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The invariant theory of Killing tensordTKT) is extended by introducing the new
concepts of covariants and joint invariants (pfoducy vector spaces of Killing
tensors defined in pseudo-Riemannian spaces of constant curvature. The covariants
are employed to solve the problem of classification of the orthogonal coordinate
webs generated by nontrivial Killing tensors of valence two defined in the Euclid-
ean and Minkowski planes. lllustrative examples are provide@0@4 American
Institute of Physics[DOI: 10.1063/1.1805728

I. INTRODUCTION

The second half of the 19th century saw the development of the post-“Theorema Egregium of
Gauss” differential geometry going in two major directions. Thus, Rierhgeneralized Gauss's
geometry of surfaces in the Euclidean space by introducing the concept of a differentiable mani-
fold of arbitrary dimension and defining the inner product in terms of the metric tensor on the
spaces of tangent vectors. This remarkable work has evolved in time into what is known today as
(Riemannian differential geometry. The other direction originated in the celebrated “Erlangen
Program” of KIein?’SAccording to his manifesto any branch of geometry can be interpreted as an
invariant theory with respect to a specific transformation group. Moreover, the main goal of any
geometry is the determination of those properties of geometrical figures that remain unchanged
under the action of a transformation group. One of the main contributions of Cartan to differential
geometry, in particular with his moving frames mettiag, the blending of these two directions
into a single theory. An excellent exposition of this fact can be found in Shasee also, for
example, ArvanitoyeorgB}s The following diagram presented in Ref. 5 elucidates the relationship
among the different approaches to geometry described above:

generalization

Euclidean Geometry = Klein Geometries
lgeneralization generalizatign (1
) X generalization .
Riemannian Geometry Cartan Geometries

Being a result of the natural fusion of classical invariant the@yT) and the(geometrig
study of Killing tensors defined in pseudo-Riemannian manifolds of constant curvature, the in-
variant theory of Killing tensor§ITKT) formed recently a new direction of research which, in
view of the above, can be rightfully placed into the theory initiated by Cartan. This is especially
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evident in the study of vector spaces of Killing tensors of valence two. Indeed, by now a number
of vector spaces of Killing tensors have been investigated from this viewpoint by means of
determining the corresponding sets of fundamemehriantsand, much like in CIT, using them

to solve the problem of equivalence in each case. These results have been employed in applica-
tions arising in thetheory of orthogonal coordinate web§2>'%2"where Killing tensors of
valence two play a pivotal rolésee Ref. 22 for a complete list of referencesdmittedly, an
orthogonal coordinate web is an integral part of the geometry of the underlying pseudo-
Riemmanian manifold. Therefore the problem of group invariant classification of orthogonal co-
ordinate webs in a specific pseudo-Riemannian space of constant curvature is a problem of Klein’s
approach to geometry, as well as that of Riemann, both leading to the theory due to[€eetdre
diagram(1)].

The main goal of this paper is to further the development of the invariant theory of Killing
tensors by introducing the concepts af@variantand ajoint invariant. In this setting they can be
introduced by establishing a natural extension of the main ideas of CIT to the geometric study of
Killing tensors in pseudo-Riemannian geometry. Furthermore, we employ the latest generalization
of Cartan’s method of moving frames due to Fels and (3f\’l?ér(see also Refs. 4 and 28-32 for
more details and referenget determine complete systems of fundamental covariants for the
vector spaces of Killing tensors of valence two defined in the Euclidean and Minkowski planes.
The covariants are employed to classify in both cases orthogonal coordinate webs generated by
Killing tensors. We also compare the results with the classifications of the orthogonal webs defined
in the Minkowski plane obtained in McLenaghahall**® by means of invariants only.

II. INVARIANT THEORY OF KILLING TENSORS (ITKT)

In this section we establish the requisite language and recall the basic notions of the invariant
theory of Killing tensors(ITKT) defined in pseudo-Riemannian spaces of constant curvature.
More specifically, we review what is known about isometry group invariants and extend the theory
by introducing the concepts @bvariantsandjoint invariantsof product vector spaces of Killing
tensors in ITKT. Let(M,g) be a pseudo-Riemannian manifold, dif=n.

Definition 2.1: AKilling tensorK of valencep defined in(M,g) is a symmetridp, 0) tensor
satisfying the Killing tensor equation

[K,g]=0, (2

where[,] denotes the Schouten bracR&when =1, K is said to be &illing vector (infinitesi-
mal isometry and the equation (2) reads

Lngo,

where L denotes the Lie derivative operator

Remark 2.1:Throughout this paper, unless otherwise speciflefdenotes the Schouten
bracket, which is a generalization of the usual Lie bracket of vector fields.

Killing tensors appear naturally in many problems of classical mechanics, general relativity,
field theory, and other areas. To demonstrate this fact, let us consider the following example.

Example 2.11 et (Xy,Pg,H) be a Hamiltonian system defined @ ,g) by a natural Hamil-
tonianH of the form

H(a,p) =39"pipj +V(@), i,j=1,..,n, (3)

whereg'l are the contravariant components of the corresponding metric tgn&pp) € T'"M are
the canonical position-momenta coordinates and the Hamiltonian vectoiXfigld given by
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Xy =[Po,H] (4)

with respect to the canonical Poisson bi-ved¥gr =L, 9/ 4q' 0dl dp;,. Assume also that the Hamil-

tonian system defined B) admits a first integral of motioR which is a polynomial function of
degreem in the momenta:

F(q,p) =K'z 'm(@)p; pi, -p; +U(), (5

where 1=<i4,...,inh=n. Since the functionsl andF are in involution, the vanishing of the Poisson
bracket defined by

{H.F}o=Pod Hd F=[[Po,H],F]=0 (6)
yields
[K,g]=0 (Killing tensor equatioh (7)
and
R AYA LoU - -,
K'1'2""m(9qilpi2- P = g”&—qipj (compatibility condition, (8)
where the symmetri¢m,0)-tensorK has the component&?z im and 1<i,j, iy,...,im=<n.

Clearly, in view of Definition 2.1 the equatiqi@) confirms thaK is a Killing tensor. Furthermore,
in the casem=2 (see Benentf) the compatibility condition(8) reduces toK d V=gd U or

d(k d V)=0, where the{l,l)-tensork is given byR =Kg™L. We also note that the vanishing of the
Poisson bracke6) and the assumed form of the first integia(5) imply the following additional
conditions:

guU=0, Kiz"ng V=0,

Indeed, the right-hand sid&®HS) of (5) does not have the terms which are polynomialp aff
degrees less tham.

