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Quantum Dynamics of Pseudospin Solitons in Double-Layer Quantum Hall Systems
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Pseudospin solitons in double-layer quantum Hall systems can be introduced by a magnetic field
component coplanar with the electrons and can be pinned by applying voltages to external gates.
We estimate the temperature below which depinning occurs predominantly via tunneling and calculate
low-temperature depinning rates for realistic geometries. We discuss the local changes in charge and
current densities and in spectral functions that can be used to detect solitons and observe their temporal
evolution.

PACS numbers: 73.40.Hm, 71.10.Pm, 71.45.–d, 73.40.Gk
The study of multicomponent Quantum Hall systems
[1] has been enriched by the discovery of a variety of new
phases. In double layers, the relevant discrete degrees
of freedom are labeled by the electron’s layer and spin
indices. At Landau level filling factor n � 2, recent
theoretical work predicted several interesting phases [2]
in which both layer and spin play a role; the existence of
these phases has been confirmed by experiment [3]. The
present study is on double-layer systems at filling factor
n � 1 [4,5]. At this filling factor, the low-energy electron
states are spin polarized and the system has a broken
symmetry ground state with spontaneous interlayer phase
coherence [6]. The rich phase diagram for these systems,
including the effects of in-plane fields, has been discussed
at length in Ref. [5].

It is useful to describe this system using a pseudospin
language [4,5] in which pseudospin up (down) refers
to an electron in the top (bottom) layer. The action is
that of a two-dimensional ferromagnet with a hard-axis
anisotropy and a Zeeman field perpendicular to the hard
axis [5]. The pseudospin configuration is specified by
the spherical-coordinate fields u�x, y�, which describes
the difference in charge density between the layers, and
f�x, y�, which describes the relative phase of electrons
in top and bottom layers. Phase solitons f0�x� exist as
solutions to the classical equations of motion [5]. In
this Letter, we address the quantum dynamics of such
solitons, predicting that, when pinned by applying gate
voltages, depinning occurs at accessible temperatures
predominantly via quantum tunneling. This system of-
fers a number of advantages for macroscopic quan-
tum tunneling studies, especially the possibility of using
gate voltages and in-plane fields in combination to con-
trol metastable-state placement. We also discuss several
local properties which can be used to detect solitons and
observe their temporal evolution.

Neglecting for the moment the effect of in-plane
fields, the leading contributions to the imaginary-time
effective action for the pseudospin field m�r, t� �
�sinu cosf, sinu sinf, cosu�, in the presence of both
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tunneling and gates, is given by [5]
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The first term is the Berry phase, conveniently expressed
as �m ? A � �f�1 2 cosu�. The gradients are the ex-
change terms, with r the pseudospin stiffness. The term
involving b0 is a hard-axis anisotropy and, in the follow-
ing term, t is the tunneling amplitude which acts as an
in-plane pseudofield. Finally, V �x� is the gate potential
which can be adjusted in situ for appropriately fabricated
double-layer samples. The local filling factor for each
layer is n1 � �1 1 cosu��2, n2 � �1 2 cosu��2, with
the total filling factor n � n1 1 n2 � 1. The parame-
ters r and t in Eq. (1) depend on mz . We require their
expansion to quadratic order in q � u 2 p�2, r�mz� �
r0 1 r1q 2, and t�mz� � t0 1 t1q 2, and shall use the
Hartree-Fock results [7] r1 � 2r0 and t1 � 2t0�2.

We limit our attention to finite-width �w� systems for
which the soliton physics is particularly simple. The
flexural bending mode [8,9] of a soliton in the x direction
of a two-dimensional system has a spectrum given by
e�ky� � 4p�2ky

p
r0�2b0 1 r0k2

y�, where ky is the trans-
verse wave vector. The finite-size gap of these modes
can be estimated by setting ky � p�w. For a given
temperature T , the quasi-one-dimensional limit results if
flexural modes are frozen out, i.e., if the transverse sample
size is smaller than [9] w�T � � �p�t� ��r0�b0� �1 1p

1 1 t2 ��1�2, where t � kBT�4p�2b0. For the sample
parameters we give below, w�1 K� � 718 nm, whereas
w�100 mK� � 7 mm. Assuming the transverse sample
size to be less than this value, we can trivially integrate
over the y direction.

