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Abstract. Data sets in which animals are identified individually in different places and
times may contain considerable information on movements. However, if the probability
that an animal is reidentified depends on its movement pattern, then standard methods of
analyzing movement are not applicable. I show that modifications of maximum likelihood
methods, in which the identifications themselves establish the spatial and temporal distri-
bution of effort, can be used to derive movement parameters in three situations: (1) Iden-
tifications in one location allow calculation of the ‘‘lagged identification rate’’ (the prob-
ability of reidentification after various time lags) as well as estimation of residence times
inside, and outside, the study area. (2) When more than one study area is sampled, it is
possible to derive lagged identification rates between them and to estimate movement rates
between areas and other population parameters. (3) Movements through continuous space
can be described by diffusion rates (rates of population spread), and plots of squared
displacement against time lag. To simplify computation, and to permit the analysis of large
data sets, summed nonindependent log-likelihoods can be maximized in place of the true
log-likelihood to obtain approximately unbiased parameter estimates, and binomial, mul-
tinomial, or hypergeometric models can be approximated by the Poisson distribution. The
first and third of the techniques were verified using simulated data, and all were applied
to a 13-yr data set of identifications of sperm whales in the South Pacific Ocean. Residence
times in waters close to the Galápagos Islands were of the order of 8 d, but during the
study period there was a substantial net movement out of the Galápagos region and into
waters of the coastal eastern tropical Pacific. Diffusion rates of sperm whales were ;700
km2/d over time scales from 1 to 100 d but decreased considerably over time scales of
years, indicating displacements of ;50 km/d within home ranges spanning ;1000 km.
Although giving relatively imprecise estimates of movement parameters compared to more
standard methods, the techniques considered here should be particularly useful when ex-
amining animal movements over long time scales.

Key words: cetacean; diffusion; Galápagos Islands; jackknife; maximum likelihood; movement
analysis; Physeter; residence times; spatial scale; sperm whale; temporal scale.

INTRODUCTION

The movement of animals through space is a key
element of several areas of biology, including popu-
lation biology (Andrewartha and Birch 1954), conser-
vation biology (e.g., Soulé and Gilpin 1991), and be-
havioral ecology (e.g., Emlen 1991). Despite this, rel-
ative to many other areas of ecology, the study of move-
ment has been less advanced, principally because of
conceptual and technical difficulties (Nichols 1996,
Turchin 1998). Turchin’s (1998) recent book describes
a range of techniques for analyzing movement within
a conceptual framework based upon diffusion models.
Diffusion describes how a population disperses through
space, and the diffusion rate quantifies this. However,
there are some situations for which well-developed an-
alytical techniques are not available, and for which
Turchin (1998) was only able to sketch a way forward.
Such is the case for the analysis of movement using

opportunistically collected individual-identification
data.

When animals have been identified and reidentified
(often analytically equivalent to ‘‘marked or tagged,
and recaptured’’) over nonuniform and nonrandom spa-
tial and temporal scales, so that the probability of re-
capturing an animal depends on its movement, then
many of the standard methods of analyzing movement
are not valid. In these situations, Turchin (1998) points
to the powerful, and flexible, maximum likelihood
technique of Hilborn (1990). In Hilborn’s (1990) meth-
od, for any set of population and movement parameters
and distribution of mark and recovery effort, the ex-
pected numbers of individuals with different resighting
histories can be estimated using simulation, and com-
pared with the observed numbers. Maximum likelihood
estimation, using a Poisson model, is then employed
to find the set of population and movement parameters
which minimize the discrepancy between observed and
expected resightings. Hilborn (1990) developed his
model for a fisheries example with discrete areas in
which fish were tagged and captured. However he notes
that the general method is more broadly applicable.
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Whales and dolphins (order Cetacea) operate over a
particularly large range of spatial ($8000 km; Stone
et al. 1990) and temporal ($100 yr; George et al. 1999)
scales. For many years the subject of whale movements
has been a key, and often contentious, issue in attempts
to manage their populations (Donovan 1991). For in-
stance, in their review of sperm whale (Physeter mac-
rocephalus) stock structure, Dufault et al. (1999) con-
clude that ‘‘to effectively conserve and manage sperm
whales in the face of substantial anthropogenic distur-
bance, we need new and good information on modal
and exceptional movement patterns over a range of
time scales.’’ Movements are potentially crucial ele-
ments of other areas of whale biology. For instance,
movement patterns may have been significant in the
evolution of cetacean social structures (Connor et al.
1998) and cultures (Rendell and Whitehead 2001).

An important potential source of information on
whale movements comes from photographic identifi-
cations of individuals. For populations of right whales
(Eubalaena spp.), humpback whales (Megaptera no-
vaeangliae), fin whales (Balaenoptera physalus), blue
whales (Balaenoptera musculus), killer whales (Orci-
nus orca), and sperm whales, photo-identification pro-
grams have been going on for at least a decade, cover
large parts of the range of some populations, and in-
clude a substantial proportion of the animals in the
populations (International Whaling Commission 1990).
Photo-identification studies of smaller cetaceans, such
as bottlenose dolphins (Tursiops spp.), also cover large
time scales, but generally have less extensive spatial
coverage (International Whaling Commission 1990, al-
though see Defran et al. 1999). These data sets have
been used to examine migratory destinations (e.g.,
Stone et al. 1990), to estimate population sizes using
mark–recapture methods (e.g., Smith et al. 1999), and
describe social organization (e.g., Christal et al. 1998).
However, as most identifications include a position,
these data sets also include a great deal of information
on the movements of individuals over a range of spatial
and temporal scales. This potential has not yet been
properly tapped, partly because of the technical diffi-
culties in analyzing movement patterns, and partly be-
cause of a lack of obvious analogs in methods devel-
oped for other species.

A particular problem with these data sets is that effort
devoted to collecting individual identifications has
been neither randomly nor systematically distributed
in space and time. In most cases, identification records
are highly clumped in certain ‘‘study areas’’ and ‘‘field
seasons,’’ which may, or may not, correspond to chang-
es in the distributions of the animals. A particular in-
dividual may have been recorded three times within a
small study area over a one week period, not reiden-
tified for another five years, and then perhaps observed
in a location which was not being sampled originally.
In these data sets there is usually no measure of effort
other than the records of the identifications themselves.

My goal has been to find robust methods so that these
data can be used to produce realistic models of whale
movement which can then inform us about ecological
and evolutionary questions. I will suggest how indi-
vidual identification data can be used to estimate the
parameters of three types of movement models, and to
examine their legitimacy. The first type of model con-
cerns movement into, and out of, a study area which
occupies only a portion of the animals’ range. This is
extended to consider movement between study areas
by making use of Hilborn’s (1990) method, or other
‘‘multistratum’’ techniques (e.g., Brownie et al. 1993,
Schwarz et al. 1993). Finally, movement through con-
tinuous space is considered, concentrating on estimat-
ing diffusion rates which indicate the rate at which
animals disperse through space. In all three cases, I
suggest alterations to the fairly standard techniques,
which use maximum likelihood methods and a bino-
mial–multinomial model, to make computation simpler
and feasible on large data sets.

Methods of studying movement between study areas
are discussed briefly, but, for the other two types of
model, I suggest methods of examining trends in the
data, maximum-likelihood techniques for estimating
movement and population parameters, and test these
techniques using simulated data. I then apply all three
methods to photographic identifications of sperm
whales in the South Pacific Ocean.

