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We study the quantum dynamics of solitonlike domain walls in anisotropic Sphains in the presence of
magnetic fields. In the absence of fields, domain walls form a Bloch band of delocalized quantum states while
a static field applied along the easy axis localizes them into Wannier wave packets and causes them to execute
Bloch oscillations, i.e., the domain walls oscillate along the chain with a finite Bloch frequency and amplitude.

In the presence of the field, the Bloch band, with a continuum of extended states, breaks up into the Wannier-
Zeeman ladder—a discrete set of equally spaced energy levels. We calculate the dynamical structure factor
S*4q,w) in the one-soliton sector at finite frequency, wave vector, and temperature, and find sharp peaks at
frequencies which are integer multiples of the Bloch frequency. We further calculate the uniform magnetic
susceptibility and find that it too exhibits peaks at the Bloch frequency. We identify several candidate materials
where these Bloch oscillations should be observable, for example, via neutron-scattering measurements. For
the particular compound CoLPH,O we estimate the Bloch amplitude to be on the order of a few lattice
constants, and the Bloch frequency on the order of 100 GHz for magnetic fields in the Tesla range and at
temperatures of about 18 KS0163-18208)06933-1

I. INTRODUCTION indeed occur. This confirmation comes from the detection of
the coherent radiation emitted as ensembles of electrons ex-
Bloch oscillation$ 3 of a quantum state in a periodic one- ecute BO’s! There is also work which directly measures the
dimensional structure can be characterized assmillatory  physical displacement of electrons in superlattices as they
response to @onstantforce. The phenomenon is a remark- oscillate®
able example of the counterintuitive nature of quantum me- The search for BO’s has not been limited to electrons.
chanics. Not only does the particle oscillate in response to Recently, the effect was observed with ultracold atoms
static and homogeneous force, but the amplitude of the ogplaced in an optical standing wabeThe standing wave
cillation is inversely proportional to the magnitude of the served as the periodic potential, and a force was simulated by
force. accelerating this periodic potential. The momentum distribu-
The prototypical system in which to observe Bloch oscil-tion of the atoms had the time dependence expected from the
lations (BO’s) has historically been a band electron in antheory of BO's.
external electric field~2 In the absence of inelastic scatter-  Current studies of BO’s are moving beyond the establish-
ing and interbandZene) transitions, the electron, in mo- ment of their existence. In atom-optical systems, BO's are
mentum space, continually traverses the Brillouin zonebeing used to test other aspects of quantum theory. For ex-
Upon reaching a zone boundary, the electron is reflected tample, nonexponential decay of unstable systems was very
the opposite boundary and thereby reverses its momenturrecently observed in the same systems used to observe BO’s
In real space, the motion is likewise periodic—a constan@ind the Wannier-Stark laddéin electronic systems, BO’s
force thus produces oscillatory motion. But the existence ofire being studied as a means of producing fast emitters of
BO’s has been controversial ever since its theoretical predicsoherent radiation. The radiation emitted by the oscillating
tion many decades agRef. 2 contains an early revigwrhe  charges can be tuned over a wide range of frequencies sim-
controversy surrounding the theory was largely concerne@ly by changing the electric-field strength. Typical wave-
with the use, or rather the misuse, of Bloch’s theorem inlengths are in the submillimeter range.
systems where the lattice periodicity was explicitly broken An entirely different class of systems in which such co-
by a constant external field. Experiments were not conclusiverence phenomena can be expected are magnetic systems,
because, in these early times, bulk solids were the only syswvhich brings us to the main subject of this work. It has been
tems available. Their bandwidths, however, are typically togointed out recently that BO’s should exist in purely mag-
large, the lattice constants too small, and the inelastic scatietic systems—in the quantum dynamics of domain walls
tering so frequent that the phase coherence of the particith solitonlike behaviof. This proposal for magnetic BO's
state, essential for the existence of BO's, is rapidly dewas based on a semiclassical treatmefithe quantum dy-
stroyed. namics of extended domain walls moving in a periodic po-
However, with the advent of semiconductor tential and containing a large number of spimsvith s>1.
heterostructures—in particular layered superlattices withn the present work, we shall extend this investigation to the
large lattice constants, and thus small bandwidths, which alfully guantum-mechanical regime of anisotropic spin-
low many coherent BO'’s before phase coherence is lost—thehains and demonstrate that BO’s occur in the quantum dy-
debate about BO’s seems to be settled. Recent experimemamics of elementary excitations such as spin solitons. Such
now provide convincing evidence that BO's of electrons carsolitons represent the extreme limit of a magnetic domain
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wall with a width of only one lattice constant. In contrast to (FM's) or negative (AFM’s), with |J?>|J*Y|. Thus, the
the cases mentioned abotgectrons and atomsmagnetic  (Ising) easy axis is along the axis. In systems with such a
BO’s are an inherently many-body effect. The soliton motionstrong easy axis, domain walls, or solitofwe shall use

is a cooperative phenomenon resulting from spin-spin interthese terms interchangeajlyare well defined. At suffi-
action. Nevertheless, we will see that magnetic BO’s shareiently low temperatures, the system is in its ground state:
many properties with their electronic counterpart. ferromagnetic order for FM’s, and Meorder for AFM’s.

