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ABSTRACT: In a pulse-tracer experiment, a layer of tracer particles is added to the sediment—water
interface, and the down-mixing of these particles is followed over a short time scale. Here, we com-
pared different models (biodiffusion, telegraph, CTRW) to analyse the resulting tracer depth profiles.
The biodiffusion model is widely applied, but entails 2 problems: (1) infinite propagation speed—the
infinitely fast propagation of tracer to depth, and (2) infinitely short waiting times—mixing events fol-
low each other infinitely fast. We show that the problem of waiting times is far more relevant to tracer
studies than the problem of propagation speed. The key issue in pulse-tracer experiments is that
models should explicitly account for a finite waiting time between mixing events. The telegraph
equation has a finite propagation speed, but it still assumes infinitely short waiting times, and, hence,
it does not form a suitable alternative to the biodiffusion model. Therefore, we advance the continu-
ous-time random walk (CTRW), which explicitly accounts for finite waiting times between mixing
events, as a suitable description of bioturbation. CTRW models are able to cope with lateral spatial
heterogeneity in reworking, which is a crucial feature of bioturbation at short time scales. We show
how existing bioturbation models (biodiffusion model, telegraph equation, non-local exchange
model) can be considered as special cases of the CTRW model. Accordingly, the CTRW model is not
a new bioturbation model, but a generalization of existing models.
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INTRODUCTION

Aquatic sediments are continuously reworked due
to the activity of local infauna, a process typically
referred to as bioturbation (Richter 1952). Bioturbation
results from a wide range of animal behaviours, such
as burrow and tube excavation (including the ultimate
collapse and refilling of these tubes), feeding and defe-
cation, crawling and ploughing through the sediment,
the building of mounds and the digging of craters
(Rhoads 1974, Cadée 2001, Solan & Wigham 2005).
Bioturbation also forms the driving force for the disper-
sal of various solid particles, which can be both mineral
(e.g. organic matter, metal oxides and contaminants)
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as well as biological (e.g. bacteria, viruses, cysts and
resting stages of plankton) in nature. As a conse-
quence, bioturbation plays a crucial role in the geo-
chemistry and ecology of aquatic sediments (Aller &
Yingst 1978, Aller 1988, Meysman et al. 2006). To fur-
ther our understanding of these subsurface environ-
ments, it is of prime interest to quantitatively describe
the particle dispersal induced by bioturbation.

To date, the most commonly employed bioturbation
model is the biodiffusion analogy, which assumes that
Fick's laws of diffusion are applicable to macrofauna-
induced particle dispersal (Goldberg & Koide 1962,
Guinasso & Schink 1975, Boudreau 1986). By fitting
suitable solutions of the biodiffusion model to tracer
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depth profiles, the mixing intensity is quantified by a
single parameter, the diffusion coefficient Dy, In recent
years, the validity and accuracy of the biodiffusion
model has, however, been questioned for different rea-
sons (Boudreau 1989, Meysman et al. 2003, Reed et al.
2006). A first issue was brought up by Boudreau (1989),
who noted that the biodiffusion model inherently has
an infinite speed of signal propagation. Immediately
after releasing a tracer pulse, the biodiffusion model
will predict that the tracer is already present far away
from the source, which is physically unrealistic. This
means that the biodiffusion model will generate biased
predictions at short time spans. Okubo (1971) illus-
trated this problem for oceanic turbulence: if one
releases 2 kg of salt off the coast of California, a diffu-
sive model of turbulence would predict to find 1 mole-
cule in 500 1 of water off the coast of Japan in 15 mo.
This molecule then would have travelled with a
mean velocity of 25 cm s7!, which is highly unrealistic.
Accordingly, to describe natural mixing processes at
short time scales, models with a finite signal propaga-
tion velocity are preferential from a theoretical point
of view. In this light, Boudreau (1989) suggested that
the telegraph equation (see below Eq. 33) could be an
alternative to the diffusion equation. The telegraph
equation has indeed a finite velocity of signal propaga-
tion (Monin 1959, Okubo 1971), and, hence, it would
resolve the problem of unphysical fast penetration of
tracer at depth. Yet up to present, the telegraph equa-
tion has not been applied in bioturbation studies.

A second objection to the biodiffusion model was
advanced by Meysman et al. (2003): its assumptions
are violated at short time scales. But how ‘short’ is a
short time scale? Based on a theoretical analysis of ran-
dom-walk models, it was argued that the biodiffusion
model requires that the inherent time scale of the mix-
ing process should be considerably smaller than the
observational time scale. The inherent time scale of the
mixing process then refers to the average time interval
between 2 displacements of a particle. In contrast, the
observational time scale denotes the period over which
bioturbation is studied. In other words, Meysman et al.
(2003) argued that the biodiffusion model can only be
used when the observational period is long enough so
that it ‘captures’ a sufficiently large number of mixing
events. This ‘frequency’ constraint is illustrated by the
following hypothetical example. Suppose that biotur-
bation is studied at a given site with the common radio-
tracer methods 2**Th and 2!°Pb, which have respective
half-lives of 24.1 d and 22.3 yr. The observational time
scale is proportional to the half-life of the tracer,
because the characteristic period over which radio-
tracer-coated particles still can be followed is about 5
times the half-life. Constraining the time scale of the
mixing is more difficult, because at present we do not

have accurate estimates of the time interval between
displacements in natural environments (this is one of
the major challenges in bioturbation research—see
Maire et al. 2007). But let us assume that particles are
moved once every day on average. Accordingly, the
‘captured’ number of particle displacement events
greatly differs between the 2 methods: 8140 events for
219ph, but only 24 events for 2**Th. Accordingly, com-
pared to the mixing time scale of 1 d, 2*Th is qualified
as a short time scale method, while the ?'°Pb method
classifies as a long time scale method. This emphasizes
the relative nature of the term ‘short": short means
short with respect to the inherent time scale of the mix-
ing, which may drastically vary between environments
(e.g. deep sea versus coastal sediments).

So why would the biodiffusion model in the example
above be more suited to analyse the 2!°Pb activity pro-
file as opposed to the 23Th profile? The prime reason is
that the biodiffusion model implicitly assumes that
mixing events follow each other infinitely fast, so that
infinitely many mixing events are thought to take
place within the observational period. When particle
dispersal is observed over sufficiently long time scales
(e.g. with long-lived radiotracers such as 2!°Pb), the
time between 2 mixing events is small compared to the
period of observation, and so the idealization of infi-
nitely frequent mixing may be justified. However,
when particle dispersal is observed over shorter time
scales (e.g. with short-lived radiotracers such as 23Th),
the observed number of mixing events is reduced, and
so the biodiffusion model may no longer be applicable.
Recently, Reed et al. (2006) convincingly demonstrated
this breakdown of the biodiffusion model at short time
scales using a lattice-automaton model environment
(this is basically a virtual sediment environment in
which bioturbation experiments can be simulated).
These simulations revealed that biodiffusion coeffi-
cients estimated from steady-state profiles of short-
lived isotopes showed a conspicuous tracer depen-
dence. Overall, biodiffusion coefficients based on
short-lived isotopes were strongly biased towards
larger values and had large standard deviations.