ANALYTICAL TECHNIQUES

Data sets

I assume that the data set consists of a series of sets
of identifications of individual animals, together with
the time and place of the identifications, so that the ith
set took place at time ti and in location Xi and was of
ni individuals. X can be a categorical variable giving
study areas, or a one- to three-dimensional variable
representing one- to three-dimensional space, mij rep-
resents the number of individuals identified in both set
i and set j, tij the time lag between the two identification
sets (tij 5 ztj 2 tiz), and, if X is continuous, rij the
displacement between them (rij 5 zXi 2 Xjz). This, and
other, notation is listed in Table 1.

Models of residency within, and emigration from,
one study area

Here, I assume that all data are collected within a
study area (so that X is single valued and redundant),
and that we are interested in how animals move into,
and out of, the study area. An intuitively reasonable
manner of investigating this process is to examine the
probability that an individual that was identified in the
study area at time t would be identified during an iden-
tification of a randomly chosen resident of the study
area at time t 1 t later. I will call this probability the
‘‘lagged identification rate’’ of lag t, R(t) (following
the use of ‘‘lagged association rate’’ in similarly struc-
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TABLE 1. Principal notation.

Parameter/variable Definition

a mean residence time in study area before leaving
b mean residence time outside study area before entering
fj probability that an animal in the study area on occasion j was identified
g(t) numbers of pairs of identifications t time units apart
i, j used to denote a set of individual identifications collected at a particular time and location
mij number of individuals identified in both set i and set j
m̂ij expected number of individuals identified in both set i and set j
m(t) number of reidentifications of the same individual t time units apart
ni number of individuals identified in ith set
p set of population/movement parameters
r displacement (distance) through space
rij displacement between identification sets i and j
{rk} displacements between successive identifications of the same individual
ti time of ith set of identifications
Aj sampling area for occasion j
D diffusion rate
D̂ estimate of diffusion rate
L log-likelihood or sum of (not necessarily independent) log-likelihoods
N population size in a defined area
P(t) probability that an individual in the study area is also in it after a lag of t
P(t, Y1, Y2) probability that an individual in study area Y1 is in study area Y2 after a lag of t
P(t, r) probability distribution function of moving a distance r during time t
Qij probability that an animal identified in set i is also identified in set j
R(t) lagged identification rate, the probability an individual identified in a study area at time t

is identified during a random identification in the study area at time t 1 t later
R̂(t) estimate of lagged identification rate
R(t, Y1, Y2) lagged identification rate between areas, the probability an individual identified in study

area Y1 at time t is identified during a random identification in study area Y2 at time
t 1 t later

Xi location of ith set of identifications (can be categorical or one- to three-dimensional vector
for continuous space)

Yk study area k
a population density
d rate of mortality plus permanent emigration
l rate of emigration from a study area
m rate of immigration into a study area from wider population
r rate of population increase
t time lag
tij time lag between identification sets i and j

tured analyses of social organization; Whitehead 1995).
Calling P(t) the probability that an individual in the study
area at time 0 is also in it after a lag of t, and N the
number of individuals in the study area (initially assumed
to be reasonably constant), then

R(t) 5 P(t)/N. (1)

The lagged identification rate, R(t), can be obtained as
a fitted function using observed data. A plot of R(t)
against lag t, indicates how animals use the study area.
The intercept on the y-axis is an estimate of 1/N, and,
if the lagged identification rate falls sharply at a lag of
approximately t 5 T, then this indicates that the many
animals are leaving the study area after residence pe-
riods of about this duration. A lagged identification rate
falling to zero suggests permanent emigration or death,
whereas a leveling off at large t could be caused by
some animals being permanent residents of the study
area and/or others reimmigrating back into it. For any
lag t, the lagged identification rate, R(t), can be esti-
mated from the proportion of pairs of identifications t
time units apart which are of the same individual:

R̂(t) 5 m(t)/g(t) (2)

where

m(t) 5 {m z t 5 t} (3)O ij ij
i,j

and (4)

g(t) 5 {n 3 n z t 5 t}.O i j ij
i,j

A plot of the lagged identification rate, R̂(t), against
lag t, calculated using Eqs. 2–4 is shown for a simu-
lated data set in Fig. 1. Here it is apparent that many
animals leave the study area after intervals of 1–5 d,
but that either there are some permanent residents, or
many return after leaving.

For many purposes it is desirable to fit a mathe-
matical model to such residence data. Specifying a
mathematical form and parameters for P(t) is one way
to formulate such a model. For instance, if the entire
population is closed, and individuals within the study
area migrate out of the study area with rate l per unit
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FIG. 1. Lagged identification rate against time lag (in ar-
bitrary units) for one of the simulations described in Table
2, together with the expected lagged identification rate from
a model of emigration and reimmigration fitted using maxi-
mum likelihood and binomial error (Eqs. 5 and 10).

time, and those outside it reimmigrate back into it with
rate m per unit time, a Markov process, then

P(t 1 dt) 5 P(t)(1 2 ldt) 1 [1 2 P(t)]mdt

so

dP(t) 5 [m 2 (l 1 m)P(t)]dt

and integrating,

[log(m 2 [l 1 m]P(t)) 2 log(2l)]/[2(l 1 m)] 5 t.

Thus,

2(l1m)tP(t) 5 (le 1 m)/(l 1 m). (5)

If we are more interested in residence times than mi-
gration rates, then Eq. 5 can be rewritten as

2(1/a11/b)tP(t) 5 (be 1 a)/(a 1 b) (6)

where a is the mean residence time within the study
area, and b the mean residence time outside it. Such
models can be extended in a number of ways. Mortality
plus permanent emigration (at rate d per time unit) can
be added, so that Eq. 6 becomes

2dt 2(l1m)tP(t) 5 e (le 1 m)/(l 1 m). (7)

The parameters of these models can be estimated
using mark–recapture methods in which the likelihood
of the capture histories of all animals are calculated,
and the parameters of the model (l, m, a, b, and/or d
in the above examples) are then chosen to maximize
this likelihood (Sandland and Kirkwood 1981, White-
head 1990). Unfortunately, if there are a large number
of individuals and identification times as is sometimes
the case in individual identification studies, the number
of capture histories becomes very large and such com-
putation is practically impossible (Whitehead 1990).

Here, I propose several simplifications to the mark–
recapture methods so that the approach may be used

on large data sets. These methods seem to give similar
results to the mark–recapture methods on small data
sets.

The probability that an animal identified on occasion
i was also identified on occasion j is P(tij) 3 fj, where
fj is the probability that an animal in the study area on
occasion j was identified. Then, using binomial theory,
the likelihood that mij of the ni animals identified on
occasion i were also identified on occasion j is

m n 2mij i ijI 5 [P(t )f ] [1 2 P(t )f ] 3 constant.ij ij j ij j (8)

Taking logs and summing over all pairs of occasions
{(i, j)}, we obtain

L 5 [m log(P(t ) f ) 1 (n 2 m )log(1 2 P(t ) f )]OO ij ij j i ij ij j
i j.i

1 constant. (9)

Here L is not the log-likelihood of the entire data set,
as the mij’s are not independent, rather it is the sum of
a set of log-likelihoods, each with the same parameters
and expected parameter values given by the log of Eq.
8. However, as shown analytically in the Appendix and
by simulation later in the paper, the parameter estimates
obtained by maximizing this sum are approximately
unbiased. Thus useful estimates of the parameters de-
termining P(tij) can be obtained by maximizing Eq. 9,
although lack of independence means that standard
likelihood methods should not be used to estimate con-
fidence intervals or formally compare models. The
summed log-likelihoods are used in place of the true
log-likelihood because the latter becomes analytically
intractable with many sampling periods.