A remarkable feature of magnetic BO'’s is that they giveThe excitations consist of domain walls. In a pure Ising chain
rise to oscillations of the magnetization at a Bloch frequencyJ*=J¥Y=0) with zero field p;=0), the spectrum consists
which can be continuously varied by an external magneti®f discrete energy levels, where each level corresponds to
field. Thus, besides being of fundamental interest, BO's obtates with a fixed number of domain walls. If, as is usually
magnetic solitons may also prove relevant for applicationghe case, there are additional exchange couplings in the di-
since they provide a natural source ofagnetic dipole  rections transverse to the Ising axi# 0 or JY+0), then
radiation—typically in the microwave regime. the degeneracy is lifted. The energy spectrum consists of a

The outline of this work is as follows. In the next section, series of continua separated by gaps. Each continuum con-
we define and discuss the one-soliton approximation in theists of states with a fixed number of domain walls. The
presence of a magnetic fiell applied along the easy axis, one-soliton approximation considers only the lowest band
thereby extending the zero-field results obtained previouslynd neglects all transitions to higher bands.
for antiferromagnetf (AFM's) and for ferromagnets The spectrum described in the preceding paragraph has
(FM's).** We show that the externd field localizes the been verified numericall§ for the anisotropix-y model; for
eigenstates of the Bloch band and discretizes the spectrugery large anisotropynear the Ising limix, isolated bands
into a set of equally spaced levels which we call thewith large gaps were observed, with the gap tending to zero
Wannier-Zeeman ladd€WZL), in analogy to the Wannier- as the isotropic limit was approached. The one-soliton ap-
Stark ladder in electronic systems. We mention several spiproximation was used by Villai in his pioneering work on
models capable of supporting BO’s, but our main focus is orspin- solitons in Ising-like AFM chains. The result of his
Ising-like FM chains with biaxial anisotropy—a model calculation—the existence of a dispersive soliton m¢itie
which accurately describes compounds such™ as Villain mode) below the two-particle continuum—was fur-
CoCl-2H,0. We then go on to discuss the spin correlationther verified by theoretickt and numericaP work, inelastic
functions and calculate the wave vector and frequencyneutron-scattering experiments on the Ising-like AFM’'s
dependent dynamical structure fact&fqq,w) for two  CsCoC} (Refs. 16,17 and CsCoBy (Refs. 18,19 as well as
cases: zero and finite magnetic fields. For finite magnetielectron-spin resonané&nuclear magnetic resonanteand
fields, the structure factor consists of peaks at frequenciespticaf? experiments.
corresponding to integer multiples of the Bloch frequency. Analytic work guided by physical reasoning, exact nu-
These frequencies are typically in the GHz range. This resulinerical work on finite systems, and experimental work on
means that, for example, neutron-scattering measurementsal physical systems all point to the existence of the Villain
on samples in thermal equilibrium can be used to observe theode and thus justify the one-soliton approximation. What
WZL. In zero magnetic field, we obtain a structure factor forthen are the conditions necessary for the Villain mode to
FM’s that is very similar in form to the one obtained for exist? Two conditions should be met. First, a large easy axis
AFM’s,*® apart from a wave-vector dependence that reflectss required; the system must be near the Ising limit. This
the difference in magnetic ordering between FM’'s andensures not only that domain walls are well-defined excita-
AFM’s. After a brief digression on thB8—0 limit, we turn  tions, but also that states with different numbers of domain
to an investigation of specific materials which are promisingwalls are well separated in energy. Second, the domain walls
candidates in which to observe BO of magnetic solitons. Wenust have dynamics. It is the dynamics of the domain walls
focus on one particular Ising-like F#,CoCL-2H,0, which  which induce the band structure. In a pure Ising chain, for
appears to be the best characterized of the ones we haegample, a localized domain wall is an eigenstate of the
identified. Other materials, though less well characterizeddamiltonian and therefore has no dynamics. The Villain
are potentially better candidates. Finally, we close with amode does not exist in pure Ising chains.
summary of the main results, along with an outlook on future  Most of the existing work has focused so far on AFM'’s,
directions. and only recently has it been pointed out that dispersive soli-

ton modes can also exist in Ising-like FM(®ef. 11 and
Il. THE ONE-SOLITON APPROXIMATION other spin chains, as discussed next.

In the following we concentrate on one-dimensional
Ising-like magnets with nearest-neighbor exchange interac- A. Primary model
tions J* and in the presence of a magnetic fiek
=gugB,. The general anisotropic spin Hamiltonian is given

by

In view of the candidate materials to be identified in Sec.
IV, we focus mainly on spirfk FM’s with a Hamiltonian
given by Eq.(1) with J*>0.! We consider a static and
homogeneous fielth along thez axis (the Ising direction

H= —% (J*SSh; 1+ bRSy), (1) and rewrite the Hamiltonian in a more suggestive form:
wheren denotes lattice sites an# denotes Cartesian coor-
dinates. The exchange constani§ are either positive H=H'+H3+H"', (29
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1. Semiclassical solution

I z Z QZ Z

H=-J ; ShSh+1 b; Sh (2b) We will first consider the known physics in zero external

field in order to make contact with previous work on

1 . AFM's, ' FM's, !t as well as with semiclassical derivations

He=— Z(JX—Jy)E ($7Sh+1+tSSii1), (20 of BO's. Forb=0, and with periodic boundary conditions,

" the eigenstates of E¢5) describing the soliton are extended

1 Bloch states labeled by the wave veckor
Hi=— 2 (P2 (578145 S, (20 .

VNiot

q—|ere, we have set the lattice constanequal to one. The
periodic dispersion relation resulting from these eigenstates
is given byt

k,Q)= ; M m,Q). (6)

where S, =S} =iS), are the usual raising and lowering op-
erators. In preparation for the one-soliton approximation, wi
introduce the one-soliton statélsn,Q)}, defined by

mD=]- 1T, Im=1)= ) @

The right-hand sides are expressed in #idasis. Herem
=0,£1,£2,... denotes the soliton positiorm=0 corre- . ) I
sponds to the center of the spin chaiand Q= *1 is the This '|s the ferr(_)magnetlc anal_og_ (?f Villain’s resditfor
charge of the soliton. We can define the soliton Qosition,AFM s. As mentioned below, Villain's result for the band-
charge, and translation operatoréi— O, and T, width A contains the sum, rather than the difference, of the
respectively—as transverse cc_)uplmgs. o ,
Semiclassically, we can reproduce the derivation of BO’s
ﬁ1|m,Q>=m|m,Q>, as it is given in conventional electronic treatmet3In the

absence of scattering, the effect of the field-dependent term

1
E(k)=5J%+2A cog2K). )

A _ bQmin Eq. (5) is to drive the soliton through the band. The
QIm,Q)=QIm,Q), () velocity v (k) of this motion is found by differentiating Eq.
A B (7) with respect tk. On the other hand, the wave vector

