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Covariants, joint invariants and the problem
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tensors defined in pseudo-Riemannian spaces
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The invariant theory of Killing tensors(ITKT ) is extended by introducing the new
concepts of covariants and joint invariants of(product) vector spaces of Killing
tensors defined in pseudo-Riemannian spaces of constant curvature. The covariants
are employed to solve the problem of classification of the orthogonal coordinate
webs generated by nontrivial Killing tensors of valence two defined in the Euclid-
ean and Minkowski planes. Illustrative examples are provided. ©2004 American
Institute of Physics.[DOI: 10.1063/1.1805728]

I. INTRODUCTION

The second half of the 19th century saw the development of the post-“Theorema Egregium of
Gauss” differential geometry going in two major directions. Thus, Riemann1 generalized Gauss’s
geometry of surfaces in the Euclidean space by introducing the concept of a differentiable mani-
fold of arbitrary dimension and defining the inner product in terms of the metric tensor on the
spaces of tangent vectors. This remarkable work has evolved in time into what is known today as
(Riemannian) differential geometry. The other direction originated in the celebrated “Erlangen
Program” of Klein.2,3 According to his manifesto any branch of geometry can be interpreted as an
invariant theory with respect to a specific transformation group. Moreover, the main goal of any
geometry is the determination of those properties of geometrical figures that remain unchanged
under the action of a transformation group. One of the main contributions of Cartan to differential
geometry, in particular with his moving frames method,4 is the blending of these two directions
into a single theory. An excellent exposition of this fact can be found in Sharpe5 (see also, for
example, Arvanitoyeorgos6). The following diagram presented in Ref. 5 elucidates the relationship
among the different approaches to geometry described above:

Euclidean Geometry →
generalization

Klein Geometries

↓generalization generalization↓
Riemannian Geometry →

generalization
Cartan Geometries

s1d

Being a result of the natural fusion of classical invariant theory(CIT) and the(geometric)
study of Killing tensors defined in pseudo-Riemannian manifolds of constant curvature, the in-
variant theory of Killing tensors(ITKT ) formed recently a new direction of research,7–16which, in
view of the above, can be rightfully placed into the theory initiated by Cartan. This is especially
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evident in the study of vector spaces of Killing tensors of valence two. Indeed, by now a number
of vector spaces of Killing tensors have been investigated from this viewpoint by means of
determining the corresponding sets of fundamentalinvariantsand, much like in CIT, using them
to solve the problem of equivalence in each case. These results have been employed in applica-
tions arising in thetheory of orthogonal coordinate webs,17–25,16,12,7where Killing tensors of
valence two play a pivotal role(see Ref. 22 for a complete list of references). Admittedly, an
orthogonal coordinate web is an integral part of the geometry of the underlying pseudo-
Riemmanian manifold. Therefore the problem of group invariant classification of orthogonal co-
ordinate webs in a specific pseudo-Riemannian space of constant curvature is a problem of Klein’s
approach to geometry, as well as that of Riemann, both leading to the theory due to Cartan[see the
diagram(1)].

The main goal of this paper is to further the development of the invariant theory of Killing
tensors by introducing the concepts of acovariantand ajoint invariant. In this setting they can be
introduced by establishing a natural extension of the main ideas of CIT to the geometric study of
Killing tensors in pseudo-Riemannian geometry. Furthermore, we employ the latest generalization
of Cartan’s method of moving frames due to Fels and Olver26,27 (see also Refs. 4 and 28–32 for
more details and references) to determine complete systems of fundamental covariants for the
vector spaces of Killing tensors of valence two defined in the Euclidean and Minkowski planes.
The covariants are employed to classify in both cases orthogonal coordinate webs generated by
Killing tensors. We also compare the results with the classifications of the orthogonal webs defined
in the Minkowski plane obtained in McLenaghanet al.12,15 by means of invariants only.

II. INVARIANT THEORY OF KILLING TENSORS (ITKT)

In this section we establish the requisite language and recall the basic notions of the invariant
theory of Killing tensors(ITKT ) defined in pseudo-Riemannian spaces of constant curvature.
More specifically, we review what is known about isometry group invariants and extend the theory
by introducing the concepts ofcovariantsand joint invariantsof product vector spaces of Killing
tensors in ITKT. LetsM ,gd be a pseudo-Riemannian manifold, dimM =n.

Definition 2.1: AKilling tensorK of valencep defined insM ,gd is a symmetricsp,0d tensor
satisfying the Killing tensor equation,

fK ,gg = 0, s2d

wheref,g denotes the Schouten bracket.33 When p=1, K is said to be aKilling vector (infinitesi-
mal isometry) and the equation (2) reads

LKg = 0,

whereL denotes the Lie derivative operator.
Remark 2.1:Throughout this paper, unless otherwise specified,f,g denotes the Schouten

bracket, which is a generalization of the usual Lie bracket of vector fields.
Killing tensors appear naturally in many problems of classical mechanics, general relativity,

field theory, and other areas. To demonstrate this fact, let us consider the following example.
Example 2.1:Let sXH ,P0,Hd be a Hamiltonian system defined onsM ,gd by a natural Hamil-

tonianH of the form

Hsq,pd = 1
2gij pipj + Vsqd, i, j = 1,…,n, s3d

wheregij are the contravariant components of the corresponding metric tensorg,sq ,pdPT*M are
the canonical position-momenta coordinates and the Hamiltonian vector fieldXH is given by

4142 J. Math. Phys., Vol. 45, No. 11, November 2004 R. G. Smirnov and J. Yue

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:29:44



XH = fP0,Hg s4d

with respect to the canonical Poisson bi-vectorP0=oi=1
n ] /]qi ∧] /]pi. Assume also that the Hamil-

tonian system defined by(3) admits a first integral of motionF which is a polynomial function of
degreem in the momenta:

Fsq,pd = Ki1i2¯imsqdpi1
pi2

¯pim
+ Usqd, s5d

where 1ø i1,… , imøn. Since the functionsH andF are in involution, the vanishing of the Poisson
bracket defined byP0:

hH,Fj0 = P0 d H d F = ffP0,Hg,Fg = 0 s6d

yields

fK ,gg = 0 sKilling tensor equationd s7d

and

Ki1i2¯im
] V

] qi1
pi2

¯ pim
= gij ] U

] qi pj scompatibility conditiond, s8d

where the symmetricsm,0d-tensor K has the componentsKi1i2¯im and 1ø i , j , i1,… , imøn.
Clearly, in view of Definition 2.1 the equation(7) confirms thatK is a Killing tensor. Furthermore,
in the casem=2 (see Benenti22) the compatibility condition(8) reduces toK d V=g d U or

dsK̂ d Vd=0, where the(1,1)-tensorK̂ is given byK̂ =Kg−1. We also note that the vanishing of the
Poisson bracket(6) and the assumed form of the first integralF (5) imply the following additional
conditions:

]iU = 0, Ki1i2¯im]i1
V = 0.

Indeed, the right-hand side(RHS) of (5) does not have the terms which are polynomials ofp of
degrees less thanm.