In view of linear properties of the Schouten bracket the sets of Killing tensors of the same
valence form vector spaces {M,g). Let KP(M) denote the vector space of Killing tensors of
valencep=1 defined in(M,g). Assume also dinM=n. Then if (M,g) is a pseudo-Riemannian
space of constant curvature, the dimensiasf the corresponding vector spak@&(M) for a given
p=1 is determined by th®elong-Takeuchi-Thompson (DTT) formeita®

. 1(n+p\/n+p-1
= P = - =
d=dimKP(M) n(p+1>< 0 ) p=1. (9)

That being the case, a Killing tensor of valenge=1 defined in a pseudo-Riemannian space

(M, g) of constant curvature can be viewed as an algebraic object, or, an eleniét(iMf. Note

the vector spacéCP(M) for a fixed p=1 is determined byd arbitrary parametersay,...,ay),
whered=dim KP(M) is given by(9). This approach to the study of Killing tensors introduced in

Ref. 15 differs significantly from the more conventional approach based on the property that
Killing tensors defined in pseudo-Riemannian spaces of constant curvature are sums of symme-
trized tensor products of Killing vectorsee, for example, Ref. 36Moreover, the idea leads to a
natural link between the study of vector spaces of Killing tensors and the classical theory of
invariants of vector spaces of homogeneous polynomials, which has become in the last decade a
growth industry once agaifsee Olvet’ and the references thergiMhus, it has been shown in a
series of recent papéfts®!%'>%hat one can utilize the basic ideas of classical invariant theory

in the study of Killing tensors defined in pseudo-Riemannian spaces of constant curvature. The
concept of aninvariant of KP(M) was introduced in Ref. 16 in the study of nontrivial Killing
tensors of the vector spaé€?(R?) generating orthogonal coordinate webs in the Euclidean plane.
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A. Invariants

It has been shown that one can determine the action of the isometry gfopin the
d-dimensional spac& =RY defined by the parameters,,...,aq4. In this view, the action is
induced by the corresponding actionl@f) in KP(M), which, in turn, is induced by the action of
[(M) in M. More specifically, it induces the corresponding transformation laws for the parameters
(ay,...,aq) given by

’&1:'5[1(51/1,...,ad,gly----gr)1

ay=ay(ag,...,aq,01,...,00),
(10

Tg=aglay, ..., aq, 01, Gr),

where g;,...,9, are local coordinates of(M) that parametrize the group and=dimI(M)
=%n(n+ 1). The formulas(10) can be obtained in each case by making use of the standard
transformation rules for tensor components. We note that the actitiMgfcan be considered in

the spacedM andX concurrently, provided there is an isomorphism between the corresponding
group actiongsee below.

Definition 2.2: Let(M,g) be a pseudo-Riemannian manifold of constant curvature. For a fixed
p=1 consider the corresponding spak®(M) of Killing tensors of valence p defined (N, g). A
smooth functiorX: % — R defined in the space of functions on the parameter spaisesaid to be
an I(M) invariant of the vector spadéP(M) iff it satisfies the condition

T=Flay,....aq) = F(ay, ..., ) (11)

under the transformation laws (10) induced by the isometry grdlp.I

The main problem of invariant theory is to describe the whole space of inva(@ariants,
joint invariantg for a given vector space under the action of a group. To solve this problem one
has to find a set diundamental invariants (covariants, joint invariantsjth the property that any
other invariant(covariant, joint invariantis a (analytig function of the fundamental invariants
(covariants, joint invarianjs The fundamental theorem on invariants of a regular Lie group
actior?® determines the number of fundamental invariants required to define the whole of the space
of (M) invariants.

Theorem 2.1:Let G be a Lie group acting regularly on an-dimensional manifold X with
s-dimensional orbits. Then, in a neighborhood N of each pajrt X, there exist ms functionally
independent G invarianta,,...,An-s. Any other Ginvariant Z defined near x can be locally
uniquely expressed as an analytic function of the fundamental invariants thraugh
=F(Aq,...,An ).

Hence, if we assume that the grol(M),dim I(M)=r=§n(n+ 1) acts in a subspac®, of the
parameter spacE defined by the corresponding®(M), p=1 regularly withr-dimensional or-
bits, then, according to Theorem 2.1, the number of fundamental invariants required to describe
the whole space dfM) invariants offCP(M) is d—r, whered is given by(9) (noted=r). This has
been shown to be the case for the vector spAG¢E?),'® £2(R?),* K3(R?),* and K2(R3),” where
RZ,RE, andR? denote the Euclidean, Minkowski planes and the Euclidean space, respectively. The
dimension of the orbits of the isometry groliM) acting in% is not always the same as the
dimension of the group. For example, this is the case for the vector ﬁj'aﬁé).“ To determine
the dimension of the orbits one can use the infinitesimal generators of the igMyin .

In what follows we use the approach introduced in Ref. 15. Xet..., X, € X(M) be the
infinitesimal generatorgKilling vector fieldy of the Lie group (M) acting on M. Note
SpafXy,..., X, }=KYM)=i(M), wherei(M) is the Lie algebra of the Lie grougM). For a fixed
p=1, consider the corresponding vector spAc&M). To determine the action diM) in the
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space2, we find first the infinitesimal generators KiM) in 3. Consider Diff2, it defines the
corresponding space DiffP(M), whose elements are determined by the elements of¥Difff an
obvious way. LetK® e Diff KP(M). Note K° is determined byd parametersa’(ay, ..., ay), i
=1,...,d, which are functions ofay,...,ag—the parameters of:. Define now a map
. Diff KP(M)— X(2), given by

d
KO—>2ai0(a1,...,a) J (12
i=1

d daj
To specify the action of(M) in X, we must find the counterparts of the generabys..., X, in
X(%). Consider the compositiome £, where 7 is defined by(12) and £ is the Lie derivative
operator. LetK be the general Killing tensor d€P(M), in other wordsK is the general solution
to the Killing tensor equatior(2). Note, for p=2 we haveK =Spadg,K,...,K41}, where
{9,K4,...,K4.1} is a basis of the vector spag&(M) andg is the metric of(M,g). Next, define

Vi=mlyK, i=1..r. (13)

The composition mapre £:1(M) — X(%) maps the generatod$,, ..., X, to X(X).
Conjecture 2.1 (Ref. 10): Suppose the generays..., X, of i(M) satisfy the following
commutator relations:

[Xi X=Xk Bjk=1,...r, (14)

where (g i,j,k=1,...,r are the structural constants. Then the corresponding vector figlds
e X(2), defined by (13) satisfy the same commutator relafions

[ViVi]=ciVi, i,jk=1,..r. (15)

Therefore the map &= moL:i(M)—is(M) is a Lie algebra isomorphism, wherg(M) is the Lie
algebra generated by ,...,V,.

We emphasize that the technique of the Lie derivative deformations used here is a very
powerful tool. It was used before, for example, in Ref. 37 to generate compatible Poisson bivec-
tors in the theory of bi-Hamiltonian systems. The idea introduced in Ref. 37 was utilized in Ref.
38 and applied to a different class of integrable systems. The validity of the foih)laan be
confirmed directly on a case by case basis, provided that the general form of a Killing tensor
KPe KP(M) is available. The proof of the general statement of Conjecture 2.1 will be published
elsewheré.

Remark 2.2:Alternatively, the generator6l3) can be obtained from the formulas for the
action of the group10) in the usual way taking into account that a Lie algebra is the tangent space
at the unity of the corresponding Lie group. We note, however, that in this way the fortiGlas
are not easy to derive in general.