Tolm,Q)=[m+n,Q), acquires a time dependence through the fdfeehik=b/a.

where andQ are Hermitian operators, whereggis uni-  Integratingv (k(t)) over time then yields the semiclassical
tary with Tt=T . Bloch oscillations. Ifx(t) denotes the soliton position, then
=T,

The one-soliton approximation is tantamount to consider- 1
ing our system as containing one domain wall and discarding x(t) =const- = Agcog wgt), (8)
those terms in Eq(2) which create additional solitons. For 2
example,H* in Eq. (2d) should be discarded because theseyith the Bloch amplitudeAg and the Bloch angular fre-
terms will always create solitons, bdt" in Eq. (2¢) contains  quencywg given by
terms which translate the soliton by two sites, which will be
identified with T, and T}. Projecting Eq.(2) onto the one- Ag=4Aalb, hwg=2b=2gugB. €)
soliton subspace, we therefore obtain

2. Quantum solution (Exact)

Hl-soI:£J2+A(T2+T72)_me, We can compare the above semiclassical derivation of
2 BO’s with a fully qguantum treatment by keeping a nonzero
magnetic field in the Hamiltonian right from the outset. For a

A=(J=J914, (5 spin4 chain withN,=2N+1 sites, and witth>0, we can

where we have dropped the hats over the operators, and a%actly diagonalize E5) to yield energy eigenstates

measuring energy relative to the fully polariz€drromag- N

netic state. The bandwidth is different from zero only if |Em)= > Cmdn), (109
Jx#Jy, in contrast to AFM'’s or alternate field configurations n=-N

(see below. In what follows, we shall work in a fixed charge -
sector. ThusQ is effectively a constant and we will s& _ 1+ (=D _
= —1 to be definite. Equatiofb) is then formally equivalent Crnn=(n|Em) = 2 Jm-ny2( @), a=Alb,

to a single-band tight-binding model of an electron in an (10b)

external electric field. Solitons play the role of electrons, and hered. is the ordi B | functi f ord d
a magnetic field the role of the electric field. We can now goW ereJy, 1S the orginary Besset function ot ordafand we
ve dropped the lab&= —1 in the state vectors. The state

on to discuss the eigenstates and energy spectrum, both . ) . N
g dy sp m IS localized about the lattice siten in the sense that

which are qualitatively very different in the finite- and zero- !, - )
field regimes, respectively. Bloch oscillations can be derivedM, .(N[Em=0 for arbitrary m. We have thus chosen

either semiclassically from the zero-field solution, or fully vanishing boundary conditions—a reasonable choice for lo-
guantum mechanically from the finite-field solutions. We calized states. The degree of localization is given by the
discuss each of these in turn. argument of the Bessel functi¢eee Eq(14) below]; strong
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fields act to localize the states. For exampley-if:, then  the chain. The correction terms can hence be considered sur-
a—0, and only then=n term contributes to the sum in Eq. face effects which become negligible in the thermodynamic
(10) sinceJ,(0)= 6, 0. The eigenstate is therefore strongly limit.
localized. As the field decreases, the wave packet spreads. More severe problems arise in the limit of vanishing field
The eigenstates at finite are Wannier-like states and are (a«—). In this limit, the above asymptotic form of the
thus qualitatively different from the extended Bloch states aBessel functions cannot be used since rmmth the order of
zero field. This difference is also reflected in the energythe Bessel functionN) as well as its argument<1/b?)
spectrum: diverge. The appropriate asymptotic form fh(«) depends

on the ration/«; for both a—o and n—o (with n>«

HisolEm)= 2 Crnnl A(IN+2)+|n—2))+bn|n)] >1), we havé*

2
eV o,

1 1 1/4
:E [A(Cm,n—2+Cm,n+2)+bncm,n]|n> Jn (@)~ l—( )
n 27 2

n’—a

a "
n++/n%—a?

(15
[n)

2{m—-n
22 AE > ChnntbnCqp

This expression reduces to E44) in the limit n> a.ZEquza-
_ _ tion (15 shows thatJ,(a) is negligible only if |n®—a?|
bm; Craln)=bm{En), (1 >1. This effectively implies that no matter how large the
system size becomes, there will always be a field sufficiently
small, such that the present framework fails. In practice, this
E —b becomes problematic only when discussing the “Villain
m=bm. (12 limit” - . ; . !
imit” of vanishing field, where, in any case, soliton colli-
The important first term on the third line in E¢L1) was  sions must explicitly be considerédee below:
obtained using the Bessel function iderffty Another approach is to compare the analytic spectrum
23,-1(2)+23,,1(2)=2v3,(2). The spectru{E,} is dis- E,=bm with that obtained by numerically diagonalizing fi-
crete It consists of a series of equally spaced levels with amite chaingusingH;_g,). In Fig. 1(a), we plot the results for
energy-level spacing given iy, The analog of this spectrum b/A=3. This shows that for such fields, our analytic expres-
for electronic systems, which has been observedions are quite good and can be used with confidence. By
experimentally’® is known as the Wannier-Stark ladder. contrast, Fig. (b) shows a comparison of numeric and ana-
Hence, for magnetic solitons, the term Wanrfeemarlad-  Iytic results forb/A=5/N. We see here that the width of the
der (WZL) seems appropriate and we shall adopt this termboundary layer has increased greaflyhe boundary layer

and thus

below. consists of those points which deviate substantially from the
The stateg|E,,)} are exact eigenstates only up to bound-linear analytic result. In Fig. (&), the boundary layer is not
ary terms: discernible] The boundary layer is not a function bff. It is

