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Abstract 

Demand Side Management (DSM) and real-time pricing (RTP) are methods by which the 

consumer can participate in the electricity market and reduce electricity expenditures. By 

having more active consumers in the electricity market, DSM and RTP have economic 

advantages. By allowing users to participate in the market, a more elastic relationship 

between supply and demand is achieved. Furthermore, many customers are now 

introducing renewable sources to their homes in an attempt to reduce their current 

electricity bill. 

 

The introduction of demand side renewable sources can be coupled with the existing 

DSM scheme by imposing new constraints to further minimize the cost to consumers and 

utilities (both generation and distribution). In finding the optimal load levels with 

information about day-ahead renewable generation capacity, a reduced consumer payout 

and a more desirable load profile is obtained. This allows for further studies in distributed 

renewable generation applications and the effects they have on the future grid.  
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Chapter 1: Introduction 

Distributed generation has become an option for residential consumers of electricity to 

reduce energy expenditures. As the distributed generation levels begin to increase there is 

a need for efficient management and scheduling of load levels. To make effective use of 

generation and reduce energy costs to the consumer, the concept of load management (or 

demand side management scheme) has been introduced. Due to the inability of many 

consumers to manage their loads due to time restrictions or other commitments in their 

day to day lives, a customer local management system is more practical and efficient. The 

automatic scheduling of residential loads is known as demand side management and has 

become an active area of study. Many researchers in the area focus upon scheduling and 

managing various loads such as household appliances and plug in hybrid electric 

vehicles. Research in demand side management has also lead to effective methods of 

management for loads such as the application of Lagrange Relaxation optimization. A 

main reason for the growing interest in demand side management is the prospects of 

flattening the load profile in an attempt to reduce generation and transmission costs for 

energy utilities. Research in the area of demand side management has shown that a 

flattened load profile is achievable with the methods developed in many papers [4, 5, 6]. 

 

1.1 Thesis Objective 

The objective of this research is to develop a methodology that reduces consumer payout 

to the utility through a demand side management scheme that recognizes the availability 

of distributed generation. This is necessary due to the increased levels of generation 

present on the demand side. Without the management of the distributed generation levels, 
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it is difficult to achieve an optimal load profile and a reduction in cost to consumers and 

utilities. This research will allow for further advancement in studies of the applications of 

distributed generation. This is done through proper management of distributed generation 

levels and that leads to further optimization of the electricity grid. Since many distributed 

generators are renewable sources, the management of such devices leads to an 

improvement in the development area of renewables research. 

 

1.2 Thesis Contribution 

With the introduction of demand-side management schemes there is a need to account for 

the generation sources accessible to the consumer. The work done in this Thesis is the 

integration of consumer owned generation into the optimization of residential load 

scheduling.  To demonstrate the advantages of integrating consumer generation into the 

optimization problem load optimization algorithm is considered. A Matlab
TM  

program is 

developed to optimize the residential load with the presence of local generation to reduce 

energy expenditures. . The program makes use of the optimization Lagrangian Relaxation 

method to schedule the individual loads and produce a day ahead scheduling horizon.  

 

1.3 Thesis Outline 

Chapter 2 presents an introduction to pricing schemes and layout of the current electricity 

market. With an understanding of the economic effects of demand side contribution to the 

electricity market the importance of demand side management schemes becomes 

apparent. A discussion of previous work is also covered in this chapter. 
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Chapter 3 presents and details the optimization schemes used in the management of the 

residential loads. In this section the methods of dynamic programming and Lagrangian 

relaxation are discussed. The optimization methods outline the requirements to be met by 

the algorithm so that an optimal scheduling horizon is achieved. 

 

Chapter 4 presents a review of the concept of unit commitment. Unit commitment is 

important in the study of demand side management problems due to the analogous 

characteristics of the unit commitment problem. The unit commitment methodology 

outlines the optimal deployment of generation units based upon the operational costs of 

committing a unit. The same concepts can be applied to the solution of the demand-side 

management problem by viewing the problem as the compliment of the unit commitment 

problem.  

 

Chapter 5 presents the theory behind the new optimization algorithm and the results 

obtained from testing of the algorithm. The algorithm considers two separate cases where 

it optimizes the scheduling times for various numbers of the two classes of loads; shift-

able and curtail-able loads. The sensitivity of the algorithm to parameter changes is also 

analysed and discussed. 

 

Chapter 6 presents the conclusion of the research and proposes possible future advances 

of the concepts in this field of study. 
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Chapter 2: Previous Work and the Current Electricity Markets 

The concept and development of demand-side management to alleviate the issues facing 

the current electricity market is not novel to this thesis. There is research being done in 

different areas of DSM to improve its performance and reliability for real systems. This 

section will briefly discuss other areas of research in DSM to further show the importance 

of the novel research developed in this thesis. To understand the need for DSM the 

current structure of the electricity market must also be discussed. 

 

2.1 Current Work in Demand-Side Management 

The concept of demand-side management was developed to flatten the load profile or 

load curve that utilities supply. From this many different papers and texts review the need 

for such concepts, the major reason being a reduction in transmission and generation 

costs by having consumer participation in the electricity market [1], [2] and [3]. The idea 

is that if there is more participation of consumers in the electricity market a more 

economical and reliable market structure is formed. With a more economical market 

consumers are more likely to regulate and curtail energy usage, reducing costs incurred 

from the utilities. More specific research relating to the implementation of DSM systems 

is discussed in [1], [4], [5], [6] and [12]. However, the papers of most influence on the 

research done by this thesis are [4], [5], [6] and [12].  

 

One of the previous papers discusses optimization of residential appliances using a price 

prediction of the day-ahead prices to aid in the scheduling of each load [4]. It uses the 

price prediction as a control input for the scheduler during times where the information of 
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price is not available. This is important for scheduling devices that may overlap onto 

another scheduling horizon. The paper also introduces a decision equation that 

determines the penalty cost associated with running an appliance. The equation is 

dependent on coefficients to determine the penalty cost for running and appliance or 

waiting. This is used to model the consumer’s preference on the operation of a particular 

appliance. The authors consider only short pricing periods and state that price prediction 

capability is needed. However, the proposed thesis and research done shows that with a 

day ahead pricing schedule there will be no need for price prediction, reducing the 

complexity of the problem and increasing the accuracy of the results. 

 

Present work in residential load management seeks to satisfy the objectives of reducing 

the load levels, also known as curtailment, or shifting the load [5]. A user dissatisfaction 

function is considered to model the penalty cost associated with curtailing a user load. 

The implementation of DSM requires information to be telecommunicated between the 

consumer and the utility. In communicating information, lost messages can occur which 

effects the reliability of the optimization. The convergence and testing of optimization 

with lost telecommunicated messages is shown. 

 

Another research paper considers a method for modelling the user energy consumption 

using game theory [6]. The objective of [6] is to demonstrate that with communication 

between users on the same substation feeder and appropriate tariff structure, a game 

structure can be used with demand-side management to reduce to the load profile on that 

feeder. The authors propose that the optimal energy cost is achieved at the Nash 
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equilibrium of the formulated energy game. The game only requires that each player 

submits its best load configuration in response to price. The research done in this thesis 

can further improve saving of each user in the scenario proposed by the paper. With local 

generation available to customers, the load needed to be supplied by the grid is reduced 

and a better load configuration can be submitted by the player in the game. 

 

Due to the number of household appliances that consume large amounts of power, there 

is a need for load-shifting solution to optimally manage the loads of each appliance to 

reduce cost to the consumer. This is becoming more of a need due to the introduction and 

increasing popularity of plug-in hybrid electric vehicles (PHEVs). Many PHEVs require 

0.2-0.3 KWh of charging energy for one mile of driving [12] creating a new large 

residential load component that cannot be curtailed. Furthermore, due to high demand 

during charging times of PHEVs and increasing popularity, appropriate management 

programs must be implemented to prevent voltage issues and power quality degradation 

that will stem from the increased load produced from PHEVs [12]. 

 

Research done by [5], [6] and [12] focus upon reducing energy consumption of users and 

thus reducing payout to the utility. However, there is a lack of focus on the integration of 

demand-side generation with current load optimization schemes. The results of the work 

done in this thesis will show that the energy levels and consumer payout can be reduced 

further through the implementation of distributed generation, improving the results of the 

previous papers. 
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2.2 Electricity Markets 

Generating companies produce electricity and compete for bids on the competitive 

market. From this the electricity market is formed. The objective of competitive markets 

is to reduce the price paid by consumers. However, it does not behave as most other 

competitive commodity markets do mainly because most consumers have very little 

influence in the market due to a lack of expertise to contribute to the design [3]. A way to 

address this issue is to provide price schemes that allow consumer participation. There 

are many different pricing schemes in the electricity markets today. There are a variety of 

pricing schemes currently used in different markets: flat rate, time of use (TOU), critical 

peak pricing (CPP), extreme day CPP(ED-CPP), extreme day pricing (EDP) and real-

time pricing (RTP) [2]. Real-time pricing will be the method that that is focused upon in 

this thesis and discussed in more detail further on. The importance of consumer activity 

in the market is to create a better balance between supply and demand, as most other 

commodity markets have. 