The estimates for the tunneling rates given below
are based on the following [10] parameter values:
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2p�2b0 � 2.3 meV, r0 � 0.024 meV, t0 � 0.1 meV,
and � � 11.8 nm. We limit our attention to the regime
V �x� ø 2p�2b0 and look for solutions to the equations
of motion with u � p�2. For V �x� � 0, the solution
f0�x 2 X� � 4 arctane6�x2X��d satisfies the equation
of motion, where d �

p
2pr0�t0 �. The solution f0

describes a static 2p soliton with width d centered at
position X. The pseudospins rotate in the xy plane by
2p as we move through the soliton, beginning and ending
at f0�6`� � 0, 2p . Quantum effects are incorporated
by expanding about this classical solution, and dynam-
ics is described through a canonical transformation to
collective coordinates as we discuss below [9]. We
include the effects of the gates self-consistently by sub-
stituting the soliton solution �u, f� � �p�2, f0� into the
full action. This is valid so long as the soliton energy
Esoliton � 8Lyr0�d is much larger than the effective
potential.

Expanding to quadratic order in q �x, t� � u�x, t� 2

p�2, and performing the functional integral over q (in
the partition function), we obtain
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where c � 2p�2p8b0r0 is the spin-wave velocity. This
equation is valid for t0�2p�2b0 ø 1 and 4r0�d2b0 ø
1. For the parameter values given above, t0�2p�2b0 �
0.04 and 4r0�d2b0 � 0.17.

To describe motion of the soliton, we perform a
canonical transformation to collective coordinates. This
entails elevating X to a dynamical variable [9,11],
X ! X�t�, and introducing a constraint to preserve
the degrees of freedom. We thus write f�x, t� �
f0�x 2 X�t�� 1 w�x 2 X�t�, t�, and expand to
quadratic order in w, where f0 now describes a
moving soliton and w describes a dissipative spin-
wave field, which is required to be orthogonal to the
zero mode of the soliton field. We incorporate this
constraint, explicitly given by

R
dx f

0
0�x�w�x, t� � 0,

via the Fadeev-Popov technique. Briefly, the proce-
dure [9] is to insert into the functional integral the
identity

R
DXd�Q� det�dQ�dX� � 1, where Q�X� �R

dx f
0
0�x 2 X�f�x,t�. We then expand to second order

in both w and �X�c. For the bounce solutions considered
below, j �X�cj # 0.26. This yields a description of the
solitons, the spin waves, and the dynamic (nonlinear)
coupling between them.

Integrating over the spin waves, and including the gate
potential, yields an action corresponding to a particle
(soliton) at position X, with bare mass M, moving in a
potential Ṽeff�X�, with dissipation described by a nonlocal
1412
kernel K�t�:
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For low temperatures �kBT ø h̄v0 � 2h̄c�d�, the kernel
is given by K�t� � �1�p�

R`
0 dv J�v�e2vjtj. The spec-

tral density J�v� � �v�v0d2�
p

v2 2 v2
0 Q�v 2 v0�

vanishes for v , v0 (Q is the step function), and
the kernel K�t� is exponentially suppressed for
jtj . 1�v0. In the parameter range we are interest in,
kBT ø h̄vb ø h̄v0 (vb is the bounce frequency—see
below), we can expand X�t� 2 X�t0� � �t 2 t0� �X�t0�,
and the effect of damping reduces to a renormalization
of the soliton mass M. This additive renormalization is
intensive with respect to the transverse length Ly of the
sample [12], whereas the bare mass is extensive (propor-
tional to Ly), and so we shall not consider this additive
piece in what follows. For the estimates we give below,
vb�v0 # 0.11, and kBTC�h̄vb � 0.47, 0.16, 0.13, and
0.13, respectively, for the entries listed in Table I, where
TC is the crossover temperature (see below).

To leading order, the bare mass is given by M �
h̄2Ly�4p2�4b0d, and the effective potential by

Ṽeff�X� �
23Lyr0

8�2p�2�2b
2
0

Z `

2`
dx V 2�x� �≠f0���x 2 X�t�����2.

(4)

This effective potential can be understood in terms of the
change in the classical soliton energy density when the
mz � 0 values for t and r in Eq. (1) are replaced by their
values at mz � 2V �x��4p�2b0, i.e., when the pseudospin
polarization produced by the bias potential is accounted
for. In Eq. (3), we have neglected phase terms [9]. All
such terms vanish for incoherent tunneling, as in the case
of tunneling out of a metastable state considered below.

