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The exchange contributions to the ground-state energy of an inhomogeneous many-fermion sys-

tem of arbitrary dimensionality are calculated. Explicit results are given for both the local-density

approximation and the lowest-order gradient corrections for a class of interparticle interactions, in-

cluding the Coulomb potential. For wider application, both the local-density approximation and the
gradient corrections are decomposed into their wave-vector components. These exchange contribu-

tions can then be determined for arbitrary interparticle interaction by a simple quadrature.

I. INTRODUCTION

We give a gradient expansion representation for the
ground-state exchange energy E, as a functional of the
electron density n (r) for an inhomogeneous system of in-
teracting fermions within a space of dimensionality d.
Explicit forms are obtained for the coefficients A„(n) and
B,(n) which determine the local-density approximation
(LDA) and the lowest-order gradient corrections in

E„[n]=f d r[A„(n(r))+8„(n(r))[Vn(r)] +

ed to concluding remarks. A few details are given in the
Appendix for a typical calculation involved in evaluating
the polarization function.

II. GENERAL FORMULATION OF THE PROBLEM

The ground-state energy of an electron gas in the pres-
ence of an external potential V(q) is given by second-
order perturbation theory as

~~v=—E(V)—«V=o)=
2 Qn(q)V(q)+o(V') *

The most immediate motivation for this work is the
need for simple but reliable methods for calculating prop-
erties of quasi-two-dimensional electronic systems with
microstructures. There are also other structures whose ef-
fective dimensionality is better described by a fractional
or noninteger value of the dimensionality d. We shall not
pursue this matter here but, for maximum generality, for
systems with various force laws, we present results in a
form which can be applied for arbitrary interparticle in-
teraction U(r). Explicit forms for A„(n) and 8„(n) are
also given for a class of power-law potentials, including
the Coulomb potential ( 1lr" ), for arbitrary dimension
d. The fourth-order density-gradient expansion for the
ground-state fermion kinetic energy has recently been
studied, with particular attention given to its convergence
properties. ' In that work, Eq. (1) was applied to a d-
dimensional system of fermions coupled by Coulomb
forces and having a model density profile simulating a
vacuum-solid interface. In this paper, details of that cal-
culation are presented and the formalism is extended con-
siderably to obtain A„(n) and 8„(n) for arbitrary inter-
particle interaction.

The paper is arranged as follows. In Sec. II, the
lowest-order exchange contributions to the wave-vector-
dependent polarizability in the ground-state energy is cal-
culated for arbitrary interparticle interaction. In Sec. III,
we evaluate the exchange contribution to the ground-state
cncrgy when thc 1ntcrpart1clc potcntlal 1s assun1ed to bc
given by a pure power law in eave-vector space. Com-
ments on some other cases are made. Section IV is devot-

where U(q) is the Fourier transform of the interparticle
potential. The polarization is given by standard
Feynman-graph expansion methods. For noninteracting
particles, the polarization is the usual Lindhard function.
Wc are interested in lowest-order exchange corrections to
the polarization. Explicit terms of first order in interpar-
ticle interactions are

11„(q)=2 trpgtrpggt(g)gp+q(g)v(p —p')gp (g')gt+q(g')

(4a)

Iie (q) =2 tr~trp g
[l)

X [gp(g)'g~+q(g)U (p —p')g~ (g')

+g', (g)g', +q(g)'U (p —p')g', +q(g')], (4b)

which corrcspond to vertex and self-energy corrections,
respectively, and could be expressed in terms of the ex-
change self-energy

where n(q) is the induced electron density. With linear-
response theory, n =HVAR ' where II is the polarization
and e is the dielectric function. Thus Eq. (2) may be
rewritten as

EEL——g n(q) V(q)+ —, g ~
n(q)

~
[U (q)+ II '(q)],

q q
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I+
X„(p)= —trp ~ u (p —p')gp (g')e ' (5)

gp(g) is the Green's function for a noninteracting system,

g is a continuous "frequency" variable corresponding to
the T~O limit of Matsubara frequencies g„and

ptr (
. ~ )=& (. . .

