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Abstract

It is well known that patterns of nucleotide composition vary within and among genomes, although the reasons why these

variations exist are not completely understood. Between-genome compositional variation has been exploited to assign

environmental shotgun sequences to their most likely originating genomes, whereas within-genome variation has been used

to identify recently acquired genetic material such as pathogenicity islands. Recent sequence assignment techniques have

achieved high levels of accuracy on artificial data sets, but the relative difficulty of distinguishing lineages with varying
degrees of relatedness, and different types of genomic sequence, has not been examined in depth. We investigated the

compositional differences in a set of 774 sequenced microbial genomes, finding rapid divergence among closely related

genomes, but also convergence of compositional patterns among genomes with similar habitats. Support vector machines

were then used to distinguish all pairs of genomes based on genome fragments 500 nucleotides in length. The nearly

300,000 accuracy scores obtained from these trials were used to construct general models of distinguishability versus

taxonomic and compositional indices of genomic divergence. Unusual genome pairs were evident from their large residuals

relative to the fitted model, and we identified several factors including genome reduction, putative lateral genetic transfer,

and habitat convergence that influence the distinguishability of genomes. The positional, compositional, and functional
context of a fragment within a genome has a strong influence on its likelihood of correct classification, but in a way that

depends on the taxonomic and ecological similarity of the comparator genome.
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Introduction

Microbial genomes show dramatic differences in their un-

derlying nucleotide compositions. The average G þ C com-

position in sequenced prokaryotic genomes ranges from

16.6% in the reduced endosymbiont Candidatus Carsonella

ruddii to nearly 75% in certain Proteobacteria and Actino-

bacteria. Properties such as oligomer nucleotide signatures

(Blaisdell et al. 1986; Brendel et al. 1986; Pietrokovski et al.

1990; Karlin and Burge 1995; Abe et al. 2005), codon usage

patterns (Willenbrock et al. 2006), conserved sequence re-

peats (van Belkum et al. 1998), and structural periodicity

(Mrázek 2009) are variable and potentially characteristic

of different taxonomic groups of microbes. Variation in

these patterns has been tied to selective forces including ni-

trogen limitation in the environment (Willenbrock et al.

2006) and DNA repair systems (Paz et al. 2006; Rocha

et al. 2006). Under certain conditions, these patterns and
biases can change rapidly relative to changes in commonly

used marker genes; for example, strains of the marine pico-

cyanobacterium Prochlorococcus marinus show remarkable

G þ C content divergence from 30% and 50% despite the

presence of very similar 16S rDNA sequences, which is likely

due to differences in DNA repair genes (Rocap et al. 2003).

The G þ C content of these genomes correlates with adap-

tation to different degrees of light intensity, and the rapid

genomic divergence may be tied to the rapid ecological

divergence of these clades.

The role of ecology in shaping composition is not yet

firmly established and indeed may depend on the type

of habitat under consideration. Hypersaline environments

impose significant physiological challenges on resident mi-

crobes, and there is evidence that taxonomically divergent
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genomes show similar amino acid and other compositional
biases (Paul et al. 2008). At the genomic level, halophile

DNA composition appears to be strongly influenced by in-

creased usage of aspartic and glutamic acid, threonine and

valine codons, and possibly also the propensity to transition

from B-DNA to a Z-DNA conformation that is stabilized at

high salt concentrations (Misra and Honig 1996). Recently,

Dick et al. (2009) examined the compositional patterns

within a community of acidophilic organisms and found that
major and minor lineages could be distinguished, suggest-

ing that genome-specific processes were more important

than ecological constraints in acid mine drainage communi-

ties. Strikingly, the G þ C composition of different genomes

from these communities ranged between 35% and

69%, clearly rejecting the idea of an acidophilic genome

signature.

Different evolutionary forces give rise to within-genome
compositional variation. ‘‘Translational’’ codon usage bias

refers to the tendency of highly expressed genes to prefer-

entially use synonymous codons that have high levels of cor-

responding tRNA in the cell. Genomes that show high levels

of translational codon bias can therefore show different

compositional patterns between highly expressed and other

genes (Carbone et al. 2005). However, these biases do not

manifest in all genomes, and in many cases, codon prefer-
ence is instead driven by compositional or strand bias

(Carbone et al. 2003). Exogenous sequences that have been

integrated into a genome can also show substantial compo-

sitional variation; these variations underpin homology-

independent ‘‘surrogate’’ methods for identifying lateral

genetic transfer (LGT) events (Ragan 2002; Dufraigne

et al. 2005). Bacteriophage genomes tend to be very A þ
T rich and lysogenized phage can be identified based on
their unusual compositional patterns (Karlin 2001; van

Passel et al. 2006). Compositional searches are also an

essential component of many strategies used to find path-

ogenicity islands (Hsiao et al. 2003). Within-genome com-

positional variation can therefore highlight important

classes of core and adaptive genes. However, in the context

of assigning anonymous sequences to their originating

genomes, these variations constitute confounding factors
that may contribute to misattribution of certain genomic

fragments.

With the rise of environmental shotgun sequencing, geno-

mic patterns have gained prominence as cues by which short

sequence reads can be assigned to the appropriate taxo-

nomic unit, ideally strain or species, in a homology-

independent way (Abe et al. 2003; McHardy et al. 2007;

Manichanh et al. 2008). Sequence assignment is an essential
step that precedes the inference of organism-specific regula-

tory, metabolic, or ecological information. Unsupervised

learning approaches to sequence assignment have employed

variations of Kohonen’s self-organizing map (Abe et al. 2003;

Martin et al. 2008; Dick et al. 2009) and statistical correlations

between oligonucleotide usage patterns (Teeling et al. 2004).
Oligomer (particularly tetranucleotide) profiles and signatures

have been successfully used in supervised sequence assign-

ment: prominent examples include a naı̈ve Bayes approach

(Sandberg et al. 2001) and PhyloPythia, which performs hi-

erarchical classification of unknown sequences using a large

array of support vector machines (SVMs) trained with differ-

ent subsets of the original data (McHardy and Rigoutsos

2007). Hybrid approaches that use binning augmented with
detected phylogenetic marker genes have also been applied

to the problem (Chatterji et al. 2008).

