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WELL-COVERED VECTOR SPACES OF GRAPHS∗
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Abstract. For any field F, the set of all functions f : V (G) → F whose sum on each maximal
independent set is constant forms a vector space over F. In this paper, we show that the dimension
can vary depending on the characteristic of the field. We also investigate the dimensions of these
vector spaces and show that while some families, such as chordal graphs, have unbounded dimension,
other families, such as nonempty circulant graphs of prime order, have bounded dimension.
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1. Introduction. A weighting of a graph G is a function f : V (G) → F that
assigns a value from the field F to each vertex of G. Following [1], a well-covered
weighting f of a graph G is a weighting such that

∑
x∈M f(x) is constant for ev-

ery maximal independent set M of G. For a well-covered weighting, we denote the
common weight of the maximal independent sets as f(G). In [1], the following is
noted.

Observation 1. The well-covered weightings of a graph form a vector space.
This is clear since if f and g are well-covered weightings and k and l are elements

of the field F, then kf + lg is also a well-covered weighting.
We remark that a well-covered graph [8] is a graph in which all maximal indepen-

dent sets have the same cardinality. Thus, well-covered graphs G are precisely those
graphs G for which 1G : V (G) → F : v �→ 1 is a well-covered weighting over any field F
of characteristic 0. The definition of the well-covered space can be traced to Caro and
Yuster [2] in a more general setting. Let H = (V,E) be a hypergraph and F be a field.
A function f : V → F is called stable if for each e ∈ E, the sum of the values of f on
the members of e is the same. The stable functions form a vector space. One instance
that Caro and Yuster consider is the space of well-covered weightings for a graph
G. They denote this by U(MIS : G,F) and the dimension by udim(MIS : G,F)
(MIS stands for maximal independent sets). In this paper we restrict ourselves to
just well-covered weightings so we use WC(G,F) and wcdim(G,F) (we call the former
the well-covered space of G and the latter the well-covered dimension of G). If the
field has characteristic 0, then we eliminate the reference to F as well.

In general, our graph theoretic notation follows [3]. The complement of graph G
is denoted by G. The disjoint union of graphs G and H is denoted by G ∪ H, and

the join of G and H (which is G ∪H) is denoted by G+H. A maximum independent
set is one of maximum size (which is β(G), the independence number of G). A clique
is a complete subgraph (not necessarily maximal). We often obscure the difference
between a subset of vertices of a graph and the subgraph they induce. Finally, for a
vertex v of G, N(v) = {u ∈ V (G) : uv is an edge of G} is the neighborhood of v and
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WELL-COVERED VECTOR SPACES OF GRAPHS 953

N [v] = {v} ∪N(v) is the closed neighborhood of G. For matrix theoretic notation, we
follow [7]. We denote the all ones vector of length n by 1n, or simply 1 if the length is
understood, and similarly use 0n to denote the all zeros vector of length n. (Vectors
throughout are written as column vectors.)

If I1, . . . , It+1 are the maximal independent sets of G, then well-covered weightings
are precisely the solutions to the associated linear system

∑
v∈I1

xv =
∑

v∈It+1

xv,

∑
v∈I2

xv =
∑

v∈It+1

xv,

. . .∑
v∈It

xv =
∑

v∈It+1

xv

(we call It+1 the common maximal independent set for the linear system). This
homogenous linear system can be written in matrix form as

AG x = 0

(we call the t × n matrix AG an associated matrix for the graph G). Note that
wcdim(G) equals the nullity of AG (over F) and hence is equal to the |V (G)| −
rank(AG) (where, of course, the rank is taken over F). This formulation clearly shows
that wcdim(G) depends only on the characteristic of F, rather than the whole field.

As an illustration, consider W5, the 5-wheel, which consists of a 5-cycle with a
central vertex joined to each vertex on the 5-cycle. It is easy to discover (see Lemma
9) that all the vertices on the 5-cycle must have the same weight, and it is also easy
to see that the central vertex must have weight equal to the sum of the weights of any
maximal independent set of the 5-cycle, that is, twice the weight assigned to each ver-
tex of the 5-cycle. Thus (writing the well-covered weightings as 6-tuples), we see that
WC(W5,F) is spanned by (1, 1, 1, 1, 1, 2) and hence has well-covered dimension 1. This
example also shows that a basis for WC(G,F) cannot always be chosen with values
in {−1, 0, 1} (when char(F) �= 2, 3). As another example, we derive an upper bound
on the well-covered dimension involving the chromatic number χ(G) of a graph G.

Theorem 2. Let G be a graph of order n. Then wcdim(G) ≤ n− χ(G) + 1.
Proof. For a graph G, let {Ii|i = 1, 2, . . . , k} be a sequence of nonempty, indepen-

dent sets such that I1 is a maximal independent set of G and for j > 1, Ij is a maximal

independent set in G− ∪j−1
i=1 Ii. We extend each Ii to a maximal independent set I ′i of

G. If we choose one vertex vi ∈ Ii for each i = 1, . . . , k of G, then using I1 = I ′1 as the
common maximal independent set for the linear system, the submatrix of AG with
rows corresponding to I ′2, . . . , I

′
k and columns corresponding to v2, . . . , vk is lower tri-

angular with ones on the diagonal, as no vi can lie in I ′j for j < i (and in particular no
vi lies in I ′1 for any i = 2, . . . , k). Thus the rank of AG is at least k− 1, so the nullity
of AG (and hence wcdim(G)) is at most n− k + 1. Because I1, . . . , Ik is a covering of
G with k independent sets, χ(G) ≤ k, so wcdim(G) ≤ n− k+1 ≤ n−χ(G)+ 1.

