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Abstract

The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on
a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data
are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the
tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method
that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical
grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the
population in respect to how they move through the habitat cells, and that the movements of the animals among the
habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on
the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not
randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be
important in giving unbiased estimates of density from the growing corpus of animal tracking data.
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Introduction

The tracking of animals is immensely informative. Animals can

be followed visually, acoustically, using their own tracks (e.g. in

snow), or, as is most common these days, by means of attached

telemetric tags. We may learn of movements, habitat use, foraging

patterns, behavior, social structure and life history, as well as how

the animals respond to natural and anthropogenic changes to their

environment over a range of scales. However, one of the most

basic measures which ecologists and managers use and need,

relative density, is rarely available from tracking data in an

unbiased form. The problem is that the locations of the tracked

animals are biased towards where the tracking started—the release

location in the case of tagged animals—and there has been no

technique available to remove the bias. The distribution of real

tracks can be compared with that of randomized tracks [1], but it

is not usually clear what constitutes a meaningful ‘‘random track’’.

These ‘‘start-biases’’ constitute a major drawback, substantially

limiting the utility of the large quantities of often hard-won

tracking data. Conversely, knowledge of how animals use their

habitats is considerably less than what it might be. Management

and conservation efforts suffer accordingly.

One way of envisaging an animal track is as a Markov chain,

with animals moving from habitat cell to habitat cell. In this vein,

Pedersen et al. [2] used a hidden Markov-chain model to estimate

residency and behavior from tracking data. Here we introduce a

simple Markov-chain method that produces unbiased measures of

relative density from tracking data. The density estimates can be

over a geographical grid, or relative to environmental measures

such as water depth or habitat type, or a combination of these. We

explain the theory behind the method, and how it can be used in

practice. We illustrate its successful use both using simulated data

and real tracks of animals. Finally, we discuss a few cautions in the

use of the method, as well as possible extensions.

Methods

Ethics statement
The research on sperm whales was conducted under a permit

from the Galapagos National Park Service and approved by the

Dalhousie University Committee on Laboratory Animals.

Markov method for inferring density
First we divide the habitat into a finite number of cells. These

could be spatial rectangles, or different habitats defined by values

of environmental measures, or combinations of these. We then

make two assumptions:

1. The tracked animals are a random subset of the population in

respect to how they move through the habitat cells.

2. The movements of the animals among the habitat cells form a

time-homogenous Markov chain. In other words, the proba-

bility that an animal in cell j moves into cell i at time t (pji) is

independent of t, and where the animal was at time t-1.

If the probability that an animal randomly chosen from the

population is in cell i at any time is pi:
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pi~
P

j

pjpji

Then, from assumption 2, p= {pi} satisfies [3]:

p~pP

where P = {pji}. Thus p is the left eigenvector of the transition

matrix, P, associated with eigenvalue 1.0.

As p is the unbiased estimate of the proportion of time animals

spend in each cell, and thus the proportion of the population in the

different cells (from assumptions 1 and 2), this provides a

methodology for the estimation of relative density from tracking

data.

To implement this method, tracks are divided into steps of equal

duration. nji is the number of steps that start in cell j and end in cell

i. Steps can start and end in the same cell, so nii can be greater than

zero. These steps can come from a number of tracks of different,

or the same, animals. Then, pji can be estimated by:

bpjipji~nji

.P
j nji

The relative numbers in the different cells come from the left

eigenvector of the estimated transition matrix, P̂P~f bpjipjig, associated

with eigenvalue 1.0. Relative densities are then estimated from the

corresponding element of this eigenvalue, divided by the area of

the cell. These estimated relative densities can be standardized in

any way that makes sense, but it may often be appropriate to

normalize them so that they sum to one. It may also make sense to

have an ‘‘exterior’’ cell for animals leaving the main study area.

Illustration using simulated data
We simulated the method in a wide range of conditions, but to

illustrate its general performance we present four of these

simulations. In each of these simulations, 300 agents made

uncorrelated random walks [4] over an x-y plane with 1,000

moves. The study area was a 1 unit by 1 unit square centered on

[0.5, 0.5], although individuals could move outside the study area,

or back into it. Two types of study area were simulated:

a) ‘‘Homogeneous’’, in which all moves are of length 0.05. Here

the ideal, expected, distribution is homogeneous across the

study area.

b) ‘‘Quadrants’’, in which move lengths were 0.05/!1.5 in the

quadrant with x.0.5 and y.0.5, 0.05/!0.5 in the quadrant

with x#0.5 and y#0.5, and 0.05 in the other two quadrants.

These differences in move length, in other words the speed of

the agents, give relative densities, ideal distributions, of 0.5,

1.0, 1.0, 1.5 in the four quadrants [4].

We considered two ways in which tracking was initiated:

i) tracks started at randomly-chosen positions within the study

area;

ii) tracks started at randomly-chosen positions within 0.1 units of

the center of the study area ([0.5, 0.5]).