a function ofb. As N increases wittb fixed, the boundary
H1.sol Em)=bm|Ey,) +boundary terms, (138  layer therefore becomes less and less important. Neverthe-
less, asb tends to zero, the boundary layer increases until
eventually the present framework of localized eigenfunctions
Jime= N+ 22 @) | £N). (13p  must be abandoned. This is our first indication of the prob-
lems associated with the—0 limit. We shall return to this
For largeN and finiteb (hence finitea), these boundary limit below in connection with the calculation of the dynami-
terms are negligible contributions. The soliton dynamics areal structure factor. For most of this paper, however, we shall
not expected to depend on the boundary conditions for sufeonsider either sufficiently large fields such that Fign) is
ficiently large chains, especially since the soliton eigenstatethe relevant scenario, or zero fields, where a dispersive mode
|E,,) are strongly localized by the field. For=|m—N|/2  with Bloch-like extended states is the correct description.
>1, and fixed, finitex, the Bessel function in Eq13b) can  These are the two experimentally relevant regions within the
be replaced by its asymptotic foffn one-soliton approximation.
Assuming a sufficiently large fieldin the sense of the
1 a\” previous paragraphand neglecting surface effects, the spec-
In(a)~ 2o 5 (n>1), (14 trum of Eq.(5) is the WZL, E,,=bm. The presence of the
magnetic field thus destroys the continuous band structure of
and therefore decays as ", providedthe argumentr re-  Eq. (7) and replaces it with an evenly spaced ladder of en-
mains fixed at some finite value.\f>1, and assuming is  ergy levels, with the spacing between adjacent levels given
indeed fixed, then the correction terms in Ef3) can be by b. How are BO’s manifested within this fully quantum-
neglected so long as the center of the eigenstate wavepackatchanical framework? To compare with the semiclassical
is not near the boundaries of the chain. Exact numerical diresult of Eqs.(8) and (9), we should specify an initial state
agonalization of finite chainésee below indicates that the and compute the expectation value rof as a function of
states{|E,,)} can be considered eigenstates everywhere exime. Let us keep the initial state arbitrary and write
cept at a smallb-dependent boundary layer on either end of|#(0))==,Cy|Ery. Then,

where a typical boundary term is given by
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400 p———— T : ] twice the energy between adjacent states. This is a result of
a0 | (Q) : the fact that Eq(5), with b=0, contains an intrinsic period-

‘ ] icity of two lattice constants, which also accounts for the fact
that the Brillouin zone is halved, as shown by Ed). This
effect can be understood semiclassically in terms of the
Berry phase of the spins and is a result of the spin pé&site
Ref. 9 for more details

Finally, we note that BO’s are a many-body effect which
should be distinguished from Larmor precession of un-
] coupled spins in an external field. The former yields an os-
g cillating magnetic moment along the direction of the applied

200 |

100 +

Energy ( Em/2)
(-
1

—%— Numeric
—&— Analytic

00 £ L ‘ L field whereas the latter yields oscillations in directions trans-
100 .50 0 50 100 verse to the field.
8 : : : ; We have focused on biaxial FM’s because the materials

we have identified as candidates for observing BO’s are all
biaxial FM’s. In the next subsection, we show that BO’s of
magnetic solitons can also exist in uniaxial FME € JY) if

T Lt the field is tilted away from the Ising axis. We also show that
S BO'’s exist in anisotropic AFM’s if an inhomogeneous field
T °r is applied.
o
u W B. Other models
. ¢ i,’:::};{.': _ 1. Ferromagnets
B’ . ‘ . It is not necessary to have a biaxial FM in order to create
“100 50 0 50 100 BO's. In fact, a uniaxial FM §*=J¥) may be preferable

Lattice Site ( m) because the bandwidth can then be externally controlled. For
example, consider Eq(l) with ferromagnetic couplings,
FIG. 1. (@ Comparison of numerical and analytical results for \yith J*=JY, and with a homogeneous magnetic field along
the energy spectrum of Ed5) for moderate field values. Only both thex andz axes ¢ is still the Ising axi$. The Hamil-
every fifth energy level is showiiThere is one level at each integer tonian is almost the same as H8); the differences are that

valug ofm.) For such fields, the anglytlc spegtrm:bm is es- H2 now vanishes(becauseJX:Jy) and there is a new term
sentially exact(b) The same plot as ifa), but with a much smaller . - . . -
coming from the field in the direction:

field. Here, about 20% of the points show significant deviation be-
tween the analytic and numerical results. Bscontinues to de- 1
crease, this boundary region increases. For such low fields, the sys- Ha' = — —bXE (Se+S,). (17)
tem exhibits approximate translational invariance and so a N

momentum representation becomes more appropriate. This term gives hopping by one site. The one-soliton Hamil-
tonian is
(m(t))=(g(t)|m| (1)) L1
M == di— o bX(T+T_;)—b*Qm, 18
:z m|Cm|2— %ABRe{eintz C;*nCm_z , 1-sol 2 2 ( 1 1) Q ( )
" " which is practically identical to Eq5). Thus, uniaxial FM'’s
(16) exhibit the WZL if the external field is tilted away from the
Ising axis. The important difference between this and the
where Re denotes the real part. If we assume, for exampldjaxial case is that now the strengthlmithterms are adjust-
that all C,,, are real, and also th&,,C,,.C,—»=1, then the able externally. The energy eigenvalues here are as in Eg.
oscillating piece of Eq(16) is identical to the oscillating (12), but the eigenstates are replaced by
piece of Eq.(8). However, if we take as the initial state one
which is completely localized at one lattice site/(0))
=|m), then the oscillating piece identically vanishes. This
situation corresponds to the state vector evolving symmetri- , - L
cally about both sides of the initial positian in a sort of Although some of the materials we will |dent|f)_/ n the f.OI'
breather state. Thus, the behavior depends sensitively upéﬂw'ng sectlons_ are r'eported to have only uniaxial anlgot-
the initial conditions. ropy, the materlal Whlc_h seems to be th_e best char_act_erlzed,
Semiclassically, we have seen that BO's result from the?"d for which we provide the most detailed analysis, is one
soliton being pushed unscattered through the band and uMich is reported to be a FM with biaxial anisotropy.
dergoing Bragg reflection at the zone boundary. By contrast,
in a full quantum treatment, BO’s result from the time evo-
lution of a state which is not @Vannier-Zeemaneigenstate It is more difficult to achieve BO’s in AFM’s because of
of the Hamiltonian. The frequency of oscillation is given by the local Nel order. We mentioned above that BO’s can be

|E "= ; Jinn(—0%/07)|n). (19

2. Antiferromagnets
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viewed, at least semiclassically, as the result of applying aemain rather vague, as it requires a detailed knowledge of
force on a particle in a band. How can one apply a force tespecific material properties and, based on that, further theo-
an antiferromagnetic domain wall? The force is givenFby retical investigations. Still, we can list a few essential condi-