The major result on well-covered spaces can be found in Theorem 3.5 of [2]. There,
it is shown that if the characteristic of F is 0, then for a connected graph G �∼= C7

of girth 7 or greater, wcdim(G,F) equals the number of leaves. Moreover, the basis
vectors can be taken to be the set {fv|v is a leaf}, where fv(v) = fv(x) = 1, x is the
unique vertex adjacent to v (x is referred to as a stem), and fv(w) = 0 otherwise. The

D
ow

nl
oa

de
d 

02
/1

6/
16

 to
 1

29
.1

73
.7

4.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



954 J. I. BROWN AND R. J. NOWAKOWSKI

exceptional case is G ∼= C7 in which case wcdim(G,F) = 1 and the basis vector is the
all ones vector. All bases can be constructed in polynomial time, and the restriction
on the field can be removed if there is at least one leaf. In particular, Caro and
Yuster’s result shows that the well-covered dimension of a tree is equal to the number
of leaves.

In this paper, after illustrating how the well-covered dimension can depend on
the characteristic of the field, we restrict ourselves to the most interesting case, char-
acteristic 0, and consider families of graphs for which the well-covered dimension is
unbounded and those for which it is bounded. Extending Caro and Yuster’s result that
the well-covered dimension of a tree is equal to the number of leaves, we calculate the
dimension of chordal graphs and show how a corresponding basis can be derived from
the chordal graph’s simplicial decomposition. Using linear algebraic techniques, we
show on the other hand that nonempty circulant graphs of prime order have bounded
dimension over any field of characteristic 0.

2. Characteristic does make a difference. In this section we provide, for
every prime p, an infinite number of graphs whose dimension is different over fields of
characteristic p and 0.

We begin by defining graphs Gp,q,n. Let n ≡ 0 mod p with n > p ≥ 3 (we will
handle the case p = 2 at the end). Let q > p(p− 1), q �≡ 0 mod p. We form Gp,q,n on
vertex sets V0, . . . , Vq−1, where Vi = {vi,1, . . . , vi,n}. The nonedges of Gp,q,n are vi,rvi,s
and vi,rvj,r, with r, s = 1, 2, . . . , n, r �= s, i, j ∈ {0, 1, . . . , q−1}, i−j ∈ {1, 2, . . . , p−1}
(arithmetic mod q). The complement of G3,7,6 (which has fewer edges than G3,7,6) is
shown in Figure 1. Now it is not difficult to verify that the maximal independent sets
of Gp,q,n are V0, . . . , Vq−1 together with the sets

{vi,k, vi+1,k, . . . , vi+p−1,k}

(here and elsewhere, addition is modulo q). Setting the sum of each of the weights
on the maximal independent sets equal to the sum of the weights on the vertices of
Vq−1, we find that the linear system corresponding to the well-covered weightings is
Ax = 0, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In In · · · In 0n 0n · · · 0n −Jn
0n In · · · In In 0n · · · 0n −Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · In In In · · · In −Jn
0n 0n · · · 0n In In · · · In In − Jn
In 0n · · · 0n 0n In · · · In In − Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
In In · · · In 0n 0n · · · 0n In − Jn
1T
n 0T

n · · · 0T
n 0T

n 0T
n · · · 0T

n −1T
n

0T
n 1T

n · · · 0T
n 0T

n 0T
n · · · 0T

n −1T
n

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0T
n 0T

n · · · 0T
n 0T

n 0T
n · · · 1T

n −1T
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the columns are indexed by the vertices

v0,1, v0,2, v0,3, . . . , vi,1, vi,2, vi,3, . . . , vq−1,n,

and the rows are indexed by the maximal independent sets V0, V1, V2, . . . , Vq−1 and
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WELL-COVERED VECTOR SPACES OF GRAPHS 955

Fig. 1. G3,7,6.

the sets

{v0,1, v0+1,1, . . . , v0+p−1,1}, {v0,2, v0+1,2, . . . , v0+p−1,2}, . . . , {v1,1, v1+1,1, . . . , v1+p−1,1},
. . . , {vq−1,1, vq−1+1,1, . . . , vq−1+p−1,1}, . . . {vq−1,1, vq−1+1,1, . . . , vq−1+p−1,1}.