The high reported accuracy of classification approaches is

encouraging. However, because a great deal of ecological

and genomic differentiation can be observed at the species

or strain level among microbes (Welch et al. 2002; Rocap

et al. 2003; Tettelin et al. 2005), it is essential to understand

the taxonomic limitations of these methods, both in theory
and in practice. When classification accuracy (CA) is less

than 100%, it is important to distinguish fundamentally un-

classifiable cases (e.g., recently acquired sequences and

slowly evolving traits) from boundary cases that could be dis-

tinguished by using a better classifier. Such knowledge can

establish or rule out the need for more complex classifiers

and encoding schemes. A high global accuracy score

achieved on a benchmark data set such as FAMeS
(Mavromatis et al. 2007) can still conceal challenging cases

that are poorly resolved. The compositional variation within

and between genomes has been extensively documented

(Bohlin et al. 2008; Mrázek 2009), but it is not clear what

sort of challenge these patterns pose to modern classifiers

such as SVMs. In this work, we use a relatively simple super-

vised classification scheme (SVMs trained with tetranucleo-

tide compositional profiles of genomic fragments) to assess
the dependence of CA on various measures of genomic sim-

ilarity and relatedness. We also explore whether there exist

compositional or functional subsets of genomes that may be

easier or more difficult to distinguish.

Materials and Methods

Genome Sequence Acquisition and Preprocessing The

sequences of 774 prokaryotic genomes (see supplementary
table S1, SupplementaryMaterial online)were obtained from

TheNational Center for Biotechnology Information (NCBI) via

rsyncon28November, 2008. The721bacterial genomescov-

ered a total of 472 unique named species, whereas 49

archaeal species were represented by the 53 available ge-

nomes. The average genome size was 3.58 Mbp, ranging

from0.16Mbp (C. ruddii) to 13Mbp (Sorangiumcellulosum).

TheDNAmoleculesobtainedwere split intoa setof substrings
or fragments, each 500 nucleotides in length. We chose to

examine fragments 500 nt in length for several reasons:

(i) Fragments of this length are known to be difficult to
classify in comparison with sequences 1000 nt or
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greater in length (McHardy et al. 2007). Existing
binning methods include unsupervised approaches
that use fragments of length 500 nt or greater
(Sandberg et al. 2001; Abe et al. 2003; Teeling et al.
2004; McHardy et al. 2007; Diaz et al. 2009) and
‘‘semisupervised’’ approaches that can use fragments
, 100 nt in length but rely on extrinsic information
such as the presence of marker genes or Pfam
domains (Chan et al. 2008; Krause et al. 2008).

(ii) These fragments are a realistic approximation of the
sequence lengths generated by modern sequencing
techniques used in environmental shotgun analysis.

(iii) Many of the forces that can cause compositional
variation within a genome such as codon usage bias,
introgression of foreign DNA, and differential selec-
tion on coding versus noncoding regions will be
emphasized in short fragments but smoothed out in
longer ones.

Each fragment was converted to a 256-element feature

array F by counting the instances of each tetranucleotide Xi,

X5 {AAAA, AAAC, . . ., TTTT} in the fragment and convert-

ing F to an array of frequencies F# by dividing by the number

of overlapping tetranucleotides (497 for a fragment of

length 500 nt). For each extracted fragment, F# was used

to train and test the SVMs. In the statistical literature, fre-

quencies are often symmetrized by summing the counts

of reverse complementary tetranucleotides and dividing

by two (Karlin et al. 1994); in separate analyses, we per-

formed this symmetrization on each F# to produce arrays

of symmetrized frequencies S#. Finally, to test the impact

of Gþ C content on frequencies and distinguishability, each

element k of S# was converted to a nucleotide signature

based on the underlying frequency of (symmetrized) G þ
C and A þ T:

G#
k 5 log2

 
S#k

1
2 ðfk1fk2fk3fk4Þ

!
;

where fk1, . . ., k4 are the symmetrized frequencies of each of

the fourmononucleotides constitutingagiven tetramer in the

referencemolecule (either the current 500-nt fragment or an

entire genome, depending on the application; see below).

Other genome-associated data were retrieved as follows:

16S rDNA sequences were retrieved from the Ribosomal Da-

tabase Project (RDP) Release 10.10 (Cole et al. 2008) by us-

ing the appropriate RefSeq accession query. A total of 749

genomes were covered in this fashion, with 47 genomes

represented by two or more 16S sequences. The genetic dis-

tance between pairs of 16S genes was generated from the

RDP reference alignment; in pairwise comparisons, where

.1 16S gene was present in at least one genome, the av-

erage of all between-genome 16S comparisons was taken.

Matrices for comparisons between Bacteria and Archaea

were not available, and these comparisons were not in-

cluded in the accuracy models. For the bacterial/archaeal

pairs shown in supplementary table S2 (Supplementary Ma-
terial online), 16S distances were computed from a Clus-

talW2 (Larkin et al. 2007) alignment of the sequences

from RDP. Functional annotations of genes were obtained

from the J. Craig Venter Institute Role Category database

(Peterson et al. 2001). The predicted start and end positions

of each gene were obtained from the NCBI files.

Analysis of Compositional Patterns For each genome,

the average tetranucleotide composition was calculated

by summing the individual tetramer counts across all frag-

ments in the genome and then normalizing the tetramer

counts by the number of fragments. For each pair of ge-

nomes, pairwise tetranucleotide Euclidean (PTE) distances

were computed from the 256-element compositional vec-
tors. To examine the compositional similarity among ge-

nomes, the 774 � 774 matrix of PTE distances between

genomes was used to construct hierarchical clusters in

a manner similar to distance-based genome phylogenies

(Snel et al. 1999; Clarke et al. 2002). Similar computations

were performed on the symmetrized and G þ C-corrected

symmetrized frequencies (using mononucleotide frequen-

cies computed from the entire genome), yielding symme-
trized PTE (SPTE) and GþC-corrected SPTE (GC-SPTE)

distances, respectively. The unweighted pair group method

with arithmetic mean (UPGMA) implementation in PHYLIP

v3.67 (Felsenstein 1989) was used to infer a rooted tree

from the distance matrix. The resulting tree was examined

in a parsimony context to examine the congruence of com-

positional similarity-based clusters and with taxonomy.

Given a set of Nt taxonomic units, a perfectly congruent
clustering would yield the minimal Tmin 5 Nt � 1 number

of transitions on the tree. Clusterings that intermingled tax-

onomic units would increase the number of transitions Topt
on the tree. We used the consistency index (CI: Farris 1969)

to express the fit of taxonomy to the UPGMA clustering: the

CI is the ratio Tmin/Topt, with CI5 1.0 indicating a perfect fit.

We evaluated the CI at several NCBI-defined taxonomic lev-

els to assess the degree to which distinct phyla, class, order,
genus, and species were split in the UPGMA clustering.

SVM Training and Testing We used the libSVM v2.88 im-

plementation (http://www.csie.ntu.edu.tw/;cjlin/libsvm)

on a computer cluster running Rocks Cluster software.