In view of the isomorphism exhibited in the conjecture and the fact that invariance of a
function under an entire Lie group is equivalent to the infinitesimal invariance under the infini-
tesimal generators of the corresponding Lie algebra one can determine a set of fundamental
invariants by solving the system of PDEs

Vi(F)=0, i=1,.,r (16)

for an analytic functiorF-: 3, — IR, where the vector field¥;, i=1,...,r are the generators defined
by (13). As is specified by Theorem 2.1, the general solution to the sy&i€nis an analytic
function F of the fundamental invariants. The number of fundamental invariards $ whered

is specified by the DTT formuléd) ands is the dimension of the orbits ¢fM) acting regularly
in the parameter spacg To determines and the subspaces &f where the isometry group acts
with orbits of the same dimension, one employs the result of the following propo3ition.
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Proposition 2.1 Let a Lie group G act on Xg is the corresponding Lie algebra and let x
e X. The vector space |3 SpaiV;(x)|V; e g} spanned by all vector fields determined by the
infinitesimal generators at x coincides with the tangent space to the 6kpivf G that passes
through % so $,=TO,|,. In particular, the dimension aP, equals the dimension of,SMoreover,
the isotropy subgroup &~ G has dimensionim G—dim O,=r-s.

Example 2.2:Consider the action of the isometry grolmﬁi) on the vector spacEZ(Ri).
More information about the geometry of Minkowski pla]ﬁé can be found in the monograph by
Thompson“.0 The general form of the elements MZ(R'f) in terms of the standard pseudo-

Cartesian coordinatgs, x) is given by

i
ax’
17

d J J J J
K = (aq + 2a0X + aeX?)— O — + (g + agt + aeX + agtX) — © — + (a, + 2aet + agtd) — O
(g 4 G)ﬁt It (ag+ ay 5 6)(9t Ix (ay 5 6)&X

The isometry group(R?) acts in the Minkowski plan&? parametrized byt,x) as follows:

T cosh¢ sinh¢ \ [t a

~ =1 + ) (18

X sinh¢ cosh¢/ \x b
whereg,a,b e R are local coordinates that parametrize the grtﬁﬂﬁ). The generators of the Lie
algebrai (}Ri) of the isometry group with respect to the coordindtes) take the following form:

J J J J
T=—, X=—, H=x—+t— (19
at dX at  Ix

corresponding td andx translations andhyperbolig rotation, given with respect to the standard
pseudo-Cartesian coordinatésx). Note the generator&l9) of the Lie aIgebrd(Ri) enjoy the
following commutator relations:

[T,X]=0, [T,H]=X, [X,H]=T. (20
We use the formul@l8) and the transformation laws for the component$2f0) tensors
kvl

~ o Y 9y
KIJ (yl,yz, dqy..n ,CYG) = Kk@(yl,yZ’ A1yenny a6)

__l -1.1k1€:1121 21
oy i (21

where the tensor component8 are given by(17), y*=t,y?=x. In view of (17), (18), and(21) the
transformation lawg10) for the parameters;, i=1,...,6 take in this case the following for(see
also Refs. 23 and 12

@y = oy COSIT ¢ + 23 cOshep sinh ¢ + a, It ¢ + agh? — 2(ay cOShep + a sinh @b,

0, = ay SINt? ¢+ 2a3 coshe sinh ¢ + ar, oSt ¢ + aga® — 2(as cosheg + ay sinh g)a,

3= az(costt ¢ + sinl? @) + (a; + ay)coshe sinh ¢ — (aa, + bas)coshe

- (aas + bay)sinh ¢ + agab,
(22)
@, = a4 coshe + ag sinh ¢ — agb,

s = ay Sinh ¢ + a5 coshe — a2,

56: Ag.

We note that the corresponding transformation formulas for the parameters obtained in Ref. 12
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were derived focovariantKilling tensors. Accordingly, they differ somewhat frofg2) presented
above[compare with(7.6) in Ref. 1. According to Proposition 2.1, in order to determine the
subspaces of where the orbits have the same dimensions, one must check the subspaces of
where the systenil6) retains its rank. In many cases the system of PQIB$ can be solved by

the method of characteristics. The determination of fundamental invariants by s@@énig the

key idea used in Ref. 15 to adapt theethod of infinitesimal generatots the problem of finding
fundamental invariants of Killing tensors under the action of the isometry group. When the
method of characteristic fails, one can employitiethod of undetermined coefficietddind a set

of fundamental invariantlijAlternatively, a set of fundamental invariants can be determined by
using themethod of moving framé&see Sec. Il for more detajlsTo determine the space dﬂ?\f)
invariants, we employ the procedure described above and derive the corresponding infinitesimal
generators/;, i=1, 2, 3 by the formulg13),

Vv J ‘o d . J
Sy ac—— + ag—,
. 4(96(3 5(?&2 6(96(5
\% J +2 J + J (23)
Tag— t 20— tag—,
2 Sﬁag 4(9a1 6(9a4
Y 5 J d (a1 + o) J 5 J J
=—Za3—  — oy o )~ — LK - -,
3 3(9 aq 5(961(4 ! 2 (96!3 3(9 2% 4(96!5

and then solve by the method of characteristic the corresponding system of B&)&éth respect
to (23). Note the vector fields V¥, i=1, 2, 3 satisfy the same commutator relationg1 [see
(20)], which confirms Conjecture 2.1. Ultimately, this leads to the following theorem.

Theorem 2.2: Any algebraic (Hf)-invariant | of the subspace of the parameter spacef
K%(R?) defined by the condition that the vector fields (23) are linearly independent can be (lo-
cally) uniquely expressed as an analytic function

| =F(71,7,,Z3),

where the fundamental invarianis, i=1, 2, 3are given by

Ty = (a4 + ab - aglay + a)? — Mazas — ayas)?,
I,= aglay — ap) — s+ aj, (29

I3: Qg.

The fact thatZ;=ag is a fundamental(IR?) invariant of the vector spade?(R3) trivially follows
from the transformation formula@2). The fundamentaI(Rf)-invariantI1 was derived in Refs.
12 and 15 in the study of the five-dimensional subspace of nontrivial Killing tensoﬁ%(ﬁf‘i). As
expected, in this case by Theorem 2.1, we have obtainddinension of the spage
-3 (dimension of the orbils=3 fundamental (}Rf) invariants of the vector spadéz(Ri).

B. Covariants

Consider now the action of the isometry grold) on the product spac&P(M) XM, p
=1. As above it induces the transformation laws ondktended parameter spagex M, where
3 is the parameter space of the vector spEEEM),
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alzal(al,...,ad,gl,...,g,),
az=a2(a1,...,ad,gl,...,g,), ey

ag=ay(ag,...,aq,01,...,0;),
(25)
Xy =Xy (Xgs oo X Oy -, )

7(2:7(2(X1,...,Xn,gly---ygr)1 SR

T(n:’S‘(n(xla---axnagly---:gr),

where as beforey,...,aq are the parameters #&P(M) that defineX,g,,...,9;, r:%n(n+ 1) are
local parameters parametrizing the grdgll) andx, ..., X, are local coordinates on the manifold
M.

Definition 2.3: An (M) covariant of the vector spackP(M) p=1 is a function CX XM
— R satisfying the condition

C= F(al, ey Oy Xy e ,Xn) = F(Ezl, ,ad,il... ,in) (26)

under the transformation laws (25) induced by the isometry gréhb,lwhereZ, is the parameter
space ofkP(M).

Conjecture 2.1 entails the following corollary.