In the above block form of the matrix, the subscript n denotes the order of the
submatrix, with Jn being the n× n matrix of all ones and 0n being the n× n matrix
of all zeros. If B denotes the top nq rows of A, then B = C −D, where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In In · · · In 0n 0n · · · 0n 0n
0n In · · · In In 0n · · · 0n 0n
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · In In In · · · In 0n
0n 0n · · · 0n In In · · · In In
In 0n · · · 0n 0n In · · · In In
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
In In · · · In 0n 0n · · · 0n In

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is block circulant (with p consecutive identity matrices in each block row) and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n 0n · · · 0n 0n 0n · · · 0n Jn
0n 0n · · · 0n 0n 0n · · · 0n Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · 0n 0n 0n · · · 0n Jn
0n 0n · · · 0n 0n 0n · · · 0n Jn
0n 0n · · · 0n 0n 0n · · · 0n Jn
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0n 0n · · · 0n 0n 0n · · · 0n Jn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Suppose first that the characteristic of F is 0. Then by summing the first n rows
and subtracting off rows nq + 1 to nq + p, we get a row with n(q − 1) zeros followed
by −(n − p)1T

n . Since n > p and the characteristic is 0, we can divide through by
−(n− p) to get 1T

n in the last positions. Adding this row to each of the first nq rows
of A, we obtain a matrix whose upper nq rows are the block circulant C. It is clear
that C is nonsingular iff the q × q circulant matrix formed by replacing each In and
0n by 1 and 0, respectively, is nonsingular.

However, it is known (cf. [7, p. 66]) that the determinant of a circulant with first
row a1, . . . , am is

∏ m∑
i=1

aix
i−1,
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956 J. I. BROWN AND R. J. NOWAKOWSKI

where the product is taken over all mth roots x of unity. In our case, the determinant
of C is given by

∏ p∑
i=1

xi−1

over all x that are qth roots of unity. However, no term in this product is 0, since
clearly the term with x = 1 is nonzero, and for any other qth root of unity x we have
(by multiplying through by 1 − x) that x is also a pth root of unity, a contradiction
since q �≡ 0 mod p. Thus we conclude that the matrix A has full row rank over the
field of characteristic 0 and hence has nullity 0, i.e., wcdim(Gp,q,n,Q) = 0.

On the other hand, if we weight every vertex with 1, then this yields a weighting
over a field of characteristic p since the maximal independent sets have weight p or
weight n ≡ 0 mod p. Thus wcdim(Gp,q,n,Zp) > 0.

Last, we handle p = 2. For any n > 2, n even, we form the graph G2,n by
removing a perfect matching from Kn,n. We let the partition be V0 = {a1, . . . , an}
and V1 = {b1, . . . , bn}, with a1b1, . . . , anbn being the perfect matching that is removed.
The maximal independent sets are {ai, bi} for i = 1, 2, . . . , n and V1 and V2. Setting
the sum of each of the weights on the maximal independent sets equal to that of the
weights on the vertices of V2, we find that the linear system corresponding to the
well-covered weightings is

Ax = 0,

where

A =

(
In In − Jn
1T
n −1T

n

)
.

Subtracting the top n rows from the bottom yields(
In In − Jn
0T
n (n− 2)1T

n

)
.

Over Q we can divide out by n− 2 so that A is row equivalent to(
In In − Jn
0T
n 1T

n

)
(∗),

which has rank n+1. Hence the nullity is n−1, which implies that wcdim(G2,n,Q) =
n− 1.

On the other hand, over Z2, since n is even, A is row equivalent to(
In In − Jn
0T
n 0T

n

)
,

which has rank n. Hence the nullity is n, which implies that wcdim(G2,n,Z2) = n.
For the remainder of the paper, we shall restrict our discussion to fields of char-

acteristic 0, though some of the results will hold over fields of other characteristic as
well.

3. Families of graphs with unbounded well-covered dimension. In this
section, we shall determine (in polynomial time) the well-covered dimension of cographs
and chordal graphs, where the latter extends the result of Caro and Yuster on trees.
We begin with the easier case.
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WELL-COVERED VECTOR SPACES OF GRAPHS 957

3.1. Cographs and anti-well-covered graphs. A cograph is a graph that
does not contain an induced path on four vertices. It is well known (cf. [5]) that
cographs have a recursive definition; the class of cographs is the smallest class of graphs
containing K1 (the complete graph on one vertex) that is closed under disjoint union
and join. We shall need to introduce a definition that is of interest in its own right.

Definition 3. A graph for which f(G) = 0 for every well-covered weighting f of
G is called an anti-well-covered graph.

Note that in a well-covered graph G of order n, the all ones vector 1n is in
WC(G,F), and for an anti-well-covered graph, 1n is in WC(G,F)⊥, the orthogonal
complement of the well-covered space of G. The fact that WC(G,F)⊥∩WC(G,F) =
{0} ensures that no well-covered graph is anti-well-covered, and this motivates our
choice of name for the property.

A graph of dimension 0 is clearly an anti-well-covered graph, but there are others.
For example, one can verify that C6 and Q3 (the 3-cube) are anti-well-covered. Also,
Kn,n − M , where n > 2 and M is a 1-factor, is an anti-well-covered graph with di-
mension n over any field of characteristic c, where gcd(n, c) = 1 (this follows from the
derivation of (∗) in the previous section). In order to determine the well-covered di-
mension of cographs, we will need some simple properties of anti-well-covered graphs.