Additional simplifications may be helpful. If there
are more than a few sampling occasions, estimating all
the fj’s using maximum likelihood is impracticable
(Whitehead 1990). A useful simplification is to replace
fj by its unbiased estimator nj/N (as in Seber 1982:557
and Whitehead 1990), so that Eq. 9 becomes

L 5 [m log(P(t )[n /N ]) 1 (n 2 m )OO ij ij j i ij
i j.i

3 log(1 2 P(t )[n /N ])] 1 constant. (10)ij j

It is now only necessary to estimate N rather than all
the fj’s.

This binomial model assumes that, on each sampling
occasion, the effort directed to identifying each animal
( fj ) was fixed in advance. In some situations it may be
more appropriate to assume a fixed number of identi-
fications (nj). However, such an assumption leads to the
less mathematically tractable hypergeometric distri-
bution, and is unlikely to have much effect on the pa-
rameter estimates in most cases, as, unless mij is close
to nj, the hypergeometric and binomial distributions
will be very similar.

If nj K N, we can use the Poisson approximation to
the binomial process, further simplifying the mathe-
matics and computing (Hilborn 1990). In this case the
summed log-likelihood is as follows:
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TABLE 2. Estimation of parameters of a simple emigration–reimmigration model from sim-
ulated individual identification data.

Estimation
method

Mean estimate (SD)

Emigration rate, l Immigration rate, m Population size, N

Theoretical
Poisson
Binomial
Mark–recapture

0.1
0.1077 (0.0482)
0.1077 (0.0468)
0.1026 (0.0167)

0.03
0.0311 (0.0137)
0.0313 (0.0138)
0.0305 (0.0050)

11.5
11.59 (2.04)
11.59 (1.98)
11.90 (1.20)

Notes: During each of 100 equal time intervals, members of a population of 50 individuals
could move from a study area to surrounding areas (at a rate of l 5 0.1 individuals per time
interval) or from surrounding areas into the study area (at a rate m 5 0.03 individuals per time
interval). Two hundred identifications were made by randomly choosing first a time interval,
and then an individual within the study area during that interval. The mean number of individuals
in the study area (N 5 50 m/[l 1 m] 5 11.5), l, and m were estimated using the binomial
model (Eq. 10), the Poisson model (Eq. 11), and a mark–recapture method (Whitehead 1990).
The mean and SD of the estimates using each method are given for 20 runs of the model.

L 5 [m log(m̂ ) 2 m̂ ] 1 constant (11)O O ij ij ij
i j.i

where the expected number of reidentifications, m̂ij, is
given by

m̂ 5 n P(t ) fij i ij j

or

m̂ 5 P(t )n (n /N ) (making the same simplificationij ij i j

as in the binomial model). (12)

The parameters of the residency model (e.g., l, m, a,
b, d), and number of animals in the study area, N, are
then chosen to maximize the binomial (Eq. 10) or Pois-
son (Eq. 11) summed log-likelihood.

So far, I have assumed a constant population size in
the study area, but an increasing or decreasing popu-
lation can be modeled by using variable values of N,
so by replacing N by N(tj) in Eqs. 10 (binomial model)
or 12 (Poisson model). For instance, if r is the rate of
population increase, to represent a population that is
exponentially increasing (r . 0) or declining (r , 0),
use

rtjN(t) 5 N e .0 (13)

In this case N0 and r are estimated along with the res-
idence parameters.

With large data sets, even using these simplifications,
the number of comparisons made can be very substan-
tial and computationally time consuming. Using the
Poisson approximation helps, because Eq. 11 can be
rewritten as

L 5 [m(t)log(P(t)) 2 P(t) 3 g(t)/N ]O
t

1 constant. (14)

Thus, the data are pooled by time lag t, and each cal-
culation of L is much cheaper. Another method of re-
ducing computation is to restrict comparisons to those
pairs of identifications less than a certain maximum
time interval apart, T, so that the x-axis of the lagged

identification rate plot extends up until lag T, and Eq.
14 only includes values of t , T.

Simulation of the simple model of reimmigration
(Eq. 5) indicates that both binomial and Poisson ap-
proaches produce nearly unbiased estimates of the pa-
rameters l, m, and N but are somewhat less precise
than the more complex, and much more computation-
ally expensive, mark–recapture analysis (e.g., Table 2).
Thus, at least in this situation, the approximations used
to produce an efficient routine do not seem to be af-
fecting parameter estimates in any important way (in
the simulations the sampling was of a fixed number of
identifications at each occasion, the scheme leading
theoretically to the hypergeometric distribution). The
procedure outlined above has the advantages over
mark–recapture models which include residence (see
also Seber 1982) of speed of computation (and thus
possibility of computation for large data sets), sim-
plicity, and that it can easily accommodate changes to
the model (e.g., adding mortality is accomplished by
making a small change to Eq. 5 to produce Eq. 7).

Models of movement between study areas

We can generalize the methods outlined above to
investigate situations in which animals are identified
in several different areas, so that {Xi} are members of
the set of study areas {Yk}.

For instance, a lagged identification rate between
different areas, R̂(t, Y1, Y2), can be estimated by adding
a spatial component to Eq. 3 (and similarly to Eq. 4):

m(t, Y , Y )1 2

5 {m z X 5 Y , X 5 Y , t 2 t 5 t}. (15)O ij i 1 j 2 j i
i,j

The lagged identification rate between two sets of iden-
tifications now depends on the positions of the iden-
tifications, as well as the time lag.

Similarly, a spatial component can be added to the
likelihood equations by modifying Eq. 9 so the summed
log-likelihood becomes
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L 5 [m log(P(t , X , X )3 f ) 1 (n 2 m )O O ij ij i j j i ij
i j.i

3 log(1 2 P(t , X , X )3 f )]ij i j j

1 constant. (16)

Here, P(tij, Xi, Xj) is the probability of moving from
area Xi to Xj in time tij, and is specified by general-
izations to several areas of equations such as Eq. 5
(e.g., Brownie et al. 1993, Schwarz et al. 1993). Mul-
tinomial likelihood equations are used in the ‘‘multis-
tratum’’ capture–recapture methods described by
Brownie et al. (1993) and Schwarz et al. (1993). Un-
fortunately, principally because of the difficulties of
calculating the P(tij, Xi, Xj)’s, such multinomial meth-
ods only work with a few (,;4) study areas and a few
(,;4) sighting occasions (Brownie et al. 1993).

To get around this limitation, some of the same sim-
plifications can be made as in the previous section with
just one study area. First, fj can be replaced by nj/N(Xj):

L 5 [m log(P(t , X , X ) 3 n /N(X )) 1 (n 2 m )OO ij ij i j j j i ij
i j.i

3 log(1 2 P(t , X , X ) 3 n /N(X ))]ij i j j j

1 constant. (17)

We can also use the Poisson approximation (justifiable
if nj K N(Xj), Hilborn 1990):

L(p) 5 [m log(m̂ (p)) 2 m̂ (p)]O O ij ij ij
i j.i

1 constant (18)

where

m̂ 5 P(t , X , X ) 3 n 3 n /N(X ).ij ij i j i j j (19)

However, the problem of calculating the P(tij, Xi, Xj)’s
remains. In situations with few (;2–3) study areas,
recurrence equations can be used. Hilborn (1990) pre-
sents a powerful and general technique for circum-
venting such limitations. His method consists of first
constructing a simulation population and movement
model that describes how individuals move between
areas. This model contains some unknown parameters
(for instance the rates of mortality and movement be-
tween areas, and the population sizes in the different
areas) here designated by the vector p. Then, given
{ni}, {ti}, and {Xi}, and any set of parameters for the
population-movement model (p), the simulation model
can be run a number of times to derive expected num-
bers of resightings between areas: {m̂ij(p)}. Estimates
of the parameters in the population-movement model
(p) can be obtained by finding those that maximize the
likelihood (Hilborn 1990) or (as justified in Appendix)
the summed log-likelihoods, L(p).

