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Abstract. Data on fine-scale animal movement are being collected worldwide, with the
number of species being tagged and the resolution of data rapidly increasing. In this study, a
general methodology is proposed to understand the patterns in these high-resolution
movement time series that relate to marine animal behavior. The approach is illustrated
with dive data from a northern fur seal (Callorhinus ursinus) tagged on the Pribilof Islands,
Alaska, USA. We apply a state-space model composed of a movement model and
corresponding high-resolution vertical movement data. The central goal is to estimate
parameters of this movement model, particularly their variation on appropriate time scales,
thereby providing a direct link to behavior. A particle filter with state augmentation is used to
jointly estimate the movement parameters and the state. A multiple iterated filter using
overlapping data segments is implemented to match the parameter time scale with the
behavioral inference. The time variation in the auto-covariance function facilitates
identification of a movement model, allows separation of observation and process noise,
and provides for validation of results. The analysis yields fitted parameters that show distinct
time-evolving changes in fur seal behavior over time, matching well what is observed in the
original data set.
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INTRODUCTION

Fine-scale archival, data-logging technology has given

rise to a rapidly growing body of information on the

movement of many marine animal species. It is widely

recognized that these technological developments have

far outpaced the analysis methods available for extract-

ing meaningful biological information from these high-

resolution and complex data types (Schick et al. 2008).

To date, many applications of animal movement data

have focused on reconstructing tracks from sparse and

noisy fixes of geographical position (Jonsen et al. 2005),

but as positional information improves and motion

sensors are incorporated (Ropert-Coudert and Wilson

2005), there is strong interest in inferring behavior from

much higher resolution data (Polansky et al. 2010).

These data are fundamentally time series whose salient

character is their autocorrelated structure and the

nonstationarity (Gurarie et al. 2009). State-space models

provide a flexible framework for a unified treatment of

tag time series and animal movement models, and are

recognized as a promising way forward (Patterson et al.

2008). Here, we propose a modeling approach that uses

high-resolution movement data to estimate continuously

varying behavioral parameters of movement models on

the appropriate time scale.

Animal movement models are formulated as stochas-

tic differential (or difference) equations, such as the

correlated random walk (Morales et al. 2004, Codling et
al. 2008). These models can describe a wide variety of

movement patterns depending on their parameter

values. Our main premise is that as the character of

the movement observations change over the course of

the record, so do the corresponding parameters of the

animal movement model that embody the behavioral

information. These parameters can be estimated directly

using a state-space model formulation. One possibility is

to use a state space behavioral switching model (Jonsen

et al. 2007, Patterson et al. 2009), but this requires a pre-
definition of a small set of behavioral modes, and the

probability of transitioning between them. We propose

an alternative approach that directly estimates the time-

varying behavioral parameters of a movement model

using state space methods.

We develop and illustrate the approach using a high

resolution data set from an at-sea foraging track of a

northern fur seal (Callorhinus ursinus). The analysis uses

vertical velocity (dive) data recorded at a two second

time interval. These data are of a much higher resolution

(and volume) than considered by other state-space

models that infer behavior using episodic horizontal

position fixes (e.g., Jonsen et al. 2007). Moreover, these
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data serve to illustrate the nontrivial issues that arise in

application of the state-space model for a realistic

example. We emphasize, however, that the approach is
a general one, and applicable to most horizontal and/or

vertical movement models and high-resolution tag data.

METHODS

Our approach fits a stochastic animal movement

model to noisy position or velocity data using a state-

space model, simultaneously estimating its parameters
through a state augmentation procedure. The first part

of a state-space model is the state evolution equation, or

movement model, which describes the movement

process, and allows it to evolve forward in time

xt ¼ fðxt�1; htÞ þ nt: ð1Þ

Here, xt is a column vector that represents the system

state (either a position or velocity) at time t. The

movement model is embodied in the operator f, which

depends on the state at the previous state, xt–1, and a
vector of movement, or behavioral, parameters, ht, that
can change through time. The system noise is given by

nt.