As in the case of methods based on steady-state pro-
files of short-lived isotopes, pulse-tracer experiments
typically have short observation windows. Because the
time scale of experiments is tuned to the expected time
scale of mixing, observation times range from 1 d in
coastal areas (e.g. Fornes et al. 1999, Solan et al. 2004)
over 1 mo in laboratory microcosms (e.g. Fernandes et
al. 2006) to 1 yr in the deep sea (Wheatcroft 1991). In
the pulse-tracer method, a layer of tracer particles is
deposited onto the sediment—water interface (SWI),
and its subsequent down-mixing into the sediment is
followed. Typical tracer particles are inert particles,
such as glass beads (e.g. Shull & Yasuda 2001) and
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fluorescent luminophores (Mahaut & Graf 1987), or
particles tagged with short-lived radionuclides (Fornes
et al. 1999, 2001). The final output of a tracer-pulse
experiment is a set of tracer-depth profiles, collected at
different time intervals. Our principal aim here is to
examine what model is most appropriate for analyzing
such tracer profiles. Is the biodiffusion model applica-
ble, or should we search for alternative model formula-
tions?

To examine this, we compared the performance of
the biodiffusion model to 2 alternative models: (1) the
telegraph equation, which was proposed by Boudreau
(1989) on theoretical grounds, but the applicability of
which as a bioturbation model has not been examined
yvet; (2) the continuous-time random-walk (CTRW)
model, which has recently received substantial atten-
tion in the field of statistical physics (Metzler & Klafter
2000). We examined the CTRW model as a new alter-
native to the biodiffusion model. The CTRW biotur-
bation model, which is presented in detail here, has
been applied by Maire et al. (2007) to analyse lumino-
phore data obtained via a high-resolution imaging
technique. This work revealed that the CTRW model
provided better and more robust fits to the data
than the biodiffusion model, particularly at short time
scales. Here, our main ambition is to provide a theoret-
ical framework for these results: Why does the CTRW
perform better at short time scales and how does it
relate to classical bioturbation models such as the bio-
diffusion and non-local exchange models? In a first
step, we detail the model formulation and numerical
solution of the CTRW model. In a second step, we show
how the biodiffusion and telegraph models can be
obtained as limiting cases of the CTRW model, and
how the assumptions of an infinite signal propagation
speed and infinite mixing frequency are linked to
these limiting conditions. In a final step, we perform
simulations of a pulse-tracer experiment and compare
the simulation output of the biodiffusion, telegraph
and general CTRW models.

MODEL FORMULATION
Modelling approach

Many different organisms are present in the sedi-
ment, and each organism displays a range of different
particle displacement activities, thus providing an
insurmountable number of possibilities for the move-
ment of a given particle. Because of this complexity,
we cannot deterministically describe the motion of
each single particle in the sediment. A convenient
solution to this problem is to assume that the interplay
between particles and biological activity is sufficiently

erratic, so that a particle's motion can be described as a
random process (Boudreau 1986, Wheatcroft et al.
1990, Meysman et al. 2003). Adopting a stochastic per-
spective, particle dispersal due to bioturbation can be
regarded as a random walk, which is essentially a
mathematical formalization of the intuitive idea of tak-
ing successive steps, each in a random direction
(Hughes 1995). The consecutive movement of a biotur-
bated particle is principally governed by 3 quantities:
(1) the jump direction, (2) the jump distance and (3) the
waiting time between jumps or bioturbation events.
Each of these quantities can be modelled in either a
deterministic or a stochastic way, and, depending on
these choices, one will obtain different random-walk
models. When all variables (jump direction, jump dis-
tance and waiting time) are true stochastic variables,
each modelled by a suitable probability distribution,
the resulting description of particle dispersal is referred
to as a continuous-time random walk (CTRW).

General CTRW formulation

From a stochastic perspective, one can regard parti-
cle displacement as a random sequence of bioturbation
events, e.g. the infilling of a burrow or the passage of a
crawling organism. In this view, a bioturbated particle
displays 2 types of ‘behaviour: (1) ‘jumping’ to a new
location during a given bioturbation event and (2)
'‘'waiting’ at a given location until the next bioturbation
event occurs (Fig. 1). When casting this into a mathe-
matical model, 2 basic parameters need specification:
(1) the jump vector J, i.e. the direction and distance a
particle travels in a given jump, and (2) the waiting
time T, i.e. the time a particle waits between 2 jumps.
In the analogy of the wandering drunkard, the vector J

waiting
—_—

jumping

e
v S
2 =

Waiting time 1 Jump vector A

Fig. 1. Idealization of particle displacement as a position jump

process. Particles display 2 behavioural modes: long waits

(waiting time T') and fast jumps (jump vector J, which in 1 di-

mension becomes the jump length A). In a continuous-time

random-walk model, these 2 quantities are described by a

probability distribution function termed the waiting time and
jump vector distribution, respectively
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models the actual steps that are taken, while T repre-
sents the time the drunkard hesitates between steps.
The CTRW model (Montroll & Weiss 1965, Hughes
1995, Metzler & Klafter 2000) assumes that both the
jump vector J and the waiting time T are drawn from a
joint probability distribution function (PDF). When a
particle is located at point x' at time t', the probability
of finding this particle at the new location x at a later
time ¢ is given by the so-called jump distribution
(Metzler & Klafter 2000) such that:

Y(x,tx,t')dtdx = Pr{t—t' < T< t+dt—t';
Xx-X'<J<x+dx-x'}

(1)

The notation Pr{...} refers to the probability that a
certain ‘event’ takes place (see general texts on sto-
chastic processes and multivariate distributions, e.g.
Gardiner 2002). The actual form of the jump vector J
will depend on the dimensionality of the problem and
the coordinate system in use. In the general 3-dimen-
sional case, the position jump model will incorporate 4
degrees of freedom, i.e. 3 spatial (the 3 components of
J) and 1 temporal (T). In 3D Cartesian coordinates, the
jump vector is then given by J = J(Ly,Ly,L,), where Ly,
L, and L, denote the jump lengths along the x-, y- and
z-axis, respectively, each having a range —oo < L < 400,

Simplifying assumptions

The idea is now to develop the general CTRW
description (Eq. 1) into an actual bioturbation model.
In doing so, we adopt some suitable simplifications
(see Meysman et al. 2008) for an in-depth discussion of
these idealizations. Firstly, the probability distribution
Y remains invariant with time (temporal homogeneity)
and does not vary over the spatial domain (spatial
homogeneity). Secondly, the jump vector J and the
waiting time T are considered independent variables,
and, as a result, the joint probability distribution ¥ can
be decomposed into 2 separate units such that:

¥ (x,t;x, t)dtdx = Wr(tt)Wy(xx')dtdx 2)

where Y¥j is referred to as the jump vector distribution
and ¥t is the waiting time distribution. Thirdly, our
bioturbation models are restricted to 1 dimension, a
constraint that results from the type of data that are
normally available (tracer depth profiles). We use a
single coordinate x that represents the depth into the
sediment. As particles can only travel in 1 dimension,
the jump vector J is represented in the Euclidean form
J(L,0,0), where the scalar quantity L is usually referred
to as the jump length (Metzler & Klafter 2000). Note
that the jump length L can be either positive or nega-
tive, and, hence, it also accounts for the direction of
particle movement. The value of L is positive when the

direction of the jump coincides with the direction of the
x-axis (particles move downwards into the sediment)
and is negative otherwise (particles move upwards).
When a given particle is located at point x' at time ¢,
the probability of finding a particle within the interval
(x, x+dx) at some time from (¢, t+df) can be written as:

Y(x, t;x' t")dtdx = Yr(t - t")¥(x - x")dtdx

3)
= Y ()W (M)dTdhr

Eq. (3) is the implementation of the general model
(Eq. 2) in 1 dimension. The first factor on the right
is again the waiting time distribution with © =t - ¢'.
The second factor is the jump length distribution with
A=x —x'. Both the waiting time and jump length distri-
butions are now of the convolutive form. Note that
Eq. (3) still allows for drift. This can occur when
the jump length distribution is non-symmetric, i.e.
Wi (-A) # WL (A), although here we will mainly consider
symmetric distributions.