Corollary 2.1: Consider the product vector spak@&(M) X M, p=1. Define the vector fields

V/i=Vi+X;, i=1,.r, (27)

where V;,i=1,...,r are the infinitesimal generators of the Lie algebr@li) in the parameter
space, of the vector spackP(M) obtained via (13) an&;,i=1,...,r are the generators of{ M).
Then the vector fieldg, ...,V, enjoy the same commutator relations as the generaars.., X,
of i(M) in X(M):

[V/.V{]=ckVy, ijk=1,..r, (28)

where the structural constant.ﬁ @re as in (14)
Proof: Straightforward. O
Therefore, in view of the abové(M) covariants of a vector spade’(M) can be obtained by
solving the corresponding system of PDEs generated by the vector {@ds

V/(F)=0, i=1,.r. (29)

Alternatively, one can employ the method of moving frames. To demonstrate how it works in the
framework of ITKT we shall employ the method in Sec. Il to compute the covariants of the vector
spacesC(R?) and KA(R2).

C. Joint invariants

Consider now the action of the isometry grol{M) on the product spack‘(M) X K™(M)
X XKAM), €,m,...,.q=1. Let ag,...,a4,B1, -, Ber---» Y1, ---, ¥s b€ the parameters of the
vector spaces’‘(M),K™(M),...,K9(M), respectively, wheré,e, ..., f are the corresponding di-
mensions determined k). Then the action of the isometry grolgM) induces the correspond-
ing transformation laws for the parameters, ..., aqg, B1, -« Bes - s Yir - V5
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Zl’l :al(al, ...,ad,gl, ,gr),
a’2:a’z(a]_,---,ad,gl,...,gr), ey

ad=51d(a/1,...,ad,g1,...,g,), cee sy
Elzﬁl(ﬂlv"'vﬂeiglv"'vgr)v Ty
EZZEZ(ﬂlv"'iﬂe!gli"'igr)v T (30)

’Be:ﬁe(ﬁl""’ﬁe’gl’""gr)’ e
7}'/1:7}'/1(’)/1,...,’)’f,gly---ygr)!
Yo=YV Y1000+ 00)s e

T}'/f :’:}'/f(’)’L"'!Yf!glv"'igr)l

where as beforeg,,...,g, are local coordinates oh(M) that parametrize the group amd
=dim I(M):%n(n+ 1). This observation leads us to introduce the conceptjoina [ (M)-invariant

Definition 2.4 A joint I(M) invariantof the product spac&‘(M) X X™(M) X - X KCI(M), is
a function I13¢xX3Mx --- X 395 R satisfying the condition

J=F(ag,...,@q;B1e- s Bereos Vieeor Vi)

=F(Ggseee, @ Breees Bor ooy V1o s V1) (30)

under the transformation laws (30) induced by the isometry grdivp .|
In this case again Conjecture 2.1 entails the following corollary.
Corollary 2.2: Consider the product vector space

K=KM) X K™(M) X -+ X KIUM), (32

where€,m,...,q= 1. Define the vector fields

Vi=VOrVM+ o+ V9 =1, (33

where{vf},{vi’“},... AV, i=1,...,r are the sets of infinitesimal generators of the Lie algebra
i(M) in the parameter spaces’, 3™, ..., 39 of the vector spacek‘(M),K4M),...,K"(M), re-
spectively, obtained via (13). Then the vector fields...,V, enjoy the same commutator rela-
tions as the generatorX;..., X, of i(M) in X(M):

[vi,vj]=cﬁ\~/k. ij,k=1,...,r, (34)

where the structural constant.ﬁ are as in (14).
Proof: Straightforward. O
Example 2.3:Consider the product vector spakg(R?) x K%(R?). The general form of the
elements ofCY(R?) (Killing vectors) with respect to the Cartesian coordinates is given by
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J J
Ki=(ay+ a?’y),y_x +(ap- 043X)5, (35

while the (contravariant elements ofC%(R?) assume the following general form with respect to
the same coordinate system:

K2= (B + 2By + BeyP) © = + (By— Bax— Bey - Bexy)— © —
1 4. 6. JX IX 3 4 5 6 JIX &y
+ (B + 2B+ fod) - © 36
2 5 6 ay ay!

where® denotes the symmetric tensor product. The form@®s and (36) put in evidence that

the corresponding parameter spakésnd>.? are determined by the three parameter$=1,...,3

and the six parameters,i=1,...,6, respectively. Let(R?) be the proper Euclidean group that
consists of the orientation-preserving isometrieskéf(rigid motions. Its action inR? can be
described as the semidirect product of rotations and translations. In view of its standard param-
etrization, we have the transformation of the Cartesian coordinxat€s,y),

cosf -sind

= 2
sinf cosé } €S02), a=(ab) e R (37)

X =R+ a, R(,:{

Note, the generators ®fR?)=/1(R?), which is the Lie algebra of the Lie groupR?), are given
with respect to the Cartesian coordinates by

J J PR
X=—, Y=—, R=x—-y—, (39)
Ix ay ay 7 ax

whose flows are translations and a rotation, respectively. Employing the constr(tBprwe
derive two triples of the vector fields representing the generg8®sin X(31)

J
Vi= s, (39

and X(32),

V2228, - po st By (40)
d B d B3 d Be

V2:—2,8<i_i>+(ﬁ —,B)i"'ﬁi—ﬁi
s Nop, 9B, Vs Tap, Ttaps

respectively. We note that in view of Conjecture 2.1 both the vector figésand the vector
fields (40) satisfy the same commutator relations as the generata(89f(38). By Corollary 2.2
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this fact entails immediately that the vector fiel{&s}, i=1, 2, 3 defined by

Vi=Vi+Vv? =123 (42)

also enjoy the same commutator relations. This property can be also verified directly. Therefore
we have determined the action I¢R?) in the product spacE! x 32. To determine the dimension

of the orbits of the group we use the result of Propositon 2.1. Thus, the orbits of the isometry
group I(R?) acting in 31X 3?2 are three dimensional in the subspaggC>!'x 32 where the
generatorg41l) are linearly independent. According to Theorem 2.1, the number of fundamental
invariants inS; is 9 (dimension of3! X 3?) -3 (dimension of the orbits i$;)=6. Some of these
fundamental invariants may be the fundamental invariants of the group action in the vector spaces
KY(R?) andKC?(R?). Indeed, it is instructive at this point to review the transformations imposed on
the nine parameterSy,, a,, a3, 81, B2, B3, Ba: Bs, Bs) Of the product spac&®x 32 by the group
action:

‘@1 = a; €0SO— ay sin 0 - bas,
@y = ay Sin 0+ a, oSO+ aas,
az= as,
B1= 1 COZ - 235 cOSHSIN O+ B, Sir? 0 — 2bB, cOSO - 2bBs Sin O+ Beh?,
By = By SiM? 0— 25 cOSOSIN 0+ B, COL 0 — 2885 COSO + 2803, Sin 0+ Bea2, (42
Ba= (81— B,)Sin 6COSO+ B(COL O - Sir? 6) + (8B, + bBs)cos o + (aBs — bB,)sin 6— Bgab,
Ba= B4 COSO+ s Sin 6= Beb,
735= BsCcosO— B,Sin - Bga,

236:,36,

where(6,a,b) given by (37) parametrize the isometry groupR?). Hence, the dimension of the
orbits in this subspace coincides with the dimension of the group. We also observug #rat 3¢
are fundamental(R?) invariants of the group action B*x 32,

To determine the remaining four fundamental invariants we use the method of characteristics
to solve the system of linear PDEs,

Vi(F)=0, i=1,2,3, (43)

whereF:3'x 32—~ and the vector field¥;, i=1, 2, 3 are given by41). Having solved the
system of PDE$43), we have therefore proven the following result.

