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Abstract

Stable isotope analysis was used to determine the relative proportions of terrestrial and marine subsidies of carbon to
invertebrates along a tidal gradient (low-intertidal, mid-intertidal, high-intertidal, supralittoral) and to determine the relative
importance of terrestrial carbon in food web pathways leading to chum salmon fry Oncorhynchus keta (Walbaum) in Howe
Sound, British Columbia. We found a clear gradient in the proportion of terrestrially derived carbon along the tidal gradient
ranging from 68% across all invertebrate taxa in the supralittoral to 25% in the high-intertidal, 20% in the mid-intertidal, and
12% in the low-intertidal. Stable isotope values of chum salmon fry indicated carbon contributions from both terrestrial and
marine sources, with terrestrially derived carbon ranging from 12.8 to 61.5% in the muscle tissue of chum salmon fry (mean
30%). Our results provide evidence for reciprocal subsidies of marine and terrestrially derived carbon on beaches in the
estuary and suggest that the vegetated supralittoral is an important trophic link in supplying terrestrial carbon to nearshore
food webs.
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Introduction

Subsidies of prey and detritus across ecotones have been shown

to affect food webs in both aquatic and terrestrial habitats [1–3].

In coastal areas, nearshore marine habitats commonly receive prey

and detritus from adjacent terrestrial habitats [2]. This transfer of

nutrients from terrestrial to marine habitats is also reciprocal, with

nutrients derived from the marine environment entering terrestrial

habitats in the form of beach wrack [2].

Supralittoral vegetation in coastal areas may play similar roles in

ecosystem functioning as riparian vegetation in freshwater systems

[4]. In small watersheds with dense surrounding forests much of

the stream organic matter originates in the surrounding forest [5]

and in freshwater riparian and stream food webs terrestrial

invertebrates can comprise more than 50% of energy intake by

stream fishes and are often a preferred prey of salmonids [6].

Similarly, in marine coastal habitats, supralittoral vegetation may

provide an important source of terrigenous input in the form of

leaf litter to intertidal areas [7–8] and terrestrial and intertidal

invertebrates have been shown to comprise a proportion of their

diets of salmon fry caught in nearshore habitats [9–12,14–15].

Marine sources of carbon and nitrogen have also been shown to

subsidize terrestrial food webs [16]. Marine subsidies are

particularly pronounced on islands, which often have extremely

low terrestrial primary productivity [16–17] and for ecosystems

with high throughputs of anadromous fishes such as salmonids,

which subsidize terrestrial vegetation [18–19]. For example

Hocking and Reimchen (2009) found that the d 15N signatures

of riparian vegetation in 27 watersheds in British Columbia was

positively related to total the biomass of spawning chum and pink

salmon [19].

On coastal beaches, beach wrack is an important food source

and habitat that subsidizes both marine and terrestrial food webs.

For example, Lewis et al. [20] have shown that beach wrack

subsidizes marine shore crabs that ride the nightly tide to the

wrack line to feed on talitrid amphipods which forage at night on

the beach wrack. Wrack also provides food for terrestrial

organisms, in particular terrestrial arthropods [17,21–24]. Ola-

barria et al. [25] found that beach wrack arthropod communities

were dominated by terrestrial consumers such as coleopteran

tenebrionid and staphylinid species and dipteran flies.

Stable isotope analysis (SIA) has been used extensively to

describe aquatic food webs [26] and has become increasingly

popular method to quantify energy flow, especially in ecotones

where the contributions of terrestrial and aquatic energy sources

have distinct isotopic signatures [27–28]. The ratio of the stable

isotopes of nitrogen 15N/14N is positively correlated with trophic

level, and the ratio of carbon stable isotopes 13C/12C yields

information about the production base of the food web [26].

Carbon fixed by terrestrial C3 plants in temperate regions has a

characteristic 13C/12C ratio of approximately 228% [29].

Aquatic plants exhibit a much wider range in d13C (250% to

210%) relative to terrestrial plants, reflecting site-specific and

species-specific factors [30–31]. Because terrestrial and aquatic
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primary producers often have distinct carbon sources, mixing

models can be used to assess the relative proportions of these

primary energy sources in consumer diets [32].