Governing equations

The jump distribution (Eq. 3) describes the effect of a
single bioturbation event on the location of a single
particle. To quantify the effect of many bioturbation
events on a single particle, we can release a certain
particle at the origin and analyse the evolution of posi-
tion. The probability P(x,t|0,0) of finding such a parti-
cle at depth x after some time ¢ is given (Othmer et al.
1988, Meysman et al. 2008) as:

t
P(x,t|0,0) = S(X)[l—_[‘I‘T('c)dt} (4)
0

t oo
+[ [ Pr¥ WP -1, t-1/0,0/dAd
0 —oo
where J(x) is the Dirac delta function. Eq. (4) is termed
a renewal equation, and describes the stochastic be-
haviour of a single particle after many bioturbation
events (Othmer et al. 1988). The first term on the right-
hand side of Eq. (4) expresses the probability that a
particle remains ‘unmoved' at the origin. The second
(integral) term accounts for the ‘behaviour’ of the par-
ticle when it effectively leaves its initial position. The
renewal equation (Eq. 4) thus represents a stochastic
model for the position of a single particle. However,
the goal of any bioturbation model is to deterministi-
cally describe the effect of many bioturbation events
on the location of many particles. To go from the 'sto-
chastic/single particle’ level to the ‘deterministic/many
particles’ level, we can invoke the law of large num-
bers (Feller 1968). This law basically implies that the
average of a random sample from a large population is
likely to be close to the mean of the whole population.
Invoking the law of large numbers, the concentration
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of particles at an arbitrary location and time can be
expressed as:

t
C(x,t) = co(x)[1— | ‘PT(r)dr}
£ o 0 Q)
+j _["I’T(T)‘*I’L(MC(X —Mt-1)dAdT
0 —oo
where the initial concentration distribution of particles
is given by:

Go(x) = C(x,0) (6)

The initial value problem as specified by Egs. (5) & (6)
forms the complete statement of our CTRW model of
bioturbation. Given a particular waiting time PDF ¥ (1)
and a step length PDF ¥ (A), Eq. (5) will predict how
the initial tracer profile Cy(x) will evolve with time.
Together, the distributions ¥(t) and W;(A) may be
regarded as the 'bioturbation fingerprint' for a given
macrofaunal community. Obviously, this fingerprint
will depend on the organisms that are present (species
composition, size, abundance) and on the specific
activities involved (e.g. deposit-feeding, burrowing).

Reflection at the sediment-water interface (SWI)

Until now, we have implicitly assumed that the jump
distribution (Eq. 3) applies to the infinite domain
—oo < X < oo, and we will refer to the associated jump
length distribution as W, In reality, however, the sed-
iment is bounded by the SWI, and so particle dispersal
only occurs within the semi-infinite domain 0 < x < .
Here, we do not consider the removal of particles due
to resuspension or erosion, nor the increase of particles
due to sedimentation. So, any particle that is trans-
ported across the SWI must return to the bioturbated
zone. Particles ejected from the sediment will settle in
a random fashion at the SWI. A realistic description of
this process would, however, drastically increase the
mathematical complexity of the model. To avoid such
complexity, we adopt the most parsimonious boundary
condition: the SWI acts as a perfectly reflective barrier.
Moreover, this idealization does not influence the dis-
cussion and conclusions arrived upon below. Mathe-
matically, this reflection implies that the original jump
length distribution W is mirrored around the origin,
and that the mirrored ‘tail’ is added to the original
jump length distribution (Fig. 2). The probability that
a particle starts at x' and arrives within the interval
(x, x+dx) is now composed of 2 parts: the chance
that it moves to this interval directly, and the chance
that it moves indirectly to (x, x+dx) after reflection at
the SWI. The latter probability is the same as that it
would start at x' and arrive within the neighbourhood
of —x:

-3
-2 4 ‘\.\.\\\N“\I;iLnf(_X;X,)

-1

0 .

2 'I P =06 x) + W (X))

3.

Fig. 2. Reflection of particles at the sediment—water interface.

The jump length distribution consists of the sum of 2 com-

ponents: one part accounts for direct travel, the other part
accounts for reflected particles

Yixix') = Y (xix') + PP (-xx") (7)

Using the convolutive form of Eq. (3) and implement-
ing the coordinate change A = x—x', we directly obtain:

Pr(h) = PP +PE-2x + ) (8)

This new jump length distribution ¥, must only be
implemented over the semi-infinite domain 0 < x < .
Accordingly, the initial conditions (Eq. 6) only apply
to the semi-infinite domain, and the upper boundary
of integration in Eq. (5) should be adapted, so that
the variable A starts at —~ and only runs to x:

t x

t
Cxt) = co(x)[1— j\PT(r)dr}rj [¥r@erio) o
0 0 —oo

+Win(—2x + 1) ]C(x — A, t —1)dAdT

This integral equation forms the statement of our
CTRW model of bioturbation. In the general case,
Eq. (9) should be solved numerically. However, under
the special condition that the jump length time distrib-
ution ¥ is symmetrical (as we assume here), one can
transform Eq. (9) into a form that allows a simplified
numerical solution. To see this, we first introduce the

coordinate z = x — A, so that Eq. (9) becomes:

t
C(x.t) = CO(X)[l—J‘PT(T)dr]
0

(10)

+| [Pr(0) ¥ P(x — 2)C(z,t - 1)dzdT

+| |Pr(0)¥P(—x-2z)C(z,t —1)dzd*

e~ O~
Ot— 8 O—3



244 Aquat Biol 2: 239-254, 2008

Using the symmetry of the jump length distribution
Yiri_x — z) = Wi(x + z), and changing the integration
variable from z to (-z) in the second integral, this
expression is re-arranged to:

t
C(x.t) = CO(X)[I—J‘PT(T)dT]

)W (x - 2)C(z,t —1)dzdT (11)

+ [ [Pr)¥ir(x-2)Cz,t-1)dzdr

O'—,w O‘—.“*

rffro
I

In Eq. (11), the concentration C(x,t) is still only
defined over the semi-infinite domain 0 < x < . We
now introduce a new concentration C over the whole
infinite domain:

— C(x,t) whenx=>0
C(x,t) = {

C(-x,t) whenx <0 (12)

Reversing the coordinate definition z = x — A from
above, Eq. (11) can be rewritten as:

t
C(x,t) = Co(x)[l—J“PT(r)dr}
(13)
+j J"PT ) P (1) C(x — At —T)dAdT
0 —oo

Remarkably, the integral Eq. (13), stated in terms of
C, is identical to the original form (Eq. 5), stated in
terms of C, which, however, did not account for the
SWI. Nonetheless, the solution is not the same. The dif-
ference is that the original initial conditions C, (as
defined in Eq. 6) should be mirrored around the origin

to arrive at the new initial conditions C:

Co(x) when x>0
Co(—x) when x<0

Accordingly, by a simple reflection of the initial con-
ditions C, around the origin, we are able to explicitly
account for the presence of the SWI. This is the way the
CTRW problem is solved here. For notational simplic-
ity, we will from now on drop the bar symbols above
the concentrations, and drop the ‘inf' superscript for
the jump length distribution.