Hilborn (1990) discusses a variety of possible ex-
tensions to his technique, methods of finding confi-
dence intervals for the parameters, and analysis of the
fit of the model to the data using the method of de-

viances. Temporal changes in population sizes can also
be added by making the N(Xj)’s time dependent (i.e.,
N(tj, Xj)).

General models of movement in continuous space

While the approach of Hilborn (1990) is very pow-
erful and flexible (Turchin 1998), it cannot be directly
applied to a situation common in studies of whale pop-
ulations using photo-identification: the identification of
individuals opportunistically in continuous space and
time. The study area could be divided into spatial strata,
and movement probabilities between them used as pa-
rameters, but if this subdivision is coarse then much
of the information on movements in the data set is lost,
and if it is too fine then simulating population flow
among so many strata is not feasible, even using the
simplifications discussed above. However a method can
be devised to deal with continuous space, if we make
some simplifying assumptions.

In two dimensions, if mean population density is
roughly uniform at all displacements from a randomly
chosen location (at a animals/unit area), and the prob-
ability of identifying an animal in a given location is
independent of the time since it was last identified (an
assumption most obviously violated when tracking an-
imals), then the summed log-likelihoods of the data
under the binomial model is (as in Eq. 9)

L 5 [m log(Q ) 1 (n 2 m ) log(1 2 Q )]O O ij ij i ij ij
i j.i

1 constant (20)

where Qij is the probability that an animal identified in
set i is also identified in set j:

Q 5 P(t , r )dr(A /2pr dr) fij ij ij j ij j

5 P(t , r )A f /2pr . (21)ij ij j j ij

Here, Aj is the area sampled on occasion j, P(t, r) is
the probability density function for the displacement,
r, over lag t, so that the probability that, over lag t,
an animal has displaced between r and r 1 dr units is
P(t, r)dr. As previously, we can simplify, replacing fj

by nj/N(Xj), and N(Xj), the population being sampled
on occasion j, can be estimated by

N(X ) 5 (A a 1 n P(t ,r )A /2pr ).j j i ij ij j ij (22)

The term niP(tij, rij)Aj /2prij, the expected number of
animals identified on occasion i in the area sampled on
occasion j, is needed when tij and rij are both small so
that nearly the same set of animals are being resampled;
the term becomes insignificant at larger tij or rij. Re-
placing fj by nj/N(Xj) and using Eq. 22, Eq. 21 becomes

Q 5 P(t , r )A (n /2pr )/(A a 1 n P(t , r )A /2pr )ij ij ij j j ij j i ij ij j ij

5 P(t , r )n /(2pr a 1 n P(t , r )).ij ij j ij i ij ij (23)

Then, the parameters that define P(t, r), as well as a,
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TABLE 3. Estimation of diffusion rate from simulated individual identification data using standard and maximum likelihood
techniques with either binomial or Poisson error.

Study area
Figure
panel

Estimated diffusion rate, D (SD)
[theoretical D 5 0.01]

Standard Binomial Poisson

Estimated density, a (SD)
[theoretical a 5 0.99]

Calculated Binomial Poisson

All a 0.0089 (0.0017) 0.0096 (0.0015) 0.0095 (0.0015) 1.02 (0.07) 0.87 (0.18) 0.86 (0.18)
Strip b 0.0046 (0.0012) 0.0086 (0.0015) 0.0085 (0.0015) 1.00 (0.05) 1.02 (0.32) 1.02 (0.33)
Central square b 0.0050 (0.0012) 0.0092 (0.0023) 0.0091 (0.0023) 0.99 (0.04) 0.90 (0.28) 0.91 (0.28)
Central rectangle d 0.0037 (0.0013) 0.0093 (0.0035) 0.0091 (0.0034) 0.99 (0.06) 0.98 (0.43) 1.01 (0.43)
Bottom left, then top

right e 0.0064 (0.0012) 0.0098 (0.0023) 0.0097 (0.0024) 1.00 (0.06) 0.75 (0.25) 0.74 (0.26)
Top/bottom strips f 0.0056 (0.0014) 0.0090 (0.0019) 0.0089 (0.0018) 0.99 (0.06) 0.66 (0.27) 0.62 (0.30)

Notes: One hundred individuals were placed randomly in a 10 3 10-unit habitat, and then each made 100 steps of length
0.2 units with the direction of each step being randomly chosen. Boundaries of the habitat were reflective. For six ‘‘study
areas’’ (shown in Fig. 2), a random identification data set was compiled by randomly choosing an instantaneous time and a
1 3 1-unit square section of the study area, identifying all animals in the square at that time, and then repeating this process
until 100 identifications were obtained. The diffusion rate, D, was estimated by the standard technique (Eq. 26), as well as
by the binomial likelihood method (Eq. 20) and its Poisson approximation (Eq. 11). The mean density of animals as experienced
by a randomly chosen animal (a animals per unit area; theoretically, (100 2 1)/(10 3 10) 5 0.99) was calculated by summing
the number of animals in each 1 3 1-unit square at each time (‘‘calculated’’) and was also estimated using the binomial and
Poisson likelihood methods. The mean and SD of the estimates for the 20 runs for each study area are shown.

can be estimated by maximizing Eq. 20, or its Poisson
approximation, Eq. 11, with

m̂ 5 Q 3 n .ij ij i (24)

One of the simplest forms of movement model is an
uncorrelated random walk, in which the animal heads
in a random direction at each of a sequence of very
short steps. The uncorrelated random walk is well de-
scribed by one parameter, the diffusion rate D, or rate
of population spread through space (Turchin 1998). The
diffusion rate can be formally defined in a number of
equivalent ways (see Okubo 1975 or Turchin 1998). In
the case of the uncorrelated random walk, for instance,
it can be defined as the step length squared divided by
four times the time between steps. The uncorrelated
random walk also models, quite well, a number of sit-
uations where the movements of an animal are not ac-
tually random (Turchin 1998). For an uncorrelated ran-
dom walk with diffusion rate D (from Turchin [1998],
modifying Eq. A.15 for radial coordinates),

2r
r exp 21 24Dt

P(t, r) 5 . (25)
2Dt

The standard estimator for D in this situation is

2D̂ 5 r /4 t (26)O Ok k
k k

where the sums are over successive identifications of
the same individual, the rk’s are the distances between
these identifications, and tk’s the time intervals between
them (from Turchin 1998: Eq. 7.5).

Simulations suggest that the likelihood procedure
outlined above (Eqs. 20–25), using either the binomial
or Poisson model, gives approximately unbiased esti-
mates of D (Table 3), even when the study area is
irregularly and nonrandomly sampled. In these situa-

tions, the standard estimator of D (Eq. 26) performs
poorly (Table 3; Turchin 1998:258).

It is customary, and often very useful, to examine
movement patterns from individual mark–recapture
data by plotting the mean-squared displacement over
any time lag against the lag (Turchin 1998). For in-
stance, a two-dimensional simple random walk predicts
that this should be a linear function through the origin
with the slope of the line being equal to four times the
diffusion rate, D. However, if animals are not equally
likely to be identified in different parts of their habitat,
then this approach is flawed (see Fig. 3; 3’s lie below
true line with all sampling schemes except case a, ran-
dom identification throughout study area).