In this study we report the results of stable isotope analysis of

carbon and nitrogen for a collection of marine, intertidal, and

terrestrial organisms collected in the intertidal and supralittoral in

Howe Sound, British Columbia, Canada. Our objective was to

determine the proportion of terrestrially derived carbon (TC) and

marine derived carbon (MC) along the intertidal to supralittoral

gradient focusing specifically on the pathways of energy flow to

chum salmon fry, Oncorhynchus keta (Walbaum), which reside in the

estuary from March to June during their transition to the marine

environment.

Methods

Howe Sound is a fjord located on the southeastern shore of the

Strait of Georgia, British Columbia, Canada (Fig. 1). The Sound

derives its estuarine characteristics from the Squamish River on

the northern reaches and the Fraser River on the southern

reaches, as well as smaller creeks along the shoreline. Between

March and October 2002 we collected samples of supralittoral

vegetation, macroalgae, invertebrates, and chum salmon fry on

two beaches at Furry Creek, located on the east side of the Sound

(Fig. 1). The creek is located between the North and South sites.

Several species of salmon (chinook, coho, chum, pink) have been

found in Furry Creek but because major runs of chum salmon

Figure 1. Map of the British Columbia, the Strait of Georgia, and Howe Sound showing the two beaches (Furry Creek, North and
South: FCN, FCS). Aerial image of Furry Creek showing the location of the two beaches on either side of the creek (� 2009. Google. Map Data. 2004
Tele Atlas).
doi:10.1371/journal.pone.0010073.g001
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occur in the Squamish and Fraser Rivers it is probable that most of

the chum fry we sampled were from the latter two river systems. At

Furry Creek South, where there is .50 m swath of intact

supralittoral vegetation we collected supralittoral vegetation,

macroalgae, invertebrates, and chum salmon fry (Fig. 2). At Furry

Creek North, where the supralittoral vegetation was removed for a

Figure 2. Beach at Furry Creek (South), Howe Sound, British Columbia at high tide showing wrack line and supralittoral vegetation.
doi:10.1371/journal.pone.0010073.g002

Table 1. Stable isotope values of carbon (d13C) and nitrogen (d15N) for primary producers.

Habitat Trophic Group Common Name Species n d13C d15N

Supralittoral vegetation Red Alder Alnus rubra 1 228.78 20.72

Supralittoral vegetation Salmonberry Rubus spectabilis 1 230.44 20.5

Supralittoral vegetation Nootka Rose Rosa nutkana 1 227.77 20.09

Supralittoral vegetation Grass Poaceae 1 230.04 0.64

Supralittoral vegetation Beach Pea Lathyrus japonicus 1 228.23 20.44

Supralittoral vegetation Bracket Fungus 1 222.71 24.2

Supralittoral vegetation Western Red Cedar Thuja plicata 1 226.28 23.53

Supralittoral vegetation Salal Gaultheria shallon 1 228.46 23.16

Supralittoral vegetation Sitka Spruce Picea sitchensis 1 228.21 21.81

Supralittoral vegetation Hairy Cat’s Ear Hypochaeris radicata 1 231.69 20.97

Supralittoral vegetation Black Twinberry Lonicera involucrata 1 227.37 22.84

Supralittoral vegetation Blueberry Vaccinium spp. 1 231.81 24.27

Supralittoral vegetation Moss Bryophyta 1 226.62 20.34

Intertidal macroalgae Japanese Weed Sargassum muticum 1 214.64 2.83

Intertidal macroalgae Bleach Weed Prionitis lanceolatus 1 216.88 6.39

Intertidal macroalgae Black Tassel Pterosiphonia bipinnata 1 219.49 4.67

Intertidal macroalgae Tangle Laminaria spp. 1 210.83 6.84

Intertidal macroalgae Green Tuft Cladophora microcladioides 1 218.05 5.06

Intertidal macroalgae Rock Weed Fucus gardneri 1 216.12 4.47

Terrestrial vegetation was collected in the supralittoral and macroalgae was collected in the intertidal. Shown are common names and species names, number of
samples (n), and sample d13C and d15N.
doi:10.1371/journal.pone.0010073.t001
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housing development, we only collected chum salmon fry. For

additional details regarding the sites see Romanuk and Levings

[12–13]. The beaches are within ,350 m of each other. Range of

tidal heights during the sampling period was from 0.28 m to

4.85 m61.29 SD.