We elected to use a simple kernel function for classification:

Based on previous reported results (McHardy et al. 2007),

we chose a Gaussian radial basis function kernel rather than

a linear one. The values of SVM parameters C and cwere set

heuristically for each pairwise genome comparison by per-
forming an initial grid search using 500 feature vectors from

each pair of genomes. SVM training and testing was per-

formed with a 5-fold cross-validation approach. The set S
over all frequency vectors F# was split into five subsets S1,

S2, S3, S4, S5 of approximately equal size, and each Sn used
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as the test set for an SVM trained on the other four subsets.
CA, corresponding to the proportion of test set cases that

were correctly classified, was used as the principal indicator

of the effectiveness of SVM training. In separate trials, the

299,151 pairwise comparisons were performed using raw

and symmetrized frequencies. We additionally sampled

500 pairs of genomes for reanalysis using G þ C-corrected,

symmetrized frequencies: mononucleotide frequencies

were computed on both a genome-by-genome and
fragment-by-fragment basis.

Statistical Tests and Unsupervised Clustering All statis-

tical tests reported in the manuscript were performed with

version 2.8.1 of the R statistical package (http://www

.r-project.org). To perform unsupervised clustering, the nor-

malized tetranucleotide frequency vectors for each of the

selected outlier genomes were independently clustered us-
ing the ‘‘kmeans’’ method provided by R, for k 2 {2, 3, 4, 5,

6}. At each value of k, the 2k cluster assignments for each

outlier pair were used to designate class labels in the corre-

sponding SVM training file. In total, six SVM training files

were generated for each outlier pair; one for each of the

5 values of k utilized in the k-means clustering step, plus

a control case where no clustering was used (essentially,

k 5 1).
Grid searches were performed on 1,000-element subsets

of each of the SVM training files in order to determine rea-

sonable values of C and c, and SVM models were subse-

quently trained and evaluated using 5-fold, leave-one-out

cross-validation as previously described. Two CAs were re-

corded for each model: a strict CA in which correct classi-

fication was defined as the SVM’s ability to correctly predict

a given fragment’s cluster assignment and a relaxed CA in
which correct classification was defined as the SVM’s ability

to correctly predict a given fragment’s source genome.

Heatmaps were generated to visualize and contrast the

compositional profiles of different clusters of fragments.

A heatmap is a matrix in which each row corresponds to

a single fragment and each column represents a given tet-

ranucleotide, with color intensity for a given matrix entry

used to represent the relative frequency of the correspond-
ing tetranucleotide in a given fragment. Full 256-column

heatmaps contain a great deal of redundancy, so we opted

to use a feature reduction strategy based on principal com-

ponents analysis (PCA). We subjected the full matrix of fre-

quency values for all fragments of a given genome to PCA

using the ‘‘psych’’ package in the R statistical software

(http://www.r-project.org), using the varimax rotation op-

tion to the principal() function and returning the ten com-
ponents with the largest eigenvalues. Rather than showing

the principal components, which obfuscate the input vari-

ables, we chose the tetranucleotide variable with the high-

est loading for each component for display, leading to

heatmaps with a maximum of ten columns. It is important

to note that while principal components are orthogonal, var-
iables with high loadings on different components will not

necessarily be so. Nonetheless, to the extent that different

components capture different elements of composition, we

expect many high-loading variables to be poorly correlated.

Results

Compositional Variation between Genomes The UP-
GMA tree constructed from the PTE matrix (fig. 1) intermin-

gles taxonomic groups, as was previously observed with

codon usage bias (Willenbrock et al. 2006) and in a recent

hexanucleotide analysis by Bohlin et al. (2009). The deepest

division in the tree was between the extremely reduced ge-

nome of the endosymbiont Candidatus C. ruddii (G þ C

content 5 16.6%) and the other 773 genomes. Another

deep branch subtends three genomes: two strains of
Thermus thermophilus and the thermo- and radiotolerant

Actinobacterium Rubrobacter xylanophilus. Interestingly,

Deinococcus radiodurans, another radiotolerant organism

which is a member of the same phylum as Thermus, asso-
ciates with a different group of thermophiles including the

gram-positive organisms Symbiobacterium thermophilum
and Thermobifida fusca. Many groups in the tree appear

to be split or aggregated based on lifestyle rather than ge-
netic relatedness. For example, reduced intracellular organ-

isms (both pathogen and endosymbiont) form several

clusters in the tree: one such grouping (Group 1 in fig. 1)

includes a subset of c-proteobacterial insect endosymbionts,

Tenericute pathogens, and Candidatus Sulcia muelleri,
a member of phylum Bacteroidetes. The same grouping

with the addition of C. ruddiiwas recovered in the SPTE clus-

ter, whereas clustering based on GC-SPTE distances split this
group into its constituent phyla (with the exception of Sulcia
muelleri, which remained with the other insect endosym-

bionts). Phylum Aquificae, known for having genetic affin-

ities with several other groups including e-Proteobacteria

and Thermotogae (Beiko et al. 2005; Boussau et al.

2008), is split into two: Aquifex aeolicus clusters with

a set of Archaea and Thermotogae in Group 2a, whereas

Hydrogenobaculum sp. YO4AAS1 and Sulfurihydroge-
nibium sp. YO3AOP1 are members of Group 2b, which also

includes mesophilic e-Proteobacteria, three members of ge-

nus Thermoanaerobacter, and thermophilic genomes from

several other lineages. The GC-SPTE further disrupts the

Aquificae, separating the two members of Group 2b. Inter-

estingly, the apparent early-branching thermophile Dictyo-
glomus thermophilum loses its Group 2b affinities under

the GC-SPTE clustering, instead grouping with A. aeolicus,
Metallosphaera sedula, and several euryarchaeote genera

including Pyrococcus and Thermococcus. The halophilic

bacterium Salinibacter ruber groups with halophilic and

methanogenic Archaea (Group 3), rather than its fellow Bac-

teroidetes; this grouping is consistent with earlier studies
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showing compositional convergence and LGT between hal-
ophilic Bacteria and Archaea (Mongodin et al. 2005; Paul

et al. 2008). The affinity of S. ruber for methanogenic Ar-

chaea remains in both the SPTE and GC-SPTE clustering.

Multiple genomes representing the same species formed

cohesive clusters in the tree, with a few notable exceptions.

Species groupingswere sometimes intermingledwithin a co-

hesive genus such as Mycobacterium: such examples likely

reflect the combined effects of minimal within-genus vari-
ation and species definitions that are ecological (and there-

fore potentially based on a relatively small number of

characteristics) rather than genomic in nature. More rarely,

members of a given species were intermingled with other

genera: Psudomonas fluorescens is split by other members

of genus Pseudomonas but also the genera Rhodoferax, Po-
laromonas, Bordetella, and Dechloromonas. A more dra-

matic example is provided by the 12 sequenced genomes
of the species P. marinus: these genomes are split into sub-

groups that correspond to low-light (Groups 4a and 4b) and

high-light (Group 4c) adaptation, with Group 4a comprising

the strains with the largest genomes and greatest similarity

to marine Synechococcus. The separation of P. marinus was

also observed in the SPTE clustering, whereas Groups 4b and

4c were merged in the GC-SPTE tree. The GC-SPTE cluster-

ing also recovered a much larger grouping of Synechococ-
cus (eight strains instead of the two seen in Group 4a).