Lemma 4. Let G or H be graphs. Then G ∪ H is anti-well-covered iff both G
and H are anti-well-covered, whereas G + H is anti-well-covered iff either G or H is
anti-well-covered.

Proof. The well-covered weightings of the disjoint union of two graphs G and
H are precisely those functions on V (G) ∪ V (H) whose restrictions to G and H are
well-covered weightings, whereas the well-covered weightings of the join of G and H
are precisely those functions on V (G) ∪ V (H) whose restrictions to G and H are
well-covered weightings with the same sum. It follows that G∪H is anti-well-covered
iff both G and H are anti-well-covered, whereas G + H is anti-well-covered iff either
G or H is anti-well-covered.

We now determine how the well-covered dimension behaves under disjoint union
and join.

Lemma 5. Let G and H be graphs. Then

1. wcdim(G ∪H) = wcdim(G) + wcdim(H), and

2. wcdim(G + H) = wcdim(G) + wcdim(H) − 1 unless both G and H are anti-
well-covered graphs in which case wcdim(G + H) = wcdim(G) + wcdim(H).

Proof. The first result is given in [1]. Let L be the subspace generated by those
vectors whose restrictions to G and H are well-covered weightings on the respective
graphs. From the proof of Lemma 4, L properly contains the subspace generated by
well-covered weightings of G + H iff either G or H is anti-well-covered. (If say G is
not anti-well-covered, then we can find well-covered weightings of G with weight equal
to any field element, in particular, of unequal weight to some weighting of H.) Thus
wcdim(G + H) = wcdim(G) + wcdim(H) if both G and H are anti-well-covered, and
wcdim(G + H) < wcdim(G) + wcdim(H) otherwise. In the latter case, note that if
we write corresponding linear systems defining the subspaces of G and H as

AG x = 0

and

AH x = 0,

D
ow

nl
oa

de
d 

02
/1

6/
16

 to
 1

29
.1

73
.7

4.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



958 J. I. BROWN AND R. J. NOWAKOWSKI

then a corresponding linear system for G + H can be given as

AG+H x = 0,

where

AG+H =

⎛
⎝ AG 0

0 AH

u v

⎞
⎠

with u and v being nonzero vectors of the appropriate dimension. Now

rank(AG+H) ≤ rank(AG) + rank(AH) + 1,

so since wcdim(K) = nullity(AK) = |V (K)| − rank(AK) for any graph K, we find
that

wcdim(G + H) ≥ wcdim(G) + wcdim(H) − 1.

Since wcdim(G + H) < wcdim(G) + wcdim(H), we conclude that wcdim(G + H) =
wcdim(G) + wcdim(H) − 1.

Theorem 6. The dimension of a cograph can be determined in polynomial time.
Proof. A cograph is constructed via the disjoint union and join operation from

K1. A cograph can be recognized and the order of operations for its construction
can be determined in polynomial time [5]. It follows that we can recognize whether
a cograph is anti-well-covered in polynomial time as well. The dimension can be
determined in polynomial time from Lemma 4.

We conclude this section by applying anti-well-covered graphs to determining the
dimension of graphs with independence number 2. Graphs with independence number
1 are complete, and it is easy to see that these all have dimension 1, with all vertices
having the same weight in any weighting.

Theorem 7. Let G be a graph with β(G) = 2. Then wcdim(G) is 1 plus the
number of bipartite components of order of at least 2 in the complement G of G.

Proof. Let the components of G be D1, . . . , Dt. Noting that K1 is not anti-
well-covered, we observe from Lemma 5 that any Di of order 1 does not affect the
dimension, so we can assume that each Di has an order of at least 2. Also, every
edge of G is a maximal independent set of G. Note that under any weighting of G, if
xy and yz are edges of G, then x and z have equal weight, so that any two vertices
connected by a walk of even length have the same weight.

Consider any component D of G. If D is not bipartite, it contains an odd cycle.
By the argument above (traveling twice around the cycle), any well-covered weighting
must be constant on this cycle, and indeed on the component D, and hence the
subgraph of G induced by D has dimension 1.

On the other hand, if D is bipartite with bipartition (X,Y ), then we can weight
every vertex of X with one weight, weight every vertex of Y with another, and derive
a well-covered weighting of the graph. Moreover, every well-covered weighting of G
necessarily assigns the same weights to vertices of X and the same weights to the
vertices of Y , as vertices of X are at even distances from one another (similarly for
the vertices of Y ). Thus the subgraph of G induced by D has dimension 2.

Now each Di induces a well-covered graph (with β = 2), so in particular, no Di

is anti-well-covered. Since G is the join of the subgraphs induced by D1, . . . , Dt, we
conclude the stated formula for wcdim(G) from Lemma 5.
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WELL-COVERED VECTOR SPACES OF GRAPHS 959

3.2. Complements of k-trees, chordal graphs, and related vertices. In
this section we show that certain other well known families of graphs also have un-
bounded well-covered dimension. A k-tree, (k ≥ 2) is defined recursively: G0 is a
k-clique; for i > 0, Gi is formed from Gi−1 by adding a new vertex that is joined to
a (k − 1)-clique of Gi−1. Every tree is a 2-tree. Here we determine the well-covered
dimension of complements of k-trees. The dimension of k-trees themselves will be
covered later in this section.

