes which 

were most relevant to the research problem. The steps followed in this process were to 

identify the clinical problem, generate a specific research question, identify components 

of the question, assess the quality of the evidence, retrieve the highest quality of 

evidence, and select the most relevant attributes for further exploration. These steps are 

discussed in greater detail below.  

1. Identify the clinical problem 

The development of molecular targeted therapies has revolutionized treatment options 

and clinical outcome for patients with advanced stage NSCLC. Multiple factors such as 
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gender, ethnicity, smoking status and EGFR mutations are associated with greater 

sensitivity to these drugs. Despite tremendous progress on the research front, there is 

little headway being made for clinical decision support tools for patient selection in the 

personalized treatment for NSCLC.  

 

Figure  3.1 Overview of steps used in the determination of attributes 

 

2. Generate specific research question(s) 

After determining the clinical problem, a specific research question was generated: 

Can data-driven decision support predict the response to EGFR-TKI therapy (such as 

erlotinib and gefitinib) in patients with advanced NSCLC? 

As part of this investigation, the relationships that exist between the attributes of interest 

will also be explored. 
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Note here that the research question has both a clinical and informatics portion. The 

clinical issue is the prediction of response to EGFR-TKIs in patients with advanced 

NSCLC - this will be referred to as the clinical research question in the remainder of the 

chapter. Data-driven decision support is the tool [111] that will be developed to solve the 

clinical problem.  

 

3. Identify components of question  

Evidence-based medicine proposes that clinical problems in research, teaching and 

practice can be generated using the PICO (Patient/Population, Intervention, Comparison 

and Outcome) model [112]. This model identifies the critical components used in the 

construction of a research question, especially in EBM [113], however its use can also be 

extended to experimental and predictive research. Using the PICO model, the clinical 

research question was decomposed into its main components as follows: 

Patient: the population of interest are patients with diagnosed advanced NSCLC 

Intervention: the therapeutic intervention they receive is erlotinib or gefitinib. 

Comparison: comparison is the only optional component of the PICO framework and 

the current research does not consider an alternative to EGFR-TKI therapy. The research 

scope is limited to patient selection in NSCLC, and does not extend to the suggestion or 

comparison of alternative treatment options. 

Outcome prognosis; tumor response to treatment 

Clearly defining the building-blocks of the research question made it possible to identify 

key concepts and terms to explore further by performing a literature search. 

4. Assessing Quality of Evidence 

Before commencing a literature search, the quality of the evidence gathered was assessed. 

Evidence that is systematically acquired, analyzed and critically appraised is the 

cornerstone of EBM [112].  To formulate a response to a clinical research question, EBM 
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relies on the highest quality of evidence for clinical use in patient care. The Center for 

Evidence-based medicine (CEBM) promotes the practice of EBM by providing support 

and resources for the teaching, training and development of to practicing clinicians and 

researchers. CEBM has developed details for levels and quality of evidence [114]; the 

hierarchy of evidence is popularly depicted in pyramid form as shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Hierarchy of quality of evidence 

 

The literature review presented in Chapter 2 was based mainly on primary sources 

retrieved from the MEDLINE and EMBASE databases, including experimental studies 

and original research publications. Review and examination of these primary sources was 

the initial step in understanding the attributes and associations relevant to the clinical 

research question.  The validity of a primary source is determined solely by the individual 

researchers who report the personal experience of their discoveries. Often, such reports 

include novel and unique variables and associations related to the research. 

Determination of variables from primary sources of evidence would result in a lengthy 
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list, possibly with invalid or spurious associations. For example, several unique gene 

signatures that predict clinical outcomes in NSCLC have been developed [83-86], 

however, they have not been validated as reliable markers in the clinical setting.  

To determine the most valid and reliable predictors and outcome attributes, a number of 

secondary sources of appraised and synthesized evidence were employed, forming the 

peak of the evidence pyramid as shown in Figure 3.2. These sources were used as the 

basis in determining and defining the most relevant attributes to study. 

 

5. Retrieval of Best Evidence 

A literature search was initiated through the Cochrane Library, a key resource for 

synthesized evidence in medicine and healthcare [115], [ 116]. Advanced searching 

options allow four ways to search and browse the Library databases. The Search manager 

creates a search strategy which allows multiple entries of key words or thesaurus terms. 

Cochrane Library’s thesaurus is constructed from the MeSH (Medical Subject Headings) 

thesaurus which groups medical concepts appearing as various terms in literature, under 

subjects headings to allow a standardized vocabulary search. MeSH is displayed as a tree 

structure and permits the selection of an exact term or an explosion of terms that appear 

above or below in the hierarchy. 

From the concepts identified using the PICO framework, a MeSH search for key words 

“non-small cell lung cancer”, “tyrosine kinase inhibitors”, and “treatment outcome” was 

conducted.  For NSCLC, the MeSH exact term “Carcinoma, Non-Small-Cell Lung” was 

found and selected. The closest match phrase for EGFR-TKIs, such as erlotinib and 

gefitinib, was “Protein Kinase Inhibitors”. Treatment evaluation and efficacy was 

matched to “Prognosis”. This was the only MeSH term where the search was expanded in 

the hierarchy to include disease free survival as well as treatment outcome.   

A total of 43 results from the six databases were retrieved using this search. No Cochrane 

Systematic Reviews were identified; however, eight reviews from Database of Abstracts 

of Reviews of Effect (DARE), 31 trials from the Cochrane Central Register of Controlled 



 
 

25 
 

Trials (CENTRAL) and four economic evaluations from NHS Economic Evaluation 

Database (EED) were retrieved. A summary of the relevant provisional and structured 

abstracts from DARE is provided in Table 3.1.  

 

Type of abstract Original article title Year 

Structured abstract 

EGFR-targeted therapies combined with 
chemotherapy for treating advanced non-small-cell 

lung cancer: a meta-analysis 
2011 

Epidermal growth factor receptor-tyrosine kinase 
inhibitor therapy is effective as first-line treatment of 

advanced non-small-cell lung cancer with mutated 
EGFR: a meta-analysis from six phase III 

randomized controlled trials 

2010 

Erlotinib and pemetrexed as maintenance therapy for 
advanced non-small-cell lung cancer: a systematic 

review and indirect comparison 
2012 

Maintenance therapy with continuous or switch 
strategy in advanced non-small cell lung cancer: a 

systematic review and meta-analysis 
2011 

Efficacy of erlotinib in patients with advanced 
non-small cell lung cancer: a pooled analysis of 

randomized trials 
2011 

Provisional abstract 
Somatic EGFR mutation and gene copy gain as 

predictive biomarkers for response to tyrosine kinase 
inhibitors in non-small cell lung cancer 

2010 

 

Table 3.1 Structured and provisional abstracts from Cochrane library 

 

 

6. Selection of attributes 

The Cochrane Library databases provided a rich source of appraised evidence. 

Provisional and structured abstracts, studies included within the systematic reviews, and 
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trials were examined in order to discover the most important attributes relevant to the 

clinical research question. These high quality sources were used to guide the selection of 

important attributes, their relationships and associated context. For example, in [117] the 

authors performed a pooled analysis of randomized controlled trials (RCT), reporting on 

the efficacy of erlotinib-based regimens in advanced or metastatic NSCLC.  A summary 

of the trial characteristics included the attributes of age, gender, performance status, 

adenocarcinoma, and smoking history. The primary endpoints of the analysis were PFS 

and OS and the authors concluded that erlotinib-based regimens increased response rates 

and improved PFS as first-line maintenance therapy or as a second/third-line therapy 

compared with placebo.  An examination of this systematic review highlighted some of 

the attributes (age, gender, smoking, performance status, PFS, and OS) that must be 

considered when seeking to determine responsiveness to EGFR-TKIs. 

Table 3.2 provides a summary of the attributes, their definitions, function, and 

measurement scale. The definitions are in no way meant to provide an absolute 

explanation of the term, but merely serve to familiarize the reader with an operational 

definition, as they will be used in the remainder of the thesis. All variables are 

categorized into groups derived from the work by [118], [119], [36]. Clinical attributes 

broadly include patient demographics such as age and gender as well as other features 

recorded in history taking including patient ethnicity, smoking status, and performance 

status (PS). Pathological attributes consist of the features resulting from surgical 

pathology procedures such as tissue biopsy for diagnosis, histological examination for 

cancer classification, and cancer staging.  The research question focuses on the outcome 

from EGFR-TKIs which are molecularly targeted agents. The assumption is that patients 

receiving such therapies will be screened for genetic mutations. The Molecular attribute 

group includes the results of EGFR and KRAS mutation testing. Studies report the results 

of mutation testing in various manners; this is may be as simple as mutation 

positive/wildtype or details of the exact amino acid sequence change. Intervention 

attributes provide details of the targeted therapy (erlotinib, gefitinib or a combination of 

these with platinum agents) as well as details of the drugs used in first, second and third-

line treatment. Finally, the response attributes include the various features used to 
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measure prognosis and the efficacy of the targeted therapy such as objective tumor 

response, progression-free survival and overall survival.  

In the context of the current research, attribute function is defined as either predictor or 

outcome. The underlying research hypotheses of reviewed randomized clinical trials 

assumed a causal association between attributes that occurred prior to the outcome of 

interest. Attributes that occurred prior to the final effect are called predictive attributes 

and the measured response of the predictors is called the outcome attribute [120].  

Measurement scale is generally divided into nominal and numeric, where nominal 

variables are names or classes with unique distinguishing characteristics and categorical 

nominal variables have one or more categories or levels with no inherent ranking 

assigned. Numerical attributes hold numeric values and among these, discrete numerical 

attributes takes on distinct possible numeric values whereas continuous numerical 

attributes can take on infinite number of real values. 

 Attribute Definition Function 
Measurement 

scale 

C
lin

ic
al

 a
tt

ri
bu

te
s 

Age Time elapsed since birth 
[121] 

Predictor 
Continuous 

numerical 

Gender Socially constructed identity 
of male or female [122] Predictor 

Categorical 

nominal 

Smoking status 

Never smokers= smoked 
<100 cigarettes over their 

life-time. Former smokers= 
smoked ≥100 cigarettes in 

their lifetime but had 
stopped smoking for ≥ 1 

year before the diagnosis of 
lung cancer [123] 

Predictor Categorical 
nominal 

Ethnicity Group of people with 
common cultural heritage Predictor Categorical 

nominal 

Performance 

status (PS) 

Standard way of measuring 
cancer patients ability to 
perform ordinary tasks 

[124] 

Predictor 

 

 

Discrete 
numerical 



 
 

28 
 

Pa
th

ol
og

ic
al

 a
tt

ri
bu

te
s 

Diagnosis 

 

Process of identifying 
disease [125]; often by 

diagnostic surgical 
pathology of cancer tissue 

specimen 

Predictor Categorical 
nominal 

Stage 

 

 

 

The extent of a cancer in the 
body. Staging is usually 
based on the size of the 

tumor, whether lymph nodes 
contain cancer, and whether 
the cancer has spread from 

the original site to other 
parts of the body [126] 

Predictor 
Discrete 

numerical 

M
ol

ec
ul

ar
 

at
tr

ib
ut

es
 

EGFR mutation 
status 

 
 

Detectable change in EGFR 
gene that causes a change in 

genotype 
Predictor Categorical 

nominal 

KRAS mutation 
status 

Detectable change in KRAS 
gene that causes a change in 

genotype 
Predictor Categorical 

nominal 

In
te

rv
en

tio
n 

at
tr

ib
ut

es
 

Targeted 
therapy 

Drugs that block the growth 
and spread of cancer by 
interfering with specific 

molecules involved in tumor 
growth and progression 

Predictor Categorical 
nominal 

First line 
therapy 

The first treatment given for 
a disease. When used by 
itself, first-line therapy is 

the one accepted as the best 
treatment [127] 

Predictor Categorical 
nominal 

Second line 
treatment 

Treatment that is given 
when initial treatment (first-
line therapy) doesn’t work, 

or stops working [128] 

Predictor Categorical 
nominal 

Third line 
treatment 

Treatment that is given 
when both initial treatment 

(first-line therapy) and 
subsequent treatment 

(second-line therapy) don’t 
work, or stop working [129] 

Predictor 

Categorical 
nominal 
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R
es

po
ns

e 
at

tr
ib

ut
es

 
Progression-free 
survival (PFS) 

The length of time during 
and after the treatment of a 
disease, that a patient lives 
with the disease but it does 

not get worse[130] 

Outcome 
Continuous 
numerical 

 
 

Overall survival 
(OS) 

Patients with a specific type 
and stage of cancer who are 
still alive—that is, have not 

died from any cause—
during a certain period of 

time after diagnosis 
[131] 

Outcome Continuous 
numerical 

Tumor response The observation of 
therapeutic benefit from 
specific treatment   [132] 

Outcome Categorical 

nominal 

 

Table 3.2 Description of relevant attributes 

 

3.2 Data Collection  
 

The secondary use of clinical data in support of medical practice, research and predictive 

analytics is becoming increasingly popular. Potential sources of existing data for 

secondary use were identified,  including the National Center for Health Statistics 

(NCHS) [133] and Surveillance, Epidemiology, and End Results (SEER) Program, cBIO 

cancer genomics portal [134], Cancer genetics network (CGN) [135], Database of 

genotypes and phenotypes (dbGaP) [136], and DNA-mutation Inventory to Refine and 

Enhance Cancer Treatment (DIRECT) [137]. Several of these databases offered public 

use of microarray data but did not report on EGFR and KRAS DNA mutations which 

were critical to the research analysis. DIRECT collects many of the same attributes [138], 

[139], but has restricted access due to copyrights on the data. Although it was tempting to 

rely on one source of data which was easy to acquire and analyze, it was not possible to 

identify a single source that could provide data to answer the current research question. 

As an alternative, the decision was made to use freely available, multiple data sources to 

create a dataset. These sources include PubMed, Catalogue of somatic mutations in 

cancer (COSMIC) [140], and EGFR Mutations database (SM-EGFR-DB) [141]. 
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As described previously, secondary sources of evidence, such as those higher up in the 

evidence pyramid, were used to identify well-studied and appraised predictor and 

outcome attributes involved in determining the treatment response to EGFR-TKIs in 

advanced NSCLC. However, the secondary sources were a synthesis of evidence and did 

not provide patient-level data for each of the attributes. Consequently, primary sources 

and mutation databases were used to identify specific instances having those attributes. 

The systematic search strategy for publications from these sources is described below. 

PubMed 

The MeSH terms ("Carcinoma, Non-Small-Cell Lung" AND "Receptor, Epidermal 

Growth Factor") were used to search for case series, case reports, and research 

publications between the years 2000-2012. Only articles on Human species and published 

in English were selected. The bibliographies of these articles also pointed to relevant 

literature containing patient-level data. 

Catalogue of Somatic Mutations in Cancer  

The Catalogue of somatic mutations in cancer (COSMIC) provides a distribution of 

somatic mutations for EGFR and a list of publication references for each of these 

mutations. Articles which provided details of mutated and non-mutated samples are 

assigned COSMIC identification numbers. Each mutated sample may have additional 

information associated with it. 