Computed CIs for six distinct taxonomic levels (supple-

mentary fig. S1, Supplementary Material online) confirmed

the splitting of broad taxonomic groupings, with CI at the

phylum level 5 0.184. Because shallower taxonomic levels

are nested within deeper ones, it is perhaps not surprising

that CI values increase steadily through class (0.262), order

(0.416), family (0.629), and genus (0.888), which indicates
increasing cohesion with more specific taxonomic groups.

The computed CI for species was .0.99, with rare excep-

tional cases outlined above. CIs for the SPTE clustering were

remarkably similar to those obtained using raw distances,

with differences no greater than 0.005 for any taxonomic

level. GC-SPTE clustering increased the CI at every level, in-

dicating that correction for G þ C bias yielded an improve-

ment in the recovery of phylogenetic signal. Nonetheless, as
indicated above, many taxonomic units were still disjoint in

the GC-SPTE clustering, and some of the recovered group-

ings appear to still be driven by ecology and putative LGT

rather than by taxonomy alone (Kirzhner et al. 2007).

SVM-Based Classification of Genome Fragments All

pairings of the 774 genomes in our data set were used

to train and test two-class SVMs, with a 5-fold cross-
validation approach used to test the efficacy of training.

The resulting set of accuracy scores was compared against

a number of indices of genomic divergence. Figure 2 shows

the relationship between CA and genetic distance between

16S rDNA for 210,439 pairs of genomes. Genomes with

identical 16S sequences were nearly indistinguishable by
the trained SVM, but CA increased rapidly with increasing

16S divergence, with 5% divergent 16S sequences yielding

CA . 90% on average. The model fit is statistically signif-

icant (P , 2.2 � 10�16, R2 5 0.74) and much higher than

the fit previously obtained using d*, a measure of dinucle-

otide dissimilarity (Coenye and Vandamme 2004). Genomes

with 16S divergence of 2–3% yielded accuracies between

61.99% (two Wolbachia species, associated with Drosoph-
ila melanogaster and Culex quinquefasciatus Pel) and

99.51% (P. marinus strain MIT 9515 vs. Synechococcus
sp. WH 7803). The relationship between CA and PTE dis-

tance yielded a higher goodness of fit (R2 5 0.84: see sup-

plementary fig. S2, Supplementary Material online); with

very few exceptions, PTE values . 2.5 yielded CA �
90%. The difference in mean genomic G þ C content de-

fines a minimum bound on CA: no comparison between ge-
nomes whose compositions differed by.10% yielded a CA

less than 90%. In many cases, genomes with identical ge-

nomic Gþ C contents were distinguished with 100% accu-

racy, showing that tetranucleotide frequencies are not solely

defined by nucleotide composition. A similar phenomenon

was reported by Teeling et al. (2004) when using tetranu-

cleotide-derived z scores. There was also a strong corre-

spondence between taxonomic level and CA (fig. 3).
Supplementary figure S3 (Supplementary Material online)

shows the CA versus G þ C distance relationship separated

by taxonomic level. Comparisons between genomes from

different families generally yielded CA . 80% (supplemen-

tary fig. S3a–e, Supplementary Material online). Pairs within

the same genus or family had CA values covering the entire

range between 50% and 100% (supplementary fig. S3f and
g, Supplementary Material online). In total, 88.5% of
within-species CA values were ,60%, although some ex-

ceptional cases had a CA of 90% or greater (overall average

CA 5 54.3%). As shown in supplementary figure S3h
(Supplementary Material online), only five species had inter-

specific comparisons with CA . 75%: P. marinus (36 com-

parisons), Clostridium botulinum (12), Buchnera aphidicola
(5), Chlorobium phaeobacteroides (1), and P. fluorescens (1).

With few exceptions, the transformation of tetranucleo-
tide frequencies by symmetrization and correction for un-

derlying mononucleotide frequencies had little effect. The

298,589 pairwise comparisons that achieved CA � 50%

(eliminating results ,50% that had high variance) in both

the raw and symmetrized trials had a difference in means of

0.06% (98.20% vs. 98.26%). Over 99.5% (297,162/

298,589) of trials had a difference in CA , 1%; of the re-

mainder, 901 cases showed an increase in CA with symme-
trization, whereas 526 showed a decrease. Correcting for

mononucleotide frequencies on a fragment-by-fragment

basis in a subsample of 435 genome pairs with CA �
50% (supplementary fig. S4, Supplementary Material on-

line, panel A) yielded a very close fit to the original model
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FIG. 1.—Clustering of 774 prokaryotic genomes from a matrix of PTE distances. Edges in the tree are colored according to the legend if their

descendant leaves all belong to the same phylum; internal edges that subtend .1 phylum are black. Numbers and letters indicate sets of genomes that

are split or merged in ways that are consistent with genome size or habitat. In the detailed subtrees, individual genomes are identified using genus,
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(y 5 0.98x þ 0.497; R2 5 0.99), and a paired sample t-test
showed a statistically significant decrease in CA (difference

in means5 0.73; P5 3.2� 10�26). Interestingly, correcting

all fragments using the genome-wide mononucleotide fre-

quencies (supplementary fig. S4, Supplementary Material

online, panel B) yielded a statistically significant increase

in CA (difference in means 5 0.63; P 5 1.7 � 10�8). This

improvement was mostly due to dramatic increases in a few
genome pairs: comparisons between the congeners Meth-
anosarcina barkeri strain Fusaro/Methanosarcina acetivor-
ans C2A, Mycobacterium tuberculosis H37Rv/M. marinum
M, and M. tuberculosis H37Rv/M. ulcerans Agy99 yielded

CA increases of 10.3%, 16.9%, and 18.6%, respectively.

More distantly related genome pairs such as Rhodococcus
jostii RHA1/Frankia sp. EAN1pec, Proteus mirabilis
HI4320/Yersinia pestis Angola, and Enterobacter sakazakii
ATCC BAA-894/Escherichia coli APEC O1 improved from

;87% to;94%. In the absence of a complete comparison

of all pairs under this criterion, it is difficult to determine

what properties might predispose a pair of genomes to such

improved CA under mononucleotide correction. We note,

however, that all the pairs highlighted above had large

(4–19%) negative residuals relative to the fitted CA versus

16S model.

