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Lattice sums for dipolar systems
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A general method for the evaluation of lattice sums determining the effective parameters in the
Hamiltonian of a dipolar magnetic system is described. The anisotropy of the Hamiltonian is ex-
amined for crystal structures of tetragonal and hexagonal type. The results are of particular
relevance in systems where exchange and any other nondipolar interactions are isotropic. Appli-
cations to gadolinium are considered.

I. INTRODUCTION

Dipolar interactions in magnetic materials may lead to
critical behavior significantly different from that found
in materials with short-range interactions only. ' This
difference is particularly marked in three-dimensional
systems with a uniaxial order parameter where dipolar
interactions lead to a critical behavior predicted by clas-
sical (mean-field) theory with logarithmic corrections.

For a lattice with cubic symmetry, the quadratic term
which appears in the magnetic Hamiltonian

H = J' dq g A ~(q)P (q)P~( q)+quar—tic terms

is expected to be of the form'

aP z z(ct3+~cq ctsq )5 t3+cti q ct2q qt3 (2)
q

Evaluation of the effective coefficients appearing in (2)
requires the performance of a lattice sum (Sec. II).
These sums have been performed for lattices with cubic
symmetry' and provide a useful check in the calcula-
tions described below.

Here we shall be concerned with anisotropies in the
effective coefficients which arises when deviations from
the high-symmetry situations of cubic symmetry in
tetragonal lattices and ideal hard-sphere packing in
hexagonal-closed-packed (hcp) lattices occur.

Our interest in this problem for hcp systems was, to
some extent, motivated by experimental studies of gado-
linium. Gadolinium is well known to order ferromagnet-
ically with its net magnetic moment aligned with the c
axis; however, its universality class has not been con-
clusively established. For example, measurements of the
static magnetization exponent p by Chowdhury et al.
led them to conclude that Gd is in the universality class
of Heisenberg model with short-range interactions for
reduced temperatures t ) 10 . (However, measure-
ments of the autocorrelation function dynamical ex-
ponent by the same authors were not consistent with ei-
ther the Ising or Heisenberg short-range interaction
universality classes. ) On the other hand, analysis of
resistivity data from a single run with

i
t

~

& 10 found
that the data could not be fitted by a power law of the

type expected if only short-range interactions determined
the critical behavior, but was consistent with logarithmic
corrections to the regular term of the sort expected for a
uniaxial dipolar system.

In Sec. II a general method is described for the
efficient evaluation of lattice sums such as those required
to evaluate the dipolar contribution to the effective mag-
netic Hamiltonian. Although we shall describe the
method with special emphasis on the type of sum re-
quired for dipolar magnetic materials, it is quite general
and readily adapted to other problems. As with previ-
ous computations for the lattices with cubic symme-
try, ' ' the method employs the properties of the 0
functions under the Jacobi imaginary transformation to
convert the lattice sum to a rapidly convergent form.
Section III is a detailed account of the calculation of the
anisotropies in tetragonal and hcp lattices, and Sec. IV
summarizes these results and the implications for mag-
netic systems, such as Gd, which are considered to be
described by isotropic exchange interactions plus
dipole-dipole interactions.

II. GENERAL LATTICE SUMS

Such a sum arises in the study of dipolar magnetic sys-
tems, as the dipole-dipole contribution to the magnetic
Hamiltonian of a d-dimensional system is (cf. Ref. 1)

gee)', a'
~. aR;aRi' ~R, —R, , ~"-' ' (4)

where l and l' label lattice sites, a and P denote com-
ponents of the d-dimensional system, S& is the spin at
site I, and the prime on the sum excludes the terms with
I =I'. Taking the Fourier lattice transform

lq-R

SP= g —o
&l

q

Consider the sum over the orthorhombic lattice vec-
tors L

iq. L

8(q, x)= g
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and writing L=RI —R&, we obtain

E = —g o cr~A ~(q),gPa N
clci 2 y —q q

q

where

(6)

iq La2
A ~(q)= —lim-oB B L (

—L(

and all sums over q are restricted to the erst Brillouin
zone.