An alternative is to divide the time lags into intervals
{0–t1, t1–t2, . . .}, and for each interval (w 5 1, . . .)
estimate the diffusion rate, Dw, using the likelihood
methods just described. Then the mean-squared dis-
placement in each lag interval is estimated from

2 ˆr̂ 5 4D 3 mean(t z t , t , t ).w w ij w21 ij w (27)

Simulations suggest that this method works satisfac-
torily, and better than the standard estimator, when ef-
fort is irregularly distributed (e.g., in Fig. 3, the max-
imum-likelihood estimators, V and *, are closer to the
real data [dashed] line than is the standard estimator,
3). It is possible to estimate D and a separately for
each time interval by maximizing the likelihood, or to
estimate a for the entire data set, and then estimate D
separately for each time interval, using the global es-
timate of a. The second procedure, using a global es-
timate of a, seems a little more accurate (e.g., in Fig.
3, the estimators using global estimates of a, *, are
generally a little closer to the real data [dashed] line
than those using separate estimates of a, V).

If the data set is large, then it may make sense to
pool ranges and time lags to shorten the calculations
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FIG. 2. Study areas (shaded) within a square habitat as
used for the six sets of simulations described in Table 3.

and decrease use of computer memory. One method I
have found useful is to use logarithmically increasing
time bins to examine logarithmically increasing time
lags.

Summary of method of estimation

Adopting the simpler, Poisson, distribution for er-
rors, the three techniques outlined above can be broken
down into the following steps:

1) Formulate a population and movement model with
unknown parameters such as the rate of movement be-
tween study areas, mortality and the population density.
These parameters are specified by the vector p.

2) Bin data by time and, perhaps, space, resulting in
the numbers of animals identified in each bin (ni), the
mean time of identification (ti), and the position Xi.

3) Compare bins, calculating the number of animals
in common (mij), time lag (tij), and, if using continuous
space, displacement (rij).

4) Construct a routine to calculate the expected num-
bers of reidentifications (m̂ij) between bins given the
identification schedule {ni, ti, Xi} and population/move-
ment parameters (p), and thus the log-likelihood or
summed log-likelihoods, L, (from Eq. 11) either ana-
lytically, using recurrence relations, or by simulation.

5) Use an optimization routine to find those param-
eters (values of p) which maximize L.

Estimates of precision and hypotheses tests

The estimates of residence times, transition proba-
bilities, diffusion rates, and other parameters produced
using the methods described above have little utility
without measures of precision. There are several pos-
sible approaches to estimating precision.

With just a few observation periods, it may be rea-
sonable to compare only consecutive observation pe-
riods when calculating the mij’s, resulting in indepen-
dent log-likelihoods, and so allowing standard likeli-
hood methods to be used. The likelihood function in
population/movement parameter space can be calcu-
lated and the ‘‘support function’’ (the difference be-
tween the log-likelihood at a particular combination of
parameter values and the maximum log-likelihood) ex-
amined to indicate confidence regions (Edwards 1992).
Alternatively, standard errors for parameters can be
estimated from the inverse of the second partial deriv-
ative of the likelihood function (Silvey 1975).

These approaches assume independent data (mij’s),
which will not be the case when summed log-likeli-
hoods are used instead of the true log-likelihood. Al-
ternatives for examining the precision of parameter es-
timates which can work with summed log-likelihoods
include bootstrap (resampling the individuals with re-
placement to produce new data sets) or jackknife meth-
ods (creating new data sets with one individual omitted
in each; Efron and Gong 1983).

If individuals themselves are not independent be-
cause they travel in fairly permanent groups, then boot-

strap or jackknife methods can be used with groups
themselves being the units being included or omitted
from each new data set. This is only possible if the
compositions of the groups are known. If group mem-
bership is not known, but groups are suspected to exist,
a procedure which seems to work, but has not been
theoretically validated, is to jackknife on time periods
rather than individuals, so that each jackknifed data set
consists of the original data set missing those identi-
fications collected during a time period. Standard errors
of parameter estimates are calculated from these jack-
knifed estimates using the standard jackknife procedure
(Efron and Gong 1983). Using this method on a sim-
ulated data set collected using the entire study area
(Table 3, line 1; Fig. 2a) gave estimated standard errors
of 0.0014 for D and of 0.15 for a, which can be com-
pared with standard deviations from repeated simulated
samples of 0.0015 and 0.18 respectively (Table 3).

If the elements of the calculation of likelihood can
be considered independent then likelihood ratio tests
(Silvey 1975) may be used to test the significance of
adding parameters to a model (e.g., adding mortality,
d, to Eq. 5 to make Eq. 7). Even if not theoretically
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FIG. 3. Mean-squared displacement as a function of time lag for simulations of the model described in Table 3. The true
relationship between mean-squared displacement and time lag (averaged over all individuals and times) is shown by the
dotted lines. For each of the six identification schemes, described in Table 3 and illustrated in Fig. 2 (except with 250
identifications rather than 100), and for three time intervals (1–25 units, 26–50 units, 51–75 units [51–75 units estimates
unavailable for scheme e as there were no reidentifications over these time intervals]), the mean-squared displacement was
estimated from the displacements between identifications of the same animal (standard method, 3), and from the estimated
diffusion rate (using maximum likelihood) using Poisson error and estimates of density (a) calculated for each interval
separately (V) or globally ( ).13

TABLE 4. Number of photographic identifications of individual sperm whales, and identified
animals, during studies in the South Pacific Ocean, 1985–1997, in four different regions:
Galápagos, coastal eastern tropical Pacific (coastal ETP), western Pacific, and southeastern
Pacific (see Fig. 4).

Year Months Area
Identifications

(accurate location # 3 h)
Identified
animals

1985 Feb
Feb–Apr

Coastal ETP
Galápagos

7 (7)
633 (631)

3
282

1987
1988
1989

Jan–Jun
Apr–Dec
Jan–May

Galápagos
Galápagos
Galápagos

1095 (1052)
346 (0)

1350 (814)

370
136
569

1991 Jan–Mar
Mar–Apr

Coastal ETP
Galápagos

426 (426)
113 (113)

239
72

1992 Jun
Sep–Oct

Coastal ETP
Western Pacific

4 (4)
168 (167)

4
101

1993 Jan–Feb
Feb
Feb–Apr
Apr

Western Pacific
Galápagos
Southeast Pacific
Coastal ETP

2 (1)
18 (0)

201 (193)
182 (182)

2
16

110
91

1994 Jan–Jun Galápagos 32 (0) 22
1995 Apr–Jun

Jun
Galápagos
Coastal ETP

149 (149)
13 (13)

55
9

1996
1997
Total

Apr–Jun
Apr

Galápagos
Galápagos

80 (0)
146 (0)

4965 (3752)

28
24

1851
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PLATE 1. Fluke (tail) of a sperm whale showing marks used
for individual identification off South Island, New Zealand.
Photograph courtesy of L. Weilgart.

FIG. 4. Geographical distribution of photographic iden-
tifications of female and immature sperm whales in (a) the
eastern tropical Pacific and (b) wider South Pacific, 1985–
1997.

valid due to a lack of independence of data, a likelihood
ratio test can indicate the significance of a particular
parameter. For formal hypothesis tests in situations
without independent data, then, custom permutation
tests (Manly 1997) are perhaps the best option.

MOVEMENTS OF FEMALE AND IMMATURE

SPERM WHALES

Sperm whales are large and sexually dimorphic
(adult males, ;16 m long; adult females, ;11 m long)
toothed whales (Rice 1989). Females and their young
form groups of ;20 animals, and inhabit tropical and
subtropical waters, whereas adult males are generally
more solitary, and found at higher latitudes (Rice
1989). There is no indication that groups of females
defend territories, and they range very widely (Best
1979, Whitehead and Waters 1990, Dufault and White-
head 1995b).