Theorem 2.3: Any algebraic joint (R?)-invariant | defined over the subspace bt x 3?2
where the vector fields (41) are linearly independent can be locally uniquely expressed as an
analytic function

| =F(Z1,72, 23,24, J1, J2)

where the fundamental jointk?)-invariantsZ; Jj, 1=1,..., 4,j=1, 2are given by
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Ty =[Be(B1— B2) + Be— BaI? + A Bafs + BabBs)?,
T,=Be(Br+ By — B3 - B2,

Z3= P,
(44)
I4 = ag,

J1= (Bsaz + Bsaz)? + (Bsay = Bacta)?,

To = (Bery + azas)(BeBz — B2) + 2(B3Bs + BaBs)(Beay — Bacts).

The fundamental joint(R?) invariantsZ;, i=1, 2, 3 are the fundamentilR?) invariants of the
vector spacéC?(R?) (Z, was derived in Ref. 15 while Z, is the fundamentdi(R?) invariant of the
vector spaceCl(R?). Note the fundamentdl(R?) invariants.7; and 7, are “truly” joint 1(R?)
invariants of the vector spacég(R?) and KC?(R?). Therefore we have introduced an analogue of
the concept of a joint invariant in the classical invariant theory of homogeneous polynorefats

to Ref. 41 for more detaijs The problem of the determination of fundamental invariants, solved
in this section for a particulagproducy vector space of Killing tensoréTheorem 2.3 by the
method of infinitesimal generatgrsan also be solved by the purely algebraiethod of moving
frames This is the subject of the considerations that follow.

Ill. THE METHOD OF MOVING FRAMES

The method of moving frames, introduced originally by Caftima powerful technique that
can be employed to solve a wide range of equivalence-type problems. In its original interpretation
it is based on an equivariant map from the space of submanifolds to a bundle of frames. The
simplest example of a moving frame is the Frenet frgima} of a regular curvey e R? param-
etrized by its arc length. In this case the equivariant map assigns to each point on the/(surve
the corresponding framg(s),n(s)}. Clearly, the moving frame along can be obtained from a
fixed frame via a combination of rotations and/or translations. This puts in evidence that there is
a natural isomorphism between the moving frame and the orientation-preserving isometry group
(Euclidean group(R?). This is the essence of the later generalizations of the moving frame
method?®~% where the moving frame was viewed as an equivariant map from the space of
submanifolds to the group itself. In recent works by Fels and BW#the classical moving frame
method was further generalized to completely general transformation groups, including infinite-
dimensional Lie pseudogrougsee also Koga°ﬁ). Ultimately, the authors have succeeded in
bringing the theory up to the level where the bundle of frames is no longer needed. We very briefly
review the basic definitions and results of the moving frames theory in its modern formuyfation
a complete review, see Ref.)39

Definition 3.1: Amoving frameis a smooth G-equivariant mapp:M — G, where G is an
r-dimensional group acting smoothly on ardimensional underlying manifold M

Theorem 3.1: A moving frame exists in a neighborhood of a poirt M iff G acts freely and
regularly nearx.

To construct a moving frame, one employs Cartargsmalization method

Theorem 3.2:Let G act freely and regularly on M and let®&M be a (local) cross section to
the group orbits Givenx e M, let g=p(x) be the unique group element that mapto the cross
section:g-x=p(x)-x e K. Thenp:M — G is a right moving frame

More specifically, lex=(x4,...,X,) € M be local coordinates. Consider the explicit formulas
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for the coordinate transformations induced by the actiorGoé(g,x)=g-x. The right moving
frameg=p(x) can be constructed by making use of@ordinate cross section

K:{Xl:C11X2:C21'--1Xr :Cr},

wherec;, i=1,...,r are some constants and solving the correspondargalization equations

a)l(g,X) =Cy, wZ(g!X) =Gy, LR wr(gax) =G, (45)

for the group G locally parametrized byg=(gs,...,g,) in terms of the local coordinates
(Xq,..-,Xy). Substituting the resulting expressions fgr,...,g, in terms of the local coordinates
(Xq,...X,) into the remainingn—r formulas for the transformation rules(g,x)=g-x yields a
complete set of fundamental invariants for the actiorGabn M.

Theorem 3.3: If g=p(x) is the moving frame solution to the normalization equations (45),
then the functions

Z1(X) = @re1(p(X),X), ., Znr(X) = wn(p(X),X) (46)

form a complete system of functionally independent fundamental G invariants

Let us now illustrate the procedure and demonstrate how the method of moving frames can be
effectively applied to the problem of the determination of the fundamental invariants of the
isometry group in the invariant theory of Killing tensors.

Example 3.1:Consider the extended vector spac&R?) X R2. The corresponding extended
parameter spack X R? is determined by the parametes, ..., 3s,X,y, Wheres;, i=1,...,6 are
as in(36) and x,y are the standard Cartesian coordinates. The isometry gfdfp acting on
KC?(R?) X R? induces the corresponding transformations on the extended paramete®spdice
(25), which in this case take the following form:

B1= B1cOZ 6~ 23;,cOSOSIN 0+ B, Sir 6~ 2bB, cos 6 — 2bBs Sin 0+ Beh?,
By =3, SNt 6— 25 COSOSIN G+ B, COF O — 285 COSO + 283, Sin 0+ Bea2,
Bs= (1~ Bo)Sin 6cOsO+ Bo(COL 61— Sir? 6) + (a3, + bBs)cos O+ (aBs — bB,)sin 6 — Bgab,

Ba= 4 COSO+ Bs Sin 0 — Beh,
~ (47)
Bs=Bs5C0SH— B4Sin - Bea,

Be= Be:
X=xcosf-ycosf+a,

Yy=xsinf+ycosf+Db.

Next, we construct a moving frame by using the cross seg¢fmmexample,

K={B3=B4=B5=0}, (48)

which yields the corresponding normalization equations,
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0=(B; - By)sin 8 cosh + B5(cog 6-sir? ) + (aB, + bBs)cosh+ (aBs — bB,)sin 6 — Bsab,

0=8,c0s60+ Bssin - Bgb, (49

0=B5c0s6— B4Sin - Bea.

Solving (49) for the parametera,b, and 6, we obtain the moving frame map S X R?— I(R?)
determined by the following formulas:

BsC0SO— B,sinb

Be
b:,84cose+,855in 0, (50)
Bs
§= 1 arctan 2(B3Ps + BaPs)

2 Be(B1— B) - B3+ B2

It was observed in Ref. 11 that the method of moving frames could be used to solve the
problem of the determination of fundamental invariants of vector spaces of Killing tensors under
the action of the isometry group. Indeed, having derived the moving frame(&tmnd the
transformation law$47), we can now make use of the result of Theorem 3.3 and determine a set
of fundamental (R?) covariants ofiC2(R?). Substituting(50) into (47), by Theorem 3.3, we arrive
at the following result.

