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Abstract. The study of animal movement and behavior is being revolutionized by
technology, such as satellite tags and harmonic radar, that allows us to track the movements
of individual animals. However, our ability to analyze and model such data has lagged
behind the sophisticated collection methods. We review problems with current methods
and suggest a more powerful and flexible approach, state-space modeling, and we illustrate
how these models can be posed in a meta-analytic framework so that information from
individual trajectories may be combined optimally. State-space models enable us to deal
with the complexity of modeling animals interacting with their environment but, unlike
other methods, they allow simultaneous estimation of measurement error and process noise
that are inherent in animal-trgjectory data. A Bayesian framework allows us to incorporate
important prior information when available and also allows meta-analytic techniques to be
incorporated in a straightforward fashion. Meta-analysis enables both individual and broad-
er-level inference from observations of multiple individual pathways. Our approach is
powerful because it allows researchers to test hypotheses regarding animal movement, to
connect theoretical models to data, and to use modern likelihood-based estimation tech-
niques, all under a single statistical framework.
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INTRODUCTION

Animals interact with their environment in complex
ways and these interactions can produce complex
movement patterns. Understanding how these patterns
arise and what their implications are for home-range
and territorial dynamics (Moorcroft et al. 1999), habitat
use and conservation (Belisle and St. Clair 2001, Block
et al. 2001), biological invasions (Lewis and Kareiva
1993), biological control (Jonsen et al. 2001), meta-
population dynamics (Moilanen and Hanski 1998), and
community interactions (Ellner et al. 2001) are impor-
tant issues in ecology.

Our ability to analyze movement patterns, however,
has been far outstripped by our ability to collect in-
dividual movement data. Technologies such as satellite,
archival, and harmonic radar tags enable us to follow
marine and terrestrial animal movements over large
distances (e.g., Roland et al. 1996, Bergman et al. 2000,
Block et al. 2001). There are sources of error inherent
in each of these technologies, and innovative methods
are required to deal with them while at the same time
allowing behaviors to be estimated and hypotheses to
be tested formally. In addition, we require meta-ana-
lytic tools for combining information from multiple
observations of movement trajectories to facilitate

Manuscript received 25 October 2002; revised 28 February
2003; accepted 10 March 2003. Corresponding Editor: G. M.
Henebry.

3 E-mail: jonsen@mathstat.dal.ca

broader inference to population, species, and com-
munity levels.

Movement pathways, which are time series of lo-
cation observations, can be analyzed using state-space
models (SSMs). SSMs are time-series models that al-
low unobservable, true states to be inferred from ob-
served data by accounting for errors arising from im-
precise observations and from stochasticity in the pro-
cess being studied. The state-space modeling approach
has been used to analyze animal movement (Anderson-
Sprecher and Ledolter 1991, Newman 1998, Brillinger
2000, Sibert and Fournier 2001), but a complete de-
scription and demonstration of its utility for ecologists
is lacking. In addition, the task of fitting SSMs to data
can be formidable, requiring both large computational
overhead and statistical expertise. Recent advances in
statistical methods (Carlin et al. 1992) and freely avail-
able application software (WinBUGS, Spiegelhalter et
al. 1996), however, have made the task both compu-
tationally efficient and accessible for non-statisticians.

Our objectives in this paper are, first, to provide a
rationale for the preference of SSMs over more tradi-
tional approaches for the analysis of animal trajectory
data. Second, to provide a concise description of how
SSMscan befit to animal trajectory datausing aBayes-
ian approach. Third, to illustrate how individual path-
ways may be combined using meta-analytic techniques
so that inferences about population-level behavior can
be made and so that parameter estimation for data-poor,
individual pathways can be improved.
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CURRENT APPROACHES

Present methods for the statistical analysis of animal
movement pathways primarily determine if observed
movements are consistent with random-walk models
such as correlated random walks and biased random
walks (Kareiva and Shigesada 1983, Turchin 1998).
Random-walk analyses (e.g., Kareiva and Shigesada
1983) typically assume that movements are made in
homogeneous environments and that animals do not
change their behavior drastically (Turchin 1998). Un-
fortunately, this is rarely the case. Animal behaviors
change frequently as new stimuli are encountered and/
or asan animal’sinternal (physiological) state changes.
Therefore, movement pathways that span long time pe-
riods are likely to contain complex structure that is
difficult to compare to a random-wak model. One so-
lution to this problem is to break an observed pathway
into separate, homogeneous sections and analyze each
in isolation (Turchin 1998, Sibert and Fournier 2001),
but thisrelies on an adhoc determination of appropriate
break points. More-appropriate methods should mini-
mize this subjectivity by analyzing the switches in be-
havior explicitly (Griinbaum 2000).