To obtain an explicit expression for Ṽeff, we should
specify the form of the gate potential V �x�. We choose two
simple square wells. One applies a gate voltage of 2V1

TABLE I. Tunneling rate G, crossover temperature TC , and
attempt frequency v0 for several gate widths w1, gate separa-
tions 2x0, and sample sizes Ly . All entries have w2 � 400 nm,
V1 � 20.75 meV, and V2 � 21.00 meV, except for the final
entry, which also has V1 � 21.00 meV.

Ly w1 2x0 v0 TC

�mm� [nm] [nm] [GHz] S0 G [mK]

0.3 100 100 36 12.0 93 kHz 150
0.6 100 50 36 12.5 66 kHz 267
1.0 50 25 187 8.9 63 MHz 367
1.0 20 20 448 5.3 19 GHz 463
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over a width w1, 2V2 over a width w2, and zero voltage
elsewhere. The inside edges of the gates are distance
2x0 apart. This yields an effective potential explicitly
given by

Ṽeff�X� � y

2X
i�1

�21�iV 2
i �tanhx̄i 2 tanh�x̄i 2 w̄i�� , (5)

where y � 23Lyr0��2�2p�2�2db
2
0�, x̄i � �X 2

�21�ix0��d, and w̄i � �21�iwi�d. Self-consistency
demands that Esoliton ¿ Ṽeff, which places an upper
bound on the gate voltage of V max

i � 2.3 meV.
We will consider tunneling out of metastable states.

Once a soliton tunnels out, it does not return. We
therefore put jV1j , jV2j and w1 ø w2. The potential
is schematically shown in Fig. 1, with the coordinates
shifted as outlined below. The objective is to calculate
the tunneling rate out of this metastable state.

It is helpful to shift coordinates so that the metastable
minimum is now at the origin and Veff�0� � 0 (see Fig. 1).
There is a frequency v0 �

p
V 00

eff�0��M associated with
the curvature of the metastable minimum, and a frequency
vb �

p
V 00

eff�Xb��M associated with the barrier. The tun-
neling rate is given by G � Kv0�S0�2p�1�2e2S0 , where
K is a constant whose calculation requires explicit knowl-
edge of the bounce trajectory. The exponent S0 is the
action evaluated along the minimal (bounce) trajectory,
which goes from X � 0 to X � Xe and back to X � 0,
while t goes from 2b�2 to 1b�2, with b ! `. The
crossover temperature TC defines the boundary between
thermally dominated transitions �T . TC� and tunneling-
dominated transitions �T , TC�. Both transitions show
exponential behavior and one usually assumes that the ex-
ponent dominates the prefactor, leading to the expression
kBTC � Veff�Xb��S0.

The tunneling rate, along with the results for the
crossover temperature TC , the classical action S0, and the
attempt frequency v0 are listed in Table I for various gate
voltage profiles and transverse sample sizes. These en-
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FIG. 1. Effective potential produced by the gate voltages in
the “metastable” configuration. The inset shows the “bare” gate
potential.
tries were evaluated using the typical model parameters
quoted earlier which yield a soliton width of d � 14.5 nm
and a bare soliton mass of M � m��0.44Ly���, where m�

is the conduction band effective electron mass in GaAs.
We conclude from Table I that voltage profiles for which
quantum tunneling will dominate at accessible tempera-
tures are achievable with current submicron lithographic
technology.

There are at least three properties of pseudospin soli-
tons which should make their existence and their motion
experimentally observable: Moving solitons disturb the
charge balance between the layers; there exists a local
electrical current circulating about the axis of the soli-
ton; and the local quasiparticle gap is suppressed in the
vicinity of the soliton. These local changes can be de-
tected, respectively, by electrostatic, magnetic, and tun-
neling probes of the 2DES. We discuss each briefly.

That moving solitons transfer charge between layers
may be seen by revisiting the classical equations of motion
for the action in Eq. (1) and trying to find moving soliton
solutions. Proceeding in powers of y�c, where y is the
soliton velocity, and c is the spin wave velocity in Eq. (2),
we write ucl�s� � p�2 1 �y�c�u1�s� 1 O�y2�c2� and
fcl�s� � f0�s� 1 �y�c�f1�s� 1 O�y2�c2�, where f0�s�
is the previous solution for the static soliton, and s �
x 2 yt is the coordinate of the moving frame. Note that
this ansatz satisfies the equations of motion exactly for
y � 0. To linear order in y�c, we find that f1�s� � 0,
while

u1�s� �
6�c�2d� sech��s 2 s0��d�

�a2b0 1 t0� 2 6t0 sech2��s 2 s0��d�
. (6)