Data set

The data set consists of 4965 high-quality (Arnbom’s
[1987] Q $ 4) photographic individual identifications
of 1851 individual female and immature sperm whales
collected on 244 separate days from the waters of the
South Pacific between 1985 and 1997 (Table 4, Fig.
4). Groups of sperm whales were tracked using passive
acoustics for durations ranging from a few hours to a
few days aboard 10–13 m long vessels (Whitehead and
Gordon 1986). During these tracking periods, individ-
uals were identified from photographs of the animals’
flukes shown as they began long (;35 min), deep
(;400 m) dives (Whitehead and Gordon 1986) (see
Plate 1). Methods of taking and analyzing the photo-
graphs are described by Arnbom (1987) and Dufault
and Whitehead (1995a). Each identification is linked
to a date, and time (accurate within approximately 65
min), and most are linked to a satellite-derived location.
Locations were interpolated between fixes from a Tra-

cor Transtar SATNAV (Tracor, Austin, Texas, USA)
during 1985–1991 (positions approximately every 1.5
h accurate to approximately 60.5 km), and came from
a Trimble Transpak GPS (Trimble, Sunnyvale, Cali-
fornia, USA) during 1992–1995 (continuous positions
accurate to approximately 60.2 km).

The majority of the research was carried out off the
Galápagos Islands (;08 N, 908 W), although identifi-
cations were collected right across the South Pacific,
especially off the west coast of South America (Table
4, Fig. 4). Sperm whale abundance off the Galápagos
Islands has fallen dramatically over the 13 yr of study,
with many of the animals appearing to migrate to the
waters off the South American mainland (Whitehead
et al. 1997). The techniques described in the first part
of this paper were used to investigate three general
questions about movements of female and immature
sperm whales: how long are they resident in waters
close to the Galápagos Islands, at what rate have they
moved from the general Galápagos region to waters off
mainland South America, and how does the geograph-
ical displacement of a sperm whale group increase with
time lag?

Because of the permanent groups formed by the
whales and the fact that groups were tracked for periods
of ;2 d, statistical methods which assume indepen-
dence of individuals are inappropriate. Instead, to ob-
tain standard errors for parameter estimates, I use the
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FIG. 5. Lagged identification rate for female and imma-
ture sperm whales in waters near the Galápagos Islands (C);
bars show estimated standard errors, together with the ex-
pected lagged identification rate from a model of emigration
and reimmigration (Eq. 5) fitted using maximum likelihood.

jackknife method, omitting consecutive 3–4 d periods
in turn. Standard errors obtained in this way were little
changed when jackknife periods of 30 d were substi-
tuted.

Residence in Galápagos waters

The data set was restricted to those photographs tak-
en near the Galápagos Islands (Table 4) in order to
examine residence in Galápagos waters (roughly de-
fined by the distribution of effort shown on the left
hand side of Fig. 4a). Lagged identification rates at
lags from 2 to 200 d were calculated using Eq. 2. Lags
of ,2 d were not used as groups were often followed
for two consecutive days (17 pairs of days). However,
tracking of the same group rarely lasted more than 2
d (this happened on just three occasions).

The lagged identification rate is plotted against time
lag in Fig. 5, smoothed by lumping lags into bins of
median width of 4 d (bins narrower at shorter lags, and
wider at longer lags). The lagged identification rate
appears to fall precipitously at lags of ;3–10 d, settling
at a fairly constant low level over longer lags.

The model of emigration from the study and reim-
migration back into it (Eq. 6) was fit to the data using
maximum likelihood with binomial loss. The model
curve appears to fit the lagged identification rate well
(Fig. 5), and has a substantially greater log-likelihood
(25556.01) than a simpler model in which emigration
from the study area is deemed to be permanent, so that
b 5 ` in Eq. 6, (log-likelihood25691.66). Parameters
of the model were estimated as follows (with estimated
standard errors from the jackknife technique):

Mean residence in study area (a)

5 7.8 d (1 SE 5 2.2 d)

Mean residence outside study area (b)

5 206.9 d (1 SE 5 132.7 d)

Mean population in study area (N )

5 101 whales (1 SE 5 37 whales).

This indicates that the Galápagos waters are a small
part of the habitat of a population of several thousand
whales, and that each group of whales spends of the
order of 8 d near the islands at any time.

Movement from Galápagos region to the coastal
eastern tropical Pacific

The movement of sperm whales between the general
region of the Galápagos (which includes the smaller
‘‘Galápagos waters’’ study area used above) and the
coastal eastern tropical Pacific, ‘‘coastal ETP,’’ (Fig.
4a) is indicated by the lagged identification rate be-
tween the two areas (from Eqs. 2 and 15; Fig. 6). Only
the rate from the Galápagos to the coastal ETP is
shown, as data are too few for a useful plot for the
reverse movements. In Fig. 6, it appears that individ-
uals move between the two areas at rates of once every
few years, as the lagged identification rate rises from
zero for reidentifications within the same year to an
approximately constant value after ;3.5 yr. These in-
terarea movements were further investigated using the
following model:

N (t) 5 population in Galápagos region in year t,G

t 5 1985–1997

N (t) 5 population in coastal ETP in year tE

p 5 probability of moving from Galápagos regionGE

to coastal ETP in any year

p 5 probability of moving from coastal ETP toEG

Galápagos region in any year

d 5 annual mortality in both areas. Recruitment
is assumed to be similar so that the overall
population size does not change.

The expected values of the populations are given by
the recurrence relations

zE(N (t 1 1)) 5 N (t) 3 (1 2 p ) 1 N (t) 3 p (28)G G GE E EG

zE(N (t 1 1)) 5 N (t) 3 (1 2 p ) 1 N (t) 3 p . (29)E E EG G GE

The probability that an animal identified in year y and
area A (either Galápagos or coastal ETP) is present in
year t and in each of the areas can be calculated from
the recurrence relations:
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FIG. 6. Lagged identification rate for female and imma-
ture sperm whales from waters near the Galápagos Islands to
the coastal eastern tropical Pacific.

FIG. 7. Estimated changes in the numbers of female and
immature sperm whales in the Galápagos region and coastal
eastern tropical Pacific between 1985 and 1997.

P (G, t 1 1) 5 P (G, t)(1 2 p )(1 2 d)Ay Ay GE

1 P (E, t)p (1 2 d) (30)Ay EG

P (E, t 1 1) 5 P (E, t)(1 2 p )(1 2 d)Ay Ay EG

1 P (G, t)p (1 2 d) (31)Ay GE

and

P (G, y) 5 1 P (E, y) 5 0 if A 5 G (32)Ay Ay

P (E, y) 5 1 P (G, y) 5 0 if A 5 E. (33)Ay Ay

From these relationships, given the parameters
NG(1985), NE(1985), pGE, pEG, and d, the expected num-
ber of recoveries from area A to area B between years
y and t can be calculated:

m̂ 5 n (y)P (B, t)n (t)/N (t).AyBt A Ay B B (34)

From the observed and expected number of recoveries
{mAyBt, m̂AyBt} the summed log-likelihood can be cal-
culated from Eq. 11. Thus the parameters NG(1985),
NE(1985), pGE, pEG, and d were estimated by maximiz-
ing this likelihood. Using this procedure, the parameter
estimators were:

Initial Galápagos population,

N (1985) 5 4957 animals (1 SE 5 2184)G

Initial coastal ETP population,

N (1985) 5 4147 animals (1 SE 5 8171)E

p 5 0.239/yr (1 SE 5 0.112)GE

p 5 0.000/yr (1 SE 5 0.001)EG

d 5 0.021/yr (1 SE 5 0.066).

Two simpler models were also fit to the data: a) d 5
0 (i.e., no mortality or permanent emigration); b)

NG(1985) pGE 5 NE(1985) pEG (i.e., migrations between
the study areas are in equilibrium, and there is no net
change in the population size in either area during the
study period).