Griinbaum (2000) used an advection—diffusion mod-
el that approximated the dynamics of interactions be-
tween environment and organisms’ internal states to
derive population distributions of organisms arising
from biased random-walk behaviors. Such theoretical
studies provide mathematical links between individual -
level movement behaviors and population-level pat-
terns of redistribution. In order to connect theoretical
models like Grinbaum'’s to data, summary statistics
such as turning frequencies and squared net displace-
ment (e.g., Kareiva and Shigesada 1983, Grinbaum
1999) are used, but this often requires subjective de-
cisions about how to calculate the statistics from field
data (Turchin 1998). A more efficient approach would
be to fit a discrete approximation of the model directly
to observed data and estimate parameters using like-
lihood-based statistical techniques.

Only a few studies examine the likelihood of ob-
served movements using modern frequentist methods
(Anderson-Sprecher and L edolter 1991, Newman 1998,
Brillinger 2000, Sibert and Fournier 2001) and there
are no current applications that utilize Bayesian meth-
ods. Such an approach to studying movement trajec-
tories may often require nonlinear methods because
animal behaviors, or the changes between behavioral
states, are inherently nonlinear. In the simplest case,
behavior changes in a simple switch from one type of
behavior to another. Time-series models that describe
such nonlinearities have been studied extensively in
econometrics using nonlinear Kalman filters (Tanizaki
2003) but only recently have they been applied to the
analysis of ecological data (Meyer and Millar 1999,
Brillinger 2000, de Valpine and Hastings 2002). In the
following sections we formulate the nonlinear state-
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space model and illustrate how it may be implemented
using a Bayesian approach that affords efficient com-
putation (Tanizaki 2001) and allows prior information
to be incorporated into the analysis. We note that the
formulation provided here may also be used for linear
cases.

STATE-SPACE MODELS

State-space models (SSMs) represent a natural
framework to model animal movement. In the past,
these models have been applied primarily in the linear
case. The nonlinear case, where much of theinteresting
biology is, previously was not feasible for estimation
in most real-world situations. This has changed with
the advent of simulation-based estimation methods that
allow the integrals inherent in the state-space approach
to be estimated (Carlin et al. 1992, Tanizaki 2001).
Below we present the standard formulation for a non-
linear state-space model. We use Tanizaki’'s notation
throughout (Tanizaki 2001). Readers interested in
greater detail are referred to Tanizaki (2001) and de
Valpine and Hastings (2002) and references therein.

Formulation

We consider a marked animal’s position to be ob-
served at aseriesof timest =1, 2,. .., T. Thelocations
are observed with error which gives rise to a mea-
surement equation:

Y = ht(atvst) t=12...,T (1)

wherey, represents the observed location and «, (called
the “‘ state variable’ in time-series analysis) is the true
location and is not observable. For instance, y, may be
a two-dimensional vector representing the observed
spatial location (e.g., latitude and longitude) of an an-
imal at time t with the error in location at time t given
by a two-dimensional vector &,.

For many types of geolocation estimate, for example
those based upon ambient light intensity (archival tags)
or satellite (e.g., ARGOS), the error variance in lon-
gitude is not the same as the error variance in latitude
(Vincent et al. 2002, Sibert et al. 2003). In these cases,
the error variances can be estimated and included in
the model describing the measurement equation. If fu-
ture movement of an animal depends upon the current
position, process noise, y, (that is mutually independent
of &), and a vector of parameters describing the move-
ment process, vy, then the dynamics can be described
by a transition equation:

o, = flamg v) (2

The purpose of the SSM is to estimate the unob-
served locations, «, using the above two equations and
to estimate ecological parameters describing the move-
ment, y. Here h(-, -) and f(-, -; -) are assumed to be
known.