 

From economic theory, the demand of a commodity will increase until the benefit 

obtained from the commodity equals the price of the commodity. An example of this 

would be a manufacturing process; the manufacturer will not produce a product if the 

price to produce the product makes the sales unprofitable. This leads to a link between 

the changes in price versus a change in demand. This is known as price elasticity of 

demand. The common equation representing this relationship is: 

   

  
  

⁄

  
  

⁄
                                                                  (   )     
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where qo and po are the equilibrium points for demand and price respectively. If the above 

equation is assumed to be normalized with respect to the equilibrium point then it 

becomes: 

   
  

  
                                                                       (   )     

where q and p is the demand and price associated with a commodity respectively. The 

above equation is normally negative because an increase of price results in a decrease in 

the demand.  A perfectly elastic commodity has a price elasticity of demand (PED) value 

of negative one. However, most electricity markets have a PED value close to zero. This 

means that even for a large change in price there is a small change in demand. 

Represented graphically, common supply versus demand curve is shown in figure (2-1). 

However, as stated previously, current electricity markets do not behave in this manner 

[3, 7]. This can be easily shown in figure (2-2), where a large change in price results in 

small changes along the demand curve.  

 

Figure 2-1. Common Supply and Demand Curve. 
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Figure 2-2. Supply and Demand Curve for Electricity Markets. 

The lack of elasticity in many markets can be attributed to a variety of causes. First is that 

the pricing scheme used doesn’t provide incentives for customers to change their demand 

based upon the price, this is common in flat rate markets. At the same time, incentive 

based programs may not provide benefits that outweigh the comfort and convenience to 

cut their bill by a few percent [3]. One factor is believed to be caused by the historical 

view of electricity usage. Since the beginning of electricity sales, it has been viewed as 

easy to use, always available and integral to daily life, because of this thought very few 

people carry out a cost/benefit analysis for their current consumption levels [3]. 

 

It is not always the state of mind of the user that causes the relationship between supply 

and demand to be relatively inelastic. The inelastic nature of the market also stems from 

which pricing schemes are used. Many types of TOU schemes such as CPP only charge a 

different price at times where demand is high in an attempt to cause consumers to shift 

loads and often the exact price is not known until the time at which the peak occurs. 

However, in RTP schemes, customers are charged hourly fluctuating prices that are 
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announced on a day-ahead schedule. This allows consumers to shift loads to times where 

price and comfort levels can be traded off for one another. Economists believe that RTP 

is the most direct and efficient program suitable for competitive electricity markets [2, 7].  

 

There are issues with many electricity market schemes currently used and not all can be 

corrected with simply changing the current scheme used. Even with RTP there are still 

problems with educating users and setting up programs between the utilities and 

consumers. From this demand side management (DSM) solutions have become the new 

focus to improve current market structures. With DSM and RTP users can actively 

participate in the electricity market to reduce prices and create a more elastic market. 

 

  



11 

 

Chapter 3: Optimization 

The optimization process is a key component of the DSM problem. There are many 

methods of optimization, but the ones that will be focused upon are those of dynamic 

programming in the application of unit commitment (DP) and Lagrangian relaxation 

(LR). The reason for the selection of these two schemes stems from the complexity and 

structure of the problem. DP is effective for a wide variety of problems and reduces the 

problem of dimensionality, whereas LR better models the DSM problem by optimizing 

the price signals sent to and from the consumer in the form of the Lagrangian multiplier, 

𝛌. These two methods are discussed in more detail in this section. 

 

3.1 Dynamic Programming in Unit Commitment 

Dynamic programming is an optimization process present in the unit commitment 

problem in which a large problem is transformed into a series of smaller problems [8, 

16]. This section provides an overview of dynamic programming as it is applied to the 

unit commitment problem; further detail is given in the following chapter. The main 

advantage of dynamic programming is the reduction in the dimensionality of the primal 

problem. This reduction is crucial for advanced problems due to the large dimensionality 

of problems and processes found in more complex systems. DP was developed by 

Richard Bellman in the 1950s and is continued to be used in many optimization schemes 

today [8]. This is due to the capability of DP to handle discrete and continuous problems 

as well as stochastic and deterministic ones. The individual problems (or sub problems) 

can be solved using many different optimization techniques ranging from enumeration 

methods to advance non-linear techniques [8, 10, 17]. 
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Sub-optimization is a key component of DP by using Bellman’s principle of optimality. 

Bellman stated that an optimal policy (or set of decisions) has the property that whatever 

the initial state and initial conditions are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first decision [8, 9, 10]. To 

paraphrase the previous statement, regardless of what initial conditions exist, optimizing 

the total system is done by obtaining the optimal set at each stage. This is demonstrated 

further by defining an N-step objective function as: 

       (       )      (       )      (     )                  (   ) 

where xn+1 is the previous state or input to and un is the decision associated with the N
th

 

stage. To illustrate this problem further figure (3-1) shows an initial value problem 

system as a series of stages with a decision    to be selected such that the corresponding 

objective value,   , is optimized. 

 

 

Figure 3-1. N-Stage Initial Value Problem 

 

Considering the above figure and equation, using DP to solve this problem we start at the 

final stage. If the input to this stage is specified as x2 then Bellman’s principle of 

optimality states that u1 must be selected such that f1(x2, u1) is optimized, denoted  
 : 



13 

 

  
 (  )     

  

[  (     )]                                                  (   ) 

Next, optimizing the second stage we group the last two stages together and   
  denote the 

optimal objective value for this sub problem: 

  
 (  )     

     

[  (     )    (     )]                                    (   ) 

This can be further simplified by substituting    [  (     )] by   
 (  ) resulting in the 

following: 

  
 (  )     

  

[  
    (     )]                                             (   ) 

From this trend a general formula for the DP process is obtained by taking: 

  
 (    )     

            

[  (     )      (       )]                        (   ) 

and after substitution it becomes: 

  
 (    )     

  

[    
      (       )]                                 (   ) 

Equation (3.6) defines the general form of the DP process. As can be seen from the above 

equation, DP can be used to optimize any objective function. However, although DP is 

very useful in reducing the dimensionality of the problem, DP does not give one method 

by which an optimal solution may be found and various solution methods vary depending 

on the nature of the problem. 

 

From this it can be seen that DP is a very powerful tool because it focuses on individual 

hourly optimization of loads without regard for the previous hour, greatly reducing the 

complexity and dimensionality of the problem. However, DP does not account for the 

entire optimization procedure. As was stated previously, any optimization technique can 

be used to obtain the set of optimal decisions for the individual stages. For this task the 
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technique of Lagrangian relaxation is used, this if discussed in more detail in the 

following section. 

 

3.2 Lagrangian Relaxation 

Lagrangian relaxation has grown from a mostly theoretical concept to a useful method of 

optimization [8]. From this growth, more research is being conducted to expand the use 

of this optimization technique. It has become a popular method to solve the unit 

commitment problem because of its iterative technique and ability to eliminate restricting 

coupling constraints, which will be discussed in a later section. Due to the iterative nature 

of LR it is easily coupled with DP to further reduce the complexity of large scale 

scheduling problems.  

 

Lagrangian relaxation is based upon the idea that complex optimization problems can be 

modeled as simple problems with complex constraints [8, 11]. From this, LR reduces 

many of the problematic constraints that are attached to the objective function in the form 

of a penalty term containing the level of violation of their constraints and dual value. 

Programming problems contain an objective function to be minimized or maximized, 

typical objective functions would be profit maximization or cost minimization. The 

objective function changes based upon a state variable which has its values bounded or 

constrained. As previously stated, LR relaxes these constraints to simplify the 

programming problem. To illustrate this concept further, consider the programming 

problem below: 
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{

      (  )
           

    
   

                                                                     (   ) 

where x is an       vector representing the state variable. This state variable has many 

different definitions and it depends on the nature of the problem. For example, in the 

context of the DSM problem the state variable are the load levels that minimize the price 

and in the unit commitment problem they are the generation levels that minimize the cost.  