In view of linear properties of the Schouten bracket the sets of Killing tensors of the same
valence form vector spaces insM ,gd. Let KpsMd denote the vector space of Killing tensors of
valencepù1 defined insM ,gd. Assume also dimM =n. Then if sM ,gd is a pseudo-Riemannian
space of constant curvature, the dimensiond of the corresponding vector spaceKpsMd for a given
pù1 is determined by theDelong–Takeuchi–Thompson (DTT) formula,34–36

d = dim KpsMd =
1

n
Sn + p

p + 1
DSn + p − 1

p
D, p ù 1. s9d

That being the case, a Killing tensor of valencepù1 defined in a pseudo-Riemannian space
sM ,gd of constant curvature can be viewed as an algebraic object, or, an element ofKpsMd. Note
the vector spaceKpsMd for a fixed pù1 is determined byd arbitrary parameterssa1,… ,add,
whered=dim KpsMd is given by(9). This approach to the study of Killing tensors introduced in
Ref. 15 differs significantly from the more conventional approach based on the property that
Killing tensors defined in pseudo-Riemannian spaces of constant curvature are sums of symme-
trized tensor products of Killing vectors(see, for example, Ref. 36). Moreover, the idea leads to a
natural link between the study of vector spaces of Killing tensors and the classical theory of
invariants of vector spaces of homogeneous polynomials, which has become in the last decade a
growth industry once again(see Olver39 and the references therein). Thus, it has been shown in a
series of recent papers11,16,10,12–15that one can utilize the basic ideas of classical invariant theory
in the study of Killing tensors defined in pseudo-Riemannian spaces of constant curvature. The
concept of aninvariant of KpsMd was introduced in Ref. 16 in the study of nontrivial Killing
tensors of the vector spaceK2sR2d generating orthogonal coordinate webs in the Euclidean plane.
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A. Invariants

It has been shown that one can determine the action of the isometry groupIsMd in the
d-dimensional spaceS.Rd defined by the parametersa1,… ,ad. In this view, the action is
induced by the corresponding action ofIsMd in KpsMd, which, in turn, is induced by the action of
IsMd in M. More specifically, it induces the corresponding transformation laws for the parameters
sa1,… ,add given by

ã1 = ã1sa1,…,ad,g1,…,grd,

ã2 = ã2sa1,…,ad,g1,…,grd,

s10d
]

ãd = ãdsa1,…,ad,g1,…,grd,

where g1,… ,gr are local coordinates onIsMd that parametrize the group andr =dim IsMd
= 1

2nsn+1d. The formulas(10) can be obtained in each case by making use of the standard
transformation rules for tensor components. We note that the action ofIsMd can be considered in
the spacesM and S concurrently, provided there is an isomorphism between the corresponding
group actions(see below).

Definition 2.2: LetsM ,gd be a pseudo-Riemannian manifold of constant curvature. For a fixed
pù1 consider the corresponding spaceKpsMd of Killing tensors of valence p defined insM ,gd. A
smooth functionI :S→R defined in the space of functions on the parameter spaceS is said to be
an IsMd invariant of the vector spaceKpsMd iff it satisfies the condition

I = Fsa1,…,add = Fsã1,…,ãdd s11d

under the transformation laws (10) induced by the isometry group IsMd.
The main problem of invariant theory is to describe the whole space of invariants(covariants,

joint invariants) for a given vector space under the action of a group. To solve this problem one
has to find a set offundamental invariants (covariants, joint invariants)with the property that any
other invariant(covariant, joint invariant) is a (analytic) function of the fundamental invariants
(covariants, joint invariants). The fundamental theorem on invariants of a regular Lie group
action39 determines the number of fundamental invariants required to define the whole of the space
of IsMd invariants.

Theorem 2.1: Let G be a Lie group acting regularly on an m-dimensional manifold X with
s-dimensional orbits. Then, in a neighborhood N of each point x0PX, there exist m−s functionally
independent G invariantsD1,… ,Dm−s. Any other G-invariant I defined near x0 can be locally
uniquely expressed as an analytic function of the fundamental invariants throughI
=FsD1,… ,Dm−sd.

Hence, if we assume that the groupIsMd ,dim IsMd=r = 1
2nsn+1d acts in a subspaceSr of the

parameter spaceS defined by the correspondingKpsMd , pù1 regularly withr-dimensional or-
bits, then, according to Theorem 2.1, the number of fundamental invariants required to describe
the whole space ofIsMd invariants ofKpsMd is d−r, whered is given by(9) (notedù r). This has
been shown to be the case for the vector spacesK2sR2d,16 K2sR1

2d,12 K3sR2d,10 andK2sR3d,7 where
R2,R1

2, andR3 denote the Euclidean, Minkowski planes and the Euclidean space, respectively. The
dimension of the orbits of the isometry groupIsMd acting in S is not always the same as the
dimension of the group. For example, this is the case for the vector spaceK1sR3d.11 To determine
the dimension of the orbits one can use the infinitesimal generators of the groupIsMd in S.

In what follows we use the approach introduced in Ref. 15. LetX1,… ,X r PXsMd be the
infinitesimal generators(Killing vector fields) of the Lie group IsMd acting on M. Note
SpanhX1,… ,X rj=K1sMd= isMd, whereisMd is the Lie algebra of the Lie groupIsMd. For a fixed
pù1, consider the corresponding vector spaceKpsMd. To determine the action ofIsMd in the
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spaceS, we find first the infinitesimal generators ofIsMd in S. Consider DiffS, it defines the
corresponding space DiffKpsMd, whose elements are determined by the elements of DiffS in an
obvious way. LetK 0PDiff KpsMd. Note K 0 is determined byd parametersai

0sa1,… ,add , i
=1,… ,d, which are functions ofa1,… ,ad—the parameters ofS. Define now a map
p :Diff KpsMd→XsSd, given by

K 0 → o
i=1

d

ai
0sa1,…,add

]

] ai
. s12d

To specify the action ofIsMd in S, we must find the counterparts of the generatorsX1,… ,X r in
XsSd. Consider the compositionp +L, wherep is defined by(12) and L is the Lie derivative
operator. LetK be the general Killing tensor ofKpsMd, in other wordsK is the general solution
to the Killing tensor equation(2). Note, for p=2 we haveK =Spanhg,K 1,… ,K d−1j, where
hg,K 1,… ,K d−1j is a basis of the vector spaceK2sMd andg is the metric ofsM ,gd. Next, define

V i = pLX i
K , i = 1,…,r . s13d

The composition mapp +L : isMd→XsSd maps the generatorsX1,… ,X r to XsSd.
Conjecture 2.1 (Ref. 10): Suppose the generatorsX1,… ,X r of isMd satisfy the following

commutator relations:

fX i,X jg = cij
kXk, i, j ,k = 1,…,r , s14d

where cij
k , i , j ,k=1,… ,r are the structural constants. Then the corresponding vector fieldsV i

PXsSd, defined by (13) satisfy the same commutator relations,

fV i,V jg = cij
kVk, i, j ,k = 1,…,r . s15d

Therefore the map F* ªp +L : isMd→ iSsMd is a Lie algebra isomorphism, where iSsMd is the Lie
algebra generated byV1,… ,V r.

We emphasize that the technique of the Lie derivative deformations used here is a very
powerful tool. It was used before, for example, in Ref. 37 to generate compatible Poisson bivec-
tors in the theory of bi-Hamiltonian systems. The idea introduced in Ref. 37 was utilized in Ref.
38 and applied to a different class of integrable systems. The validity of the formula(15) can be
confirmed directly on a case by case basis, provided that the general form of a Killing tensor
K pPKpsMd is available. The proof of the general statement of Conjecture 2.1 will be published
elsewhere.8

Remark 2.2:Alternatively, the generators(13) can be obtained from the formulas for the
action of the group(10) in the usual way taking into account that a Lie algebra is the tangent space
at the unity of the corresponding Lie group. We note, however, that in this way the formulas(10)
are not easy to derive in general.