Let Y, contain all observations from time O through
totimet. Define p,(y,|e,) asthe density function derived
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from the measurement equation, and define p,(a]e,_s;
v) as the density function derived from the transition
equation. State-space models can be formulated recur-
sively by ‘“‘filtering.”” This process consists of two
steps, the first of which takes information from all the
previously observed data, Y, ,, to predict the new lo-
cation. This is the prediction equation and is given by

p(utl Y )
= f Polo | e s; Y)P(eq | Yigi v) da s (3)

The second step updates the new information provided
by y, with the previous information provided by Y,_,.
This update equation is Bayes rule and is given by

py(yt | al)p(atl Y1)

Pl ] Y5 v) = 4
f py(ytlat)p(atlYt—l; v) de

Filtering is conducted for timest = 1, 2, ..., T from
an initial, known position (i.e., where the animal was
released), which is given by p(oy|Yq ¥) = p.(o]og).

The likelihood for vy is the probability of observing
each of the y,’s, given the previous observed positions
and explanatory variables:

Liv; Y1) =p(Yrv) = E P(Yel Yea; )

T

-l

f p(ytlat)p(atlYt—l; v) day|.

®)

Thisiscalled the ““innovation’ for the likelihood func-
tion. Note that the likelihood is the denominator of Eq.
4, and thus does not require extra evaluation. The like-
lihood can be calculated for any vy and set of observed
positions. Solutions in the general, nonlinear case are
difficult to obtain and typically require the use of Monte
Carlo or numerical methods to resolve the multiple
integrals that are inherent in the likelihood.

There are two basic approaches to the problem of
fitting SSMs to data: a Bayesian approach and a fre-
quentist approach. In a Bayesian approach, it is pos-
sible to use Markov chain Monte Carlo (M CM C) meth-
ods to solve this problem (Carlin et al. 1992, Tanizaki
2003). This is the solution used here. The frequentist
approach requires a linearization and use of the ex-
tended Kalman filter (e.g., Anderson-Sprecher and Le-
dolter 1991) or numerical integration (de Valpine and
Hastings 2002).

One advantage of the Bayesian approach is that prior
information can be formally incorporated into the anal -
ysis by specifying prior distributions for the variables
of interest. For example, this may be information re-
garding the measurement error of our instruments,
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knowledge of the variance in the movement process
itself, or information regarding some of the biological
parameters contained in the vector y. An additional
advantage exists when meta-analysisis desired because
this amounts to a straightforward extension of the mod-
el—the addition of hyper-prior distributions. Hyper-
prior distributions are simply prior distributions on the
parameters of prior distributions (Carlin and Louis
1996).

In the following sections we illustrate how SSMs
can be fit in a Bayesian context to animal movement
data using a freely available software package,
WinBUGS version 1.3 (available online)* (Spiegelhal -
ter et al. 1996).

DEMONSTRATION

An environmentally dependent linear
state-space model

The following example uses simulated data to illus-
trate our general approach to fitting state-space models
(SSMs) to movement data. By using simulated datawe
can compare parameter estimates to their true values,
thereby assessing the performance of SSMs, which can-
not be done using field data. We consider a marine
situation where a leatherback turtle, Dermochelys cor-
iacea (Vandelli 1761), moves in an environmentally
dependent manner with its behavior governed by dif-
ferences in sea surface temperature. This simulation is
purposefully simplified to ease the illustration of the
statistical approach. More complex models could be fit
to appropriate data.

Sea surface temperature, which we denote s, is as-
sumed to be sampled along with location, which is
consistent with current tagging technologies (e.g., ar-
chival and ARGOS satellite tags). We further assume
that movements in the north—south and east—west di-
rections are independent draws from the same normal
distribution whose variance, o2 is related to tempera-
ture in the following way:

o, = oexp(—By). (6)

Note that the biological component of the SSM, v, is
fully parameterized by B; B determines how quickly
the distance moved, at each step t, declines with in-
creasing temperature. Note, also that o represents the
process noise implicit in the movements. This com-
ponent of the model acknowledges a stochastic com-
ponent to the turtle’s movement. We include measure-
ment error in our simulated data through the introduc-
tion of arandom variable, &, ~ A(0, 72), where A\ de-
notes the normal distribution.