Theorem 8. If G is the complement of a k-tree, then G has dimension k.

Proof. Let G be the complement of a k-tree with G0 an independent set of size k
of G and G1, G2, . . . , Gm

∼= G a sequence of k-trees that build to G. Let the vertices
of G0 be v1, . . . , vk. Let f be any well-covered weighting of G. By induction on i we
show that (i) the maximal independent sets of Gi are the independent sets of size k
of Gi and (ii) wcdim(Gi) = k. The latter, for i = m, completes the proof.

For i = 0, (i) and (ii) are obvious. Suppose now that Gi is formed from Gi−1 by
the addition of vertex vk+i so that, for some independent set Xi of size k− 1 of Gi−1,
vk+1 is joined to all of Gi−1 −Xi but no vertex of Xi. Now the maximal independent
sets of Gi are those that do not contain vk+i (which are the maximal independent sets
of Gi−1) and those that contain vi, of which there is only one, namely {vi}∪Xi. Thus
by induction (i) holds. Moreover, an associated linear system for Gi can be derived
from that of Gi−1 by adding in the equation

∑
v∈{vi}∪Xi

xv =
∑
v∈G0

xv.

This introduces a new variable, so it is not hard to see that the associated matrices
Ai−1 and Ai have the same nullity (since Ai+1 has a rank one larger than that of Ai,
but one more column). Part (ii) now follows.

We now turn our attention to chordal (or triangulated) graphs, that is, graphs
without an induced cycle of length of at least 4. Every chordal graph has a simplicial
decomposition; that is, the graph can be recursively built from a complete graph by
adding vertices that are joined to cliques (for more information on chordal graphs, cf.
[6, p. 83]). Note that all trees and all k-trees are chordal graphs. We now calculate
the dimension of chordal graphs. A new relation on the vertices of a graph plays a
key role in calculating the well-covered dimension of chordal graphs. Two vertices x
and y of a graph are related if there is an independent set I, containing neither x nor
y, such that I ∪{x} and I ∪{y} are both maximal independent sets. Note that x and
y must be adjacent or else both could be added to I.

Lemma 9. Let f be a well-covered weighting of G. If x and y are related vertices
in G, then f(x) = f(y).

Proof. For an appropriate independent set I, f(x)+
∑

z∈I f(z) = f(y)+
∑

z∈I f(z),
and the result follows.

Now we say a vertex x of a graph G is simplicial if N [x] is a maximal clique. Let
C(G) = {C|C is a maximal clique containing a simplicial vertex of G}. The members
of C(G) are called simplicial cliques. Let sc(G) = |C(G)|. Let C be a simplicial clique
of G, and let fC be the associated weighting: fC(v) = 1 if v ∈ C and fC(v) = 0
otherwise. It was shown in [2] that the number of leaves of a graph is a lower bound
to its dimension. We generalize this to simplicial cliques.

Lemma 10. Let G be a graph. Then {fC |C ∈ C} is an independent set of vectors
and wcdim(G) ≥ sc(G).
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960 J. I. BROWN AND R. J. NOWAKOWSKI

Proof. Let C ∈ C. There is a vertex v ∈ C that is adjacent only to vertices of C.
Therefore, any maximal independent set must contain exactly one vertex of C, and so
fC is a well-covered weighting. Moreover, v is in no other maximal simplicial clique.
Therefore, fC(v) = 1, but fD(v) = 0 for all D ∈ C, D �= C. Consequently {fC |C ∈ C}
is an independent set of well-covered weightings. The second part of the lemma now
follows.

Our main result proves that equality indeed holds in Lemma 10 for chordal graphs.

Theorem 11. Let G be a chordal graph. Then wcdim(G) = sc(G).

The remainder of the section is devoted to a proof of Theorem 11.

From Lemma 10 we have wcdim(G) ≥ sc(G). The second part of the proof is
now by induction on the size of G. If G is a singleton, then wcdim(G) = sc(G) = 1.
Assume that the result is true for all chordal graphs of sizes 1 through k for some
k ≥ 1. We shall need a few observations about simplicial cliques.

Observation 12. Let w and y be adjacent vertices. If w is a simplicial vertex,
then N [w] ⊆ N [y]. If both w and y are simplicial vertices, then N [w] = N [y], so that
both w and y “generate” the same simplicial clique of G.

Let x be a simplicial vertex of G, and put H = G − {x}. Note that H is also
chordal. By induction, sc(H) = wcdim(H).

Observation 13. Consider a simplicial clique C ∈ C(H). If there is a simplicial
vertex y ∈ C and y is not adjacent to x, then C ∈ C(G). Similarly, if D ∈ C(G)
and there is a simplicial vertex z ∈ D, z �= x, with z not adjacent to x, then
D ∈ C(H).

Observation 14. If C ∈ (C(G) − C(H)), then C = N [x].

