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On the construction of quasi-exactly solvable Schrdinger 
operators on homogeneous spaces 

Robert Milsona) 
Depanment of Mathematics, McGill University, Mont&al, Qut!bec H3A 2K6, Canada 

(Received 16 December 1994; accepted for publication 10 February 1995) 

The closure conditions for a quasi-exactly solvable operator is the requirement that 
a second-order Lie algebraic differential operator be equivalent, up to scale-change, 
to a Schrijdinger operator on curved space. The present work begins with an in- 
variant characterization of the closure conditions, and after a series of steps gives a 
reformulation of the closure conditions in terms of finite-dimensional representa- 
tions of the underlying Lie algebra. These techniques are used to give a complete 
solution to the closure condition for two different planar realizations of sI(2). Along 
the way two theorems about homogeneous solutions to the closure conditions are 
introduced and proved. Also introduced is the class of “Abelian” solutions to the 
closure conditions. Such solutions appear on flat spaces and give rise to a Schrij- 
dinger operator with zero potential. The concluding remarks highlight remaining 
questions and give references to research that address said questions. 0 1995 
American Institute of Physics. 

I. INTRODUCTION 

A relatively recent development in the spectral theory of Schrijdinger type operators is the 
introduction of the class of quasi-exactly solvable (QES) operators. Such operators are interesting 
because a finite part of their spectrum can be determined by purely algebraic means. At the root of 
this phenomenon is the defining characteristic of a QES operator, namely that such an operator can 
be generated by the actions of some finite-dimensional Lie algebra of first-order differential 
operators. This is the so-called “hidden symmetry algebra” associated to the operator. Thus, a 
QES operator has the form 

H= CabTaT,+ CaTa, 

where Cab are constants and the operators 

T,=C T~dif ~)7a 
i 

are a basis of the hidden symmetry algebra. It is clear that a finite-dimensional function module of 
the algebra will be stabilized by H. The payoff lies in the fact that the action of H restricted to this 
module is a finite-dimensional linear transformation whose spectrum can be computed algebra- 
ically. The notion of quasi-exact solvability was introduced in Refs. l-3. Work in this area has 
progressed to the extent that a coherent, mathematical framework for future research is now 
available. A,clear and rigorous description of this framework can be found in Ref. 4. An excellent 
survey of current results and initiatives can also be found in Ref. 5. 

In a basic sense, the goal of the above program is to generate even more examples of QES 
operators, perhaps even to give an exhaustive list as has been done in the one-dimensional case.6 
The first step in this process is the choice of the hidden symmetry algebra and the identification of 
finite-dimensional modules of functions for this algebra. Work in this direction was carried out in 
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Robert Milson: QES operators on homogeneous spaces 6006 

Ref. 7, which classifies Lie algebras of first-order differential operators in the plane, and in Ref. 8 
which addresses the issue of the nonhomogeneous terms in these differential operators. The sec- 
ond of these papers worked with the convenient assumption that the action of the algebra is 
transitive, or equivalently that the setting is some homogeneous space, G/H. This assumption will 
also be in force for the present effort. 

The second step is the choice of the constants Cab and C”. Note that without loss of ,generality 
we can take Cab to be symmetric, and we have an induced Riemannian or pseudo-Riemannian 
metric 

on the homogeneous space. The choice of constants is constrained by the fact that the resulting H 
must be equivalent, up to a scale change, to a Schrodinger-type operator, A + V, where A is the 
Laplace-Beltrami operator associated with the metric gii. This equivalence problem was settled a 
long time ago.” A modem discussion in the context of QES theory is to be found in Refs. 1 and 4. 
The upshot is that a certain one-form associated to the constants must be closed. The authors of 
Ref. 4 named this constraint the closure condition for QES operators. This constraint is also 
known to the authors of Ref. 1, where it is presented as the equivalent condition that a certain 
family of functions be “pure gauge.” As stated, the closure conditions seem to be a complicated 
system of first-order partial differential equations. Solutions have been found in Refs. 4 and 1 for 
specific examples, but the solutions are not exhaustive, not even for those particular examples. 

It is the aim of the present effort to give a general theoretical framework for the study of the 
closure conditions and to illustrate this framework with some simple examples. Section II intro- 
duces the necessary notation. Section III is a quick summary of an isomorphism theorem which 
allows one to classify representations of a Lie algebra by nonhomogeneous first-order differential 
operators. The main work begins in Sec. IV. There are three main ideas in this section: an invariant 
definition and characterization of the closure conditions, two general theorems about the existence 
of homogeneous solutions to the closure conditions, and a theorem about the invariance of solu- 
tions under G action. In Sec. V we develop some techniques for working with “mixed” tensors. 
These objects are contractions of left and right invariant tensors, and figure prominently in an 
indices-free description of the closure conditions. As an illustration of these techniques, Sec. V 
concludes by introducing an interesting new class of “Abelian” solutions to the closure condi- 
tions. Abelian solutions are interesting because they engender a flat metric and give rise to a 
Schrijdinger operator with zero potential. Thus, the existence of this class lends support to a 
conjecture of A. Turbiner” to the effect that the QES potentials on a flat background metric are 
separable in the physical coordinates. In Sec. VI we show how the QES closure conditions can be 
described in tetms of the finite-dimensional modules of the corresponding Lie algebra. It turns out 
that the closure conditions are nothing but a certain invariant set of polynomial equations, and 
such equations can be solved if one understands the representation theory for the underlying Lie 
algebra. The section concludes with a demonstration of these ideas; complete solutions are ob- 
tained to the closure conditions for two different planar realizations of 51(2). In Sec. VII we 
discuss the limitations of the present work, and give some pointers to ongoing research which may 
be useful in overcoming these limitations, 

II. NOTATION AND PRELIMINARIES 

Let G be a Lie group, H a closed subgroup, let g, lj denote the corresponding Lie algebras, 
and let GIH denote the associated homogeneous space of right cosets. The right G-action on GIH 
induces a representation of g by vector fields, making gm( G/H) into a g-module. For a E g we 
will denote its action on kTm(GIH) by aH. Let C: g*Xg* --+W be a symmetric bilinear form and 
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6006 Robert Milson: QES operators on homogeneous spaces 

let CH= Cijar@ar denote the induced tensor on GIH. If CH is nondegenerate, it will define a 
pseudo-Riemannian metric on G/H, which will in turn give rise to the second-order Laplace- 
Beltrami operator, A. 