)PC X (2 yf

In addition, there is also a contribution due to the implicit
dependence of the chemical potential on interactions. The
Green's function is given by

gp(g) = 1

0+8 Ep

H~~ '(q) =25pKgm (d 2—)kF [kF ——
,
', (d —4)q'],

(12)

where m is the electron mass, E~ Q——~ /(2m. ) and
0~=2@ /I (d/2). For maximum generality, we carry
through the analysis for arbitrary electron-electron in-

teraction as far as possible.
It is convenient to combine Hz and Hz', rather than

calculate them separately. Setting H& (q) = II& (0)
+5H&(q) and H&"(q) =Ha '(0)+5Hq"(q), we have

II„(0)+H~ '(0)=2 trptrp 5(po —ep )p p

where the chemical potential p for the interacting system
is related to that for the noninteracting system po (at
T =0) by

p —go=—5p, =X,(kF) . (8)

Ha"'(q) =5p Ho(q»
BPo

kF is the Fermi momentum. This gives the final contri-
bution of first order in the interaction

X u (p —p')rI (po —&p),

5Hg (q)+5Hs"(q)

1 2 8 2 1
q I)+ Ip + I2-

2m Bpo

Here g+(x) is the Heaviside unit step function and

trav (k)A 1, +trav(k)8q,

(13a)

(13b)

(14a)

where

Ho(q) = —2 tr~gp(g)gp+q(g) . (10)

Expanding in powers of q, the various contributions to
the polarization are obtained by expanding individual
propagators in powers of q, evaluating angular integra-
tions and collecting results. %e obtain

Ho(q) =2EgmkF [kF —,', (d —2)q —]

= a' 3 8
I2 ——

2 trav(k)Ag —— trt, u(k)Bg,
2 Bpo

8 3 8
Ig ——

z trav(k)Cq —— trav(k)Dq
BPo 2 Bpo

trav (k)eq8q ——,trav (k)Fq,1

4 BPo

(14b)

(14c)

where [f(ep) is the Fermi distribution function and
&p=ep —Po]

Bf(e~)
A g =—trp(ep+), )

Bpo
'(d —1}/2I4, 2&-& 2kF —k

(2~)~ d —1 4k@

&f(e'p+g) Bf(ep)
8),=try

PO Po
2 (d —3 }/2

g+(2kF —k),
2kF

mkF rI+(2kF k)F—d 1 3 d d+1 2kF —k
(15a)

(15b)

Bf(e'p)
CI, = trpeg(ep+ &)

Bpo
(d —I }/2nd12d 2kF k d d 1 3 d 8+1 2kF —k

kFrI+(2kF k)F—
(2~)" d —1 4kF 2

'
2

'
2

'
4kF

&f(&~+q) &f(ep)
Dq =—tr~e„

Bpo Qpo

(15c)

d mkF 1—
4k (2~)'

k
2 (d —3}/2

g+(2kF —k), (15d)



NONLOCAL EXCHANGE ENERGY OF MANY-FERMION SYSTEMS. . .

a'f (a~+i, ) af (e~)Fg= tr p'k
ap', ap,

d mkF ~
—(d 3—)m 3

1—1 k

2 (2~)d & kF

k
' 2 (d —5)/2

2kF
(2kF —k)+

k
' 2 (d —3}/2

2)+(2kF —k)
2kF

k(2k, —k)
5

2k' 2m
(15e)

In Eqs. (15), F(a,b;c;z) is a hypergeometric function and,
after appropriate reductions, the required integrals may be
obtained in a straightforward way with the use of stan-
dard tables. In the Appendix A~ is calculated explicitly
and the other functions in Eqs. (15b)—(15e) may be ob-
tained in a similar way. In Sec. III we calculate the ex-
change energy through second-order gradients of the elec-
tron density for a pure power-law interparticle potential.
The results presented in Ref. 1 are a special case corre-
sponding to the Coulomb potential U (k) -k

11„(0)+11("(0)=—m'(d 1 q—)Kd2—QdkF2(d 2 &)--

xF i),ri+1 ——;—+1;1 . (17)
d

Denoting the expansion of the polarization as

11(q)=a ' bq'+0—(q ),

III. THE GRADIENT EXPANSION
FOR THE EXCHANGE ENERGY FOR PURE
PO%'ER-LAW INTERPARTICLE POTENTIAL

the coefficients a and b can be identified from the results
of our calculations. Equations (11), (12), (16), and (17)
jointly give a ' which in turn yields