Proof. By Observation 13, all simplicial vertices of C are adjacent to x, but then,
by Observation 12, we have C = N [x].

Observation 15. If C ∈ (C(H) − C(G)), then either C = N(x), or there is
a simplicial vertex y ∈ C, y adjacent to x. Moreover, there is at most one such
simplicial clique C.

Proof. Suppose that C ∈ (C(H) − C(G)), and let y ∈ C be a simplicial vertex in
H. It follows from Observation 13 that y is adjacent to x (else C ∈ C(G)) so that in
G we have, by Observation 12, N [x] ⊆ N [y]. If y is a simplicial vertex of G, then by
Observation 12 N [x] = N [y] and thus C = N [x] − x = N(x). If y is not a simplicial
vertex of G, then, in H, C = N [y] = N(x) ∪ A. Suppose that C,D ∈ (C(H) − C(G))
with C �= D. There are simplicial vertices y ∈ D, y adjacent to x, and z ∈ C which
is also adjacent to x. But then z and y are adjacent (since both are in the clique
N(x)), and so by Observation 12, C = N [z] = N [y] = D. Thus, there is at most one
simplicial clique C ∈ (C(H) − C(G)).

Observation 16. sc(G) − 1 ≤ sc(H) ≤ sc(G).

Proof. By Observation 13, every simplicial clique of H that does not contain a
simplicial vertex from N(x) is a simplicial clique of G, and by Observation 15 there
is at most one simplicial clique of H with a vertex in N(x). Since G has N [x] as a
simplicial clique while H clearly does not, we have sc(H) ≤ sc(G). On the other hand,
there is only one simplicial clique of G, namely N [x], that is not a simplicial clique
of H, as the only other simplicial vertices of G in N [x] generate the same simplicial
clique (by Observation 12). Thus sc(G) − 1 ≤ sc(H).

Now back to the proof of Theorem 11. Let f(G) be a well-covered weighting of
G, and let K be the (common) sum of the weights of a maximal independent set. We
first show that any well-covered weighting of G can be associated with a well-covered
weighting of H. We then use this and the fact that wcdim(H) = sc(H) to show
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WELL-COVERED VECTOR SPACES OF GRAPHS 961

that wcdim(G) = sc(G). From the observations we see that there are three cases to
consider.

1. C(H) ⊂ C(G), i.e., no new simplicial clique is created when x is deleted,
2. {C} = C(H) − C(G) and C = N(x), or
3. {C} = C(H) − C(G) and C �= N(x).

Case 1. We have C(H) ⊂ C(G) so that {N [x]} = C(G) − C(H) and sc(G) =
sc(H) + 1. Since every simplicial clique of H is a simplicial clique of G, then, from
Observation 2, it follows that for all y ∈ N(x), y is not simplicial in H. We define a
weighting wf on V (H) by

wf (v) =

{
f(v) if v is not adjacent to x,
f(v) − f(x) if v ∈ N(x).

We claim that wf is in fact a well-covered weighting of H. Let I be a maximal
independent set of H. If there exists s ∈ I such that s ∈ N(x), then I is a maximal
independent set in G, and moreover no other vertex in I is adjacent to x. Therefore,

∑
v∈I

wf (v) =
∑

v∈I−s

wf (v) + wf (s) =
∑

v∈I−s

f(v) + f(s) − f(x) = K − f(x).

If I contains no vertex adjacent to x, then I ∪ {x} is a maximal independent set in
G. Therefore

f(x) +
∑
v∈I

wf (v) = f(x) +
∑
v∈I

f(v) = K;

i.e.,
∑

v∈I wf (v) = K − f(x). Thus wf is a well-covered weighting of H. In H, let hi,
i = 1, 2, . . . , sc(H) be the vector with weight 1 on the coordinates corresponding to
the vertices of the ith simplicial clique. By induction, this is a basis for wcdim(H).
In G, we extend these vectors to gi, i = 1, 2, . . . , sc(H), where gi is the vector with
weight 1 on the vertices of the coordinates corresponding to the ith simplicial clique.
(That is, each gi is the same as hi, but a value for gi(x) = 0 is now defined.) In this
case, since every simplicial clique of H is a simplicial clique of G, by Lemma 10, the
gi’s are linearly independent, well-covered weightings of G. Now wf is a well-covered
weighting of H, and so

wf =

sc(H)∑
i=1

cihi.

Now, by the construction of wf , f(v) −
∑sc(H)

i=1 cihi(v) = 0 for v �∈ N(x), and so the

well-covered weighting g = f−
∑sc(H)

i=1 cigi is nonzero only on vertices of N [x]. For any
w ∈ N [x], extend w to a maximal independent set I(w) of G. Then

∑
u∈I(w) g(u) =

g(w), but g is a well-covered weighting so that g is a constant on the simplicial clique
N [x] and 0 is everywhere else, i.e., g is a scalar multiple of the associated weighting

of the simplicial clique N [x] of G. Thus f = g +
∑sc(H)

i=1 cigi is a linear combination
of the associated weightings for the simplicial cliques of G, and we conclude that
wcdim(G) ≤ sc(G), and hence (by Lemma 10) wcdim(G) = sc(G) in this case.