=-V3,b,-S,. If the external fieldb is homogeneous, then tions in general terms, which are very similar to the ones

the force qU|ckIy averages to zero over the chain. HoweverStudied in the context of mesoscopic effects in electronic
applying aninhomogeneoufield produces a net force. Equa- systems?®

tion (2) can still be used, but the couplings are now negative, First, there should be no Zener transitidirgerband tun-

andH' must be slightly altered to reflect the mhomogeneltyne“ng) The soliton oscillates only when it is reflected from
of the field: one zone boundary to the opposite one within the same band.

If the force on the soliton is too strong, it will gain so much
energy at the top of the band that it will tunnel into a higher
Hhen=137> SES2,,— >, b2SE. (200 energy band. This tunneling will produce classical linear mo-
n tion, rather than the quantum-mechanical BO’s. Such transi-
The one-soliton states must also be redefined. Rather thdfpnS can be neglected if the Bloch frequency is much larger
Eq. (3), we should write than the Zener transition rate. Th_|s effectively puts an upper
bound on the field driving the particle. In the present context,
m it means that the exchange constdhalong the easy axis, a
ImQ)=|---T1TL1T1T---). (21  measure of the band gap, should be much larger than the
magnetic fieldb.
The chargeQ can be defined by the first spin at the end of Second, there should be no inelastic scattering. Such
the chain*! Q= —1 for spin-up, and)= +1 for spin-down.  events occur, for example, by emission and absorption of
Now it is H? in Eq. (2c) which will always create additional phonons, or via soliton-soliton interaction. Inelastic scatter-
solitons(and thus should be discarded in the one-soliton aping may destroy the phase-coherent motion of the particles
proximatior). ConverselyH?' translates solitons. As a spe- necessary for BO’s to occur. A detailed investigation into the
cific example, we can take a magnetic field along the easpature and especially the magnitude of the spin-lattice cou-
(such a field satisfies Maxwell's equatih B=0). Project- Yond the scope of the present work, and is, in any case,
ing down to the one-soliton sector, we obtain probably a matter bgst d_etermmed expenmen@lg., from
the measured linewidth in the structure fagtdtr is known,
however, that the spin-lattice couplings are far weaker than
the analogous charge-lattice couplings. Also, if the soliton
density is low enough, soliton-soliton interactions, being
APFM— (3¥4 J%)/a. 22) typically of short-range nature, can be _negl_ected _and th_e re-
sults of band theory are still valid. In Ising-like spin chains,
This Hamiltonian is again similar to E@5). The spectrum a low-density requirement implies that the temperature
again consists of the WZL, but due to the antiferromag-should be less than the exchange couplipgAgain this can
netism, the dependence of the spectrum on the position varbe typically satisfied.
ablem is slightly altered: Finally, elastic scattering, such as scattering from static
random impurities, may also be a probldaithough typi-
cally less restrictive Here, one should consider the Ander-
son localization length induced by random disorder in low-
) o dimensional systems. This length, which is on the order of
The eigenstates are also very similar to E80). Only @ the elastic mean free path of the propagating quasipdtticle
must be slightly changed, again to reflect the antiferromaggin the present case, the solilpshould be greater than the
netism: Bloch amplitude, which places a lower bound on Béeld
driving the soliton. However, since the Bloch amplitude can
_ typically be on the order of the lattice constant, this poses no
(Q=-1). (24) :
2p? severe constraints.
Although the above conditions are demanding, it is quite
Thus, much of what follows applies also to AFM’s where theencouraging that the presence of extended states of disper-
anisotropy can be either uniaxial or biaxial. One must onlysjve solitons(i.e., the Villain mod¢ has been established
replace the homogeneous field with a linearly increasingxperimentally in Ising-like antiferromagnéfs.? This sug-
field. gests that, at least for certain spin chains, inelastic scattering
In most of what follows, we shall consider biaxial FM's and disorder can be neglected to first approximation. In the
with static and homogeneous fields. The present subsectiognd, the inelastic mean free time, should be compared
however, shows that the same analysis can be carried ovegith the Bloch frequencyg . Bloch oscillations are possible
almost without change, to uniaxial FM’s and to biaxial andif 5> 1/r,,. Typical values forwg lie between 40 and 600
uniaxial AFM’s. GHz (see below:

AFM_|‘JZI AFM ZQ
Hl—sol_T"'A (T2+T72) (- 1)

1
Em=§b (-1 ik (23

+JY
a=(—1)"

C. Conditions for observation IIl. THE DYNAMICAL STRUCTURE FACTOR

Here, we briefly touch on the conditions necessary to ob- In this section, we show that the dynamical structure fac-
serve BO’s in physical systems. This discussion will have taor S{(q,w) at finite field contains sharp peaks at integer
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of 7/2. In addition, we have convoluted the dynamical struc-