In view of the isomorphism exhibited in the conjecture and the fact that invariance of a
function under an entire Lie group is equivalent to the infinitesimal invariance under the infini-
tesimal generators of the corresponding Lie algebra one can determine a set of fundamental
invariants by solving the system of PDEs

V isFd = 0, i = 1,…,r s16d

for an analytic functionF :S→R, where the vector fieldsV i , i =1,… ,r are the generators defined
by (13). As is specified by Theorem 2.1, the general solution to the system(16) is an analytic
function F of the fundamental invariants. The number of fundamental invariants isd−s, whered
is specified by the DTT formula(9) ands is the dimension of the orbits ofIsMd acting regularly
in the parameter spaceS. To determines and the subspaces ofS where the isometry group acts
with orbits of the same dimension, one employs the result of the following proposition.39

J. Math. Phys., Vol. 45, No. 11, November 2004 Covariants and joint invariants of Killing tensors 4145

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:29:44



Proposition 2.1: Let a Lie group G act on X, g is the corresponding Lie algebra and let x
PX. The vector space Sux=SpanhV isxd uVi Pgj spanned by all vector fields determined by the
infinitesimal generators at x coincides with the tangent space to the orbitOx of G that passes
through x, so Sux=TOxux. In particular, the dimension ofOx equals the dimension of Sux. Moreover,
the isotropy subgroup Gx,G has dimensiondim G−dim Ox=r −s.

Example 2.2:Consider the action of the isometry groupIsR1
2d on the vector spaceK2sR1

2d.
More information about the geometry of Minkowski planeR1

2 can be found in the monograph by
Thompson.40 The general form of the elements ofK2sR1

2d in terms of the standard pseudo-
Cartesian coordinatesst ,xd is given by

K = sa1 + 2a4x + a6x
2d

]

] t
(

]

] t
+ sa3 + a4t + a5x + a6txd

]

] t
(

]

] x
+ sa2 + 2a5t + a6t

2d
]

] x
(

]

] x
.

s17d

The isometry groupIsR1
2d acts in the Minkowski planeR1

2 parametrized byst ,xd as follows:

S t̃

x̃
D = Scoshf sinhf

sinhf coshf
DS t

x
D + Sa

b
D , s18d

wheref ,a,bPR are local coordinates that parametrize the groupIsR1
2d. The generators of the Lie

algebraisR1
2d of the isometry group with respect to the coordinatesst ,xd take the following form:

T =
]

] t
, X =

]

] x
, H = x

]

] t
+ t

]

] x
s19d

corresponding tot andx translations and(hyperbolic) rotation, given with respect to the standard
pseudo-Cartesian coordinatesst ,xd. Note the generators(19) of the Lie algebraisR1

2d enjoy the
following commutator relations:

fT,Xg = 0, fT,Hg = X, fX,Hg = T . s20d

We use the formula(18) and the transformation laws for the components of(2, 0) tensors

K̃ijsỹ1,ỹ2,ã1,…,ã6d = Kk,sy1,y2,a1,…,a6d
] ỹi

] yk

] ỹj

] y, , i, j ,k,, = 1,2, s21d

where the tensor componentsKij are given by(17), y1= t ,y2=x. In view of (17), (18), and(21) the
transformation laws(10) for the parametersai , i =1,… ,6 take in this case the following form(see
also Refs. 23 and 12),

ã1 = a1 cosh2 f + 2a3 coshf sinhf + a2 sinh2 f + a6b
2 − 2sa4 coshf + a5 sinhfdb,

ã2 = a1 sinh2 f + 2a3 coshf sinhf + a2 cosh2 f + a6a
2 − 2sa5 coshf + a4 sinhfda,

ã3 = a3scosh2 f + sinh2 fd + sa1 + a2dcoshf sinhf − saa4 + ba5dcoshf

− saa5 + ba4dsinhf + a6ab,

s22d
ã4 = a4 coshf + a5 sinhf − a6b,

ã5 = a4 sinhf + a5 coshf − a6a,

ã6 = a6.

We note that the corresponding transformation formulas for the parameters obtained in Ref. 12
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were derived forcovariantKilling tensors. Accordingly, they differ somewhat from(22) presented
above[compare with(7.6) in Ref. 12]. According to Proposition 2.1, in order to determine the
subspaces ofS where the orbits have the same dimensions, one must check the subspaces ofS
where the system(16) retains its rank. In many cases the system of PDEs(16) can be solved by
the method of characteristics. The determination of fundamental invariants by solving(16) is the
key idea used in Ref. 15 to adapt themethod of infinitesimal generatorsto the problem of finding
fundamental invariants of Killing tensors under the action of the isometry group. When the
method of characteristic fails, one can employ themethod of undetermined coefficientsto find a set
of fundamental invariants.11,7 Alternatively, a set of fundamental invariants can be determined by
using themethod of moving frames(see Sec. III for more details). To determine the space ofIsR1

2d
invariants, we employ the procedure described above and derive the corresponding infinitesimal
generatorsV i , i =1, 2, 3 by the formula(13),

V1 = a4
]

] a3
+ 2a5

]

] a2
+ a6

]

] a5
,

V2 = a5
]

] a3
+ 2a4

]

] a1
+ a6

]

] a4
, s23d

V3 = − 2a3
]

] a1
− a5

]

] a4
− sa1 + a2d

]

] a3
− 2a3

]

] a2
− a4

]

] a5
,

and then solve by the method of characteristic the corresponding system of PDEs(16) with respect
to (23). Note the vector fields −V i , i =1, 2, 3 satisfy the same commutator relations as(19) [see
(20)], which confirms Conjecture 2.1. Ultimately, this leads to the following theorem.

Theorem 2.2: Any algebraic IsR1
2d-invariant I of the subspace of the parameter spaceS of

K2sR1
2d defined by the condition that the vector fields (23) are linearly independent can be (lo-

cally) uniquely expressed as an analytic function,

I = FsI1,I2,I3d,

where the fundamental invariantsIi , i =1, 2, 3are given by

I1 = „a4
2 + a5

2 − a6sa1 + a2d…2 − 4sa3a6 − a4a5d2,

I2 = a6sa1 − a2d − a4
2 + a5

2, s24d

I3 = a6.

The fact thatI3=a6 is a fundamentalIsR1
2d invariant of the vector spaceK2sR1

2d trivially follows
from the transformation formulas(22). The fundamentalIsR1

2d-invariantI1 was derived in Refs.
12 and 15 in the study of the five-dimensional subspace of nontrivial Killing tensors ofK2sR1

2d. As
expected, in this case by Theorem 2.1, we have obtained 6sdimension of the spaced
−3 sdimension of the orbitsd=3 fundamentalIsR1

2d invariants of the vector spaceK2sR1
2d.

B. Covariants

Consider now the action of the isometry groupIsMd on the product spaceKpsMd3M , p
ù1. As above it induces the transformation laws on theextended parameter spaceS3M, where
S is the parameter space of the vector spaceKpsMd,
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ã1 = ã1sa1,…,ad,g1,…,grd,

ã2 = ã2sa1,…,ad,g1,…,grd, … ,

ãd = ãdsa1,…,ad,g1,…,grd,

s25d
x̃1 = x̃1sx1,…,xn,g1,…,grd,

x̃2 = x̃2sx1,…,xn,g1,…,grd, … ,

x̃n = x̃nsx1,…,xn,g1,…,grd,

where as beforea1,… ,ad are the parameters ofKpsMd that defineS ,g1,… ,gr , r = 1
2nsn+1d are

local parameters parametrizing the groupIsMd andx1,… ,xn are local coordinates on the manifold
M.

Definition 2.3: An IsMd covariant of the vector spaceKpsMd pù1 is a function C:S3M
→R satisfying the condition

C = Fsa1,…,ad,x1,…,xnd = Fsã1,…,ãd,x̃1…,x̃nd s26d

under the transformation laws (25) induced by the isometry group IsMd, whereS is the parameter
space ofKpsMd.