Ten species of live terrestrial supralittoral plants and six

species of live macroalgae were collected by hand at Furry Creek

[12]. Samples of vegetation and algae were washed with distilled

water and then frozen and stored. Invertebrates were collected in

June and October in four distinct zones: supralittoral, high-

intertidal (i.e. beach wrack zone), mid-intertidal, and low-

intertidal zones. Sampling similar Orders across zones allowed

us to compare how d13C changed along the terrestrial to marine

gradient. Three Orders were sampled in more than one zone:

Diptera (primarily Chironomidae) were sampled in the supra-

littoral (adult), high-intertidal (adult), mid-intertidal (adult), and

low-intertidal (larvae) zones; Acariformes were collected from

the supralittoral, high- and mid-intertidal zone; Amphipoda

(Talitridae) were collected from the high-, mid-, and low-

intertidal zones. Gastropods and Mytilus sp. were collected in the

mid-intertidal.

We used a variety of collection methods including epibenthic

sleds in the low-intertidal zone and hand vacuums in the

supralittoral, high-intertidal, and mid-intertidal zones. Taxa were

identified to lowest taxonomic level possible while retaining

enough material for stable isotope analysis. One species of

amphipod, Hyale plumulosa, was identified to species. Invertebrates

were washed, frozen, and stored and later combined into

composite samples of at least 0.2 mg dry weight (i.e. many

individuals comprised each sample). Pooling samples was neces-

sary due to the small size/biomass of most of the invertebrates.

When pooled samples were used, variance is reported as the

variance across pooled samples.

Chum salmon fry typically migrate downstream to estuaries and

nearshore marine habitats where they spend up to three weeks

before making the transition to pelagic oceanic conditions [33].

Chum salmon fry are found in Howe Sound and the Strait of

Georgia from March until late July and originate from the

Squamish, Fraser, and other rivers discharging into the Strait [34].

Juvenile chum salmon were collected from March to June 2002 by

beach seining at high tide using a 3 m61 m beach seine with a

mesh size of 6 mm set parallel to shore ,1–3 m from the beach

depending on the slope. Seining was conducted when the tide was

higher than 3.05 m.

Chum salmon fry were kept in plastic bags in a cooler in the

field and immediately frozen in the laboratory at 220uC. Fork

length and wet weight were measured for 163 individual chum

salmon fry and stomachs were removed from 28 fish for gut

content analysis. Flank muscle tissue was then removed from 163

fish for stable isotope analysis. Fish samples for stable isotope

analysis consisted of 1, 2 or 3 individuals. In total, stable isotope

analysis was performed on 44 fish samples composed of 163

individual chum salmon fry. We have previously reported that

there is no statistically significant difference in isotope values for

Table 2. Stable isotope values of carbon (d13C) and nitrogen (d15N) and proportion of terrestrially derived carbon (TC) for
consumers (invertebrates, fish).

Habitat Common Name/Taxa n
Mean
d13C

Mean
d15N

SD
d13C

SD
d15N

%
TC

SE
TC

L 95%CI
TC

U 95%CI
TC

Low-intertidal Amphipoda 6 218.94 4.8 2 0.22 23.99 8.39 4.1 43.8

Mid-intertidal Chironomidae 2 215.63 6.26 0.51 0.58 0

Mid-intertidal Talitridae 3 217 7.89 0.56 0.26 8.1 9.58 0 32.74

Mid-intertidal Amphipoda (Hyale plumulosa) 3 216.73 8.25 0.04 0.2 5.92 9.44 0 30.2