The track data for each simulation were the positions of the

agents after each 20 moves. To estimate relative density, the study

area was divided into 36 square cells, plus one ‘‘exterior’’ cell for

all regions outside the study area. For each of the four simulations,

with the two types of study area, and two tracking start types, we

present (Fig. 1): a graphical representation of the ideal, actual

density of agents over the study area (‘‘Ideal density’’); the tracks

(just 50 shown for clarity); estimates of relative density obtained by

simply summing the number of track positions in each cell (‘‘Track

density’’); and estimates of relative density obtained using the

Markov eigenvector technique described above (‘‘Markov densi-

ty’’). The estimates of relative density were normalized to have the

same mean as the ideal densities, excluding the ‘‘exterior’’ cell.

Performance of the two techniques was evaluated from the mean

(over cells within the study area) squared error of the estimated

relative density in a cell compared with its ideal value.

Illustration using real data
We also illustrate the method using real tracking data that come

from tracks of groups of female and immature sperm whales

(Physeter macrocephalus) off the Galapagos Islands, Ecuador, between

1985–1995 (study area: 1uS - 1uN; 90u 309W - 92u 309W) [5]. The

groups of whales were tracked both visually (mainly daylight) and

acoustically by listening for the sounds of the whales (mainly at

night time) from 10–12 m auxiliary sailing vessels [6]. Positions

were determined by SATNAV or GPS (Global Positioning

System), and were interpolated every six hours. There were 57

tracks containing 460 locations (i.e. 115 24-hr days tracking).

The study area was divided into 25 square cells, plus one

exterior cell. Waters less than 1,000 m deep were masked out. We

plot, in Fig. 2, the estimated densities in the study area: the track

density from the number of tracking locations divided by area

within the cell greater than 1,000 meters deep, and the Markov

density, also using the usable area in each cell as a divisor. We also

Figure 1. Estimating density from simulated data. Results of four
simulations with uniform (rows 1 and 3) or quadrant (rows 2 and 4)
density distributions, as well as random (rows 1 and 2) or central (rows 3
and 4) initial tracking positions. Each row indicates the ideal density of
agents in the study area, the tracks of 50 of the agents, and the
estimated densities from summing track positions (‘‘Track density’’) and
the Markov technique (‘‘Markov density’’). The concordance between
the ideal densities and estimated densities is indicated by the mean
square error (‘‘MSE’’). All density plots use the same normalized color
scale ranging from dark blue (near zero) to turquoise (medium) to dark
red (maximum).
doi:10.1371/journal.pone.0060901.g001
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analyzed the same data using depth-delineated cells. The depth

ranges chosen were 0–750 m, 750–1,250 m, 1,250–1,750 m, and

3,250–3,750 m.

Results

In the simulations, the Markov density estimates were always

closer to the ideal densities(homogeneous across the study area in

the ‘‘homogeneous’’ case; or the quadrants having densities

proportional to 1, 2, 2, and 3 in the ‘‘quadrants’’ case) than those

using the track positions directly (Fig. 1). When the track started in

the center of the study area the advantage of the Markov

methodology was substantial, with nearly an order of magnitude

less mean square error.

For the tracking data of the sperm whales off the Galapagos

Islands, the Markov estimates suggest higher density to the north

of the principal islands, compared with the track estimates that

highlight areas to the west of the islands. For logistic reasons, many

of the tracks started to the west of the islands, which explains the

bias in the track estimates. The estimates of the proportion of the

population using each depth category are shown in Figure 3. The

Markov analysis indicates a greater preference for the deepest

waters, and avoidance of the shallowest, compared with the simple

track estimates. Tracks were preferentially initiated in shallow

waters, explaining this bias.

Discussion

For the Markov method to produce useful estimates of density

there need to be reasonable numbers of transitions between the

cells. This usually requires considerable tracking data, and might

be viewed as a drawback of the method. However, it reflects a

general issue: obtaining reasonably accurate estimates of the

relative densities of animals over any habitat by sampling needs

large sample sizes whatever the method. The Markov method is

imprecise with few data, but so will be any other method, and

large numbers of tracking locations may only represent a small

amount of independent data if the locations have considerable

autocorrelation.

An important assumption of the method is that the tracked

animals are a random subset of the population in the manner by

which they move through the habitat. If they are not, then the

Markov method may not produce useful results. For instance if

members of the population have individual home ranges within

the study area, and tracks are only commenced in one part of the

study area, then densities away from the locations where tracks

commenced will be considerably underestimated.

We further assume (assumption 2) that movements must form a

first-order, time-homogeneous Markov chain. Therefore, if there is

second or higher order dependence, the method will be biased.