Let e denote the identity element of G, g the tangent space at e, 

Ad:G+End(g) 

the adjoint representation of G, and 

ad:g+End(g) 

the differential of Ad at e. We make g into a Lie algebra by taking ad as the multiplication rule. 
Right multiplication by an element of G defines a left invariant diffeomorphism of G, and thus it 
makes sense to think of infinitesimal right multiplication by a E g as defining a left-invariant vector 
field (an infinitesimal diffeomorphism) which we will denote aL. More generally, for a g-valued 
function f :G-+g, we define f” to be the vector field 

x~L)J,, x E G, 

where L, :G-+G denotes left multiplication by x E G. The map f*fL defines a linear isomor- 
phism of g-valued functions, T’“(G;g), and vector fields, T(TG). We let 

L-‘:r(TG)+W”(G;g) 

denote the inverse. Thus, for a left-invariant vector field, U, on G, we let L-‘(U) denote the 
corresponding constant g-valued function. Generalizing further, we have isomorphisms 

L-‘:T(V(TG))+%““(G,V(g)), 

where V(g) is some tensor space of g, V( TG) is the corresponding vector bundle over G, and 
l?(V(TG)) is the space of sections of that bundle. These isomorphisms map the left-invariant 
sections to constant functions. Example: for we A’g*, we use oL to denote the left-invariant 
k-form with value o at e, and define L- ’ ( oL) = o. Analogously, for a E V(g) tve let aR denote the 
right-invariant tensor field with value a at e, and use 

R-‘:T(V(TG))+F’“(G;V(g)) 

to denote the inverse isomorphism. 
Let m:G-+GIH denote the canonical projection. If a contravariant tensor field, U, on G is 

hR-invariant, then rr*u is a well-defined tensor field on G/H. In particular, for a Eg, we 
have aH= 7r.J aL), and CH = T.+( CL). As mentioned in the Introduction, we will be concerned 
with local phenomena and so we work with a contractible, open neighborhood, U, of tie), rather 
than with all of G/H. We let GO denote r-‘(U) 

Let h’Cg denote the subspace of forms that annihilate Ij. We will on occasion identify lj’ with 
(B/b)*. 

We let Ck(g;Vm( U))EHom(Akg,%Ym( U)) denote the space of k-cochains with r?“(U) co- 
efficients. The coboundary operator S:Ck--+Ck+’ is defined by 

W-&a, ,..., (-I)‘-‘afU( . . . . ii ,... )+C 
i<j 

(-l)‘+‘w([ai, aj] ,..., ii ,..., q ,...) 

with H*(g;F”“( U)) denoting the cohomology groups of the resulting cochain complex. For more 
about Lie algebra cohomology see Ref. 11. We will identify Ck(g;rm( U)) with em(U,Akg*), 
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and then using the pullback, T*, identify the latter with a subspace of Wm(G;Akg*). Thus, for 
WE Ck(g;E”“( U)), we will use oL to denote the differential k-form on G with the property that 

oL( af ,..., ai)=u(al ,..., uk), aiEg. 

Indeed, the preceding correspondence defines a cochain complex map, i.e., 

doL = ( sw)L, 

where the d on the left is the ordinary exterior derivative. 
We will use the symbol (;) to denote contraction of tensors and tensor fields, although when 

ambiguity is not a danger we will denote the contraction by simply writing the objects next to one 
another. For a vector field, U, we will use Su to denote the Lie derivative with respect to u, and 
for a ~g, we will use 23’a to denote the adjoint action of a on tensor spaces of g. The two notions 
are related, in as much as, for OE F’“(G,V(g)), we have 

As for denoting the derivative of a function, f, with respect to a vector field, u, we have several 
notations at our disposal: 

uf, (Bu)f, (df;u). 

Ill. PRELIMINARY DISCUSSION OF NOilHOMOGENOUS REPRESENTATIONS 

The following is a condensed version of the discussion in Refs. 7 and 8. The representation gH 
by vector fields on G/H can be modified to a representation by nonhomogeneous first-order 
operators 

The condition that the Lie algebra operation is preserved is equivalent to the condition that 77 is a 
cocycle. We define a change of scale to be an endomorphism of E’?“(U) given by a nonzero 
multiplication operator, 

where p=ef for some f~ e’“(U). Such a change of scale operates on differential operators by 
conjugation; 

pCL-lo(aH+ v(a))op=aH+ 7j(a)+aH(f ). 

Thus, the net result is an addition of a coboundary term, Sf. We will call two nonhomogeneous 
representations equivalent if there they are related by a change of scale. Therefore the space of 
inequivalent representations is given by H’(g,Fm( U)). 

There is a very convenient isomorphism theorem which allows us to compute H’(g;E?“( U)). 
A version of this isomorphism was first described in Ref. 12, and a fuller discussion with gener- 
alizations can be found in Ref. 8. Let o be a representative cocycle of an element of 
H1(g;Fm( U)). For all a E g and b E lj we have the following, easy to verify, identity: 

aL( oLbR) = bR( wLaL) = 0. 

Consequently, mLbR is a constant function, and we define PO to be the corresponding cochain of 
C’(h). In other words, (Pm)(b) is the constant WLbR. Note that for u,b ~fj, 
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This shows that PW annihilates commutators of h and, hence, must be a cocycle. Furthermore, for 
f E $Ym( U) we have P( Sf ) =O. Therefore, P induces a cohomology homomorphism, which we 
will also call P, from H’(g;F”“( U)) to H’(I)). 

Proposition 3.1: P is an isomorphism. 
Proof Suppose mLbR=O for all b E h. Since oL is closed we can always integrate it locally to 

a function. This function will be constant along the directions hR. Since U is contractible we can 
perform an integration on all of Ga to get an f E W”(U) such that Sf =o. Therefore, P must be 
injective. 

Now, let a PE H’(b) be given. We identify p with the corresponding right-invariant one-form 
on H. Since U is contractible we can choose a decomposition Go = U X H and pull p back along 
the second projection to get an w~fi’(Ga). It is not hard to verify that p=P(L-l(o)), and thus we 
have shown that P must be surjective as well. q 

Since the infinitesimal left and right actions of an element of g coincide at the identity we 
have the following simple characterization of the isomorphism. 

Proposirion 3.2: For all aEf), we have (Pw)(a)=(ou),. 

IV. CLOSURE CONDITIONS AND THE INDUCED METRIC 

‘!%e purpose of the present section is to give a naive definition of the closure conditions and 
then to restate them as the equation 

where + is a certain one-cochain. As mentioned earlier, C induces a pseudo-Riemannian metric on 
the homogeneous space, and this metric plays a vital role in the discussion of the closure condi- 
tions. We will therefore investigate some important properties of this induced metric. First, we 
need a criterion for the nondegeneracy of CH. 

Proposition 4.3: The symmetric tensor, C H is nondegenerate near I if and only if the , 
restriction of the bilinear form C to lj’ is nondegenerate. 

Proof Nondegeneracy is an open condition and so it suffices to consider the nondegeneracy of 
c:,,,. The proposition follows from the fact that the pullback of Tz,,,U to TTG = g* is precisely 
!JL. cl 

Definition 4.4: We will call a symmetric form, C, that satisfies the conditions of the above 
proposition, nondegenerate with respect to h. 

For the rest of this section we let C be such a symmetric form. We take U, a neighborhood of 
rr(e), sufficiently small so that CH is nondegenerate there. Let A, grad, and div denote the usual 
differential operators corresponding to the metric induced by CH on U. A related second-order 
operator engendered by C is To= C ai aj . ii H H Indeed, A and To have the same second-order part. 
More generally, let v~Z’(g;%~( U)) be a representative cocycle for a nonhomogeneous repre- 
sentation of g. We put 

r,=Cij(a,);(Uj);. 

