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Abstract

Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however,
models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space
framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and
broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how
information can be combined over many animals to allow improved estimation. We also show how formal hypothesis
testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from
14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the
circle of confusion (the radius around an animal’s location within which it is unable to determine its location precisely) is
approximately 96 km. This estimate suggests that the turtles’ navigation does not need to be highly accurate, especially if
they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little
evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the
movement process, our approach can be used to estimate and compare navigation ability for many migratory species that
are able to carry electronic tracking devices.
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Introduction

Electronic tracking technologies have enabled the migratory

movements for a great variety of animals [1,2] to be determined.

In particular, remotely sensed data from marine animals reveal

remarkable migration patterns that were previously unknown

[2–4]. This leads to questions of how developed an animal’s

navigation ability must be in order to successfully complete long-

distance migration and how individuals may vary in this ability.

To answer such questions using ubiquitous electronic tracking

data, we require statistical methods that can deal with typical

features of these data such as irregularly-timed and serially

correlated observations with non-Gaussian errors that vary

through time. A lack of suitably effective and routine estimation

methods for these kinds of data has made it difficult for ecologists

to fully utilize such tracking data. However, state-space models

have recently emerged as a key tool for analyzing tracking data

[5,6]. State-space models allow us to capture an animal’s

movement behaviour as well as model the two types of

stochasticity that are typical of observed movement pathways: (i)

stochastic deviations from a deterministic movement model

(process uncertainty), and (ii) stochastic deviations from an

animal’s true location (observation error).

Our work focuses on estimating the navigation ability of

organisms as they move through their environment. Flemming

et al. [7] developed a statistical model with minimal assumptions to

describe how well a migrating animal knows its true position. The

idea stems from the pioneering work of Kendall [8], who

developed analytical and simulation models to describe the ability

of Manx Shearwaters (Puffinus puffinus, Brunnich 1764) to

successfully navigate a route spanning the Atlantic Ocean back

to their breeding colony. Kendall suggested that animals have a

‘‘circle of confusion’’ within which they cannot know their position

while navigating via indirect cues. In his model the radius of the

circle of confusion must be smaller than the distance at which an

animal can detect, eg. by sight or olfaction, and orient directly

toward its destination; otherwise the animal will not reach its

destination efficiently. This implies that migrating animals’

navigation abilities need only be good enough to put them within

detection range of their ultimate destination.

Whereas Kendall [8] focused on estimating expected times to

cross into this detection range, we focus on estimating the size of

an animal’s circle of confusion as a means of quantifying

navigation ability. The larger the circle of confusion, the less

developed the navigation ability. Of particular interest is the

estimation not only of individual circles of confusion but also of an

overall circle of confusion to describe navigation ability at a group

or population level. To achieve this, we fit our state-space model to

tracking data in a hierarchical Bayes framework. Hierarchical

Bayes methods are gaining popularity in the ecological literature
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[9] as tools for combining information from multiple sources

(meta-analysis) and for inference and prediction of complex

relationships. In addition this framework allows us to formally test

hypotheses of interest using the Minimum Posterior Predictive

Loss Statistic [10].

We illustrate how the circle of confusion can be estimated at

both individual and population levels. A hierarchical Bayes state-

space model is fit to Argos satellite tracking data on 14 leatherback

turtles (Dermochelys coriacea, Linn. 1766) during their southward

migration from Nova Scotia, Canada [2]. Specifically, we test

hypotheses about the difference in navigation ability between

males and females and whether turtles compensate for large course

deviations by ‘‘re-calculating’’ the most direct route to their

destination. The leatherback is a cosmopolitan marine species that

undertakes the most extensive migrations of all sea turtles [11].

This species is now critically endangered [12] and there is great

interest in understanding its migratory behaviour and navigation

ability [2,13].