Returning to the general form of the sum (3), we write

iq L
( q x ) P f dy y

—I + s / 2e
—( x —L ) y

I (s/2) o

lg +2x y a.y1 qJ 'y Jy
I (s/2) o

yy e —+
2m /a

(9)

where

e(z;x) =
OO

(10)

is the Jacobi e function of the third kind. aj in (9) denotes the lattice spacing along the jth axis.
The integral in (9) may be divided at a point yo, which is to be chosen to give good convergence of the sums in both

parts of the integral. We write

B (q, x) =B,(q, x)+B2(q, x)+B3(q,x),
with

d/2 —d/2
(s/2)B (q x)= dyy

—~+ ~2e —*'~ 1+
0 0,

where Il, is the atomic volume. We note that B&(q,x) contains all of the singular small-q behavior and in the limit
x~0 can be written

B,(q, x=O)= — +yo cd
I 1+s/2 q Il 4A,

(12)

I (s/2)B2(q, x)= dyy '+'~ e
0 0,

Here the Jacobi imaginary transform

nz /X
e(z;x)= ' ev'X ix' X

e
—(q/2 —ixy) /y

2
d q.J

2a y

lX~

a a, y
(13)

(14)

has been used to obtain a form for Bz(q, x) which will be a rapidly convergent sum when the e function is evaluated
term by term.

Finally, the remaining contribution, from the upper range of the integration over y, is
r

—1+ /2 iqa xay ay
I (s/2)B (q, x)= f dyy '+' e " —1+ Q e +

J
2' 7T

(15)

i .L
B~(q, x') =e r' (16)

A ~(q) can then be evaluated by differentiating (11),
(13), and (15) and taking the limit x~O. The required
sums, arising from those in (13) and (15), are rapidly
convergent if an appropriate choice of yo is made and
may readily be evaluated numerically.

The method is easily generalized to other lattices by
decomposing the required lattice under consideration
into a set of orthorhombic sublattices' such that each
site is in exactly one sublattice. For each such sublattice
y, there is then a sum

Here p~, is a vector from the origin (chosen to be a site
in one sublattice) to a neighboring atom in the sublattice

(p o=0). The contribution of each sublattice to
A ~(q) is then obtained by taking the appropriate
derivatives of (16) with respect to x' and evaluating these
in the limit x'~ —pz. The treatment of (16) to yield
sums which are rapidly convergent follows that de-
scribed above for the case p=0. However, here, the
prime on the summation excludes the term with L=O
only if p&

——0.
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III. RESULTS FOR DIPOLAR SYSTEMS

In order to consider systems in which the dipolar in-
teractions give rise to a spin anisotropy, we generalize (2)
to

~= —[a3+a4q —a,q, (1 —5, ) —a5q )5 (q

0.0—

-1.0—

q~qp++i z
—az q~qp

q
(17) —2.0-

/
/

-3.0—
The coefficients in (17) may then be evaluated from the
small-q expansion of (16) using the technique of Sec. II
with s =d —2, by inserting the appropriate lattice pa-
rameters a, and summing over the required vectors pz.

Of principal interest here is the anisotropic situation
a3 & a3 (a3 & a3), in which the dipolar interactions favor
either the c axis or basal plane as the easy direction of
magnetization. Figures 1 —4 illustrate the behavior of
a3 and a3 as functions of the ratio c/a of the unit-cell
axes in a region where the crossover from the c axis to
the basal plane as the easy direction of magnetization
occurs.

As an illustrative example, we consider the tetragonal
I

I

1. 0 c/a

FIG. 1. Dipole interaction of a tetragonal lattice is plotted
against the lattice constant ratio c/a. The solid line represents
the basal plane component and the dashed line the c-axis corn-
ponent.

lattice as the simplest case in which this anisotropy
occurs (Fig. 1). In this case, p =0 and a

&

——a& ——a, a 3
——c.