The local charge transfer produced by the passing soliton
is related to the charge transfer produced by the static bias
potential which, by virtue of the difference in layer en-
ergies it produces, gives the same rate of change of the
interlayer phase f. This results shows that, whereas a
static soliton pseudospin rotates entirely in the xy plane,
a moving soliton pseudospin rises out of the plane by
an amount proportional to the velocity as it undergoes its
2p rotation. This is analogous to closely related models
of anisotropic ferromagnets where exact moving soliton
solutions are available [13]. In physical terms, a mov-
ing soliton transfers charge between the layers, altering
the electric potential profile outside of the sample, which
can be measured using a scanning single-electron transistor
[14]. The total transferred charge for a soliton is given by
Qe � Lyne

R
dx cosucl � 7penLy� �X�c�

p
2r0�b, with

corrections of order � �X�c�2 and t0��a2b0�, and where
n � 1011 cm22 is the electron density. Using the parame-
ter values given above, a system size of Ly � 600 nm, and
taking for �X the maximal velocity along the bounce trajec-
tory, we obtain jQej � 2e. This value can be increased
either by inducing a larger soliton velocity, or by going
to a larger sample. These charges should appear, for ex-
ample, as a soliton tunnels from a metastable state.
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Currents, much like those near a vortex in a super-
conductor, circulate around the axis formed by a soli-
ton line and produce a magnetic field which could, in
principle, be measured. The microscopic operator for
the current flowing between layers is the time deriva-
tive of the layer-polarization operator in the Heisenberg
representation. The only contribution to the commu-
tator comes from the interlayer tunneling term in the
microscopic Hamiltonian, and is proportional to the op-
erator for the ŷ component of the pseudospin. Taking
its expectation value, we find for the 3D current be-
tween the layers (with the bottom to top layer direction
taken as positive) jBT �x� � 2t sin�f0�x���h̄2p�2. Cur-
rents flow in opposite directions on opposite sides of
the soliton. The currents flowing in the bottom �B� and
top �T � 2D layers are oppositely directed and given by
[5] jB�x� � 2jT �x� � r≠f0�h̄. For a stationary soliton
these currents satisfy the local charge conservation con-
dition djB�x��dx � 2djT �x��dx � jBT �x�. The current
per unit length flowing around the soliton is �er�h̄d and
the characteristic loop area of the circulating currents is
�dd where d is the layer separation. For typical pa-
rameters, these currents produce a magnetic induction di-
rected along the soliton axis with magnitude �0.1mB��2d,
which could, in principle, be detected by a SQUID or with
cantilever-based [15] magnetometers.

Microscopic calculations can also be used to evaluate
the local gap for charged excitations as a function
of position near a stationary soliton. We find [16]
that the local gap is always reduced near the soliton
center and is given by Egap�x� � Egap�`� 2 4t	1 2

cos�f0�x��
. This change in spectral properties might be
visible in scanning tunneling probes of 2DES’s. This gap
suppression is local and will increase the local thermally
activated quasiparticle resistivity rxx at the soliton center
by a factor of exp�8t�kBT � � �10�T �K�� which can easily
be very large. When a soliton tunnels away from a region
defined by a set of voltage probes, we can expect a large
signal to be seen in the conductances measured by those
probes.

In all of the above, we have assumed the external
magnetic field was oriented perpendicular to the layers.
But this need not be the case, and it may in fact be
preferable to add an in-plane component to the field. In
the presence of an in-plane field Bk � �0, 2Bk, 0�, the
energy [10] of the soliton is lowered and is given by
Esol � Lyr0�8�d 2 4p2dBk�F0�, where F0 is the flux
quantum. The benefit, in the present context, of an in-
plane field is that it may be used to thermally create
solitons at arbitrarily low temperatures and thus ensure
that solitons exist in the sample.

In summary, we have shown that pseudospin solitons
may be pinned and manipulated by applying external
gates to the system. One can extend the analysis to the
case of a double-well potential, which should exhibit an
externally tunable tunnel splitting, and to the case of a
periodic potential. The physics in the latter case should
1414
be driven by Berry and topological phases, and should be
strongly affected—and possibly controlled—by the gate
voltages. This opens the door to a variety of Aharonov-
Bohm-type investigations, as well as soliton delocaliza-
tion and band formation [9]. We have also shown that
solitons have an electrical current circulating about their
axis, that the local quasiparticle gap is suppressed in the
vicinity of the soliton, and also that soliton motion in-
duces a local charge imbalance between the layers. These
properties may provide a means through which the soliton
dynamics can be experimentally probed.
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