 Somatic Mutations in EGFR Database  

The Somatic Mutation in EGFR Database is a collection of EGFR mutations in NSCLC 

and other cancers. It provides links to original articles and a table of representative 

sample origins, response to treatment, EGFR mutation site, and mutations detection 

method, pathology of NSCLC, gender and smoking status amongst other attributes. 

This search resulted in the identification of 1962 papers from PubMed, 4681 unique 

mutated samples (each associated with a PubMed ID) from the COSMIC database and 

167 articles from SM-EGFR-DB. There were two main types of publications; original 
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articles, including reports from both prospective and retrospective studies as well as case 

reports. 

A manual review was performed for articles that met the inclusion and exclusion criteria 

(Table 3.3). Some authors reported patients and rare mutations in multiple papers and 

care was taken to delete duplicate entries for individual cases. A summary table of data 

sources with author names, article and journal title, year of publication is provided in the 

Appendix A. 

Inclusion criteria Exclusion criteria 

 

Full text available 

 

English language 

 

Human studies 

 

Individual patient-level data 

 

Minimum inclusion variables:  gender, 

smoking status, confirmed diagnosis, advanced 

stage, EGFR mutation status, treatment with 

erlotinib, gefitinib, or a combination of these 

with other drugs, and tumor response 

 

Additional variables: age, ethnicity, 

performance status, KRAS mutation status, 

line of treatment, PFS, and OS 

 

 

 

Articles in foreign language 

 

In-vitro studies 

 

Aggregate patient data 

 

Studies reporting acquired EGFR-

TKI resistance 

 

Treatment with second-generation 

EGFR-TKI such afatinib 

 

 

 

 

Table 3.3 Inclusion and exclusion criteria for data collection 
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3.3 Data Extraction 
 

To demonstrate the data extraction process, one example from an original research article 

and one case report is presented.  

Original research article 

Studies have been reported using selected patient-level information in addition to 

aggregate statistics of the study population. An example is shown Figure 3.4 from [142], 

where the authors evaluated the efficacy of gefitinib in patients with NSCLC and the 

correlation of EGFR mutations with the response. In their methods, Zhang et al clearly 

define the patient eligibly criteria, drug administration and assessment of response using 

RECIST. EGFR gene sequencing was performed on 30 patients of which 12 had 

mutations. Clinical features and mutation characteristics of mutation positive patients are 

provided in the table. Each row of the table represents an individual case and the columns 

provide the corresponding values for each variable. For example, Case 1 is a male patient 

who was diagnosed with adenocarcinoma. This patient had stable disease (SD) upon 

assessment of tumor response after treatment with gefitinib. His PFS was 3.2 months and 

OS was 24.8 months. EGFR gene sequencing revealed amino acid sequence change 

E746-A750 in exon 19. Patient-level data presented in tables from 34 articles was 

transferred to a data spreadsheet. 
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Figure 3.3 Data extraction from sample research article 

From X. T. Zhang, L. Y. Li, X. L. Mu, Q. C. Cui, X. Y. Chang, W. Song, S. L. Wang, M. Z. 
Wang, W. Zhong, and L. Zhang, “The EGFR mutation and its correlation with response of 
gefitinib in previously treated Chinese patients with advanced non-small-cell lung cancer,” Ann 
Oncol, vol. 16, no. 8, pp. 1334-42, Aug, 2005. by permission of Oxford University Press. 

Case report 

Case reports are descriptions of an individual case or up to three cases [143], providing 

details of patient history, clinical presentation, evaluation, diagnostic testing, and follow-

up care. Often times, they are used to communicate unique associations between patient 

signs and disease, novel therapeutic approaches, or unusual events in the course of 

treatment. Although there is much argument about the usefulness of case reporting, 

especially in a world of evidence-based medicine and practice, such reports provide 

substantial contribution to the understanding of known diseases and the recognition of the 

unexpected [144]. For this research, 14 case reports were identified which related to the 

research question and provided the key elements noted in Table 3.3. An example of a 

typical case report with highlighted variables and its data representation is shown in 

Figure 3.5. 
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Figure 3.4 Data extraction from sample case report 

 

In the above example, patient demographics of gender and age are stated immediately. 

Further details of patient history reveal that this 72 year old female was diagnosed with 

Stage 4 acinar adenocarcinoma (diagnosis). After she demonstrated disease progression 

with first-line chemotherapy, gene sequencing revealed an exon 19 deletion (EGFR 

mutation). Erlotinib (EGFR-TKI) was chosen as the second-line therapy and disease 

assessment two months later showed partial tumor response (PR). 

A dataset was created by combining the tabular individual-level participant data reported 

by 34 research articles and 14 case reports. Final data representation was in the form a 

table where the individual columns represented the attributes and rows represented 

instances. 
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3.4 Data Pre-processing 
 
Integration of data from multiple sources often results in incomplete and noisy data. The 

quality of the data affects any subsequent analytic method, thereby making data pre-

processing a critical stage of data preparation. The data pre-processing methodology is 

represented in Figure 3.5. 

 
 

Figure 3.5 Data pre-processing methodology 
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Attribute Missing (%) Type 

Age 25 Numeric 

Gender 5 Nominal 

Smoking status 24 Nominal 

Ethnicity 67 Nominal 

Diagnosis 6 Nominal 

Stage 47 Nominal 

EGFR mutation type 0 Nominal 

KRAS mutation type 48 Nominal 

1st line therapy 64 Nominal 

2nd line therapy 68 Nominal 

3rd line therapy 78 Nominal 

Target drug or combination 0 Nominal 

RECIST Response 3 Nominal 

PFS 53 Numeric 

OS 49 Numeric 
                   

Table 3.4 Initial attributes with missing value frequency counts 

 

 

Manual feature selection 

Upon reviewing the initial dataset, it was observed that there was consistency in the 

reporting of some values over others. Manual feature selection was performed; a list of 

the removed attributes and rationale for elimination are explained below. 

Ethnicity:  The estimated frequency of EGFR mutations in East Asians is 30-40% [145], 

compared to 10-15% for non-Asians [105], [146].  However, sensitizing mutations in 

EGFR confer sensitivity to EGFR-TKIs such as gefitinib, irrespective of ethnicity [147]. 
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Case reports often provided complete demographic and clinical profile, but research 

studies rarely reported sample ethnicity.  

Stage: The research question was limited to determining the efficacy of erlotinib and 

gefitinib in advanced NSCLC. As described in Chapter 1, locally advanced and advanced 

NSCLC include Stages 3 and 4. Given that the selection of cases was restricted to 

advanced NSCLC, the attribute for stage did not provide additional information. 

KRAS mutation status: EGFR and KRAS mutations are generally mutually exclusive; the 

presence of one indicates the absence of the other [148]. Studies have investigated the 

predictive power of KRAS mutations for chemotherapy benefit [149], [150], however 

results have not been definitive because of the small sample size. Evidence does not 

support KRAS mutational analysis for routine clinical use [151].  

Lines of treatment: Erlotinib is approved for first-line treatment in patients with 

metastatic NSCLC harboring EGFR exon 19 deletions or exon 21 L858R substitute 

mutations. It is also approved for maintenance therapy in locally advanced or advanced 

NSCLC patients who do not show progression after first-line treatment with a platinum-

based chemotherapy. Gefitinib is approved in the European Union for locally advanced 

or metastatic NSCLC with activating mutations of epidermal growth factor receptor-

tyrosine kinase across all lines of therapy. Data for prior chemotherapy was not typically 

collected by most studies and there was no direct evidence of its predictive value for 

determining tumor response. 

PFS and OS: A survey of reviews retrieved from DARE [Table 3.1] revealed that the 

endpoints of therapeutic efficacy included objective response rate, PFS and OS. From the 

three choices of outcome, tumor response was consistently reported by studies and case 

reports in our data sources. Tumor response, when assessed by standard criteria such as 

RECIST, remains a validated endpoint to measure anti-tumor activity, especially in phase 

II clinical trials [152]. Nevertheless, response is not a validated surrogate marker for 

increased survival benefit. Given the scope of the thesis, tumor response was selected as 

the outcome measure and it is acknowledged that additional information from PFS and 

OS would provide a broader picture of the associations amongst clinical endpoints. 
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Discretization 

Age was the only continuous numeric attribute in the dataset with a mean value of 60.2 ± 

12.1 (minimum=24, maximum=94).   

 

 

                                                 Figure 3.6 Distribution of age 

 

 

In order to divide the continuous data into finite values, discritization was used. There 

were no informative cut-off points in the literature to define the data ranges or number of 

bins; instead parameter tuning was used to optimize the range and number of equal-width 

bins. The process resulted in five bins for the attribute of age. Partition of the original 

Complete response 

Stable disease Partial response Progressive disease 

Miscellaneous response 
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continuous attributes, maintained the distribution patterns  of age, where approximately 

60% patients were ≥ 49 years and  < 0.3% were <30 years old. 

 

 

Figure 3.7 Discrete values of age 

 

 

 

Missing value imputation  

Five attributes in the dataset contained missing values: age, gender, smoking, diagnosis, 

and RECIST response. One of the most drastic methods to deal with missing values is to 

remove the instances with incomplete data; however this approach would lead to a severe 

reduction of the already limited data size. Other common strategies are to replace missing 

values with the most common attribute value or its central tendency [153], but such 

Complete response 

Stable disease Partial response Progressive disease 

Miscellaneous response 
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simplistic approaches can often bias the data [45]. Su et al demonstrated that classifier-

based nominal imputation (CNI) [154] improves classification performance for learning 

algorithms. Thus, CNI was used to impute the missing values in the dataset. Table 3.5 

shows the results of imputation on the counts for each attribute. 

Attribute Label 
Count 

Before imputation After imputation 

Age 

≥30.3 1 1 

30.3-36.6 3 3 

36.6-42.9 18 18 

42.9-49.2 32 32 

≥ 49.2 214 301 

Gender 
Male 139 143 

Female 198 212 

Smoking status 

Never 174 176 

Former 72 145 

Current 23 34 

Diagnosis 

Adenocarcinoma 255 276 

SCC 21 21 

BAC 21 21 

AWBF 12 12 

LC 10 10 

RECIST response 

MR 44 44 

CR 15 15 

PR 143 151 

PD 80 80 

SD 61 65 
 

Table 3.5 Missing value imputation results 
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Attribute construction 

 

The original attribute of EGFR mutation status included 70 distinct mutations, some of 

which are rare and thus occurred infrequently in the dataset. Some authors have studied 

mutations and their relationship to EGFR-TKI response according to the mutation’s 

physical location in the EGFR gene sequence (exon 18-21), type of mutation (point 

mutation, insertion, deletion, or duplication), and complexity (single mutation, double 

mutation [ 155], classical mutation or complex mutation [156]. Using this domain 

knowledge, a new attribute called EGFR class was constructed from the existing attribute 

of EGFR mutation [157]. The addition of EGFR class to the original dataset can improve 

the representation of the problem and aims to help predictive classifiers discern patterns 

that may otherwise be difficult to recognize. 

 
 

 

Figure 3.8 Example of attribute construction 
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3.5 Description of Final Dataset 
 

The final dataset contained 355 data instances and eight attributes. The complete dataset 

was divided into a training set with 291 instances and a test set with 64 instances. The 

counts and labels of each attribute for both sets are shown in Tables 3.8 and 3.9. 

 

 

Figure 3.9 Final dataset with eight attributes 

 

Age: 85% of patients were > 50 years old. Discrete bins of age retained the original 

distribution of age in the data. 

 

Gender: 40% patients were male and 60% were female. 

 

Smoking status: Patient history of smoking was recorded as never smoker, former 

smoker or current smoker. 50% patients reported never smoking, 40% were former 

smokers and 10% were current smokers. 

 

Diagnosis: Eleven distinct sub-histologies for NSCLC were documented. The details are 

shown in Table 3.6 
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Histology Count (n) 

Adenocarcinoma (AD) 276 

Squamous cell cancer (SCC) 21 

Bronchoalveolar (BAC) 21 

AD with BAC (AWBF) 14 

Large cell cancer (LCC) 10 

Acinar Adenocarcinoma 5 

Not otherwise specified (NOS) 3 

Large cell neuroendocrine cancer (LCNEC) 2 

Undifferentiated 1 

BAC with focal invasion (BWFI) 1 

Other 1 
 

Table 3.6 Histopathological subtypes in NSCLC 

 

 

EGFR mutations: Seventy distinct EGFR mutations spanning exons 18, 19, 20 and 21 

were included in the dataset. These included point mutation, insertions, deletions, 

duplications, classical mutations, and complex mutations.   

 

EGFR class: 18 EGFR classes were constructed from the exiting EGFR mutations. In 

general, a complex mutation represented point mutations from two different exons in a 

single patient, for example exon 20 21 complex mutations include 'exon 20 R776G + 

exon 21 L858R', 'exon 20 G779S + exon 21 L858R ', and 'exon 20 R776H + exon 21 

L858R'. T790M complex mutations included the exon 20 T790M point mutation in 

combination with another EGFR mutation. There were three cases of such complex 

mutations and a review of the articles’ methodology revealed that mutational analysis 
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was done on surgical tissue specimens obtained before the administration of TKI therapy. 

Thus, it was concluded that the presence of T790M was a baseline mutation and not the 

more common acquired resistance mutation that often develops after treatment with 

erlotinib and gefitinib. A classical complex mutation was defined as exon 19 deletion and 

exon 21 L858R point deletion co-existing. The term double mutation denoted two 

different point mutations on the same exon of EGFR. For example, exon 18 double 

mutations included 'exon 18 G719A + exon 18 S720F', 'exon 18 E709A + exon 18 

G719C' and 'exon 18 G719A + exon 18 E709A'.If a mutation could not be grouped into 

the aforementioned classes, it was made into its own class, for example, the commonly 

occurring L858R mutation, exon 19 double mutation, and exon 20 T790M had their own 

class. 

EGFR Class EGFR mutations Count (n)* 

Exon 19 LREA deletions 
Any deletion in residues 746-

750 of exon 19 
94 

Exon 21 L858R 
Only exon 21 L858R point 

mutation 
62 

Exon 19 non LREA deletions 
Any deletion outside of 746-

750 of exon 19 
36 

Exon 20 

insertion/deletion/duplication 

Any insertion, deletion or 

duplication in exon 20 
11 

Classical complex mutation 
Coexisting exon 19 deletion 

and L858R 
10 

Exon 21 double mutation Two point mutation in exon 21 10 

Exon 20 21 complex 

mutations 

Coexisting exon 20 and exon 

21 mutations 
9 

Exon 18 G719X G719 A,C,S,D 6 

Exon 21 L861Q 
Only exon 21 L861Q point 

mutation 
4 

Exon 19 21 complex mutation 
Coexisting exon 19 and exon 

21 mutations 
4 
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T790M complex mutation 
T790M coexisting with one 

other mutation 
3 

Exon 18 21 complex mutation 
Coexisting exon 18 and exon 

21 mutations 
3 

Exon 18 double mutation 
Two coexisting exon 18 

mutations 
3 

Exon 21 point mutations 

Rare point mutations in exon 

21 exclusive of L858R and 

L861Q 

2 

Exon 19 double mutation 
Two coexisting exon 19 

mutations 
1 

Exon 18 deletion 719G Only exon 18 719 deletion 1 

Exon 20 T790M Only exon 20 T790M 1 

*the total number of EGFR classes does not add up to the individual mutations since 
more than one type of mutation was included in a class 

                                                  Table 3.7 EGFR classes 

 

Target drug: All patients were treated with an EGFR-TKI, either erlotinib or gefitinib. 

