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The finite electron mean free path of conduction electrons is found to play an important role in determin-
ing spin-flip scattering rates, 1/74, near a magnetic critical point. Small-momentum-transfer processes are
suppressed and the temperature dependence of 1/7y is dominated by large-momentum scattering. For
T > T,, 1/74 is monotonically increasing and its leading singular temperature dependence varies as e
where t=(T—T,)/T,. This temperature dependence is also present for T < T,, but for Heisenberg sys-
tems, of present interest, the leading singular term varies as (—¢)2~®~%, where ¢ is the crossover ex-

ponent.

There has been interest recently in superconducting tun-
neling in proximity-effect tunnel junctions between a super-
conductor and various types of magnetically ordered materi-
als, including ferromagnets, antiferromagnets, spin glasses,
and magnetic superconductors.!=” The zero-bias conduc-
tance of these sandwich junctions, when corrected for ther-
mal smearing of the density of states, is interpreted in terms
of the spin-flip scattering time of the itinerant electrons in
the magnetically ordered material.®° Thus, these experi-
ments offer the possibility, at least in principle, of a new ap-
proach to the study of spin correlations near magnetic criti-
cal points and in the ordered state of such materials. Thus
far, however, only spin glasses and magnetic superconduc-
tors have been studied experimentally by this technique.’
The standard theoretical model used to describe the re-
quired spin-flip relaxation time is that of de Gennes and
Friedel,!® in which the itinerant electrons of interest are
coupled by s-d (or s-f) exchange interactions to localized
spins. This model has also been widely used to discuss
transport properties, such as electrical resistivity, at various
levels of approximation.!0-20

The first detailed theoretical discussion of itinerant elec-
tron relaxation times, as opposed to transport times, near
the critical points of materials undergoing standard second-
order phase transitions was given by Entin-Wohlman,
Deutscher, and Orbach.! These authors calculated the
spin-flip relaxation rate 1/74 to second order in the ex-
change coupling?! and drew a number of conclusions con-
cerning the expected temperature dependence of 1/7¢ near
the critical point t= (7T — T,)/T.=0. We have extended the
work of Ref. 1 by taking into account the fact that the elec-
trons have a finite mean free path, even in the absence of
exchange coupling. This feature, which was emphasized by
Fisher and Langer,!! and extended by Richard and Geldart!*
in transport problems, turns out to have dramatic conse-
quences for the scattering rate. The essential point is that
even though electron scattering from phonons and static de-
fects does not cause spin flips (in the usual model), all
non-spin-flip scattering enters spin-flip transition rates even
if the latter is treated in the Born approximation. The sim-
plest way to take this into account is to write a Dyson equa-
tion for the electron self-energy

S(k,iw,) =3o(Kk,iw,) + 24k, in,) ,

where X, is due to all non-spin-flip processes, including
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scattering from static defects and phonons, 3 is the spin-
flip component of exchange scattering, and w,= (2n
+1)mkgT is the usual Matsubara frequency of finite-
temperature perturbation theory. The spin-flip. component
of the self-energy is

3
Sk io) = keT 3, [ LB |j(k=p) Dy,

X(iw,,—iwm)Sg(iwm) ) (1)

where j denotes Fourier components of the exchange in-
teraction, D is the exact transverse (spin-flip) spin-
correlation propagator,?! and S° is the self-consistent elec-
tron propagator which includes 3 fully but, in the spirit of a
perturbation expansion in j, is independent of the exchange
interaction. For initial simplicity, restrict attention to the
paramagnetic state (7 > T,) and use the quasielastic ap-
proximation.?? That is, the time scale for localized spin
fluctuations near T, is much larger than any other (electron-
ic) time scales, so that Dy_,(iw,— iwn,) is sharply peaked
about w,=w,. Then only S (iw,) is important in Eq. (1)
and, after analytic continuation to real frequencies, the
spin-flip scattering rate is obtained from the imaginary part
of the corresponding self-energy for electrons on the Fermi
surface?® (p=kp, ®=0):

ek, w)=% [ (—;’:5—3|j(k— p)I2G (k—p,T) 4o(p,w) ,(2)

where

G’(q,T)=2e"“'R(SR~So) 3)
R

is the equal-time (static) localized spin-correlation func-
tion.2! The required itinerant electron spectral density is

Ao(p, @=0)= i—lm[so(p, ©0=0)]

To(p)

4
(ES =7+ [To(p) T2 @

-1
T

where Eo(p) =#fp*/2m+A¢(p) and Ao(p) and To(p) are
the real and imaginary parts, respectively, of the non-spin-
flip energy X, for «=0. At the present level of discussion
we are not interested in details of quasiparticle renormaliza-
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tion or dispersion relations, so we adopt the simplest ap-
proximation which exhibits finite lifetime properties. Thus,
we replace Ag(p). and T'o(p) by constants Ay and I'y, taken
to be equal to their respective values of the Fermi surface
(p = kg, ®=0); Ay can be absorbed into the chemical po-
tential » and then forgotten, but the fact that I'y-is finite,
due to phonon and impurity scattering, plays an important
role in determining the overall structure of the temperature
dependence of the spin-flip scattering rate, given by

l/Tsf=Fs[(kF;0)/ﬁ ,

near the critical point. It is convenient to isolate the angular
integration in Eq. (2) by introducing a factor ([ d’q®
x (kp—p—q)), resulting in

