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The Detection of Coastal-Trapped Waves 

JOHN W. HAINES, l KEITH R. THOMPSON, AND DOUG P. WIENS 

Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada 

We outline a simple method for estimating the cross-spectral matrix of coastal-trapped wave 
amplitudes, A, from a set of oceanographic observations. Specifically, we propose that A may be 
estimated by (M'M)-IM'OM(M'M) -1 where a prime denotes conjugate transpose, fJ is the sample 
cross-spectral matrix of observations and M is a matrix which has the spatial form of the waves for 
columns. In general, M will be complex and frequency-dependent. We discuss the bias of this 
estimator and show how to estimate the variance of the power and cross spectra of wave amplitudes. 
We also outline an ad hoc scheme for assessing the predictiv•e skill of the coastal trapped wave 
representation and finally give some advice on how to interpret A. Although the method is presented 
in the context of shelf circulation and coastal trapped waves, it may be applied to any linear system 
where the spatial forms of the waves are known and the cross-spectral matrix of their amplitudes is 
required. 

1. INTRODUCTION 

Theoreticians interested in ocean circulation often express 
the flow field as a linear combination of prescribed spatial 
modes and then determine the time-varying coefficients from 
the forcing and the initial conditions. The modes usually 
correspond to the eigenfunctions of an idealized, linear 
model of the real ocean. This technique has proved useful in 
the study of deep ocean, shelf and nearshore circulation 
where the eigenfunctions include vertical normal modes, 
coastal-trapped waves and edge waves [e.g., LeBlond and 
Mysak, 1978]. 

Observationalists also use linear combinations of modes to 
reduce large multivariate data sets down to more physically 
meaningful indices such as coastal-trapped wave amplitudes 
[e.g., Freeland et al., 1986]. If the modes are real-valued and 
independent of frequency, their amplitudes are usually esti- 
mated by least squares fitting the modes to observations in 
the time domain. If the modes are complex and frequency- 
dependent, several techniques are available to the observa- 
tionalist, and, in general, they will attribute different ener- 
gies to each mode and different coherences between pairs of 
modal amplitudes. 

In this paper we present a method for estimating the 
cross-spectral matrix of modal amplitudes, henceforth re- 
ferred to as A. The expression for A is simple and depends 
only on the cross-spectral matrix of observations (U) and the 
modes (M), both of which may be complex and a function of 
frequency. The diagonal elements of A are the spectral 
densities of the modal amplitudes; they give the energy 
associated with each mode. The normalized off-diagonal 
elements of A give the phase lag and coherence, and hence 
the strength of the coupling, between the modal amplitudes. 
To keep the discussion focused, we present the method in a 
shelf circulation context where the modes correspond to 
coastal-trapped waves. However, the method may be ap- 
plied to any linear system where the modes are known and 
the cross-spectral matrix of modal amplitudes is required. 
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There are similarities between our method and that devel- 
oped by Freeland et al. [1986] in their search for coastal- 
trapped waves off the southeast coast of Australia. In 
essence, Freeland et al. complex demodulate the observa- 
tions at a given frequency and then calculate time series of 
modal amplitudes. These complex series are then combined 
and time-averaged to give a cross-spectral matrix of modal 
amplitudes. In our method the time averaging is "built in" 
and this simplifies the estimation of A. 

Given the simple form of A, it is straightforward to test its 
sensitivity to changes in array configuration (by modifying 
M) or instrument performance (by postulating different 
forms for U). Thus we anticipate that our method may be 
useful in the design of observing arrays. It is also easy to test 
the performance of different models (i.e., combinations of 
modes) on the observations, after they have been collected. 

In addition to A, we also define a cross-spectral matrix of 
residuals, R. It too can be easily calculated from M and U. 
This matrix is of special interest to the oceanographer 
because it describes motions which cannot be represented 
by coastal-trapped waves. 

In the following sections we outline our method for 
estimating A. We stress that the method is simple to under- 
stand, and use, as illustrated by the recent paper of Middle- 
ton and Wright [this issue] on the generation and propaga- 
tion of coastal-trapped waves on the Labrador Shelf. 