Case 2. We have {C} = C(H) − C(G) and C = N(x). Therefore, there is a
y ∈ C which is simplicial in both H and G. Let I be any maximal independent set
of G − N [x]. Then both I ∪ {x} and I ∪ {y} are maximal independent sets for G,

D
ow

nl
oa

de
d 

02
/1

6/
16

 to
 1

29
.1

73
.7

4.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



962 J. I. BROWN AND R. J. NOWAKOWSKI

i.e., x and y are related and thus have the same weight in any well-covered weighting
of G. Note that the restriction f ′ of f to H is also a well-covered weighting. This
follows since any maximal independent set I of H must contain a vertex of C = N(x),
and thus I is also a maximal independent set of G. Let hi, i = 1, 2, . . . , sc(H), be
the vector with weight 1 on the coordinates corresponding to the vertices of the ith
simplicial clique of H, and let C correspond to i = 1. By induction, this is a basis

for WC(H); therefore, f =
∑sc(H)

i=1 dihi and d1h1 = f ′ −
∑sc(H)

i=2 dihi. In G, we
extend these vectors to gi, i = 2, . . . , sc(H), with gi the vector having weight 1 on
the coordinates corresponding to the vertices of the ith (i > 1) simplicial clique of
H (and G). By Lemma 10, each gi is a well-covered weighting of G and thus so is

g = f −
∑sc(G)

i=2 digi. Under g, the only vertices with nonzero weights are those of
N [x]. All of the vertices of C have the same weight under g since g restricted to C
is h1. But since f(x) = f(y) (y simplicial in C), it follows that g is constant on N [x]
and that {gi|i = 2, . . . , sc(H)} ∪ {g} spans WC(G). In this case, again we have that
wcdim(G) = sc(G).

Case 3. We have {C} = C(H) − C(G) and C �= N(x). Therefore, there is a
simplicial vertex y ∈ C, y adjacent to x, y not simplicial in G, and C = N [y]−{x} =
N(x) ∪ A. Also, in H, if z ∈ A were a simplicial vertex, then, by Observation 1,
N [y]− {x} = N [z] and C = N [z] would also be a simplicial clique in G. Therefore A
contains no simplicial vertices. We define a weight function wf on V (H) by

wf (v) =

{
f(v) + f(x) if v ∈ A,
f(v) otherwise.

Let I be a maximal independent set of H. If there exists s ∈ I such that s ∈ N(x),
then I is a maximal independent set in G. Thus∑

v∈I

wf (v) =
∑
v∈I

wf (v) = K.

If I contains no vertex adjacent to x, then it must contain exactly one vertex z ∈ A,
and I ∪ {x} must be a maximal independent set in G. Therefore,∑

v∈I

wf (v) = wf (z) +
∑

v∈I−{z}
wf (v)

= f(x) + f(z) +
∑

v∈I−{z}
f(v)

= K.

Thus, wf is a well-covered weighting of H.
In H, let hi, i = 1, 2, . . . , sc(H), be the vector with weight 1 on the vertices of

the coordinates corresponding to the ith simplicial clique where the simplicial clique
containing y has index 1. By induction, this is a basis for WC(H). In G, let gi,
i = 2, 3, . . . , sc(H), be the vector with weight 1 on the coordinates corresponding to
the vertices of the ith simplicial clique. Recall that in this case we have sc(G) = sc(H)
and the simplicial cliques of H with indices 2 through sc(H) are also simplicial cliques
in G. Thus, {gi|i = 2, 3, . . . , sc(G)} is a linearly independent set. Now wf is a well-
covered weighting of H, and so

wf =

sc(H)∑
i=1

cihi.
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WELL-COVERED VECTOR SPACES OF GRAPHS 963

Therefore,

wf −
sc(H)∑
i=2

cihi = c1h1,

i.e., all the vertices of N [y] ∩ H have weight c1 in the well-covered weighting wf −∑sc(H)
i=2 cihi of H. Therefore, in G, the only vertices with nonzero weight in the

well-covered weighting g = f −
∑sc(G)

i=2 cigi of G are the vertices of N [y] with g(z) =
c1 − f(x) for all z ∈ A and g(z) = c1 for z ∈ N(x), and g(x) = f(x).