Mid-intertidal Diptera 3 219.96 9.45 3.04 2.63 32.09 15.82 0 82.5

Mid-intertidal Mussels (Mytilus sp.) 1 221.86 6.13 47.46

Mid-intertidal Gastropoda 1 215.68 7.24 0

Mid-intertidal Barnacles 1 218.17 9.14 17.59

Mid-intertidal Collembola 3 218.15 8.85 0.19 0.21 17.42 8.38 0 39

Mid-intertidal Acariformes 1 221.29 6.55 42.79

High-intertidal Isopoda 1 216.99 7.72 7.94

High-intertidal Talitridae 3 217.4 7.24 0.48 0.58 11.35 9.18 0 34.9

High-intertidal Diptera 3 217.14 8.29 0.52 0.25 9.24 9.43 0 33.5

Supralittoral Acariformes 1 222.71 3.69 54.29

Supralittoral Diptera 3 222.56 5.22 0.15 1.49 53.16 5.56 40.6 65.7

Supralittoral Homoptera 3 226.76 0.59 0.4 1.32 87.2 5.27 76 98.4

Supralittoral Hymenoptera 3 224.44 3.17 0.76 0.57 68.4 6.06 55 81.7

Supralittoral Acariformes 1 223.78 0.83 62.97

Marine Chum salmon fry n = 44 219.71 13.94 1.21 1.34 30.03 0.07 0.12 0.48

(Oncorhynchus keta) min 223.59 10.4 12.78

max 217.58 15.99 61.5

Shown are values for taxa by habitat (supralittoral, high-intertidal, mid-intertidal, low-intertidal) and common name/taxa and species name. Shown are the number of
samples(n), the mean and standard deviation (SD) for d13C and d15N, the proportion of TC (%) including the mean, standard error (SE), and upper (U) and lower (L) 95
percentile confidence limits of TC calculated using the mixing model (Phillips and Gregg 2001). For chum salmon fry the minimum and maximum values of d13C, d15N,
and TC are also shown.
doi:10.1371/journal.pone.0010073.t002
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fish samples composed of either individual fish or combined

samples [12].

All samples were oven dried at 60uC until constant weight.

Samples were then sent to the University of New Brunswick Stable

Isotope Laboratory or to University of California at Davis Stable

Isotope Laboratory where they were ground into powder. Samples

of algae, supralittoral vegetation, invertebrates, and fish were

oxidized, and the resulting CO2 and N2 were analyzed with a

continuous flow-isotope ratio mass spectrometer. Ratios of carbon

(13C/12C) and nitrogen (15N/14N) were expressed as the relative

per mil (%) difference between the sample and conventional

standards (Pee Dee Belemite carbonate and N2 in air) as follows:

DX = [Rsample/Rstandard21]61000(%), where X = 13C or 15N, and

R = 13C:12C or 15N:14N.

Gut content analysis (GCA) was performed on 28 chum salmon

fry. Gut contents were identified to lowest possible taxonomic level

and results are shown for fraction of all individuals (numerical

abundance summed over the 28 fish) and fraction occurrence

(number of chum salmon fry with the prey item).

Data analysis
Carbon and nitrogen isotope ratios were averaged across all

sampling dates and the two sites. Contributions of terrestrially

derived carbon (TC) and marine derived carbon (MC) to the

assimilated carbon in chum salmon fry were calculated using the

procedures and programs outlined in [32]. The mixing model

calculates the contribution of each primary source assuming that

only two sources are contributing to the isotopic signatures of the

consumers. Source A was calculated as the average d13C of

supralittoral vegetation and source B was calculated as the average

d13C of marine macroalgae. For each taxa we report the d13C and

d15N, relative proportion of TC, the standard error (SE) associated

with the proportion, and the lower and upper 95%ile confidence

intervals when n is = or .3. When n = 1 or 2 we only report d13C

and d15N and relative proportion of TC. We were not able to use a

three source mixing model using wrack detritus or POM because

their isotopic signatures overlapped with either supralittoral

vegetation or marine macroalgae (T. Romanuk, unpublished data;

for a discussion of carbon sources in Howe Sound see [12]). The

mixing model uses the same set of terrestrial and marine basal

sources to calculate the relative proportions of terrestrial and marine

carbon in the muscle tissue of chum salmon fry, thus the proportions

of TC are qualitatively the same as those reported for d13C.

This research was conducted according to relevant national

guidelines of the Department of Fisheries and Oceans (Canada).

Results

Stable isotope analysis of food web components
d13C and d15N of primary producers and inver-

tebrates. d13C and d15N of macroalgae was enriched and

isotopically distinct from terrestrial vegetation. The average d13C

value for terrestrial vegetation was 228.34 (62.43 SD; Table 1).

The average d13C value for marine macroalgae algae was 216.0

(63.02 SD; Table 1).