For instance we found that in our simulations, using small step-

lengths (considerably less than the size of the cells) removed the

advantages of the Markov method, as now there was second-order

Markov dependency: agents would tend to move back and forth

between adjacent cells if step lengths were small relative to cell

size. There are several possible tests for second-order dependence

[7]. However, a simple approach that should detect the most likely

violations of second-order independence in tracking data is to

compare the number of triplets of consecutive locations in which

the first cell is the same as the third (e.g. jij),
P

nj:j , the ‘‘returning

triplets’’, with the expected number:

P
nj:j~

P
i

P
j

nji:
nij

.P
j nij

The observed and expected numbers of returning triplets can be

compared using a likelihood-ratio G test or chi-squared test. When

we followed this procedure with the simulated data, the observed

and expected numbers of returning triplets were not significantly

different in any of the runs presented in Fig. 1. However when the

step size was reduced from 20 moves to 10, so that the step size

became considerably less than the cell size, these differences

became significant; the agents were preferentially returning to cells

from which they had just come. The same test found no significant

second-order dependence in the sperm whale data, either spatially

(actual returning triplets = 99; expected = 106.2; G = 0.79 with

1 df; P = 0.3739) or with depth (actual returning triplets = 124;

expected = 109.4; G = 3.06 with 1 df; P = 0.0801).

We have presented the densities as uniform over the cells in

Figs 1–3. However, this will rarely be the case. Densities can be

interpolated between cells.

Estimates of any measure have little validity without an estimate

of precision. We suggest using bootstrap or jackknife [8] methods

to estimate variability in tracking-derived density estimates,

bootstrapping or jackknifing on the different tracks. We show

nonparametric bootstrap estimates of error in the depth distribu-

tion of the sperm whale groups in Fig. 3.

Finally, an unstated assumption is that the tracking data are

accurate. Small errors in positions, for instance those caused by

interpolating between irregularly-collected locations to obtain

steps of uniform duration, will likely have little effect on density

estimates especially with large data sets. However, large errors,

Figure 2. Estimating spatial sperm whale distributions. Distribution of groups of sperm whales off the Galapagos Islands (1uS - 1uN; 90u 309W -
92u 309W, so the cells are 44.5 km square) from tracking data (shown at left, with water depths); estimated densities from summing tracking positions
(‘‘Track density’’) and the Markov technique (‘‘Markov density’’). Only waters greater than 1,000 m deep were considered. Islands are shown in white,
and waters less than 1,000 m deep in grey. The density plots use the same normalized color scale ranging from dark blue (near zero) to turquoise
(medium) to dark red (maximum).
doi:10.1371/journal.pone.0060901.g002
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such as those that occur with light-level geolocation and Argos

satellite locations need to be removed [2,9]. Indeed, when large

location errors are known or suspected to exist in the tracking

data, we advocate an approach where the Markov method is

coupled with state-space filtering of location data [2,9]. However,

variability in the durations of tracks of individual animals should

not be an issue with the Markov method.

Software
In the Supporting Information, we provide MATLAB (File

S1.zip) and R (File S2.zip) code for estimating densities using the

method described. They take as input: a numerical list of the

sequential cells visited during the tracks; a list of the start points of

the different tracks; and the areas of the different cells (a final

‘‘external cell’’ without a designated area is an option). The

routines can perform the second-order Markov dependency test

outlined in the text, as well as make bootstrap estimates of

standard errors of density estimates for each cell. They output the

estimated Markov density and track position density for each cell.

Conclusions

Using simulated data and non-invasive visual tracking data of

whales, we have shown how a Markov chain approach can reduce

bias in relative density estimates from animal tracking data. Our

approach easily accommodates more ubiquitous tracking data

obtained via electronic tags such as light-based geolocation tags

and satellite-based location (Argos and GPS) tags. In recent years,

electronic tracking datasets have grown substantially in size, both

in number of species and individuals tracked, and attention within

marine ecology has turned to using these datasets as alternatives to

catch-based or survey-based distribution and relative density

information [1,10]. It is, however, logistically impossible to

randomize animal tagging and release locations in large-scale

tracking projects and, as a consequence, bias in resulting

distribution and relative density estimates is to be expected. We

strongly advocate the use of Markov density estimates, which can

easily be implemented by ecologists, or similar approaches to

reduce this important source of bias.

Supporting Information

File S1. MATLAB code for estimating densities using
the Markov method. Includes MATLAB code (markovdens.m),

instructions for use (Matlab_readme.txt) and test data set

(testset.mat).

(ZIP)

File S2. R code for estimating densities using the
Markov method. Includes R code (markovdens.R, mdensity.R,

secondtest.R), instructions for use (README.txt) and 4 test data

sets (radius_quadR.txt, etc.).

(ZIP)
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Figure 3. Estimating sperm whale depth distributions. Depth distribution of groups of sperm whales off the Galapagos Islands (1uS - 1uN; 90u
309W - 92u 309W) from summing tracking positions (‘‘Track density’’) and the Markov technique (‘‘Markov density’’). Errors bars show standard errors
estimated by the nonparametric bootstrap method (1000 bootstrap replicates of tracks).
doi:10.1371/journal.pone.0060901.g003
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