The second part of the state-space model is the
observation equation in which the data observations are

assimilated

yt ¼ Hxt þ et ð2Þ

where yt is an observation of vertical velocity at time t. It

is related to the state, xt, through the matrix H which

allows for conversion between measured and modeled
variables (say, observing position and modeling veloc-

ity), and partial observation of the state. The observa-

tion error process, et, follows a specified probability
distribution. There may also be parameters associated

with et or H, but these are not considered in this study.

The state-space model (Eqs. 1 and 2) is a very general

formulation. It is characterized by Markovian dynamics,

conditionally independent observations, and mutually
independent system and observation noise. It allows for

nonlinear models and non-Gaussian error processes.

The usual goal is to estimate the state, xt, over time (or
strictly speaking, its probability density function).

Sequential Monte Carlo methods, such as particle filters,

provide standard solution techniques. However, the

usual approaches do not provide estimates for the
parameters, ht (Ristic et al. 2004).

To estimate parameters in a state-space model, two

main approaches are available. A likelihood function

can be computed using a particle filter; however, Monte
Carlo variation means the likelihood surface may be

difficult to maximize (Doucet and Tadi�c 2003). Another

approach, and the one that is the focus of this paper, is

state augmentation (Kitagawa 1998). Here, we append
the parameters of interest to the state vector, forming an

augmented state vector. Standard sequential Monte

Carlo methods are then used to determine parameter

estimates.

By making the parameters in the movement model

(Eq. 1) follow a simple random walk, the augmented

state evolution equation becomes

xt

ht

� �
¼ fðxt�1; htÞ

ht�1

� �
þ nt

mt

� �
ð3Þ

or

x̃t ¼ gðx̃t�1Þ þ ñt: ð4Þ

The augmented state is given by x̃t, and now includes the

parameters. The system noise ñt now includes both the

system noise, nt, as well as the disturbance term, mt, for
the simple random walk of ht. The operator g includes

both the movement dynamics f and the random walk for

its parameters. The augmented observation Eq. 2 is now

yt ¼H0x̃t, where 0 is a vector of zeros and implies that

we cannot observe the parameters, ht, directly. The

augmented state-space model can be solved using the

same sequential Monte Carlo methods as for regular

state-space models, since this is nothing more than a

reformulation of the state. Hence, dynamic, or contin-

uously time-varying, parameters are straightforward to

estimate using state augmentation. Static, or slowly

time-varying, parameters are more complex however.

The central goal in this study is to estimate the time-

varying movement parameters that have a direct link to

fur seal behavior. Hence, identification of the appropri-

ate time scale for this estimation is a key element.

Standard application of the augmented state-space

model (Eq. 4) with a parameter random walk having a

constant variance, r2
m (c.f. Kitagawa 1998), means that

the estimated time-varying movement parameters simply

follow short period fluctuations in the data, which is not

always desirable for analysis and inference. For exam-

ple, the vertical dive data in this study (see Data) was

sampled every two seconds, which meant that movement

parameters varied within individual dives. However, the

movement models under consideration here are appro-

priate for describing behavior on longer time scales, i.e.,

the variations associated with sequences, or ensembles,

of dives that collectively encapsulate behavior. We

reformulate the parameter estimation problem accord-

ingly.

Parameters of the movement model are estimated as

static parameters for short segments of the data record.

In order to consider the entire record, the time series is

broken up into short, overlapping segments (or time

windows). Parameter values are then determined for

each of these time windows. The resultant time sequence

of parameter estimates can indicate behavioral changes

over time. The length of the data segments is guided by

the type of movement model considered, along with the

observed time scale for behavioral changes. This idea of

evolving parameters is well established for nonstationary

statistics that vary over time (e.g., Priestley 2004:

chapter 11), and has the advantage that the investigator

can control the time scale for behavioral parameter
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estimation by choosing an appropriate data segment

length.