Colx) = { (14)

MODEL SOLUTION

The solution of the initial value problem (Eqgs. 13 &
14) is obtained via a semi-analytical solution proce-
dure, which involves a Fourier transformation to the
spatial coordinate and a Laplace transformation to the
time coordinate. In the transformed plane, the problem
is then solved analytically. To arrive at the final solu-
tion in the original (x,t) plane, the resulting Fourier and
Laplace integrals need to be evaluated numerically.

Fourier and Laplace transforms

In a first step, we can apply the Fourier transform to
Eq. (13) with respect to spatial coordinates. Using the
convolution theorem, we thus obtain:

t t
Clk,t) = éo(k)[1— j ‘I’T(r)dt}+J‘PT(1)‘i'L(k)CA'(k,t—1:)dt (15)
0 0

where the hat notation is used to denote the Fourier
transform. In a second step, we apply the Laplace
transform to Eq. (15) with respect to time. Again using
the convolution theorem, we arrive at:

Cils) = [1-F7(9)] Cok) + ¥ (), (O C(K,5)  (16)

where the tilde notation denotes the Laplace trans-
form. By solving the algebraic equation (Eq. 16), we
directly obtain the transform of the unknown concen-
tration profile as:

s 1=, (s) .
Clk,s)=—L2 _C,(k
TR )

Upon back transformation of Eq. (17
tration profile thus becomes:

1 54 .
= 4z | Colkexp(-ikx)

), the concen-

C(x,t)
(18)

Y+ieo

f 1-¥r(s)
i S[1= W1 ()9 (K)]
where 7 is a real number so that the contour path of
integration is in the region of convergence of the
Laplace transform.

exp(st)dsdk

Numerical evaluation of integrals

Eq. (18) is not solved as such, but is first reformulated
in terms of real integrals before numerical integration.
This procedure is detailed in Appendix 1, and eventually
leads to the integral equation (Eq. A3), which only con-
tains integrals that consist of sums of real Fourier sine
and cosine functions. For the evaluation of these inte-
grals, we employed the DQDAWF routine from the IMSL
Fortran 90 MP Library Version 4.01. This routine approx-
imates the Fourier integrals by repeated calls to the
IMSL routine DQDAWO, which integrates functions
f(x)sin(wx) or f(x)cos(wx) over a finite interval, followed
by extrapolation. Depending on the length of the subin-
terval in relation to the value of w, either a modified
Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15
rule is employed by the DQDAWO routine to approxi-
mate the integral on a subinterval. In addition, this
routine uses the e-algorithm for the extrapolation. The
routines DQDAWF and DQDAWO are implementations
of the subroutines QAWF and QAWO, respectively, fully
documented by Piessens et al. (1983).
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BENCHMARK SOLUTION: BIODIFFUSION

In order to check the accuracy and consistency of the
numerical solution procedure, it is useful to compare
the numerical solution to a corresponding analytical
model solution (model verification). To achieve this, we
use a result from random-walk theory with regard to
the long-time behaviour of the CTRW model (Eq. 5).
Effectively, one can prove (Hughes 1995, Metzler &
Klafter 2000) that if the waiting time distribution ¥
has a finite mean:

T = [t (mde (19)
0

and the jump length distribution ¥} is symmetrical,
i.e. ¥ (A) = ¥ (-A), and has a finite variance:

o= [ 22w, (Mdr (20)
then, for sufficiently long times, t > 1., the solution
C(x,t) of the CTRW equation (Eq. 5) will approach the
solution of the diffusion equation:

o _ o ¢ (21)
ot ZTC 8X2
In other words, the long-time effect of bioturbation
will always look like diffusive mixing irrespective of
the actual bioturbation fingerprint ¥r and ¥ that
characterizes the benthic community. The long-time
diffusion equation (Eq. 21) provides the following
interpretation of the biodiffusion coefficient:

2
b = (22)

The root mean square variance ¢ of the jump length
distribution ¥ thus serves as a characteristic length
scale of mixing (the average displacement of a particle
in a bioturbation event), and mean 7. of the waiting
time distribution ¥ thus serves as the characteristic
time scale of mixing (the average time between 2 dis-
placements of a particle). This scaling result is similar,
but not entirely analogous to previous decompositions
of the biodiffusion coefficient in Wheatcroft et al.
(1990) and Meysman et al. (2003).

Effectively, the relation between the CTRW model
and the biodiffusion model has many facets, and a
detailed discussion of these is beyond our scope here
(see Meysman et al. 2008). For the present purposes 2
points are important: (1) For each CTRW model, we
can construct an associated biodiffusion model that has
exactly the same mixing intensity; ultimately, at suffi-
ciently long times, the solutions of the CTRW and bio-
diffusion models should converge. (2) We can take
advantage of the 'diffusive’ behaviour of the CTRW
model at long times to verify the accuracy of our
numerical solution procedure. To this end, we proceed
as follows. We first calculate the mean waiting time

(Eq. 19) and the jump length variance (Eq. 20) for a
given bioturbation fingerprint, i.e. a combination of
distributions W and ¥;. Subsequently, we calculate
the biodiffusion coefficient via Eq. (22), and we solve
the diffusion equation (Eq. 21) for exactly the same
initial conditions (Eq. 6). After a sufficiently long time
t > 1., the solution of the CTRW equation (Eq. 18)
should match the solution of the ‘diffusive’ approxima-
tion (Eq. 21).

CONNECTION TO EXISTING BIOTURBATION
MODELS

The novelty of the CTRW approach lies in the fact
that the waiting time between bioturbation events is no
longer fixed, but is instead governed by a probability
distribution. Yet the CTRW equation (Eq. 5) is not a
‘new’ bioturbation model, but a generalization or ex-
tension from which existing models can be derived. To
show this, we can substitute particular forms of the
waiting time distribution W1 within the CTRW model
(Eq. 5), and see which bioturbation models are ob-
tained. This analysis will also show how the con-
straints of an ‘infinite signal propagation speed’' and an
‘infinite mixing frequency' are embedded within bio-
turbation models.

Poisson processes

A first case of interest is a so-called Poisson process,
which applies to sequences of events that are 'ran-
domly spaced in time'. Poisson processes have been
used to describe the disintegration of radionuclides,
incoming telephone calls, or chromosome break-up
under irradiation (Feller 1968). The central assumption
is that there is no influence of the past events on the
present functioning. A Poisson process is thus ‘memory-
less': the fact that a particle has been displaced, does
not affect its chances of being displaced again. In sta-
tistical terms, this means that the process becomes a
time-homogeneous Markov process (Feller 1968). To
investigate the relevance of the Poisson process for
bioturbation, we focus on a single sediment particle,
start the clock at time 0, and count the number of dis-
placements N (t) within a given time period t. The
counter N (t) will increase by 1 for every bioturbation
event. Bioturbation will be a Poisson process when the
following condition is satisfied: the number of biotur-
bation events occurring in 2 intervals of the same
length must be statistically independent, i.e. the prob-
ability of having N(t) bioturbation events must be the
same for all intervals of length ¢, independently from
when we actually start the clock. If bioturbation acts as
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a Poisson process, the probability that a particle will
exactly experience n bioturbation events in the time
interval (0,t) is given by the Poisson distribution (Feller
1968, p. 447, Hughes 1995, p. 248):

@t/

PrN( = n) = 5 expet /1) 23)

C)

n!