The reader should verify that the definition of TV is independent of the choice of g-basis. 
Definition 4.5: Let C E S2g be nondegenerate with respect to h, and a E g. The pair (C,a> is 

called a solution to the QES closure conditions whenever the differential operator I’,+at is equal, 
after a scale change, to an operator of the form A+ V, for some potential function VE Fm( U). If 
a=O, we will call C a homogeneous solution. 

We now take the first in a series of steps to reformulate and simplify the QES closure 
conditions. Define +~Cl(g;%‘~( U)) to be the one-cochain 
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a+div(aH), a E g. 

Proposition 4.6: The Laplacian and To have the same second-order part. They are related by: 
A=ro+(qgH. 

Proof Let f E S?‘(U) be given. We have 

Af=divgradf=div(C’i(uFf )u$=C’ju~(u~f )+C’j(div a~)(u~f )=I’af+(C$)Hf. c] 

We are now in a position to state the closure conditions without referring to the Laplacian. 
Proposition 4.7: (C,u) is a solution to the closure conditions if and only if there exists an 

f E F’“(U) such that 

(C(~#J--27j+Sf ))H-aH=O. 

Proof: The effect of a scale change on the Laplacian by p=eff2 is given by 

P -1~A~~=A+gradf+1/2Af+1/4(grad f )cf), f~v(U). 

A simple calculation shows that 

where (C v)H denotes the vector field Cii via?, and where Vq~ g?“(U) is a certain function 
whose exact form we do not need to consider here. Hence, by the preceding proposition, (C,u) is 
a solution if and only if 

cl 

Corollary 4.8: Suppose that C is a homogeneous solution to the closure conditions. Then, if 
(C,a) is a solution so is (C,ka) for all k ER. 

The cochain 4 appears to play an intrinsic role in the investigation of the closure conditions, 
and so it should not be a surprise that it has a surprisingly uncomplicated, intrinsic characteriza- 
tion. 

Proposition 4.9: &#=O, i.e., 4 is a actually a cocycle. 
Proof: For A, B, vector fields on U, define 

S(A,B)=A(div B)-B(div A)-div[A, B]. 

A calculation shows that for f E Fm( U) we have 

S(fA,B)=S(A,fB)=fS(A,B), 

i.e., S is a type (2,0) tensor. Now choose local coordinates about n-(e) and express CH as 
g’jdi~ dj . We have then 

div di= -a,(g), 

where g = log dm. Therefore 

The desired conclusion follows by taking A and B to be g actions and recalling that S(A, B) is just 
the definition of 6&A,B). 0 
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6010 Robert Milson: QES operators on homogeneous spaces 

The choice of subalgebra fjCg singles out a certain element of H’(t)). The adjoint action 
naturally makes g/h into an h module. We let XE lj* denote the character of this representation. 
Since x kills all commutators of lj, we can regard X as an element of H’(b). 

Proposition 4.10: P4=-x. 
Proofi Let us proceed by examining a slightly more general case. Let x be a point of a 

pseudo-Riemannian manifold, X , ,..., X, a frame in a neighborhood of x, and 8t ,..., 13’ the dual 
one-form coframe. For a vector field, X, which is zero at x we have 

(div X),=x (@,[Xi, Xl),. 
i 

Recall that utce)=O for a E lj. Now, let X= aH for an a E~J, and take Xi=aH where {Ui} is a basis 
of some subspace of g which is complementary to h. The preceding formula directly implies that 

(P+Na)=tdiv aHI,+)= -x(a). 0 

The space of solutions to the QES closure conditions is a subset of S2g@g. Since there is a 
natural G-action on the latter space, it is worthwhile to ask whether the subset of solutions is 
invariant. The answer turns out to be yes, and this fact will prove to be very significant in the 
search for solutions in specific instances. The correspondence 

X-R;‘, XEG, 

is a representation of G by diffeomorphisms of G and thus gives rise to a G-action on the various 
tensor fields of G. This action is closely related to the adjoint representation in as much as 

(Ad, a)L=(R;l),aL, aEg, XEG. 

The various G-actions naturally give rise to g-actions. For instance, the g-action on the space of 
cochains is given by the so-called homotopy formula: 

(Su)=i(u)S+Si(a), uEg, 

where i(u) denotes a onefold contraction with a. The homotopy formula makes it clear that 
g-action, and hence the G-action, descends to the level of cohomology. The next proposition is 
also a consequence of the formula. 

Proposition 4.11: The G-action on H*(g;F:“( U)) is trivial. 
Theorem 4.12: The solutions to the QES closure conditions form an invariant subset of 

s2gc?3g. 
Proo$ Let (C,u) be a solution to the closure conditions. By Proposition 4.7 there is an 

f EFm(U) such that for all a~lj’- 

Write C’,u’,f’,+‘, 7’ for the result of acting on C, a, f, and 4, ~7 by some fixed x E G. Distrib- 
uting R: , the action of x, on the left-hand side of the above equation, we have 

It’s not surprising that the divergence cocycle corresponding to C’ is just 4’ and hence, (C’,a’) 
is a solution to the closure conditions if there is an f” such that 
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However, 77 and v’ belong to the same cohomology class and, hence, differ by a coboundary. 
Therefore, (C’,a ‘) is a solution to the closure conditions. 0 

We will now make a small diversion to consider two examples. They will serve as illustrations 
to the above theory and as useful references for later discussion. We will also generalize the first 
example into a useful theorem. A symbolic calculation package is very helpful in verifying the 
necessary computations. 

Exumple 4.13: The following example is derived from the usual two-dimensional, linear 
representation of st(2,R). Note that p,q are the classical notation for the derivatives d, ,d, . We 
take g={yp,xp-yq,-xq} with basepoint x=0, y=l, and 

(-i, ; -k*), 

where A is an arbitrary constant. The contravariant form of the induced metric is 

i 

Ax2+y2 Axy 
@9= Axy Ay2 . 

i 

For the divergence cocycle we have 

+1=0, q52=2, 43=2xJy, 

and hence, 

(Cq5)H= -2Axp-2yAq. 

The reader is invited to verify that the formula A=T,+( cT+)~ is confirmed by this example. Note 
that $={u3}={-xq} is one-dimensional and hence H’(g;pm( V))=b* by Proposition 3.1. Using 
Proposition 3.1 we have 

(P4)(a3)= 4(a3);1;=0. 

Therefore our theory predicts that 4 is a coboundary and hence that ( C+)H must be the gradient 
of some function. This prediction is confirmed; the function in question is 

j-=-2 log(y). 

Hence the given C is a homogeneous solution to the closure conditions, i.e., 

lYO=/L*~(A+V)~~, 

where p=ef’z, and where the formula for the potential, V, is of no particular interest. 
As an illustration of Corollary 4.8, let us take a = ka t , where k is an arbitrary constant. We 

have 

uH=kyp=k grad(xly). 