The estimation procedures for parameters that are

static within an analysis time window also relies on the

state augmentation procedures outlined above. The

main idea is that by successively reducing the variance

of the disturbance term, r2
m, in the parameter random

walk, the movement parameter vector, ht, ends up being

fixed at a particular value. One way this can be

accomplished is by using a single pass of a particle filter

over an analysis time window and reducing r2
m with

increasing t, until r2
m reaches a small value at the end of

the analysis segment and the parameters, h, are locked in

at their estimated values (Kitagawa 1998). As a related

alternative, Ionides et al. (2006) suggest using multiple

passes of a state-augmented particle filter, where each

pass has a successively smaller r2
m; they show this can

yield the maximum likelihood value for the parameter

vector h. We make use of a hybrid approach, using the

multiple iterated filtering approach of Ionides et al.

(2006), but using unweighted averages at each pass of

the particle filter and a simple ramp-down of the

variance, r2
m. This is done with a sequential time

windowing procedure and permits the estimates of the

movement parameter vector to slowly time-vary over

successive windows. In Data, we examine the observed

temporal variations in northern fur seal dive behavior

and link it to a suitable movement model.

DATA

Our analysis uses part of a data set collected from

lactating northern fur seals tagged (with Driessen and

Kern dead reckoner tags) at Reef Rookery on the

Pribilof Islands, Alaska in 2005 and 2006. We focus on

analyzing diving data for this study. Fig. 1 shows the

depth measurements and the derived (via differencing)

vertical velocity from the dive record of a single fur seal

on the third day (18 August 2006) of a 12.5-day at-sea

foraging trip. The two second sampling interval of the

archival tag yielded 43 200 data points for this single

day, and these data are the basis for our application.

These data clearly show a distinction between dive

and non-dive periods. The active dive periods also have

distinctly different signatures or behaviors. Fig. 1 shows

details of three selected one hour segments. In segment

A, we see rapid, regular, relatively shallow diving with

large frequent vertical speed changes, which might be

indicative of foraging/feeding. In segment B, the dives

are becoming deeper, less frequent and irregular with

more surface time and smaller vertical speeds, perhaps

indicating exploring/searching. In segment C, the fur

seal is at the surface with a small vertical speed, and is

either transiting or resting. The statistical character of

these velocity observations obviously changes over the

course of the record, and our goal is to quantify these by

determining the associated time-varying behavioral

parameters of a suitable movement model.

A nonstationary time series analysis was undertaken

in the form of the sample evolutionary auto-covariance

function (ACVF) of the vertical velocity data. This is a

way to account for auto-correlation that varies over the

data record, analogous to time-frequency analysis (e.g.,

Wittemyer et al. 2008, Polansky et al. 2010). Specifically,

the ACVF was computed for 110 sliding time windows,

each with a length of 26 minutes, and overlapping the

previous window by 13 minutes, covering the length of

our selected 24-hour period. The time window of 26

minutes (or 780 data points) was chosen so that these

movement statistics would be approximately stationary

within the data window, and also covered enough

individual dives so that the emergent behavior of the

fur seal could be determined.

Fig. 2a shows the evolutionary ACVF for observed

vertical velocity, yt. It indicates an obvious cycling

between dive periods and quiescent non-dive periods.

Within the dive period (e.g., between 00:00 and 06:00

hours, including segment A), we see an oscillating and

decaying ACVF with a relatively large variance,

suggesting a periodic process. During the non-dive

periods (e.g., 17:00–22:00, including segment C), the

ACVF has low variance and decays to zero for lags one

and beyond, suggesting a purely random process.

Behavioral distinctions between the dive and non-dive

periods are evident, especially in terms of the shifting in

the magnitude of the velocity variance. The periods of

diving show a dominance of temporally coherent

motions with periods reflecting the dive length.