Methods

The Circle of Confusion model
Our interest is in an animal’s ability to follow a particular

migratory route. We consider positions of an animal at equally

spaced points in time, z0,z1, . . . ,zT as it moves from an initial

position, z0, to a final destination point, zT . These positions are

derived from satellite tags and are subject to error. As a result, we

assume that this observed time series of location coordinates

derives from an unobservable state process �a0, . . . ,�aT describing

the true pathway of the animal. Here we presume that the animal

tries to follow the most direct route to its destination, i.e. a Great

Circle (GC) route while noting that other presumed routes could

easily be used. As in Flemming et al. [7], we view the true locations

�at as representing the animal’s best guess at where it is relative to

this desired pathway. Note that it is straightforward to superim-

pose the GC route between any starting point z0 and ending point

zT as it is simply the shortest distance on the earth’s sphere

between these two points. We define at as the distance from �at to

the nearest point on the GC route. Similarly, vt is defined as the

distance from zt to the nearest point on the GC route. Both at and

vt can be regarded as deviations from the GC route, only the latter

of which are observable. Figure 1 illustrates the relationship

between these deviations. Note that the difference between the

deviations at and vt describes the measurement error of the

deviations and can be expressed as rtcosht.

If the animal is to one side of the GC route at one particular

point in time it is likely that it will also be on this side of the GC

route at the next point in time. This behavior suggests that the at

are not independently and identically distributed but rather

possess some dependence structure. Here we assume that they can

be represented by a first order autoregressive process with

correlation r and errors gt. In summary, we have arrived at a

state-space model for the observed deviations vt consisting of the

following two equations:

vt~atzrtcosht, for t~1, � � � ,T ð1Þ

at~rat{1zgt, for t~1, � � � ,T ð2Þ

where the measurement errors rtcosht are independently and

identically distributed with mean 0 and unknown variance t2, and

the process errors gt are independently and identically distributed

with mean 0 and unknown variance s2. In contrast to the

frequentist approach taken in Flemming et al. [7], we consider here

a fully Bayesian framework for the state-space model described

above. Such a framework naturally accommodates prior informa-

tion and allows us to formulate a hierarchical model for a

collection of animals in a straightforward manner.

The overall variance of the autoregressive model encapsulated

in the state-space model (Equations (1) and (2) above) is

s2
�

(1{r)2. As discussed in detail in Flemming et al. [7] this

quantity is not only interpretable from a statistical perspective but

also from a biological one, leading us to define the circle of

confusion as rcoc~s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{r)2

q
, where rcoc is interpreted as a

circle with radius rcoc drawn about the animal’s location within

which it is unable to determine its location precisely. Note that s is

indicative of the random variation of any animal around a

localized path which is determined to a degree by the parameter r,

itself indicative of autocorrelated movement. High variability

around localized paths reflects poor navigational skills (and

consequently a large rcoc), if it is assumed that the animal is trying

to efficiently navigate a path. Hight levels of autocorrelation in

distance from a GC route also suggest poor navigational skills

because the animal is not correcting its path towards a GC route

when it bounces off the track. The smaller the rcoc, the better the

navigation ability of the animal. This measure of precision has a

quantitative analogue in confidence interval: +1:96 times this

quantity is the animal’s 95% CI of where it is located.

Hierarchical Bayesian Framework
Our goal is to infer among-individual variation in navigation

ability. Such variation implies that there is an underlying,

biologically meaningful distribution of navigation abilities. The

framework discussed in Flemming et al. [7] only allows a state-

space model to be fit to an individual pathway. However by

formulating this state-space model within a hierarchical Bayes

framework we are able to analyze data from a collection of

individuals thereby formally incorporating the idea of among-

individual variation.