ture factor with a GaussialR(w)=(1/N7a)e e with
Jo~4 GHz. Thus, the square-root singularities at=
*(, have been rounded, which is the expected effect of
soliton-soliton collisions and other interactions we have not
taken into account here. This structure factor is very similar
to that found in AFM’s by Villairt® and Boucheret al.’
who also worked in the one-soliton subspace, and by Nagler
et al,’®*% who worked in the two-soliton subspace. As ar-
gued by Nagleet al, similar results should be expected for
all cases where the soliton number stays fixed.
Equation(A17) assumes the existence of only one soliton
in the system, whereas there will always be some finite den-
sity of solitons. Since thé&herma) energy required to create
FIG. 2. A plot of S4(q,w) for g= /2, as given by EG(AL?), a s_oliton isJ%2, the result in Eq.(A17_) may bezcrudely
with A=0.925 K andT =18 K. We have also convolute&¥(q,»)  Weighted by a Boltzmann factor given By S50, )
with a Gaussian, and so the square-root singulariies=at-Q,  —e~ #72SZ{(q,w). A more proper treatment would be to
have been rounded, as expected if collisions and interactions aiaclude soliton interaction, with the possibility of creation
taken into account. and annihilation of solitons. Nevertheless, E417) should
be qualitatively correct for Ising-like FM’s just as the anti-

multiples of the Bloch frequencyg—clear evidence of the ferromagnetic analog qualitatively describes the experimen-
WZL. Thus, inelastic neutron scattering, for example, canal findings.

detect the WZL. By contrast, we also calculate the dynamical An important difference between the result above for
structure factoiSg%(q, ») at zero field and thus give the fer- FM’s and the result for AFM's is the wave-vector depen-
romagnetic analog of the Villain mode for AFM’s. dence. The factor of sfg/2) in Eq.(A17) for FM’s is re-
For a translationally invariant system such as the fullplaced by co¥q/2) for AFM’s. This difference between sine
Hamiltonian in Eq.(2), the dynamical structure factor is de- and cosine is related to the difference in ordering between
fined in the standard wa%?: FM’'s and AFM's; for AFM’s, =7 is commensurate with
1 the spatial spin order near the ground state, while for FM’s, it
v e —iot/ sqz z is g=0 which is commensurate with the ordering. Thus, one
$1q,0) ZwJ,xdte (95%4(0)35;(1), (29 can replacey by w—q in going from FM’s to AFM’s; this
s g e , _ changes sf{g/2) into cod(g/2). Actually, cotg and () also
wheredS;=S;—(S;). The Fourier transform of the spin 0p- change signs, but E4A17) is invariant under this change.
erator is also defined in the standard way: for a finite chaerSQ the difference in the bandwidth (JY+J* for AFM’s
with N =2N+1 sites,S;=3[__\e'"S;. (We continue to  anq 3y — 3% for FM’s) has been discussed in Sec. Il B 2.

$(n/2,0) (x 10-12 sec)

w/2r (GHz)

seta=1) If the eigenbasig| )} is orthonormal and dis- |t should not be so surprising that the result for FM’s and
crete, one may write AFM'’s is so similar in the absence of magnetic fields. After
1 all, we have already seen in Sec. |l that a variety of Ising-like

S4q,w)= _E e’BEmKt//nISéIz/fm>|25(w—En+ E.) model; gets mapped onto an effectiye ti_ght-binding model
Zinn for solitons in the one-soliton approximation. For example,

212 in zero magnetic field, Eq5) for FM’s is formally identical
_|<Sq>| 5(w), (26) to Eq. (22) for AFM’s. Differences between the two only
whereE,, is the energy eigenvalue. In the following subsec-arise in the presence of a field. But even then, one can choose
tion, we give results fob=0 and later give results fap  different field configurations for FM's and AFM'’s in order to
+0. obtain similar structure factors; as shown before, the WZL
also exists in AFM’s if an inhomogeneous field is applied.
. : _ Equation(A17) shows a divergence as—0. This should
A. The dispersive mode(b=0) not be viewed as a physical result, but rather as an indication
The dynamical structure factor fdr=0 is calculated in  of the failure of the one-soliton approximation in this limit.

Appendix A. The final expression is given in Ed\17) as  In contrast, when we consider the-0 case below, we shall
" — see that they— 0 limit is well behaved. This is because the
SHq.0) efcos (1/2) B Qg— w?cot q] soliton states are now localized and the one-soliton Hamil-
W)=

; 02_,2"' (27) tonian is no longer translationally invariant on the lattice.
Am Sif(a/2)1o(25) R (Thus, k is no longer a good quantum numbefFhis local-
where the bandwidti is given in Eq.(5), the cutoff fre- ization should dramatically decrease the collision rate. In this
quency(l, in Eg. (A8), and wherd , is the modified Bessel way, the magnetic field provides a physical cutoff for the
function of zeroth order. Equatid@7) is plotted in Fig. 2 for  above singularity afj=0. We will come back to this issue in
A=0.925 K andT' =18 K. (These parameters are relevant for the following subsection.
the following discussion on the material CoCI2H,0.) The For an estimate of the soliton-soliton collision rate, we
plot shows the frequency dependence at a fixed wave vect@an employ the results in Ref. 17. These authors have looked
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at the model described by, M in Eq.(22), with b?=0, and 40 P T 40

so we can use their results for our ferromagnetic model if we 5 3% : N ')
simply substitute\ for A", Following Ref. 17, the soliton f 30 | s
density is given byn = e A2 and the soliton occupation T 25| :8
probability by p(k)=e #E/Z. The soliton velocity, given X 20¢ R x
by the derivative of the dispersion relation, is.= 154 R | IR ‘;;
—4A sin(X), and the average soliton velocity is defined as g 10 f AR ) I S @
vo=(1/Ny) Zlvil p(K), whose evaluation yields G osfo ) J L <

4 sinh(2A B) 2ap<1 0'(3200 -150 -130 -;o tl) 5Lo 100 15|o 200
UOZW — 8A/m. (28) w/2x (GHz)

FIG. 3. A plot of Eq.(B18) for g= /2, with Ag=a and Bwg
=0.4. For the material Cogl2H,0, this corresponds to an applied
field of H'*'=0.81 T, wg /2m=154 GHz, andT =18 K. The peaks
at w=* wg are measured on the left vertical axis and the peak at

~ N T | 1 . =0 is measured on the right. The peaks have been broadened by
@c(k) ns%: p(k )|Uk vl ~nsvol 1~ (1 77/2)S|n2(2k)]. convoluting with a Gaussian as in E@1), with o~ 40 GHz.