Thus (C,ku,) is a solution to the closure conditions for all k. cl 
We have the following generalizations inspired by the above example. The second of these is 

a result contained in Ref. 13, although here it is proved in a much more algebraic fashion. 
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Theorem 4.14: Suppose that g and f~ are both reductive (in particular, 4 could be one- 
dimensional, as in the preceding example), and suppose C is nondegenerate with respect to fj. If 
we take 7’0, then C will be a homogeneous solution of the closure conditions. 

Proof Let a E 9 be given. Since both Lie algebras are reductive we have ad,(u) =0 and 
ad&u) =O, and hence, x(u) =O. Our conclusions follows by Propositions 4.7 and 4.10. 17 

Theorem 4.15: Suppose that g is compact. If 17’0, and if C is nondegenerate with respect to 
b, then C is a homogeneous solution to the closure conditions. 

Proof Let u be the subspace of vectors that are orthogonal to b with respect to the Killing 
form on 8. By the invariance of the Killing form we have [IJ, u]Cu. Since we are assuming that the 
Killing form is negative definite we also have, g=t)@u, and ad(t))l,Cso(dim u). Since the trace of 
skew-symmetric endomorphisms is zero, we conclude that x=0. 0 

Example 4.16: Our next example is the two-dimensional realization of 51(2)@51(2) given by 
{p,xp,x’p,q,yq,y’q}. It is taken from Ref. 4 and has some interesting properties, which we will 
discuss later. As basepoint we take x=0, y=O, and hence ~={u2,u3,u5,u6}. We also take 

I” 0 0 1 0 
‘\ 

A 00101 

0 0 2A 2A 0 0 0 0 0 0 0 0 
OOAlOl OOAlOl 

c= c= 
1 1 0 0 1BO 0’ 1BOO’ 
0 0 0 0 0 2B 0 0 0 0 2B 0 
1 0 1 0 1 0 0 B 1 0 0 B I 

where A and B are constants such that A B # 1. The induced metric is therefore. 

cgij) = 
A( 1 +x2)’ 

(1 +X2)( 1 +yq 

For the divergence cocycle we have 

-2x 1-x2 
+l=~? +2=1+x2 43=&D 

’ 4,=$, c,=s. 2Y 
&=-. 

1fY 

Since [IJ, b]={u3 ,u6} we must have 

where a’,...,~$ is the dual basis of a, ,..., u6. A straightforward calculation shows that 
X=-~-C?. Our example behaves as it should, i.e., Pd=-x, because 

1 if i=2,5, 
0 if i=3,6. 

Hence, 4 is not a coboundary, although, very curiously, we have 

- 2Ax 
wH=ig a1 H+ 

2A( 1 -y2) 2Ay l+y2 ay+-ar=O. 
1fY 
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Robert Milson: QES operators on homogeneous spaces 6013 

Therefore, C is a homogeneous solution to the closure conditions. In this instance T=A, without 
a change of scale. This fact is not an isolated curiosity, but is an illustration of a certain class of 
solutions to the closure conditions, one that we will discuss further on. 0 

Having completed our discussion of the cocycle q5, we are able to take the next step in 
reformulating the closure conditions. Proposition 4.7 could be restated as saying that (C,a) is a 
solution to the closure conditions if and only if there is a cocycle #, belonging to the same class 
of H1(g;Fm( Ii)) as 4-27, and such that (Cti)H=uH. Using the results of Sec. III and Proposi- 
tion 4.10 the first condition can be restated as 

lybR= -(X+2Pv)(b), b E I). (1) 

The second condition states that 

(tp;CLaR)=(aR;uL) (2) 

for all CUEI+. 
By our nondegeneracy assumption the tangent space at a point of Go is the direct sum of hR 

and CL.(hl)R. Hence, Eqs. (1) and (2) completely characterize #. Thus, for a given CES’~ and 
a ~g, we define $E C1(g;rm( U)) to be the unique one-cochain characterized by these two equa- 
tions. 

Proposition 4.17: (C,u) are a solution to the closure conditions if and only if S@O. 
Proof: If the closure conditions are satisfied, then $= 4-2 v+ Sf, for some f E r?“(U) and so 

the conclusion follows. If, on the other hand, S$=O, then for b Eg and c E lj we have 

St,/f( bL,cR) = bL( q&“) - cR( ebL) - @[ bL,cR-j = 0 - cR( $b) - 0 = 0 

because @cR is a constant. Hence, 

cR($b)=O, 

i.e., +C1(g;Rm(U)). Furthermore, $ is a cocycle and belongs to the same class as 4-2~. 
Therefore, there exists an f= grn( U) such that += +-277+ Sf. 0 

Equivalent to S$=O is the condition that 

u(~u)-u(++@[u, ul=O, 

for all vector fields u, u . Because of the available decomposition of the tangent space at x E Go, 
mentioned above, we only need to consider three cases in order to verify the last equation: 

if) 
u=bR, v=cR for b,cefi; 
u=bR, v=CLaR for bEb and ash’; 

(iii) u = CLcrR, u = CLpR for a,/?~ I$-. 
The next two Lemmas will show that we only need to consider the third case. Let + be the cocycle 
defined by Eqs. (1) and (2). 

Lemma 4.18: Let b,c E f~ be given. Then, d@(bR,cR) =O. 
Proof This follows directly from the facts that #( bR) = - (x+ 2 P v)(b) is a constant and 

that x+2 P 7 annihilates the commutators of IJ. 0 
Lemma 4.19: Let b E lo and LYE Ij’ be given. Then, d@(bR,CLaR) =O. 
Proofi Since (@;CLaR)=(cuR;uL), we have 

where /3= -Z(b)a. Also recall that ( @;bR) is a constant. Hence, 
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6014 Robert Milson: QES operators on homogeneous spaces 

dti(bR,CLaR)=bR(@;CLcxR)-CLLyR(@;bR)-(#;[bR, &R-J) 

=(PR;uL)-O-(fp;CLpR)=O. 17 

We are now ready for one more restatement of the closure conditions. For @E Ij, define 
u E Fm(G,~) and & %““(G,b’) to be such that 

[ CLaR, cLpR1 = uR+ cy 

is the unique vector field decomposition induced by the complementary distributions hR and 
CL(b’)R. Based on the preceding proposition and on the last two lemmas we can state the follow- 
ing. 

Proposition 4.20: (C,u) is a solution to the closure conditions if and only if for all CY$E IJ’, 

CLcvR(~RaL)-CL~R(~RaL)-~RuL+(x+2P~)u=0. 

At first glance, this latest version of the closure conditions seems to be of theoretical interest only. 
However, as we will see in the subsequent sections, it can lead to a complete and concrete 
classification of the solutions to the QES closure conditions. 