 

3.3 Lagrange Method and Dual Variable Problem 

To understand the Lagrangian relaxation problem we need to define the concepts of 

Lagrange multipliers, λ, and ‘dual variables’. To develop this concept easily the simple 

optimization problem is considered [8]: 

{
 (     )      (     

        
 )

           
       

                                                   (   ) 

The minimum value that J can assume is zero but this is a constrained problem due to the 

straight line constraint on          . The optimum point that minimizes the objective 

function with respect to the constraint is the tangent to the objective function. To 

determine point that is tangential to both functions the gradient is introduced. If the 

gradient of J, denoted by   , has a non-zero component along the constraint 

function,  (     )  then an optimal point has not been reached. A movement along the 

constraint function should be made until    has a no components along the constraint 

function, this means that    is ‘normal’, or perpendicular, to  (     ). To insure that    

is normal to g we require that    and    be linearly dependent vectors, or line up in the 

same direction. With this requirement we can set up the equation: 
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                                                                            (   ) 

This equation creates the bases for the Lagrange equation. In essence, it states that two 

gradient vectors cancelling one another when one is scaled by λ, the Lagrange multiplier. 

The reason for the scaling is caused by one vector not being the same length as the other. 

Rewriting equation (3.9) without gradients we obtain: 

 (       )    (     )    (     )                                               (    )  

which is called the Lagrange equation [11]. To solve for the values of             that 

optimize the objective function we require that the partial derivatives of  (       ) with 

respect to each variable be equal to zero, which can be seen to be the same as equation 

(3.9). The requirements form the following set of equations: 

  

   
                                                                     (    ) 

  

   
                                                                     (    ) 

  

  
                                                                      (    ) 

Using these equations the problem stated in equation (3.10) can be solved using the 

Lagrange method as follows: 

 (       )        
        

   (         )                                              

  

   
                                                                                  

  

   
                                                                              

  

  
                                                                             

Solving the three equations results in: 
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When more than one equality constraint is introduced, the same method can be used to 

solve the problem. The only change is the presence of a λ for each separate constraint. 

 

With the concepts of Lagrange multipliers and Lagrange equations explained, the next 

concept to discuss is the Lagrange method using ‘dual variables’. The idea is to solve for 

the Lagrange variables directly then solve for the problem variables using and iterative 

technique [11]. The equation related to the solution of the Lagrange variables is called the 

‘dual solution’ whereas the Lagrange multiplier solution is called the ‘dual problem’ [11]. 

To demonstrate and develop the equations for the dual method, the previous example will 

be used where the Lagrange equation is: 

 (       )        
        

   (         )                                         

Then the dual function, denoted as  ( ), is defined as: 

 ( )      
     

 (       )                                                       (    ) 

With the dual function defined, the dual problem,   ( ), by definition is: 

  ( )      
   

 ( )                                                            (    ) 

From the above equations, it can be seen that the dual variable method requires two 

separate optimization problems. The dual function states that for a value of λ we solves 

for the variables           that minimize the function. The dual problem then states that 

for the values found in the dual function, a solution to the dual problem is found by 
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maximizing the dual function with respect to λ. This method is repeated and forms an 

iterative procedure for solving the optimization problem. 

 

The Lagrange problem defined earlier by equation (3.10) is simply solved using the dual 

variable method and the value of the variables will always be the same as the primal 

problem variables. This is due to the convex nature of the objective function. In some 

problems, however, the objective function may be piecewise linear or other complex non-

convex functions and the dual problem must be used to solve for the optimal values of the 

variables [11]. In some cases the function in equation (3.14) may not be described 

explicitly in terms of λ, therefore another method must be used to adjust lambda. Many 

texts, including [5, 8, 11], use the gradient search method to adjust the value of lambda 

with each iteration and is defined as: 

       [
 

  
 ( )]                                                               (    ) 

where α is the a scaling value used to make the gradient ‘behave’, or converge in a 

reasonable amount of iterations. A simple rule for the selection of α is: 

                     
 

  
 ( )                                                                     

and 

                     
 

  
 ( )                                                                    

The dual variable problem assumes the variables to be a constant in each step but then 

adjusts the values using the gradient search method; because of this there is an error 

introduced between the dual problem and the and the true minimized values, referred to 

as the primal problem. The primal problem is: 
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 (       )                                                               (    ) 

The error is known as the ‘duality gap’ and is measured as the difference between    and 

  . Due to the iterative nature of the dual variable problem, the duality gap can be used as 

a decision step to exit the iteration. However, a better measure of closeness to the optimal 

solution uses the duality gap and is called the ‘relative duality gap’, defined as: 

     

  
                                                                            (    ) 

If the primal problem is convex with continuous variables the relative duality gap will 

become zero. For many problems the cost function may be piecewise linear, in this case 

the dual variable method must be used to solve the optimal values of the problem [8]. 

 

With the concepts of the Lagrange method and the dual variable problem well 

established, the concept of Lagrangian relaxation is considered next. As was previously 

stated for problems with non-convex or discontinuous cost or constraint functions, the 

Lagrange method is unsolvable due to the non-differentiable nature of these functions. 

Other issues that cause the Lagrange method to fail are coupling constraints, such as 

those found in the unit commitment problem that will be seen later. Lagrange relaxation 

temporarily ignores or relaxes these constraints and uses the dual variable method to 

solve for the optimal values. The way in which this is done is by setting   to a constant 

and adding the coupling constraints to the objective function, shown as: 

{
   (     )     (     ) 

           
    

                                                    (    ) 

Comparing equation (3.18) with equation (3.7) it can be seen that the constraint has been 

added to the objective function creating the dual variable problem. Setting λ to a constant 
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value causes it to behave as a penalty factor in the objective function which can then be 

adjusted using the dual variable method. By utilizing the dual variable method, the 

optimal values for the variables can be solved for, thus defining the Lagrangian relaxation 

method. To define the Lagrangian relaxation method and its advantages further, the Unit 

Commitment problem is discussed in the following section.  
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Chapter 4: Unit Commitment 

To show the advantages of Demand-Side Management for utilities, the Unit Commitment 

problem is introduced as being complementary to load de-commitment. The electric 

power system experiences cycles of high load periods and low load periods caused by the 

everyday routines of people. Loads are generally lower during the night and early 

morning when most people are asleep and higher during the day and early evening when 

businesses are operating or when following evening routines. To supply the high levels of 

demand, generally more expensive generation units need to be turned on. However, when 

loads decrease the units are turned off to reduce cost. How long do some units need to 

remain on to serve loads, which units should be left on, and how much does it cost to 

commit a unit when the load begins to increase? These questions are what form the unit 

commitment problem. It is the cost, and how to reduce the costs, of committing the peak 

time units that is the interest of Demand-Side Management. As a result the Unit 

Commitment needs to be discussed to understand the need of DSM. 

 

To further the understanding of unit commitment and DSM we need to look at the 

behavior of the user. Suppose that the load follows a peak-valley pattern similar to that 

shown in figure (4-1). It follows that, to reduce costs not every generation needs to be 

committed to meet the demand. There could be many combinations of different units to 

meet the demand requirement, without regards to the cost. Other characteristics of the 

system demand are weather dependent and region dependent. For example, the 

temperature during the summer in most tropical countries can be fairly warm whereas the 

winters are mild. From this one expects to see higher loads in the summer than in the 
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winter because people use climate control devices, such as air conditioners, more in 

summer than in winter. Because of this increased loads in summer, the number of units 

committed in summer is expected to be higher resulting in higher cost periods. However, 

meeting the demand requirement of the system is not the only constraint on the unit 

commitment problem.  

 

 

Figure 4-1. Unit Commitment with Load Profile [8] 

 

4.1 Constraints 

There are many different constraints that are placed on the unit commitment problem. 

Not every system will contain all of the possible constraints that can be imposed on a 

system. This is due to fact that not every system has the same type of generation, such as: 

hydro, combustion, thermal and renewables. With these different forms of generation, 

each has a required start-up time, a set time that they need to be run for and a required 

offline time to be considered. Units in the categories of hydro and combustion have a 
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relatively short start-up time allowing them to be brought up quickly when loads begin to 

peak. Thermal units, on the other hand, require a longer time to come online and shut 

down due to the fact that the incremental temperature cannot exceed the specified value 

of the unit. For this reason most thermal units will form the base load, defined as the 

lowest load level required to be supplied that day. 

 

Spinning reserve is another important constraint that must be present in the unit 

commitment problem. Spinning reserve is known as the total amount of generation 

present, or ‘spinning’, minus the load and losses of the system. The amount of reserve 

present is often calculated to be the amount needed such that the loss of one or more 

generation units does not cause a large drop in frequency of the system [11]. There are 

many different ways in which countries or companies calculate the amount of spinning 

reserve required. In the United States the rules that specify how much reserve is to be set 

to each unit are set by regional reliability councils [11]. Other rules specify that the 

reserve must cover a percentage of the total peak demand of the system or that the reserve 

must be able to cover the loss of the largest committed unit running and that the available 

reserve must be distributed between fast responding machines and slower response 

machines. With the main constraints defined the solution methods for the unit 

commitment problem can be developed. 