I —+1 I (d —2')d
2

5p= — KdQdkF—d-2g (16)

In this section we apply the results presented in Sec. II
for U(k)=Qdk ", where the power-law exponent 2g is
arbitrary and Qd =—e Qq. In a straightforward way it may
be shown that

1 m
1 ——(d 2r))Kd Qd kF—d

—2 —2g

2mEdkg

XF g, g+1 ——;—+1;1d d

(19)

I" —+1—g I (d —rl)
d
2

Equation (19) yields the LDA for the kinetic energy and
exchange energy as

I

2 2Kd

2/d
'

d dr n (d +2)/d( r)2+d (20a)

' 2q/d-

E„[]=n——
Qd

LDA

4 d
F g, ri+1 ——;—+1;1 I drn"' —)"d(r) .

d —'g 2 2
(20b)

Turning now to the quantities Ii, I2, and I3 in Eqs. (14), we obtain

Q 2k 2(d —2 —g)2d —2q —3
d dm I:

(2n )"

X 2~d+7}/2 d —1 —g d +1 d —1 3 —d 3d +1—4q 1B,d —2g F
d —1 2 2

'
2

'
2 '2

d —1 —2q d —1

2
'

2
(21)
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I = KQ k' "'(d —2 —21)2
Ag

(2m )

X 2"+"" a,d —2& r(g+9]yp d —1 —g d +1 d —1 3 —d 3d +1—4q 1 d —I —2q d —1

d —1 2

Q 2k 2(d —2 —g)0
3= g d d~

(2m )

r

(d rl)(d— vl —1) 2—((~3'i 4q+i(n~ d +1 d
d —1 2

d —1 3 d—3d+1 4rl —1

(d ———1)2i 2" 38 d+1 22), d 1
(d 3)2~—2~ 4g d+1 22) d 3

2 2 2
'

2

—2 ~ 8 d —1 —2'g d —1

2
' 2 (23)

We obtain the results for the k Coulomb potential for which explicit results were presented in Ref. 1, by setting
2) = 1 in Eqs. (21)—(23). We have

I((rl=l)=-QgKgm kF
2 2 2(d —3) 3d

4(d —3)
'

I2(2) = 1)= , Q~K~m k—F' '(Sd —18),

(24)

(25)

I3(rl=l)= 2QgKgm kF' ' 2(d —1)—~ d —3

Collecting results for &(q), we obtain the wave-vector-dependent contribution for the polarization to order q .
have

bq =a&[——3K&m (d —2)kF" —,
'

gpKgm (d ——2)(d 4)kF +Q&K&m kF g&]

where

8 Ii+ I3 + I2 KgQgm —kF —— R~
Z 3 Z(~ —3-g)

Bpo

with R~ defined by the equation

(26)

(27)

2' —2'g —2

Ag ——--
—1 1

2 '2

—2 ll 8(d+9)g2 (d —1 —xJ) d + 1
,d —22) I' d —1 3—d 3d+1 —42) 1

d —1 2 2
'

2
'

2 '2

+ (6rl+4 3d)8— —1 d —1 —2
2 2

'
2

r

1 d+1 —22) d —1

2 " 2
'

2

(d 3)~ d+1 —2g d —3

2
'

2
(29)

The second-order gradient terms for the kinetic and ex-
change energies are therefore

r

2 [ ]
1 d 2 I d (Vif)

2PFl 12d

E„[n]= —,vg dr(2) (Vn)
+ (31)
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whatever may be the order in which d and q are chosen.
The value of il = —,

'
may be of some interest in studies

of a quasi-two-dimensional electron gas since 2vre /k is
the two-dimensional Fourier transform of e /r,

X 31R~ + (d —2)(3d —4—4g )

I —+1 I (d —2g}
6f

2
(32)

It is a simple matter to show that when q = 1, we obtain

A pure power law is an idealization, of course, and taking
proper account of the structure of quasi-two-dimensional
devices leads to a much more complicated k dependence.
Disregarding this here, we set g= —,

'
in Eq. (32) and see

that v~ for this case has a singularity varying as I/(d —2)
for d near 2. However, this singularity is spurious and is
removed when the finite structure of physical devices is
taken into account (e.g., the finite thickness of oxide
layers). The general formulation of Sec. II is then both
necessary and sufficient for dealing with this situation as
it is not limited to pure power laws.