2. PHYSICAL BACKGROUND TO THE PROBLEM 

In a seminal paper, Gill and Schumann [1974] used shelf 
waves to explain how a narrow continental shelf sea re- 
sponds to time-varying wind stress. Their model has been 
extended over the years to include stratification and friction 
[e.g., Clarke and Van Gorder, 1986]. The modern theory is 
now a useful tool for understanding and modeling large- 
scale, wind-driven circulation on the continental shelf. 

As part of a study of nearshore and shelf circulation, we 
have developed a new statistical method for detecting 
trapped waves. In order to motivate the discussion of this 
method we will briefly review the Gill and Schumann theory. 

Consider a narrow shelf with the x axis pointing seaward 
and the y axis aligned with the coast. Assume the bathyme- 
try and wind do not change in the alongshore direction and 
there is no friction. If the long-wave and rigid lid approxi- 
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mations are made the onshore component of the flow, u, 
satisfies the following vorticity equation in standard nota- 
tion' 

0 2 (•O(uh)• f dhOu + .... 0 (•) 
Ox Ot Ox /! h dx Oy 

Taking Gill and Schumann's approach, expand u as a sum 
of shelf waves 

u(x, y, t)= • an(y, t)C•n(X) (2) 
n 

where C•n(X ) is the nth eigenfunction derived from (1) and a n 
is its amplitude. In general, the a n are determined from the 
local wind forcing and the amplitudes of the shelf waves 
moving into the model domain across the upstream bound- 
ary [Gill and Schumann, 1974]. 

The real world is obviously more complicated than this 
model. For example, friction and alongshore variations in 
topography can cause "scattering" of energy between 
coastal-trapped waves. Stratification and a free surface 
complicate the picture by making the modes and phase 
speeds frequency-dependent. However, a legacy of the Gill 
and Schumann theory is the belief that shelf circulation can 
be usefully interpreted in terms of coastal-trapped waves, 
and, over the years, there have been attempts to detect such 
waves in large multivariate data sets [e.g., Hsieh, 1982; Yao 
et al., 1984; Freeland et al., 1986]. 

In the next section we outline a method for estimating the 
spectral density of the modal amplitudes, an, and the coher- 
ence and phase between pairs of them. 

3. FITTING THE MODEL TO THE OBSERVATIONS 

In this section we will assume the observations are on- 
shore currents. This will clarify the connection between the 
dynamical model, described in the last section, and the 
statistical method. Note, however, that the statistical 
method is quite general and would work with any other 
variable, or a combination of variables. We start by intro- 
ducing a model for the observations in the time-domain. An 
estimator is then obtained for the covariance matrix of modal 
amplitudes. The method is then extended to cover frequen- 
cy-dependent modes and cross-spectral matrices of modal 
amplitudes. 

Fitting in the Time Domain 

Suppose that p observations of onshore current are mea- 
sured by a current meter array which is aligned normal to 
shore. Denote the onshore current measured at xi by the ith 
element of u. Suppose these observations are to be inter- 
preted in terms of m < p coastal-trapped waves passing by 
the array. Let the kth column of M denote the kth eigenfunc- 
tion &k as "seen" by the array 

• l(Xl) ''' •m Xl) 

M = •b •(x2) : i (3) 
•(x•) 

where M is a p x m matrix with real elements. Express the 
observation vector u as a sum of coastal-trapped wave 
contributions and a residual term: 

u = Ma + r (4) 

where a is the m x 1 vector of modal amplitudes and r is a 
p x 1 vector of "residuals" corresponding to the missing 
physics and instrumental noise. There are many ways to 
estimate the covariance matrix of modal amplitudes, A. The 
three obvious ones described below all lead to the same 
estimator for A. 