Conjecture 2.1 entails the following corollary.
Corollary 2.1: Consider the product vector spaceKpsMd3M , pù1. Define the vector fields

V i8 ª V i + X i, i = 1,…,r , s27d

where V i , i =1,… ,r are the infinitesimal generators of the Lie algebra isMd in the parameter
spaceS of the vector spaceKpsMd obtained via (13) andX i , i =1,… ,r are the generators of isMd.
Then the vector fieldsV18 ,… ,V r8 enjoy the same commutator relations as the generatorsX1,… ,X r

of isMd in XsMd:

fV i8,V j8g = cij
kVk8, i, j ,k = 1,…,r , s28d

where the structural constants cij
k are as in (14).

Proof: Straightforward. h

Therefore, in view of the above,IsMd covariants of a vector spaceKpsMd can be obtained by
solving the corresponding system of PDEs generated by the vector fields(27):

V i8sFd = 0, i = 1,…,r . s29d

Alternatively, one can employ the method of moving frames. To demonstrate how it works in the
framework of ITKT we shall employ the method in Sec. III to compute the covariants of the vector
spacesK2sR2d andK2sR1

2d.

C. Joint invariants

Consider now the action of the isometry groupIsMd on the product spaceK,sMd3KmsMd
3 ¯ 3KqsMd , , ,m,… ,qù1. Let a1,… ,ad,b1,… ,be,… ,g1,… ,g f be the parameters of the
vector spacesK,sMd ,KmsMd ,… ,KqsMd, respectively, whered,e,… , f are the corresponding di-
mensions determined by(9). Then the action of the isometry groupIsMd induces the correspond-
ing transformation laws for the parametersa1,… ,ad,b1,… ,be,… ,g1,… ,g f:
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ã1 = ã1sa1,…,ad,g1,…,grd,

ã2 = ã2sa1,…,ad,g1,…,grd, … ,

ãd = ãdsa1,…,ad,g1,…,grd, … ,

b̃1 = b̃1sb1,…,be,g1,…,grd, … ,

b̃2 = b̃2sb1,…,be,g1,…,grd, … , s30d

b̃e = b̃esb1,…,be,g1,…,grd, … ,

g̃1 = g̃1sg1,…,g f,g1,…,grd,

g̃2 = g̃2sg1,…,g f,g1,…,grd, … ,

g̃ f = g̃ fsg1,…,g f,g1,…,grd,

where as beforeg1,… ,gr are local coordinates onIsMd that parametrize the group andr
=dim IsMd= 1

2nsn+1d. This observation leads us to introduce the concept of ajoint IsMd-invariant.
Definition 2.4: A joint IsMd invariantof the product spaceK,sMd3KmsMd3 ¯ 3KqsMd, is

a function J:S,3Sm3 ¯ 3Sq\R satisfying the condition

J = Fsa1,…,ad,b1…,be,…,g1…,g fd

=Fsã1,…,ãd,b̃1…,b̃e,…,g̃1…,g̃ fd s31d

under the transformation laws (30) induced by the isometry group IsMd.
In this case again Conjecture 2.1 entails the following corollary.
Corollary 2.2: Consider the product vector space,

K = K,sMd 3 KmsMd 3 ¯ 3 KqsMd, s32d

where, ,m,… ,qù1. Define the vector fields

Ṽ i ª V i
, + V i

m + ¯ + V i
q, i = 1,…,r , s33d

wherehV i
,j ,hV i

mj ,… ,hV i
qj , i =1,… ,r are the sets of infinitesimal generators of the Lie algebra

isMd in the parameter spacesS, ,Sm,… ,Sq of the vector spacesK,sMd ,KqsMd ,… ,KnsMd, re-

spectively, obtained via (13). Then the vector fieldsṼ1,… ,Ṽ r enjoy the same commutator rela-
tions as the generatorsX1… ,X r of isMd in XsMd:

fṼ i,Ṽ jg = cij
k Ṽk, i, j ,k = 1,…,r , s34d

where the structural constants cij
k are as in (14).

Proof: Straightforward. h

Example 2.3:Consider the product vector spaceK1sR2d3K2sR2d. The general form of the
elements ofK1sR2d (Killing vectors) with respect to the Cartesian coordinates is given by
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K 1 = sa1 + a3yd
]

] x
+ sa2 − a3xd

]

] y
, s35d

while the (contravariant) elements ofK2sR2d assume the following general form with respect to
the same coordinate system:

K 2 = sb1 + 2b4y + b6y
2d

]

] x
(

]

] x
+ sb3 − b4x − b5y − b6xyd

]

] x
(

]

] y

+ sb2 + 2b5x + b6x
2d

]

] y
(

]

] y
, s36d

where( denotes the symmetric tensor product. The formulas(35) and (36) put in evidence that
the corresponding parameter spacesS1 andS2 are determined by the three parametersai , i =1,…,3
and the six parametersbi , i =1,…,6, respectively. LetIsR2d be the proper Euclidean group that
consists of the orientation-preserving isometries ofR2 (rigid motions). Its action inR2 can be
described as the semidirect product of rotations and translations. In view of its standard param-
etrization, we have the transformation of the Cartesian coordinatesx=sx,yd,

x̃ = Rux + a, Ru = Fcosu − sinu

sinu cosu
G P SOs2d, a = sa,bd P R2. s37d

Note, the generators ofisR2d=K1sR2d, which is the Lie algebra of the Lie groupIsR2d, are given
with respect to the Cartesian coordinates by

X =
]

] x
, Y =

]

] y
, R = x

]

] y
− y

]

] x
, s38d

whose flows are translations and a rotation, respectively. Employing the construction(13), we
derive two triples of the vector fields representing the generators(38) in XsS1d

V1
1 = − a3

]

] a2
,

V2
1 = a3

]

] a1
, s39d

V3
1 = a1

]

] a2
− a2

]

] a1
,

andXsS2d,

V1
2 = − 2b5

]

] b2
− b4

]

] b3
+ b6

]

] b5
,

V2
2 = 2b4

]

] b1
− b5

]

] b3
+ b6

]

] b6
, s40d

V3
2 = − 2b3S ]

] b1
−

]

] b2
D + sb1 − b2d

]

] b3
+ b5

]

] b4
− b4

]

] b5
,

respectively. We note that in view of Conjecture 2.1 both the vector fields(39) and the vector
fields (40) satisfy the same commutator relations as the generators ofisR2d (38). By Corollary 2.2
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this fact entails immediately that the vector fieldshṼ ij , i =1, 2, 3 defined by

Ṽ i ª V i
1 + V i

2, i = 1,2,3 s41d

also enjoy the same commutator relations. This property can be also verified directly. Therefore
we have determined the action ofIsR2d in the product spaceS13S2. To determine the dimension
of the orbits of the group we use the result of Propositon 2.1. Thus, the orbits of the isometry
group IsR2d acting in S13S2 are three dimensional in the subspaceS3,S13S2, where the
generators(41) are linearly independent. According to Theorem 2.1, the number of fundamental
invariants inS3 is 9 sdimension ofS13S2d−3 sdimension of the orbits inS3d=6. Some of these
fundamental invariants may be the fundamental invariants of the group action in the vector spaces
K1sR2d andK2sR2d. Indeed, it is instructive at this point to review the transformations imposed on
the nine parameterssa1,a2,a3,b1,b2,b3,b4,b5,b6d of the product spaceS13S2 by the group
action:

ã1 = a1 cosu − a2 sinu − ba3,

ã2 = a1 sinu + a2 cosu + aa3,

ã3 = a3,

b̃1 = b1 cos2 u − 2b3 cosu sinu + b2 sin2 u − 2bb4 cosu − 2bb5 sinu + b6b
2,

b̃2 = b1 sin2 u − 2b3 cosu sinu + b2 cos2 u − 2ab5 cosu + 2ab4 sinu + b6a
2, s42d

b̃3 = sb1 − b2dsinu cosu + b3scos2 u − sin2 ud + sab4 + bb5dcosu + sab5 − bb4dsinu − b6ab,

b̃4 = b4 cosu + b5 sinu − b6b,

b̃5 = b5 cosu − b4 sinu − b6a,

b̃6 = b6,

wheresu ,a,bd given by (37) parametrize the isometry groupIsR2d. Hence, the dimension of the
orbits in this subspace coincides with the dimension of the group. We also observe thata3 andb6

are fundamentalIsR2d invariants of the group action inS13S2.
To determine the remaining four fundamental invariants we use the method of characteristics

to solve the system of linear PDEs,

Ṽ isFd = 0, i = 1,2,3, s43d

whereF :S13S2→R and the vector fieldsṼ i , i =1, 2, 3 are given by(41). Having solved the
system of PDEs(43), we have therefore proven the following result.