It is straightforward to formulate a hierarchical model by

placing hyper-priors on the priors of the model parameters. In so

doing the corresponding parameters become random variables. By

letting j index the individual, j~1, � � � ,n, we arrive at a collection

Figure 1. Geometry of relationship between observed devia-
tion vt and unobserved deviation at. Note that the corresponding
distance along the GC route is assumed to be linear as it is so small.
doi:10.1371/journal.pone.0014245.g001
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of rj ’s (and sj ’s), one for each individual. A beta distribution with

parameters a and b is then transformed to obtain a prior

distribution for each rj that is necessarily bounded (between -1

and 1). With uniform priors for both a and b, our formulation for

the rj is complete and one is able to estimate the collection of rj ’s

as well as the mean and variance of their distribution. Following

the suggestion of [14], we use a half-normal prior distribution (with

mean ms and variance s2
s) for the process error standard

deviations, sj ,and uniform distributions for the hyper-priors. A

uniform prior distribution is also used for n, the degrees of freedom

of the process error distribution (as discussed later in the data

section). By specifying an informative prior distribution for t2 we

can easily incorporate measurement error information. Note that a

hierarchical structure for t is not appropriate as the measurement

error distribution is assumed to be common to all individuals.

Implementation
The freely available software WinBUGS v1.4.1 [15] is used to

implement the hierarchical state-space model. The software uses

Markov Chain Monte Carlo (MCMC) methods to estimate the

joint posterior distribution of the model parameters. A total of 40

000 MCMC samples were generated in each of 2 chains, the first

20 000 were discarded as a ‘‘burn-in’’ and every 5th sample

thereafter was retained to reduce autocorrelation, yielding 8 000

samples from the joint posterior. By deriving rcoc within the

WinBUGS model, we obtain a marginal posterior distribution for

each rcocj
as well as their mean (mcoc). The model code is included

in Appendix A.

Data
The data consist of southward migratory pathways of 14 adult

leatherback turtles (7 male and 7 female; Figure 2) captured,

equipped with Argos satellite transmitters, and released off the

coast of Nova Scotia, Canada [2]. In order to fit our proposed

model to data obtained with the Argos system, we require equally

spaced observations in time. To obtain this data, hereafter referred

to as regularized, we define a stepsize of 24 hours which is

reasonable given that we are modelling migratory pathways than

span approximately 3 months. This stepsize results in a series of 1-

day windows within each of which we must then obtain a two-

dimensional estimate of location. We utilize the Minimum

Covariance Determinant (MCD) estimator [16] which yields a

robust location estimate for each window that is not highly

influenced by outlying locations caused by the limitations of Argos.

In cases where we have less than four locations within a window,

and hence the MCD is not computable, we take the coordinate-

wise median (also robust) as our estimate of location. Note that one

could also include the data quality measures provided by Argos

along with each location estimate [17]. However, at present we

believe that the reported standard errors for each location class are

in need of refinement.

Having regularized our data and then calculated the observed

deviations that we fit using our SSM (Equations (1) and (2)) we can

now be more concise about the measurement error and process

error distributions for this particular application. Given that most

of the measurement error has been removed by the MCD (see

Figure 3, subpanel (b)) it is reasonable to assume that the

measurement errors are independently and identically normally

distributed with mean 0 and variance t2. The process errors gt, on

the other hand, may still be inflated on occasion by the necessity

for an animal to deviate from course, not due to limitations in

navigation, but rather due to exogenous (e.g., deflection by ocean

currents) or endogenous (e.g., the need to forage) factors. It is

important that our model be robust to these larger errors so that

our resulting estimates are not inflated by this sort of behavior. We

therefore assume that the process errors follow a generalized t

distribution with mean 0, variance s2 and n degrees of freedom.

Such a distribution (when n is small) allows for longer tails (a usual

type of deviation) thereby making outliers less unlikely under the

model.

There is considerable variability in leatherback turtle migratory

behaviour as seen in Figure 2, in part this is determined by age, sex

and, for adult females, whether they reproduced the previous year

[2]. All leatherbacks migrate southward from Canadian waters,

presumably as water temperature and productivity decline in the

late fall and early winter [18], however, not all leatherbacks

migrate to nesting beaches in Caribbean and Gulf of Mexico [2].