1. The simplest approach is to require the residuals to be 
orthogonal to the modes: 

M'r = 0 (5) 

where a prime denotes transpose. Assuming M'M is nonsin- 
gular it follows from (4) and (5) that 

a = (M'M) -1M'u (6) 

This explicit expression for the modal amplitudes has formed 
the basis of several earlier mode-fitting methods [e.g., 
Kundu et al., 1975; Freeland et al., 1986]. Assume that both 
a and u are zero mean, stationary random vectors with 
covariance matrices 

A=•;(aa') (7) 

U=•(uu') (8) 

where • denotes expectation. Combining (6), (7) and (8) we 
obtain the required covariance matrix of modal amplitudes: 

A = (M'M) -1M'UM(M'M) -1 (9) 

2. A related approach is based on the assumption that 
the modal amplitudes can be expressed as a linear combina- 
tion of the observations 

a = Bu (10) 

where B is an unknown, but constant, m x p matrix. From 
(4) we have 

r- (I - MB)u 

and hence the covariance matrix of residuals is 

(11) 

R - (I- MB)U(I - MB)' (12) 

The diagonal elements of R are the residual variances, and 
the off-diagonal elements are the residual covariances. The 
trace of this covariance matrix, Tr R, is the sum of the 
residual variances. If we choose B to minimize Tr R we find 

B = (M'M) -•M' (13) 

Combining (13), (10) and (7) we obtain (9) as before. By 
combining (13) and (12) we obtain the covariance matrix of 
residuals associated with this choice of A: 

R = (I - M(M'M) -1M')U(I - M(M'M) -1M') (14) 

3. The contribution of the m coastal-trapped waves is Ma 
with covariance matrix 

U = MAM' (15) 

Our final way of defining A is to make • as "close" as 
possible to the true covariance matrix U. More specifically 
we choose A to minimize 
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p p 

Q(A)= • • (Uij-Oij)2 
i=lj=l 

(16) 

This quantity may be reexpressed as 

Q(A) = Tr[(U - O)(U- 0)] (17) 

If we choose A to minimize Q(A) we again recover (9). 
Note that we minimized the sum of all squared differences 

between the elements of U and •. If we chose instead to 
minimize over just one half of these symmetric matrices, 
arguing that the other half contained redundant information, 
there is no guarantee A would be positive semidefinite as 
required by any realizable covariance matrix. Simple exam- 
ples can be found to prove this point. 

Summarizing, (9) is a simple expression for the covariance 
matrix of modal amplitudes. It depends only on the modes 
and the covariance matrix of observations. Equation (14) is 
the corresponding covariance matrix of residuals. 

Fitting in the Frequency Domain 

The situation is more complicated if the array is aligned 
parallel to shore. To illustrate, assume a single coastal- 
trapped wave is propagating freely through the array with 
phase speed c. (The combination of free and forced waves is 
discussed in the final section of the paper.) If the shelf wave 
amplitude at the upstream boundary is denoted by ao(t), the 
amplitude at any downstream location (y < 0) is 

a(y, t) = ao(t + y/c) (18) 

In general, ao(t + y/c) will be a nonseparable function of y 
and t. Hence the time domain model (4), which separates u 
into spatial and temporal components, does not apply. We 
can overcome this difficulty by reexpressing (4) in the 
frequency domain. First note that according to the spectral 
representation theorem for stationary random processes 
[e.g., Priestley, 1981] we may write 

ao(t) = ei•'tdao(w) (19) 

where w denotes frequency and dao is a random orthogonal 
increment process. In general, dao is complex-valued and, 
roughly speaking, d•te 'rmines the amplitudes and phases of 
the sinusoids which make up a0. Combining (18) and (19), 

a(y, t)= f_• ei•øy/ceia'tdao(w) (20) 

According to (2) the onshore current associated with the 
passage of this single wave is 

u(x, y, t)= a(y, t)qb(x) (21) 

Combining (20) and (21) we obtain the spectral represen- 
tation of the onshore current associated with the passage of 
the free wave: 

u(x, y, t)= f_• [qb(x)ei•øy/c]ei•øtdao(w) (22) 