Vre= 2 [ L e@Dl@PFary . ©

where, with ep=ﬁ2p2/2m, and ( - -
average,

F(gTo)=( [ #ps(ke—a—p)

-} denoting an angular

To/m >

(ep—p)?+T3 ©

As usual, we still replace j(q) by a constant, as would be
appropriate for very-short-range exchange interactions and
take the Fermi surface (inside the first Brillouin zone) to be
spherical.

The temperature dependence of 1/74 is a reflection of
that of G(q,¢), which can be written in the various scaling
forms such as G(q,T)=:""D(q/k), where k =1/£ =kot" is
the inverse correlation length, which exhibits the suscepti-
bility singularity since D (0) =const=0. The ¢ dependence
of F(q,T'y) for small g is also important, as this also influ-
ences the relative importance of dxfferent regions of q in
Eq. (5).

Consider first the limiting case of T'y— 0, which was stud-
ied in Ref. 1. Then Eq. (6) is just the elementary integral
of a product of two delta functions and

F(q,To=0)=m/(2%2%kpq)®2ksr—q) ,

where ®(x) =1 (0) for x > 0 (x < 0) is the usual unit step
function giving the Fermi-surface cutoff. The small g struc-

ture of Eq. (5) is then « f dg q*[t—*D(q/x)1/gq, from
which the temperature dependence is extracted as in Ref. 1
by scaling the g integration by k to obtain a contibution to

1/7goci?t™= Y=

since y=(2—m)v.* This result is obviously sensitive to
the evaluation of F(q,Ty), and we have emphasized that
the finite conduction-electron lifetime, or mean free path,
due to "non-spin-flip scattering processes should nor be
neglected. To see this most clearly, set ¢ =0 in Eq. (6),
which forces p = kr, so the integration is trivial, giving

F(g=0,T¢)=1/(xwTy) . (7

Thus the ¢ — 0 limit and the I'o— 0 limit cannot be freely
interchanged, and for any physical situation with finite I'y
the g dependence of F(g,T') is regular near ¢ =0. In this
case, the small g structure of Eq. (5) is

f dq ¢*[t="D(q/x)11/Ty ,

. which also affects large-g contributions.
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but it is incorrect to attempt to extract a temperature-
dependent contribution to 1/7¢ by scaling the g integration
by « (and neglecting details of the limit of integration) as
before For example, such a procedure would violate the

““equal site’” sum rule stating that the integral over the first
Brillouin zone of G(q,T) is

-(E—q)—;G(q,T)—G(R 0, 7)=S(s+1) -, (8)

~ which is strictly independent of temperature.”* Thus, the

““apparently’’ singular contributions from the small-g struc-
ture of G(q,T) cancel completely in a correct calculation.
Due to Eq. (7), a similar situation exists for the small-¢g
contributions to 1/7¢;, as is seen by rewriting Eq. (5) as

P — i drG(aDF(gTo) ©

37rﬁF
where
F(q,Tg)=F(q,T¢)/F(0,Ty)

is exactly unity for ¢ =0 and is regular in its dependence for
small g and finite 'y, so the apparently singular contribu-
tions at small g do not survive in Egs. (5) or (9). To be ex-
plicit, we can split the region of integration in Eq. (9) into
q < k and g = «, for example, and calculate the correspond-
ing contributions 1/7§ and 1/7Z. Using F(q,Ty)
=1+ 0(gkr/Ty), we find

Vrgae 71+ 0(#)]

by scaling the variable of integration. The sum rule, Eq.
(8), tells us that the leading term due to F(0,Ty) =1 must
be canceled exactly by a corresponding term from 1/7F of
opposite sign. The next correction of order =7 is due to
the deviations of F(q,To) from unity at finite ¢ and need
not be canceled fully by 1/7&. This exponent can be
rewritten using 3v=2—a as l—a+(1+v—vy)>1—a,
and constitutes a weaker temperature dependence than the
large-g >> k contributions which we now discuss. The con-
tributions from large-g >> « will be different from those of
Eq. (8) due to the departures of F(gq,Ty) from unity at
large g and to differences in the volume of integration,
Fortunately, the
temperature dependence of the large-g spin correlations is
known from the observations of Fisher and Langer!! and
subsequent detailed calculations which give?5-?7

G(g.T)=G(qT)H1+Ci(g)t+ Clg)t~*+ --- 1, (10)
where

Ci(g)=—[1+(y—1)/alX,
and

Co(q) =y —=D/alx}~= ,

with X;t=(x/q)¥*. It follows that the spin-flip scattering
rate near 7T, is given by the large ¢ (or short distance,
R << §) correlations as