A key aspect of state-space modeling is to identify a

suitable movement model. We chose an auto-regressive

model of order two, or AR(2), as the most suitable

model

zt ¼ a1zt�1 þ a2zt�2 þ et: ð5Þ

Here, zt represents the vertical velocity at time t, and a1
and a2 are coefficients that multiply z lagged by 1 and 2

time units, respectively. (Note that zt will become a

portion of the augmented state x̃t). The system noise et
will be taken as a purely random Gaussian process. The

model is the most parsimonious description that can

explain the ACVF, i.e., oscillating and decaying during

dives, and cutting off after lag 0 during non-dives. (The

choice of this model was also validated with formal

statistical time series model fitting procedures).

This AR(2) movement model (Eq. 5) corresponds, in

continuous time, to a second-order stochastic ordinary

differential equation. Its coefficients are interpretable in

terms of fur seal dive behavior. The variance of et scales
the magnitude of the dive velocity. If, say, a1 ¼ a2 ¼ 0

then the model corresponds to a purely random process

which might describe incoherent vertical velocity signal

associated with surface swimming. If a1¼1, it is a simple

random walk. Generally, however, a1 and a2 will be non-

zero. If a2 , �a2
1/4 movement is pseudo-periodic and

could describe a regular and repeating set of dives

(Priestley 2004: section 3.5.3). The vertical motion is
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aperiodic when a2 . �a2
1/4. The model in Eq. 5 is

therefore a flexible description for fur seal vertical

motion and its parameters values can be linked to

behavior.

APPLICATION

The state augmentation approach estimates the

parameters, a1 and a2, of the movement model (Eq. 5).

However the model must first be in the Markovian form

(Eq. 1 or 4), i.e., with a dependence on only one time

lag. Hence, we rewrite Eq. 5 as follows:

zt

ft

� �
¼ a1 a2

1 0

� �
zt�1

ft�1

� �
þ et

0

� �
ð6Þ

where the dummy variable f has been introduced to

transform a non-Markovian model into a Markovian

one.

The state vector (the left-hand side of Eq. 6) is next

augmented with the parameters a1 and a2. These each

follow a simple random walk:

a1;t ¼ a1;t�1 þ m1;t m1;t ; Nð0;r2
mÞ

a2;t ¼ a2;t�1 þ m2;t m2;t ; Nð0;r2
mÞ

ð7Þ

where the variance of the disturbance term, r2
m, must be

appropriately specified to allow for estimation of the

movement parameters. An algorithm for doing this is

given later.

The augmented state vector is therefore x̃t ¼
ðz f a1 a2Þ 0t , and the state evolution equation is defined

by Eqs. 6 and 7. The augmented system noise term is ñt

¼ðe 0 m1 m2Þ 0t . The vertical velocity observations (Fig. 1b)
are contained in yt, and it is assumed that the

observation error et ; N ð0;r2
o;tÞ. The augmented

observation operator in Eq. 2 is a row vector ~H ¼
(1 0 0 0) which multiplies the augmented state x̃t, and

indicates we observe only its first element.

The statistics of the observation error, et, and the

system noise, et, are difficult to specify since stochastic

variations seen in the observations are due to both

measurement noise, as well as fluctuations due to the

animal movement process itself. Their variances, r2
o and

r2
e , can, however, be separated and estimated using the

ACVF and the principle that the observation error is

uncorrelated over time, whereas animal movement is

time correlated (see Appendix A). An advantage of

determining the system and observation error variances

offline is that it minimizes the number of identifiable

parameters that need to be estimated.

As part of the implementation of the state-space

model, the system noise takes the form of a normal

mixture process

et ; c1Nð0;r2
eÞ þ c2N ð0; dr2

eÞ: ð8Þ

The system noise has a overall variance corresponding

to the offline estimated r2
e , and will vary in time. We

choose c1 ¼ 0.9, c2 ¼ 0.1, and d ¼ 10 which allow the

system noise variance to have occasional large values.