Theorem 2.3: Any algebraic joint IsR2d-invariant I defined over the subspace ofS13S2

where the vector fields (41) are linearly independent can be locally uniquely expressed as an
analytic function,

I = FsI1,I2,I3,I4,J1,J2d,

where the fundamental joint IsR2d-invariantsIi ,J j , i =1,…, 4, j =1, 2 are given by
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I1 = fb6sb1 − b2d + b5
2 − b4

2g2 + 4sb3b6 + b4b5d2,

I2 = b6sb1 + b2d − b4
2 − b5

2,

I3 = b6,

s44d
I4 = a3,

J1 = sb6a2 + b5a3d2 + sb6a1 − b4a3d2,

J2 = sb6a2 + a3a5dsb6b2 − b5
2d + 2sb3b6 + b4b5dsb6a1 − b4a3d.

The fundamental jointIsR2d invariantsIi , i =1, 2, 3 are the fundamentalIsR2d invariants of the
vector spaceK2sR2d (I1 was derived in Ref. 15), while I4 is the fundamentalIsR2d invariant of the
vector spaceK1sR2d. Note the fundamentalIsR2d invariantsJ1 and J2 are “truly” joint IsR2d
invariants of the vector spacesK1sR2d andK2sR2d. Therefore we have introduced an analogue of
the concept of a joint invariant in the classical invariant theory of homogeneous polynomials(refer
to Ref. 41 for more details). The problem of the determination of fundamental invariants, solved
in this section for a particular(product) vector space of Killing tensors(Theorem 2.3) by the
method of infinitesimal generators, can also be solved by the purely algebraicmethod of moving
frames. This is the subject of the considerations that follow.

III. THE METHOD OF MOVING FRAMES

The method of moving frames, introduced originally by Cartan,4 is a powerful technique that
can be employed to solve a wide range of equivalence-type problems. In its original interpretation
it is based on an equivariant map from the space of submanifolds to a bundle of frames. The
simplest example of a moving frame is the Frenet frameht ,nj of a regular curvegPR2 param-
etrized by its arc length. In this case the equivariant map assigns to each point on the curvegssd
the corresponding framehtssd ,nssdj. Clearly, the moving frame alongg can be obtained from a
fixed frame via a combination of rotations and/or translations. This puts in evidence that there is
a natural isomorphism between the moving frame and the orientation-preserving isometry group
(Euclidean group) IsR2d. This is the essence of the later generalizations of the moving frame
method,28–30 where the moving frame was viewed as an equivariant map from the space of
submanifolds to the group itself. In recent works by Fels and Olver26,27the classical moving frame
method was further generalized to completely general transformation groups, including infinite-
dimensional Lie pseudogroups(see also Kogan32). Ultimately, the authors have succeeded in
bringing the theory up to the level where the bundle of frames is no longer needed. We very briefly
review the basic definitions and results of the moving frames theory in its modern formulation(for
a complete review, see Ref. 39).

Definition 3.1: Amoving frameis a smooth, G-equivariant mapr :M→G, where G is an
r-dimensional group acting smoothly on an n-dimensional underlying manifold M.

Theorem 3.1:A moving frame exists in a neighborhood of a pointxPM iff G acts freely and
regularly nearx.

To construct a moving frame, one employs Cartan’snormalization method.4

Theorem 3.2:Let G act freely and regularly on M and let K,M be a (local) cross section to
the group orbits. GivenxPM, let g=rsxd be the unique group element that mapsx to the cross
section:g·x=rsxd ·xPK. Thenr :M→G is a right moving frame.

More specifically, letx=sx1,… ,xndPM be local coordinates. Consider the explicit formulas
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for the coordinate transformations induced by the action ofG:vsg,xd=g·x. The right moving
frameg=rsxd can be constructed by making use of acoordinate cross section,

K = hx1 = c1,x2 = c2,…,xr = crj,

whereci , i =1,… ,r are some constants and solving the correspondingnormalization equations

v1sg,xd = c1, v2sg,xd = c2, …, vrsg,xd = cr , s45d

for the group G locally parametrized byg=sg1,… ,grd in terms of the local coordinates
sx1,… ,xnd. Substituting the resulting expressions forg1,… ,gr in terms of the local coordinates
sx1,…xnd into the remainingn−r formulas for the transformation rulesvsg,xd=g·x yields a
complete set of fundamental invariants for the action ofG on M.

Theorem 3.3: If g=rsxd is the moving frame solution to the normalization equations (45),
then the functions

I1sxd = vr+1srsxd,xd,…,In−rsxd = vnsrsxd,xd s46d

form a complete system of functionally independent fundamental G invariants.
Let us now illustrate the procedure and demonstrate how the method of moving frames can be

effectively applied to the problem of the determination of the fundamental invariants of the
isometry group in the invariant theory of Killing tensors.

Example 3.1:Consider the extended vector spaceK2sR2d3R2. The corresponding extended
parameter spaceS3R2 is determined by the parametersb1,… ,b6,x,y, wherebi , i =1,… ,6 are
as in (36) and x,y are the standard Cartesian coordinates. The isometry groupIsR2d acting on
K2sR2d3R2 induces the corresponding transformations on the extended parameter spaceS3R2

(25), which in this case take the following form:

b̃1 = b1 cos2 u − 2b3 cosu sinu + b2 sin2 u − 2bb4 cosu − 2bb5 sinu + b6b
2,

b̃2 = b1 sin2 u − 2b3 cosu sinu + b2 cos2 u − 2ab5 cosu + 2ab4 sinu + b6a
2,

b̃3 = sb1 − b2dsinu cosu + b3scos2 u − sin2 ud + sab4 + bb5dcosu + sab5 − bb4dsinu − b6ab,

b̃4 = b4 cosu + b5 sinu − b6b,

s47d
b̃5 = b5 cosu − b4 sinu − b6a,

b̃6 = b6,

x̃ = x cosu − y cosu + a,

ỹ = x sinu + y cosu + b.

Next, we construct a moving frame by using the cross section(for example),

K = hb3 = b4 = b5 = 0j, s48d

which yields the corresponding normalization equations,
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0 = sb1 − b2dsinu cosu + b3scos2 u − sin2 ud + sab4 + bb5dcosu + sab5 − bb4dsinu − b6ab,

0 = b4 cosu + b5 sinu − b6b, s49d

0 = b5 cosu − b4 sinu − b6a.

Solving (49) for the parametersa,b, andu, we obtain the moving frame mapr :S3R2→ IsR2d
determined by the following formulas:

a =
b5 cosu − b4 sinu

b6
,

b =
b4 cosu + b5 sinu

b6
, s50d

u =
1

2
arctan

2sb3b6 + b4b5d
b6sb1 − b2d − b4

2 + b5
2 .