We have specified all of the components of our SSM
and now present the transition and measurement equa-
tions for this example:

4URL: (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
contents.shtml).
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Fic. 1. Graphical results of fitting a state-space model (SSM) to simulated movement data of a marine turtle. (A) The
true pathway (black) overlaid on the sea surface temperature (s) field. (B) The true pathway (black) and the ‘‘ observed”
pathway (white) for comparison. The difference between these two pathways represents the error associated with measuring
the position of the turtle at discrete pointsin time. (C) Plots of the estimated (black) and observed (white) pathways, overlaid.
(D) Plots of the estimated (black) and true (white) pathways, overlaid. The estimated pathway accounts for measurement-
error and process-noise components estimated by the SSM. Darker areas on the s field represent colder temperatures.

o+ My (7)
Vi = o T & 8

where n, ~ A(0, oexp[—Bs]) and & ~ A0, o,). Note
that «, Y, M, and g, are two-dimensional vectors ac-
counting for movement in the north—south and east—
west directions.

In order to take a Bayesian approach to fitting our
SSM to the simulated data we specify prior distribu-
tionsfor B, o, and 7. These priors represent our know!-
edge of the system before analyzing the current data.
Here, we assume that no prior information regarding
B and o is available and assign appropriately vague
priors for each; B ~ A(0, 1 X 10%) and log o ~ A/(O,
1 x 103).

We assume that we do have some prior knowledge
regarding measurement error, &, and can incorporate
this additional information by specifying an informa-
tive prior for 7. Prior information of this sort is likely
to exist for many analyses using real data(e.g., Vincent
et al. 2002). Here we assume that the measurement-
error variance, T, is known and thus specify an infor-
mative prior, T ~ A(2, 0.1). For simplicity, we assume
that T is identical in the north—-south and east—west
directions.

We simulate a single trajectory with the following
parameter values: B = 0.90, ¢ = 1.0, 7 = 2.0. This
pathway is the true pathway of an animal that, in real

Qg =

applications, is unobservable because observation
methods are imprecise. Hereafter we refer to this sim-
ulated pathway as the “‘true pathway.” Fig. 1A shows
the true pathway (black) overlaid on the s field and
Fig. 1B includes the observed pathway (white), which
contains measurement error. We want to estimate the
truelocationsat timest = 1, 2, . . ., T while accounting
for measurement error and also understand something
about how the turtle responds to its environment.

The SSM was fit to the data using WinBUGS ver-
sions 1.3 (see footnote 4). WinBUGS performs Bayes-
ian analyses for complex statistical models using
MCMC techniques and it is ideally suited to fitting
SSMs (Meyer and Millar 1999). The WinBUGS code
for fitting the SSM to the simulated data is provided
in the Appendix. Simulation code (requires S-Plus 6.0,
PC version, or higher [Insightful Corporation, Seattle,
Washington, USA]) for generating pathways, along
with instructions and additional required data, is avail-
able in Supplement 1.

After fitting the SSM to the observed data we obtain
a ‘‘most probable’ pathway that accounts for the es-
timated measurement error and process noise compo-
nents (Fig. 1C and D: black lines). The ‘**most proba-
ble”” pathway is obtained from the means, medians, or
modes of the univariate posterior distributions for y;;
in this case we have plotted the means because the
posterior distributions are symmetric. The means and
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TaBLE 1. Comparison of the true parameters and their cor-
responding estimates for a single marine turtle’s simulated
trajectory; estimated values are given as the posterior mean
(with 1 sp) and the median, along with 2.5% and 97.5%
credible limits [CL].

Para- Mean 2.5% 97.5%

metert True (1 sp) CL Median CL
B 0.9 0.8716 (0.1208) 0.6403 0.8696 1.1130
o 1.0 1.0090 (0.1192) 0.7968 1.0020 1.2650
T 2.0 2.0020 (0.0866) 1.8370 1.9980 2.1750

Note: Values were estimated from 4000 samples, after a
5000-sample burn-in (Spiegelhelter et al. 1996) with every
10th sample retained to reduce autocorrelation.