Adult females that reproduced in the previous year and juveniles

tend to migrate southward to the Caribbean or northeast of Brazil

and then migrate back to Canadian waters without reaching any

nesting beaches. In order to have a sufficiently general method

that deals with this variability in migration patterns, we chose to

define the migration start and end points based on straightforward

properties of the movement paths: travel rate and direction. We

note that individuals that migrated to nesting beaches generally

slowed down and changed direction several 100 km from their

destinations. These turtles may be switching navigational modal-

ities as they near their nesting beaches [19] and, as a consequence,

we chose to remove these path segments from our analyses as their

inclusion would likely bias the circle of confusion estimate.

Panels (c) and (d) of Figure 3 illustrate how the migratory

portion of Track C was determined (the same procedure was used

for all tracks). Since James et. al. [2] suggest that there is a peak in

rate of travel associated with departure from northern foraging

areas, we fit a robust nonlinear smoother to the times series of

successive daily distances traveled (as calculated from the

regularized data). We use this to identify the peak in travel, that

is, the assumed start point of migration. With the start point of

each migratory portion now available for each turtle, it remains to

determine the end point of each migration. For the fourteen

leatherbacks of interest here, their behavior is characterized by a

migration southward followed by more localized behavior

associated with foraging and/or breeding site selection. These

latter behaviors are characterized by frequent changes in direction

and provide a means with which to determine when migration

ceases for an extended period of time. Again we use a robust

nonlinear smoother, this time applied to changes in longitude. By

examining these change points in conjunction with the corre-

sponding tracks the migratory end points are identified. An

alternative approach here would be to use a more complex SSM

which included behavioural switching. Migratory and non-

migratory behaviour could then be identified within the model

with only migratory portions involved in the estimation of the

circle of confusion.

Analysis
Our hierarchical state-space framework allows us to specify

informative prior distributions for those features of the model that

we know something about. Much has already been documented

about measurement errors for Argos location classes. Vincent et al.

[17] report measurement error estimates over the 6 Argos location

classes for both latitude and longitude. We obtained a rough idea

of the magnitude of the measurement errors in our application by

taking the mean of the measurement error estimates (68%-ile,

non-filtered) as well as performing a sensitivity analysis to ensure

our estimate for t was appropriate.This information was

incorporated into our analysis by specifying a normal prior

Estimating Navigation Ability
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Figure 3. Example of how the Great Circle (GC) route and regularized deviations are obtained for turtle C. (A) Panel illustrating the full
set of observed locations (grey pluses), the MCD-regularized locations (zt, blue circles), the calculated GC route (grey line) and the deviations (vt)
between the GC route and the MCD-regularized locations (red lines). The blue triangles indicate the determined start and end points of the GC route.
(B) Enlargement of the region contained by the box in panel (A). The estimated true locations (�at, red circles) were derived from the estimates of at .
(C) Robust nonlinear smoother (blue) fit to MCD-derived travel rates (grey). The vertical red line denotes the peak travel rate associated with the onset
of migration. Note that the smoother was not fit to the first week of data because these elevated speeds are likely a post-tagging behaviour. (D)
Robust nonlinear smoother (blue) fit to MCD-derived longitudes (grey). The vertical red line denotes a large change in direction of travel potentially
associated with the cessation of migration.
doi:10.1371/journal.pone.0014245.g003

Figure 2. Maps of the fourteen leatherback turtle tracks using the raw Argos satellite data. Pathway segments used in the analyses are in
bold. Panel labels correspond to the y-axis tick labels in Figure 5.
doi:10.1371/journal.pone.0014245.g002
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distribution for t with a mean of 2 km and a standard deviation of

0.02 km.

In order to formally tests hypotheses about leatherback turtle

migration we use the Minimum Posterior Predictive Loss Statistic,

Dk(m) [10], to compare models m1 and m2 corresponding to the

competing hypotheses. Specifically we use equation (6) from

Gelfand and Ghosh [10] corresponding to squared error loss and

compute Dk(m) for each model with several values of k, say 1, 3,

9, and ?. As they recommend, we then use these values to

determine which model has better support. We present Dk(m)
results using k~?, but model ranks were the same regardless of

the value of k chosen. Note that the equation for Dk(m) is made

up of two parts. The first represents a squared error goodness of fit

in which the predictive mean is compared to the observed value

while the second term measures the predictive variances and can

be viewed as a penalty term. We decide on the model with the

smallest value of Dk(m) keeping in mind that if we argue for the

more complicated model, the difference in Dk(m) should be

relatively large in the appropriate scale of the problem. In applying

Dk(m), our basic observation is the rcoc for each animal computed

from their individual regularized track.