It was observed in Ref. 11 that the method of moving frames could be used to solve the
problem of the determination of fundamental invariants of vector spaces of Killing tensors under
the action of the isometry group. Indeed, having derived the moving frame map(50) and the
transformation laws(47), we can now make use of the result of Theorem 3.3 and determine a set
of fundamentalIsR2d covariants ofK2sR2d. Substituting(50) into (47), by Theorem 3.3, we arrive
at the following result.

Theorem 3.4: Consider the vector spaceK2sR2d. Any algebraic IsR2d-covariant C defined
over the subspace ofS3R2 where the isometry group IsR2d acts freely and regularly with three-
dimensional orbits can be locally uniquely expressed as an analytic function,

C = FsI1,I2,I3,C1,C2d,

where the fundamental IsR2d-covariantsIi ,C j , i =1, 2, 3, j =1, 2 are given by

I1 = fb6sb1 − b2d + b5
2 − b4

2g2 + 4sb3b6 + b4b5d2,

I2 = b6sb1 + b2d − b4
2 − b5

2,

I3 = b6, s51d

C1 = sb6x + b5d2 + sb6y + b4d2,

C2 = fsb6x + b5d2 − sb6y + b4d2g„b5
2 − b4

2 + b6sb1 − b2d… + 4sb6x + b5dsb6y + b4dsb6b3 + b4b5d,

whereS is the parameter space ofK2sR2d.
We immediately observe that the functionsI1,I2,I3 constitute in fact a set of fundamental

IsR2d invariants of the vector spaceK2sR2d, while the functionsC1 andC2 are “truly” fundamental
IsR2d covariants of the vector spaceK2sR2d. We also observe that the fundamental covariantC1

can be expressed as
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C1 = I3 tr K̂ − I2,

where the(1, 1)-tensorK̂ is given byK̂ =Kg−1. This observation immediately suggests that trK̂ is

a fundamentalIsR2d covariant ofK2sR2d. We note, however, that the function detK̂ is not a
fundamentalIsR2d covariant ofK2sR2d.

Consider a similar example.
Example 3.2:Let K2sR1

2d3R1
2 be the extended vector space ofK2sR1

2d. The action of the
isometry groupIsR1

2d in the Minkowski planeR1
2 is given by(18), while the corresponding action

in the parameter spaceS of K2sR1
2d is given by(22). The transformation laws(22) combined with

the transformations(18) yield an analogue of(47). Next, we proceed as in Example 3.1. The
resulting moving frame mapr :S3R1

2→ IsR1
2d is given by

a =
a4 sinhf + a5 coshf

a6
,

b =
a4 coshf + a5 sinhf

a6
, s52d

f =
1

2
arctanh

2sa3a6 − a4a5d
a4

2 + a5
2 − a6sa1 + a2d

.

Now we can continue as in the previous example to determine a set of fundamentalIsR1
2d

covariants of the vector spaceK2sR1
2d.

Theorem 3.5: Consider the vector spaceK2sR1
2d. Any algebraic IsR1

2d covariant C defined
over the subspace ofS3R1

2 where the isometry group IsR1
2d acts freely and regularly with three-

dimensional orbits can be locally uniquely expressed as an analytic function

C = FsI1,I2,I3,C1,C2d,

where the fundamental IsR1
2d covariantsIi ,C j , i =1, 2, 3, j =1, 2 are given by

I1 = fa4
2 + a5

2 − a6sa1 + a2dg2 − 4sa3a6 − a4a5d2,

I2 = sa1 − a2da6 − a4
2 + a5

2,

I3 = a6, s53d

C1 = sa6t + a5d2 − sa6x + a4d2,

C2 = fsa6t + a5d2 + sa6x + a4d2g„a4
2 + a5

2 − a6sa1 + a2d… + 4sa6t + a5dsa6x + a4dsa3a6 − a4a5d,

whereS is the parameter space ofK2sR1
2d.

The conclusion is similar to that following Theorem 3.4. Thus, we observe again that the
functionsI1,I2,I3 constitute in fact a set of fundamentalIsR1

2d invariants of the vector space
K2sR1

2d, while the functionsC1 andC2 are “truly” fundamentalIsR1
2d covariants of the vector space

K2sR1
2d.

IV. EQUIVALENCE CLASSES OF VECTOR SPACES K2
„R2

… AND K2
„R1

2
…

In this section we use the results obtained in the preceding section to solve the problems of
equivalence for the vector subspaces ofnontrivial Killing tensors ofK2sR2d and K2sR1

2d. As is
well-known22 the elements of these subspaces generateorthogonal coordinate websin R2 andR1

2,
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respectively, provided the Killing tensors in question have distinct(and real) eigenvalues. The
problem of equivalence in this case is the problem of classification of orthogonal coordinate webs.
On the other hand, from the invariant theory point of view the problem of equivalence and the
related canonical form problem are intimately related to the problem of the determination of
fundamental invariants(covariants, joint invariants).

A. The vector space K2
„R2

…

Let Knt
2 sR2d,K2sR2d be the vector subspace of nontrivial Killing two tensors defined in the

Euclidean planeR2. “Nontrivial” in this context means that none of the elements ofKnt
2 sR2d is a

multiple of the metric ofR2. Clearly dimKnt
2 sR2d=5. It has been established in Refs. 13,14,16 that

the functionsI1 andI3 given by(51) are the fundamentalIsR2d invariants ofKnt
2 sR2d. Moreover,

they can be used to solve the problem of classification of orthogonal coordinate webs in the
Euclidean plane. The fundamentalIsR2d invariants divide the vector subspaceKnt

2 sR2d into four
equivalence classes. The elements within each equivalence class generate a particular orthogonal
web(see Ref. 13 for more details). These results are summarized in Table I. Clearly, any(analytic)
IsR2d covariant of the vector subspaceKnt

2 sR2d takes the following general form:

C = FsI1,I3,C1,C2d,

where the functionsI1,I3,C1, andC2 are given by(51).
The same classification can be done by means of the fundamentalIsR2d covariantsC1 andC2

given by (51). The results are summarized in Table II.
Recall that in most of the problems studied so far within ITKT the associatedcanonical form

problemhas been solved for vector spaces of Killing tensors of valence two via transforming the
corresponding Killing tensors in orthogonal coordinates back to the original(pseudo-)Cartesian
coordinates by using the standard transformations from the orthogonal coordinates to(pseudo-)
Cartesian coordinates(see, for example, Refs. 7,12,13,16). In the problems involving Killing
tensors of valence two(with distinct eigenvalues and integrable eigenvectors) the equivalence
classes(ECs) of the corresponding vector spaces are associated with the corresponding orthogonal
coordinate webs and so such an approach seems to be natural.

However, one may wish to solve the canonical form problem for vector spaces of Killing
tensors of valences higher than two, in which case a connection with the theory of orthogonal

TABLE I. Invariant classification of the orthogonal coordinate webs inR2 by means ofIsR2d invariants.

Equivalence class I1 I3 Orthogonal web

EC1 0 0 Cartesian

EC2 0 Þ0 Polar

EC3 Þ0 0 Parabolic

EC4 Þ0 Þ0 Elliptic–hyperbolic

TABLE II. Invariant classification of the orthogonal coordinate webs inR2 by means ofIsR2d covariants.

Equivalence class C1 C2 Orthogonal web

EC1 0 0 Cartesian

EC2 Positive–definite 0 Polar

EC3 1 1 Parabolic

EC4 Positive–definite Indefinite Elliptic–hyperbolic
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coordinate webs is not evident. In such a case, another, more general approach can be adapted
from CIT39 to the study of Killing tensors. Indeed, recall first the following definitions and
results.39

Definition 4.1: Two submanifolds N,P,X are said to intersecttransversallyat a common
point x0PNù P if they have no nonzero tangent vectors in common: TNux0

ùTPux0
=h0j.