Generalizing (22) to cover m coastal-trapped waves and p 
observations leads to 

U = f_• Mei•øtdao(w) (23) 

where u is the p x 1 observation vector, da0(w) is the m x 1 
random orthogonal increment process defining the m coast- 
al-trapped wave amplitudes at the upstream boundary and M 
is a p x m matrix which, roughly speaking, converts the 
sinusoidal components of a0 into the sinusoidal components 
of u measured by the array. In general, M will be complex 
and frequency-dependent. As in the time domain model, we 
add a "residual" term to our spectral representation of u: 

U = Meitøtdao(w) + e itøt dr(w) (24) 

To obtain the frequency-dependent generalization of (4) 
note that the observation vector can also be expressed, quite 
generally, as 

U = f_• e i•øt du(w) (25) 
where du is the random orthogonal increment processes 
defining the observations. Equating (24) and (25) leads to the 
frequency-dependent generalization of (4)' 

du = M(w) da0(w) + dr(w) (26) 

Although this model was obtained through consideration 
of freely propagating coastal-trapped waves, it is clearly of 
wider applicability. Indeed it is of fundamental importance in 
the spectral analysis of multivariate time series [e.g., Priest- 
ley, 1981]. Note that if M is independent of frequency, (26) 
reduces to the time domain model (4). 

It is now straightforward to obtain an explicit expression 
for the cross-spectral matrix of modal amplitudes, A, which 
is defined by 

A dw = •(da0 da6) (27) 

where a prime is interpreted henceforth as conjugate trans- 
pose. In particular, the three approaches used in the time 
domain can be extended to the frequency domain [Haines, 
1987]. They all lead to the same cro•s-spectral matrix of 
modal amplitudes: 

A = (M'M) -1M'UM(M'M) -1 (28) 

where U is now the cross-spectral matrix of observations. 
Associated with A is a cross-sp6ctral matrix of residuals (R) 
which, for approaches (1) and (2), i•:given by (14) if we 
interpret a prime as conjugat e transpose and U as a cross- 
spectral matrix. 

So far, our definition of the cross-spectral matrix of modal 
amplitudes involves the true cross-spectral matrix of obser- 
vations. In practice, we do not know U but have an estimate, 
•. This leads us to the following estimator for A: 

• = (M,M)-iM,•jM(M,M) -1 (29) 

Thus given the modal shapes, and a sample cross-spectral 
matrix of observations, (29) provides a straightforward way 
to estimate the cross-spectral matrix of modal amplitudes. 
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4. ASSESSING THE MODEL FIT 

We now examine the sampling distribution and bias of the 
estimator 3.. To keep the discussion as simple as possible, 
we will again focus on covariance matrices; the generaliza- 
tion to cross-spectral matrices is straightforward. 

Sampling Distribution of • 

If tl has a Wishart distribution based on v degrees of 
freedom, then 3. has a Wishart distribution with the same v 
[e.g., Srivastava and Khatri, 1979]. Therefore the variances 
and covariances of the elements of 3. can be calculated in the 
usual way. This feature of our method carries over directly 
to the frequency domain. 

Bias 

Consider now the more difficult problem of what to expect 
if an incomplete or inappropriate set of modes is fit to the 
observations. We will focus on the bias of 

/3 = •(•) - A (30) 

Assuming that •J is an unbiased estimator of U, the expected 
value of 3. is 

•(•) = (M'M) -1M'UM(M'M) -1 (31) 
From the model for the observations 

U = •(Ma + r)(Ma + r)' (32) 

Substituting (32) into (31), and using the above definitions of 
A and R, gives 

/3 = (M'M) - 1M'RM(M'M) -1 -3- C -3- C' (33) 
where C depends on the covariance between the modal 
amplitudes and the residuals: 

C = •(ar')M(M'M) -1 (34) 
The residuals include both instrumental error and motions 

which cannot be described in terms of the fitted modes. In 

practice, our physical understanding is usually so incomplete 
that it will not be possible to specify a priori the covariance 
structure of the residuals and hence determine the bias. 