Using the methodology described above we test two distinct

hypotheses regarding leatherback turtle navigation ability during

the southward phase of their migratory cycle. First, we test whether

male and female leatherbacks have different sized circles of

confusion by fitting two hierarchical models to the deviations: (1)

male and female deviations pooled (Common) and (2) male and

female deviations separated (Separate). In the second model, we

Figure 4. Plot of a MCD-regularized male leatherback turtle track indicating the Great Circle routes (blue) defined by starting
positions before (A) and after (B) encountering the Gulf Stream. The mean position of the Gulf Stream (solid red line) +/2 2 sd (dashed red
lines) aligns well with the rapid eastward movement of the turtle starting at point A.
doi:10.1371/journal.pone.0014245.g004
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estimate mcoc and associated parameters separately for males and

females. A difference in mcoc between males and females may reflect

differences in navigational ability or the navigation cues relied upon.

Second, we test whether male leatherbacks compensate for drift

when crossing the Gulf Stream current, a strong current that

originates in the Gulf of Mexico and flows northeast, parallel to the

eastern coast of North America, by following a new great circle

route after crossing. Several turtles were observed to drift eastward

while crossing the Gulf Stream, this is most noticeable in Figure 2

(turtles A, B, E, and G). For clarity, Figure 4 illustrates this

observation for Turtle B. It is possible that turtles ‘‘re-calculate’’

their migratory route after being deflected from their original

course. If this is the case, circle of confusion estimates should be

smaller when fitting to deviations calculated after the turtles

crossed the Gulf Stream than for deviations calculated before the

turtles crossed. To test this hypothesis, we fit the same model to the

deviations from the full male tracks (Figure 2) and to the deviations

calculated only after the turtles had crossed the Gulf Stream. We

compare mcoc’s from these two fits and again use the Dk(m)
statistic to determine which hypothesis has greater support.

We tested whether the circle of confusion model could be better

described as a random walk tied down at both ends. As such,

deviations at each of these ends might be smaller than expected

which would lead to an under-estimate of the circle of confusion.

Such a situation could arise if the turtles are engaging in different

movement or navigation processes near the start and end of the

pathway segments that we analyzed. To investigate, we removed

the first and last 2.5% of the deviations from each pathway and re-

ran our analysis and compared mcoc estimates to those from the full

pathway segments.

Results

Sex differences
Comparison of Dm for the Common and Separate models

suggests that male and female leatherbacks have similar navigation

abilities (Table 1, Figure 5). On average, turtles had an rcoc of

96.2 km (Figure 5), males had a mcoc of 98.7 km and females had a

mcoc of 75.3 km (Table 1). The high mcoc estimate for males is

largely driven by a single turtle (G, Figure 5) that migrated from

Nova Scotia to waters off a nesting beach in Panama, whereas all

other turtles migrated to the eastern Caribbean (Figure 2).

Estimates of rcocj
for individual turtles indicate a range in

navigation ability of 43 to 367 km. The 367 km estimate was

turtle G, and excluding this extreme estimate, we found that rcocj

ranged between 43 and 196 km.

Hierarchical and individual-level estimates of r reveal a high

degree of autocorrelation in the deviations from great circle routes

(Table 1, r ranged between 0.96 and 0.99) and are consistent with

our observation that the turtles tend to remain on one side or the

other of the most direct route.