Three levels were created for target therapy: erlotinib therapy included those patients who 

received either erlotinib alone or in combination with another platinum-based 

chemotherapeutic agent, gefitinib therapy included patients who only received this agent, 

and erlotinib/gefitinib therapy was reserved for patients who had received either or both 

drugs during the course of treatment. 

 

RECIST response:  Most studies reported the treatment response as complete response 

(CR), partial response (PR), stable disease (SD) or progressive disease (PD) as defined by 

RECIST [18]. If the study did not specify the use of RECIST and response was classified 

using terms such as partial regression, complete regression, partial remission, complete 

remission, major response or minor response, it was grouped into a new category labelled 

Miscellaneous response (MR).   
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Feature Label Mutated Wildtype Total 

Age 
≤49 years 29 11 40 

≥50 years 188 62 250 

Gender 
Female 127 39 166 

Male 91 34 125 

Smoking 

Current 14 13 27 

Former 93 42 135 

Never 111 18 129 

Diagnosis 

Adenocarcinoma 165 52 217 

Large cell carcinoma 4 5 9 

Squamous cell carcinoma 10 7 17 

Other 39 9 48 

Drug 

Erlotinib therapy 66 3 69 

Gefitinib 138 41 179 

Gefitinib or Erlotinib 14 29 43 

Response 

Complete response 11 2 13 

Miscellaneous response 32 5 37 

Partial response 113 12 125 

Stable disease 39 15 54 

Progressive disease 23 39 62 
 

Table 3.8 Training set 
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Feature Label Mutated Wildtype Total 

Age 
≤49 years 5 8 13 

≥50 years 37 14 51 

Gender 
Female 31 15 46 

Male 11 7 18 

Smoking 

Current 3 4 7 

Former 6 4 10 

Never 33 14 47 

Diagnosis 

Adenocarcinoma 40 19 59 

Large cell carcinoma 0 1 1 

Squamous cell carcinoma 2 2 4 

Drug 

Erlotinib therapy 1 2 3 

Gefitinib 33 14 47 

Gefitinib or Erlotinib 8 6 14 

Response 

Complete response 2 0 2 

Miscellaneous response 5 2 7 

Partial response 23 3 26 

Stable disease 7 4 11 

Progressive disease 5 13 18 
 

Table 3. 9 Test set 
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3.6 Chapter Summary 

This chapter discussed an evidence-based approach to determine variables that are 

needed to answer the research question. The PICO framework was used to isolate the 

essential components of the research question. The highest quality of evidence was 

assessed in sourcing the variables that are to be used subsequently to answer the research 

question. After determining the variables of interest, an appropriate data collection 

strategy was devised for the utilization of secondary heath care data from freely available 

sources to generate a dataset. An analysis of the final dataset revealed a mixture of 

numeric and nominal data with missing values. Data pre-processing steps such as feature 

selection, discretization, missing value imputation and attribute construction were 

performed to improve the quality of data before the application of analytical techniques. 
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CHAPTER 4: PATTERN DISCOVERY OF PATIENT 
CHARACTERISTICS AND TUMOR RESPONSE 

 

4.1 Patient and Tumor Response Patterns in Advanced NSCLC 
 

The discovery of EGFR mutations in NSCLC patients and the subsequent development of 

EGFR tyrosine kinase inhibitors such as erlotinib and gefitinib have revolutionized 

treatment options for patients with advanced stage NSCLC. EGFR-TKIs not only 

increase survival, but also improve tumor-related symptoms and quality of life in these 

patients [158]. The history of clinical trials in this area reveals the frequent patterns that 

have been uncovered in patients who are responders to EGFR-TKIs. This chapter will 

start by providing an overview of these trials and their findings in unselected and selected 

populations. Tables 4.1 and 4.2 provide details of both types of trials. Studies reported 

response rate (RR), PFS and OS, however for the purposes of this thesis, studies were 

compared only using RR since this endpoint is similar to the current research question’s 

outcome measure of tumor response.  

4.1.1 Unselected patient trials 
 

Unselected trials are designed to test all patients enrolled regardless of their clinical risk 

factors or marker status [159]. In the case of advanced NSCLC, unselected trials did not 

test for EGFR mutation (marker) status as part of the study design although consent for 

tumor biopsy testing as part of retrospective analysis may have been obtained. The Iressa 

Dose Evaluation in Advanced Lung cancer (IDEAL) 1 trial was designed to compare the 

efficacy and safety of 250 mg versus 500 mg dose of gefitinib in previously treated 

advanced NSCLC patients [31]. Population analysis revealed that Japanese patients had 

significantly higher response rate than non-Japanese and female gender. Adenocarcinoma 

histology and performance status of 0-1 were baseline characteristics that may account 

for these differences. The IDEAL 2 study [33] confirmed the previous association of 

response and female gender reported by IDEAL 1. IDEAL 2 also demonstrated that 

adenocarcinoma histology, including cases with bronchoalveolar features and never 

smoking history, were strong predictors of tumor response in a NSCLC population 
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treated with gefitinib. BR.21 was a phase 3 clinical trial of erlotinib versus placebo in 

patients who had failed first or second-line chemotherapy which revealed a response rate 

of  8.9% in the erlotinib group and <1% in the placebo group [161]. A sub-group analysis 

in the same study population showed that women, non-smokers, Asian ethnicity, and 

adenocarcinoma were all factors that predicted response. 

 

Author Trial Study phase Treatment arms RR (%) 

Fukuka et al [31] IDEAL-1 Phase 2 Gefitinib 
250mg/500mg 18.4/19.0 

Kris et al [32] IDEAL-2 Phase 2 Gefitinib 
250mg/500mg 12.0/9.0 

Cufer et al [160] SIGN Phase 2 Gefitinib/Docetaxel 13.2/13.7 

Shepherd et al [161] BR.21 Phase 3 Erlotinib/Placebo 8.9/<1.0 

Thatcher et al [67] IRESSA Phase 3 Gefitinib/Placebo 8.0/1.3 

Kim et al [162] INTEREST Phase 3 Gefitinib/Docetaxel 9.1/7.6 

Kelly et al [163] SWOG 
S0023 Phase 3 Gefitinib/Placebo 8.3/11.7 

 
Table 4.1 Unselected clinical trials for NSCLC 

 
Although the response rates for erlotinib and gefitinib in unselected trials were not 

favorably higher that alternative treatment arms, the molecular characterization of lung 

tumors on the basis of EGFR mutation status was an emergent finding. Retrospective 

analysis has consistently established clinical and molecular predictors of response to 

EGFR-TKI therapy. Clinical predictors are Asian ethnicity, female gender, 

adenocarcinoma including bronchoalveolar histology, and non-smoking history [164], 

[165]. 
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4.1.2 Selected patient trials 
 

When compelling evidence suggests that certain subgroups of patients may benefit from 

treatment, a selected or enriched design strategy is adopted [159]. Such trials select 

patients based on risk factors and integrate molecular testing into the study design, 

thereby increasing the probability of improved clinical outcomes by offering tailored 

treatment selection. In 2004, Lynch [14] and Paez [13] demonstrated that somatic 

mutations in the tyrosine kinase domain of EGFR gene were positively associated with 

response to tyrosine kinase inhibitors. This landmark discovery led to a number of Phase 

2 and 3 selected trials, some of which are summarized in Table 4.2. 

 

Author Trial Study phase Treatment RR (%) 

Sequist et al 
[ 96] iTARGET Phase 2 Gefitinib 250 mg 55.0 

Mok et al [166] IPASS Phase 3 Gefitinib/Carboplatin 
+Paclitaxel 43.0/32.3 

Lee et al [167] FIRST 
SIGNAL Phase 3 Gefitinib/Cisplatin + 

Gemcitabine 53.5/45.3 

Mitsudomi et al 
[168] 

WJTOG 
3405 Phase 3 Gefitinib/ Cisplatin + 

Docetaxel 62.1/32.2 

Maemondo et al 
[169] NEJ002 Phase 3 Gefitinib/Carboplatin 

+Paclitaxel 73.7/30.7 

Rosell et al 
[170] EURTAC Phase 3 Erlotinib/ Cisplatin + 

gemcitabine or docetaxel 58.0/15.0 

Zhou et al [171] OPTIMAL Phase 3 Erlotininb/ Gemcitabine 
and Carboplatin 83.0/36.0 

Table 4.2 Selected clinical trials for NSCLC 

 

The iTARGET trial enrolled chemotherapy-naïve patients with advanced NSCLC and ≥1 

clinical characteristic associated with EGFR mutations. The overall response rate (ORR) 

was 55%, but in patients with L858R and exon 19 deletions, the response was 78% and 

59% respectively. IPASS (IRESSA Pan Asia Study) was a phase 3 randomized trial 
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comparing gefitinib with carboplatin and paclitaxel in never or former smokers with 

pulmonary adenocarcinoma. The overall RR was 43 vs 32.3%. In a sub-group analysis of 

mutation-positive patients, the ORR was 71.2% with gefitinib versus 47.3% with 

carboplatin–paclitaxel. WJTOG3405 and NEJ002 were trials performed in Japanese 

patients. In WJTOG3405, EGFR mutation-positive patients were randomly assigned to 

receive gefitinib or a combination of cisplatin and docetaxel. The RR was 62.1% and 

32.2% respectively in the gefitinib and chemotherapy group respectively. The NEJ002 

Trial compared the efficacy of gefitinib with carboplatin and paclitaxel for first-line 

treatment of EGFR mutation positive patients. RR was 73.7% in the gefitinib arm and 

30.7% in the alternative treatment arm. Patients with sensitizing EGFR mutations (exon 

19 deletion and L858R) were selected in the EURTAC study. The majority of the study 

population were females, never-smokers and had adenocarcinomas. The RR in the 

erlotinib arm was significantly higher than the chemotherapy arm.  The Phase 3 

OPTMAL trial compared erlotinib to gemcitabine and carboplatin in EGFR mutation-

positive. The overall RR was 83% in the erlotinib arm and subgroup analyses for females, 

adenocarcinoma and never smoking history demonstrated that the RR for erlotinib versus 

chemotherapy was higher for these clinical risk factors. 

For this thesis, the research dataset was created using multiple sources, each having its 

individual design, setting, intervention and outcome measurement protocol.  Given the 

atypical nature of our dataset, it was hypothesized that patterns from these sources were 

carried over into the current research dataset and as such we expect to find many of the 

same patient and response behaviors. The identification of frequent patterns that 

corroborate with previous findings from the literature will facilitate the validation of the 

research dataset [172], which in turn will ensure that data being used are appropriate for 

the pursued outcome.  

Several authors have reported the success of using frequent patterns, expressed as IF-

THEN rules, in medical databases to confirm previous biomedical knowledge and reveal 

novel associations between variables. Agarwal et al performed an analysis of  lung cancer 

data from the Surveillance, Epidemiology, and End Results (SEER) Program  
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to identify patients segments where survival time was higher or lower than the overall 

average survival time [173]. Using the HotSpot algorithm, the authors presented non-

redundant survival patterns from lung cancer patients that conformed with existing 

medical knowledge.  Ordonez et al performed frequent pattern mining to predict the 

presence or absence of heart disease [174]. Their results demonstrated that age, gender, 

diabetes and cholesterol levels were frequently occurring risk factors, corroborating 

current understanding of cardiac disease. Using a nephrology database, Elfangary et al 

found useful patterns of tests associated with the diagnosis of IgA glomerulonephritis. 

These patterns were validated by medical specialists and deemed useful and 

understandable [175]. Following a similar approach, it is proposed that the identification 

of frequent patterns in the research dataset can serve two purposes:  

1. The discovery of associations that are similar to findings reported in the literature will 

validate the derived research data. For example, evidence suggests that female gender and 

never-smoking history are strong predictive factors for higher response rate to erlotinib or 

gefitinib. If this finding is converted to an IF-THEN rule, it may take the form: IF 

gender=female AND smoking history=never THEN responder.  

2. The discovery of new association patterns that make sense biologically may further 

suggest new hypotheses that warrant additional investigation. Given that the research 

dataset consists of both frequent and rare mutations, it may be possible that previously 

unknown associations between EGFR mutations and other attributes could be discovered. 

Association Rules 

Frequent sets of items are often presented as IF-THEN rules, also known as association 

rules. Let I = {  } be a set of literals call items. Let D be a set of all transactions where 

each transaction T is a set of items such that T  I. Let X, Y be a set of items such that X, 

Y  I. An association rule is an implication in the form X Y, where X  I, 

Y  I, X ∩Y=  [176]. 

The left hand side (LHS) of the rule is called the antecedent and the right hand side 

(RHS) is called the consequent. An association rule, X Y, implies that transactions 

which contain X, also contain Y. 
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Support 

Support is the number of items in the dataset which correspond to the rule’s antecedent 

and consequent. For any rule X Y, the support s can be defined as 

Support(X=>Y) = P (X∩Y) = {X∩Y}/D 

 

Frequent itemset 

 

Any itemset I is said to be frequent if its support is s or more. 

 

Confidence 

Confidence is the proportion of the examples covered by the antecedent that are also 

covered by the consequent.  Both general and class association rules can only be mined 

using confidence. According to the support-confidence framework, support prunes the 

search space using its downward closure property and thereafter, confidence generates 

rules from frequently occurring itemsets.  

Confidence(X=>Y) = P (Y | X) = support (X Y)/support(X)  

Lift  

Lift is confidence divided by the proportion of all examples that are covered by the 

consequent. 

Lift (X=>Y) = P (X∩Y)/P(X) P(Y) 

Since lift is a measure that is independent of support, it remains an important measure of 

evaluation of an association rule. A lift value of 1 is suggestive that the antecedent and 

the consequent are independent of each other and no correlation rule can be drawn. 

Positive lift indicates that the occurrence of the antecedent strongly affects the occurrence 

of the consequent. 
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Classical association rule learning 

Classical algorithms use a two step process to produce association rules. In the first 

phase, the algorithm finds all large item sets whose support > minimum support. This is 

based on the downward closure property of the Apriori principle: a k-itemset is frequent 

only if all of its sub-itemsets are frequent. The first scan of the transaction database yields 

all frequent 1-itemsets which can then be used to generate frequent 2-itemsets. This 

process is repeated until no more k-itemsets can be found for a given value of k. In the 

second phase, for a given large itemset, the algorithm generates all rules whose 

confidence > minimum confidence.  