The model of CA shown in figure 2 predicts the CA for

any pair of genomes with a defined 16S distance: outliers
with large residual values are interesting because rapid ge-

nome mutation or LGT may be the cause of increased or

decreased distinguishability (Diaz et al. 2009). The 225 com-

parisons with a positive residual (i.e., that are more accurate

than expected, given the model).10% relative to the fitted

16S model fall into four categories: 1) interorder com-

parisons between the picocyanobacterial groups Prochloro-
coccus and Synechococcus; 2) intergenus comparisons
between Xanthomonas and Xylella, Thermococcus and Py-
rococcus, and Herminiimonas and Janthinobacterium; 3)

species, and NCBI project ID: these identifiers can be cross-referenced with strain and other information at URL http://www.ncbi.nlm.nih.gov/genomes/

lproks.cgi. 1: a set of reduced genomes (maximum genome size 5 1.1 Mbp) with low genomic G þ C content that belong to phyla Bacteroidetes,

Tenericutes, and Proteobacteria. 2: dispersal of phylum Aquificae (comprising A. aeolicus, Hydrogenobaculum sp. YO4AAS1, and Sulfurihydrogenibium

sp. YO3AOP1) into two distinct groups. Group 2a includes members of phylum Thermotogae including Thermotoga maritima, whereas Group 2b

includes mesophilic e-Proteobacteria. 3: clustering of Salinibacter ruber (highlighted) with haloarchaea and methanogens. 4: splitting of sequenced

Prochlorococcus marinus genomes (highlighted) into three groups. Group 4a includes the low–light-adapted strains MIT 9313 and MIT 9303, which

have relatively large genomes (.2.5 Mbp) in close association with marine Synechococcus, Group 4b includes four low–light-adapted strains with

genome sizes ;1.8 Mbp and close compositional affinities to lactic acid bacteria and the obligate intracellular endosymbiont Candidatus

Protochlamydia amoebophila. Group 4c includes the high–light-adapted strains, with the marine a-Proteobacterium Candidatus Pelagibacter ubique.

 

FIG. 2.—CA versus genetic distance between 16S rDNA genes for 210,439 pairs of genomes. The genome pairs listed in supplementary table S2

(Supplementary Material online) are highlighted with large dots and the identifier for each pair; empty circles indicate 16S distances that were

computed from ClustalW2 alignments.
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interspecies comparisons within a wide array of genera; and

4) intraspecies comparisons involving P. marinus, Pseudomo-
nas putida, and P. fluorescens. The reasons for these large

residuals likely differ among genome pairs: for instance, Pro-
chlorococcus and Synechococcus show remarkable G þ C

content divergence between 30% and 60% despite the

presence of very similar 16S rDNA sequences, which is likely

due to differences in DNA repair genes (Rocap et al. 2003).

Xanthomonas and Xylella show considerable genomic col-

linearity but have acquired a great deal of foreign DNA
through different means: Xanthomonas contains several

dozen insertion sequence-flanked genomic islands, whereas

Xylella is enriched in phage-related regions (Monteiro-Vitor-

ello et al. 2005). The increased distinguishability of these

two genera may be due to consistent compositional differ-

ences in these two families of mobile genetic elements.

Negative residuals indicate pairs of genomes that are

more difficult to classify than would be predicted by the fit-
ted model: 786 pairs had a negative residual value .10%.

Interphylum comparisons with a large negative residual in-

cluded P. marinus versus members of genera Protochlamy-
dia, Borrelia, Lactobacillus, and Streptococcus, all of which

are found in close association with subsets of P. marinus in
the UPGMA tree. Comparisons among reduced genomes

(Chlamydophila abortus vs. Neorickettsia sennetsu and

S. muelleri vs. Buchnera and Wigglesworthia) also yielded
large negative residuals; these genomes were also close

to one another (e.g., members of Group 1) in figure 1. A

large number of distinct genera were implicated in intraphy-

lum comparisons with large negative residuals. Many

species within the Gammaproteobacteria and the Entero-

bacteriaceae in particular have large negative residuals in

within-species comparisons, including E. coli, Salmonella en-
terica, Y. pestis, and Haemophilus influenzae. In 68 of 69

cases, comparisons between members of these species

yielded CA values ,55%. Negative residuals .25% were

exclusively associated with comparisons within the genera

Clostridium and Lactobacillus. Large negative residuals

may arise from recent LGT that introduced DNA with mul-

tiple foreign signatures (possible in the case of Clostridium
and the Enterobacteraceae), the overrepresentation of
slowly evolving informational genes (Rivera et al. 1998) in

reduced genomes or unusual evolutionary properties of

the 16S gene in either or both organisms in a pair.

Functional Biases of Misclassified Fragments DNA

sequences of different functional types have been found

to show compositional similarity across many genomes

(Blaisdell et al. 1986; Pietrokovski et al. 1990; Nikolaou
and Almirantis 2002). To assess whether the distinguishabil-

ity of a fragment correlates with the function of any en-

coded genes, we examined a subset of between-genome

comparisons for further analysis, including several outliers

as well as comparisons at various CA levels with low resid-

uals (supplementary table S2, Supplementary Material

online). Role categories (Peterson et al. 2001) can give

insights into potential correlations between correct classifi-
cation of fragments and evolutionary rate (because informa-

tional genes tend to evolve slowly) or functional groupings

that may be prone to LGTor other selective pressures. Over

all sets of comparisons (table 1), we found the tendency

of certain functional groupings toward misclassification to

be statistically significant (X2 5 42.87, degrees of freedom

[df] 5 17, P 5 0.0005). Functional types more likely to be

misclassified include ‘‘cellular processes,’’ ‘‘mobile and extra-
chromosomal element functions,’’ and ‘‘protein synthesis,’’

with the latter showing a strong tendency toward misclas-

sification in congener comparisons. The effect when subrole

levels were considered (supplementary table S3, Supple-

mentary Material online) was not significant (X2 5 97.0,

df5 94, P5 0.394), although the tendency toward misclas-

sification of mobile elements and informational gene-

containing segments remained.
Some misclassification patterns were pair specific with

potential ecological implications: in the comparison be-

tween P. marinus MIT 9303 and P. marinus AS9601, overall
CA was very high (98.2%) but over twice as many frag-

ments in the ‘‘Photosynthesis’’ subrole of proteins were mis-

classified relative to the null expectation (17 observed vs. 8

expected). Nitrospira multiformis and Nitrosomonas eutro-
pha are b-Proteobacterial ammonia oxidizers that were dis-
tinguished with an accuracy of 89.5%. Two categories of

proteins were difficult to distinguish: cellular processes (par-

ticularly proteins involved in detoxification) and ‘‘transport

and binding proteins’’ (particularly cations and iron-carrying

compounds). Given the adaptive importance of these

FIG. 3.—CA of all comparisons at each taxonomic level. At each

level, CA scores were assigned to 11 bins: a bin for CA 50% and lower,

and 10 bins covering intervals of 5% in the range (50%, 100%).