The collision ratew (k) depends on bothg andv,, and is
given by

(29
luted the structure factor with a Gaussian:

B. The Wannier-Zeeman ladder(b+#0) FAq.0)— r do'R(w—0")S(q,0"),

In this subsection, we derive a central result of this paper. o
In the presence of a magnetic field applied along the Ising
axis, the dynamical structure factor will exhibit the signature R(w)= Le* w?o (31)
of the WZL. We shall also find that thg—0 limit is well N '
behaved, in contrast to the previous subsection on the zero-
field regime. This, together with the fluctuation-dissipationFor the plot in Fig. 3, we have takeM=18 K, A
theorem, will also enable us to calculate the uniform suscep=0.925 K (both as in Fig. 2 andb=3.71 K. The choice of
tibility x”(w), which provides us with a measure of the mag-these numbers is motivated by the candidate materials to be
netization autocorrelation function. We begin first with discussed in the following section. These values give a Bloch
SF4q,®), followed by x"(w). Most of the technical details frequency of about 154 GHz and a Bloch amplitude of about

are given in Appendix B. one lattice constarff For the material CoGl- 2H,0 dis-
cussed in the following section, this value lofcorresponds
1. The dynamical structure factor to an external field of about 0.81 T, and the temperature of

18 K is just above the three-dimensional ordering tempera-
ture. In Fig. 4, we use the exact same parameters as in Fig. 3
except for b, for which we have setbh=3.71 K/4
LN =0.9275 K. The Bloch frequency is correspondingly re-
Sf,z(q,w)=§ 2 Go(Q) 8(w—nawg), (303 duced by a factor of 4, while the Bloch amplitude iis

The dynamical structure factor for finiteis calculated in
Appendix B. The final expression is given in E®18) as

n=—N
16 T T ; T T
35()
0= - , (30D
cosi Bwg/2)—cosq 5
8
2 o
LY " 1, n>0 (300 5
" 2sirf(gq2)  [e"“e, n<O, <
3
where wg=2b is the Bloch frequency. Equatiof80) indi- §
cates in particular that inelastic neutron scattering is capable
of mapping the Wannier-Zeeman laddér soliton initially
in some given Wannier-Zeeman state may be excited to

higher states. The neutron line-shape intensity for an excita- 0 0 80 0 50 1% 1%0

tion by n levels, is essentially given by square of thth wf2 (GHz)

order Bessel function]ﬁ(g). This means that theelative FIG. 4. The same plot as in Fig. 3, but withreduced by a
amplitudesof the peaks can be controlled through the argu-actor of 4. There is a similar decrease in the Bloch frequency, and
ment {=(2A/b)|sing| by adjusting the external field 4 similarincreasein the Bloch amplitude. The striking feature is the
(hence also the Bloch frequency and amplifud€or ex-  change in the relative amplitudes of the peaks, as compared with

ample, in Figs. 3 and 4, we plot the structure factor as @ig. 3. Here we have plotted peaks up to three times the Bloch
function of w for g=m/2. In these figures, we have convo- frequency all on the same scale.
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creasedby the same factor. The striking feature here is theappropriately, the Bloch amplitude can be kept much smaller
relative amplitudes of the peaks, as compared with Fig. 3than the average distanee., inverse densijybetween the
with this smaller field, peaks up = *3wg can be distin- localized solitons, and in this case the soliton-soliton inter-
guished on the same scale. The peaks in both figures awaagction can be expected to be negligible. We can now go on to
from w=0 are the signature of the WZL. There exists onecompare the zero-field limit of the above “Wannier-
peak at every integer multiple of the Bloch frequency, withZeeman’ results with the previous “dispersive” results.

an amplitude given by the square of a Bessel function.

We have repeated the above calculation numerigédly
finite N) and compared the results with the analytic ones just
presented. For any given peak ai=nwg (n=0,*1, As the field decreases, the Bloch amplitude increases. At
+2,...), thenumeric results converge to the above analyticsome point, the Bloch amplitude will be equal to the spacing
ones as the system siz&l2 1 grows. If instead we fixN, between solitons in the chain. At this point, collision effects,
then the numeric results converge to the analytic results aghich are not included in our theory, become important and
one moves away from the boundaries of the chain-&t. BO’s will be suppressed. This means that, for a meaningful
We may thus conclude that the numeric and analytic resultsomparison between our approximate theory and experiment,

C. Discussion of results(b—0)

agree in the thermodynamic limit. we must consideeitherthe zero-field regimeE=0), or the
regime whereB is sufficiently large such that our one-soliton
2. The uniform susceptibility approximation is justified.

It is interesting to note that in contrast to the dispersive N this sense, the limit 0B—0 within the one-soliton
mode forb=0, theq—0 limit is well behaved wheib+0: approximation, has no experimental significance. However,
' it is still interesting from a technical point of view since this

S(w) limit shows some features reminiscent of the clas_sical limit
S(q—0,0w) > ————— of a quantum system, in the sense that there might be no
4 sinff(Bb/2) pointwise convergencé® Other well-known examples are
2 the harmonic oscillator and a particle in a linear poterifial.
+|—| [8(w—wg)+eB°S(w+ wg)]. In general—and especially when interference effects are im-
b portant, as in the BO problem—some, usualty hog aver-

(32 aging procedure must be employed in order to obtain a
meaningful classical limit.
We have verified this result by performing the calculation at The problems show up already at the level of the eigen-
q=0 from the outset, as well as by calculating the imaginaryfunctions and eigenvalues. At finite field, the eigenfunctions
part of the zero wave-vector susceptibilgf(w) in the Mat-  are the localized Wannier stated0b), (n|E,)=[1+
subara formalism, and then using the fluctuation-dissipation— 1)™ ™13 (m-ny2( @)/2, which satisfy vanishing boundary
theorem: conditions. But atb=0, the extended Bloch statéds|k)
=e""/ /N, satisfy periodic boundary conditions. It is thus
not too surprising that as—0, the Wannier states do not
converge pointwise to the Bloch states. The same holds for
1/A\2 the energy eigenvalues; the band structure cannot be recov-
= _(_) (1—e Bo8)[ §(w—wg) — Sw+ wg)]. ered from the WZL in theo—0 limit. ' .
2\B Similar remarks apply to the partition functions. Keeping
(33) a finite system siz&l,,;=2N+ 1, the partition functions for
finite and zero fields are, respectively, given by