Constrained association rule mining  

If the LHS or RHS of an association rule is restricted to user-specified attributes, a subset 

of association rules will be generated [177]. This allows the user to bypass an exhaustive 

list of rules and focus on the presence of certain interesting items in the database. Using 

the market-basket example, constraining items to those that interest retailers would allow 

them to identify frequently purchased itemsets and recognize consumer behavior patterns. 

The systematic method is similar to the classical approach, where the algorithm first finds 

frequent itemsets that satisfy user constraints from the transaction database. Using these 

frequent itemsets, the algorithm constructs association rules in the form X Y, where X 

and Y are of specific interest to the user [178].       

Pattern mining algorithms 

The original frequent itemset mining and association rule learning algorithm, Apriori,       

was proposed by Agrawal and Srikant [179]. This classical algorithm generates 

association rules by mining all frequent itemsets and returns rules that conform to the 

user defined minimum confidence threshold. Despite its historical significance, the 

algorithm suffers from drawbacks [180]. The primary limitation of this approach is the 

large number of frequent itemsets and redundant association rules that are generated, 

many of which are not interesting for the user. In addition, decisions about minimum 

support threshold and confidence values pose difficulties. Since then, many variations of 

the Apriori algorithm have been proposed, many of which improve upon these 
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shortcomings. For a comparative study and evaluation of popular association rule 

algorithms on real world and artificial datasets, see [181]. The introduction of constrained 

association mining [182], [183] limits the output of frequent itemsets and association 

rules to only those which contain user-specified items. Predictive Apriori was proposed 

[184] as an alternative to Apriori algorithm as it does not require the specification of 

support and confidence values. It performs a Bayesian calculation for the exact expected 

predictive accuracy which Scheffer [185] defines as: 

Let D be a database whose individual records r are generated by a static process P, let X 

 Y be an association rule. The predictive accuracy c(X Y) =Pr(r satisfies Y |r satisfies 

X) is the conditional probability of Y  r given that X  r when the distribution of r is 

governed by P. 

4.2 Our Pattern Discovery Approach 
 

The objective in pursuing pattern discovery is to compare the regularities in the research 

dataset with previously well-understood patterns and trends in order to validate the 

research dataset, and even to discover some interesting new patterns. Two types of 

patterns relating to patient characteristics and treatment efficacy in advanced NSCLC are 

recognized in the literature and summarized from the unselected and selected trials. 

Studies report the co-occurrence of clinical patient attributes such as gender and smoking 

status and gender and histology. These associations may be referred to as patient 

characteristic patterns. Evidence also strongly suggests the association of sensitizing 

mutations in EGFR with treatment response after erlotinib or gefitinib. These associations 

are tumor response patterns. The frequent pattern mining approach is to identify both 

patient characteristic and tumor response patterns using classical and constrained 

association rule learning. In the classical approach, the algorithm will discover frequent 

patterns and association rules in the dataset. In constrained mining, the consequent will 

be constrained to include only the response attribute and this will specifically support the 

algorithm to detect tumor response patterns.  The choice of algorithms include Apriori 

and Predictive Apriori which have been used with success in risk factor extraction [186], 

breast cancer [187], [188 ], lung cancer [189 ], and other clinical databases [190 ]. The 
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algorithms are implemented in the Waikato Environment for Knowledge Analysis 

(WEKA).  Post-processing will reduce the large number of generated rules by selecting 

only those with that are potentially useful and interesting. An understanding of the data 

structure and domain knowledge is integrated into post-processing to prune and filter 

irrelevant rules. Finally, objective and subjective measures are applied to evaluate the 

interestingness of rules. Objective measures include support, confidence, lift and 

predictive accuracy. Subjective measures consist of unexpectedness and actionability. A 

schematic representation of the pattern discovery approach is shown in Figure 4.1. 
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       Figure 4.1 Schematic representation of pattern discovery approach 
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4.2.1 Experiment 1: Association Rules for Patient 
Characteristics and Tumor Response Using Apriori Algorithm 
 

Three parameters are specified by the user in the Apriori algorithm: support, confidence 

or lift and number of rules. The output can be sorted according to confidence, lift, 

leverage or conviction. In the current research dataset, some classes occur more 

frequently than others. Since calculation of confidence is relies on frequency of the 

consequent, it often produces high confidence rules for the most common class [191]. To 

overcome this problem, lift was used to rank the rule interestingness.  

The input data consisted of 355 instances and six attributes (age, gender, smoking status, 

diagnosis, EGFR mutation and RECIST response). EGFR mutation class was not 

included in the attributes because this attribute was constructed from EGFR mutation. 

Upper bound minimum support was set to 100% and the lower bound to 10%. Starting 

with the upper bound support, the algorithm incrementally decreased support by 5% and 

stopped when the lower bound for minimum support was reached or when a minimum of 

50 rules with a minimum lift of 1.0 were discovered.  

The output consisted of 50 association rules with lift values ranging from 1.01 to 1.29 

and confidence values from 40-80%. Table 4.3 presents selected rules which are 

numbered sequentially and given the prefix “A” to denote the Apriori algorithm. The 

parameter settings for class pattern mining using the Apriori algorithm are shown in 

Figure 4.2. 
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Figure 4.2 Apriori algorithm parameter settings 

Using constrained association rule mining, tumor response patterns in the dataset were 

explored and compared with previously reported findings. Constrained association rule 

mining is performed by constraining the rule consequent to the class value (RECIST 

response). The resulting rules will be limited to only those that contain RECIST response 

in the RHS. The parameter settings for constrained pattern mining using the Apriori 

algorithm are shown in Figure 4.3. The input dataset contained 355 attributes and seven 

attributes (age, gender, smoking status, diagnosis, EGFR mutation and RECIST 

response). If car (class association rules) is set to true, then the algorithm only finds rules 

with the class in the consequent. Upper bound minimum support was set to 100% and the 

lower bound to 10%. In constrained mining, the algorithm only allows the use of 

confidence metric for ranking. Initially, the confidence is set to 90% and incrementally 

dropped by 10% until constrained rules are obtained. The minimum confidence at which 

43 constrained rules are produced is 40%. Lift values are calculated using the rule’s 

confidence as the numerator and the conditional probability of the consequent as the 

denominator.  



 
 

61 
 

 

Figure 4.3 Apriori algorithm constrained mining parameter settings 

 

 

 4.2.1.1 Results from Experiment 1 
 

Tables 4.3 and 4.4 present selected association rules that were discovered based on the 

specified thresholds for support, confidence and lift by the Apriori algorithm. A total of 

93 rules were generated, many of which were redundant. These tables illustrate three 

rules obtained from general mining (Table 4.3) and three from constrained mining (Table 

4.4). All rules concur with what is already known about patient characteristic and tumor 

response patterns in advanced NSCLC. 
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No. Association Rule Confidence Lift 

A1 

Smoking=never Diagnosis=adenocarcinoma  ==> 
Gender=female 
 
IF the patient reports a history of never smoking and 
the lung cancer diagnosis is adenocarcinoma, THEN 
the patient’s gender is female. 
 

0.77 1.29 

A2 

Gender=female ==> Smoking=never 
 
IF the patient’s gender is female, THEN the patient 
reports history of never smoking. 
 

0.60 1.21 

A3 

Diagnosis=adenocarcinoma  ==> RECIST 
response=partial response  
 
IF the patient’s lung cancer diagnosis is 
adenocarcinoma, THEN the tumor response 
recorded by RECIST is partial response to erlotinib 
or gefitinib.  
 

0.47 1.11 

 
Table 4.3 Selected association rules from Apriori algorithm. Rules are numbered with 

Prefix of A to denote Apriori algorithm 
 

 

Rules A1 and A2 show the relationship between gender, smoking status, and histology. 

Females often report a history of never-smoking and the most common histology for 

NSCLC in never-smokers is adenocarcinoma [32]. In addition, similar to what many of 

the unselected clinical trials found, Rule A3 states that patient’s with a diagnosis of 

adenocarcinoma achieve partial response after treatment with erlotinib and gefitinib [32]. 
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No. Constrained Association Rule Confidence Lift 

A4 

Diagnosis=adenocarcinoma EGFR 
mutation=wildtype ==> RECIST 
response=progressive disease 
  
IF the patient’s lung cancer diagnosis is 
adenocarcinoma and EGFR mutation status is 
wildtype THEN the RECIST response is progressive 
disease. 
 

0.58 2.58 

A5 

EGFR mutation=exon 19 del E746-A750  ==> 
RECIST response =partial response 
 
IF the patient’s EGFR mutation status is exon 19 del 
E746-A750, THEN the RECIST response is partial 
response. 
 

0.55 1.29 

A6 

Gender=female Smoking=never 
Diagnosis=Adenocarcinoma ==> RECIST response 
=partial response 
 
IF the patient’s gender is female and the patient 
reports history of never smoking and the diagnosis is 
adenocarcinoma THEN the RECIST response is 
partial response. 
 

0.44 1.03 

 
Table 4.4 Selected constrained association rules from Apriori algorithm. Rules are 

numbered with Prefix of A to denote Apriori algorithm 
 

Constrained patterns that were limited to the tumor response in the consequent also 

agreed with what the literature has reported. Rule A4 demonstrates the interaction of 

histology, mutation and tumor response. Although adenocarcinoma is considered a 

favorable histology [13], [14], the presence of EGFR wildtype status leads to progressive 

disease after treatment with an EGFR-TKI [192]. Sensitizing mutations in the tyrosine 

kinase domain of EGFR include deletions in exon 19 and L858R in exon 21 [193]. The 

presence of sensitizing mutations increases the efficacy of the EGFR-TKI and leads to an 

improved response as shown by Rule A5. According to Rule A6, elderly female patients 
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with diagnosed adenocarcinoma achieve a partial response when treated with gefitinib. 

This finding has been confirmed by the response rate in [31], [32]. Comparing Rule A3 

and A4, we observe that a diagnosis of adenocarcinoma is frequently seen in patients who 

achieve partial response. However, when the antecedent contains the additional 

information of wildtype EGFR status with adenocarcinoma histology, there is a drastic 

change in the tumor response to progressive disease. This agrees with the current 

understanding of clinical and molecular predictors of response to erlotinib and gefitinib. 

The combination of clinical and molecular characteristics is more informative of 

treatment response in advanced NSCLC than clinical predictors alone [118]. 

4.2.1.2 Performance Evaluation of Experiment 1 
 

In the objective performance evaluation we focus on the two metrics of lift and 

confidence. All association rules from Apriori algorithm had a lift value >1 

demonstrating that the frequency of the antecedent and consequent occurring together 

was higher than the frequency of either occurring independently. Rule A3 suggests that 

EGFR-TKIs are effective in adenocarcinoma and frequently produce a partial tumor 

response. This rule has a confidence of 42% and a lift ratio of 1.11. When EGFR 

mutation status is included in the LHS, the improved confidence is 58% and lift ratio 

reaches 2.59 in Rule A4. This underlies the significance of genotyping for patient 

selection in personalized therapy of advanced NSCLC. 

The lift ratio for general association rules (A1-A3) was slightly lower than that of the 

constrained association rules (A4-A6) establishing that tumor response patterns were 

more interesting than general patient characteristic patterns. Confidence levels varied 

with the frequency of the consequent in the dataset. Rules A1 and A2 had higher 

confidence levels, but when the consequent contained a value for tumor response, the 

confidence was low.  
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4.2.2 Experiment 2: Association Rules for Patient 
Characteristics and Tumor Response Using Predictive Apriori 
 

Predictive Apriori has been proposed as an improvement on the classical Apriori 

algorithm because it eliminates the need to indicate a minimum support threshold and 

minimum confidence value. In WEKA’s implementation of Predictive Apriori, the 

algorithm searches with an increasing support threshold for the best n rules. A rule is 

added to the output if the expected predictive accuracy of this rule is among the n best 

and it is not subsumed by a rule with at least the same expected predictive accuracy.  

 

There are two user-defined parameters in the Predictive Apriori algorithm. If class 

association rules (car), is set to “false”, no constraints are applied and the user only 

specifies the number of rules to be generated. The maximum number of rules is set to 

100. The input data consisted of 355 instances and seven attributes. The output was 50 

rules with accuracies ranging from 95%-99%. Table 4.5 presents selected rules which are 

numbered sequentially and given the prefix “P” to denote the Predictive Apriori 

algorithm. The parameter settings for the Predictive Apriori algorithm are shown in 

Figure 4.4.  

 

 

                     Figure 4.4 Predictive Apriori algorithm parameter settings 
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To constrain the rule consequent to class, the parameter settings were changed by setting 

class association rules (car) to “true” as shown in Figure.4.5.  

 

Figure 4.5 Predictive Apriori algorithm constrained mining parameter settings 

 

4.2.2.1 Results from Experiment 2 
 

A total of 100 rules were generated, many of which were redundant and some which were 

similar to the results from the Apriori. Tables 4.5 and 4.6 present the association rules 

that were discovered with and without constraints by the Predictive Apriori algorithm. 

The predictive accuracy range for all rules was 68%-99%. Table 4.5 highlights three rules 

obtained without any constraints and Table 4.6 shows six rules from constrained mining. 

Rules P1-P3 are similar to the patterns observed from Apriori’s result, so these are not 

discussed a second time. Constrained patterns uncovered by Predictive Apriori reveal the 

relationships of histologies and complex combinations of EGFR mutations with tumor 

response. From Rules P4 and P5, the diagnosis of adenocarcinoma with bronchoalveolar 

features and acinar adenocarcinoma occur frequently with a miscellaneous response. In 

Chapter 3, the levels of tumor response recorded after treatment with erlotinib or gefitinib 

were outlined. If the observed response did not follow RECIST, it was termed a 

miscellaneous response. Examples of miscellaneous response include partial regression, 

complete regression, partial metabolic remission, complete metabolic remission, major 
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response or minor response. Studies have shown that adenocarcinoma with 

bronchoalveolar features are responsive to gefitinib [33]. 