We now need to show that c1 = f(x), and for that we need to find an independent
set with certain properties. Let I be a minimum-sized independent set of V (G)−(C∪
{x}) that dominates (i.e., is adjacent to) the maximum number of vertices in C. If I
does not dominate all the nonsimplicial vertices of C, then there exists a nonsimplicial
z ∈ C which is not dominated by a vertex of I. However, since z is not simplicial
there exists w ∈ G − (N [x] ∪N [y]) with z adjacent to w. Now, since I ∪ {w} is not
independent (I was maximum with this domination property), there exists i ∈ I such
that i is adjacent to w. Let s ∈ C ∩ N(i). The latter is nonempty since otherwise i
could be deleted from I, a contradiction. Thus s is adjacent to z since C is a clique,
and consequently, {z, w, i, s} is a C4. Since H is chordal, this cycle must have a chord,
specifically w ∼ s. Since this is true for any i and s, we can replace all the neighbors
of w in I by w. This independent set dominates more vertices in C than does I, and
this is a contradiction. Therefore, there is an independent set J of V (G)− (C ∪ {x})
which dominates all the nonsimplicial vertices in C and in particular all of A (recall
that A has no simplicial vertices). Now, since J dominates all of A, J ∪ {x} and
J ∪ {y} are maximal independent sets, and so x and y are related and, in particular,
g(x) = g(y) = c1. Thus g(x) = g(w) for any w ∈ N(x). But then for all z ∈ A,
g(z) = c1 − g(x) = 0. It follows that the original well-covered weighting f is a linear
combination of {gi|i = 2, 3, . . . , sc(G)}∪{g′}, where g′ is 1 on the vertices of N [x] and
is 0 everywhere else. Thus, in this and all cases, wcdim(G) = sc(G), and the theorem
is proved.

We remark that Theorem 11 holds over any field since all of the arguments hold
over any characteristic.

4. Families of graphs with bounded well-covered dimension. In this sec-
tion, we shall determine (in polynomial time) the well-covered dimension of circulant
graphs of prime order and partitionable graphs; the techniques here are based in linear
algebra. We begin with circulants of prime order.

We shall need some notation for maximal independent sets of a given cardinality.
For a graph G, let It = {I : I is a maximal independent set of G, |I| = t}. Here is an
upper bound that will be quite useful in this section.

Lemma 17. Let G be a graph G of order n, and let t ≤ β(G). Moreover,
if char(F) �= 0, suppose that gcd(t, char(F)) = 1. Let dt be the dimension of the
subspace of Fn generated by the characteristic vectors of It. Then wcdim(G,F) ≤
n − dt + 1. Moreover, if dt = n, then the only possible well-covered weightings are
constant functions.

Proof. If w is a well-covered weighting of G with sum k, then (w− k
t j)i̇t = k−k =

0, and so w ∈ span(〈It〉⊥∪{j}). It follows that wcdim(G,F) is at most the dimension
of span(〈It〉⊥ ∪ {j}). The dimension of the latter is at most (n − dt) + 1, and so it
follows that wcdim(G,F) ≤ n− dt + 1. If dt = n, then span(〈It〉⊥ ∪{j}) = span({j}),
so the only possible well-covered weightings are constant functions.
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964 J. I. BROWN AND R. J. NOWAKOWSKI

Theorem 18. Let G be a circulant graph with order p, a prime. If G is not
totally disconnected, then wcdim(G) = 1 if G is well-covered and equals 0 otherwise.

Proof. Let V (G) = {0, 1, 2, . . . , p−1}. Let S be a maximum independent set that
contains 0. Since G is not totally disconnected, then S �= {0, 1, 2, . . . , p − 1}. Note
that Si = {i + j mod p : j ∈ S} is a maximum independent set for i = 0, 1, . . . , p− 1
and that Si �= Sj for i �= j. Let A be the incidence matrix where the rows are indexed
by Si and the columns by V (G). A is clearly a circulant matrix. As in section 2, the
determinant of A is given by∏ ∑

A(0,i)=1

xi−1 (∗∗)

over all x that are pth roots of unity. Suppose (to reach a contradiction) that for
some pth root of unity, q,

∑
A(0,i)=1 q

i−1 = 0 (we follow the argument given in [4] for

vanishing sums of roots of unity). Then the automorphism ω → ωj of Q[ω] shows
that

∑
A(0,i)=1 ω

i−1 = 0 for all primitive pth roots of unity. We now sum (∗∗) over
all primitive pth roots of unity, noting that, for any primitive pth root of unity and
any 1 ≤ j ≤ p− 1, the sum of the jth power of the primitive pth roots of unity is −1
(since this is equal to the sum of the primitive pth roots of unity). Thus

0 =

p−1∑
j=1

∑
A(0,i)=1

ωi−1
j

=
∑

A(0,i)=1

p−1∑
j=1

ωi−1
j

= (p− 1) + (|{i : A(0, i) = 1}| − 1)(−1).

Therefore, the number of nonzero terms in the first row of A must be p, implying
that G is totally disconnected, which is a contradiction. Since det(A) �= 0, then
A is invertible and so the row space of A has dimension p. From Lemma 17, it
follows that wcdim(G) ≤ p− p + 1 = 1. If G is well-covered, then j is a well-covered
weighting. If G is not well-covered, then the only well-covered weighting is the all-zero
weighting.

5. Conclusion. The results in the previous sections give rise to a number of
questions.

Problem 19. Is it possible to give a structural characterization of anti-well-
covered graphs of positive dimension? Indeed, is there a polynomial algorithm to
recognize such anti-well-covered graphs?

Problem 20. As indicated in [2], the same questions can be asked of hypergraphs.
Can the well-covered dimension of matroids be calculated in polynomial time?

We can show that the well-covered dimension of a graphic matroid of a graph G
is equal to the number of blocks of G.
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