Accuracy levels are shown using a color gradient: the deepest blue bar

indicates the proportion of comparisons with CA 5 50% or less,

whereas the top, deep red bar in each column indicates CA. 95%. The

lightest colored bar corresponds to 70% , CA � 75%.
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proteins in the soil environment (Norton et al. 2008), they

are good candidates for LGT. Bradyrhizobium japonicum
and Mesorhizobium loti, two nitrogen-fixing soil bacteria,

had three functional classes of genes that were more diffi-

cult to classify than expected from their 82.1% accuracy

score: those encoding proteins associated with mobile

DNA (conjugation and prophage), genes involved in nitro-

gen fixation, and genes related to pathogenesis. Symbiosis
genes including those relating to nitrogen fixation are

known to reside on ‘‘symbiosis islands’’ that may be readily

transferable between species (Sullivan et al. 1995), and

it has long been known that symbiosis genes in B. japonicum
show unusual compositional properties relative to the rest

of the genome (Ramseier and Göttfert 1991), so the

reduced distinguishability of these genes is consistent with

the known evolutionary dynamics of symbiosis in the
Rhizobia.

Within this restricted set of pairwise comparisons, we also

compared the CA of fragments using two different criteria

of coding/noncoding heterogeneity, under the hypothesis

that the two types of sequence exhibit different composi-

tional biases (Bohlin et al. 2008; see Dick et al. 2009 for con-

trasting results). Our noncoding set encompasses structural

RNAs and pseudogenes not annotated as protein-coding se-
quence: separate consideration of pseudogenes would be

valuable but would require careful reannotation of all micro-

bial genomes (Lerat and Ochman 2005) and consideration

of the degree to which a pseudogene has decayed relative

to its original protein-coding state. Because the majority of

microbial genome sequence encodes proteins, intergenic

sequences might bemisclassified because they offer a worse

fit to the model learned by the SVM. Two indices of hetero-

geneity were considered: the number of transition points

within a fragment and the length of the longest coding se-

quence within a given fragment. Consistent with our hy-

potheses, in a majority of the genome pairs considered (9

of 15: see supplementary fig. S5, Supplementary Material

online), the misclassified fragments were significantly more

heterogeneous on average, with shorter longest coding se-

quences and more transition points. Three genome pairs
showed the opposite effect: Borrelia duttonii Ly versus B.
recurrentis A1, P. marinus strain MIT 9303 versus P. marinus
strain AS9601, and Ehrlichia ruminantium strain Welgevon-

den v2 versus Methanosphaera stadtmanae DSM 3091. Of

these three exceptional cases, two involve congeners,

whereas the latter involves an unusual intracellular organism

with an exceptionally low coding percentage and many tan-

dem repeats (Frutos et al. 2007), and an intestinal archaeon
that has many genes of bacterial and eukaryotic origin

(Fricke et al. 2006). In the congener comparisons, it is prob-

able that the rapidly evolving intergenic sequences are the

first to display sufficient levels of consistent compositional

divergence to be distinguishable by the SVM.

Compositional Variation within Genomes Although

compositional patterns tend to be more variable between

than within genomes, within-genome variation can have

a significant impact on constructed models (Suzuki et al.
2008). We considered the impact of unsupervised clustering

of genome fragments based on their 256-element tetranu-

cleotide profile. We used a k-means clustering approach

with k 5 2, 3, 4, 5, 6 to separate fragments into composi-

tional clusters, then assessed the functional breakdown of

these clusters to determine whether functional groupings or

Table 1

Main Role-Level Summary and Chi-Square Test of Correctly and Incorrectly Classified Fragments from the 16 Genome Pairs Shown in Supplementary

Table S2 (Supplementary Material Online)

Main Role Correct Incorrect Expected Correct v2 Trend

Unknown function 12,437 2,375 12,407.64 0.069 þ
Protein synthesis 7,292 1,641 7,482.949 4.873 �
Energy metabolism 6,048 1,104 5,991.05 0.541 þ
Transport and binding proteins 4,943 924 4,914.638 0.164 þ
DNA metabolism 4,883 940 4,877.78 0.006 þ
Biosynthesis of cofactors, prosthetic groups, and carriers 4,220 574 4,015.813 10.382 þ
Protein fate 3,670 765 3,715.088 0.547 �
Amino acid biosynthesis 3,517 527 3,387.557 4.946 þ
Cell envelope 2,473 517 2,504.648 0.400 �
Purines, pyrimidines, nucleosides, and nucleotides 2,278 411 2,252.507 0.289 þ
Cellular processes 1,977 538 2,106.752 7.991 �
Regulatory functions 1,865 322 1,831.995 0.595 þ
Hypothetical proteins 1,614 245 1,557.237 2.069 þ
Transcription 1,441 342 1,493.574 1.851 �
Signal transduction 1,194 297 1,248.973 2.420 �
Central intermediary metabolism 1,038 193 1,031.178 0.045 þ
Mobile and extrachromosomal element functions 887 260 960.813 5.671 �
Fatty acid and phospholipid metabolism 835 158 831.811 0.012 þ
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difficult-to-classify sequences associate preferentially with

certain compositional clusters. For each k-way clustering,

we trained SVMs to distinguish the genome pairs shown

in supplementary table S2 (Supplementary Material online),
with a total of 2k possible classification assignments. CA

was evaluated under two criteria: a stringent case in which

a given fragment from cluster i was considered to be mis-

classified if it was predicted to belong to one of the other

2k � 1 classes and a relaxed case where fragments only

needed to be associated with one of the k clusters from

the correct originating genome. Under both the stringent

and relaxed criteria, CA tended to decrease with increasing
k (supplementary table S4, Supplementary Material online),

suggesting that the trained SVM was able to directly model

compositional variation within a genome, and the explicit

breakdown into clusters was detrimental to the accuracy

of the model.