No. Association Rule Accuracy 

P1 

Age = 42.9-49.2 Smoking=never  ==> Diagnosis=adenocarcinoma 

 

IF the patient’s age is between 42.9-49.2 and patient has a history of 
never smoking THEN diagnosis is adenocarcinoma 

0.99 

P2 

Target drug =gefitinib or erlotinib RECIST response=partial 

response ==> Diagnosis=adenocarcinoma 

 

IF targeted drug is either gefitinib or erlotinib and RECIST response 
is partial response, THEN patient’s lung cancer diagnosis is 
adenocarcinoma 

0.97 

P3 

Gender=female Target drug =gefitinib or erlotinib RECIST 

response= progressive disease ==> EGFR mutation=wildtype 

 

IF patient’s gender is female and targeted drug treatment is with 
either gefitinib or erlotinib and RECIST response is progressive 
disease, THEN EGFR mutation status is wildtype 

0.95 

 
Table 4.5 Selected association rules from Predictive Apriori algorithm  

(Rules are numbered with Prefix of P to denote Predictive Apriori algorithm) 
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No. Constrained Association Rule Accuracy 

P4 

Diagnosis=adenocarcinoma with bronchoalveolar features 
==> Response=miscellaneous response 
 

IF patient’s diagnosis is adenocarcinoma with bronchoalveolar 
features, THEN patient has response (not specified by 
RECIST) 

0.99 

P5 

Diagnosis=acinar adenocarcinoma  ==> 
Response=miscellaneous response 
 

IF patient’s diagnosis is acinar adenocarcinoma, THEN 
patient has response  (not specified by RECIST) 

0.98 

P6 

Gender=female Diagnosis=bronchoalveolar carcinoma 
EGFR mutation=exon 21 L858R  ==> RECIST 
response=partial response 
 

IF patient’s gender is female and diagnosis is bronchoalveolar 
carcinoma and EGFR mutation status is L858R,THEN 
RECIST response is partial response 

0.95 

P7 

EGFR mutation=exon 20 G779S + exon 21 L858R   ==> 
RECIST response=partial response  
 

IF patient’s EGFR mutation status is exon 20 G779S + exon 
21 L858R, THEN RECIST response is partial response 

0.92 

P8 

EGFR mutation=exon 20 T790M + exon 21 L858R  ==> 
RECIST response=progressive disease 
 

IF patient’s EGFR mutation status is exon 20 T790M + exon 
21 L858R, THEN RECIST response is progressive disease 

0.92 

P9 

Gender=female EGFR mutation=exon 18 G719C  ==> 
RECIST response=partial response 
 

IF patient’s gender is female and EGFR mutation status is 
exon 18 G719C, THEN RECIST response is partial response 

0.92 

 
Table 4.6 Selected constrained association rules from Predictive Apriori algorithm 

(Rules are numbered with Prefix of P to denote Predictive Apriori algorithm) 
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According to Rule P6, female patients with bronchoalveolar carcinoma who have the 

sensitizing L858R mutation achieve partial response to EGFR-TKIs.  The sensitizing role 

of L858R in EGFR mutated tumors treated with gefitinib is well documented [194 ], 

[195]. Similarly, the presence of exon 18 G719C mutation confers increased sensitivity 

(Rule P9) as shown by [196 ], [ 197],[ 106]. Rules P7 and P8 represent the unusual effect 

of co-occurring sensitizing and resistant EGFR mutations.  The combination of exon 20 

G779S + L858R results in partial response, whereas exon 20 T790M + L858R leads to 

progressive disease. T790M is strongly associated with resistance to drug susceptibility 

[198 ] especially after treatment with gefitinib [ 199], leading to stable or progressive 

tumor response. Exon 20 mutations are also associated with poor gefitinib response          

[197], however in combination with the classical L858R mutation, the response is 

favorable. This has been confirmed in [200] and [156]. Overall, the frequent patterns 

observed from Predictive Apriori corroborate with previously reported studies. 

4.2.2.2 Performance evaluation of Experiment 2 
 

The predictive accuracy of all rules without applying any constraints was 95-99%. When 

the consequent was constrained to tumor response, rule accuracy was 68-99%. The 

dynamic pruning process of Predictive Apriori produced a higher quality set of rules with 

reduced redundancy compared to Apriori. However the computational performance time 

is compromised-runtime for Predictive Apriori was 10 seconds without constraints and 3 

seconds with constraints compared to <1 second for Apriori. 

 

 Liu et al proposed two subjective measures  of interestingness [201]: unexpectedness and 

actionability, which state that rules are useful if they contradict what is previously known 

and can be acted upon. A complex mutation is the presence of more than one EGFR 

mutation in a single tumor sample [202] and the frequency of complex mutations is 

estimated to be 3-7% [156]. Although few associations of complex mutation patterns and 

tumor response have been reported, these mutations are not rare [202]. Further work is 

required to understand the interaction of sensitizing and resistant mutations. At present, 

the molecular mechanisms of tumor response in the presence of concurrent mutations are 

not clear. 
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4.3 Chapter Summary 
 

The objective behind using pattern discovery was to uncover the inherent relationships of 

the research dataset and compare them to the patient characteristics and tumor response 

patterns that have emerged in the last ten years. Pattern discovery was pursued using both 

classical and constrained mining. Classical mining allowed all possible frequent itemsets 

to be discovered while constraining the consequent to tumor response allowed the 

algorithm to specially construct rules containing tumor response. Apriori and Predictive 

Apriori confirmed the relationship between the demographic and clinical factors in 

NSCLC.  Gender, smoking status and histology were highly correlated. Sensitizing 

mutations in EGFR including exon 19 deletions and L858R, produced at least a partial 

response after treatment with erlotinib or gefitinib. Tumor response patterns for rare 

combinations of mutations were also discovered which is in part due to the method in 

which the dataset was created, i.e., using articles and case series which reported both 

common and uncommon EGFR mutations. The lift ratio and predictive accuracy of 

reported rules is high and they validate previous findings from the literature. More rules 

with higher performance metrics could be obtained given a larger dataset. In conclusion, 

the results suggest that patient characteristics and tumor response patterns found in the 

dataset are similar to previous research findings. Strong associations exist among female 

gender, never smoking history and adenocarcinoma histology. EGFR wildtype status 

frequently leads to progressive disease after EGFR-TKI therapy, whereas sensitizing 

mutations in exon 19 and exon 21 confer increased sensitivity. 

The rules highlighted in this chapter correspond to combinatorial patterns that have been 

reported previously and helped to support the collection of the research dataset. These 

association rules contain the itemsets of female=gender, smoking status= never, and 

diagnosis= adenocarcinoma in the antecedent or consequent. As in many experimental 

procedures, there were a small number of unexpected results, which have not been 

elaborated upon.  The association rules generated using Apriori algorithm yielded a total 

of 78 rules. Of these, 66 can be explained using analogous reasoning and previous reports 

and 12 were unexpected.  Predictive Apriori generated a total of 100 rules from both 

experiments; of these, 98 corroborate the findings of previous work in personalized 
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therapy of NSCLC and 8 were unexpected.  Unexpected rules associated male gender and 

former smoking status with adenocarcinoma diagnosis and partial response to targeted 

therapy.  Additionally, some rules expressed a non-favorable response to erlotinib or 

gefitinib in the presence of sensitizing EGFR mutations. These rules may represent 

anomalies of this specific research dataset or require scrutiny and further experimentation 

with larger datasets. It is entirely possible that a number of interesting rules may be 

generated if variations of attributes and constraints are used. 
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CHAPTER 5: DATA-DRIVEN DECISION SUPPORT  
 

5.1 Clinical Decision Support for NSCLC 
 

An abundance of healthcare data exists in electronic health records, clinical trial reports, 

disease registries, and pharmaceutical records, yet, often remains unused [203]. Disparate 

sources, variable collection methods and complexity of medical data are only some of the 

challenging considerations that must be taken into account when trying to leverage this 

data to provide intelligent and actionable information. As we enter the generation of 

personalized medicine, it is becoming increasingly important to harness the power of 

health data and transform it to improve both individual patient care and healthcare 

systems [204]. 

Clinical decision support (CDS) tools can utilize streams of medical data to generate 

preventative, diagnostic and therapeutic decisions. These tools facilitate health care 

professionals to make clinical assessments, diagnoses, recommendations and decisions 

about individual patients at the point of care [205]. CDS presents intelligently filtered 

information at appropriate times for effective and efficient patient management using 

computerized alerts and reminders, clinical guidelines, and order sets, among other tools 

[206]. There are two main types of CDS tools: knowledge based and non-knowledge 

based [207]. Three components that are common to knowledge-based CDS tools (or 

expert systems), include a knowledge-base, inference engine and communication 

interface. The knowledge base is often in the form of guidelines, IF-THEN rules or 

probabilistic associations. The inference engine uses a reasoning mechanism to combine 

knowledge base rules with patient data. Finally, the communication component transmits 

the system output to the end user [207].   

Although evidence-based medicine is practiced by adhering to clinical practice guidelines 

and reference to expert opinion, an alternative approach is to use retrospective patient 

data to derive evidence which can in turn support the decision-making process [208]. 

Such non-knowledge-based decision support models eliminate the need for rules or direct 

expert input in the knowledge-base; they use artificial intelligence techniques to learn 
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from clinical data and use this as knowledge to provide decision support [209]. This type 

of data-driven decision support can complement clinical experience and a priori 

knowledge using the accumulation of past patient cases that are digitally generated and 

widely documented [210], [211]. 

Clinical decision-making involves the interpretation of complex factors and this has 

encouraged the development of computerized models for aiding decision support in an 

attempt to reduce medical errors and improve patient outcomes [212]. In NSCLC, a wide 

array of factors such as patient demographics, pathological diagnosis, staging and genetic 

mutations influence the decision-making process [213]. Tools which can combine 

retrospective data to improve the treatment choice accuracy and clinical outcomes of 

patients have been successfully employed in NSCLC. Machine learning and statistical 

pattern recognition are two of the most popular techniques in artificial intelligence that 

have gained popularity in the biomedical community and review of both supervised and 

unsupervised approaches is provided in [214]. Many clinical prediction models for 

NSCLC exist and have been reviewed in Chapter 2; the use of machine learning 

techniques for clinical decision support in lung cancer, however, is limited. A PubMed 

search using the terms (("Artificial Intelligence"[Mesh]) AND ( "Decision Support 

Systems, Clinical"[Mesh] OR "Decision Support Techniques"[Mesh] )) AND "Lung 

Neoplasms"[Mesh] yielded 14 results. Using the Query Builder in EMBASE, the Emtree 

terms ('machine learning'/exp OR 'machine learning' AND ('decision support'/exp OR 

'decision support') AND ('lung cancer'/exp OR 'lung cancer') resulted in seven 

publications, with some overlapping studies. Relevant studies, authors, year of 

publication and application descriptions are summarized in Table 5.1 
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Author/ year Clinical application Machine learning 
method 

Lee et al/ 2012 [215] Early diagnosis of NSCLC Random forest 

Zhao et al/ 2011 [216] Treatment regimen for NSCLC Q-learning 

van den Branden et al/ 

2011 [217] 

Case based reasoning for lung 

cancer 

Genetic algorithm  & 

k-nearest neighbor 

Lee et al/ 2010 [218] 
Diagnosis of pulmonary 

nodules 

Genetic algorithm & 

random subspace method 

Sacile et al/ 2003 [219] 
Malignancy associated changes 

(MAC) in lung cancer 
Artificial neural network 

Wolfe et al/ 2004 [220] 
Nuclear morphometry for 

diagnosis of NSCLC 

Logistic regression and 

CART 

Biganzoli et al/ 1998 

[221] 

Censored survival times for 

lung cancer 

Feed forward neural 

network 

Schweiger et al/ 1993 

[222] 

Evaluation of lung cancer  

tumor markers 

Back propagation neural 

network 

Gutte et al/2007 [223] Lung cancer PET/CT staging Neural network 

Polak et al/ 2004 [224] Pharmacoeconomics Neural network 

Campadelli et al/ 2006 

[225] 

Lung cancer nodules digital 

radiographs 
Support vector machine 

                            

Table 5.1 Reports of clinical decision support in lung cancer 

 

Individualized therapy in advanced NSCLC depends on the accurate classification of 

patients into groups based on their responsiveness to targeted therapy. Although a large 

amount of literature is dedicated to the role of clinical and molecular predictors of 

response to EGFR-TKI in NSCLC [226-228], to the author’s knowledge, there are no 

studies that have demonstrated the use of individual-level data to develop data-driven 

clinical decision support for predicting tumor response to erlotinib or gefitinib. This 
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chapter will demonstrate that data-driven models can predict the therapeutic response 

based on a composition of clinical, histological and molecular factors. 

5.2 Measuring Tumor Response 
 

The focus of this chapter is to investigate data-driven decision support in determining 

EGFR-TKI responsiveness for advanced NSCLC. Before outlining the solution approach, 

the concept and significance of assessing and measuring tumor response will be defined. 

Clinical assessment of tumor burden is an important feature of both cancer therapeutics 

and molecular medicine. Patients with identical clinical symptoms and histopathological 

characteristics may respond differently to the same drug and the measurement of 

response helps describe this complex biologic phenomenon [229]. Although the ultimate 

gold standard for treatment efficacy is the improvement in overall survival, tumor 

response is a surrogate marker for measuring tumor shrinkage following chemotherapy. 

Therapeutic effectiveness of anticancer agents is evaluated by the reduction in tumor size 

as assessed by anatomic and diagnostic imaging modalities which objectively quantify 

tumor dimensions. Currently, RECIST is the most commonly used standard set of rules 

for evaluating tumor response [230]. According to these criteria, linear measurement of 

tumor target lesions is a sufficient proxy for tumor mass. RECIST recommends the 

following four categories of tumor response to anticancer drug treatment: complete 

response (CR) is the complete disappearance of all target lesions; partial response (PR) is 

30% decrease in the sum of the longest diameter of target lesions; progressive disease 

(PD) is 20% increase in the sum of the longest diameter of target lesions; and stable 

disease (SD) consists of small changes that do not meet the preceding criteria [18]. 

Assessment of anticancer tumor response serves at least two distinct purposes [17]. 

Firstly, it functions as a surrogate endpoint in Phase 2 and 3 clinical trials, by evaluating 

the clinical benefit and benefit-to-risk profile of intervention. Chemotherapeutic agents 

that provide significant clinical benefit may be eligible for accelerated approval [231]. 

Secondly, the evaluation of tumor response in the context of clinical, histological and 

molecular factors enables healthcare providers to target patients who will benefit from 

treatment before the initiation of therapy. Timely assessment of tumor response avoids 
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adverse effects from needless chemotherapy and allows the prompt transition to 

alternative treatment options [232]. For patients undergoing treatment, healthcare 

decisions to continue, modify or withdraw chemotherapy also rely on the periodic 

evaluation of tumor response. 

5.3 Solution approach for Developing Decision Support Model 
 

There are two major observations which guided the solution approach. First, there is a 

lack of data-driven decision support in the context of determining the responsiveness to 

EGFR-TKIs such as erlotinib and gefitinib, for the treatment of advanced NSCLC. 

Secondly, the integration of clinical and molecular predictors to the outcome of tumor 

response is not well established. Using the studies reported in Table 5.1 as a guide, it was 

determined that the classification algorithms could be employed to predict tumor 

response to targeted therapy in advanced NSCLC. The six steps of the solution approach 

are described in detail in the following sections.  