This mixture form for the system error allows the state

estimates to closely follow the observations when abrupt

changes in velocity occurred, such as those found at the

onset of a dive.

The state zt (and ft) and the parameters a1 and a2 are

jointly estimated using a state-augmented particle filter

based on sequential importance resampling (for details,

see Appendix B). This estimation is carried out for each

of the 110 analysis time windows (each 26 minutes long,

and overlapping by 13 minutes). The slow time variation

in these parameters across the 110 windows corresponds

to the changes in fur seal behavior over the data record.

To estimate the static parameters a1 and a2 within a

single time window, we use the following algorithm:

1) Run the particle filter with the data yt using the

state-augmented model (Eqs. 6 and 7), and with system

noise and observation noise as specified above. Set the

initial random walk variance for the parameters at r2
mð0Þ

(the bracketed value indicates the iteration number), as

well as initial values for a1,t¼0(0) and a2,t¼0(0). Take the

mean estimated by the particle filter across all time steps

of â1,t(0) and â2,t(0) to be the parameter values obtained

from iteration zero, i.e., â1(0) and â2(0).
2) For iterations k ¼ 1, . . . , m. Let r2

mðkÞ ¼ a r 2
m(k �

1), where a is a discounting factor used to control the

FIG. 1. (a) Observed time series of depth (blue line) and (b)
derived vertical velocity (black line) from a northern fur seal
collected on 18 August 2006, with hour of day indicated. Panels
(c)–(e) show depth (blue line) and vertical velocity (black line)
for three selected one-hour-long data segments, for time periods
as indicated [the gray shaded areas labeled A, B, and C in
panels (a) and (b)].
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reduction in the random walk variance at each iteration.

Use as initial values for a1,t¼ 0(k)¼ â(k� 1) and a2,t¼0(k)

¼ â2(k� 1). Take the mean of a1,t(k) and a2,t(k) from the

particle filter for estimates for â1(k) and â2(k) for

iteration k.

3) Stop after m iterations. Use â1(m) and â2(m) as final

estimates for a1 and a2.

This is a simplified (unweighted) version of the

multiple iterated filter of Ionides et al. (2006). It was

found that the following values yielded good results: (1)

an initial r2
m(0)¼ 0.12; (2) a discounting factor of a¼ 0.5,

and (3) m ¼ 10 iterations providing a stopping criteria

(r2
m(10) was by then small enough that the parameters

were effectively fixed at a constant value). This

algorithm was applied for each of the 110 time analysis

windows to estimate the time variation of a1 and a2.

To test the accuracy and stability of this algorithm, we

ran multiple runs with synthetic data generated using the

movement model and known parameters. These tests

indicated that the above algorithm provided a good

recovery of the movement parameters. In the Supple-

ment, R code is given for implementing the entire

procedure.

RESULTS

State estimates for the vertical velocity are obtained as

part of the analysis but were not of interest in our

behavioral inference. The estimated state (Fig. 3b, c, in

gray) conforms well to the velocity observations (Fig.

1b). In fact, it is simply a low-pass filtered version, which

identifies the underlying velocity signal. It is not

discussed further.

Fig. 3a shows the offline estimates of the system noise

variance and observation error variance, and how they

evolve through time for each of the analysis time

windows. Both scale proportionally to vertical speed,

and are large during periods of active diving, dropping

toward zero during non-diving phases. These variances,

r2
o and r2

e , were used as inputs to the state-space model.

Fig. 3 also shows the estimated slowly time varying

movement parameters from the analysis, i.e., the auto-

regressive coefficients a1 (Fig. 3b) and a2 (Fig. 3c).