Theorem 3.4: Consider the vector spadé?(R?). Any algebraic (R?)-covariant C defined
over the subspace & X R? where the isometry grougk?) acts freely and regularly with three-
dimensional orbits can be locally uniquely expressed as an analytic fupction

C=F(7,,7,,735,C1,Cy),

where the fundamenta{Rz)—covariantin,Cj, i=1, 2, 3, j=1, 2are given by

Ty =[Bs(By = B) + B5 = Bil* + 4(BaBs + BaBs)’,
T,= Bo(Br+ Bo) — B~ B,
5= Be, (51)
C1= (Bex+ Bs)* + (Bey + Ba)’,

Co=[(Bex+ Bs)? = (Bey + Ba)21(BE— B+ Be(B1— B2)) + A BeX + Bs)(Bey + Ba)(BeBa + BaBs),

wheres is the parameter space @f?(R?).

We immediately observe that the functiofs, Z,,Z5 constitute in fact a set of fundamental
I(R?) invariants of the vector spadé&’(IR?), while the function<’; andC, are “truly” fundamental
I(R?) covariants of the vector spadé’(R?). We also observe that the fundamental covar@nt
can be expressed as
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61:1-3”'2 _Iz,

where thg(l, 1)-tensor|2 is given byk =Kg™L This observation immediately suggests that tis
a fundamental (R?) covariant of C?(R?). We note, however, that the function détis not a
fundamental (R?) covariant ofKC%(R?).

Consider a similar example.

Example 3.2:Let K2(R$) X k2 be the extended vector space /6f(R9). The action of the
isometry groud (R?) in the Minkowski planeR? is given by(18), while the corresponding action
in the parameter space of ICZ(RE) is given by(22). The transformation law&2) combined with
the transformationg18) yield an analogue of47). Next, we proceed as in Example 3.1. The
resulting moving frame map: 3 X RZ—1(R?) is given by

a4 sinh ¢ + a5 coshg

ag

b= a4 coshe + ag sinh ¢

: 52
o (52

2(azas =~ asas)

1
¢ = —arctanh .
2 ai + ag - aglag + ay)

Now we can continue as in the previous example to determine a set of fundarr(@ibal
covariants of the vector spad&?(R?).

Theorem 3.5: Consider the vector spadéZ(Ri). Any algebraic (Rf) covariant C defined
over the subspace &f X Ri where the isometry groumﬂii) acts freely and regularly with three-
dimensional orbits can be locally uniquely expressed as an analytic function

C=F(71,75,75,C1,Cy),

where the fundamenta(1t?) covariantsZ;,Cj, i=1, 2, 3, j=1, 2are given by

Ty =[5+ ad - aglay + ay) P - M azag — agas)?,
T,= (a1~ ay)ag— a/i + aé,
I3= ag, (53
C1 = (gt + as)? = (agX + ag)?,

Co=[(agt + ag)® + (agX + ay)?](a + af — aglay + ap)) + Aagt + as) (apx + ag)(azas — asas),

where, is the parameter space ﬁZ(Rf).

The conclusion is similar to that following Theorem 3.4. Thus, we observe again that the
functions Z,,7,,Z; constitute in fact a set of fundamentdR?) invariants of the vector space
ICZ(RE), while the functiong®; andC, are “truly” fundamental (]Rf) covariants of the vector space
KA(RY).

IV. EQUIVALENCE CLASSES OF VECTOR SPACES KC2(R?) AND K2(R?)

In this section we use the results obtained in the preceding section to solve the problems of
equivalence for the vector subspacesnohtrivial Killing tensors of C%(R?) and K%(R?). As is
well-knowrf? the elements of these subspaces genemtt@gonal coordinate wekis R? ande,
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TABLE I. Invariant classification of the orthogonal coordinate web®&frby means of (R?) invariants.

Equivalence class 71 I3 Orthogonal web
EC1 0 0 Cartesian
EC2 0 #0 Polar
EC3 #0 0 Parabolic
EC4 #0 #0 Elliptic—hyperbolic

respectively, provided the Killing tensors in question have distinod real eigenvalues. The
problem of equivalence in this case is the problem of classification of orthogonal coordinate webs.
On the other hand, from the invariant theory point of view the problem of equivalence and the
related canonical form problem are intimately related to the problem of the determination of
fundamental invariant&covariants, joint invarianjs

A. The vector space IC2(R?)

Let K2,(R?) C K2(1R?) be the vector subspace of nontrivial Killing two tensors defined in the
Euclidean planéi?. “Nontrivial” in this context means that none of the elementsC@f(R?) is a
multiple of the metric of?. Clearly dim/C2(R?)=5. It has been established in Refs. 13,14,16 that
the functionsZ, andZ given by(51) are the fundamenta(RR?) invariants ofKC%(R?). Moreover,
they can be used to solve the problem of classification of orthogonal coordinate webs in the
Euclidean plane. The fundamentdR?) invariants divide the vector subspalﬁﬁt(]l%z) into four
equivalence classes. The elements within each equivalence class generate a particular orthogonal
web (see Ref. 13 for more detajlsThese results are summarized in Table I. Clearly,@mgalytio
I(R?) covariant of the vector subspaifét(]ﬁiz) takes the following general form:

C = F(IlizBIClacz) ’

where the function§,,73,C, andC, are given by(51).

The same classification can be done by means of the fundamértalcovariantsC; andC,
given by (51). The results are summarized in Table II.

Recall that in most of the problems studied so far within ITKT the assoctdadnical form
problemhas been solved for vector spaces of Killing tensors of valence two via transforming the
corresponding Killing tensors in orthogonal coordinates back to the origus&ludoyCartesian
coordinates by using the standard transformations from the orthogonal coordingps® ooy
Cartesian coordinatessee, for example, Refs. 7,12,13)16n the problems involving Killing
tensors of valence tw@with distinct eigenvalues and integrable eigenvegttinge equivalence
classegECy9 of the corresponding vector spaces are associated with the corresponding orthogonal
coordinate webs and so such an approach seems to be natural.

However, one may wish to solve the canonical form problem for vector spaces of Killing
tensors of valences higher than two, in which case a connection with the theory of orthogonal

TABLE II. Invariant classification of the orthogonal coordinate web&ifnby means of (R?) covariants.

Equivalence class Cy Cy Orthogonal web
EC1 0 0 Cartesian
EC2 Positive—definite 0 Polar
EC3 1 1 Parabolic

EC4 Positive—definite Indefinite Elliptic—hyperbolic
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coordinate webs is not evident. In such a case, another, more general approach can be adapted
from CIT*® to the study of Killing tensors. Indeed, recall first the following definitions and
results®

Definition 4.1: Two submanifolds R C X are said to intersectransversallyat a common
point X, e NN P if they have no nonzero tangent vectors in commod;(OTNTP|X0={O}.

Definition 4.2: Let G be a Lie transformation group that acts regularly on adimensional
manifold X with sdimensional orbits. A (localgross sectioris an (m-s)-dimensional submani-
fold KC X such that K intersects each orbit transversally and at most.once

Proposition 4.1: If a Lie group G acts regularly on a manifold tden one can construct a
local cross section K passing through any poing X.