 

4.2 Solution Methods 

The major issue facing the unit commitment problem from the beginning is that of the 

dimensionality of the problem. Many systems have large number of units that can be 
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committed at any given period of time. Making the following assumptions that there are 

N number of units that can be committed to supply the load at each M number of time 

periods, then it follows that the total number of combinations that need to be tried at each 

time period is; 

   (   )     (   )       (     )     (   )                            

Where    (   ) is the combination of N units taken K at a time and is defined as; 

   (   )   [
  

(   )   
]                                                                

For each scheduling period there would be a (    )  number of combinations to try to 

find the optimal commitment. From this is can be seen that it would not take many units 

for this problem to become extremely difficult to solve. This leads to the need of the 

alternative solution methods known as priority-list schemes, dynamic programming and 

Lagrangian relaxation. 

 

4.3 Priority List Scheme 

The simplest solution method would be the priority-list. As the name suggests, units are 

ordered by priority of lowest to highest full load average production cost. This reduces 

the dimensionality of the problem greatly when the selection of units must be made 

because the next unit that should be committed will be the cheapest to run. A simple shut-

down algorithm taking into account the system constraints would be; 

 

 As the load decreases, determine if the next unit in the priority list can be dropped 

such that the level of generation meets the spinning reserve and demand 
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requirements. If the requirements are not met, keep the current commitment; if 

yes then drop the next unit on the list and go to the next step. 

 Determine the number of H hours before the unit will need to be committed again. 

 If the number of hours is less than the minimum shut-down time then keep the 

unit running and go to the last step; if not proceed to next step. 

 Two costs need to be calculated. The first is the sum of hourly production costs 

for the next H hours if the unit is on. Then calculate the same cost with the unit 

offline and add the start-up costs. If shutting the unit down provides sufficient 

saving then it should be shut down otherwise keep it committed. 

 Repeat this for the next unit on the list. If it is also dropped continue with the next 

unit. 

 

This algorithm defines the priority-list scheme [8]. There are also other adjustments that 

can be made to the algorithm to suit different systems containing different types of 

generation. Dynamic programming also creates a similar priority list so solve the 

commitment problem. 

 

4.4 Dynamic Programming Solution Method 

The dynamic programming approach is similar to the priority scheme in that it too uses a 

list of units to solve for the optimal values for the unit commitment problem. The DP 

approach separates the scheduling problem into smaller optimization problems [16]. By 

optimizing the smaller problems, an optimal solution to the overall system can be 

obtained. The advantages of reducing it to smaller sub-problems are the reduction of 
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dimensionality of the problem along with less computational power requirements because 

the whole system is not under consideration. The forward DP approach takes advantage 

of the idea of reducing the problem into sub-problems and is a successful algorithm that 

is used to solve the unit commitment problem.  

 

There are two main dynamic programming algorithms that are proposed in literature, 

these are the forward DP approach and the backward DP approach [8, 16, 17]. The 

backwards DP starts at the final hour of the scheduling horizon and runs backwards to the 

initial time, solving for the optimal unit arrangement. Conversely, the forward DP 

approach begins at the initial hour and runs forward in time to the final hour. There are 

several advantages of forward verse backwards. The first being that if the start-up costs 

of the unit is a function of time that it has been offline then with forward DP you have 

information about how long the unit has been offline and therefore can calculate the start-

up costs at each stage. The other practical advantages of using forward DP are that the 

initial conditions are known as well as the algorithm can run forward in time for as long 

as required [textbook]. The forward DP algorithm is defined in flowchart of figure 5 and 

the corresponding cost function that is to be optimized is; 

 (   )      
 

[     (   )       (         )   (     )]                 (   ) 

where, 

 (   )                                    (   )                                          

                                      (   )                                           

     (         )

                                       (     )          (   )  
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Start

K = 1

F(K,I) = min [ P(K,I) + S(K-1,L : K,I) ]

K = K+1

L = Number of feasible 
states in the interval K-1

F(K,I) = min [ P(K,I) + S(K-1,L : K,I) + 
F(K-1,L) ]

Do for  all states I in 
period K

Do for  all states I in 
period K

Save ‘N’ lowest 
costs

K = final 
hour?

No

Trace optimal Schedule

Stop

 

Figure 4-2. Forward DP Approach [8]. 

The state (K, I) represents a combination of committed units during the K
th

 hour. The 

variable N is introduced to keep tract of the lowest costs states. The reason for having 

multiple lowest cost combinations saved at each state is that the lowest cost at any given 
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state does necessitate a following optimal state. An example of this would be if the lowest 

cost at state K-1 called for a unit to be shut down but at time K it required the unit to be 

turned on again. If the cost to start up the unit is larger than the savings acquired from 

turning it off than it would be been more economical to keep the unit committed during 

the previous time period. The main disadvantage of the forward DP approach is that as 

the number of units begins to increases the accuracy decreases due to the strict priority 

order that is imposed on the search method.  

 

4.5 Lagrangian Relaxation Solution Method 

Lagrangian relaxation has many advantages over the other solution methods of priority-

list schemes and dynamic programming with strict priority-lists. The main advantage 

being that the Lagrangian method is not forced to search over a strict list of units to 

commit in a given order. Since it is not limited in the ordering of units to commit, the 

solution found has a more optimal configuration while still meeting the constraints placed 

upon the problem by the system. There are other issues that need to be addresses such as 

dealing with non-linearity and status variables of each unit. However, these issues can be 

overcome with the use of the dual variable method discussed earlier. 

 

The first step to the development of this problem is to define the unit status variables   
  

as; 
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The constraints and the objective function of the system must also be defined for the 

problem. The constraints are separated into three groups: loading constraints, unit limits 

and other constraints. The reason for the separation will be apparent shortly. These 

constraints are defined as; 

     
  ∑  

 

 

   

  
                                                            (   ) 

  
     

    
    

     
                                                      (   ) 

 

where equation (4.2) is the loading constraint and equation (4.3) is the unit constraint. 

The other constraints that can be added to the problem are the start-up and shut-down 

time constraints, fuel consumption, emissions and spinning reserve limits. The objective 

function of the system is the cost of running each unit and is defined as; 

 

∑∑[  (  
 )                ]

 

   

 

   

  
   (  

    
 )                           (   ) 

 

From this the Lagrange equation can be formed; 

 

 (     )    (  
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  ∑  
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Notice that the unit constraints and the other constraints do not appear in the Lagrange 

equation. This is due to the fact that these constraints can be applied to each unit 

separately outside of the optimization function. If the values of the optimization result in 

the violation of one of these constraints, the value is simply set to the limit that was 

violated. This results in the most optimal solution that the constraints allow. 

 

After examination of the cost function and the constraints set by the unit limits, we can 

see that the problem is separable over each unit. However with the introduction of the 

loading constraints the problem is no long separable. An adjustment of one unit results in 

a change in the levels of another. This poses an issue which causes the optimization of 

the unit commitment problem to become quite complex. The concept of Lagrangian 

relaxation removes this problem by relaxing or ignoring the coupling constraint. This is 

done through the dual variable method of maximizing the Lagrange equation with respect 

to the Lagrange multiplier while minimizing with respect to the other variables. The dual 

variable method defines this as; 

 

  ( )      
 

 ( )                                                         (   ) 

where, 

 ( )      
  
    

 
 (  

    
   )                                                    (   ) 

 

The process solves for a value of   that moves  ( ) towards a larger value followed by 

finding the minimum of the Lagrangian by adjusting the values of   
        

  using the 
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fixed value of   previously found. To illustrate this further, setting   to a fixed value in 

equation (4.5) results in the expansion; 

 (     )    (  
    

 )   ∑       
     ∑  

 

 

   

  
                           (   )

 

   

 

 

By substituting equation (4.4) into equation (4.8), dropping the second term because it is 

a constant and rearranging it can be seen that the problem has been separated between the 

units; 

 (   )   ∑∑[  (  
 )                ]  

      
   

                     (   )

 

   

 

 

 

 

With the coupling problem of the Lagrangian removed, the optimization problem 

becomes much simpler to solve. The unit commitment problem can be solved by 

optimizing each unit separately without regard for what is happening to other units. This 

is done by substituting equation (4.9) in equation (4.7), the minimum is found by taking 

the first derivative; 

 

 

   
  [ (  

    
 )      

   
 ]                                                  (    ) 

 

The values for the variable   
  can either be one or zero depending the on the status of the 

unit. When   
    the minimum is zero, where as if   

    the minimum is defined as; 
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The unit constraints must also be taken into account and therefore we have three cases 

which the solution to the minimum problem can be found. 