V. TENSORS OF MIXED TYPE 

A central role in Proposition 4.20 was played by vector fields like CLffR. Such a vector field 
is a contraction of a right- and a left-invariant tensor. We will call the resulting object a tensor of 
mixed type. In this section we will develop calculation techniques to handle these tensors and then 
use these techniques to describe a class of solutions to the closure conditions alluded to in 
Example 4.16. 

First let us recall the following elementary facts. 
Proposition 5.21: For a Eg, aEg* we have 

uL= (Ad u)~, cuR=(Ad* c~)~=(cr Ad)L. 

For ease of notation we will use & to denote the g*-valued function Ad* CY. We thus have aR= 2. 
The identification of tensor fields with tensor-valued functions allow us to define a modified 
version of the usual exterior derivative on a Lie group. Let V be a vector space andf:G-+ V be a 
smooth function. We define DLf:G-+Hom(g,V) by 

(D”f )(u)=uLf, ueg. 

We will need a formula for the Lie bracket of vector fields in this formalism. 
Proposition 5.22: Let f,g be g-valued functions on G. Then, 

We also need a formula for the derivative of Ad. 
Proposition 5.23: (DL Ad),(u) =Ad, ad(u), for a ~g and x E G. 

The preceding two propositions combine to give a formula for the Lie bracket of two vector fields 
of mixed type. 

Proposition 5.24: Let a,PEg*. Then, 

L-‘([CLaR, CL/?R])=ad(CG,Cfi)+C(p ad(CG))-C(& ad(Cp)). 

Let us restate the above in a more convenient notation. Since C acts as an inner product on g*, it 
also induces and inner product, C”, on A2g* which is given by 
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Robert Milson: QES operators on homogeneous spaces 6015 

For convenience we will omit the C and CA2 and use a dot to denote these inner products. Thus, 
for (Y$,YE~* we will write 

(r;ad(Ca,Cp))=( y*;cdWp)= y*. dp, 

where we define y*=ad* y, and where 

ad*:g*-+h’g* 

denotes the transpose of the adjoint map. 
Proposition 5.25: For IX,/~E$* and YE em(G,g*) we have 

(*/L;[CLaR, CLpR])= y*- iiAp+p*.tiAy-;;*.@y. 

We have now established sufficient machinery to describe a class of solutions to the closure 
conditions, one instance of which is given in Example 4.16. 

Dejinition 5.26: We say that C is Abelian with respect to Ij if for all a,/?~ 9’ 

[ CLffR, cLpR1 = 0. 

An examination of Proposition 4.20 reveals that if C is Abelian with respect to lj, then C is a 
homogeneous solution of the closure conditions for all q. 

For the remainder of this section we will assume that C is Abelian and nondegenerate with 
respect to h. The distribution C’(~J’)~ is thus involutive and by the nondegeneracy assumption is 
complementary to the distribution hR. We can therefore identify U with the integral manifold of 
the former distribution through e E G. We choose a basis a*,...@ of h’, and let @,...,p” be the 
dual basis with respect to C, i.e., $ oh’ and C(a’,@) = Sij. Since the vector fields CLaIL 
commute we can choose coordinates xl,. . . ,xm on U such that di = CLaiLI U. 

Proposition 5.27: The pseudo-Riemannian metric g= ( Cx)-’ induced by C on U has com- 
ponents 

gij’CL((YiL,~jL), i,j=l,..., m. 

Proof: The linear algebra of the situation works like this. Let V be a vector space and 
C ~Hom( V*, V) be a symmetric form. Suppose we can decompose V as V, @3 V2 such that the 
decomposition respects C. In other words, VT is perpendicular to V; with respect to C. Further- 
more, suppose that C restricted to V$ is nondegenerate with inverse g E Hom( V2, Vz). Then, 

This is essentially what is happening with V= T,G at each x E U. In this case Vl=If and 
V2= CL(h’)t. Note that V2 is spanned by the coordinate vector fields ai and hence, as above, 

gij’g(di,dj)=C(aiL,aiL). I7 

Lemma 5.28: For all c~,p,y~h’ we have 

CLaR(C(p,y))=O, (&;ad(C&Cy))=O. 

Proof By Proposition 5.23 we have 
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6016 Robert Milson: QES operators on homogeneous spaces 

CLaR(CL(fi,Y))=(fi;ad(~Ay))+(j$ad(~A~)), 

and since we are assuming that C is Abelian with respect to ij, Proposition 5.24 tells us that 

CLaR(CL(&+))-(iG;ad(Cg,Cy))=O. 

Note that the first term on the left-hand side is symmetric in p and y while the second term is skew 
symmetric, and hence both terms must be zero. cl 

Lemma 5.29: Let v E T?-(G,h). The following identity holds everywhere on U: 

7 ($‘;ad(CG’,Ad-’ v))= -x(v). 

Proof Fix an x E U and let h, denote the subalgebra Ad; * Ij. Since each pj is a constant linear 
combination of the a’, Lemma 5.28 tells us that 

dk(c(i?,j’))=o, k=l,..., m, 

and hence, 
-. 

C( ~;‘t~y) = Sij 

everywhere on U. Therefore, {CZ;} is a basis of 8/hX and {&} is the dual basis of ht. Hence, 

where ,yX is the character of the representation of h, on g/h+. Since Ad; ’ is an automorphism of 
8, we must have ,y,(Ad~‘vJ=~(vJ. cl 

Theorem 5.30: The induced pseudo-Riemannian metric on U is flat and A=T,. 
Proof: Lemma 5.28 and Proposition 5.27 tell us that dk(gij) =O for all i,j,k. Hence, g is flat. 
According to Proposition 4.6, in order to prove the second part of the theorem we must show 

that ( C4)H=0, or equivalently that (4;C&)=O for all LYE h’. Let a ~8 be given. The complemen- 
tary distributions hR and CL(h’)R give us the decomposition 

Recall that we are identifying U with the integral submanifold of CL(h’)R through e and hence, 
aH = CLtHj U. Note that 

cLCRR= C @;a)CLaiR, 
i 

an= C (piiajai. 
i 

Since g is flat, 

div(aH)=x ai(P’;a)=C (CLaiR)(@;a)=z @;ad(C$,a)). 
i i i 

By Lemma 5.28 

Since a =Ad-’ v + C& we conclude from Eq. (3) that 

(3) 
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Robert Milson: QES operators on homogeneous spaces 6017 

div(aH)=x (,@;ad(C&‘,Ad-’ v)). 
i 

Hence, by Lemma 5.29, 

div(aN)= -x(u)= +LvR. 