I/Tsf=A0+Alt+A2t1—m+ s, (11)

Estimates of 4,/A4y and 4,/ A, are obtainable from C;(q)
and C,(q) for large g = 2kr for the material of interest, if
desired.?® However, we note the general features that
Ag> 0, while 4; 2 0 and 4, $ 0 for « $ 0. Thus, in addi-
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tion to a generally increasing background due to non-sbin-
flip processes, the observed scattering rate due to spin-flip
scattering from critical fluctuations is predicted to be mono-
tonically increasing for T > T (irrespective of the sign of
). This is in contrast to the conclusions of Ref. 1 and is a
direct consequence of the finite lifetime due to non-spin-flip
scattering events.

The finite electron mean free path also plays an important
role just below the critical point T < T, as well. The poten-
tial small-g contribution to 1/74, which varies as |7|*~7, is
still removed, of course, due to I'y=0 and the implications
of Eq. (8). The next potential contribution described in
Ref. 1 is proportional to the square of the magnetization
M(t)< |t|?. This arises if the long-range order is included
in the electronic band structure.
change scattering from spin fluctuations would involve
((Sk — (S&))(S§— (S5))) and, more importantly for the
present discussion, the spin-flip scattering rate would in-
volve [M(¢)]? via its indirect appearance in the band struc-
ture [see Eq. (4)]. It has previously been emphasized that
this separation of the long-range order in band structure in-
troduces a type of mean-field approximation which should
be avoided, as it is unreliable in the critical temperature re-
gion,'®19 and a detailed discussion, including a derivation of
the Boltzmann equation which describes the scattering
events in the critical regime, has also been given.?’ The net
result is that the above separation should not be made for
T = T, to describe finite distance correlations and the mag-
netization squared does not enter 1/7y. In other words,
since the non-spin-flip mean free path is finite, it is again
the short-distance (R < mean free path << ¢) or large-g
spin correlations which dominate 1/74  The spin-flip
processes which determine 1/7¢ are described by

L(Sg Sg + S S¢" ) = (SESE + SkSE)

for a Heisenberg model. These transverse correlations must
be distinguished from the longitudinal correlations below T,
and, in addition to terms which carry the internal energy
singularity, a new contribution appears which varies as
(—¢)¥ where y=2—a—¢ and ¢ is the crossover ex-
ponent.?’” From the known e expansions for « and ¢, that
for ¢ is found to be?

1—_2¢ 2(n*+6n+14)€?
(n+8) (n+8)3

Y= + 0 (€®)

Then non-spin-flip ex- -
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and a [1/1] Padé approximant yields ¢ =0.846 for n=2
(XY model) and 0.864 for n =3 (Heisenberg model). The €
expansion truncated at second order gives essentially the
same results. We conclude that probably ¢ < 1, in which
case it is the leading singularity below 7T, (recall that
1—a>1). It should be noted that this contribution does
not appear in the particular combination of longitudinal and
transverse correlation functions which enters the electrical
resistivity below T,. These results, based on the quasielastic
approximation for spin correlations, are not expected to be
seriously modified by consideration of inelastic corrections.!®
Also, these conclusions concerning the dominance of
short-range correlations apply to antiferromagnets and to
other magnetic-order structures.

In summary, we have extended the work of Ref. 1 by in-
cluding the effect of finite non-spin-flip scattering beyond
the usual Born approximation while including spin-flip
processes to lowest order. Short-distance spin correlations
dominate the temperature dependence of 1/7¢ in the critical
regime, just as they do for the electrical resistivity. The
above detailed discussion has been given for magnetic sys-
tems which undergo a standard type of second-order phase
transition. For such systems, the experimental study of
1/74 would be very interesting in view of the possibility of
determining the crossover exponent. Although of consider-
able interest, such experiments would be very difficult and
have not yet been carried out. Insofar as spin-glass trans-
tions are certainly less will understood than second-order
transitions, the eventual extension of the above theoretical
discussion to spin glasses near the spin-glass transition tem-
perature Ty is desirable. It may be very tempting to conjec-
ture that the temperature dependence of 1/7¢ due to quasie-
lastic short-distance correlations will survive the configura-
tion average required to describe spin glasses.’® This could
be consistent, of course, with the observed overall structure
of the 1/7¢ which is obtained from dilute AgMn spin glasses
in tunnel junctions,® but precise prediction of temperature
dependence as a function of T — T will only be provided
by a proper theory of spin glasses. In addition, the effect of
inelastic scattering® over a broader temperature range, par-
ticularly in films with low values of T, can also be includ-
ed, but need not be a dominant effect near T';. Further ex-
perimental and theoretical work would be very useful for
the development of this approach as applied to spin glasses
and to other systems exhibiting exotic transitions, as well as
to simpler magnetic materials.
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