where 1. represents the expected time interval be-
tween ‘events’. The average number of particle dis-
placements within a given time period f is indeed
given by (N(t)) = t/t.. From Eq. (23), one can directly
derive the waiting time distribution associated with a
Poisson process. Upon substitution of n = 0 in Eq. (23),
one finds the probability that a particle rests for a
period of at leastlength t, which is given by:

t

Pr{N(t) = 0} = 1- [Wr(t)dt = exp(~t/.) (24)
0

This expression features the integral of the waiting
time distribution W¥r(tr). Upon differentiation with
respect to time, we find that the waiting time between
successive events follows the exponential distribution
(Hughes 1995):

1
(1) = —exp(-t/1,) (25)
where 1. is the average waiting time. Therefore, a
CTRW model with an exponential waiting time distrib-
ution is typically referred to as a Poisson process. If we
insert the exponential waiting time distribution (Eq. 25)
into the general CTRW equation (Eq. 5), upon differen-
tiation with respect to time, we obtain the following
integro-differential equation (see Othmer et al. 1988
for details of this derivation):
c o
T, aaT = C(x,t)+ j ¥, (MC(x — A, t)dA (26)
Eq. (26) is identical to the governing equation of
the classical non-local exchange model of bioturba-
tion originally proposed by Boudreau & Imboden
(1987). Indeed, if we introduce x' = x — A and define
the exchange function as:
1 1
K(x'x) = —=¥i(A) = —¥irlx-x) (27)

c

then Eq. (26) can be readily re-arranged to the familiar
non-local exchange model (Boudreau & Imboden 1987,
Boudreau 1997):

oc T, , T , .
= _{K(x X)C(x,H)dx' - [ K(x,x)C(x,t)dx’  (28)

In other words, a central assumption behind the clas-
sical non-local exchange model is that the mechanism
of bioturbation is a Poisson process.

Note that the left-hand side of Eq. (26) (or equally
Eq. 28) contains no higher temporal derivatives of the
concentration, apart from the first order one. Strik-

ingly, this is also the case for the diffusion equation
(Eq. 21). This absence of such higher order temporal
derivatives exemplifies the Markov character of the
model. The Poisson process with its exponential wait-
ing time PDF constitutes a Markovian model, in the
sense that past bioturbation events do not influence
the present probability of jumping. For arbitrary small
time intervals, the exponential waiting distribution
retains a finite probability of jumping, i.e. ¥7(t) = 1 for
T — 0. Theoretically, this allows for bioturbation events
to occur infinitely rapidly one after another, and,
hence, there is the finite probability of finding a parti-
cle at infinite distances. This property is referred to as
the infinite speed of signal propagation. The diffusion
equation (Eq. 21) also shows this infinite propagation
speed, and because of this it has been criticized as an
unrealistic model for bioturbation (Kirwan & Kump
1987, Boudreau 1989).

Non-Markovian processes: the telegraph equation
and beyond

Physically, any natural process—hence, also a bio-
turbation event—requires a finite amount of time to
complete. So infinitely small waiting times are un-
realistic, and hence one requires that the probability
of small waiting times tends to zero, i.e. ¥r(t) — O for
T — 0. As noted above, the exponential distribution
(Eq. 25) violates this constraint, and, because of this, it
shows an infinite speed of signal propagation. How-
ever, the constraint is satisfied when the waiting time
distribution ¥t follows the Gamma distribution with
parameter o > 1:

() = [

o-1
. T() E) exp(-ot/1.) (29)

where T'(a) = fs‘“ exp(-s)ds is the gamma function
0
(Abramowitz & Stegun 1964). Each curve has been

‘standardized’, so that it has the same averaged wait-
ing time t.. All curves with o > 1 have ¥ (0) = 0, and so
they correspond to a finite speed of signal propagation.
When o = 2 is substituted into Eq. (29), we obtain the
'telegraph’ waiting time distribution:

Y (1) = 41, 2texp(-21/T.) (30)

where the mean waiting time is again 7. Fig. 3 illus-
trates the profiles for o. = 1 (exponential Eq. 25), and o =
2 (telegraph Eq. 30). The implementation of Eq. (30)
in Eq. (5) leads to:

C(x,t) = 2t/ +1)exp(-2t/7,.)Cy(x) (31)

t o
+(2/7.) [rexp(-2t/1,) [ W, (M C(x -2t -r)dhdr
0 o
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Similar to the above, we can re-arrange Eq. (31) into
a corresponding integro-differential form. After 2 con-
secutive differentiations with respect to time, and
some rearrangements, the analogue of Eq. (26) thus
becomes (Othmer et al. 1988):
2 92 =
(%") %Tfﬂcaa—f = —C(x,t)+LPL(M Clx-ntdL (32)
Eq. (32) bears a strong resemblance with the tele-
graph equation (Eq. 33), which was proposed by
Boudreau (1989) as an alternative to the biodiffusion
model, in order to cope with the problem of the infinite
propagation speed:

(LC)ZGLCH 9C _o*o’C
2/ o2 “ ot 2 ox?

Note the striking analogy between the diffusion
equation (Eq. 21) and the telegraph equation (Eq. 33),
on the one hand, and the ‘exponential’' CTRW equation
(Eq. 26) and its 'telegraph extension' (Eq. 32), on the
other hand.

(33)

MODEL APPLICATION
Simulation of pulse-tracer addition experiments

In a final step, we present simulations that illustrate
the relation between the diffusion model (Eq. 21), the
telegraph model (Eq. 33) and the general CTRW model
(Eq. 5). The aim is to compare how these models simu-
late bioturbation over ‘short’ time scales. It is important
to point out that ‘short’ is relative to the mean time
interval between 2 consecutive displacements of par-
ticles (i.e. mean waiting time t.). Different benthic
communities will induce particle displacement charac-
terized by a different mean waiting time 1., and conse-
quently they will have a different characteristic time

Waiting time distributions
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scale of mixing. Deep-sea environments are less
intensely mixed than coastal environments, and hence
the mean waiting time 1. associated with bioturbation
in benthic communities of the deep sea can be far
greater than that of coastal communities. Accordingly,
the notion ‘short time scales’ will have a different
meaning in different sediment environments.

A widely implemented technique to study bioturba-
tion over short time scales is via a tracer pulse addition
experiment (e.g. Gerino 1990, Fornes et al. 1999, 2001,
Solan et al. 2004, Fernandes et al. 2006, Duport et al.
2007). A layer of tracer particles is added to the SWI,
and its subsequent down-mixing into the sediment is
followed. Here, we simulate such a tracer pulse addi-
tion for inert particles (e.g. fluorescent luminophores),
assuming that the sediment is initially covered by a
tracer layer of 5 mm thickness. The tracer concen-
tration is defined as equal to 1 within this initial layer.
The ‘short time scale’ over which the tracer mixing
is simulated covers 10 times the mean waiting time 7.

Four different bioturbation regimes

We simulated the same pulse-tracer experiment with
6 different models: the biodiffusion model (Eq. 21),
the telegraph model (Eq. 33) and 4 different versions
of the CTRW model (Eq. 5), which represent 4 differ-
ent bioturbation regimes. A bioturbation regime refers
to the particle spreading process within a particular
sediment setting. This process will depend on the
type and number of organisms that are present, and
on the intensity and the mechanism of their activity
(e.g. deposit-feeding, burrowing). From the perspec-
tive of the CTRW model, a given bioturbation regime
is completely characterized by its bioturbation finger-
print, i.e. a particular combination of a waiting time
distribution ¥t and a jump length distribution ¥i.