Mean d13C and TC in invertebrates increased with elevation

along the tidal gradient ranging from 217.28 (TC = 12%) in the

low-intertidal to 218.43 (TC = 20%) in the mid-intertidal,

219.1(TC = 25%) in the high-intertidal, and 224.38

(TC = 68%) in the supralittoral. TC ranged from 0% (for low-

intertidal chironomids and mid-intertidal gastropods) to 87.2% for

supralittoral Homoptera (Table 2). No taxa had d13C indicative of

a 100% terrestrial carbon source and for some consumers

enrichment increased toward the lower elevations. Of the three

taxa present in more than three tidal zones, Dipteran and

Acariformes showed a clear gradient of enrichment in d13C and

TC from the supralittoral zone to the low-intertidal zone (Fig. 3).

In contrast, there was no clear pattern of enrichment in d13C for

Amphipoda from the high- to low-intertidal zones.

Mean d15N was lowest in the supralittoral (2.45) and highest in

the mid-intertidal (7.9) with low-intertidal (5.53) and high-

intertidal (6.4) displaying intermediate values. d15N for secondary

consumers ranged from 0.59 to 9.45 (mean 6.1862.67 SD;

Table 2). Intertidal Diptera had the highest d15N (9.45) followed

by barnacles (9.14) and Collembola (8.85). Supralittoral Homop-

tera (0.59) and supralittoral Acariformes (0.83) had the lowest

d15N. The only taxa to show a trend in d15N along the tidal

gradient was Acariformes, with d15N lowest in the supralittoral

(0.83) and highest in the mid-intertidal (6.55; Fig. 3).

d13C and d15N of chum salmon fry. Chum salmon fry had

an average fork length of 37 mm (range 29 to 52 mm) and an

average wet weight of 0.48 g (range 0.2 to 1.35 g). d13C for chum

salmon fry averaged 219.71 (n = 44) ranging from 223.59 to

217.58 (61.21 SD; Table 2 and Fig. 4) and d15N averaged 13.94

Figure 3. Carbon (d13C) and nitrogen (d15N) values of prey taxa
in supralittoral, beach wrack, mid-intertidal and low-intertidal
zones. Lines show taxa collected in more than two zones: Acariformes
(hatched line), Diptera (dotted line), and Amphipoda (solid line). Values
in brackets represent the fraction of terrestrially derived carbon (TC).
doi:10.1371/journal.pone.0010073.g003
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ranging from 10.4 to 15.99 (61.34 SD). TC ranged from 12.8 to

61.5% (mean 30%) with lower and upper confidence intervals of

12 and 48% (6 SE 0.07).

Gut contents. Twenty-six prey taxa were identified in the gut

content analysis of 28 individual chum salmon fry (Table 3). The

five most abundant prey taxa by fraction of individual prey items

were adult Chironomidae (60%), Harpacticoidea (8.9%), pupal

Chironomidae (7.7%) gammarid Amphipoda (6.2), and larval

Chironomidae (5%). Adult Chironomidae were present in 68% of

individual chum followed by larval Chironomidae (50%), pupal

Chironomidae (43%), gammarid Amphipoda (25%), Corophium sp.

(Amphipoda; 21%), and Harpacticoidea (21%).

Discussion

Our results suggest the importance of reciprocal subsidies in the

terrestrial-marine ecotone in the Howe Sound estuary. Not only

was marine derived carbon present in consumers present in the

supralittoral zone, no supralittoral consumers were characterized

by 100% terrestrially derived carbon. Likewise, terrestrially

derived carbon was present even in the low-intertidal zone,

particularly in amphipods. We found a clear gradient in

terrestrially derived carbon down the tidal zone ranging from

68% across all taxa in the supralittoral to 25% in the high-

intertidal, 20% in the mid-intertidal, and 12% in the low

intertidal. This gradient was particularly clear for Diptera and

Acariformes, two of the three taxa that were present in four or

three zones respectively. In contrast to our results for carbon, there

was no general spatial trend for d15N suggesting that trophic

position does not change systematically along the tidal gradient.

Stable isotope values of chum salmon fry and their prey

indicated carbon contributions from both terrestrial and marine

sources, with terrestrially derived carbon ranging from 12.8 to

61.5% in the muscle tissue of chum salmon fry (mean 30%). Adult

chironomids were the dominant prey item of juvenile chum as has

been previously reported at beaches in Howe Sound for juvenile

chum salmon [15]. Stable isotope analysis of carbon in the

intertidal Dipterans showed that between 9 and 53% of the carbon

was terrestrially derived. Together, these results suggest that

Dipterans are a major food web pathway for terrestrial carbon in

chum salmon fry.