However, since 

div aH=r$a=q5LvR+(d;Cg), 

we can conclude that (4;C&=O. As we vary a EB, the range of CLtR spans all of C’.(IJ-‘-)~, and 
hence, 9” must be an annihilator of this distribution. 0 

Let us now use the above techniques to generalize Example 4.16. To do so we must find all C 
that are Abelian with respect to the given isotropy algebra. Henceforth, we take all the givens of 
that Example. Let us write g=gA@gB, where both terms are equal to sI(2,R) and agree that 
alraZ,a3 spa gA while qra5,a6 span gB. With respect to this decomposition C breaks up into 
the two by two matrix 

CA a i 1 cp* CR’ 

where CA, CB are inner products on g: and & , while Cp: g,*+gA gives the product of hetero- 
genous pairs Note that .S2(51(2,R)) h as a one-dimensional invariant subspace. We take 

as a generator. 
Proposition 5.31: If C is Abelian and nondegenerate with respect to h, then it must have one 

of two forms. 
(i) a=0 and C,, C, are such that CA(cul,a’) and C,(a4,a4) are nonzero. 
(ii) @=u~@)u~, 

CA=KAUA@UA+LAC~~~, C~=K~uB@U~+L~Cinv~ 

where uA E g.., , ue E gB are such that ffluA and (u4u, are nonzero, and KA , K, , LA, LB are constants 
such that KA KB 3t 1. 

Proofi For cr,p~g*, put 

f(aJ?>=L,-‘[CV, CyJ. 

The g-valued function f(cu1,cr4) must be zero in order for C to be Abelian with respect to Ij. 
Equivalently, we can demand that this analytic function and all of its derivatives be zero at e. This 
amounts to the condition that 

ac..*a$(cz1,cx4)e=0 ‘1 

for all sequences of elements of 8. By Proposition 5.23 

aLf(cu1,cr4>e=f(ad(a) *a1,a4),+f(a’,ad(a)*a4),, aeg. 

Since sI(2,R) is simple we can conclude that C is Abelian with respect to IJ if and only if 
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6016 Robert Milson: QES operators on homogeneous spaces 

fk!A* &x=0. (4) 

By Proposition 5.25 this means that for all (YE gi and /I,/?’ E& 

P ‘*.aAP+P*.LYAP’-LY*.P/\P’=o. 

The first two terms on the left-hand side are symmetric in PJ?’ and the last term is skew sym- 
metric and hence 

Hence, the image of Cp must be an Abelian subalgebra of gA, and since st(2,W) is a rank one 
algebra, the image of Q, must either be zero or one-dimensional. If cP=O, then clearly Eq. (4) must 
hold. This gives us case one of the theorem. The restrictions on the choice of C, and C, assure 
that the resulting C is nondegenerate with respect to h. For the rest of the proof we assume that Q, 
is one-dimensional and hence, @=u,@u, for some nonzero uA and ue. Let ff E g:, let 
PIP’ E gz , and put u=@*cu. By Proposition 5.24 

(P’;f(a,P),)=(P’;ad(u,C~P)+(P;ad(u,C~P’))-((a;ad(~~,~P’))=((~u)Ce)(P,P’)=O. 

Hence in order for C to be Abelian it is necessary and sufficient that (%ic,)C, and (S%,)C, 
be zero. The reader should verify that this is possible if and only if C, is a linear combination of 
UA 8 UA and Cinv, and CB is a linear combination of u,@ ug and Cti,. The additional constraints 
on UA? ug and the constants ensure that C is nondegenerate with respect to h. 0 

The C of Example 4.16 falls into the second category. The values of the parameters are 
uA=al+a3, us=a4+a5, K,=L,=A, and K,=L,=B. 

VI. INVARIANT EQUATIONS 

In this section we will obtain solutions to the closure conditions by translating them into 
g-invariant equations and then solving these equations. Our point of departure is Proposition 4.20 
and Theorem 4.12. The first will yield the invariant equations and the second is the key to solving 
them. In this paper only the planar case will be analyzed. Thus, we assume that h has codimension 
2 and the closure conditions can be described by a single equation of the type in Proposition 4.20. 

First, let us break up the equation of Proposition 4.20 into two parts: 

CLaR( PRaL) - CLpR( aRaL) - tRaL= 0, (5) 

(/y+2P17)v=O. (6) 

The first equation is sufficient to describe the closure conditions whenever ,y+2P77=0. The 
second equation describes the homogeneous solutions to the closure conditions. The case covered 
by Eq. (5) was first considered in Ref. 4. That paper referred to this restriction as the simplified 
closure conditions, a term which we will adopt. The choice of this terminology is explained by the 
following. 

Proposition 6.32: Every C that is nondegenerate with respect to h gives a homogeneous 
solution to the simplified closure conditions. 

Proof: An examination of Proposition 4.20 shows that, if x+2P ~‘0, then (C,O) is a solu- 
tion. 0 

Proposition 6.33: (C,a) is a solution to the simplified closure conditions if and only if 

O=(LYI\B.~/\~)((~*;C~/\a)-(~*;CPAa))+2(~*.LuAP)(~Ag;CpAa) 

-2(p*.iGA~)(&Ap;C&uAa). (7) 
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Robert Milson: QES operators on homogeneous spaces 6019 

Proof Let us write 

K$~=AC=~Y~+BC=P~, A,BE Z?‘(G). 

Since 2 and p” annihilate uR, 

CL(cYR,~R)=(cYR;[CLaR, CLpR])=2&*.&A& 

and a similar expression holds for CL(fiR,tR). Hence, A and B are determined by 

(f:f ;:$)(;)=( ;g$). (8) 

If C is nondegenerate with respect to lj, then the matrix on the left is invertible. Solving for A and 
B we get 

p.p +.p 

-;;.p 5.G 

where A=c?r\p.GAp is the determinant of the matrix in Eq. (8). Hence, 

(tR;aL)=2/A((p* ~~r\~)(cu/\~;C~/\a)-(cu*.~Ap)(~~p;C~Aa)). 

To conclude, we note that by Proposition 5.23 the first two terms of Eq. (5) can be written 

#;ad(C&z))-(&;ad(C&z))=@*;C&uAa)-(G*;CpAa). 0 

Let f denote the right-hand side of Eq. (7). Since f is an analytic function on G it is enough 
to demand that f and all of its derivatives vanish at e. The value f, is just a certain kind of 
contraction of P3@u with 

which belongs to the tensor space 

Taking the derivative off with respect to aL, where a ~g, amounts to acting on ~~i,p with the 
adjoint representation. Let B(ru,imp) denote the g-module generated by psimr. We will call this 
module the invariant equations corresponding to the simplified closure condition. 

Proposition 6.34: In order for (C,a) to satisfy the simplified closure conditions it is necessary 
and sufficient that C@‘@a annihilate B(ru,imp). 

This proposition makes clear the fact that solutions to the closure conditions are closed under 
G actions. After all, if a subspace of a certain tensor space is closed under g, then it is also closed 
under G actions, and hence, the annihilators of this space in the dual will also be closed under G 
actions. 

TO obtain the solutions to the simplified closure conditions it is enough to fix C E S2g and then 
to ask: for which a Eg is (C,a) a solution? Fixing C will turn theaequations in g(~~i,,) into 
elements of g*. It will then remain to be seen that the span of these elements possesses a nontrivial 
annihilator in g. Any such annihilator, a, will make (C,a) into a solution. 
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6020 Robert Milson: QES operators on homogeneous spaces 

The invariance of solutions under G-actions also means that we do not have to consider all C, 
but merely convenient generators of the G-orbits in S2g. We will illustrate all these ideas in two 
upcoming examples, but, first, we need to consider the homogeneous and the general solutions to 
the closure conditions. 