Jump length distributions
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Fig. 3. Four different bioturbation fingerprints are created by the combination of 2 waiting time distributions (left panel) and 2

jump length distributions (right panel). Exponential and telegraph distributions are used for the waiting time probability dis-

tribution function (PDF, left panel). Laplacian and Gaussian distributions are used for the jump length PDF (right panel). See
‘Model application; Four different bioturbation regimes’ for the mathematical formulae that describe these distributions
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Once these distributions are known, the CTRW model
formulation is complete. Here, 4 different CTRW
models were made by combining 2 waiting time dis-
tributions W7 and 2 jump length distributions ¥;. For
the waiting time distribution, we either used the
Markovian exponential distribution (Eq. 25) (o0 = 1 in
Eq. 29) or the non-Markovian Gamma distribution
(Eq. 30) (oo = 2 in Eq. 29). To construct the jump length
distributions ¥;, we used the following family of
curves:

¥, 00 = . 1 \/F(l/m) exp[_\/m/m) (&) } 34)

o I'1+1/m)\NT(3/m) I'3/m)\c
where I'(x) again denotes the Gamma function. The
curves (Eq. 34) have a peak at A =0, and the same stan-
dard deviation o? and zero skewness. The curves
have, however, different kurtosis, depending on the
value of m. The values m = 1 and m = 2 are used here
(Fig. 3). When m =1, Eq. (34) becomes the Laplace dis-
tribution:

Y, (M =

1 ( x/Em)
- (35)

e
oz N\

When m = 2, Eq. (34) becomes the familiar Gaussian
distribution:

1 A2
Y = Sr eXP(‘@) (36)

Combining the 2 waiting time distributions (Eqgs. 25
& 30) with the 2 step length distributions (Egs. 35 &
36) gives rise to 4 different bioturbation fingerprints
(Markovian x Gaussian; Markovian x Laplacian; non-
Markovian x Gaussian; non-Markovian x Laplacian).
Note that all 4 CTRW models, as well as the bio-
diffusion equation (Eq. 21) and the telegraph equation
(Eq. 33), feature the same 2 parameters ¢ and .. These
parameters are given the same values in all 6 simula-
tions.

Simulation results

The 6 model simulations of the same pulse-tracer
addition experiment are plotted in Fig. 4. The long-
time behaviour of the models is striking: at about 10
times the average waiting time, all 6 solutions coin-
cide. This is exactly what random-walk theory predicts
(Hughes 1995, Metzler & Klafter 2000). All models
were designed to have the same mixing intensity, as
specified by the biodiffusion coefficient (Eq. 22). To
this end, the distributions were standardized, so that
the mean waiting time 7. and step length variance 62
were the same for all 4 CTRW bioturbation regimes.
The same parameter values for 1. and ¢ were used in
the diffusion equation (Eq. 21) and the telegraph equa-
tion (Eq. 33). The merging of the simulated profiles at

long times also shows that our numerical solution
scheme for the CTRW model is accurate.

At short times, there is a marked difference between
the 4 solutions of the CTRW model on the one hand,
and the solutions of the biodiffusion and telegraph
models on the other hand. The CTRW profiles all con-
sist of 2 parts: (1) a ‘blocky’ zone corresponding to the
initial tracer layer and (2) a ‘smooth’ zone beneath the
initial layer, which shows a gradually decreasing tracer
concentration with depth. The ‘blocky’ zone contains
particles that have not yet been moved. Over time, this
zone is gradually eroded, as more and more particles
are mixed down. The ‘smooth' underlying zone con-
tains particles that have been displaced. Neither the
diffusion model, nor the telegraph model, shows this
characteristic 2-zone pattern. Instead they give rise to
a single, more or less homogeneously reworked zone
near the sediment surface. As a result, both diffusion
and telegraph models predict considerably lower con-
centrations at the sediment surface during the initial
stages of the experiment, when compared to the 4
CTRW models. When comparing the profiles of the
4 CTRW models, the differences are minor. For
the same waiting time distribution, the profiles corre-
sponding to the Laplacian and Gaussian step length
distributions nearly coincide. For the same step
length distribution, the profile corresponding to the
Gamma waiting time distribution (Eq. 30) shows
slower erosion of the initial tracer layer than the profile
obtained from the exponential distribution (Eq. 25).

Finally, there are also 2 marked differences between
the tracer profiles generated by the biodiffusion and
telegraph models. The concentration profile produced
by the telegraph equation at short times takes on an
unusual, irregular shape: it shows a marked ‘trunca-
tion', which abruptly limits the penetration of particles.
Just before this truncation, the profiles exhibit a
strange accumulation of tracer, which appears like a
‘chimney’. Effectively, the chimney appears to sit on
the top of a truncated diffusion profile (compare the
profiles at ¢t = 0.5; the first centimetre of the diffusion
profile is very similar to that of the telegraph profile).
Okubo (1971) has investigated the mathematical
details of the solution of the telegraph equation, and
explained the origin of these 2 peculiar features. The
solution of the telegraph model actually consists of 2
parts: a wave-like and a diffusive-like component
(respectively corresponding to the second-order and
first-order temporal derivative in Eq. 33). The trunca-
tion then corresponds to the diffusive-like component,
where particles can only move downwards with a
finite propagation speed c = V26/1,. Accordingly, there
are no particles beyond x = ct, which is the depth
where the tracer profile is truncated. Conversely, the
chimney at the front edge is due to the wave-like com-
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Fig. 4. Transient simulations of the
same pulse-tracer addition experi-
ment by 6 different models. The ini-
tial tracer layer at the surface is
given by the dotted line. Left and
right panels each show the output
of 3 models at 4 different times. Left
panels: thin continuous line: contin-
uous-time random-walk (CTRW)
model with exponential waiting
time and Laplacian jump length;
thick continuous line: CTRW
model with exponential waiting
time and Gaussian jump length;
dashed line: asymptotic biodiffu-
sion model. Right panels: thin
continuous line: CTRW model with
‘telegraph’ waiting time and
Laplacian jump length; thick con-
tinuous line: CTRW model with
‘telegraph’ waiting time and
Gaussian jump length; dashed
line: solution of the associated tele-
graph equation. In all simulations
we used the same characteristic
length scale 6 = 2 cm. The time
elapsed is expressed relative to the
mean waiting time between parti-
cle displacements (e.g. t = 10 de-
notes a simulation period of 10
times the mean waiting time)
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ponent, and represents a damped wave motion of the
initial conditions. The decay of the chimney is on the
order of ~1./4, and therefore the chimney has virtually
disappeared when > 1.

DISCUSSION

In bioturbation research, pulse-tracer additions form
a popular experimental method. In these methods, a
pulse of inert tracer particles is deposited at the sedi-
ment surface, and the evolution of the vertical tracer
profile is followed over time. These pulse experiments
last only a short period compared to the intrinsic mix-
ing time of the environment, typically on the order of
hours (e.g. 48 h; Solan et al. 2004) to days (e.g. 22 d in
Gerino 1990; 28 d in Fernandes et al. 2006) in near-
shore conditions, and years in the deep sea (e.g.
Wheatcroft 1991). These observational times should be
compared to the inherent time scale of bioturbation,
i.e. the mean waiting time 1. between consecutive dis-
placements of a given particle. At present, we have no
accurate estimates of the mean waiting time t. be-
tween bioturbation events, since we do not have
experimental techniques that can track the movement
of individual particles. Based on population reworking
rates of deposit feeders, Wheatcroft et al. (1990) and
Meysman et al. (2003) crudely estimated that T, must
range on the order of hours to months for natural
communities. Recently, Maire et al. (2007) fitted the
Markov x Gaussian CTRW to high-resolution lumino-
phore data obtained in microcosm experiments. They
found that t. ranged between 1 to 10 h in the summer-
time (Dy, ~ 40 cm? yr!) and 10 to 30 h in the wintertime
(Dy ~ 5 cm? yr!) for sediments mixed by the burrowing
bivalve Abra ovata. In these microcosm experiments,
the observational time scale was 48 h. As a result, the
observational time scale of the experiment and the
intrinsic process time scale of bioturbation are of the
same order. In other words, the particles that are
observed in pulse-tracer experiments will only experi-
ence a limited number of bioturbation events.