1. Determining the feature vector 

Classification seeks to determine if learning algorithms can be used to accurately predict 

patients as responders or non-responders from treatment with erlotinib or gefitinib in 

advanced NSCLC. Using domain knowledge and literature as a guide, a number of 

attributes were defined that contribute to the responsiveness to EGFR-TKIs in advanced 

NSCLC. As described in Chapter 3, age, gender, ethnicity, smoking status, and genetic 

polymorphisms in EGFR, KRAS and EML4-ALK were identified as potential attributes 

to describe the research problem. Using these attributes, a feature vector was constructed 

consisting of eight attributes (age, gender, smoking status, diagnosis, EGFR mutation, 

EGFR class, target therapy, and response). The dataset generated from Chapter 3 was 

used for classification. The attributes selected for classification are shown in Figure 5.1. 
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Figure 5.1 Attributes for classification 

 

2. Determining the output of interest 

As discussed previously, tumor response was selected as the outcome of interest. The 

original tumor responses to erlotinib and gefitinib were recorded according to RECIST 

(CR, PR, PD or SD) or as miscellaneous response (MR), if RECIST was not followed in 

the data sources. The distribution of instances for each of these five classes was: MR 

12.7%, CR 4.5%, PR 43%, PD 21.3%, and SD 18.6%. Recognizing that the class 

imbalance would cause learning algorithms to be dominated by the majority class [233], a 

binary outcome using the multiclass outcome was also constructed. 

In the binary class model, the original response attributes were recoded into two classes.  

The criteria used to group the response attributes is based on two main approaches cited 

in the literature. Traditionally, objective response rate is calculated from CR + PR [ 234] 

but recently the development of disease control rate (DCR) [235] has been proposed, 

where CR + PR + SD were shown to be stronger predictors of survival. Using a 

modification of the former approach, we categorized the multiclass attributes so that CR, 

PR and MR acquired the label “responder”, whereas SD and PD were labeled “non-

responder” [236]. In the binary model, the distribution of the classes was 60% and 40%, 

for responders and non-responders respectively. 

The task for classification was performed over two models, using multiclass and binary 

response outcomes. In the remainder of the chapter, these are referred to as the multiclass 

model and the binary class model. 
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3. Establishing the role of clinical, molecular and integrative predictors 

As described in Chapter 4, associations of varying strength exist between different 

attributes describing NSCLC. The following categories of attributes are defined: 

Clinical predictors of response include patient variables and the histological diagnosis. 

Molecular predictors of response are reviewed in Chapter 2 and include EGFR, KRAS, 

and EML4-ALK; this research focuses on EGFR mutations. 

Integrated predictors are the sum of clinical and molecular predictors. 

In order to determine the independent contribution of clinical, molecular and combined 

predictors to the response outcome, the dataset was divided as shown in Figure 5.2. 

 

 

Figure 5.2 Clinical, EGFR mutation and Integrated datasets 
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Clinical dataset: included the attributes for age, gender, smoking, diagnosis, target drug, 

and response. 

EGFR mutation dataset: comprised four attributes, namely, EGFR mutation, EGFR class, 

target drug, and response. 

Integrated dataset: consisted of a combination of all attributes from the dataset, 

specifically, age, gender, smoking, diagnosis, EGFR mutation, EGFR class, target drug, 

and response. 

The objective was to investigate how separate subsets of features correlate to the targeted 

drug response and whether the integration of clinical data with EGFR mutations enhances 

the predictive power of classification. A similar approach was adopted by Berrar et al 

[237], where the authors demonstrated that a combination of microarray data with clinical 

patient data improved the predictive accuracy for 5-year lung cancer survival. 

4. Choice and comparison of classification algorithms 

The selection of learning algorithms for a specific problem has been the subject of much 

debate [238- 240], and the No Free Lunch Theorem (NFL) recognizes that there is no 

optimal classifier for a given problem [241]. The choice of classifiers is based on studies 

which have used machine learning algorithms for predictive modeling in NSCLC. The 

selection of algorithms included Naïve Bayes [242], neural network [243], [244], Support 

vector machine [245-247], and classifier trees [248-250]. 

All learning algorithms were trained and tested on the Clinical, EGFR mutation and 

Integrated datasets.  The results of the top four performing classifiers, support vector 

machine, J48, Random forest and classification and regression tree (CART), are reported 

here. 

5. Evaluating classifier performance 

Caruana et al discuss the value of evaluating algorithms over a variety of performance 

metrics, as individual algorithms are designed to enhance different performance measures 

[251]. Classifier performance was evaluated using the metrics of accuracy, error, 
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precision, recall and the receiver operator curve (ROC) or the area under the curve 

(AUC). The 2x2 confusion matrix describes the performance of a classifier with its 

predictions (Predicted) against the actual target classes (Actual). The confusion matrix of 

a binary class problem and resulting definitions of metrics used in this work, are defined 

as shown in Figure 5.3. 

 

                                Figure 5.3 Confusion matrix of a binary class problem 

 

Accuracy= (TP + TN) / (TP + TN + FP + FN) 

Error=1-Accuracy 

Precision= TP / (TP + FP) 

Recall= TP / (TP + FN) 

Accuracy and error are the simplest and most intuitive measures of classifier 

performance; having said that, the simplicity comes at a price. Accuracy does not 

distinguish between FP and FN and in clinical classification problems, this poses a 

tremendous disadvantage. This can be further explained in the context of the current 

research question where classification was used to predict patients as responders or non-

responders from treatment with erlotinib or gefitinib. In this scenario, if patients with 

advanced NSCLC who are responders to EGFR-TKI therapy are predicted as non-

responders by the learning algorithm, they fail to receive targeted therapy. Extensive 



 
 

81 
 

studies have demonstrated that patients harboring characteristics such as female gender, 

adenocarcinoma and EGFR mutation show a significant response to EGFR-TKIs and this 

in turn confers a distinct survival advantage [252], [253], [169]. Therefore, misclassifying 

patients as non-responders has the detrimental consequence of withholding treatment that 

could potentially increase survival.   

Since accuracy does not capture these details, it was necessary to introduce two measure 

commonly used to test the performance of medical screening tests-sensitivity and specify. 

Sensitivity and specificity are defined as follows: 

Sensitivity (or recall) = TP / (TP + FN)  

Where sensitivity is the proportion of patients predicted as responders who are in fact 

responders to EGFR-TKI therapy. 

Specificity = TN / (TN + FP) 

Where specificity identifies the proportion of patients predicted as non-responders, who 

are truly non-responders. 

ROC is fundamental performance tool for predictive diagnostic testing in clinical 

sciences that combines the two measures of sensitivity and specificity [254]. ROC is 

defined by plotting sensitivity against ‘1 – specificity’. A learning model that has perfect 

prediction will generate an ROC curve that follows the y-axis along the upper left 

quadrant of the ROC plot, while a model with random predictions will generate a ROC 

curve that follows the 1:1 line.  

AUC is derived from the ROC and expressed as a proportion of the total area of the 

square defined by the axes [255]. The maximum AUC value is thus 1.0 for perfect 

predictive ability and 0.5 if the model’s predictive value is no better than random. 

Domain validation using expert knowledge and biological information reported in 

previous studies was also used to validate performance of the integrated model [256]. 
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6. Interpreting the results 

In addition to evaluating the classification accuracy of a model, it is crucial to understand 

and recognize the reasons behind each class decision. Decision trees produce human-

readable descriptions of the underlying data structure and as such present an intelligible 

and powerful technique in medical decision-making. Following the completion of each 

experiment, the output from tree-based classification was analyzed for its readability and 

comprehensibility of representation. 

5.4 Overview of Classification Experiments 
 

All classification techniques were carried out using the open source Waikato 

Environment for Knowledge Analysis (WEKA) [153]. The systematic approach used for 

both experiments included dividing the Clinical, EGFR mutation and Integrated datasets 

into training (n=291) and test sets (n=64). The training set was used to build several 

models using different algorithms. Feature selection and parameter tuning were 

performed to optimize the models. Subsequently, these models were applied to the test 

sets and those that best fit the relationship between the input features and class labels 

were identified using performance evaluation. Figure 5.4 summarizes the methodology 

for the classification experiments. 
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                            Figure 5.4 Overview of classification methodology 

 

The classification task consisted of two experiments: Experiment 1 was a multiclass 

model (complete response, partial response, miscellaneous response, stable disease and 

progressive disease) and Experiment 2 was a binary class model (responder and non-

responder). 

Feature selection 

Both experiments were performed with and without feature selection. Attribute selection 

was performed using the Correlation Feature-based Attribute evaluator (CfsSubset 

evaluator in WEKA), which considers the redundancy between features as well as the 

correlation to the class in order to produce a subset of features with minimum redundancy 

and maximized predictive ability [257]. 
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Classifiers  

Experiments were performed using support vector machine and three tree-based 

classifiers, J48, Random forest and CART.  

Support vector machine  

WEKA uses Platt’s sequential minimal optimization (SMO) algorithm to train a support 

vector classifier, where multiclass problems are solved using pairwise classification 

[258], [259]. The optimal parameters for training the support vector were polykernal 

using a complexity parameter of 1.0 and a tolerance parameter of 0.0010. 

 

J48 

The classic C4.5 is re-implemented as J48 [260] in WEKA. The decision tree was created 

using a confidence threshold of 25%, a minimum of two instances per leaf, and three 

instances were used for error pruning. Confidence-based post-pruning and sub-tree 

raising was used to prune the decision tree. 

Random forest 

The number of attributes for random selection was set to log_2(number_of_attributes)+1. 

Ten trees were generated and one execution slot was used to construct the ensemble. 

Simple CART 

Simple CART uses minimal cost complexity pruning to produce a classification tree 

[261]. A heuristic search was used for binary split for nominal attributes and fivefold 

cross validation was used in the minimal cost complexity pruning. 
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5.4.1 Experiment 1: Classification for Multiclass Model 
 

Results of Correlation Feature-based Attribute evaluator 

Clinical dataset: Using best first search method, 18 subsets were evaluated and the merit 

of the best subset was 0.177. Only the attribute Diagnosis was selected. 

EGFR mutation dataset: 6 subsets were evaluated and the best merit was 0.24. Only the 

attribute EGFR mutation was selected. 

Integrated dataset: Using the best first search method on the full training set, 30 subsets 

were evaluated and the merit of the best subset was 0.276 which included the attributes of 

Diagnosis and EGFR mutation. 

Performance Evaluation 

The evaluation of classification is based on the test set performance (n=64). ROC area 

weighted averages for multiclass labels are shown in the Table 5.2. 

Overall, algorithm performance on the Clinical dataset was poor when compared to the 

EGFR mutation and Integrated dataset. In the multiclass model, the accuracy of all 

algorithms on the Clinical dataset was at least 15.62% lower than the other two sets. 

Accuracies were comparable between the EGFR mutation and Integrated datasets, but 

precision for SMO and J48 increased when combined features were used. Also, the 

weighted ROC area for SMO, J48, and CART showed slight improvement when 

Integrated data was used instead of simply EGFR mutations. In the Integrative dataset, 

Random forest outperformed all algorithms with an accuracy of 56.69%, while the level 

of accuracy was equivalent for SMO, J48, and CART (56.25%). The weighted ROC was 

the highest for SMO, followed by CART, J48 and Random forest. 
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Dataset 

 

Classifier* 

 

Accuracy Error Precision Recall 
ROC 

area 

Clinical 

SMO 37.50 62.50 0.261 0.375 0.51 

J48 40.63 59.38 0.278 0.406 0.51 

Random Forest 40.63 59.38 0.278 0.406 0.51 

CART 40.63 59.38 0.278 0.406 0.51 

EGFR 

SMO 56.25 43.75 0.389 0.563 0.66 

J48 56.25 43.75 0.389 0.563 0.66 

Random Forest 56.25 43.75 0.389 0.563 0.66 

CART 56.25 43.75 0.389 0.563 0.66 

Integrated 

SMO 56.25 43.75 0.4 0.563 0.69 

J48 56.25 43.75 0.394 0.563 0.67 

Random Forest 54.69 45.31 0.389 0.547 0.65 

CART 56.25 43.75 0.452 0.563 0.68 

*results for tree based classifiers are with CFS and results for SMO are without CFS 
 

Table 5.2 Performance evaluation of classifiers from Experiment 1 
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Figure 5.5 Accuracy comparison of four classifiers for three models in Experiment 1 
SMO:support vector machine, J48:implementation of C4.5, RF: random forest, and              

CART: classification and regression tree 

 

Analysis of Decision tree 

Two sections of the decision tree output from the Integrated dataset in Experiment 1 are 

highlighted in Figure 5.6. The decision tree selected EGFR mutations as the root node. 

Because the dataset had 67 distinct mutations, the resultant tree is too large to display. 

For the purposes of illustration, Figure 5.6 shows EGFR classes instead. Numbers at the 

end of classes in brackets indicate the number of instances that follow the formula, 

followed by the number of misclassified instances.  

Within the most commonly detected mutations of exon 19 deletion E746-A750 and exon 

21 L858R, NSCLC sub-histologies differed in their individual responses.  

Adencarcinoma (AD), adenocarcinoma with bronchoalveolar features (AWBF), and 

bronchoalveolar carcinoma (BAC) were all responsive to EGFR-TKI therapy. However, 

squamous cell carcinoma (SCC) and large cell carcinomas (LC) had stable or progressive 

disease. Adenocarcinoma and its variants have been well studied in NSCLC and EGFR 

mutations frequently occur in this pathological subtype, leading it to be the most sensitive 

histology. Little information is available for the specific response to TKIs in SCC and 
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LC, however data from the SEER program revealed that one year survival in LC patients 

was less than 12.8%; the lowest observed in all histologic subtypes [262]. It is possible 

that even in the presence of sensitizing EGFR mutations, specific tumor histologies 

remain non responsive to targeted treatments due to the presence of coexisting primary 

resistance mutations.  

 

 
 

Figure 5.6 Highlights of decision tree from Experiment 1 
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5.4.2 Experiment 2 Classification for Binary Model 
 

In Experiment 2, the multiclass problem was changed to a binary one, where the response 

to treatment was recorded as “responder” or “nonrepsonder”. The aim was to determine if 

the predictive power of the classifiers could be increased by reducing the unbalanced 

classes in Experiment 1. 

Results of Correlation Feature-based Attribute Evaluator 

Clinical dataset: 17 subsets were evaluated and the merit of the best subset was 0.082. 

Smoking and Diagnosis were chosen for their predictive ability. 

EGFR mutation dataset: 8 subsets were evaluated and the best merit was 0.158. Only 

EGFR mutation was selected. 

Integrated dataset: Using the best first search method on the full training set, 31 subsets 

were evaluated and the merit of the best subset was 0.162 which included the attributes of 

Diagnosis, EGFR mutations, and EGFR class. 

