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Spin correlations in the low-density electron system
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We have calculated the spin susceptibility g (q, w) within a microscopic model over the full

range of densities of the electron liquid in the paramagnetic state. Electron-electron interactions are
described by static random-phase-approximation screening modified by a local-Geld correction which
takes into account the exchange-correlation hole in the low-density regime. We focus attention on
the dynamic properties of the system, calculating the spin-spin susceptibility y (q, ur). Our results
can be represented in terms of a complex Stoner-like enhancement function I(q, u) with an explicit
dependence on the wave number q and frequency ~. We find except for very large q and v that
I(q, u) has only a weak functional dependence on q and u and is nearly real, justifying the original
Stoner approximation for a wide range of q and cu. We find when I(q, ur) does develop a q dependence,
that this corresponds to a buildup of short-range spin correlations in the system that goes beyond
the scope of the original Stoner model. Our results provide a first-principles determination of the
density dependence of the Stoner enhancement factor. Finally, we find that paramagnons persist
well away from the ferromagnetic transition.

I. INTRODUCTION

The ground state of the electron gas at high density
has uniform density and is paramagnetic. As the density
is lowered interaction-induced correlations between elec-
trons become strong enough to cause a spontaneous tran-
sition to a spin-polarized ferromagnetic state. The for-
mation of this new phase is accompanied by a change in
symmetry of the ground state. The ferromagnetic ground
state has a net magnetization and exhibits long-range or-
der. At still lower densities, the spin-polarized electron
gas undergoes a second phase transition by crystallizing
to form a Wigner solid. Estimates of the critical densi-
ties for these phase transitions are available from Monte
Carlo data. ~ In terms of r„where the volume per elec-
tron is given by Ao = 4m(r, ao) /3 with ao being the
Bohr radius, the transition from the paramagnetic state
to the fully spin-polarized state is expected to occur at
r, = r,' = 75 + 5 and the Wigner solid at r, = I00 + 20.~

The theoretical description of the strong electron correla-
tions in these low-density regimes poses a major challenge
in both of these cases.

Our present attention is focused on the spin-spin corre-
lations in the intermediate- to low-density paramagnetic
state. We have carried out a microscopic calculation of
the wave number and frequency dependent spin response
function g (q, u).

A well known phenomenological description of y (q, u)
is provided by the Stoner model. Within the Hubbard
lattice model,

where

yo(0, 0)—:lim y (q, 0)

mkp

The function yo(q, ~) is the Lindhard function and cor-
responds to the spin-spiv correlation function for a sys-
tem of noninteracting electrons. The spin contribution
to an experimentally measured susceptibility is given by

x..'. =ma» x (q, =o),
q—+0

where p, ~ is the Bohr magneton.
An essential feature of Eq. (1) is that all many-body

interaction effects have been compressed into a single
phenomenological parameter I. This is strictly correct
only within the Hartree-Fock approximation for the lim-
iting case of short-range interparticle forces as modeled
by contact interactions V(r —r') oc Ib'(r —r'). For small
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q/A:z and hw/Ep it is expected that Eq. (1) can provide
a useful phenomenological description of spin-spin cor-
relations in the paramagnetic phase. This has been the
basis, for example, of the description of paramagnons in
3He and nearly ferromagnetic metals such as Pd. How-
ever, the ability of the Stoner model to describe quanti-
tatively y (q, u) for an electron gas over a wide range of
momentum, frequency, and density is certainly not obvi-
ous a priori, and our microscopic calculation of y (q, u)
can shed independent light on its validity.

The outline of the remainder of this paper is as fol-
lows. In Sec. II we describe a first principles microscopic
calculation of g (q, a) based directly on many-body
methods. 7 The effective electron-electron interactions
are described by a static random-phase-approximation
(RPA) screened interaction with a local-field correction.
The resulting integral equations are then solved numeri-
cally without further approximation. In Sec. III we dis-
cuss our results for the dynamical spin structure factor
at small q, u,

in terms of paramagnons and discuss the validity of the
Stoner model. Section IV contains a summary of the
results.

II. THEORY

The exact expression for the spin-spin susceptibility is

dv
y (q, w) = —2) .Gi, (v)Gi, +~(v+cu)L (kv, qu).

27ri

where n~ is the Fermi-Dirac distribution,

0
&k,q ~k+q/2 + ~k+q/2 —6k—q/2 ~k —q/2 )

E'p is the kinetic energy for free part icles, and

Zp ———) Vg([p —k )
/&A:F

(9)

is the self-energy. This forms a closed set of equations in
the spirit of a self-consistent Hartree-Fock-like approxi-
mation.