Rg(rj = 1)= (28—3d )
1 2

12d
(33)

IV. SUMMARY
and

' 4/d
2I%'~

vg(rI = 1)= Qg96d d
(3d —16d +28), (34)

which agrees with the results presented in Ref. 1 which
were carried out specifically for a 1/k potential.

Setting d =2 in Eq. (29), we obtain

Rg 2 rI2 " i)——(—1 —i))2"1 4 4 +) I (2—2v])

3 I.
I'(2 —rI )1'

—(11—21'�)
[I (1—g)]

(35)

Of course, the second term in Eq. (32) does not contribute
when we set d =2 and allow q to be arbitrary. Equations
(32) and (35) jointly give

I
vg 2(r/ = 1)= — g2Ki,

24
(36)

which is consistent with Eq. (34) when 1=2. This may
appear slightly surprising at first when one finds that R~
in Eq. (33) at d =2 is twice the value obtained from Eq.
(35) when rI is set ill ual to unity. This apparent
discrepancy is due to the order in which the limits d~2
and ii~1 are taken near the singularities in the I func-
tions in Eqs. (29) and (32). There is a factor in Rq which
varies as (1—1 —rj)/(d —2g) for 1=2 and r) =1 which
takes on the value —,

' if 1~2 before i)~1, and the value 1

if q~1 before d~2. However, there is also a singular
factor in the second term on the right-hand side of Eq.
(32} of the form (d —2)/(d —2r)). When both terms are
taken care of correctly, it is seen that v~ of Eq. (32) is reg-
ular near d =2 and rI = 1. From a physical point of view,
we expect v~ and all other coefficients in the gradient ex-
pansion, if they are finite, would have a unique value,

We have calculated the coefficients in the gradient ex-
pansion for the kinetic energy and the lowest-order ex-
change energy for an interacting many-fermion system in
its ground state. This spatial dimensionality and the pre-
cise form of the interparticle interaction have been kept
arbitrary in the general formulation and results for any
given interparticle interaction are obtainable by elementa-
ry quadrature. Analytical results have been given for the
case of a pure power law, k "in wave-number space, for
the interparticle interaction. In some cases, such as
quasi-two-dimensional electron systems, care is required
in specifying the interparticle interaction and the general
wave-vector decomposition is required for a proper treat-
ment of systems which are not fully describable by pure
power laws.

Gradient expansions for the kinetic energy can be ob-
tained from the Wigner-Kirkwood partition function.
The gradient expansion for the exchange energy of a
three-dimensional electron gas has also been discussed by
Gross and Dreizler using Kirzhnit's expansion of the
density matrix. The present method of calculation, based
on long-wavelength expansions of the irreducible part of
the density-density correlation function is very convenient
and is easily generalized to include higher-order correla-
tion effects. We hope to report results for extensions and
applications elsewhere.
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APPENDIX

In this appendix we evaluate Ak defined in Eq. (15), at
T =0. In a straightforward way we obtain
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Bf(ep)
Ak =trg(ep+k)

BPo

Qd i d, Bf(ep) 1f dp p
' f d8(sin8) f dy f (y)6 po+y — (p +2pk cos8+k )(2')e ~po 277l

(A 1)

Integrating over 8, Eq. (Al) becomes
d —2

m
A), ——

(2~)"

Bf(ez}fX dpp0 ~}uo

X y yy, „—y

x(y —y )'" (A2)

It is a simple matter to evaluate the y integral in Eq. (A2)
at T =0 with f(y)=ri+( —y). After a little algebra, we
obte. in

~d-I 2'-'
Ag ——

(2sr)

) Bf(Ãp}
&& f dpp' '

&

' n+(so)
r}po

X rl~(1 —so}so(d
—I ) /2

d —1 3 —d d+1XF. . .so

1 (p-k} -l o
2

2@i

ymax —= (P +k} iso '
2

2p7l
(A3b)

where so —=(2kF —k)/4kF. Equation (A4) readily yields
the result in Eq. (15) for Az. In Eq. (A4), F(a,b;c;z)
denotes the usual hypergeometric function [also often
denoted by 2F~(a, b;c;z)]. The remaining quantities Bk,
Ck, Dk, and Fk in Eq. (14) are obtained analogously.
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