Drift compensation
Comparison of mcoc’s from the model fit to the full deviations

and the model fit to deviations after crossing the Gulf Stream

suggest that male leatherbacks do compensate for eastward drift by

following a new great circle route. The mcoc were 140.5 km and

106.8 km for the full track and the track after the Gulf Stream,

respectively (Table 2). In addition, there was greater support for

the model fit to deviations calculated after the Gulf Stream (see

Dk(m) in Table 2).

The degrees of freedom (n) of the process error distribution is

estimated to be approximately 2.9 or less for all models. This small

value of n supports our decision to use a (generalized) t distribution

rather than a normal distribution for the process error. A

t-distribution with small n, has much heavier tails than that of a

normal distribution, and, as such, allows outlying process errors to

have far less impact on parameter estimates (in this case the sj ’s) than

would otherwise occur. This approach is helpful in down-weighting

the influence of large transient deviations, for example changes

imposed by switches between opportunistic foraging and migration,

from the great circle route on rcoc estimates while allowing for

moderate deviations. The approach does not appear to minimize the

effect of longer-term, moderate deviations such as those generated,

for example, from persistent physical forcing like the eastward drift in

migration as a result of crossing the Gulf Stream.

Finally, we find no evidence to suggest that the results are driven

by data points near the start and end points of the migration track,

mcoc only changes slightly when the first and last 2.5% of the data

are removed. In addition, individual level parameter estimates are

nearly identical to those in Figure 5.

Discussion

We present a hierarchical framework for thinking about a

question that has not been quantitatively addressed: how well do

animals navigate? Our approach makes the assumption that

Table 1. Posterior quantiles of the key parameters for the
Common and Separate models.

Model Parameter Posterior Quantiles

2.5% 50% 97.5%

Common ms 0.0014 0.0021 0.0031

mcoc 53.4300 96.1550 173.4125

mr 0.9786 0.9900 0.9962

s� 0.0003 0.0022 0.0056

r� 0.9592 0.9923 0.9995

r�coc 10.6680 108.3000 652.2275

t 0.0003 0.0003 0.0003

n 2.6580 3.4055 4.4001

Separate ms(M) 0.0008 0.0025 0.0045

ms(F ) 0.0011 0.0019 0.0029

mcoc(M) 29.7582 98.7250 222.2725

mcoc(F ) 36.9185 75.2650 154.2675

mr(M) 0.9670 0.9868 0.9955

mr(F ) 0.9676 0.9874 0.9956

r�coc(M) 9.3615 133.6500 768.5625

r�coc(F ) 13.5970 86.0100 371.6075

r�(M) 0.9455 0.9896 0.9995

r�(F ) 0.9482 0.9902 0.9991

s�(M) 0.0002 0.0030 0.0093

s�(F ) 0.0003 0.0019 0.0045

t 0.0003 0.0003 0.0003

n 2.6829 3.4805 4.5007

Both models were fit to 14 leatherback turtle tracks, 7 males and 7 females.
Parameters are estimated separately for the sexes in the Separate model.
Asterisked parameters, e.g., s� , denote the posterior predictive distributions.
The Minimum Posterior Predictive Loss statistic [10], Dk(m), values were 13,825
and 14,564 for the Common and Separate models, respectively.
doi:10.1371/journal.pone.0014245.t001
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animals attempt to migrate along the most direct route to their

destination; in this case the great circle route between foraging

sites in the Northwest Atlantic and breeding sites in the Caribbean.

By taking a hierarchical Bayes approach to modelling navigation

ability we implicitly assume that the individuals exhibit some

degree of similarity in their navigation ability. Specifically, the rj ’s

come from a common distribution and similarly for the sj ’s. The

hierarchical model is the formal representation of these assump-

tions, with the goal being to estimate not only the model

parameters at the individual level (the rj ’s and sj ’s) but also those

at a broader organizational level (the hyper-parameters; mr, ms,

and ss). There are two principle advantages of this hierarchical

approach over modelling the pathways separately. First, hierar-

chical models combine information from all of the tracking data to

estimate parameters at both the population and the individual

levels [20]. Combining information in this way leads to more

efficient parameter estimation. Second, hierarchical Bayes models

allow quantification of all the uncertainty in the parameter

estimates via the predictive distribution, also refered to as the

induced prior [21]. The predictive distribution, as its name suggests,

forms the basis for prediction of navigation ability for unobserved

individuals. For example, we can also use the predictive

distribution as our current best estimate of the population-level

variability in leatherback navigation ability.