Until now, this aspect of short observational time
scales has received very little consideration, when
interpreting the results of pulse-tracer experiments.
In the standard procedure, the biodiffusion model
(Eq. 21) is applied, and a biodiffusion coefficient Dy, is
derived by suitably fitting to the tracer data profiles
(with some exceptions: see Shull & Yasuda 2001 and
Solan et al. 2004 for the application of non-local mod-
els to tracer data). However, it usually is not investi-
gated whether the assumptions underlying the bio-
diffusion model are valid at such short time scales.
Note that the question is not whether the biodiffusion
model can be applied to tracer profiles at short time

scales (this can always be done), but whether the
resulting values for the biodiffusion coefficient are
meaningful. Recently, Reed et al. (2006) showed that
strong artefacts can arise when the biodiffusion model
is applied to steady-state profiles of short-lived radio-
tracers. Based on lattice-automaton simulations (i.e.
synthetic data generated from a virtual sediment), they
showed that tracer-derived biodiffusion coefficients,
obtained by fitting tracer profiles of short-lived radio-
nuclides, may strongly deviate (by orders of magni-
tude) from biodiffusion coefficients derived from parti-
cle tracking, which represent the true mixing intensity
of the sediment (i.e. the D, obtained from Eq. 22).
Our analysis of transient pulse-tracer experiments pro-
vides an explanation for these problems with the bio-
diffusion model at short time scales: the infinite speed
of signal propagation and the assumption of infinitely
short waiting times.

Infinite signal propagation speed: the telegraph
equation as an alternative to the biodiffusion model

One problem with the biodiffusion model is the infi-
nite speed of signal propagation. Shortly after the start
of the pulse-tracer experiment, the biodiffusion model
will predict that tracer particles penetrate too far down
into the sediment (see Fig. 4, left panel ¢t = 0.1). To
correct this artefact, Boudreau (1989) suggested the
telegraph equation (Eq. 33) as an alternative, which
has indeed a finite velocity of signal propagation
(Monin 1959, Okubo 1971). However, until the present
time, no one has actually used the telegraph equation
to simulate or analyse a pulse-tracer addition experi-
ment. This is done here, and the results are quite dis-
concerting for the telegraph model. As shown in Fig. 4,
the concentration profile produced by the telegraph
equation includes 2 strange and unrealistic features: a
truncation of the tracer profile and a strange accumu-
lation of tracer near the truncation depth. In his de-
tailed mathematical investigation of the telegraph
equation, Okubo (1971, p. 28) referred to the truncation
of the tracer profile as an 'advancing front’, while the
accumulation was termed a 'heaping of substance near
the front edge’. Okubo (1971) noted that the presence
of 'an advancing front where substance is heaped’
does not match observations in experiments on oceanic
diffusion. Nonetheless, Okubo (1971) attributed the
'heaping effect’ to unrealistic (Dirac pulse) initial con-
ditions, and he (still) concluded that the telegraph
equation could produce realistic tracer patterns. We
think that this interpretation of Okubo (1971) is far too
merciful for the telegraph equation as a tracer mixing
model. In bioturbation studies, neither sharp trunca-
tions, nor moving chimneys have been observed in
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actual pulse-tracer experiments (see e.g. Fig. 4 in
Maire et al. 2007). Unlike Okubo's (1971) assertion, the
accumulation of tracer at the front edge does not result
from unrealistic initial conditions, but is a fundamental
aspect of the telegraph's solution. Given an initial layer
of tracer at the sediment surface, the strange accumu-
lation at depth will always be prominently present in
the telegraph tracer profile, because a wave-like sub-
component is always present within its solution. In
conclusion, the replacement of the diffusion model by
the telegraph equation as a bioturbation model solves
one minor problem (the infinite propagation speed),
but, at the same time, it introduces a far more impor-
tant bias (the introduction of unrealistic truncation and
accumulation features in tracer profiles). Accordingly,
the telegraph equation does not form a suitable alter-
native to the biodiffusion model at short time scales.

The problem of infinitely short waiting times

One can ask whether the infinite speed of signal
propagation is the true critical issue when modelling
particle mixing at short time scales. Our simulations
indicate that it is not. To this end, we compared a
CTRW model with an infinite signal propagation speed
(exponential waiting time distribution; left column of
Fig. 4) and the same model with a finite signal propa-
gation speed (Gamma waiting time distribution; right
column of Fig. 4). The differences between the result-
ing CTRW tracer profiles are very small, and would
hardly be distinguishable in the presence of actual
data, given the typical error bars associated with such
data. In contrast, the crucial dichotomy in Fig. 4 occurs
between the differential equation models on the one
hand (the diffusion and telegraph solution), and the
integral equation models on the other hand (the 4
CTRW solutions). Both categories of models display
fundamentally different model behaviour at short time
scales. In the CTRW models, the initial tracer layer
‘persists’ in the model solutions, and only gradually
fades with time. In contrast, the initial conditions are
immediately wiped out in the differential equation
models.

So why do the biodiffusion and telegraph models im-
mediately clear their ‘'memory’ of the initial tracer
layer? The answer to this question provides a new in-
sight into the assumptions and applicability of bioturba-
tion models. The difference between integral models
such as the CTRW presented here, and differential
models such as the biodiffusion (Eq. 21) and telegraph
(Eq. 33) models, but also the classical non-local ex-
change model (Eq. 28), boils down essentially to the un-
derlying assumption about the waiting time between
bioturbation events. The integral equation (Eq. 5) of the

CTRW model explicitly describes the waiting time be-
tween bioturbation events via a probability distribution,
and as a consequence the mean waiting time 1. has a
finite value. In contrast, models that feature temporal
derivatives implicitly assume an infinitely small t.. In
the derivations of these models, one performs a series
expansion of the concentration about the time, and sub-
sequently one performs a limit operation t. — 0. This
was shown by Wheatcroft et al. (1990) for the biodiffu-
sion model (Eq. 21), by Boudreau (1989) for the tele-
graph model (Eq. 33), and by Meysman et al. (2003) for
the non-local exchange model (Eq. 26). In other words,
temporal differentiation implies a limit operation where
the mixing time scale 1. becomes infinitely small. An in-
finitely small waiting time then implies that all particles
are constantly being displaced. In other words, the
biodiffusion and other differential models assume that
all particles within the initial tracer layer are immedi-
ately affected by sediment reworking. This explains
why the initial conditions are immediately ‘erased’ from
the tracer profile. In contrast, in the CTRW model, parti-
cles are not displaced immediately. Some particles re-
main undisturbed for a finite time, and this is the reason
why the initial tracer layer persists for some time in the
tracer profile.