T Parameters: B = coefficient that describes how rapidly
the distance moved declines with increasing water tempera-
ture; ¢ = process-noise variance; T = measurement-error var-
iance.

medians are reported as standard output in WinBUGS
and the modes can be calculated from output generated
by convergence diagnostic packages such as BOA
(Bayesian output analysis) and CODA (convergence
diagnostic and output analysis). We used BOA Version
1.0.0 for S-PLUS and R (available online).5 Clearly,
we now have an improved estimate of the true pathway
(Fig. 1: panel C cf. panel D). The SSM produces good
estimates of the parameters o (process noise), T (mea-
surement error variance), and 3 (Table 1).

Meta-analysis of behavior from many pathways

Meta-analytic techniques allow us to gain valuable
insight about a population by combining information
collected on individuals. The essential idea of Bayesian
meta-analysis is to consider some of the parameters of
a statistical model as random variables. An advantage
of meta-analytic models is that parameter estimates
from individual data sets can be improved over those
that would be obtained by fitting separate models to
each data set (Myers et al. 1999, Worm and Myers
2003). The resulting models often are referred to as
““hierarchical random-effects models” or ‘* hierarchical
Bayesian models”’ (e.g., Sauer and Link 2002).

It is quite simple to extend SSMs to perform meta-
analysis when they are developed in a Bayesian frame-
work asit essentially amounts to introducing additional
prior distributions (hyper-priors). For more detail on
meta-analytic techniques using hierarchical Bayesian
models the reader is referred to Carlin and Louis
(1996).

To illustrate our approach we extend the turtle ex-
ample from the previous section by considering 15 in-
dividual pathways (50 observations each). We let B;
represent the temperature-dependent movement param-
eter for individual i and we assume the parameters (3
are independent samples from a normal distribution:
Bi -~ N(p“ﬁro-[zs)'

We assign vague hyper-prior distributions to reflect

5 URL: (http://www.public-health.uiowa.edu/boa/).
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our ignorance about the unknown hyper-parameters .,
and oZ. We simulate the pathways by setting the true
hyper-prior values as shown in Table 2. Upon fitting
the hierarchical model we obtain estimates of the hyper-
parameters p, and o,. Results of this meta-analysis are
presented in Table 2. The estimated parameters de-
scribing the distribution of the B,’s are quite reasonable
(Table 2). The WinBUGS code for fitting the meta-
analytic SSM to the simulated data is provided in Sup-
plement 2.

To illustrate the advantage of simultaneously mod-
eling the individual pathways for improved individual
parameter estimation, we generate an additional 15 10-
observation and 15 100-observation pathways, for a
total of three sets of 15 pathways with 10, 50, or 100
observations. The same simulation code used to gen-
erate pathways in the first example was also used here.
The codes, instructions, and required data are provided
in Supplement 2. All pathways were generated using
the same true values for g and, therefore, differed only
in the number of location observations. We analyzed
the pathways by (1) fitting the meta-analytic model
described above to each group and (2) fitting a separate
SSM to each of the individual pathways. The results
presented in Fig. 2 demonstrate that parameter esti-
matesfor B generated from theindividual analyseshave
alarger standard error than the corresponding estimates
generated from the meta-analytic model and that this
standard error is largest for the 10-observation path-
ways (Fig. 2). Note, however, that for the 10-obser-
vation group the among-pathway variation is under-
estimated (Fig. 2); this may be due to the small number
of pathways considered.

DiscussioN

In this paper we have presented an underutilized and,
hitherto, technically difficult statistical framework for
the analysis of animal trajectory data—state-space
modeling (SSM). In particular, we illustrate therelative
ease with which SSMs can be fit in a Bayesian context
using freely available software. An additional advan-

TABLE 2. Comparison of the true and estimated parameter
values from the meta-analytic model; estimated values are
given as the posterior mean (with 1 sp) and median, along
with 2.5% and 97.5% credible limits [CL].