Our estimate, that leatherback turtles, on average, know their

position to within 96 km suggests that their navigational sense

during the pelagic phases of their migration does not have to be

highly accurate if they use other cues as they near their

destination. This conclusion is consistent with analytical and

simulation work of Kendall [8] on Manx shearwater migrations

across the Atlantic. A key result from Kendall’s work was that for

migration to be efficient, an animal’s circle of confusion need only

be slightly smaller than the range at which other cues can be used

for orienting toward a destination. For example, it has been

suggested that green turtles (Chelonia mydas) use one set of cues to

navigate from the Brazilian coast to the vicinity of Ascension

Figure 5. Raindrop plots [31] indicating posterior medians with 95% credible limits for the circle of confusion rcoc obtained from the
hierarchical model fit to 7 male and 7 female leatherback turtle tracks. The larger raindrops in the bottom two rows are hierarchical
summaries. The medium gray raindrop denotes the hierarchical means and the black raindrops denotes the Bayes predictive distribution.
doi:10.1371/journal.pone.0014245.g005
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Island and thereafter rely on olfactory cues [22]. It is possible that

leatherbacks use a more complex strategy because there is no

single, isolated island to which migrations from northern waters

are directed; however, individuals do appear to exhibit fidelity to

breeding/nesting areas [23].

Clearly, refinements can be made to our approach. For

example, if there are persistent forces, e.g., oceanic currents, that

cause migrating animals to undergo long-term deviations from

their intended course, our circle of confusion estimate will

overestimate the true value. It is easy to see the influence of the

Gulf Stream on the two leatherbacks that approached Cape

Hatteras (Figure 2 A, B). Although the method is robust to short-

term deviations by assuming the process error follows a t-
distribution, the circle of confusion estimates could be further

improved by making use of oceanographic data to include longer-

term effects in the model. Accounting for environmental effects

implies that more details of the movement process would have to

be accounted for by the model [24], hence sacrificing some of the

generality of the current approach.

The underlying assumption of great circle navigation could be

replaced with other models. Migrating birds often make

migrations in stages, approximating the most direct route on each

stage but yielding a less direct path from origin to the final

destination [25]. In this case, the great circle navigation ability

could be assessed along each stage of an individual’s migratory

track by adding a within-individual level to the hierarchical model.

This example illustrates how the approach can be modified to suit

more complex situations when additional information on migra-

tory routes and migratory behaviour is available. The simple

approach illustrated here makes minimal assumptions, is generally

applicable and would be preferred when little information other

than the tracking data are available. As the use of GPS data

becomes more ubiquitous, other approaches such as dynamic

GLMs and the Kalman filter could be used to fit the Circle of

Confusion model to these more precise data. However, in many

terrestrial settings, GPS data are also prone to occasionally large

errors due to interference from vegetation and topography

[26,27]. In these situations a Bayesian (via MCMC) approach

may still be most appropriate for estimating navigation ability as

the occasionally large errors can be handled easily by assuming t-

distributed measurement errors. Additionally, the Bayesian

approach allows great flexibility in specifying hierarchical models

such as one fit here.

Many analyses of navigation ability have been conducted at the

individual level [28] and usually based on summary statistics

derived from tracking data [25], from releases of manipulated

animals [29] or from laboratory experiments [30]. However, much

more information is available from the analysis of full migratory

pathways, the challenge has been in dealing with the sequential

nature of tracking data and in combining information across

multiple individuals. The hierarchical state-space approach

presented here addresses these challenges, providing a tool for

ecologists to test hypotheses about migratory behaviour and

navigation ability from ubiquitous electronic tracking datasets.
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