McCutchan et al. [35] has shown that enrichment of d13C

averages +0.460.12% (mean 6 SE) from diet to consumer and

d15N averages +2.060.20% (mean 6 SE) from diet to consumer.

[35]. Our results suggest that: 1) adult Dipteran collected in the

low and mid-intertidal, 2) Collembola and Amphipoda collected in

the mid-intertidal, and 3) the amphipod H. plumulosa collected in

the high-intertidal are the only groups of prey taxa that fall within

potential d13C and d15N ranges for being a primary prey source

(Fig. 4).

This interpretation is supported by the chum salmon fry gut

content analysis, which found the highest number of individuals

and highest occurrence of prey taxa in stomachs were adult, larval,

and pupal Chironomidae. Collembola and Amphipoda were also

abundant and common as food items. While the results from the

stable isotope analysis also suggest that Cirripedia may be a

primary prey source for chum salmon fry, the Cirripedia collected

for stable isotope analysis were adults which may differ in their

isotope ratios from free-living juveniles which are potential chum

fry food. Six percent of fish had juvenile barnacles in the stomach

contents, although the abundance of this prey item in the stomach

contents was low (,1%).

Taxa that fall outside of the above range of d15N values may still

be an important link [36] through either another consumer or

Figure 4. Carbon (d13C) and nitrogen (d15N) values for chum salmon fry and all prey taxa samples collected in the study. Habitat
associations for the potential prey taxa are denoted by shaded circles or triangles: 1) white circles = supralittoral, 2) grey circles = high-intertidal/beach
wrack, 3) black circles = mid-intertidal and 4) black triangles = low-intertidal. Chum salmon fry = open squares.
doi:10.1371/journal.pone.0010073.g004
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because their basal source was significantly different from the basal

source for chum (Fig. 4). These taxa include: 1) Acariformes

collected from both the high- and mid-intertidal, 2) supralittoral

Diptera, 3) Amphipoda collected from the high- and mid-

intertidal, and 4) Mytilus sp. and Isopoda collected from the mid-

intertidal (Fig. 4). All of these taxa except for Mytilus sp. larvae, the

only life stage of Mytilus sp. that can be eaten by juvenile

salmonids, were found in the gut contents (Table 3).

While the remaining groups fall outside the potential ranges for

d13C fractionation from diet to consumer [35–36], these taxa may

still make up a portion of the diet of chum; however, their

contribution to the isotopic values of chum is either marginal, or

alternatively, opportunistic feeding on taxa with both strong

terrestrial signatures such as Homoptera as well as taxa with strong

marine signatures such as larval Chironomidae may have resulted

in isotopic signatures that reflect a wide range of prey sources. For

example, across all chum salmon fry analyzed we found that

Homoptera made up 0.3% and larval Chironomidae made up

8.8% of the gut contents by number of individuals (Table 3).

In conclusion, our results show a clear gradient in the

proportion of terrestrially derived carbon in invertebrate taxa that

decreases down the tidal zone from 68% in the supralittoral to

25% in the high-intertidal, 20% in the mid-intertidal, and 12% in

the low intertidal. Stable isotope values and gut content analysis of

chum salmon fry indicated carbon contributions from both

terrestrial and marine derived sources. Our results suggest that

the vegetated supralittoral is an important trophic link in supplying

terrestrial carbon to nearshore food webs.
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Homoptera Aphididae adult 1.12% 6.35%

Amphipoda Talitridae adult 0.93% 1.59%

Cumacea adult 0.75% 3.17%

Diptera Ceratopogonidae adult 0.56% 1.59%

Diptera Ephydridae adult 0.37% 1.59%

Diptera Heleomyzidae adult 0.37% 1.59%

Chelifera Tanaidacea adult 0.19% 1.59%

Plecoptera Capniidae adult 0.19% 1.59%

Coleoptera Staphylinidae larva 0.19% 1.59%

Diptera Unidentified larva 0.19% 1.59%

Diptera Unidentified adult 0.19% 1.59%

Diptera Empididae adult 0.19% 1.59%

Diptera Sciaridae adult 0.19% 1.59%

Hymenoptera Eulophidae adult 0.19% 1.59%

Arachnida Araneae adult 0.19% 1.59%

n 728 prey items 28 fish

Shown is the taxa and life stage.
doi:10.1371/journal.pone.0010073.t003
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