The contributions to the (nonsingular) q-independent
term in A can be written

A', (q=O)= — I dyy'
I (s/2) o

A3 (q=O)=

26(/2

a
X ~' ' IIeo

ai I = —oo J+1

2 ~0 1
3 (a, /a)'

d —1++8 0;
I (S /2)Q 2+s p ~2+ s/2 j=1

2

(19)

4 (a, /a) ~0 1 I, ~,~~~2~„3 (aj /a)
dc'

I (S/2) +' 0 +' 6)7T
(20)

Clearly, apart from a simple prefactor, A 2 ( q =0) and

A3 (q=O) are dependent only on the ratio c/a and not
on the particular value of a. Similarly, in the remaining
lattices considered here, these quantities are dependent
only on the ratios b/a and c/a of the orthorhombic sub-
lattices apart from a prefactor. The b/a ratio is, in
these cases, fixed by the symmetry of the basal plane.
Thus the anisotropy A' (q=O) —A' (q=O) for any of
these lattices can be written as a simple prefactor depen-
dent on a and a "universal" function dependent on c/a.
This feature, together with the use of the p~ vectors as
in (16), allows the computer program which evaluates
the sum to be easily modified for any lattice structure
and set of lattice parameters.

We have also examined the anisotropy in the (q=O)
(nonsingular) part of A for the lattice relevant to the
study of LiTbF4 (Fig. 2). The Tb atoms in this structure
are placed on two body-centered tetragonal sublattices.
The appropriate vectors in (16) are, in this case,

pp=(0, 0,0), p, =(a/2, 0,c/4),

p2
——(a/2, a/2, c/2), p3 ——(a, a/2, 3a /4) .

-40

-60 t

2.0
I

2.5c/a

FIG. 2. Dipole interaction of LiTbF4-type lat tice (two
body-centered tetragonals) vs the ratio c/a. The solid line
represents the basal plane component and the dashed line the
c-axis component (c/a ratio of LiTbF4 is 2.099).
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All of the coefficients in (17) were evaluated for the ratio
c/a =2. 10, appropriate to LiTbF4, and compared with
the results of Ref. 4 as a further check on our program.
Note that, although for a general vector p in (16) one
might expect to find off-diagonal contributions to
(q=O), these do not occur for the systems considered
here, since it may readily be shown that the off-diagonal
(q=O) terms vanish for any p such that at least two of
the Cartesian components of p satisfy

p, =0, a, , ora, /2, i=x,y, z .

The simple hexagonal lattice (Fig. 3) is decomposed
into two orthorhombic sublattices with b =&3a and the
close-packed hexagonal lattice (Fig. 4) can then be con-
structed from two such simple hexagonal lattices. ' In
addition to the four systems referred to in the figures, we
have also studied the anisotropy as a function of c/a in
the body-centered tetragonal and face-centered tetrago-
nal lattices.

In all of the cases studied, one may induce a change in
the easy direction of magnetization from the c axis to
the basal plane by varying the c/a ratio. In most cases,
the point at which this crossover occurs can easily be
identified with a higher symmetry of the lattice. For ex-
ample, the crossover points for the tetragonal and hcp
lattices (Figs. 1 and 4) occur when the lattices become
simple-cubic and "ideal" (hard-sphere packing) hcp
structures, respectively. At the crossover point
(c/a =&2) for the LiTbF4 structure shown in Fig. 2,
each of the body-centered tetragonal sublattices acquires
the face-centered cubic structure. The LiTbF4 body-
centered tetragonal and face-centered tetragonal lattices
all have three points at which the easy direction of mag-
netization changes. For the body-centered tetragonal
and face-centered tetragonal lattice, there are two points
at which the easy direction of magnetization changes
from the basal plane to the c axis as the c/a ratio de-
creases, corresponding to the lattice having either a bcc
or fcc structure; however, this change is reversed as the
c/a ratio is varied through an intermediate point.