Para- Mean 2.5% 97.5%

metert  True (1 sp) CL Median CL
Mg 0.867 0.846 (0.093) 0.669 0.844 1.032
g 0.234 0.204 (0.090) 0.143 0.279 0.500

Notes: For this meta-analysis of marine turtle movement
behavior, we generated three sets of 15 pathways: one set
based on 10 observations per pathway, one on 50 observations
per pathway, and one on 100 observations per pathway. Es-
timates are based on 4000 samples from the joint posterior,
after a 5000-sample burn-in with every 10th sample retained
to reduce autocorrelation.

t Parameters: p, and o, = hyper-parameters (mean and 1
sp, respectively) describing the distribution of ; values.
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Fic. 2. Comparison of parameter estimates for 3 made by fitting the state-space model (SSM) to each of the individual
pathways and by fitting a hierarchical random-effect SSM to all the pathways simultaneously. The three panelsillustrate the
comparison for pathways of 10 observations, 50 observations, and 100 observations. Dashed horizontal lines indicate the
true mean of the distribution for 8, and dotted horizontal lines indicate 1 sb from the true mean for B, the coefficient that
describes how rapidly the distance moved declines with increasing sea surface temperature.

tage to the Bayesian approach is that SSMs can be
extended easily to include meta-analytic techniques
that allow individual pathways to be combined opti-
mally. Using our framework, any discrete individual-
based movement model can be fit to appropriate tra-
jectory data.

State-space models have a number of attractive fea-
tures that have the potential to revolutionize the anal-
ysis of animal movement data. First, movement data
typically contain temporal dependencies that violate
assumptions of independence upon which more tradi-
tional methods rely. SSMs account for the temporal
dependence by conditionally modeling the observed
data given unknown states and specifying a function
for the transition between those states. In addition,
these models can easily handle missing location data.

Second, no other current statistical method can si-
multaneously account for the measurement error and
process noise typically found in many types of eco-
logical data, in such an intuitive fashion. The removal
of measurement error is of particular benefit for im-
proving location estimates from archival, radio-trans-
mitter, harmonic-radar, and acoustic tags. In contrast,

removal of process noise may be of most benefit when
the intervals between observed locations are short rel-
ative to the scale of the process being modeled. For
example, we might expect a high degree of apparent
stochasticity in observed movements if a model of
large-scale migration was fit to a pathway of appro-
priate spatial extent but with very frequent, e.g., hourly,
location observations.

Third, SSMs provide a rigorous statistical frame-
work, not only for estimating model parameters but
also for testing hypotheses about animal movements.
For this reason, we view the state-space framework as
auniquely flexible tool that, with widespread adoption,
has the potential to advance the analysis of animal
movement in a fashion analogous to that of ANOVA
for the analysis of ecological experiments (Underwood
1981). Alternative biological models may be fit within
a state-space model and compared using information
criteria such as the deviance information criterion
(DIC) (Spiegelhalter et al. 2002) or Bayes factors (Car-
lin and Louis 1996).

Our example using simulated dataillustrates how the
influence of environmental variables on movement be-
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havior may be examined in the state-space framework
and we anticipate that similarly framed models fit to
real datawill yield interesting results. Furthermore, the
ability to combine environmental covariates with the-
oretical movement models, such as biased random
walks that describe area-restricted search behavior, will
provide insight into what constitutes important habitat
features for foraging animals and how those animals
locate their habitats. This approach may be particularly
relevant for marine systems where habitat features are
more difficult to delineate than in terrestrial environ-
ments.

A key idea implicit in combining environmental co-
variates with biased random-walk models is that an
animal’s behavior is modeled as a dynamic variable
that changes as a function of the animal’sinternal (e.g.,
physiological) state and/or the environment (Griinbaum
2000). Dynamic state variable models are especially
useful for determining optimal behaviors in an evo-
lutionary context, and a great deal of work in behav-
ioral ecology has focused on these problems (Clark and
Mangel 2000). State-space models have been used to
fit population models with dynamic variables to time-
series data (Zeng et al. 1998), and a similar approach
could be used to fit dynamic foraging models (e.g.,
Grinbaum 2000) to movement-trajectory data. Al-
though our example does not explicitly include an in-
ternal state variable one could be incorporated into the
SSM, perhaps by temperature-movement relationship
(B) to be governed by the turtle’s level of satiety.