The log-likelihood of the full model was 456.74 (plus
a large negative constant), that of model a was 456.48,
and of model b 357.55. Theoretically, the difference in
log-likelihood between models restricted by one pa-
rameter should be distributed as if the more restricted2x1

model holds (Silvey 1975). Although likelihood ratio
tests are theoretically invalid in this case, as the data
are not independent, these differences in log-likelihood
strongly suggest that mortality plus permanent emi-
gration from both study areas is not significantly dif-
ferent from zero, but that there was a net migration
from Galápagos to coastal ETP waters during the study
period.

Using the estimated parameters shown above from
the full model, the estimated changes in population size
in the two study areas over the study period, as cal-
culated from Eqs. 28 and 29, are shown in Fig. 7. The
estimated change in the Galápagos population with
time is very similar to that calculated using standard
mark–recapture methods on nearly the same data set
(Whitehead et al. 1997). However, this analysis quan-
tifies the migration between the areas. Observed and
expected reidentifications between years and study ar-
eas are given in Table 5. There are some substantial
discrepancies, which were highlighted by an analysis
of deviances. These can be attributed to the whales
moving between areas, and being identified together,
in permanent groups, so that movements and identifi-
cations are not independent. There was no obvious pat-
tern to the deviances.

Sperm whale movement with time lag

For the analysis of displacement with time lag, I used
all sperm whale identifications linked to a satellite-
determined position within 3 h (Table 4). Because
groups were followed over periods of 1–2 d, only lags
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TABLE 5. Observed and expected reidentifications of individual sperm whales between waters
around Galápagos (G) and those in the coastal eastern tropical Pacific (108N–108S) (E)
between 1985 and 1997.

Year and
area

Year and area

1985
G

1986
E

1987
G

1988
G

1989
G

1991
G

1991
E

1992
E

1993
G

1993
E

1994
G

1995
G

1995
E

1996
G

1997
G

Observed reidentifications
1985 G
1985 E
1987 G
1988 G

282
0

49
0

0
3
0
0

49
0

370
0

0
0
0

82

29
0

56
10

10
0

13
0

0
1
0
4

0
0
0
0

1
0
2
0

1
0
8
0

0
0
9
1

2
0

13
1

0
0
0
0

0
0

18
0

0
0
0
0

1989 G
1991 G
1991 E
1992 E

29
10

0
0

0
0
1
0

56
13

0
0

10
0
4
0

569
21

7
0

21
72

0
0

7
0

239
0

0
0
0
4

0
0
0
0

12
0
0
0

4
1
0
0

6
3
0
0

2
0
0
0

4
0
0
0

0
0
0
0

1993 G
1993 E
1994 G
1995 G

1
1
0
2

0
0
0
0

2
8
9

13

0
0
1
1

0
12

4
6

0
0
1
3

0
0
0
0

0
0
0
0

16
0
3
0

0
91

0
0

3
0

22
12

0
0

12
55

0
0
0
0

0
0

10
16

0
0
0
0

1995 E
1996 G
1997 G

0
0
0

0
0
0

0
18

0

0
0
0

2
4
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
10

0

0
16

0

9
0
0

0
28

0

0
0

24
Expected reidentifications

1985 G
1985 E
1987 G
1988 G

282
0

20
4

0
3
0
0

20
0

370
10

4
0

10
82

30
0

70
21

4
0
9
3

6
0
7
1

0
0
0
0

1
0
2
1

2
0
3
1

1
0
2
1

3
0
6
2

0
0
0
0

1
0
3
1

1
0
2
1

1989 G
1991 G
1991 E
1992 E

30
4
6
0

0
0
0
0

70
9
7
0

21
3
1
0

569
24

7
0

24
72

0
0

7
0

239
0

0
0
0
4

5
1
0
0

4
0
2
0

7
2
0
0

17
4
0
0

0
0
0
0

8
2
0
0

7
2
0
0

1993 G
1993 E
1994 G
1995 G

1
2
1
3

0
0
0
0

2
3
2
6

1
1
1
2

5
4
7

17

1
0
2
4

0
2
0
0

0
0
0
0

16
0
1
2

0
91

0
0

1
0

22
3

2
0
3

55

0
0
0
0

1
0
1
5

1
0
1
4

1995 E
1996 G
1997 G

0
1
1

0
0
0

0
3
2

0
1
1

0
8
7

0
2
2

0
0
0

0
0
0

0
1
1

0
0
0

0
1
1

0
5
4

9
0
0

0
28

3

0
3

24

Note: Sample sizes in each area and year are given along the diagonal.

of 3 d or more were considered. For each of seven time
lag intervals, estimates of the diffusion rate, mean-
squared displacement, and root-mean-squared dis-
placement were calculated using the likelihood method
described above with Poisson error and binning of time
lag and displacement into sets of equal logarithmic size
(factor of 2 for time lags, factor of 1.4 for displace-
ments).

The results of the likelihood analysis are shown in
Fig. 8. Over time lags from a few days to a few months,
the movements of the sperm whales seem quite well
described by a random walk with a diffusion rate of
very approximately 750 km2/d (for lags of 3–100 d,
estimated D 5 762 km2/d, 1 SE 5 495 km2/d). This
compares with an estimate of 672 km2/d (1 SE 5 141
km2/d) using the standard method of calculation (Eq.
26) over a lag of 1 d (Fig. 8). The standard method is
valid over this short time lag as the whales were being
tracked, and their probability of reidentification is un-
likely to be much affected by their displacement. In
contrast, over longer lags when whales moving greater
distances are less likely to have been reidentified, the
likelihood method is a more valid estimator. In contrast
to the movement patterns over 1 to ;100 d, after in-

tervals of a year and more the rate of spread slows.
The root-mean-squared displacement is plotted against
time lag in Fig. 8c. This is less theoretically intuitive
than the mean-squared displacement, but more easily
interpretable as the approximate net distance traveled
over different time scales. Over 3 d the female and
immature sperm whales moved ;100 km, but during
periods of years they move ;650 km, suggesting home
ranges over multiyear time scales of the order of 1000
km across.

DISCUSSION

I hope that I have shown that a variety of aspects of
movement can be studied using data sets in which an-
imals are identified individually, but the identifications
are distributed neither randomly nor uniformly in space
or time and there is no independent measure of effort.
Standard methods, in which it is assumed that animals
are equally likely to be identified whatever their move-
ment pattern, can produce very misleading results (e.g.,
Fig. 3, 3’s lie below true line with all nonrandom sam-
pling schemes). By using maximum likelihood meth-
ods, and following the ideas of Hilborn (1990) and
Turchin (1998), the identifications themselves can be
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FIG. 8. Results of likelihood movement analysis for fe-
male and immature sperm whales of the South Pacific: (a)
estimated diffusion rates with time lag, (b) estimated mean-
squared displacement with time lag, and (c) estimated root-
mean-squared displacement with time lag. Vertical bars show
estimated standard errors using the jackknife method, omit-
ting three-day time periods in turn. Estimates are from like-
lihood estimation over longer time periods (V), and the dis-
placements between identifications of the same animal (3)
when tracking groups over short time periods.

used as a measure of effort, so that a variety of move-
ment statistics can be estimated. These include resi-
dence times in one study area (e.g., Figs. 1 and 5),
movement rates between study areas (Fig. 6), and dif-
fusion rates (Figs. 3 and 8). Such information is vital
for the investigation of many questions in population
ecology, conservation, management, and evolution
(Turchin 1998).