Case 1: If the value of   
   

   
    then; 

 

   [ (  
    

 )      
 ]    

   
    

    

 

Case 2: If the value of   
      

   
   

    then; 

 

   [ (  
    

 )      
 ]    

   
    

   
 

 

Case 3: If the value of   
   

   
    then; 

 

   [ (  
    

 )      
 ]    

   
    

    

 

Looking back at the status variables of the units, a simple method is described to identify 

the state of the unit. If the objective to minimize [ (  
    

 )      
   

 ] and   
    the 

only way to have a lower value is if; 

[ (  
 )      

 ]    
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Therefore once values that minimize the Lagrangian are found for a constant value of  , 

the unit status variable can be determined by the above rule. The second part to the 

Lagrangian relaxation method is to update the value of   . 

 

The adjustment of    is one of the most important steps in the Lagrangian relaxation 

method. In the application of updating   , careful attention must be given to the task of 

updating each time period   independently of the others before continuing on to the next 

iteration. Equation (4.6) states that a maximum of the Lagrangian with respect to   must 

be found, however, this problem is often unbounded therefore another method must be 

used. Most of the literature surrounding the method of Lagrangian relaxations makes use 

of the gradient search and heuristic methods to obtain an accurate solution quickly. The 

gradient search is given as; 

 

    
      

  [
 

  
 ( )]                                               (     ) 

 

where the selection of   is based upon heuristic methods such as past experiences using 

the gradient search method. Reference [11] uses the rules of; 
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Now that a strategy for the iteration scheme has been developed, a decision step to 

measure the closeness to the solution must be introduced. The method that is used is 

known the relative duality gap [8]. It represents the percentage error between the dual 

variable method and the optimal solution given the known status of each unit and is 

defined by; 

     

  
                                                                       (    ) 

 

where    is the optimal solution of the objective function with the status of each unit. If 

the status of every unit is off then the value of    for the given time period under 

consideration then    should be set to an arbitrarily large number. In equation (4.13) it 

must be noted that each term in the equation is the sum of the time incremented values. 

To demonstrate it further,    is defined as               . With large systems 

of units the duality gap becomes quite small. The solution method is quite significant 

because the problem of dimensionality is removed, making it possible to analyze any 

system. The largest issue facing the Lagrangian relaxation method is that as the solution 

converges some units will begin to be switched on and off causing the solution to become 

unstable. With the idea of the unit commitment problem presented, the importance and 

solution methods of demand side management can be better understood. 
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Chapter 5: Distributed Generation in Demand-Side Management 

 

5.1 Introduction 

Demand-side management (DSM) is the concept of adjusting and managing the 

consumers load levels [5, 6]. The control of the consumer load can be done through time-

varying pricing of electricity usage. From economic theory it is understood that with the 

time-varying prices it would be expected that the user would reduce their load levels at 

times of high cost and increase it again at times of lowest cost. However, this concept is 

not applicable to the current electricity market for various practical reasons. Some 

reasons include: the current market does not have time-varying prices thus it does not 

provide an incentive for consumers to adjust their load, consumers do not have the ability 

to adjust loads to times of day with low costs such as during the night when they are 

asleep or are not able to run a manufacturing process during times of low cost. Since it is 

difficult for some manufacturing processes to adjust loads at various times of the day due 

to time dependent production or that the cost of electricity is a small part of the costs in 

the manufacturing process, DSM is not an effective process to manage this area of the 

load.  

 

The concept of DSM is very important for the growing grid because it makes efficient 

use of current energy availability without the implementation of new and expensive 

generation or system infrastructure [6]. In addition to the growing grid, the introduction 

of demand-side generation creates the need for intelligent management systems placed at 
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the consumer level. There are many different programs that utilities implement to control 

the user energy consumptions, but the one focused upon is the concept of residential load 

management.  

 

In this section, the concept that the consumers load can be optimally scheduled with 

available demand side renewable penetration is shown. The assumptions are made that 

each user has an intelligent metering device that allows for communication between it 

and the utility. The objective of this DSM approach is to optimize cost to the user by 

curtailing and shifting loads to times where local renewable generation is available or 

purchased power is at a minimum. In doing so, it will be shown that the load profile 

become flattened, reducing cost for utility and consumer alike. The DSM scheme is done 

through an automatic scheduling algorithm with user defined time constraints and utility 

designated real-time pricing tariff. 

 

5.2 Real-Time Pricing 

Money saving incentives is the driving force behind the effectiveness of DSM on the 

demand-side. Different price schemes are used by utilities to offer incentives for 

consumers to change their load [2]. The one focused upon here is the real-time pricing 

(RTP) scheme. 

 

Real-time pricing is the most effective pricing scheme for the DSM program because of 

how often the price changes. RTP charges and hourly fluctuating prices which reflects the 

actual cost of generation [2]. Customers are notified the day ahead of the price at each 
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hour allowing for loads to be shifted and managed accordingly. Being notified the day 

ahead is advantageous for the DSM process because it allows time for the management 

device to schedule the load according to the price. Other price schemes such as critical 

peak pricing and extreme day pricing do not accurately reflect the load profile of the 

system because the price changed for these systems only occur during contingencies or 

extreme loads. However, with RTP, higher prices occur at times where the load is high 

and lower prices occur when the load is low. The incentive needed to shift high load, 

occurring at high cost times, is provided through RTP thus aiding in the objective of 

flattening the load curve. Figure (5-1) shows how RTP is an accurate reflection of the 

load profile. With the knowledge of the day-ahead prices, the scheduling algorithm has 

enough information about the expected load profile needed to optimize the load. The 

information about price is sufficient for an optimal solution but user defined parameters 

and satisfaction need to be recognized as an important input parameter of the scheduling 

process. 
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Figure 5-1. An Example of a Real-Time Pricing Scheme 

 

5.3 Load Scheduling Formulation 

To develop the problem, consider that each residence has a meter that is capable of two-

way communication with the utility and each appliance that is to be managed by the 

meter. It is also assumed that a day-ahead RTP scheme is provided and is separated into 

T time periods for the next scheduling horizon. For this application T=24, or hourly, for 

each scheduling horizon. Needing to be discussed is how each appliance operates within 

the optimization scheme, how to maximize user satisfaction and what optimization 

method is to be used. 
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5.3.1 Load Class 

The residential load is comprised of four separate load types; the base load, loads that 

must be kept on for defined time periods, loads that are able to be shifted and loads that 

are adjustable or able to be curtailed. While all load classes are significant, for 

optimization purposes the only the latter two are of interest due to their adjustable 

characteristics.    and    represent these two classes of loads respectively. The ‘must-

on’ load at time period   is denoted by   
 , where          , and be appliances such as 

television or computers. The base load at any time   is constant and denoted by   
 . 

 

The appliances categorized as    and    are subsets of   and the power consumption of 

the     appliance for the time period   in   is denoted by   
 . To proceed, each class must 

be mathematically represented to distinguish between the one another during the 

optimization process [5]. This is achieved through defining each class by the defining 

characteristics as follows; 

 

Class    devices are defined as having a total energy requirement,   , that is to be met 

over a set amount of time slots defined by    (starting time) and    (finishing time). An 

example of this class of device is a dishwasher, where it has a set power consumption 

needed to complete the service and a set time that it requires to complete the service. 

Many appliances belonging to class    do not complete the required service in one time 

period therefore the a vector of power consumption for each time period that the 

appliance is running and is defined as    [  
      

 ]. The mathematical expression 

can be given by [5] 
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    { ∑   
        

  [  
      

   ]                            
   

  

      

}      (   ) 

 

For time periods outside of the defined time slots the power consumption is zero. The 

constraint   
  [  

      
   ] defines the upper and lower limit of power consumption of 

each appliance while running. 

 

The devices categorized as class    have unspecified total energy requirement. The 

devices contained within this class are more challenging to determine an optimal 

scheduling time for due to the characteristic of having unspecified energy consumption. 

To overcome this issue a function that models the satisfaction of the consumer with the 

current energy consumption of the device. This function can be viewed as a penalty 

function, if the user decides to reduce consumption to cut costs; they will experience 

dissatisfaction in the performance of the device. An example of this kind of device would 

be lighting. With dimmers, the lights may be adjusted to various levels but in reducing 

the amount of energy consumed to save on money the light level may not be satisfactory. 