During the initial part of the day (00:00–06:00, and

highlighted in segment A in Fig. 1c, and segment A in

Fig. 3a–c), the fur seal exhibits rapid, frequent, regular

dives and a1 ’ 1.5, a2 ’ �0.6, and the system noise

variance, r2
e , is high (0.15–0.2). Just past midday, there

is a 4-hour period of occasional deep dives with large

velocities (highlighted in segment B in Fig. 1d and

segment B in Fig. 3a–c). The system noise variance

increases to 0.05, and a1 ’ 0.8 and a2 ’ 0.1. There are

also periods where the fur seal remains at the surface

with small vertical speeds (highlighted in segment C in

Fig. 1e and segment C in Fig. 3a–c) in which the a1 and

a2 parameters and system noise are near zero. The

behavioral signatures in these vertical velocity data are

however not always discrete modes, but have time

variation and mixes of behaviors. These are captured

well by the continuously time-varying movement pa-

rameters (Fig. 3b, c).

To further validate the results, we address the

question of how well the estimated parameters can re-

construct the emergent statistical properties of the data.

The evolutionary ACVF can be predicted from knowl-

edge of the time evolution of a1, a2, and r2
e (Priestley

2004: chapters 3 and 4). The predicted ACVF can then

be compared to its corresponding sample version

computed from the data in Fig. 2b. Note that the

sample ACVF does not separate out stochastic fluctu-

ations in the movement process from the observations,

as does the state-space model. Also, since the movement

model is a simplified representation of reality, it can only

capture a portion of the variability in the data. Hence we

do not expect exact comparability or reproduction. It is

nevertheless a useful comparison and validation.

The main features of the predicted ACVF (Fig. 2b)

compare very well with the sample ACVF (Fig. 2a),

especially at the important small time lags. In particular,

the oscillation and decay of the ACVF with increasing

lag is predicted for the initial foraging period (segment

A, Fig. 2c). In fact, the major differences for this period

are the added noise at large lags in the sample ACVF,

and that the sample ACVF has deeper negative values at

larger lags than does the predicted one. This latter

discrepancy occurs since the observed velocity series

does not have an exact periodicity even within a single

time analysis segment. That is, the dives are quite

regular, but not exactly repeating. In Fig. 2d, the sample

and predicted ACVF are compared for segment B,

characterized by irregular diving; the magnitude and

decay rate of the ACVF is well captured in both sample

and predicted ACVF. Finally, in Fig. 2e, the low

velocities and cutoff after lag zero characterizing

segment C are seen in both the sample and predicted

ACVF.

CONCLUDING REMARKS

We have explored the idea of estimating behavior

parameters from marine animal archival tag data using

movement models. The central idea is that by estimating

the time variation of parameters for a suitable move-

ment model, researchers can then objectively and

quantitatively infer animal activity (and its behavioral

state). Here, we have offered a statistical-dynamical

approach suitable for extracting behavioral information

from high-resolution data, and one that is widely

applicable to a variety of movement models and

observation types. It offers an alternative to behavioral

switching state-space models (Jonsen et al. 2007,

Patterson et al. 2009), and is flexible enough to obtain

solutions even for nonlinear and non-Gaussian cases.

Our approach builds upon the state augmentation

procedures of Kitagawa (1998) and Ionides et al. (2006).

Our application focused on analysis and interpreta-

tion of the vertical movement data from a tagged

northern fur seal. The analysis provides slowly time-

MICHAEL DOWD AND RUTH JOY572 Ecology, Vol. 92, No. 3
R

ep
or

ts



varying estimates for the movement parameters. We

were able to discriminate between periods of rapid

shallow regular diving, episodic deep diving, and

transiting/resting behavior, as well as indicate the times

spent in these behavioral modes, the transitions between

them, and any mixed behaviors. The application also

highlighted issues that are expected to arise in any

analysis of high resolution movement data, and for any

movement model. These include (1) the identification of

an appropriate movement model; (2) choosing the

appropriate time scale for parameter estimation; and

(3) the estimation of identifiable parameters. Remarks

on each of these issues are offered below.