However, as shown below, it is possible to identify an 
important class of models for which the bias is zero, and also 
assess how the bias will be affected by instrumental noise. 

If the residuals are orthogonal to the modes, as in ($), it is 
straightforward to show that /3 is zero and hence 3. is an 
unbiased estimator. This would hold, for example, if the 
residuals were due to (p - m) modes (the columns of M1, 
say) which were orthogonal to the m fitted modes (the 
columns of M): 

u = Ma + Mla 1 (35) 

where 

M'M1 = 0 (36) 

Thus for this class of models at least, • is unbiased. Let us 
now move on to the special case of observations which are 
due entirely to instrumental noise. In this case both A and C 
are zero and the bias is 

/3 = (M'M) -1M'RM(M'M) -1 (37) 

If the noise has equal variance cr 2, and is uncorrelated 
between sensors, the bias reduces to the simple form 

/3 = cr2(M'M) -1 (38) 

Note that if the modes are orthogonal (i.e., M'M is diagonal) 
the cross spectra of wave amplitudes are unbiased. It follows 
that a well-designed array will reduce spurious coupling 
between wave amplitudes. 

Overall Fit and Interpretation 

It would be unrealistic in most oceanographic applications 
to assume the residuals are simply instrumental noise with a 
diagonal covariance matrix: we expect motions which can- 
not be described in terms of coastal-trapped waves to make 
an important contribution to r. A good example of this is 
given by Freeland et al. [ 1986] who showed that a significant 
part of the current variability on the southeast Australian 
shelf was due to offshore eddies which they removed before 
searching for coastal-trapped waves. 

Our inability to specify the covariance structure of the 
residuals complicates any physical interpretation of A. This 
is illustrated by the following example. Suppose U equals 
cr2I. There are many physical processes which could gener- 
ate such a covariance matrix. For example, the observations 
could be just instrumental noise. Alternatively, the observa- 
tions may be noise-free, generated by p modes which are 
orthonormal across the array with A equal to or21. Suppose 
we now fit m modes to the observations. For both types of 
observation 2(3.) is equal to tr2(M'M) -1 . For the all-noise 
observations 3. is biased, and a naive interpretation of the 
model fit may lead to the erroneous conclusion that the 
modes explain some of the observed variability. Consider 
now the noise-free observations generated by the p or- 
thonormal modes. If M is formed from a subset of these p 
modes then • will be unbiased and we may well obtain a 
reasonable estimate of A and the true contribution of the 

modes. The difficulty with the physical interpretation of the 
fitted model stems from the generally unknown residual 
covariance structure; as this simple example shows, some 
care must be exercised in the interpretation of •. 

So, how should we assess the overall model fit and, at the 
same time, guard against the misinterpretation of A? We 
favor the following approach which is based on an assess- 
ment of the predictive, rather than descriptive, skill of the 
model. The approach is outlined in terms of covariance 
matrices; the extension to cross-spectral matrices is straight- 
forward. 

The first step is to select a variable, say ui, which is to be 
omitted from the estimation procedure. Denote the/th row 
of M by m i and delete it from M to leave the (p - 1) x m 
matrix Mi. Let ui denote the (p - 1) x 1 vector of 
covariances between ui and the remaining (p - 1) variables. 
The covariance between the observed ui and the ui predicted 
by the other variables, is mi(M•Mi)-lM•ui . It is straightfor- 
ward to test if this covariance is significantly different from 
zero and hence if the model has predictive skill. Repeat the 
above procedure for the remaining (p - 1) variables and 
determine the overall predictive skill of the model. If 3, and 
M cannot predict a significant proportion of the observed 
variance, it would be unwise to attempt a physical interpreta- 
tion; this would certainly be the case when the observations are 
due solely to instrumental noise. On the other hand, an 
interpretation may be justified if a significant proportion of the 
variance can be predicted by modes with coupled amplitudes. 
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5. DISCUSSION 