The function to be selected for modelling the dissatisfaction is chosen to be convex. As 

the consumption varies from the optimal point of satisfaction the ‘cost’ of comfort 

increases, adding to the minimization of the objective value. An example of this function 

can be seen in figure (5-2). Note that the user must define a time interval over which the 

device is to be running otherwise the function   
 (  

 ) will have a value of zero. To 

determine the values and nature of the dissatisfaction function user studies must be 
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conducted in attempt to model each user comfort levels and the trade-off between 

satisfaction and cost reduction. One way in which this can be accomplished is through the 

system observing and logging consumption and tolerances of appliance load levels with 

reduction in cost to the consumer. From this the system can determine the required values 

needed for the dissatisfaction function. The energy consumption of class    can be 

expressed as;  

 

    {   
  [  

      
   ]                           

   }              (   ) 

 

Equations (5.1) and (5.2) share many similarities but the major difference being the 

removal of the total energy requirement.  

 

Figure 5-2. Penalty Function. [5] 

 

 



42 

 

5.3.2 Cost Minimization 

In optimizing the consumers electricity cost payout to the supplier, an optimal load 

profile will be achieved [5]. To account of the change in price for various load levels, a 

cost function is introduced to model the costs incurred by the utility to provide electricity. 

The cost function must meet three requirements. These requirements are that it must be 

strictly increasing, it must be a convex function and it must be differentiable (or 

continuous) over the time slot being optimized. The third requirement is interesting in 

that it allows for piecewise cost functions to be used in the price scheme. From studying 

economic dispatch, it is understood that as the supply of a generator increases the cost to 

run the unit increases according to a quadratic function. This understanding leads to the 

first two requirements of the cost function under analysis in DSM. An example of a 

typical piecewise cost function can be seen in figure (5-3); 
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Figure 5-3. Piecewise Cost Function [5] 

 

In the above figure   (  ) is the cost incurred by utility for supplying the consumers load 

denoted   . The cost function is therefore a function of the sum of energy consumption of 

the residence. 

 

    ∑(  
 )    

    
 

 

   

                                             (   ) 

 

The above equation is obtained from the power flow equations that the demand must 

equal the sum of the supply. Equation (5.3) holds for any residence containing no local 

generation. With the introduction of demand side units the above equation must contain 

the contribution supplied from local units. The modification of equation (5.3) results in; 
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where   
  is the power generated by the W

th
 renewable source and   

  is the 

corresponding ‘on’ or ‘off’ status of the unit. 

 

The residence can be viewed as an independent system with N appliances being fed by a 

source    and renewable sources   
  and   

 . Take the independent system and view it as 

N appliances required to satisfy the supply generated by the sources the result is 

analogous to that of the unit commitment problem. The results allow the cost function 

and constraints of the DSM problem to be set up very much like that of the unit 

commitment problem. The cost minimization problem can be constructed in a similar 

manner as that of the unit commitment problem but with the introduction of the penalty 

function and is defined as; 
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The constraint defined in equation (5.5.d) is introduced to ensure a safety cap of power 

flow to account for security and reliability for the distribution network [5]. The absolute 

value is taken to account for times at which there is more local generation than local 

consumption therefore electricity can be sold back to the system. It must be noted that in 

cases where users could provide electricity to the grid, the grid would view the residence 

as a demand side generator and contracts would need to be established to account for user 

responsibilities of security. The objective function and constraints defined in equation 

(5.5) provide the required information for minimization. 

 

5.3.3 Formulation of the Lagrangian Optimization Problem 

With the function of   (  ) chosen to be convex, strictly increasing and differentiable an 

optimal point satisfying equation (5.5.b) can be obtained. Because the cost function 

chosen is convex there is an optimal point where (5.5.b) becomes an equality constraint, 

meaning that a feasible set exists. With the existence of the feasible values of   
  and    

which cause (5.5.b) to hold as a strict inequality, the Slater’s constraint qualification is 

met; resulting zero duality gap between the primal problem and the dual problem and the 

existence of optimal Lagrange multipliers [5, 12]. This is important to the optimization 

process since the dual variable problem may be used to find the optimal solution. 

 

To develop the Lagrange equation for equation (5.5) let    represent the Lagrange 

multipliers at each time period   {       }. The Lagrange equation developed for the 
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thesis problem is a modified form of the Lagrangian equation found in [5] and is given 

as; 
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Constraints (5.5.c) and (5.5.d) are limitations on the values for the optimal solution and 

therefore are not present in the Lagrange equation. These values will by the optimization 

algorithm as will be seen in a later section. Using the dual variable problem defined in 

previous sections, the dual problem for this Lagrange equation is; 
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Since the problem has zero duality gap, as shown by Slater’s constraint qualification, the 

optimal values for the Lagrange multipliers can be obtained. Looking back to real-time 

pricing, if the price of electricity is optimized then so too is the load curve. The Lagrange 

multipliers in this problem act as the price signal between the consumer and the utility 

[13]. Thus, by optimizing the Lagrange multipliers we achieve the objective of reducing 
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cost and lowering the load profile of the demand side with the presence of demand side 

generation.  

 

At the optimal solutions for   
         obtained from solving the optimization problem in 

(5.5) the constraint of (5.5.b) becomes equal to zero. Looking at the dual problem of (5.7) 

the same optimal values for   
         are obtained for when    is at its optimized value 

found from equation (5.8). This is due to the zero duality gap between the primal problem 

and the dual solution. The result is that with the use of the dual variable problem and 

Slater’s conditions, the optimal values for   
             are obtained. Furthermore the 

problem can be separated to view the individual costs incurred by the utility and 

consumer as shown in; 
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where the first term is the net cost incurred by the utility and the latter two are the costs 

incurred by the user. With the introduction of the demand-side generation the cost of the 

incurred by the user is further reduced. With the Lagrange problem formulated, an 

algorithm is used to solve this problem in the following section. 
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5.4 Optimization Algorithm 

With the development of the cost profiles and the Lagrangian problem set, an algorithm 

to produce an optimized scheme is presented. The objective of the algorithm is to obtain 

an optimal day ahead scheduling period for each appliance participating in the demand-

side management program. The minimization is based upon day-ahead hourly pricing 

scheme, known as real-time pricing, given to the management device located on the 

demand side. The algorithm achieves the objective by taking advantage of the dynamic 

programming methods of separating the problem into hourly sub-problems and using the 

Lagrangian relaxation solution technique known as the dual variable problem to solve the 

sub-problem independently of other time periods. 

 

5.4.1 Optimization of the Objective Function 

The criterion that the objective function must meet is that of the minimization of the cost 

payout to the utility from the customer with feasible level of user comfort. The feasibility 

of the user’s comfort level is measured as a penalty factor of the cost trade-off between 

comfort and cost reduction, as mentioned in a previous section. The objective function, 

shown in equation (5.5.a), and the constraints are separable into a minimization at the 

utility and at the demand-side. In equation (5.9) it can be observed that the terms in the 

first summation are terms concerning the utility whereas the remaining terms relate to the 

demand-side. This allows for an optimization process to be split between the utility and 

the demand-side. With this view    can be viewed as price signal between the utility and 

the demand side. The objective to minimize the payout to the utility translates to the 

optimization of the price signal,   .  
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To achieve the objective of cost minimization the dual variable solution is used. Equation 

(5.7) states that the first step is to minimize the Lagrange equation with respect to the 

demand and each appliance load for a constant value of the Lagrange multiplier. From 

optimization theory of the Lagrange equation, it is known that to find an extremal the 

derivative of a convex Lagrange equation is taken with respect to the minimization 

variable and is equated to zero. Due to the characteristic of equation (5.9) being convex 

the derivatives can be taken to find the values of           
  that minimize the problem of 

(5.7) as shown by; 
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where (   )
  

 is the inverse slope of the utility incurred cost curve and {  
  (  

 )}   is 

the inverse slope of the satisfaction penalty cost curve. Note the (5.11) does not optimize 

for appliances contained in the class    because there is no corresponding convex penalty 

cost function. Instead, a heuristic approach must be taken to optimize the scheduling time 

allocated for each appliance in class   . The approach taken to schedule shift-able loads 

is explained in the following subsection.  
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5.4.2 Heuristic Method to Solving Class   Appliance Schedules 

A heuristic approach must be taken for the scheduling of the appliances belonging to 

class   , or the shift-able loads [5, 6]. The major difference between the two classes is 

that shift-able loads have a set amount of energy consumption required to finish the 

service that it provides [5]. Since curtail-able loads have a cost penalty function that 

governs the energy level at which they operate, the appliances load levels belonging to 

class    can be solved for using a mathematical approach explained in the previous 

section. For the same method used for class   , class    load levels are undefined within 

the bounds of the device limitations and can have any value as shown;  

 

  

    
                   

 

The above equation shows that there does not exist sufficient conditions to solve for   
  

due to the non-convex nature of the minimization problem defined by shift-able loads. 