Performance Evaluation 

The evaluation of classification is based on the test set performance (n=64) and results 

are shown in Table 5.3.  
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Dataset Classifier* Accuracy Error Precision Recall 
ROC 

area 

Clinical 

SMO 57.81 42.19 0.572 0.578 0.56 

J48 51.56 48.44 0.443 0.516 0.46 

Random Forest 56.25 43.75 0.557 0.563 0.53 

CART 54.69 45.31 0.53 0.547 0.51 

EGFR 

SMO 73.44 26.56 0.741 0.734 0.72 

J48 76.56 23.44 0.783 0.766 0.75 

Random Forest 73.44 26.56 0.741 0.734 0.69 

CART 73.44 26.56 0.741 0.734 0.70 

Integrated 

SMO 76.56 23.44 0.769 0.766 0.76 

J48 76.56 23.44 0.783 0.766 0.75 

Random Forest 75.00 25.00 0.755 0.75 0.69 

CART 76.56 23.44 0.769 0.766 0.74 

*results for SMO and J48 are without attribute selection and results for Random forest and CART are with 
attribute selection 
 

Table 5.3 Performance evaluation of classifiers from Experiment 2 
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Figure 5.7 Experiment 2 Accuracy comparison of four classifiers 

(SMO:support vector machine, J48:implementation of C4.5, RF: random forest,                           
and CART: classification and regression tree) 

 

An accuracy comparison of the four classifiers used in Experiment 2 is shown in Figure 

5.7. In the binary class model, the accuracy of all algorithms on the Clinical dataset was 

at least 17.19% lower than that of algorithms on the EGFR mutation and Integrative 

dataset. In the Integrative dataset, SMO, J48, and CART achieved an accuracy of 

76.56%, however, SMO had the highest AUC at 0.76, while that for J48, CART and 

Random forest was 0.75, 0.74, and 0.69 respectively. 

All performance metrics improved when the response was binary instead of multiclass. 

The pattern of change between the two models was similar- models created on the 

Integrated dataset performed better than those for only clinical or EGFR mutation 

features. 
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Figure 5.8 Experiment 2 ROC comparison of four classifiers 

(SMO:support vector machine, J48:implementation of C4.5, RF: random forest,                           
and CART: classification and regression tree) 

 

In order to test whether the integration of clinical data and EGFR mutations performed 

significantly different than clinical data and EGFR mutations alone, the AUC was 

compared between the three datasets (Figure 5.8). Figure 5.9 illustrates the three ROCs 

generated from SMO. Using DeLong’s method for comparing the area under multiple 

correlated curves [263], the three AUC values for support vector machine were evaluated. 

Table 5.4 describes the summary for AUC values, standard errors and 95% confidence 

intervals for all three datasets produced using support vector machine. Table 5.5 provides 

the pair-wise comparison of the AUC values between datasets. The model created using 

the integration of patient clinical data with EGFR mutations performed significantly 

better than the model created from clinical data alone (p=0.0363). However, the AUC of 

the integrated model was not significantly different from the EGFR model (p=0.1498). 
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Figure  5.9 ROCs generated from support vector machine 

 

Dataset AUC Standard error 95% CI 

Clinical 0.561 0.0592 0.431 to 0.685 

EGFR 0.722 0.0554 0.596 to 0.826 

Integrated 0.756 0.0540 0.633 to 0.855 

 

Table 5.4 AUC for all datasets using support vector machine 

 

Dataset pair z statistic p-value 

Integrated and EGFR 1.440 0.1498 

Integrated and Clinical 2.093 0.0363 

EGFR and Clinical 1.694 0.0902 

                  

Table 5.5 Pair-wise comparison of AUC for support vector machine 
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Analysis of Decision tree 

Because J48 has excellent readability and offers a powerful way to express the 

underlying structure in datasets, it was unpruned and the output of a section of the tree is 

shown in Figure 5.10. Similar to Experiment 1, the attribute for EGFR mutation formed 

the root node in Experiment 2. For illustrative purposes we show EGFR class as the root 

node. A comparison of a similar leaf from Experiment 1 is shown in Figure 5.11. In the 

multiclass model, only the attribute of Diagnosis was used to determine the class. 

However, in the binary model, age, gender and smoking were used to determine the class 

in adenocarcinoma (AD).  

 

Figure 5.10 Experiment 2 Exon 19 LREA deletion decision branch 
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Figure 5.11 Experiment 2 wildtype decision branch 

 

There was a high misclassification rate for EGFR wildtype cases in Experiment 1’s 

decision tree. Although both erlotinib and gefitinib are tyrosine kinase inhibitors, it 

remains uncertain whether they display different clinical activities in advanced NSCLC. 

This is in part due to the lack of direct comparison studies of both agents under similar 

conditions. Several clinical trials have shown that the response rate of gefitinib in EGFR 

wildtype patients is between 0-6.6% [264-267], whereas erlotinib has achieved a 7% 

response rate [268]. Recently, it has been illustrated that erlotinib may be more effective 

than gefitinib in wildtype patients owing to its protein interaction profile [269]. A study 

conducted at Memorial Sloan Kettering in 2008 demonstrated that some EGFR wildtype 

patients with bronchoalveolar carcinoma or adenocarcinoma with bronchoalveolar 

features show minor or partial response to TKIs [270]. A small number of studies have 

reported EGFR wildtype response to gefitinib and this may explain the histological 

differences in response seen in gefitinib branch above [271]. 
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5.5 Chapter Summary 
 

Two experiments were set up using different levels of the class variable. Experiment 1 

used five levels of response; four of these directly correspond with RECIST (complete 

response, partial response, stable disease and progressive disease) and the fifth level was 

created to denote a miscellaneous response as described in Chapter 3. The distribution of 

the class variables varied greatly, where complete response was found in only 4% of the 

dataset while the frequency of partial response was 43%. Unbalanced classes along with 

the small size of the dataset resulted in low accuracy of multiclass model. In Experiment 

2, the multiclass problem was transformed to a binary one, by changing the outcome to 

responder and non-responder. Although this provided lesser detail to the degree of 

response, the accuracy of binary classification improved dramatically. 

Classification was performed on three datasets. In the Clinical dataset, only 

demographics, pathological diagnosis and target drug were included, whereas the EGFR 

mutation dataset contained the individual mutations, EGFR class, and target drug. The 

collection of attributes from these two sets produced the Integrated dataset. 

In Experiment 1, SMO achieved an accuracy of 37.5% on the clinical dataset and tree-

based classifiers classified 40.6% of instances correctly. In the Integrated dataset, the 

accuracy of SMO increased to 56.3% and the average accuracy for tree-based classifiers 

was 55.7%. In Experiment 2, the accuracy of SMO and J48 was 57.8% and 51.7% 

respectively on the Clinical dataset. By integrating all attributes, SMO, J48 and CART 

achieved an accuracy of 76.6%. In addition, a comparison of AUC values generated for 

all three datasets using support vector machine was performed. The AUC for the 

integrated dataset was significantly different from the clinical dataset. The pair-wise 

comparison for the integrated dataset and the EGFR dataset did not reach statistical 

significance. The results of both experiments demonstrate that a set of only clinical 

attributes has a weak predictive power to classify the response achieved from EGFR-TKI 

therapy. Conversely, the integration of clinical and EGFR mutations was strongly 

predictive of the class variable. 
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Both quantitative and qualitative criteria were used to evaluate the performance of the 

models. The quantitative measures of classification accuracy, error rate, prediction, recall 

and ROC area were compared for all classifiers. In addition, the output interpretability of 

the decision tree was used as qualitative measure of J48’s performance.  

The decision tree of the multiclass and binary model  had 17 decision nodes.  Given that 

exons 19 and 21 of EGFR are most commonly mutated in NSCLC, these branches were 

emphasized and explained in the results of decision modeling.  As shown in Figures 5.6, 

5.10 and 5.11, many of the rarer EGFR mutations corresponded directly to a specific 

tumor response. Although, the number of recorded observations for rare mutations and 

mutation combinations was limited in the current research dataset, it was noted that the 

misclassification for rare mutations was unexpectedly low.  Since majority of patient data 

in this project was derived from clinical trials that are highly selective, caution must be 

exercised when attempting to generalize the tumor response of rare and complex EGFR 

mutations in to clinical practice. 
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CHAPTER 6: DISCUSSION 
 

Molecular targeted therapies for NSCLC promise superior clinical outcomes for patients 

with advanced stage disease. The post-genomic era has witnessed an explosion of 

biomedical data coupled with plateau of personalized patient selection. With increasing 

costs of modern drugs, it is critical to identify subsets of patient populations that are 

likely to benefit from treatments and ensure the best health outcomes. A significant 

challenge lies in the integration of multifaceted healthcare data to provide clinical 

predictions for patient outcomes. This thesis presents the integration of clinical and 

molecular data to guide the personalized treatment selection for targeted therapy in 

advanced NSCLC. 

6.1 Pattern Discovery in NSCLC 
 

In the clinical environment, frequent pattern mining of healthcare data can uncover 

biological relationships and help us understand genotype-phenotype associations 

(diagnosis, prognosis, and therapeutic response). In this thesis, two methods of pattern 

discovery were used to discover meaningful relationships in the research dataset. With 

the Classical approach, also known as the unsupervised approach, we did not 

predetermine a target variable. The results of Apriori consistently revealed frequent 

itemsets that have been previously described from large randomized controlled trials. 

Unselected trials for advanced NSCLC indicated that clinical characteristics, such as, 

female gender, a history of never smoking and the diagnosis of adenocarcinoma were all 

highly correlated to a favorable response to erlotinib or gefitinib. Constrained pattern 

mining is a form of subset association mining. Intuitively, the advantage of constrained 

mining is the reduction in the number of rules generated. The subset of rules is limited to 

specified attributes in the antecedent or consequent. For this thesis, the consequent was 

constrained to tumor response in order to generate rules demonstrating the relationship 

between itemsets and responsiveness to EGFR-TKI. Results from classical and 

constrained approaches confirmed the patient characteristics and tumor response patterns 

reported in the literature, in turn, validating the dataset. 
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Pattern mining was a descriptive and exploratory approach; the generated rules expressed 

the inherent regularities in the dataset and the frequency of attributes occurring together. 

Despite the fact that pattern mining was not performed sequentially with classification, 

many of the association rules were found to correspond with classification rules. For 

example, a constrained rule using Predictive Apriori algorithm demonstrated that exon 20 

Q787Q + exon 21 L858R EGFR mutation pattern was likely to be associated with partial 

response with 92% accuracy. In the multiclass classification model, visualization of the 

decision tree established that this same mutation pattern resulted in partial response. This 

observation forms the basis of associative classification, a popular task which combines 

the power of association rules with classification to enhance prediction [272]. It also 

indicates the existence of a strong relationship between complex EGFR mutations and 

tumor response. 

 

6.2 Decision Support for NSCLC 
 

In order to isolate the relationship between tumor response and distinct variables, the 

predictive ability of subsets of attributes was tested. The clinical dataset consisted of 

conventional clinical variables such as age, gender, smoking status and histology. In the 

EGFR mutation dataset, the biomarker status and its class (as defined in Chapter 3) were 

included, while the integrated dataset combined both clinical and biomarker data. A 

common observation for both the multiclass and binary models was the significant 

improvement in performance of all classifiers between the clinical dataset and EGFR 

dataset. The accuracy and ROC using only clinical characteristics of age, gender, 

smoking status and histology was weak when compared to the EGFR mutation dataset In 

the multiclass model the highest accuracy was 40.63% and the weighted ROC was 0.51 

using the clinical data characteristics, whereas in the EGFR mutation dataset the highest 

accuracy was 56.25% and weighted ROC was 0.66. When the clinical and molecular data 

was integrated into a combined dataset, the classifier ROC further improved (0.69 for 

support vector machine). A similar pattern was observed in the binary model, where 

support vector machine achieved the best performance using integrated data 
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characteristics; 76.56% accuracy and 0.76 AUC. Pair-wise comparison of the AUC for 

three datasets generated from support vector machine was performed. This assessment 

revealed that the AUC of the integrated dataset was significantly different from the 

clinical dataset. This can in part be explained by the nature of the domain- erlotinib and 

gefitinib target the tyrosine kinase domain of EGFR. If mutational testing data is included 

in the feature vector, the prediction of tumor response is more accurate. These results are 

in agreement with the existing understanding that EGFR mutations describe a subset of 

NSCLC which can guide targeted therapy [95]. Previous research has also established 

that the combination of clinical and genetic or genomic variables has enhanced predictive 

ability for risk stratification in lung cancer. In order to identify patients at risk for 

recurrence after surgical resection in lung cancer, [102] constructed three predictive 

models. The clinical model consisted of seven clinical variables; stage, cell type, 

differentiation, smoking history, tumor size, gender, age; the genomic model included  

QPCR-assayable genes, and a combination of both produced the clinicogenomic model. 

The authors demonstrated that the clinicogenomic model had superior performance (AUC 

>0.75) within the validation cohorts compared with the clinical or genomic models alone 

in predicting recurrence risk for lung cancer patients. In [103] the authors observed that 

the addition of clinical covariates improved the hazard ratio of gene expression to 

produce a robust predictor of overall survival in lung cancer patients. Various studies 

have assessed the AUC of predictive models using a variety of outcomes in lung cancer. 

In this thesis, validation of trained classifiers was performed on independent test data. 

The AUC of 0.76 achieved by support vector machine in the integrated model is 

comparable to the limits reported by [36] and [103]. 

Given a limited size of training data, it is essential to carefully choose the class 

distributions as this directly affects classification. Some authors recommend that 

classifier learning should be based on the natural underlying distribution of classes while 

others advocate an increase in the minority class examples [273]. An analysis of the 

confusion matrices for the multiclass model demonstrated that the misclassification for 

miscellaneous response (MR), complete response (CR) and stable disease (SD) was much 

higher than partial response (PR) or progressive disease (PD). Because MR, CR and SD 

were under-represented, the induced classifiers had poor classification for the minority 
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examples. In [273], the authors provide guidelines for imbalanced datasets and 

recommend that when accuracy is chosen as the performance measure, natural class 

distribution is preferred, whereas if AUC is the performance metric, balance class 

distribution is desirable. In this thesis, to overcome the imbalance class distribution 

problem the multiclass model was transformed to a binary model using the criteria used 

to calculate response rate. PR, CR and MR were grouped together as responders and SD 

and PD were grouped into non-responders. In the binary model, the class distributions 

were 60% for responders and 40% for non-responders. Classification performance 

improved for all learners in the binary class model. This can in part be explained by the 

measurement of tumor response by RECIST and its four response classes. The widely 

accepted guideline proposed by RECIST defines the framework for converting CT 

measurements into tumor response categories. Although RECIST is standardized for 

consistent use across studies and clinical trials, it is highly dependent on individual 

subjective judgement of tumor margins and increases inter and intra observer variability 

[274]. The observer variability is multiplied in our dataset, as it draws on tumor 

assessment for patient samples from several locations. The research community 

acknowledges that there may be differences among readers in the assignment of tumors 

into RECIST-defined response categories [274]. Accordingly, by categorizing lung tumor 

response into two classes; responders and non-responders [229], [275], a marked 

improvement was observed in the discriminatory ability of all classifiers. 

EGFR mutations are most commonly associated with adenocarcinoma histology and 

cancers with an adenocarcinoma component [13]. Molecular aberrations of EGFR occur 

infrequently in squamous cell carcinomas and large cell carcinomas that lack an 

adenocarcinoma component [276 ], [ 252] and these subtypes are not currently 

recommended for EGFR testing. In the multiclass model, the analysis of J48 decision tree 

output revealed that in the presence of sensitizing mutations in exons 19 and 21, in all 

histologies except squamous cell carcinoma resulted in response to EGFR-TKI. 