Definition 4.2: Let G be a Lie transformation group that acts regularly on an m-dimensional
manifold X with s-dimensional orbits. A (local)cross sectionis an sm−sd-dimensional submani-
fold K,X such that K intersects each orbit transversally and at most once.

Proposition 4.1: If a Lie group G acts regularly on a manifold X, then one can construct a
local cross section K passing through any point xPX.

One can define acoordinate cross section K, in which case the firsts coordinates themselves
define a coordinate cross section39

K = hx1 = c1,…,xs = csj s54d

iff

] sD1,…,Dm−sd
] sxs+1,…,xmd

Þ 0, s55d

whereD1,… ,Dm−s are the fundamental invariants of the group action. Then, in view of the above,
we can obtain canonical forms of the equivalence classes set by the fundamental invariants as
intersections of the coordinate cross sections and the level sets(invariant submanifolds) defined by
the fundamental group invariants. To illustrate this simple procedure consider the following ex-
ample.

Example 4.1:ConsiderKnt
2 sR2d,K2sR2d. Without loss of generality we can assume that the

elements of the vector subspaceKnt
2 sR2d enjoy the following general form:

K nt
2 = sb18 + 2b4y + b6y

2d
]

] x
(

]

] x
+ sb3 − b4x − b5y − b6xyd

]

] x
(

]

] y
+ s2b5x + b6x

2d
]

] y
(

]

] y
,

s56d

whereb18=b1−b2 and the parametersbi , i =1,… ,6 are as in(36). The four equivalence classes
EC1–4 ofKnt

2 sR2d have been classified in Table I and Table II. The Killing tensors within each
equivalence class share the same geometrical properties, that is they define the same orthogonal
coordinate webs equivalent up to the action of the isometry groupIsR2d. This fact can be used to
select appropriate canonical forms for each of the four equivalence classes. Thus, one can consider
the Killing tensors in terms of the orthogonal coordinatessu,vd (see Ref. 16) and then use the
standard coordinate transformations from the orthogonalsu,vd coordinates to the Cartesian coor-
dinatessx,yd in order to determine the corresponding canonical forms for EC1–4. Alternatively,
one can proceed by using the coordinate cross sections. The procedure is outlined below.

EC1: In this case the parameter spaceS8 defined by the five parameters of(56) can be
intersected by the coordinate cross section,

K1 = hb3 = b4 = b5 = 0j. s57d

Taking into account(56) and the corresponding formulas forI1 andI3 given by(51), we conclude
that all but onesb18d parameters vanish in this case. The parameterb18 is arbitrary, without loss of
generality we can setb18=1, which leads to the canonical form

K I =
]

] x
(

]

] x
. s58d

Alternatively, we could have used the coordinate cross section,
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K2 = hb18 = b4 = b5 = 0j, s59d

which would have led to the canonical form

K I8 =
]

] x
(

]

] y
. s60d

Note the canonical forms(58) and (60) are equivalent up to a rotation.
EC2: Reason as in EC1 above. Either of the coordinate cross sections(57) or (59) leads to the

canonical form

K II = y2 ]

] x
(

]

] x
− xy

]

] x
(

]

] y
+ x2 ]

] y
(

]

] y
. s61d

EC3: First, note that the conditionI1Þ0,I3=0 (see Table I) promptsb4
2+b5

2Þ0. Therefore
the coordinate cross sections that can be used in this case are

K3 = hb18 = b3 = b4 = 0j s62d

and

K4 = hb18 = b3 = b5 = 0j, s63d

which lead to the canonical forms

K III = − y
]

] x
(

]

] y
+ 2x

]

] y
(

]

] y
s64d

and

K III8 = 2y
]

] x
(

]

] x
− x

]

] x
(

]

] y
, s65d

respectively. Note the canonical forms(64) and (65) are equivalent up to a rotation.
EC4: In this case we can use either of the coordinate cross sections(57) or (59). Intersecting

the common level set defined byI1Þ0,I3Þ0 (see Table I) with (57) yields the canonical form

K IV = sb18 + y2d
]

] x
(

]

] x
− xy

]

] x
(

]

] y
+ x2 ]

] y
(

]

] y
, s66d

while with (59)—the canonical form

K IV8 = y2 ]

] x
(

]

] x
+ sb3 − xyd

]

] x
(

]

] y
+ x2 ]

] y
(

]

] y
. s67d

Note the canonical forms(66) and (67) are equivalent up to a rotation and rescaling.

B. The vector space K2
„R1

2
…

The problem of classification of the 10 orthogonal coordinate webs defined in the Minkowski
planeR1

2 was initially solved by Kalnins23 in 1975. The approach used in Ref. 23 is based on the
property that the Killing tensors defined in pseudo-Riemannian spaces of constant curvature are
the sums of symmetrized tensor products of Killing vectors. In Ref. 23 different combinations(as
symmetric tensor products) of the basic Killing vectors(19) were analyzed modulo the action of
the eight-dimensional discrete groupR of permutations of coordinates and reflections of the
signature of the Minkowski metricg=diags1,−1d given in terms of the pseudo-Cartesian coordi-
natesst ,xd (see below). A different approach was used in Rastelli,42 where the 10 orthogonal webs
were classified based on the algebraic properties of the nontrivial Killing tensors ofK2sR1

2d. More
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specifically, the author made use of the points where the eigenvalues of such Killing tensors
coincide(singular points). Finally, McLenaghanet al.12,15employed a set of the fundamentalIsR1

2d
invariants of the vector subspace of nontrivial Killing tensors ofK2sR1

2d to classify the 10 orthogo-
nal webs defined inR1

2. The problem appeared to be incommensurably more challenging than the
problem of classification of the orthogonal coordinate webs inR2.13,16 The reason is simple: In
both cases one has two fundamental invariants at one’s disposal, while the number of orthogonal
coordinate webs is four(Euclidean plane) and 10(Minkowski plane). In the latter case the prob-
lem was solved12,15by introducing the concept of aconformal IsR1

2d invariant, which was used to
generate additionaldiscrete IsR1

2d invariants. To solve the problem, the authors had to investigate
the effect of the eight-dimensional discrete groupR on the discreteIsR1

2d invariants. Unordered
pairs(as the objects preserved by the discrete group) of discrete invariants along with one of the
fundamental invariants were used to solve the problem. In what follows, we propose a simpler
solution based on the fundamentalIsR1

2d covariants obtained in the preceding section.
Let Knt

2 sR1
2d,K2sR1

2d be the vector subspace of nontrivial Killing two tensors defined in the
Minkowski planeR1

2. Here “nontrivial” has the same meaning as above. Again dimKnt
2 sR1

2d=5.
Without loss of generality we can assume that in terms of the pseudo-Cartesian coordinatesst ,xd
the general form of the elements ofKnt

2 sR1
2d is given by

K = sa18 + 2a4x + a6x
2d

]

] t
(

]

] t
+ sa3 + a4t + a5x + a6txd

]

] t
(

]

] x
+ s2a5t + a6t

2d
]

] x
(

]

] x
,

s68d

where a18=a1+a2 and the parametersai , i =1,… ,6 are as in(17). Note that in this case the
parameter spaceS8 is determined by the five parametersa18 ,a3,a4,a5, anda6. Our next obser-
vation is that by Theorem 3.5 anyIsR1

2d covariant ofKnt
2 sR1

2d enjoys the form

C = FsI1,I3,C1,C2d,

where the functionsI1,I3,C1, andC2 are given by(53). As in the case ofKnt
2 sR2d we can use