However, from the scheduling time requirements defined by the user and the maximum 

and minimum load level requirements defined by the appliance; a scheduling method can 

be created. 

 

The objective of the heuristic method is to schedule the appliance loads to times that 

result in the minimization of cost to the consumer. The price signals sent to the local 

meter contain the information required to minimize cost payout for operating the 

appliances. Times where demand is low, a lower price is set as an incentive for 

consumers to shift load levels. The method introduced takes advantage of this 
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information and allocated loads to the time periods where the cost to run the appliance is 

lowest. However, the time periods in which the load is scheduled must fall within a user 

defined feasible time frame. The steps taken for the load shifting method is as follows; 

 

Start

User defined time period, determine λ(t)

Lowest
 λ(t)? No

P(k) = p(max)
Or

p(k) = remaining power

k=k+1

Has energy 
requirement
been met?

Finish

Does the 
time of last 

load exceed user 
defined time?

No

Set start time 
for appliance to 

the remove 
overflow.

Yes

 

Figure 5-4. Load Shifting Method [5] 
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The above flowchart show demonstrated the heuristic method used for shift-able loads. If 

the allowable time needed for the appliance to finish its process exceeds the user defined 

time period, the appliance is deemed unfeasible and the user must relax the time 

requirements, forfeit the process or pay a higher rate to run the appliance at another time.  

 

The method used for the scheduling of class    is now defined and meets the required 

condition outlined in (5.7) of the optimization process. With the requirements of cost 

minimization of both classes of appliances and by the cost associate with supplying the 

demand from the utility, the next stage of the dual variable problem is the maximization 

of (5.7) in terms of the Lagrange multipliers for each hour,   . 

 

5.4.3 Subgradient Iteration Method  

To minimize the objective function of the primal problem, the dual variable method states 

that the Lagrange equation must be maximized with respect to the Lagrange multiplier. 

This is mathematically represented by equation (5.8). Because the Lagrange multiplier 

does not have a specified upper bound, the subgradient method is used to solve for the 

optimal value of the Lagrange multipliers. The subgradient method is advantageous for 

the solution process of lambda because of its capability to solve convex unconstrained 

minimization problems effectively. It uses the gradient search method to solve for the 

point of steepest decent or increase in slope of the minimization function. The 

mathematical representation is shown as; 
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In the above equation,     
  is the new value of lambda,     

  is the previous value of 

lambda and   is an adjustment value used to make the gradient search converge to a 

solution. The previous chapter on optimization discusses the value of   in more detail. 

The term in the brackets of equation (5.12) is the derivative of the Lagrange equation 

with respect to the Lagrange multiplier. The gradient search method is moved along the 

curve to find the point of greatest decrease or increase in slope, this equates to the normal 

of the slope have no components in the    direction. 

 

Note that from the structure of the Lagrange equation in (5.9) the process of minimization 

is done separately between the utility and the demand side scheduling device and the 

information is telecommunicated between the two. The information sent from the utility 

is that of the hourly day-ahead prices represented as the Lagrange multipliers. The 

information of price, in conjunction with available generation local to the demand side, is 

used by the demand side scheduling device to determine the amount of energy that will 

be purchased from the utility. This value is defined as; 
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The information is telecommunicated to the utility which uses it to update the values for 

the day ahead pricing and the process repeats to balance the load profile [5]. The 

subgradient method explained here can be found in [5, 6, 8, 9, 11] and is explained to aid 

in the solution to the demand-side management scheduling. 

5.5 Sensitivity  

The sensitivity analysis examines the change in the objective value of equation (5.5.a) 

due to a change in the parameters of the cost functions. In other words, by examining the 

parameters of   (  ) or   
 (  

 ) a change in the objective value is evaluated. The 

parameters of the cost function may be the scalar value ‘b’ in   (  )        

 [  ] . 

 

The importance of the sensitivity lies in the ability to determine a change in the objective 

value for a change in a parameter. This testing is done through derivatives of the 

objective value with respect to the parameter that is being changed. From the derivatives, 

three properties of the sensitivity can be seen; the sign of the derivative indicates a 

decrease or increase of the objective value with respect to the parameter. Second, the 

more dominant parameters can be identified. Third is that the value of the derivative can 

be multiplied to the change in the parameter to identify the change in the objective value 

[5]. 

 

The assumptions made on the cost function and penalty function is that they are convex 

and continuous differentiable. The constraints of the objective function are also assumed 

to hold to the Slater constraint qualification. To develop the sensitivity equations for the 
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penalty function and the cost function assume that there exists optimal values   
   and     

for corresponding values of each parameter. The two functions making up the objective 

value are; 
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Note that the parameter ‘f’ is the optimal value of the appliance load of   
  that result in a 

zero penalty cost and will be excluded because to change the value will change the whole 

problem. Since   (  ) and   
 (  

 ) are both continuous and differentiable in terms of   
  , 

   , ‘b’, ‘c’, ‘e’ and then under the regularity conditions to be explained shortly, the 

sensitivities at each time period are as follows; 

 

     

  
  

   (  )

  
                                               (      ) 

     

  
 [  ]                                                     (      ) 

     

   
      

        
                                           (      ) 

 

For the above equations to hold, a regularity condition must hold. The regularity 

condition requires that the gradient vectors corresponding to the equality constraints are 
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linearly independent [14, 15]. By examining the constraints in equation 5.5.b and 5.5.c it 

can be seen that the condition is met for each time period under consideration. 

 

To determine which parameter has the largest effect on the objective values, the 

equations (5.14.a – 5.14.c) will be evaluated for a case of two curtail-able loads with 

nominal values of 12kw and 15kw respectively. The objective value under consideration 

is the cost payout to the consumer. Table (5-1) shows the change in the objective value 

for a 1%, 5% and 10% change in the parameter under sensitivity observation. 

 

Table 5-1. Sensitivity of Objective Function 

Objective Value 

Parameter 

Δ = 0.01 Δ = 0.05 Δ = 0.1 

b 23.533 117.66 235.33 

c 104.86 524.29 1048.6 

   -1.89 -9.49 -18.99 

   -2.01 -10.05 -20.09 

 

From observing the results of Table (5-1) it can be easily seen that the objective function 

is most sensitive to changes in the ‘c’ parameter of the cost function. Also, for changes in 

the parameter of the penalty function there are small changes in the cost savings. This is 

expected because only one appliance’s effect on the overall cost is being analyzed 

whereas the cost function of demand includes all devices and loads. Upon further 

observation in the next section it will be shown that the savings will come from a 

reduction in energy purchased from the utility in conjunction with the availability of local 

generation. It must be noted that a negative Δ will result in a reduction in the objective 

value by the same value shown in Table (5-1). 
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5.6 Analytical Results 

The results presented here compare the differences of the demand-side management 

solution with and without generation local to the demand side. Separate cases will also 

include various numbers of shift-able and curtail-able loads in the model. The time 

horizon for the pricing scheme is day ahead with time periods one hour in length 

resulting in 24 periods for the scheduling horizon. The scheduling time begins at 1a.m. 

and continues through until 12a.m. of the next day. The base load is taken to be constant 

throughout the day and the appliance process labeled ‘must on’ are added to the base load 

levels. Figure (5-5) shows the curve of the base load with the addition of the ‘must on’ 

load for case 1. The various configurations for the controllable loads are giving in the 

following cases. 
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Figure 5-5. Demand Profile Vs. Base Load for Case 1. 

 

5.6.1 Case 1: Three Shift-able Loads and Two Curtail-able Loads 

The case under study in this section has the configuration of three shift-able loads and 

two curtail-able loads. The amount of generation available to the user are two 15 KW 

machines, the forecasted generation for the next scheduling period is shown in figure (5-

6).  The scheduling optimization runs until the term multiplied by the Lagrange equation 

in equation (5.6) is equivalent to zero or the error is sufficiently small.  
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Figure 5-6. Case 1 Forecasted Local Generation 

 

The parameters for each individual shift-able load including the user define run times and 

the total required loads are; 

Table 5-2. Case 1 Shift-able Load Properties. 

Shift-able 

Load 

Start Time 

(Hour) 

End Time 

(Hour) 

Total Power 

(KWh) 

Max Energy 

per Hour 

(KW) 

1 8a.m. 3p.m. 200 50 

2 9p.m. 4a.m. 200 50 

3 6a.m. 6p.m. 100 25 

 

For loads that are to be curtailed the user selected parameters for each load is defined by 

the following table; 
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Table 5-3. Case 1 Curtail-able Load Properties 

Curtail-able Load Run Time 

(Hour) 

Optimal Energy 

(KWh) 

Minimum 

Curtailment 

Energy (KWh) 

1 5a.m. – 7a.m. 12 8 

5p.m. – 12a.m. 