It is often useful to model the ocean as a linear combina- 
tion of prescribed spatial modes with time-varying coe•- 
cients. In this paper we have shown how to estimate the 
cross-spectral matrix of modal amplitudes, A, from observa- 
tions. The estimator we propose for A, given by (29), has 
several attractive features: 

1. It is easy to evaluate, requiring only the cross-spectral 
matrix of observations and the modes. Therefore it may be 
useful at the design stage of the experiment. For example, 
one could specify a cross-spectral matrix of observations, 
corresponding to a plausible mix of noise and coupled wave 
contributions, and then determine how accurately different 
array designs can recover the prescribed A. The robustness 
of an array can also be assessed by checking the sensitivity 
of A to the deletion of any instrument from the array. The 
performance of different combinations of modes can also be 
quickly tested on the observations, and subsets of them, 
after they have been collected. 

2. ,i_ is a positive semidefinite Hermitian matrix. Thus 
the power spectra of model amplitudes will be nonnegative, 
and their coherences will lie between 0 and 1. This is not 

guaranteed if A is chosen to minimize I Uij - •ijl 2 summed 
over just one half of these Hermitian matrices [e.g., Yao et 
al., 1984]. 

3. If • has a complex Wishart distribution then • has a 
complex Wishart distribution with the same degrees of 
freedom. This means that variances of the power spectra, 
coherences and phases of modal amplitudes can be calcu- 
lated in the usual manner [e.g., Jenkins and Watts, 1968]. 

A note of caution should be sounded at this point. Our 
method will return an ,i_ for any choice of M, even one based 
on an incorrect dynamical model. There is clearly a danger 
of misinterpreting •. This problem, which is confounded by 
the unknown form of the residuals, is not unique to our 
method: it affects methods based on fitting models to the 
observed cross spectra [e.g., Yao et al., 1984] or fitting 
modes directly to the observations [e.g., Freeland et al., 
1986]. To help in the interpretation of • we have shown how 
to evaluate its bias for any combination of instrumental noise 
and modal contributions. We have also outlined a procedure 
for assessing the predictive skill of the model and suggest 
that • be taken seriously, and indeed interpreted, only if the 
model can predict a significant proportion of the variance. 

Usually different types of data will be available for analy- 
sis, e.g., currents and sea levels. Thus how do we weight the 
relative importance of different variables when fitting the 
model? There is no easy answer to this question, although 
we note that weighting can be readily incorporated into the 
method. We could, for example, normalize the elements of • 
by the square root of spectral density. This corresponds to 
replacing • by the complex coherency matrix. Alternatively 
an estimate of the signal-to-noise ratio could be used, based 
on experience of instrument performance. Given that 
weighting will usually involve subjective judgements about 
data quality, it is probably best tackled on a case-by-case 
basis. On an encouraging note, our experience with ocean- 
ographic data shows that • is relatively insensitive to the 
weighting scheme if the model fits well. 

Coastal-trapped waves can be forced by the local wind or 
they can be forced remotely, by distant winds or offshore 
eddies for example, and then propagate into the region of 

interest. Our estimate of A does not distinguish between free 
and forced components. One way to isolate the free compo- 
nent, or at least a part of it, is to remove the forced 
component using a frequency domain regression model with 
local wind as an independent variable. We note, however, 
that the regression model will also remove that part of the 
free component which is forced by remote winds coherent 
with the local wind. In practice, this approach is equivalent 
to replacing • by the partial cross-spectral matrix of obser- 
vations, having allowed for local wind. This matrix is readily 
obtained from • and the cross spectra between wind and 
observations [e.g., Jenkins and Watts, 1968]. Another ap- 
proach [see Middleton and Wright, this issue] is to include 
the local wind as a "dummy mode" in the M matrix. An 
advantage of this approach is that it also gives the coherence 
and phase between the local wind and modal amplitudes. 

Finally we reemphasize that although the method has been 
described in terms of free coastal-trapped waves and simple 
array configurations, it may be applied to any linear system 
where the spatial forms of the waves are known and the 
cross-spatial matrix of their amplitudes is required. 
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