I have used modified maximum likelihood methods
to investigate the movements of South Pacific sperm
whales, indicating how animals use a small study area
(Fig. 5), have redistributed themselves over scales of
;1000 km (Figs. 6 and 7), and move through the ocean
over a range of time scales (Fig. 8). Over time scales
of 1–100 d, sperm whale movements seem to be rea-
sonably well described by an uncorrelated random
walk, with diffusion rate of ;700 km2/d, and thus a
root-mean-squared displacement of ;50 km/d. How-
ever, these movement rates cannot be extrapolated to
longer time scales (Fig. 8), presumably because the
animals have preferred ranges spanning ;1000 km
within which they tend to stay.

These results have implications for the conservation
and management of this species. For instance, intense
shore-whaling from Paita, northwestern Peru (58 S, 818
W), removed ;7500 female sperm whales from the
coastal eastern tropical Pacific waters between 1957
and 1981 (Clarke et al. 1980, Ramirez 1989). The
movement analysis shows that this exploitation was

affecting whales over a much wider area than the
whalers’ operations, and was likely depopulating a
large area of the eastern Pacific, despite a fairly stable
catch per unit effort (Ramirez 1989). The movement
analysis is also consistent with the suggestion that the
decline in the Galápagos population during the late
1980s and early 1990s is due to animals moving into
relatively productive coastal waters emptied by the Pe-
ruvian whaling, and not returning (Whitehead et al.
1997). By this analysis, I have begun to satisfy Dufault
et al.’s (1999) call for information on modal movements
of sperm whales over a range of time scales. Some of
the results of this movement analysis have been used
as input parameters for a model of the effects of ex-
ploitation on mobile sperm whale populations (White-
head 2000), as well as during a consideration of the
significance of movement in the evolution of cetacean
culture (Rendell and Whitehead 2001).

The techniques illustrated in this paper can poten-
tially be applied to a wide range of data sets in which
moving organisms are identified individually by some
means, and are then reidentified opportunistically.
Identification can be photographic, genetic, or by
means of artificial marks. Prime candidates are other
cetacean photo-identification data sets (some promi-
nent examples are given in Introduction). Artificial tag-
ging data, in which ‘‘Discovery tags,’’ stainless steel
cylinders bearing serial numbers, were shot into whales
and recovered during whaling operations (Brown
1978), have been used to examine movements in fairly
simplistic ways (e.g., Best 1979). These data are more
congruent to the fisheries tagging statistics used by
Hilborn (1990) but perhaps could also be used to ex-
amine how displacement increases with time lag. Anal-
ysis of the movements of land birds using mark–re-
covery (usually leg-band) data is quite well developed
(Nichols 1996). However, because bird movements can
often be characterized by long-distance seasonal mi-
grations between quite small home ranges, the ques-
tions asked by such studies (e.g., Nichols 1996) are
rather different from those pertinent for more nomadic
animals like oceanic cetaceans.

Although the likelihood methods developed in this
paper seem useful, they are not without their limitations.
Several approximations have been made in order to
make the estimation computationally tractable: replacing
the sampling rates, fj, by nj/N rather than estimating them
using likelihood equations, maximizing the summed log-
likelihoods rather than the true log-likelihood of the data,
and using the Poisson model as an approximation to
more theoretically valid binomial, multinomial, or hy-
pergeometric models. Theoretical considerations (e.g.,
see Appendix; see also Hilborn 1990) and simulations
(e.g., Tables 2 and 3) suggest that these simplifications
generally do not bias parameter estimates in any im-
portant way. However, these issues should be borne in
mind and tested using simulations as new applications
are explored (Hilborn 1990). These methods should not
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be used when the probability of identifying an animal
in a particular location and time is dependent on its
identification history (e.g., when tracking animals). I
have found that the likelihood method of estimating dif-
fusion rates is very sensitive to substantial recording
errors, for instance if time or location is misreported so
that an individual appears to have moved a very large
distance in a short time, then improbable estimates of
diffusion rates are obtained. But perhaps the most im-
portant drawback of these likelihood methods is impre-
cision. Where both standard and likelihood methods are
valid, the likelihood methods are less precise (Tables 2
and 3, Fig. 8). This is presumably because the sighting
data are being used to estimate effort as well as to define
movements, while uniform or random distributions of
effort are usually assumed in the standard methods. Sub-
stantial data sets are necessary to obtain reasonably pre-
cise estimates using the likelihood method. In this re-
spect they seem less useful than movement analyses of
continuous tracking data (e.g., Turchin 1998: chapter 5).
However, animals can rarely be tracked, either physi-
cally or using radio tags, for more than a few months.
It is also rare that identification schemes can be main-
tained so that the entire potential range of animal move-
ment is sampled uniformly or randomly over long time
scales. Therefore, I suspect that the likelihood methods
developed here will be especially important over long
(multiyear) time scales.

There are many ways that the techniques that I have
outlined could be developed. For instance, correlated
random walk models might be used to examine con-
sistency of movement over shorter time scales, and
variation between animals and classes of animals could
be incorporated into the analyses.

There is no computer package which can perform all
the analyses described in this paper. However, packages
for the analysis of mark–recapture data (e.g., MARK;
White and Burnham 1999) can be used to estimate
transition rates between ‘‘strata’’, which can be geo-
graphical areas. However, because they use multino-
mial models, and for other reasons, these programs are
only useful with small numbers of areas and identifi-
cation occasions. Hilborn (1990) outlines how his sim-
ulation method, which can work with much larger data
sets, may be programmed, relatively simply, to estimate
movement rates between geographical areas. As an ad-
junct to a computer package for the analysis of social
structure using individual identifications in the lan-
guage MATLAB, I have written programs which are
designed to make the first and third of the methods
described in this paper easily applicable to a wide range
of data sets (see Supplementary Material).
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SUPPLEMENTARY MATERIAL

Programs which are designed to make the first and third
of the methods described in this paper easily applicable to a

wide range of data sets are available in ESA’s Electronic Data
Archive: Ecological Archives E082-018.

APPENDIX

In this Appendix, I show that the parameter estimates ob-
tained by maximizing the sum of several, not necessarily
independent, log-likelihoods, each with the same parameters
and expected parameter values, is approximately unbiased.

Suppose {Li(p)} are a set of, not necessarily independent,
log-likelihood functions of the same parameter p. Li(p) is
maximized at pi, and the expected value of pi is p0 for all i.
What is the expected value of pA that maximizes LA 5
S Li(p)? Note that, because of nonindependence, LA is not
the likelihood function for the entire data set.

Using the Taylor-Maclaurin expansion,

L 5 L (p ) 1 (p 2 p )L9(p )OA i i i i i

22 (p 2 p ) L0(p )/2 1 · · · . (A.1)i i i

But Li(pi) is fixed and Li9 (pi) 5 0, as pi maximizes Li(pi), so
LA is maximized by maximizing

2L 5 2 (p 2 p ) L0(p )/2 1 · · · . (A.2)OA i i i

If the likelihood functions are approximately quadratic, then
it is reasonable to ignore higher order terms. So LA is then
maximized by

p 5 p L0(p ) L0(p ). (A.3)@O OA i i i i i

This is the intuitively reasonable mean of the individual es-
timates of p weighted by the inverse of their estimated var-
iances (as Li0(pi) ø 1/var(pi)). Then, as the expected value of
each pi is p0, the expected value of pA is approximately (as
Li0(pi) ø Li0(p0)):

p 5 p L0(p ) L0(p ) 5 p . (A.4)@O OA 0 i 0 i 0 0

This argument can easily be extended to vector-valued pa-
rameters. Thus, if we sum several, not necessarily indepen-
dent, log-likelihoods, each with the same expected parameter
values, the parameter estimates obtained by maximizing this
sum are approximately unbiased.