The numerically exact solution of these equations
was obtained by Szymanski et al. ,

s who calculated the
screened response function y«(q, cu) in the case of bare
Coulomb interactions over a wide range of densities. A
related integral equation was numerically solved at high
density by Hamann and Overhausers for the case of zero
u using an approximate form for the self-energy which is
valid for small q.

It should be emphasized that the procedure indicated
above which uses the same V,g in the expressions for
both L and Z [Eqs. (7) and (10)] is consistent for
the calculation of y (q, cu) but should not be used to
calculate y„(q, a) except in the case of bare Coulomb
interactions. The essential reason for this is that the
general four-point scattering function for parallel spins
as deduced from Eq. (10) is

pTT (11)
where F is a complicated functional which does not need
to be specified here. The corresponding function for an-
tiparallel spins is

The vertex function L is defined as

L (kv, qw) = 1+)
k'

~Tl p

The scattering function pr entering Eq. (7) is

~TT ~Tl

= —V~@

(12)

(13)
x Gg +&(v' + u)L (k'v', qu)),

(6)

x +. L (p;q, w).
(d Ep q+ lg

The spin susceptibility y (q, w) is then given by
(7)

(q, ~) = —2),L (k; q, u)),
Rd Ck, q + 1$

(8)

where G is the single particle propagator and p is
the difference between the spin parallel and antiparallel
electron-hole scattering function.

If the scattering function p is taken to be a static
effective interaction V,g, then the equation becomes a
sum of ladder graphs. The frequency integrals can be
done analytically in this case and the vertex function L
then satisfies the integral equation

L (k; q, cu) = 1 —) V,s ([k —p P

We emphasize that this major simplifying feature applies
rigorously to g (q, w) but does not apply to y«(q, a).

We now consider how to specify V,g(q). In Ref. 8,
Eq. (7) was solved with the bare Coulomb interaction.
Neglect of screening overestimates the importance of
the exchange terms to the RPA. In this case the fer-
romagnetic transition occurs at an electron density of
r, = ~[9vr/4] 3 = 6.03. At the other extreme, if V,g(q) is
approximated by static screening of either the Thomas-
Fermi form or the static RPA form then the ferromag-
netic transition does not occur at all no matter how small
the electron density is made. For electron liquid den-
sities r, & 5, exchange and correlation effects become
increasingly important. The large depletion of density
in the vicinity of each electron diminishes the efIiciency
of screening in the particle-hole channel. We can ap-
proximate the effect of this by introducing a local field
surrounding each electron [1—G(q)] which modifies its in-
teraction with other electrons (see, for example, Ref. 11).
The RPA expression for the screened interaction between
electrons
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4 2/q~

1+ [4ire2/q2]yo(q, ~ = 0)

is replaced by the effective screened interaction,

(14)

1 + [4vre~/q~] [1 —G(q)]go(q, cu = 0)
' (15)

The local field [1 —G(q)] is small compared with unity
for q/kp & 1, reffecting the depletion of density around
each electron for distances smaller than the average in-
terparticle spacing.

Here we determine G(q) from the Monte Carlo numer-
ical simulation calculations of Ceperley and Alder. i We
write

2
G(q) =— (16)

where g(r) is the pair correlation function. At the low
densities with which we are working g(r = 0) can be set
equal to zeroi so that Eq. (16) has the correct limiting
behavior.

We have solved Eq. (7) exactly following the numer-
ical procedure described in detail in Ref. 8. We deter-
mined the spin-spin susceptibility y (q, u1) from Eq. (8)
and used Eq. (4) to determine the spin structure factor
S (q, ~).

The parameter q, is determined by the requirement that
the compressibility agrees with the value obtained from
Ref. 1. The large q behavior G(q) should be determined
by the requirement

lim G(q) = s [1 —g(r = 0)],

Fermi surface with momentum transfer 2kF. The un-
derlying physical reason is the sharp Fermi surface and
the change in the character of screening and correla-
tions when the scattering wave vector no longer spans the
Fermi surface. It has the same origin as the nonanalytic
structure in y (q, u = 0) found by Geldart and Rasolt. i4

Even in the case of dynamically screened interactions, the
long wavelength structure of the susceptibility was found
to be

y (q, a = 0) —yo(0, 0) = b'—q —b"q ln Iql +

where both b' and b" are finite. However, b"/b' (( 1 so the
nonanalytic q2ln

I q I
contribution is much smaller than

the regular q2 term and is not of practical importance.
The nonanalytic variation of y (q) at small q is also weak
in the present work and will not be further discussed.