Our approach to fitting SSMs relies on Bayesian
methods that are becoming widespread in the ecolog-
ical literature (e.g., O'Haraet al. 2002, Sauer and Link
2002). There are a number of well-documented issues
that must be considered when using Bayesian methods,
such as specifying appropriate prior distributions, mod-
el sensitivity to prior distributions, and testing for con-
vergence of the MCMC (Markov Chain Monte Carlo)
algorithm (Carlin and Louis 1996, Punt and Hilborn
1997, Brooks and Roberts 1998) and we urge the reader
to become familiar with these. Despite these issues, the
Bayesian approach to state-space modeling, using
MCMC sampling, is simpler to implement in compar-
ison to numerical approaches (Tanizaki 2001). The task
is simplified further with the advent of software such
as WinBUGS (Spiegelhalter et al. 1996) that allows
usersto concentrate on appropriate model specification,
selection of prior distributions, testing for convergence,
and interpretation. We refer the interested reader to
Meyer and Millar (1999) for a detailed discussion of
the WinBUGS software and its application to state-
space modeling.

Summary

The state-space modeling approach illustrated here
allows researchers not only to build and fit empirically
based movement models to data but also to develop
and statistically compare theoretical models to empir-
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ical data. The ability to conduct both approaches under
a common framework has the potential to advance our
understanding of animal movement and how it con-
tributes to many ecological processes. In addition, we
have shown that SSMs can easily be formulated in a
meta-analytic framework, thus allowing valuable tra-
jectory data to be combined optimally so that higher-
level processes may be inferred from individual paths.
We envisage that future work using these methods will
allow the development of widely applied and sophis-
ticated movement models that, in turn, will contribute
to a broader and more mechanistic understanding of
animal movement processes.
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APPENDIX

The WinBUGS code required to fit the state-space model is presented in the single-pathway example. The appendix can

be typed verbation into WinBUGS.

model rwalk; {
# Random Movement Dependent Upon the Environment

# Process Error (eta_t):
# etat ~ N(mean =
temp))*2)

# Vague prior for the precision.
isigma-dinorm (0O, .001)

0, variance = (sigma*exp(—beta*

# convert isigma to sigma (Note: Changes the precision to
the standard deviation)
sigma < —1/sgrt(isigma)

# beta describes how rapidly movement variance declines
with increasing temperature

# betaN(mean = 0, variance = 1000): Vague prior for beta
beta-dnorm(0, .001)

# Observation error (epsilon_t):

# epsilon_t~N(mean = 0, variance = tau"2)
# Informative prior for the precision.
itau~dinorm(—1.386294, 10)

# convert itau to tau (Note: Changes the precision to the
standard deviation)
tau<—1/sgrt(itau)

# Initializations:
#Y = True locations (apha_t)
# Y1 = Observed locations (y_t)

# In order to get first true location equal to the observed
location (i.e., where released) we do the following:
Y[1,1]-dnorm(Y 1[1,1] ,100000000)

Y[1,2]~dnorm(Y 1[1,2] ,100000000)
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isig.temp[1,1]<—0 }
isig.temp[1,2]<—-0 }
# Interate transition equation # |terate measurement equation
for (i in 2:N){ # cycles through locations for (i in 1:N){
for (j in 1:2){ # two dimensions (x & y directions) for (j in 1:2){

Y 1[i,j]-dnorm(Y[i,j],itau)
isig.temp [i,j]<— (isigma* pow(exp(— 1* beta* temp }
}

[i-1]),-2)
Y[i,j]-dnorm(Y[i—1,j] ,isig.temp[i,j]) }

SUPPLEMENT 1

The S-Plus (6.0 for Windows [Insightful Corporation, Seattle, Washington, USA]) code used to generate simul ated pathways
for both examples together with a data set for the sea surface temperature (s) field is available in ESA’'s Electronic Data
Archive: Ecological Archives E084-080-S1.

SUPPLEMENT 2

The WinBUGS code required to fit the meta-analytic state-space model (SSM) presented in the second exampleisavailable
in ESA's Electronic Data Archive: Ecological Archives E084-080-S2.