Identification of the appropriate movement model is

an important issue that affects interpretation of the data,

and is key to making meaningful conclusions about

behavior. In fact, we want models for which the

parameters are directly interpretable as behavior. Model

choice must be based both on theoretical precepts, as

well as statistical features of the data. For this study, the

discrete-time AR(2) model was well suited for the

vertical velocity data, but continuous time formulations

of movement are also possible within the state-space

framework (Johnson et al. 2008). Generalizing the

approach to two-dimensional and three-dimensional

movement would require different types of models, such

as correlated random walks (Morales et al. 2004). These

would replace the process model (Eq. 1), and parameters

could be estimated with the state augmentation proce-

dure.

FIG. 2. Evolutionary auto-covariance function (ACVF) of vertical velocity. Panel (a) shows the sample ACVF computed from
the data with time of day indicated. Panel (b) shows the corresponding ACVF predicted from the estimated behavioral parameters
of the movement model. Panels (c)–(e) show the details for time segments A, B, and C [indicated by dotted lines in panels (a) and
(b)] for both the sample and predicted ACVF.
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An issue specific to the method is the choice of the

time-scale for the movement analysis. The lower limit

for time window length is chosen based on the natural

time scale of the movement model. Here, the AR(2)
model is applicable to a time series comprised of an

coherent collection of similar dives, and not a single

dive. Therefore, in the northern fur seal the window
width must be at least wide enough to encompass a

series of dives. The upper limit on the window length is

based on the time-scale at which fur seal behavioral
changes take place, with the idea that the parameter

estimation use a data segment that is approximately

stationary (i.e., parameters should be constant over the

window). The 26-minute window was a reasonable
compromise, and the 13-minute overlap allows for us

to resolve more abrupt changes in the parameter values.

Note that some types of models with low resolution data
for which behavior can be directly inferred from the

state may not need to be time windowed and state

augmentation can proceed directly without recourse to

the multiple iterated filtering.

Parameter identifiability is a concern for many

ecological and movement models, especially as com-

plexity is increased to account for more features of
behavior, and additional spatial dimensions are incor-

porated. One possibility is to use prior information on

the parameter values, as is done with hierarchical

Bayesian state-space models of animal behavior (Mo-
rales et al. 2004). Within the context of our particle

filtering approach, priors could be built into the

resampling step (thereby changing the weights), or
alternatively hybrid particle-MCMC approaches (e.g.,

Andrieu et al. 2010) could be considered.

In summary, recent review articles have identified

state-space models (Patterson et al. 2008) and hierar-
chical Bayesian approaches (Schick et al. 2008) as two

important directions for extracting ecologically mean-

ingful information from animal tag data. Here we have
used a particle filter approach for an augmented state-

space model that is designed for the type of large

volume, high resolution motion time series recorded by

archival animal tags. The approach allows for estima-

FIG. 3. Parameter estimates over time as obtained from the analysis. Panel (a) shows the estimated observation error variance
and system noise variance. Panel (b) shows the estimated a1 coefficient from the state-space model (black line), along with a low-
pass filtered version of it (blue line). The state estimate for the vertical velocity time series is also shown (light gray). The detailed
data segments (A, B, C) corresponding to Figs. 1 and 2 are indicated by gray shading. Panel (c) shows the corresponding
information for the a2 coefficient.
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tion of the parameters in any movement model, from
which behavior can be then inferred. The approach of

this study offers a promising direction for more fully
exploiting the behavioral information in these rich data
sets.
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APPENDIX A

The approach used to specify the observation error and system noise variance (Ecological Archives E092-049-A1).

APPENDIX B

A primer on particle filtering (Ecological Archives E092-049-A2).

SUPPLEMENT

R code for implementing the multiple iterative filtering methodology (based on an idealized example) (Ecological Archives E092-
049-S1).

March 2011 575BEHAVIORAL PARAMETERS IN MOVEMENT MODELS
R

ep
orts