In summary, our analysis brings up a critical and pre-
viously unrecognized issue in bioturbation modelling.
In a seminal paper on bioturbation modelling, Wheat-
croft et al. (1990) introduced the concept of a waiting
time between bioturbation events. Here, we elaborate
when and why this waiting time becomes important:
models should account for a finite waiting time be-
tween bioturbation events when modelling tracer
behaviour at short observational time scales. The bio-
diffusion model implicitly assumes an infinitely small
waiting time, as does the telegraph equation and any
other differential model. Note that even the non-local
exchange model of Boudreau & Imboden (1987) also
comprises a differential model, and so it also implicitly
assumes an infinitely small waiting time. This model
has been frequently heralded as a more realistic alter-
native to the biodiffusion model. Although not explic-
itly tested here, our analysis questions the usefulness
of non-local exchange models at short time scales.
When modelling tracers over short time scales, the
waiting time between bioturbation events becomes
important, and so the waiting time cannot be idealized
as infinitely small.

Implications for short-term tracer studies
The discussion in the previous section about the ‘per-

sisting’ initial layers and importance of finite waiting
times was solely based on model analysis (the compari-



252 Aquat Biol 2: 239-254, 2008

son of the CTRW model to other models in Fig. 4). So, are
there any empirical data that support these arguments?
The relevance of bioturbation models with finite waiting
times was recently shown in a tracer study by Maire et al.
(2007). The biological reworking of the bivalve Abra
ovata was followed in thin aquaria over a short time pe-
riod of 48 h. Particle dispersal was quantified in a classi-
cal pulse addition experiment, where a thin layer of lu-
minophores was added on top of the sediment. Images
were taken from the side of the aquaria, which then gen-
erated 2-dimensional (2D) tracer distributions. It was ob-
served that the bivalve reworking was spatially patchy:
some zones were intensively reworked, while, in other
zones, the initial tracer layer remained unaltered. Over
time, the bivalves relocated, and so gradually more and
more of the sediment surface became reworked. When
generating 1D tracer profiles from the 2D images, the
sediment is laterally averaged, and, hence, ‘mixed’ and
‘unmixed’ zones are merged into single tracer depth pro-
files. This effectively resulted in 1D tracer profiles that
are very similar to the CTRW solutions as presented in
Fig. 4: the initial tracer layer 'persists’ for some time in
consecutive tracer profiles (see Fig. 4 in Maire et al.
2007). Only gradually, as the bivalves relocate, is more
and more of the 'pristine’ sediment (i.e. with intact tracer
surface layer) reworked. Maire et al. (2007) showed that
the interpretation of such profiles with the standard
biodiffusion model leads to significant bias in the mixing
intensity. The biodiffusion model assumes that all parti-
cles within the initial layer are immediately affected (in-
finitely frequent bioturbation events), and hence it can-
not cope with lateral heterogeneity in bivalve reworking
activity. We believe this observation is not specific to
A. ovata, but applies to bioturbation in general. Over
short time scales, lateral heterogeneity in bioturbation
activity cannot be ignored in tracer studies. In terms of
modelling, this implies that when 1D bioturbation mod-
els are applied over short time scales, one should account
for differential timing in particle displacements. A tracer
layer that is initially deposited at the SWI, should be
gradually mixed down, rather than that all particles
are displaced immediately and synchronously. The
CTRW model presented here allows for such differential
timing: lateral spatial heterogeneity in reworking is es-
sentially translated into vertical stochasticity of particle
displacement.

CONCLUSIONS

In recent years, new experimental techniques have
been developed that generate tracer profiles of a high
spatial (~1 mm) and high temporal resolution (~10 min)
(Gilbert et al. 2003, Solan et al. 2004, O'Reilly et al. 2006,
Maire et al. 2007). Accordingly, one requires suitable

tracer models that adequately describe the resulting
tracer data at such short time scales. We have identified
2 issues with quantifying bioturbation over short time
scales: (1) the infinitely fast propagation of tracer to finite
depths and (2) the assumption that bioturbation events
occur infinitely frequently. Our model analysis shows
that the latter issue is far more relevant to tracer studies
than the former. In short-term tracer studies, lateral
spatial heterogeneity in reworking becomes important,
which translates into vertical particle displacements with
finite waiting times. Organisms do not rework the sur-
face layer of sediments and soils in a homogeneous fash-
ion. Rather, bioturbation should be regarded as a process
of sediment patches that are individually reworked and
that shift with time when organisms relocate. In tracer
pulse addition experiments, this lateral heterogeneity in
reworking results in conspicuous 1D tracer profiles,
where initial conditions ‘persist'.

The issue of waiting times has important repercus-
sions for the tracer models that are used in combination
with experimental tracer studies. At present, models
are used that are stated in a differential form, of which
the biodiffusion model (Eq. 21) is by far the most popu-
lar. We have shown that such ‘differential’ models
implicitly assume that bioturbation events occur with
infinite frequency. At short time scales, the application
of such models is problematic, and may lead to biased
predictions. When applied to short time scales, biotur-
bation models should explicitly account for a finite
waiting time between bioturbation events. Here, we
advance the CTRW model as a suitable description of
bioturbation, which is able to cope with lateral spatial
heterogeneity in reworking, However, at long time
scales, the application of biodiffusion is not a problem.
After a sufficient amount of time (i.e. a sufficient
amount of bioturbation events), the CTRW model pro-
file becomes identical to that of the biodiffusion model.
At this stage, the more complex CTRW model loses its
advantage over the much simpler biodiffusion model.
So, in conclusion, it is not a good idea to use the biodif-
fusion model at short time scales, but there seems no
reason not to use it at long time scales.
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Appendix 1. Reformulation of Eq. (18) in terms of real integrals

Eq. (18) is not solved as such, but is first reformulated
before numerical integration. Taking into account that the
Fourier transform ¥;(k) vanishes as k increases, we can
improve the convergence of the integral on the right-hand
side as follows:

C(x,t) = G(H)Cy(x)

1 3 , 7”""1—\%(5)[ 1 }
exp(—ikx T = = -1
T _{ (-1 )y L s [1-% ()%, (k)
exp(st)ds dk (A1)

Here, the following auxiliary function G(t) is introduced
as:
1 O+lioo \:[“,
G(t)=1- J ﬂexp(st)ds (A2)
s

2mi 7

The solution of our initial value problem then requires
the evaluation of the integrals in Egs. (A1) & (A2). The con-
tour integrals in Eq. (Al) can be readily represented in
terms of real integrals. For this purpose, the variable of
integration in the second integral can be rewritten as s =
Y +i€. Because the waiting time distribution ¥ is an even
function, it is evident that its Fourier transform W¥; (k) is also
an even function, which takes real values on the straight
line —oo < k < oo, It is easy to see that the imaginary part of

the integrand in Eq. (A1) is an odd function of &, and there-
fore vanishes upon integration. Thus, in order to evaluate
the second integral in Eq. (A1), one needs only to integrate
the real part of the integrand. In a similar manner, the inte-
gral with respect to k requires only the integration of the
real part of the integrand. As a result, Eq. (Al) takes
the final form:

Cx,t) = G()Co(x)
+%‘§” [ Cotkycos(kx) [ H(s kydedk (A3
neo- S
where s = vy + i§. The auxiliary functions G and H are,
respectively:

G = 1- =200

T

: ~ (A4)
I{Re(@)c%@ﬂ - Im(?jsin(it)}di

1—\?T(s)( 1 B 1)
s \1-Wr(s)¥, (k)

H(s, k) = Re[ eXp(th)} (A5)

The representation of Eqgs. (A3) to (A5) represents the
form that was actually used in all numerical simulations.
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