The second observation is that our model predicts a di-
vergence in y (q = 0) at density r,' = 58 [see Eq. (18)].
Quader, Bedell, and Brownis found, using the induced
interaction model to determine Landau parameters, that
in the small g limit the buildup of spin fluctuations in the
particle-hole cross channel could suppress a second-order
phase transition to the ferromagnetic phase altogether.
@nader's results were for a system with finite range in-
teractions and it is not clear for our Coulombic system
whether this mechanism would still suppress the insta-
bility. It is even less clear that the mechanism would sig-
nificantly influence the paramagnon peaks occurring at
finite q and u. In He the paramagnon peaks are known
to persist [although the mechanism for this is thought to
be associated mainly with an enhancement of y (q) due
to an increase in the effective mass).

A. Static aspects III. RESULTS AND DISCUSSION

y (q, 0) m
~-o X'(q, 0) 8~ r'ks

2kp

dp ps~eii'(

(18)

Analysis of the long wavelength limit of y~(q, 0) formally
determines the small q structure to be

y (q, ~=0) —y (q~0, ~=0) = —bqz+

The derivation of this result follows the same lines as the
derivation of the self-consistent Hartree-Fock response
functions, 3 but a detailed examination shows that the
coefficient b has a weak logarithmic divergence, even
though the interparticle interaction is screened. This
singularity arises from electron-hole scattering across the

While in the present calculation our interest is centered
on the dynamic spin-spin correlations at finite q and a,
it is useful to make two observations about the static
properties of our model.

First, in the limit of small q Eq. (7) can be solved
analytically for ~ = 0 and has the solution

In the present calculation we are not interested in de-
termining the phase diagram for the system, but rather
the dynamic spin-spin correlations at finite q and cu well
inside the paramagnetic phase. We now present results
deduced from our full numerical solution of Eq. (7).

Figure 1 shows the spin structure factor S (q, w) at
r, = 20, 40, and 55 for q/kF = 0.1. Also shown is the
corresponding curve for the noninteracting case. Even
for r, = 20 there is already a large peak on the low-

energy side of the central peak for the noninteracting
case. This peak can be identified with the paramagnon.
As r, increases the paramagnon peak becomes sharper
and higher, and moves towards u = 0. It is interesting
that the paramagnon peak is observable at comparatively
high densities which are well above the density for the
ferromagnetic transition. This suggests that the system
exhibits dynamical ferromagnetic trends long before any
actual transition point is reached (see also Fig. 5). Fig-
ure 1(b) shows S (q, w) for q/k~ = 0.25, 0.5, and 0.75
atr, =55.

The dispersion of the paramagnon peak as a function
of q is shown in Fig. 2 for r, = 55. The gradient of the
dispersion is very Hat and the peak rapidly approaches
u = 0 as q goes towards zero. It is interesting to note
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FIG. 5. The Stoner parameter I as a function of r, /r,',

where r,' = 58 identifies the density at which our y (q) di-
verges.
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FIG. 4. (a) The static spin susceptibility y (q) for r, = 55
normalized to the noninteracting y (q = 0). The dotted line
is y ""(q) (see text). (b) I(q), defined by Eq. (22), for
density r, = 20, 40, and 55.

m

8vr25 ks
+s~efr (+) (23)

We note in Fig. 5 that I as a function of decreasing den-
sity initially increases rapidly and then more slowly ap-
proaches the critical value I = 1. Thus y (q, u) is en-
hanced over the noninteracting value for a wide range
of densities. This is the underlying cause of the persis-
tence of the paramagnon peak to densities so far away
from any spin ordered phase. To make this point clear
we note that in Fig. 5 I at r, /r,' = 0.6 is 10% less than

a spin density wave state. At large q, I(q) decreases,
falling off' as 1/q2. s

Setting I = lim~ o I(q, cu = 0), Eq. (18) provides us
with a straightforward analytic expression for the Stoner
parameter,

the critical value I = 1. This corresponds to a density
five times larger than the critical value.

IV. CONCLUSION

We have presented a parameter-free microscopic study
of paramagnetic fluctuations in the electron liquid
throughout the paramagnetic region of phase space. Our
results confirm the phenomenological Stoner model pre-
diction of the appearance of a paramagnon peak in the
spin structure factor 8 (q, u) for momentum transfers

~ q ~

& kF. The peak moves towards u = 0 as the transi-
tion is approached. We determine the Stoner parameter
I(r, ) as a function of density by using our calculated
value of y (q) at q = 0 in the Stoner expression. With
this I(r, ) the Stoner model is found to give a good rep-
resentation of our y (q, u) for q & 2A:~ and hu + 8m~.
We also find strong short-range spin correlations which
become particularly important at low densities. These
lead to a wave number dependent I(q) with strong q de-
pendence for

~ q ~

& 2A:~. This dependence is absent in
the Stoner model.

An interesting prediction from our results is that the
paramagnon peak persists up to unexpectedly high den-
sities where one would not a priori expect spin alignment
effects. This is clearly seen in the density dependence of
the susceptibility enhancement factor [I —I(r, )]
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