2 4a.m. – 6a.m. 15 10 

7p.m. – 12a.m. 

 

The objective of the optimization scheme is to optimize consumer payout to the utility 

when local generation is available. The way in which the cost is minimized is though the 

management and scheduling of the consumer’s loads. With the defined load parameters 

above and the generation forecast, in figure (5-6), the optimized day ahead load schedule 

generated by the algorithm is; 
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Figure 5-7. Case 1 DSM Profile with Generation 

 

The above figure can be compared to that of the DSM profile without available 

generation, which is shown in figure (5-8) below. 
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Figure 5-8. Case 1 DSM Profile without Generation 

 

From observation of the separate graphs and from a utility perspective a more satisfactory 

load profile is formed from the scheduling algorithm. This is due to the reduction in the 

magnitude of the peak load times and the low load levels have been elevated. For 

utilities, this creates a more feasible usage of assets due to the reduction in cost incurred 

as the result from a flattened load profile.  

 

At the demand side, a change in price highly depends upon the original pricing and 

original load of the consumer. Therefore in order to compare results between the DSM 

schedule with and without the availability of generation a comparison between figure (5-
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generation the average consumer payout is larger than that of the average payout for a 

residence with available generation during the scheduling horizon, shown in figure (5-

10). Table (5-4) compares the objective values with and without generation. The 

difference between the two is attributed to the presence of generation. The presence of 

generation gives way to the added benefit for curtail-able loads to operate closer to 

optimal levels while maintain lower payout as can be seen in the lower penalty cost of 

Table (5-4). The analysis done can be applied to a larger case with a larger number of 

schedulable loads as will be shown in the following section. 

 

Table 5-4. Case 1 Objective Values of DSM 

 Objective Value Penalty Cost Demand Cost 

With Generation 1418.0 4.84 1413.16 

Without 

Generation 

1910.3 5.57 1904.73 
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Figure 5-9.  Case 1 Objective Value vs. Average without Generation 

 

Figure 5-10. Case 1 Objective Value vs. Average with Generation 
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Figure 5-11. Case 1 Optimal Lambda with Generation 
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Figure 5-12. Case 1 Optimal Lambda without Generation 

 

The figures (5-11) and (5-12) show the optimal Lagrange multipliers. The presence of 

generation results in lower multipliers as expected because they are the price signals sent 

from the utility to the residential unit. Referring back to an optimal economical market as 

demand decreases price should also decrease to create and incentive to buy more of a 

commodity. The involvement of the demand side is shown to have created a more 

economical electricity markets as was expected. 
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loads and six curtail-able loads. Like the previous analysis, the amount of generation 

available to the user is a set of 15 KW machines; the forecasted generation for the next 

scheduling period is shown in figure (5-13).  The scheduling optimization runs until the 

term multiplied by the Lagrange equation in equation (5.6) is equivalent to zero or the 

error is sufficiently small.  

 

 

Figure 5-13. Case 2 Forecasted Local Generation 
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Table 5-5. Case 2 Shift-able Load Properties. 

Shift-able 

Load 

Start Time 

(Hour) 

End Time 

(Hour) 

Total Power 

(KWh) 

Max Energy 

per Hour 

(KW) 

1 8a.m. 3p.m. 200 50 

2 9p.m. 4a.m. 200 50 

3 6a.m. 6p.m. 100 25 

4 7p.m. 6a.m. 100 30 

5 6a.m. 5p.m. 210 30 

 

For loads that are to be curtailed the user selected parameters for each load is defined by 

the following table; 

Table 5-6. Case 2 Curtail-able Load Properties 

Curtail-able Load Run Time 

(Hour) 

Optimal Energy 

(KWh) 

Minimum 

Curtailment 

Energy (KWh) 

1 5a.m. – 7a.m. 12 8 

5p.m. – 12a.m. 

2 4a.m. – 6a.m. 15 10 

7p.m. – 12a.m. 

3 1p.m. – 4p.m. 18 11 

11p.m. – 5a.m. 

4 5a.m. – 7a.m. 15 10 

1p.m. – 8p.m. 

5 2a.m. – 10a.m. 16 12 

6 1a.m. – 12a.m. 15 12 

 

The objective of the optimization scheme is to optimize consumer payout to the utility 

when local generation is available. The way in which the cost is minimized is though the 

management and scheduling of the consumer’s loads. With the defined load parameters 
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above and the generation forecast, in figure (5-13), the optimized day ahead load 

schedule generated by the algorithm is; 

 

Figure 5-14. Case 2 DSM Profile With Generation 

The above figure can be compared to that of the DSM profile without available 

generation, which is shown in figure (5-15) below. 
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Figure 5-15. Case 2 DSM Profile without Generation 

From observation of the separate graphs and from a utility perspective a more satisfactory 

load profile is formed from the scheduling algorithm. This is due to the large reduction in 

the magnitude of the peak load times and the low load levels have been elevated. For 

utilities, this creates a more feasible usage of assets due to the reduction in cost incurred 

as the result from a flattened load profile.  

 

At the demand side, a change in price highly depends upon the original pricing and 

original load of the consumer. Therefore in order to compare results between the DSM 

schedule with and without the availability of generation a comparison between figure (5-
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residence with available generation during the scheduling horizon, shown in figure (5-

16). Table (5-7) compares the objective values with and without generation. The 

difference between the two is attributed to the presence of generation. The presence of 

generation gives way to the added benefit for curtail-able loads to operate closer to 

optimal levels while maintain lower payout as can be seen in the lower penalty cost of 

Table (5-7). The analysis done can be applied to a larger case with a larger number of 

schedulable loads as will be shown in the following section. 

 

Table 5-7. Case 2 Objective Values of DSM 

 Objective Value Penalty Cost Demand Cost 

With Generation 6907.5 45.76 6953.26 

Without 

Generation 

9187.8 56.72 9244.52 
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Figure 5-16. Case 2 Objective Value vs. Average without Generation 

 

Figure 5-17. Case 2 Objective Value vs. Average with Generation 
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The same comparison from Case 1 about the optimal lambda values with and without 

generation can be made. The figures (5-18) and (5-19) show the optimal values of lambda 

obtained for Case 2. 

 

Figure 5-18. Case 2 Lambda without Generation 
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Figure 5-19. Case 2 Lambda with Generation 

From the above results, it is shown that with the incorporation of distributed generation 

the payout and pricing levels, seen by lambda, are reduced further than those of DSM 

systems without available generation. The concept of incorporating renewable distributed 
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Chapter 6: Conclusions and Future Work 

The following chapter summarizes the results obtained and the contributions. The future 

work is also explained. 

 

6.1 Conclusions 

In the thesis the requirements and analysis of the demand-side management scheme with 

distributed generation local to the consumer were discussed. Chapter 2 reviews issues 

faced by the current electricity market and alternative price schemes. Previous work in 

the field of demand-side management is also discussed. Chapter 3 discusses optimization 

techniques used by other researches to solve the demand-side management problem. It 

details the techniques used by the thesis to obtain and optimized scheduling horizon. 

Chapter 4 outlines the unit commitment problem to optimally schedule generation units 

to a forecasted load demand. In Chapter 5 two separate cases of device scheduling was 

analyzed with and without consumer local generation. The incorporation of renewable 

distributed generation results in lower demand levels and price paid for power by the 

consumer. The novel idea of optimizing appliance run times with the availability of 

distributed renewable generation improves the results obtained when studying demand 

side management optimization case studies. 

 

These results follow economic theory in that as the demand for a commodity is reduced, 

the price will decrease to create and incentive to purchase the commodity until and 

equilibrium point is reached. The importance of this work is two-fold. First, a 

management scheme is needed in response to the increased interest of local generation 
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caused by consumer’s attempts to reduce electricity expenditures. Second, the cost 

reduction seen by the utilities and electricity distribution companies from having an 

optimized load profile is more beneficial than current market schemes. The results shown 

accomplish both objectives of reducing cost to the consumer and creating a more 

desirable load profile for utilities. 

 

6.2 Future Work 

The findings of this thesis show that more work can be done to integrate renewables and 

consumer generation with the current electricity grid. Future work in this area can be a 

study to see how the reliability of the forecasted consumer generation affects the 

optimized values for the electricity price. A weighting value could be assigned to each 

generation unit to adjust for the reliability and the effect it has on the objective value. 

This research could be expanded to explore the reduction of emission levels from the 

optimization of the load profile using demand-side management. The work done can be 

expanded to incorporate multiple residences and aim to optimize all loads on a substation 

feeder. 
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