Although, patients with non-adenocarcinoma histology testing positive for EGFR 

mutations are rarely evaluated, a pooled analysis of published reports found that gefitinib 

was less effective in non-adenocarcinoma cancers harboring EGFR mutations [277]. The 

response rate and PFS was significantly lower in non-adenocarcinoma histologies 
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compared to adenocarcinomas. One possible explanation of this phenomenon is an 

alteration in the phosphatidylinositol 3-kinases)/Akt pathway downstream of EGFR in 

non-adenocarcinomas [278]. The gene encoding the p110α subunit of phosphoinositide 3-

kinase (PI3K) α or PIK3CA is not mutually exclusive to EGFR or KRAS mutations and 

may cause resistance to treatment with erlotinib or gefitinib in squamous cell carcinomas 

[277]. 

In the binary class model, a similar response pattern was observed for all histologies. 

However, in this model, the decision tree provided two additional decision nodes for 

adenocarcinoma. Patients younger than 49.2 years were likely to be responders, but in 

older patients, gender and history of smoking further differentiated tumor response. 

Analogous to our current understanding of clinical characteristics, female patients 

respond better than males, and never or former smokers respond better than current 

smokers to targeted therapy. 

The binary class model also revealed that some EGFR wildtype tumors may also respond 

to erlotinib or gefitinib. This was most pronounced in bronchoalveolar carcinoma or 

adenocarcinoma with bronchoalveolar features. The Sequential Tarceva in Unresectable 

NSCLC (SATURN) trial investigated the role of erlotinib as maintenance therapy in 

patients with non-progressing disease after first-line platinum-doublet chemotherapy 

[279]. Results demonstrated a PFS benefit in patients with both EGFR mutation positive 

and wildtype tumors. Therefore it may be possible that EGFR-TKIs benefits patients 

regardless of mutation status or clinical profile in the second-line, third-line or 

maintenance settings. 

The work presented in this thesis focused on clinical decision support for predicting 

tumor response to the two EGFR-TKIs erlotinib and gefitinib. Projecting forward to the 

future implementation of this work online, there would likely arise a number of 

interesting issues that would prove challenging. To begin with, ongoing 

pharmacogenomic cancer research will inevitably produce new and improved targeted 

therapies for NSCLC. Before reaching the marketplace, prospective clinical trials will 

collect longitudinal patient data for a number of years before efficacy of the new 

treatments can be assessed. Another important issue for consideration would be whether 
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these new drugs have any interaction with any other cancer treatments for NSCLC. Any 

such interactions that are reported and documented in the literature would have to be 

incorporated into the clinical decision support model. A third challenging issue would be 

to account for the acquisition of drug resistance in the decision support model.  

6.3 Limitations 
 

Limitations of this work include the potential omission of rare patterns and low 

discriminative capacity of decision model. As described previously, the current research 

dataset was created from diverse sources, each with a slightly different experimental 

approach, DNA sequencing methodology and assessment of tumor response. The limited 

sample size (n=355) included both common and rare mutations. Pattern mining 

techniques, applied to validate the data, discovered many of the well-established clinical 

and molecular associations. However, traditional pattern mining algorithms are designed 

to discover interesting patterns in potentially large datasets. Rare features, including 

several insertions, duplications, deletions and point mutations, had low frequency counts 

and would not have occurred in frequent itemsets. The highest predictive accuracy of the 

data-driven decision support model reached 76.53%, implying that there is still room for 

improvement. Additional clinical features such as performance status, ethnicity, line of 

treatment, and genetic abnormalities may help explain tumor response to erlotinib or 

gefitinib [36]. 

6.4 Future work 
 

The current research demonstrates data-driven decision modeling for predicting tumor 

response to targeted therapies in advanced stage NSCLC. This proof of concept can be 

extended and further validated using alternative data sources. Longitudinal electronic 

health records contain comprehensive patient data, through which learning models can 

decipher the complex interaction between clinical and molecular characteristics that 

predict tumor response. Alternatively, data warehouses which are not tied to specific 

institutes or organizations offer increased scope and utility for mining healthcare data. 

Predictive ability and reliability of decision models relies heavily on the quality and 
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volume of training data; this underlies the importance of data aggregation initiatives from 

both public and private provider organizations.  

6.5 Conclusion 
 

Results from the decision support modeling experiments follow the recently released 

guideline [62] on molecular testing in lung cancer. The College of American 

Pathologists, International Association for the Study of Lung Cancer, and Association for 

Molecular Pathology suggest that clinical characteristics of age, gender, smoking, are 

insufficient to guide testing and treatment in patients with advanced NSCLC. The strong 

association of clinical characteristics and EGFR mutation frequency has been established 

in population studies, however, these features are inadequate to guide personalized 

treatment in NSCLC. Treatment decisions with erlotinib or gefitinib and the assessment 

of their efficacy in individual patients is best established by molecular testing of EGFR 

mutations [62].  

Recommended EGFR testing in NSCLC is only the beginning of individualized therapy 

in NSCLC. As genome-wide association studies continue to identify additional molecular 

targets, scientific advancements will outpace the development of consensus guideline and 

expert opinions. Clinicians will be constantly challenged by the rapid changes driven by 

experimental research and clinical trials. Even so, data alone is insufficient to drive 

healthcare research. New and improved computational methods and techniques are the 

true drivers of data-intensive research and medical practice [208]. The value of the data-

driven decision support model is two-fold: the evidence is based on real-world patient 

cases and models can “learn” personalized data-driven principles for individual cases in 

the absence of clear guidelines [280]. As an example, the 2013 National Cancer 

Comprehensive Network guidelines for NSCLC recommend EGFR mutation testing for 

adenocarcinoma, large cell carcinoma, and NSCLC NOS. For EGFR- mutation positive 

patients, erlotinib is the drug of choice. Recommendations from guidelines and consensus 

are based on population studies and say nothing about individual variations that may be 

seen in daily practice [62]. As an increasing amount of new mutations are reported, 

medical practitioners are faced with the challenge of optimizing treatment selection for 
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individual patients. Computer-assisted data extraction and evidence synthesis offered by 

decision support models can help clinicians improve targeted treatment options for 

patients based on their individual clinical, histological and molecular features [281].   

In summary the achievements from this research are: 

1. Construction of research dataset in the absence of structured data  

An important contribution of this research is the construction of a dataset from multiple 

freely available sources, including original research articles and case reports. Data 

extracted from such sources can be computationally analyzed to provide intelligent and 

accurate decision support to clinicians. 

2. Development of a data-driven clinical decision support model for NSCLC 

The first research objective was to categorize patients who are responsive to EGFR-TKI 

chemotherapy in advanced NSCLC based on personalized clinicopathological data and 

EGFR mutation status. Multiple models were constructed on the dataset to determine 

optimal performance using feature selection and parameter tuning. Among several 

models tested, support vector machine and decision tree-based learners had the best 

performance. Furthermore, the decision tree learners modeled an easily interpretable 

relationship of input variables, using EGFR mutation status as the root node, which is 

very much in accordance with both current research and clinical practice guidelines for 

advanced NSCLC. 

3. Comparison of attribute sets to tumor response 

In addition to creating decision support models, the classification performance of three 

patient feature subsets was compared. Results suggest that the predictive performance of 

the model is significantly better with the integration of both clinical and genetic data, 

than when clinical features alone are used. This highlights the importance of the 

personalization of patient health in advanced NSCLC.  
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The findings from this research indicate that data-driven decision support is a promising 

avenue of research in fostering personalized medical decision-making for patients with 

advanced NSCLC. Potential next steps include learning models on large volumes of 

patient data to improve prediction and testing these models in pilot trials to validate 

results and performance. 
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APPENDIX A DATA SOURCES  
Ref no. Title Type 
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 Lung Adenocarcinoma with Concurrent Exon 19 EGFR Mutation 
and ALK Rearrangement Responding to Erlotinib Case Report 
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Complete Pathologic Response in Lung Tumors in Two Patients 
with Metastatic Non-small Cell Lung Cancer Treated with 
Erlotinib Case Report 
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 Characterization of epidermal growth factor receptor 
mutations in non-small-cell lung cancer patients of African-
American ancestry Article 
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  Miliary Never-Smoking Adenocarcinoma of the Lung Strong 
Association with Epidermal Growth Factor Receptor Exon 19 
Deletion Case Report 
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 Lung Cancer with Epidermal Growth Factor Receptor Exon 20 
Mutations Is Associated with Poor Gefitinib Treatment Article 
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 The EGFR mutation and its correlation with response of 
gefitinib in previously treated Chinese patients with advanced 
non-small-cell lung cancer Article 
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 Multiplicity of EGFR and KRAS Mutations in Non-small Cell Lung 
Cancer (NSCLC) Patients Treated with Tyrosine Kinase Inhibitors Article 
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  Good Response to Gefitinib in Lung Adenocarcinoma of 
Complex Epidermal Growth Factor Receptor (EGFR) Mutations 
with the Classical Mutation Pattern Article 

9 
Benchmarking of Mutation Diagnostics in Clinical Lung Cancer 
Specimens Article 

10 

Near Total Regression of Diffuse Brain Metastases in 
Adenocarcinoma of the Lung with an EGFR Exon 19 Mutation: A 
Case Report and Review of the Literature Case Report 

11 
Role of cMET expression in non-small-cell lung cancer patients 
treated with EGFR tyrosine kinase inhibitors Article 
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De Novo Resistance to Epidermal Growth Factor Receptor- 
Tyrosine Kinase Inhibitors in EGFR Mutation-PositivePatients 
with Non-small Cell Lung Cancer Case Report 

13 

Favorable Response to Erlotinib in a Lung Adenocarcinoma With 
Both Epidermal Growth Factor Receptor Exon 19 Deletion and 
K-ras G13D Mutations Case Report 

14 

EGFR Mutations Detected in Plasma Are Associated with Patient 
Outcomes in Erlotinib Plus Docetaxel-Treated Non-small Cell 
Lung Cancer Article 
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Large-Cell Neuroendocrine Carcinoma of the Lung Harboring 
EGFR Mutation and Responding to Gefitinib Case Report 
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Activating Mutations in the Epidermal Growth Factor Receptor 
Underlying Responsiveness of Non–Small-Cell Lung Cancer to 
Gefitinib Article 



 
 

137 
 

 

17 

EGF receptor gene mutations are common in lung cancers from 
‘‘never smokers’’ and are associated with sensitivity of tumors 
to gefitinib and erlotinib Article 

18 
EGFR mutations in patients with brain metastases from lung 
cancer: Association with the efficacy of gefitinib Article 

19 
Response to second-line erlotinib in an EGFR mutation-negative 
patient with non-small-cell lung cancer: make no assumptions Case Report 

20 

Erlotinib May be More Effective for Central Nervous Metastasis 
of Lung Adenocarcinoma Than Gefi tinib Because of the 
Difference in the Clinical Regimes Case Report 

21 

Impact of specific mutant KRAS on clinical outcome of EGFR-
TKI-treated advanced non-small cell lung cancer patients with 
an EGFR wild type genotype Article 
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EGFR Mutation and Resistance of Non–Small-Cell Lung Cancer 
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Activity of Epidermal Growth Factor Receptor-Tyrosine Kinase 
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Rare Epidermal Growth Factor Receptor Mutations Article 
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Mutations in the Epidermal Growth Factor Receptor and in 
KRAS Are Predictive and Prognostic Indicators in Patients With 
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and in Combination With Erlotinib Article 

25 

Detectionof Epidermal Growth Factor ReceptorMutations in 
Serum as a Predictor of the Response to Gefitinib in Patients 
with Non ^Small-Cell LungC ancer Article 
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Gefitinib-SensitiveMutations of the Epidermal Growth Factor 
Receptor Tyrosine Kinase Domain in Chinese Patientswith 
Non^Small Cell Lung Cancer Article 

27 

Epidermal growth factor receptor mutations are associated 
with gefitinib sensitivity in non-small cell lung cancer in 
Japanese Article 
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EGFR/KRAS Mutations and Gefitinib Therapy in Chinese NSCLC 
Patients Article 
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EGFR and KRAS mutations as criteria for treatment with 
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30 

Epidermal growth factor receptor (EGFR) mutations in a series 
of non-small-cell lung cancer (NSCLC) patients and response 
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31 

Epidermal growth factor receptor (EGFR) tyrosine kinase 
inhibitors (TKIs) are effective for leptomeningeal metastasis 
from non-small cell lung cancer patients with sensitive EGFR 
mutation or other predictive factors of good response for EGFR 
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Response to Erlotinib in First-Line Treatment of Non–Small-Cell 
Lung Cancer in a White Male Smoker with Squamous-Cell 
Histology Case Report 

33 
Erlotinib for Pretreated Squamous Cell Carcinoma of the Lung in 
Japanese Patients Case Report 

34 
Brain metastasis from non-small cell lung cancer: sustained 
response with erlotinib Case Report 

35 
Early and Complete Response of Bone Metastases, Documented 
by FDG-PET/CT Scan, in a Patient With NSCLC Case Report 

36 

High Frequency of Epidermal Growth Factor Receptor 
Mutations with Complex Patterns in Non–Small Cell Lung 
Cancers Related to Gefitinib Responsiveness in Taiwan Article 

37 

ActivatingMutations in the Tyrosine Kinase Domain of the 
Epidermal Growth Factor ReceptorAreAssociatedwith Improved 
Survival in Gefitinib-Treated Chemorefractory Lung 
Adenocarcinomas Article 

38 

‘Classical’ but not ‘other’ mutations of EGFR kinase domain are 
associated with clinical outcome in gefitinib-treated patients 
with non-small cell lung cancer Article 

39 

A phase II trial of gefitinib as first-line therapy for advanced 
non-small cell lung cancer with epidermal growth factor 
receptor mutations Article 

40 

Phase II Clinical Trial of Chemotherapy-Naı¨ve Patients 70 Years 
of Age Treated With Erlotinib for Advanced Non–Small-Cell 
Lung Cancer Article 

41 

EGFR Mutation Status in Primary Lung Adenocarcinomas and 
Corresponding Metastatic Lesions: Discordance in Pleural 
Metastases Article 

42 

Mutations of epidermal growth factor receptor of non-small cell 
lung cancer were associated with sensitivity to gefitinib in 
recurrence after surgery Article 
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Use of Cetuximab After Failure of Gefitinib in Patients With 
Advanced Non–Small-Cell Lung Cancer Article 
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Complex Mutations in the Epidermal Growth Factor Receptor 
Gene in Non-small Cell Lung Cancer Article 

45 
Effects of Erlotinib in EGFR Mutated Non-Small Cell Lung 
Cancers with Resistance to Gefitinib Article 
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Erlotinib after Gefitinib failure in female never-smoker Asian 
patients with pulmonary adenocarcinoma Article 
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Mutation in the Tyrosine Kinase Domain of Epidermal Growth 
Factor Receptor Is a Predictive and Prognostic Factor for 
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The Relationship between Epidermal Growth Factor Receptor 
Mutations and Clinicopathologic Features in Non–Small Cell 
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