One can define aoordinate cross section,Kn which case the first coordinates themselves
define a coordinate cross sectidn

K={X; =Cp,...,X= Cg} (54)
iff
d(Aq, .., Ay
9 (Xst1r -2 Xm) #0. 9

whereAq, ..., A are the fundamental invariants of the group action. Then, in view of the above,
we can obtain canonical forms of the equivalence classes set by the fundamental invariants as
intersections of the coordinate cross sections and the levelisessiant submanifoldsdefined by
the fundamental group invariants. To illustrate this simple procedure consider the following ex-
ample.

Example 4.1 Considerk2(R?) C K2(R?). Without loss of generality we can assume that the
elements of the vector subspaléét(Rz) enjoy the following general form:

9
ay’
(56)

where 8;=B;— 3, and the parameterd, i=1,...,6 are as in36). The four equivalence classes
EC1-4 ofK%(R? have been classified in Table | and Table Il. The Killing tensors within each
equivalence class share the same geometrical properties, that is they define the same orthogonal
coordinate webs equivalent up to the action of the isometry grtRf). This fact can be used to
select appropriate canonical forms for each of the four equivalence classes. Thus, one can consider
the Killing tensors in terms of the orthogonal coordinatesy) (see Ref. 1§and then use the
standard coordinate transformations from the orthog@mal) coordinates to the Cartesian coor-
dinates(x,y) in order to determine the corresponding canonical forms for EC1-4. Alternatively,
one can proceed by using the coordinate cross sections. The procedure is outlined below.

EC1: In this case the parameter spaké defined by the five parameters (B6) can be
intersected by the coordinate cross section,

, g _d g _d d
KR= (B + 2Bay + oY) © -+ (Bo = Bix = Bsy = Boy) o O 0+ (2Bex+ fox®) = O

Ki1={B3=B4=Bs=0}. (57)

Taking into accoun(56) and the corresponding formulas 6y andZ; given by(51), we conclude
that all but ong(8;) parameters vanish in this case. The paramgias arbitrary, without loss of
generality we can sg8;=1, which leads to the canonical form

d d
©

K|:_ - .
ax  JX

(58)

Alternatively, we could have used the coordinate cross section,
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Ko={B1=Bs=PBs=0}, (59
which would have led to the canonical form
Jd Jd
Ki=— 0O —. (60)
ax — ay

Note the canonical formg8) and (60) are equivalent up to a rotation.
EC2: Reason as in EC1 above. Either of the coordinate cross se¢fionsr (59) leads to the
canonical form

,d 4 g __d  ,9 _d
Kizy—0O —=-xy— 0O —+xX— 0O —. (61)
IxX ~ IX ax — ay ay — ay
EC3 First, note that the conditioi; # 0,Z;=0 (see Table) prompts,82+,8§¢0. Therefore
the coordinate cross sections that can be used in this case are

Ks={B1=B3=B4=0} (62
and
Ky={B1=B3=Bs=0}, (63
which lead to the canonical forms
J J J J
K|||:_y_®_+2X_®_ (64)
ax dy ay  ay
and
J J J J
Ki=2y— 0O —-x—0© —, 65
=YY ax  ax ay (65

respectively. Note the canonical forrt®4) and (65) are equivalent up to a rotation.
EC4: In this case we can use either of the coordinate cross sec¢B@nsr (59). Intersecting
the common level set defined By # 0,75+ 0 (see Table)l with (57) yields the canonical form

d J J d Jd J
Ky=(B+y)— 0O — —xy— O — +x*— O —, 66
v =(B1 y)&x Ix Xyax y X gy 3y (66)

while with (59)—the canonical form

Jd J J J J J
Kiy=Yo— 0O —+(B3—xy) — O —+x*— 0O —. 67
v =Y Ix " ax (B3 Xy)ax ay X ay " ay (67)

Note the canonical formg6) and(67) are equivalent up to a rotation and rescaling.

B. The vector space K2(R3)

The problem of classification of the 10 orthogonal coordinate webs defined in the Minkowski
pIaneRi was initially solved by Kalning in 1975. The approach used in Ref. 23 is based on the
property that the Killing tensors defined in pseudo-Riemannian spaces of constant curvature are
the sums of symmetrized tensor products of Killing vectors. In Ref. 23 different combinésisns
symmetric tensor produotef the basic Killing vectorg19) were analyzed modulo the action of
the eight-dimensional discrete group of permutations of coordinates and reflections of the
signature of the Minkowski metrig=diag1,-1) given in terms of the pseudo-Cartesian coordi-
nates(t,x) (see below A different approach was used in Rastéflivhere the 10 orthogonal webs
were classified based on the algebraic properties of the nontrivial Killing tensb:r%(}ﬁf). More
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specifically, the author made use of the points where the eigenvalues of such Killing tensors
coincide(singular points Finally, McLenagharet al.>**employed a set of the fundamentéR?)
invariants of the vector subspace of nontrivial Killing tensorﬁ:é(ﬂ-ﬁi) to classify the 10 orthogo-

nal webs defined if2. The problem appeared to be incommensurably more challenging than the
problem of classification of the orthogonal coordinate web&3rt>*® The reason is simple: In

both cases one has two fundamental invariants at one’s disposal, while the number of orthogonal
coordinate webs is fouiEuclidean plangand 10(Minkowski plang. In the latter case the prob-

lem was solvetf*® by introducing the concept of @nformal (Ri) invariant, which was used to
generate additionaliscrete [Ri) invariants. To solve the problem, the authors had to investigate
the effect of the eight-dimensional discrete grddpon the discrete(Ri) invariants. Unordered
pairs(as the objects preserved by the discrete gradpliscrete invariants along with one of the
fundamental invariants were used to solve the problem. In what follows, we propose a simpler
solution based on the fundamentéll%f) covariants obtained in the preceding section.

Let K2(R2) C K4(R?) be the vector subspace of nontrivial Killing two tensors defined in the
Minkowski planeR2. Here “nontrivial” has the same meaning as above. Again /dffii2)=5.
Without loss of generality we can assume that in terms of the pseudo-Cartesian coordinates
the general form of the elements KE(R?) is given by

K =(a] + 2ax+ x2)&®a+( + agt + asX + tx)ﬂ®a+(2 t+ tz)aGﬂ
-\ Q, (87 - — (874 (83 ) Q — - a 07 I .,
LRERR T gt T ot T T T T T T ox =T ax T ox

(68)

where a;=a;+a, and the parameters;, i=1,...,6 are as in(17). Note that in this case the
parameter spack’ is determined by the five parameter$, az, as, a5, and ag. Our next obser-
vation is that by Theorem 3.5 anyR3) covariant ofk’2(R$) enjoys the form

C=F(Z1,75,C1,Cy),

where the functiong,,Z3,C;, andC, are given by(53). As in the case ofCﬁt(Rz) we can use
741,Z3,Cq4, andC, to classify the 10 orthogonal webs. However, in view of the number of cases we
must use these functions concurrently. Before doing so, we check the efl@adof,,Z5,C,, and

C,. Recalf**that the groupgunder compositionR =(R;,R,) consists of eight discrete transfor-
mations generated by

Ri: T=t, X=-x (spatial reflectiong

Ry T=x, X=t (permutation. (69

Note the groupR [along with the isometry group(]Rf)] preserves the geometry of the 10 or-
thogonal webs defined in the Minkowski plane. Recall Hetttat R; andR, induce the following
transformations on the parameters i=1,...,6 of ICZ(Rf) [see(36)]:

Ry a=ay, a=ay, az=—a3 a=—a a5=as, o= g,

Ry @=ay a=a), az=a3 a=as, as=as = (70)

It follows immediately that the fundamentk—:(lRf) covariantsZ,;,Z3,C, andC, remain unchanged
under the transformation§0) induced by the groufR. We conclude therefore that we can use
them in the classification of the 10 orthogonal webs. Recall that the vector subishée® can

be divided into 10 equivalence classes EC1-10 within each of which the corresponding elements
generate theame orthogonal coordinate wéfor more details see Refs. 23 and)1@/e consider

next the 10canonical elementdetermined in Ref. 12 representing each class EC1-10 by trans-
forming them to contravariant form and making them compatible with the general (B8yrby

adding multiples of the metric when necessary. The latter operation does not affect the geometry
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of the coordinate webs generated by the canonical elements. We arrive at the following list:

ECl K,=2 02 71
7ot 7 ot (73
J , 0
EC2 Kz—x—Q— Lol iplold (72)
Jt ot dX X ax’
1 \o _ o (1 1 1 0 4
EC3 Ki=|=-x|]—0=+(=-Zt+ oLl ilol 73
3 (2 )at at (4 2 2) X ax - ox (73
Jd d
EC4 Ku=x—0O —+ 2—@— (74)
Jdt JX JX dX

(o2_ Lo 9 1950 L1pd o0
EC5 Kg=|2k NG G) © t © , (75)
4 Jat ot 4 at X 4 9Ix IX

a _d 11t>a i+1
at  Ix 4 Ix IX

11, , 0
EC6 Ke=|>+2| =0 —+|>+>tx|— P—0 —, (76)
474 Jot ot \4 4

1. 1,\a 9 1 1 \g a 1,
EC7 Ky=|-Z+"%| =0 —+|(--+>tx|] =0 —+t*—0 —, (77)
2 4 JJdt ot 4 4 Jgt Ix 4 IX IX
1,0 d , 1 \a g 1,0 d
EC8 Kg=-X— 0O —+(-K+-tx|] =0 —+ 12— 0 —, (78)
4 9t ot 4 Jat Ix 4 Ix IX
1 g 1 9 g 1.9 d
EC9 K9:<2k2+—x> O—+-tXx—0—+-t*—0 —, (79
4 Jat ot 4 ot dx 4 9x IX
1.\0 g 1 4 1,0
EC10 K= —2k2+—x2>—®— - —@— - —@— 80
10 ( KOt ¥ Y ax T atax P ax (80)

where the parametéris al(ﬂ% ) invariant of K t(Jl»%l) In view of Theorem 2.2see also Theorem
3.5), it can be represented via the fundamelh(LBlf invariants. Indeed, the corresponding formu-
las were found in Ref. 12,

a
EC5, EC9, EC10: kzz?l (7,>0),
3

_
Ece: K@=t
I3

(Z7,<0). (81)

Note the canonical form& 1)—80) are compatible with the general form given (®8). Following
the procedure devised in Ref. 12, we use the canonical fo7ihs(80) to evaluate the corre-
sponding values of the fundamenté]]%f) covariantszZ,,Z3,C4,C, and employ the results to dis-
tinguish the elements belonging to different equivalence classes EC1-10. The eleméﬁ;(tﬁijf
must have the same values ©f,75,C,, andC,. We note however that these functions do not
distinguish EC1 from EC3 and EC6 from EC8. Therefore we have to derive some aukiligiy
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invariants to complete the classification scheme. Indeed, consider the vectoﬂ@?pﬁé)aunder
the action of the isometry grougR?). SinceZs is a fundamental(R?) invariant, we can consider
the level set

813:{(011,...,015) S 2| 13:0}. (82)

Note Sy, is anl(R?)-invariant submanifold it defined by the parameters, i=1,...,5. Next we
prove the following result by using the techniques exhibited in Sec. Il.

Lemma 4.1: Any algebraic(]]l%i) invariant | of the (Rf)-invariant submanifoIdS‘I3 defined by
(82) can be (locally) uniquely expressed as an analytic function

| =F(71,7),

where the fundamental invarians, i=1, 2 are given by

r— 2 2
Il—a4_a5,

Th = 203005 — 005 — @102, (83

provided the group acts iL‘SI3 with three-dimensional orbits

We note that the fundamentdli?) invariantsZ; andZ, still cannot be used in the problem of
classification of the elements &(R?). In particular,Z, appears to be a function ef, a,, as, ay,
and as (ot a, a3, ay, as). However, under the additionalvariant condition

7= - =0 9

it assumes the following form:

Th = 2050405 — a0, (85)

wherea; = a; +a,. We immediately recognize tHeRf)—invariant(SS) to be anl(Rf) invariant of
the submanifold ir1913 determined by the conditio{84). Hence,Z; given by(85) can be used to
distinguish between EC1 and EC3.

Next, in order to distinguish between the elements of EC6 and ECS, introduce the following
auxiliary 1(R?) invariant:

T =Ky + Ty, (86)

wherek is given by(81) (the formula for EC8 We note tha" given by(86) is anI(Ri) invariant.
The values ofZ; andZ; evaluated with respect to the parameters of the canonical form EC8 given
by (78) are

Therefore thd(Rf) invariantZ" =0, whenever the Killing tensor in question belongs to EC8. The
classification scheme is now complete. We summarize the results in Table IlI.

Using the results obtained we can devise a general algorithm of classification for the elements
of the v;actor spacek?(R?) and K2(R2). It consists of the following two steps. L&t e K2(R?)
X (CA(RY)).

(i) If K has arbitrary constants, decompdses follows:
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TABLE Ill. Invariant classification of the orthogonal coordinate Web%ﬁmy means of (Rf) invariants and covariants.

Equivalence class I, Ty Cy C, T 7, T
EC1 0 0 0 0 0 0
EC2 0 #0 Indefinite 0
EC3 0 0 0 0 0 #0
EC4 #0 0 1 1
EC5 #0 #0 Indefinite Positive—definite
EC6 #0 #0 Indefinite Indefinite #0
EC7 0 #0 Indefinite Positive—definite
EC8 #0 #0 Indefinite Indefinite 0
EC9 #0 #0 Indefinite Negative—definite
EC10 #0 #0 Indefinite Positive—definite
5
K =tog+ 2 €6K;, (87)

i=1

where(;, i=1,...,5 are the arbitrary constants. N&& ,¢;K; e K3(R?)(K3(R?). Clearly,
K e K2(R)(K2(R?)) iff £,=0.

(i)  Each Killing tensor in the representati@) represents one of the equivalence clagsaed
thus, an orthogonal coordinate welprovided it has real eigenvalues in the case of the
vector space beingf?(R?). We can determine which one by evaluating the corresponding
[(R?) andI(Rf) invariants and covariants and then using the information provided in Table

| or Table Il for the Killing tensors defined in the Euclidean plane and Table Ill defined in
the Minkowski plane.

The problem of classification is therefore solved.

Remark 4.1We note that EC5 and EC10 are characterized by the same values of the funda-
mental I(R%) convariants. It agrees with the geometry of the corresponding orthogonal webs,
namely they determine two distinct coordinate systems that cover two disjoint areas of the same
space(see Millef® for more details
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