IV. SUMMARY

The method of Sec. II is of general utility for the per-
formance of lattice sums and is capable of dealing with
any lattice type which can be decomposed into ortho-
rhombic sublattices. Notice that while we have dealt
only with three-dimensional lattices, the method is suit-
able for general d-dimensional sums. For instance, one
can extract general d formulas for the tetragonal lattice
more easily, perhaps, than by other methods. (The case
d =2, of course, requires special care. )

Here we have used the method to investigate the an-
isotropy in a 3 of Eq. (17) as a function of the ratio c/a
for a variety of lattices, since it is the anisotropy in this
parameter which will determine the effective number of
components of the order parameter at the phase transi-
tion in a dipolar system. The dependence of this anisot-
ropy on the c/a ratio is illustrated in the figures for four
examples. In physical systems there may, of course, be
other factors which affect the effective number of order-
parameter components. For example, the crystal field is
expected to be the dominant factor in LiTbF4.

For reasons given in Sec. I gadolinium is of special in-
terest as a possible example of a dipolar phase transition.
The c/a ratio in gadolinium is c/a =1.59, which may be
compared with the hcp ideal value of c/a =(8/3)'~
=1.63. From our results (Fig. 4), we see that this is
consistent with a model of Gd based on s-state ions in a
largely isotropic environment. The dipole-dipole in-
teraction is then sufhcient to cause the observed uniaxial
magnetic ordering at the Curie point (small electronic
perturbations could also be present). The value of
a', =0.13, obtained for gadolinium here, may be inter-
preted as an effective change in the critical temperature
due to the dipolar interactions from

b T, = —,'S(S+1) F3=1.7 K
B

within the mean-field approximation. This indicates that
the dipolar nature of the phase transition will be ob-
served only within about 1 K of the critical temperature
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FIG. 3. Dipole interaction of a simple hexagonal vs c/a ra-
tio. The solid line represents the basal plane component and
the dashed line the c-axis component.

FIG. 4. Dipole interaction of a hexagonal closed-packed lat-
tice vs c/a ratio. The solid line represents the basal plane
component and the dashed line the c-axis component.
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TABLE I. Coefficients in the Taylor expansion of a'3'~lq)
0

for hcp lattice structure with c = 5.78 A, a =3.63 A, and
c/a =1.59, as appropriate for Gd near T, . The wave vector q
in (17) is expressed in units of a ' and becomes dimensionless.

g ZZ g XZ( Q JZ)

A4

a2 —a&

o, ~
1

2

5.9859
—0.2347

0.6332
18.2521

—0.0894

6.2803
—0.1638

0.4543
18.2521 18.2521

0.6332
18.2521
0.7749

T, =293 K. This is consistent with the experimental re-
sults referred to earlier (Refs. 5 and 7). We emphasize
that this indication of the temperature range where
dipole-dipole interactions become relevant and the fact
that the order parameter becomes Ising-like are indepen-
dent of the precise mechanism, whether the dipolar in-
teraction itself or other perturbation is the primary
cause of the uniaxiality. Finally, we have calculated the
remaining parameters in (17) for gadolinium and these

are presented in Table I.
Our objective has been to develop an e%cient method

of performing dipole sums in anisotropic lattice systems.
The method has been checked on a number of lattices
including that for LiTbF4. (For LiTbF4 there are exten-
sive results by other methods and the diA'erent sources of
anisotropy in LiTbF4 have been extensively discussed-
see Ref. 4.) New results have been given for body-
centered and face-centered tetragonal lattices and for
hexagonal close-packed structures. In the latter case, di-
polar interactions may be important for the critical
properties of Gd. Our understanding of the importance
of the various contributions in the critical region to the
anisotropy in Gd will be greatly assisted by further ex-
periments.
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