Proposition 6.35: Choose peg* such that plb=,y+2P 7. Then, C is a homogeneous solution 
to the closure conditions if and only if 

X(~/\p.P/‘\p)-2(8*.~=;Ap)(cuAg.~Ap). (9) 

Proofi Since u R = [ CLaR, CLpR] - CLIR, we can write Fq. (6) as 

(pRKLaR, C=pR]) - CL( p, p”) = 0. 

The rest of the proof proceeds analogously to the proof for the case of simplified closure condi- 
tions. 0 

As before, we note that the value of the right-hand side of Eq. (9) at e is the contraction of 
CB4 with 

kmm=(ff~P~~~P)~(P* f &I+ p* * CYAp- cY* *PI/p) 

which belongs to the tensor space 

Proposition 6.36: In order for C to be a solution to the homogeneous closure conditions it is 
necessary and sufficient that Ce4 annihilates g(phO,). 

Again, since the solutions are invariant under G actions, it suffices to check these equations 
for convenient generators of G orbits in S*g. 

Proposition 6.37: In order for (C,a) to be the solution to the general closure conditions it is 
necessary and sufficient that ( Ce3@u)@ Ce4 annihilate g(~~imp~~~~m). Furthermore, if g is se- 
misimple, and the highest weights of g(r(Lsimp) are distinct from the highest weights of g(,uUhom), 
then it is necessary and sufficient that (C,u) be a solution to the simplified closure condition while 
simultaneously C be a homogeneous solution. 

Proof: To demonstrate the first part of the proposition we need only recall that pSimp and khom 
derive from the two halves of the equation in Proposition 4.20. 

For the second part we need to use the representation theory of semisimple Lie algebras.” A 
finite-dimensional g module, M, is the direct sum of irreducible modules, each of which is 
generated by a certain highest weight element. Given any u E M, for irreducible M, we can choose 
an operator X from the enveloping algebra of g such that X(U) gives us the highest weight 
generator. In particular, if M r , and M, are irreducible g-modules with distinct highest weights we 
can choose an X such that XU i is the highest weight generator of M, and such that Xu,=O. Hence, 
for any nonzero u i E M , and u2 E M, , the module generated by u i @ u2 is all of M 1 @ M2. Ap- 
plying this principle to our situation, we see that if the highest weights of g(~CLsimp) are distinct from 
the highest weights of g(CLho,,,), then ( Ce3@u)@ Ce4 must annihilate all elements of 
8tPsimp)@Btkom)~ fierefore, CB3 
annihilate g(pr,Om). 

@a must annihilate g&i,) while Ce4, simultaneously, must 
0 

ExumpZe 6.38: Let us&return to the homogeneous space presented in Example 4.13 and cal- 
culate the solutions to the closure conditions using the above method of invariant equations. We 
use the canonical presentation of 51(2): 
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and take 

PJ’, J-]=JO, [JO, J+]=2J+, [JO, J-]=-2J-, 

J--=al, JO=u,, J+=-a3. 

Let us introduce the helpful notation 

x= cY3, y= -2a2, z=ctJ, 

a=2n2AcY3, b= -2rw’h3, c=2a1~cu2. 

Recall that the canonical action of a Eg on g* is given by -ad(a)*. Hence, the action of J+ is 
summarized by 

x+y-+2z, a+b+2c, 

and the action of J- is summarized by 

z+y-+2x, c+b-+2a. 

Also recall that in this example x=0 and hence the simplified closure conditions are those for 
which v=O. In terms of the above notation, y,z span lj*. Hence, 

~si,,=(C.C)(cy-bz)+2(b.C)cz-2(C.c)Cy, 

where the tensor product symbol, 8, has been omitted for the sake of brevity. Since Ij is one- 
dimensional, H’(b)=f~*. Hence, by Proposition 3.1, H’(g;Fm( U)) is one-dimensional. As a gen- 
erator for the cocycles we take 

771=0, 772=0, 73” 1/y*. 

The generic nonhomogeneous representation of g is therefore 

al=w, a2=xp-yq, a3= -xq+nly2. 

Since P v=a3 and x=0, we take p=d. Hence, 

phom =(c.c).(u.c-c.a+l/2b.b)-(b.c).(b.c)+2(c.c).(a.c). 

The reader should verify that J+,Q,-,,=O and hence crimp is a highest weight generator of an 
irreducible g-module. The dimension of this module turns out to be 7. The generators, in order of 
descending weight, are 

(c.c)(bz+cy)-2(b.c)cz, 

-(c.c)(cx+by+az)+(b.b+2a.c)cz, 

3(c.c)(ay+bx)+2(b.c)(cx+by+az)-(b.b+2a.c)(bz+cy)-6(u.b)cz, 

-(c.c)ax-(b.c)(bx+ay)+(a.b)(cy+bz)+(a+a)cz, 

6(b.c)ax+(b.b+2a.c)(bx+ay)-2(a.b)(cx+byfaz)-3(u.a)(cy+bz), 

-(b.b+2a.c)ax+(a.a)(cx+byfaz), 
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2(aeb)ax-(a.a)(bx+ay); 

horn turns out to be a highest weight generator of a dimension 5 irreducible module. The genera- 
tors of g(hom) are 

(c.c).(b=b+4a.c)-2(b.c).(b=c), 

(b+b).(b.c)-4(a.b).(c.c), 

4(a.b).(b.c)+8(aea).(c.c)-(b=b).(b.b+2a.c), 

(a.b).(b.b)-4(a:a).(b.c), 

S*g. 
The reader should verify that the following four families of symmetric forms generate all of 
The G-orbits are not entirely distinct; there are overlaps for some discrete values of the 

parameters. The matrix representation is taken with respect to the basis a 1 ,a2 ,a3 : 

(10) 

/J+K 0 J 
0 0 0 
J 0 J 

c= 
i 

c= 

J J -J 

C= J J-I-K -J 

-J -J J 

! 
0 L 0 

-2LO 0 

0 0 -2L 

0 L 0 

-2LO 0 

(11) 

(12) 

The author used the Maple V symbolic computation package to check for solutions of these 
four cases. The findings are given below. Let us consider the case (10) in some detail. Since 
solutions are closed under linear scaling it will suffice to take J= 1. After the contraction with C, 
the equations in Q(~~i,,) become 

O=(K+L)x-2K(K+L)z, O=KLy, 

O=K(3K+L)x+4K2Lz, O=O, 

O=K2Lx, 0=0, O=O. 

The above equations admit solutions when either K=O or L=O. In the first case, the solutions are 
given by x=0. In the second case, the solution is given by x=0, z=O. Therefore, there are three 
types of solution generators: 
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1 0 l-2L 

c= 0 L 0 
l-2L 0 1 ‘1 1 

, a= 

0 

0 . 
1 

The solutions corresponding to the generators of typr : (12) are 

I -1 0 -l-2L 

I 

\ 
c= 0 l+L 0 , a= 0 , 

-l-2L 0 

C=( $ l%L -ii), 

! 0 -1 

a=I:j y 

There is an additional solution that comes from a generator of type (13), but it is redundant; there 
exists a G-action that takes it to one of the solutions already presented. 