I1,I3,C1, andC2 to classify the 10 orthogonal webs. However, in view of the number of cases we
must use these functions concurrently. Before doing so, we check the effect ofR onI1,I3,C1, and
C2. Recall23,12 that the group(under composition) R=kR1,R2l consists of eight discrete transfor-
mations generated by

R1: t̃ = t, x̃ = − x sspatial reflectionsd,

R2: t̃ = x, x̃ = t spermutationd. s69d

Note the groupR [along with the isometry groupIsR1
2d] preserves the geometry of the 10 or-

thogonal webs defined in the Minkowski plane. Recall next12 thatR1 andR2 induce the following
transformations on the parametersai , i =1,… ,6 of K2sR1

2d [see(36)]:

R1: ã1 = a1, ã2 = a2, ã3 = − a3, ã4 = − a4, ã5 = a5, ã6 = a6,

R2: ã1 = a2, ã2 = a1, ã3 = a3, ã4 = a5, ã5 = a4, ã6 = a6. s70d

It follows immediately that the fundamentalIsR1
2d covariantsI1,I3,C1, andC2 remain unchanged

under the transformations(70) induced by the groupR. We conclude therefore that we can use
them in the classification of the 10 orthogonal webs. Recall that the vector subspaceKnt

2 sR1
2d can

be divided into 10 equivalence classes EC1–10 within each of which the corresponding elements
generate thesame orthogonal coordinate web(for more details see Refs. 23 and 12). We consider
next the 10canonical elementsdetermined in Ref. 12 representing each class EC1–10 by trans-
forming them to contravariant form and making them compatible with the general form(68) by
adding multiples of the metric when necessary. The latter operation does not affect the geometry
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of the coordinate webs generated by the canonical elements. We arrive at the following list:

EC1 K 1 =
]

] t
(

]

] t
, s71d

EC2 K 2 = x2 ]

] t
(

]

] t
+ tx

]

] t
(

]

] x
+ t2

]

] x
(

]

] x
, s72d

EC3 K 3 = S1

2
− xD ]

] t
(

]

] t
+ S1

4
−

1

2
t +

1

2
xD ]

] t
(

]

] x
+ t

]

] x
(

]

] x
, s73d

EC4 K 4 = x
]

] t
(

]

] x
+ 2t

]

] x
(

]

] x
, s74d

EC5 K 5 = S2k2 −
1

4
x2D ]

] t
(

]

] t
−

1

4
tx

]

] t
(

]

] x
−

1

4
t2

]

] x
(

]

] x
, s75d

EC6 K 6 = S1

4
+

1

4
x2D ]

] t
(

]

] t
+ S1

4
+

1

4
txD ]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s76d

EC7 K 7 = S−
1

2
+

1

4
x2D ]

] t
(

]

] t
+ S−

1

4
+

1

4
txD ]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s77d

EC8 K 8 =
1

4
x2 ]

] t
(

]

] t
+ S− k2 +

1

4
txD ]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s78d

EC9 K 9 = S2k2 +
1

4
x2D ]

] t
(

]

] t
+

1

4
tx

]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s79d

EC10 K 10 = S− 2k2 +
1

4
x2D ]

] t
(

]

] t
+

1

4
tx

]

] t
(

]

] x
+

1

4
t2

]

] x
(

]

] x
, s80d

where the parameterk is a IsR1
2d invariant ofKnt

2 sR1
2d. In view of Theorem 2.2(see also Theorem

3.5), it can be represented via the fundamentalIsR1
2d invariants. Indeed, the corresponding formu-

las were found in Ref. 12,

EC5, EC9, EC10: k2 =
ÎI1

I3
sI1 . 0d,

EC8: k2 =
Î− I1

I3
sI1 , 0d. s81d

Note the canonical forms(71)–(80) are compatible with the general form given by(68). Following
the procedure devised in Ref. 12, we use the canonical forms(71)–(80) to evaluate the corre-
sponding values of the fundamentalIsR1

2d covariantsI1,I3,C1,C2 and employ the results to dis-
tinguish the elements belonging to different equivalence classes EC1–10. The elements ofKnt

2 sR1
2d

must have the same values ofI1,I3,C1, and C2. We note however that these functions do not
distinguish EC1 from EC3 and EC6 from EC8. Therefore we have to derive some auxiliaryIsR1

2d
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invariants to complete the classification scheme. Indeed, consider the vector spaceK2sR1
2d under

the action of the isometry groupIsR1
2d. SinceI3 is a fundamentalIsR1

2d invariant, we can consider
the level set

SI3
= hsa1,…,a5d P Su I3 = 0j. s82d

NoteSI3
is anIsR1

2d-invariant submanifold inS defined by the parametersai , i =1,… ,5. Next we
prove the following result by using the techniques exhibited in Sec. II.

Lemma 4.1: Any algebraic IsR1
2d invariant I of the IsR1

2d-invariant submanifoldSI3
defined by

(82) can be (locally) uniquely expressed as an analytic function

I = FsI18,I28d,

where the fundamental invariantsIi8 , i =1, 2 are given by

I18 = a4
2 − a5

2,

I28 = 2a3a4a5 − a2a4
2 − a1a5

2, s83d

provided the group acts inSI3
with three-dimensional orbits.

We note that the fundamentalIsR1
2d invariantsI18 andI28 still cannot be used in the problem of

classification of the elements ofKnt
2 sR1

2d. In particular,I28 appears to be a function ofa1,a2,a3,a4,
anda5 (not a18 ,a3,a4,a5). However, under the additionalinvariant condition

I18 = a4
2 − a5

2 = 0 s84d

it assumes the following form:

I28 = 2a3a4a5 − a18a4
2, s85d

wherea18=a1+a2. We immediately recognize theIsR1
2d-invariant(85) to be anIsR1

2d invariant of
the submanifold inSI3

determined by the condition(84). Hence,I28 given by(85) can be used to
distinguish between EC1 and EC3.

Next, in order to distinguish between the elements of EC6 and EC8, introduce the following
auxiliary IsR1

2d invariant:

I*
ª k4I3 + I1, s86d

wherek is given by(81) (the formula for EC8). We note thatI* given by(86) is anIsR1
2d invariant.

The values ofI1 andI3 evaluated with respect to the parameters of the canonical form EC8 given
by (78) are

I1 = −
k4

4
, I3 =

1

4
.

Therefore theIsR1
2d invariantI* =0, whenever the Killing tensor in question belongs to EC8. The

classification scheme is now complete. We summarize the results in Table III.
Using the results obtained we can devise a general algorithm of classification for the elements

of the vector spacesK2sR2d andK2sR1
2d. It consists of the following two steps. LetK PK2sR2d

3sK2sR1
2dd.

(i) If K has arbitrary constants, decomposeK as follows:
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K = ,0g + o
i=1

5

,iK i , s87d

where,i , i =1,…,5 are the arbitrary constants. Noteoi=1
5 ,iK i PKnt

2 sR2dsKnt
2 sR1

2dd. Clearly,
K PKnt

2 sR2dsKnt
2 sR1

2dd iff ,0=0.
(ii ) Each Killing tensor in the representation(87) represents one of the equivalence classes(and

thus, an orthogonal coordinate web), provided it has real eigenvalues in the case of the
vector space beingK2sR1

2d. We can determine which one by evaluating the corresponding
IsR2d andIsR1

2d invariants and covariants and then using the information provided in Table
I or Table II for the Killing tensors defined in the Euclidean plane and Table III defined in
the Minkowski plane.

The problem of classification is therefore solved.
Remark 4.1:We note that EC5 and EC10 are characterized by the same values of the funda-

mental IsR1
2d convariants. It agrees with the geometry of the corresponding orthogonal webs,

namely they determine two distinct coordinate systems that cover two disjoint areas of the same
space(see Miller25 for more details).
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