Different clusters are classified with varying degrees of

accuracy. When k 5 6 (fig. 4), over 50% of the fragments

in some clusters are misclassified in cases where the two ge-
nomes are very similar (for instance, B. duttonii vs. B. recur-
rentis) or when clusters are small (e.g., clusters with 55 or

fewer fragments from S. mulleri). In comparisons between

a larger and a smaller genome, a majority of fragments from

the smaller genome may be assigned to the larger one,

yielding a CA , 50% for the smaller genome. Even well-

distinguished genomes generated clusters that differed

by ;10% in CA. When fragments from a particular cluster
were misclassified, they were often preferentially assigned

to a single cluster from the other genome. Confusion ma-

trices showing these misclassification relationships were

visualized using Circos (Krzywinski et al. 2009): in the com-

parison between S. mulleri and B. aphidicola strain Cc, frag-

ments from B. aphidicola cluster 1 were most frequently
misassigned to S. mulleri cluster 4 (fig. 5). The most extreme

cases were S. mulleri clusters 2 and 3, which had only 6/48

and 15/40 fragments correctly classified (CA 5 12.5% and

37.5%), with 30 of 42 misclassified cases assigned to B.
aphidicola clusters 4 or 6. Some clusters were assigned with

high levels of accuracy: only 4 of 46 fragments from B. aphi-
dicola cluster 5 were assigned incorrectly. In the comparison

of two strains of P. marinus, 4 of 6 clusters from each ge-
nome were classified with accuracy.90% and were always

associated with the correct genome if not the correct cluster

within that genome. Between 8% and 11% of fragments

from the remaining two compositional clusters of each ge-

nome were assigned to the incorrect genome (fig. 6).

The unsupervised clustering (k 5 6) of the extremely bi-

ased genomes of S. mulleri and B. aphidicola yielded four

strong clusters that segregated based on strand affinity
andGþC content (fig. 7a and supplementary table S5, Sup-

plementary Material online). Sulcia muelleri clusters 2 and 3

had G þ C contents that were even less than those of the

four main clusters, and their frequent misclassification ap-

pears to arise from greater affinities for the extreme com-

positions of clusters from B. aphidicola. For example,

fragments from S. mulleri cluster 2 (average G þ C 5

17.3%) were frequently misclassified as B. aphidicola cluster
6: the average G þ C content of the 19 fragments mistak-

enly assigned to this cluster (15.3%) was a close match to its

average G þ C content of 14.6%. The 11 fragments as-

signed to B. aphidicola cluster 4 (average G þ C 5

23.1%) had a much higher G þ C content of 20.3%.

FIG. 4.—Mean and range of cluster accuracies for 16 genome

pairs. The CA of each cluster was computed in the strict sense, with any

assignment to another cluster deemed a misclassification. Minimum,

mean, and maximum accuracy scores are shown using bars and

diamonds, whereas gray rectangles indicate the overall CA for that

comparison when k 5 6.

FIG. 5.—Visualization of cluster misclassification between Sulcia

muelleri (b1–b6) and Buchnera aphidicola strain Cc (a1–a6). The

thickness of the ribbon emanating from the most counterclockwise

(e.g., at the left of cluster b5) position of the cluster indicates the

proportion of that cluster that was misclassified. The ribbon connected

to the most clockwise position of each cluster indicates the number of

other fragments that were mistakenly given this cluster assignment by

the SVM.
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Buchnera aphidicola cluster 5 appears to be a similar outlier

relative to the whole genome, but its mean G þ C content

of 13.3% produced very little overlap with clusters from S.
mulleri and no misclassifications. A nucleotide BLAST com-

parison of all fragments from these two genomes against

the reference database yielded match profiles that were bi-
ased toward other low Gþ C organisms, particularly P. mar-
inus, C. botulinum, and C. difficile, and confirmed the

outlier status of clusters 5 and 6 from B. aphidicola and 2

and 3 from S. mulleri.
Clusters 1 and 4 recovered from P. marinus MIT 9313

(fig. 7b and supplementary table S6, Supplementary Mate-

rial online) have average fragment G þ C contents that are

considerably lower than the rest (39.6% and 41.6% vs.
48.0%, 54.1%, 54.2%, and 55.1%) and cover a relatively

small fraction (22.8%) of the genome. We used a sliding-

window approach to assess the extent to which fragments

in these clusters tended to form localized groupings in the

genome. Any contiguous regions of length �5 kbp in the

genome that had at least 8 of 10 fragments assigned to clus-

ters 1 and/or 4 were considered to be a local group; 63.2%

of all fragments satisfied this criterion. These fragments en-
coded many genes with viral functions (e.g., Crp regulatory

proteins, porins), likely candidates for recent transfer (e.g.,

multidrug resistance proteins), and proteins known to exist

on cyanophage (e.g., high-light induced proteins). When

compared against the reference genomic database using

BLAST, many of these proteins showed best nonself hits
to either low-G þ C strains of P. marinus (particularly P. mar-
inus CCMP1375) or noncyanobacterial genomes. The rela-

tively restricted taxonomic distribution of these proteins is

suggestive of recent transfers into P. marinusMIT 9303, with

the lack of amelioration leading to difficulty in correctly as-

signing the corresponding genome fragments, particularly

when trying to distinguish this genome from that of low-

G þ C strains of P. marinus.

Discussion

Absent certain confounding factors, themajority of genome

pairs could be distinguished with .95% accuracy, even

though the fragment size we chose leads to high composi-

tional variance and poses significant problems to classifiers

(McHardy et al. 2007). Although our accuracy scores are not
directly comparable to the multiclass classifiers that are used

in metagenomic analysis, they clearly demonstrate which

subproblems in a multiclass setting will diminish the overall

accuracy. With few exceptions, congeners were very diffi-

cult to distinguish. This observation is consistent with pre-

vious compositional analyses done at the genus and

species level (Coenye and Vandamme 2004; van Passel

et al. 2006), which have shown a statistically significant cor-
relation between indices of compositional similarity and the

similarity of marker genes such as 16S. Exceptions to this

trend include paired strains of P. marinus, B. aphidicola,
and C. botulinum: these genomes are members of the same

named species but have diverged very rapidly and possess

very different patterns of nucleotide usage and/or gene con-

tent. Conversely, members of the same species may show

considerable variation in nucleotide sequence or gene con-
tent and yet be indistinguishable based on their global usage

properties: for example, different genomes of E. coli could
not be distinguished at all in spite of their considerable ge-

nomic and ecological divergence (Welch et al. 2002). Com-

parisons between noncongeners yielded unexpectedly low

CA in cases where taxonomic units are clearly not reflective

of evolutionary relatedness (e.g., Escherichia vs. Shigella)
(Lan et al. 2004) and when genomes have extreme compo-
sitional biases, as in the case of S. mulleri versus B. aphidi-
cola. Compositional convergence has been noted for

distantly related genomes due to habitat convergence

(Bohlin et al. 2009) or ‘‘crowding’’ of nucleotide signature

space (Mrázek 2009), and our clustering analysis supports

this as well. However, in the majority of cases, this conver-

gence does not impede classification. Symmetrization and

mononucleotide correction yielded no significant improve-
ment in CA, except when the mononucleotide corrections

were carried out using the genome-wide nucleotide fre-

quencies. Although this result is worthy of deeper investiga-

tion, we note that such a scheme is impracticable for the

analysis of metagenomic fragments because the correct

FIG. 6.—Visualization of cluster misclassification between Pro-

chlorococcus marinus strains MIT 9303 (a1–a6) and AS9601 (b1–b6).