Now, let us turn to the homogeneous solutions for nonzero 7. Contracting the equations of 
B(/..+,~~) with a generator of type (10) gives the following equations. Once again because solutions 
are stable under scaling we can take J= 1: 
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c=( _4, ; -g, u=( q, 

C-i$, % -:I, a=(i). 

C=( % % !), a=( ij. 

The generators of type (11) yield the following, additional solution: 

O=L(L+2K)(L+K), O=O, 

O=KL3, 0=0, O=O. 

Hence, the only homogeneous solution comes about when L=O. A similar analysis for the other 
families of generators does not turn up any new solutions. 

Finally, since the highest weights of g(~~imp) and g(,ut,,,) are distinct, Proposition 6.37 shows 
that for a general solution, both sets of equations must be satisfied simultaneously. From the above 
analysis we see, therefore, that the general solution occurs with generators of type (10) with L=O, 
and a = Map. After acting on these solutions by an element of SL(2,R), 

A B 

i 1 C D’ 
AD-BC=l, 

we obtain the general solution 
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C”=A2(A2J+4B2K), 

C33=C4J+4C2D2K, a’=2MAB, 

a2=M(AD+BC), a3=2MCD. 

The corresponding scale change function, Gaussian curvature, and the potential are 

p=exp( y(A:zcX)) (Ay+ Cx)(“-2K)12K, 

M2-4K2 
K= -4K, v= 

4K ’ 

Example 6.39: Now let us consider another representation of sI(2,R) by planar vector fields, 
namely, 

The most convenient basepoint is x=0, y =0, and the corresponding isotropy subalgebra is 
spanned by a2. Hence, a’, d span b’, and so in terms of the notation introduced in the last 
example, the generating equation for the simplified closure conditions is given by 

The weight of crimp is zero and it turns out to generate a module which is a direct sum of an 
irreducible seven-dimensional module and an irreducible three-dimensional module. The genera- 
tors for the seven-dimensional module, in order of decreasing weight, are 

(c*c)(cy+bz)-2(b*c)cz, 

(c.c)(cx+bz+ax)-(b.b+2a*c)cz, 

(C.c)ax+(b.c)(bx+ay)-(a.b)tcy+bz)-ta.u)cz, 

(b.b+2a.c)ux--(a.u)(cx+bz+ax), 

2(a*b)ax-(u.a)(bx+ay). 

The generators for the three-dimensional module are 

J. Math. Phys., Vol. 36, No. 10, October 1995 
 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41

On: Wed, 26 Oct 2016 14:43:41



Robert Milson: QES operators on homogeneous spaces 6025 

There are more equations here than in the previous example, and so it is reasonable to expect that 
there will be fewer solutions to the simplified closure. Indeed, using the same method as in the 
preceding example, one can show that the solutions to the simplified closure conditions are 
generated by 

As in the preceding example, the isotropy algebra is one-dimensional and hence so is 
H’(g;F”“( U)). As a generator for the cocycles we take 

111=0, 172= 1, 113=x. 

Since P T,T=L?, and x=0, we take ~=a?. Hence, the generating equation for the homogeneous 
solutions is given by 

It generates a sum of an irreducible five-dimensional and a one-dimensional module. The six 
resulting equations are 

(b.c).(b.b)-4(a.b).(c.c), 

The generators of the homogenous solutions are 

The general solution of the closure conditions is therefore the same as in the preceding example. 
The scale change function is different, although curiously, the potential is the same constant: 
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xy-I CM-2KV4K A + cx 1 1 1 n/2 

(A + Cx)(C+Ay) C+Ayby-1) 9 

K= -4K, 

M2-4K2 
v= 4K . 

VII. CONCLUDING REMARKS 

0 

There are two basic limitations to the techniques developed in this paper. First, even though 
the closure conditions can be restated into a more tractable form, their solution must still be done 
on a case by case basis. Realistically, this is feasible only when G is semi-simple, and not too 
complicated at that. Otherwise, the representation theory machinery is too cumbersome to be 
useful. The next step should be an exhaustive study of simple, low-dimensional examples (the 
present paper makes this possible) with the goal of spotting patterns which will generalize to more 
complicated algebras. 

There is an aspect of the QES operator program which has not yet been discussed here; the 
second limitation of the present work derives from this aspect. Namely, how does one determine 
the finite-dimensional function modules of a given hidden symmetry algebra, and which of these 
functions will actually be integrable after the gauge transformation which changes H into A+V? 
If these questions are not answered one will be in possession of a rather uninteresting operator; 
certainly it will be of Schrodinger-type, but its spectrum will, in general, remain obscured. Inte- 
grability plays a doubly important role at this point. The Schrijdinger operator is self-adjoint on L2, 
and hence any finite-dimensional, integrable function module, M, of the QES operator, H, will 
automatically yield dim M distinct eigenfunctions.4 If the function module is not integrable, then 
the restriction of H to M may not be diagonalizable and in the worst case may yield only one 
eigenfunction. Example: consider the one-dimensional QES operator 

d2 
H= dx2 

The space of polynomials of degree n or less is a module, but there are only two eigenfunctions 
of H in this module. 

Work on the question of existence of finite-dimensional function modules has been carried out 
in Refs. 14 and 10. The approach in the first of these papers is to take holomorphic line bundles 
with G-action, and then to consider the finite-dimensional module of holomorphic sections of 
these bundles. The second of these papers (in addition to other results) gives theorems that 
characterize those planar, linear differential operators which preserve certain modules of polyno- 
mials. There is an intriguing connection between the ideas of these two papers. There are exactly 
three maximal families of Lie algebras of first-order differential operators in the plane (see the 
concluding paragraph of Ref. 15). The finite-dimensional function modules for each of these 
families are polynomial and well understood. On the one hand, it seems reasonable that these 
polynomials will generate the algebraic portion of the spectrum of a planar QES operator (Con- 
jecture 1 of Ref. 10). On the other hand, Ref. 14 shows that each of these three types of Lie 
algebras of operators corresponds to a certain global model. It is therefore to be hoped that the 
question of finite-dimensional function modules can be attacked by studying global realizations of 
Lie algebras of first-order operators. 

The integrability issue was completely settled for one-dimensional operators in Ref. 6. For 
higher dimensions, there are some promising ideas in Section 4 of Ref. 13. This paper highlights 
a condition-existence of a G-invariant metric on the homogeneous space-which, in principle, 
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Robert Milson: QES operators on homogeneous spaces 6027 

makes it possible to determine the full spectrum of a homogeneous QES operator. Perhaps a better 
understanding of global realizations will also shed light on the question of integrability. In any 
case, much more work needs to be done in this area. 
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