The thickness of the ribbon emanating from the most counterclockwise

(e.g., at the left of cluster b2) position of the cluster indicates the

proportion of that cluster that was misclassified. The ribbon connected

to the most clockwise position of each cluster indicates the number of

other fragments that were mistakenly given this cluster assignment by

the SVM.
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mononucleotide frequencies for the originating genome of

a particular fragment will generally not be known.
Functional analysis of misclassified segments identified an

overrepresentation of mobile elements and informational

genes, particularly those implicated in protein synthesis.

Mobile elements will likely show a compositional pattern

that differs from that of the host genome and potentially

the other genome in the pair, leading to an arbitrary classi-

fication choice. Most informational genes are highly con-
strained by interactions with other proteins and evolve

slowly (Rivera et al. 1998), which can potentially lead to

slower divergence of nucleotide usage patterns. Fragments

that contained a mixture of coding and noncoding genomic

sequence were typically more difficult to classify accurately

FIG. 7.—Heatmaps showing the relative frequency of representative tetranucleotides in six unsupervised clusters of fragments from two pairs of

genomes. Each individual heatmap corresponds to one numbered cluster of sequences from a given genome, with each row showing the frequency

profile for an individual fragment. The color gradient ranges from red (tetranucleotide is absent from a given fragment) through orange and yellow to

white (tetranucleotide frequency is maximal given the data set). The mean G þ C content for each cluster is indicated in parentheses, whereas colored

borders indicate paired clusters that are frequently conflated by the SVM, corresponding to thick connecting edges in figures 5 and 6. (a) Buchnera

aphidicola versus Sulcia muelleri, with heatmap columns corresponding to the frequencies of AAAT, TTTC, GCCG, AAAC, TGTA, AACG, GCCA, ATCG,

and TTGA. (b) Prochlorococcus marinus MIT 9303 versus P. marinus AS9601, with heatmap columns corresponding to frequencies of AATT, CCAA,

CTTC, CGGC, AGCA, CTGG, GTAG, GCAT, GGAT, and ATCA. Although the tetranucleotides with highest loadings on the first ten principal

components were chosen to illustrate compositional variation, only nine appear in (a) because the tetranucleotide TGTA had the highest loading on

both components 5 and 6.
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than were pure coding sequences, except when genomes
were very similar, in which case intergenic sequence might

be the principal distinguishing trait. This tendency could be

exploited in metagenomic analysis, by using compositional

variation in fragments that contain intergenic sequence to

distinguish closely related but ecologically distinct strains.

Important genes may be incorrectly attributed if their

composition is not reflective of their host genome or is

strongly G þ C or A þ T biased. This could be potentially
confounding in the analysis of habitats that contain multiple

G þ C-rich or G þ C-poor genomes such as insect bacter-

iomes (McCutcheon and Moran 2007), although in such

cases read depth may be helpful in distinguishing genomes

based on their relative abundance. The misclassification of

low-G þ C islands in P. marinus strain MIT 9303 is similar to

the noted misattribution of likely transfers into the genome

of Thermoplasma acidophilum (Diaz et al. 2009). More gen-
erally, genomic islands often contain important adaptive

genes that are among the most important genes to assign

correctly in a metagenomic analysis. In performing this anal-

ysis, we chose to include all fragments from a genomewhen

training the SVM, as opposed to implementing a filtering

phase to exclude genes that are atypical in their composi-

tion. A consequence of this is that trained models may

not reflect only the ‘‘core’’ compositional pattern of a ge-
nome but will also include signatures of introgressed and

otherwise unusual genes. Our results above indicate that

SVMs are capable of modeling complex mixtures of compo-

sitional patterns, so the inclusion of atypical sequences

should not harm the ability to correctly identify fragments

that exhibit the core compositional pattern. Furthermore,

introgressed genes may be undergoing amelioration, in

which case they will exhibit a mixture of the compositional
patterns from both the donor and recipient genomes: in-

cluding such fragments will increase the likelihood of cor-

rectly binning such genes in a metagenomic sample.

Our oligonucleotide-based approach uses a standard

SVM implementation and will likely be outperformed to

some extent by more complex supervised machine learning

methods (Sandberg et al. 2001; McHardy et al. 2007; Diaz

et al. 2009). Nonetheless, our results highlight situations
where more explicit modeling of the expected properties

of difficult cases is worthwhile and could potentially improve

the accuracy of any classifier; additionally, we have identi-

fied examples (such as the identification of compositional

‘‘bins’’ within genomes) where such modeling is likely of

no benefit. In identifying several different confounding fac-

tors impacting on classification, we highlight the impor-

tance of reporting what aspect of the classification
problem (e.g., close relatives, atypical sequences, functional

subcategories) is addressed by an improved classifier. As cur-

rently implemented, most classifiers treat a metagenomic

fragment as a homogeneous stretch of sequence: this aver-

aging may increase the tendency of a heterogeneous frag-

ment to be misclassified. Sequence segmentation
approaches have been successfully applied in other settings

(Keith 2008) and will be of value in the analysis of metage-

nomic data as well. Additionally, although homology search

(e.g., best BLAST hit) can be a poor surrogate for the taxo-

nomic identity of a given fragment, learning the most prob-

able functional role of an encoded gene can help to provide

a measure of confidence in the predicted assignment.

Beyond the prospect of better model-based approaches,
it is clear that there are fundamental limits to classification,

particularly between closely related organisms. The semisu-

pervised learning approach of CompostBin (Chatterji et al.

2008) and S-GSOM (Chan et al. 2008) represents a promis-

ing direction, with taxonomic cues provided by confidently

assigned marker genes. This approach could be further

extended to take into account knowledge of likely origins

of transferred genes, particularly low-G þ C prophage se-
quences, by mining the rapidly growing set of sequenced

genomes (including bacteriophage genomes) for informa-

tion about frequent exchange partners (Beiko et al. 2005;

Dagan et al. 2008). In addition to this, if a small number

of distinct genes in a metagenomic sample are classified

as belonging to a given genome, but marker genes are

not present for that genome, then we might surmise that

those genes are in fact derived from a different genome that
is known to be present in the sample. Here again, reference

databases could be exploited to identify likely associations.

Supplementary Material

Supplementary figures S1–S5 and supplementary tables S1–

S6 are available at Genome Biology and Evolution online

(http://www.oxfordjournals.org/our_journals/gbe/).
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