)2
x'(0)= 2 (1 sy sti0)

Here, we have expressgd(w) in units of,uéx s. Equation

(33) represents the response from only one soliton. There N )
should be one such factor for each soliton in the system. Z= S e pom_ Sinf(BbN 101/2) (34)
Assume, for example, that one soliton exists every ten lattice b7 SN sinh(Bb/2)

sites for each chain in the sampl@his requires the Bloch

amplitude to be less than ten lattice sife&s single-crystal of

CoCl, - 2H,0, with a volume of 1mrhwill then contain up 7

to 10'® solitons. Thus, the signal can be quite large and Zo=k_2 e 2AR =N, 15(2A8). (35

should thus be observable in standard magnetization mea- 7

surementgusing, for instance, cantilever or superconducting

guantum interference device technolpgy These expressions imply that the- 0 limit must be coupled
Again, the structure factor and the susceptibility should bgo the Ny— o limit. For example, if we are in the regime

observable as long as the inelastic scattering rate is less tharhereAg<1 and Sb<BbN,<1, then to second order in

wg. Concrete estimates for the soliton collision rate, for ex-both AB and Bb, Z,, converges t&, provided we make the

ample, in the presence oftafield are even more difficult to  identificationbN,,;=2/6A. On the other hand, if we are in

obtain than forbo=0. Nevertheless, the rate for sufficiently the regimeA <1 andBb<1<BbN,y, the partition func-

large b should be far lower than the rate for=0. Indeed, tions cannot be matched.

when we turn on the field, the solitons become localized and Next, we look at the dynamical structure fact@®18)

execute BO’s about their mean positions. By tuning the fieldvhich we rewrite here in a slightly different form:
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32 () eBlolebiz: X ° ’ \ ' '
o (g, )= — S(w—2bn 1 . . 1
(%) 4 sirt(q/2) n;N ( ) ! s E
) FE S 2 E ]
Jo(9) coshBb)—1 N 2 E E
- — S w). - 2 . ]
4 sirf(qg/2) coshBb)—cosq e LI 3 € 1
36 3 | ]
o ]
Forb—0, the second term tends to zero and so we need onlys 2 [ ]
concern ourselves with the first term. The Bessel function ; 3 E
o0 = I (|Qqgl/2b)  can be expanded in its : 7
asymptotic form forb—0. If |w|<|Q,/, then e " S vem——,
w/2n (GHz)
J? 19} _ 4b Sir? * Q2 — | 0| FIG. 5. A plot of both i ‘{7/2,0) in Eq. (40), and
folizo| p w\/Q§—|w|2 b g lw . 5. A plot of both lim_ S{7/2w) in Eq. (40), an

S§H(m/2,0) in Eq. (A17). Good agreement is obtained, but there is
some discrepancy as shown in the inset, which shows the ratio of
. (37) the two functions(41). This should be a constafgqual to ong if
the two results are the same. The source of this discrepancy is
t. discussed in the text.

+7T
4

—|w|arcco o]
T,

It is the rapidly oscillating factor which prevents the poin
wise convergence in thie—0 limit; some averaging proce-

dure is required. To illustrate this, let us crudely replace the  limy_SEA(7/2,0) e Aol (2AB)
. . . . 2 ~ ,
osmlzlal.tory factor with 1/2(which is accurate only fow S m/2,0) coshi(1/2) B\/Qg—wzcotq]
<Qg): (41)
—|Qq| 2p as a function ofw for the same values &, 8, andqg used in
J? ( )% . (39 previous plots. Neaw=0 the agreement is beghe ratio is
|w|/2b -
2b TNQG— |w|? near unity. But asw— (), the agreement becomes progres-

sively worse. Nevertheless, this rather crude treatment
achieves reasonable agreement—only about 10% error at its
worst. The agreement improves if we choagg 7/2, but
N L oN 1 worsens as the produat3 grows.(But A 8<1 is the regime
_ of interest)
n;,\, A w—2bn)= En;:‘b,\‘ 6(5“)_”) This marks the end of the theoretical development. In the
following section, we shall concentrate on various materials

In the b— 0 limit, the sum ovem in Eq. (36) can be made
continuous:

_)i bN dns 1 n we believe are good candidates for observing the WZL. Spe-
2bJ _pn 2¢ cifically, we shall see that BO’s can exist in certain ferro-
magnetic Ising-like salts, with frequencies on the order of
1/2b, |w|<2bN a9 150 GHZ.
| 0, |o|>2bN. 39

IV. CANDIDATE MATERIALS
Inserting Eqgs.(38) and (39) into Eqg. (36), and assuming

|w]|<|Qg], we can write We have identified four candidate materials for observing
BO’s and the WZL in purely magnetic systems. The materi-
eBlo—|a])2 als are all Ising-like FM’s, and consist of chains of magnetic
lim S g, w)~ _ # S0, ). ions, with effective spirg, separated by spacer material. We
b0 41 sirf(q/2) \/Qé— w? focus mainly on CoGl2H,0 (Ref. 12, but give also a brief

(40 discussion on the potentially more promising, but less well

] characterized, CoGI2NCsH;5 (Ref. 3)),

Although the last two expressions are not equal, they are( CH,);NH]CoCl: 2H,0 (Ref. 32, and

nevertheless quite simil_ar. In Fig. 5, we plot the two re_3”|ts{(CH3)3NH]FeCE-2H20 (Ref. 33.
Egs. (40) and (A17), using the same parameters as in the
previous figures. The small deviations can be traced back to A CoClu-2H-0
the rapidly oscillating sine squared function in £E§7). We ' zene

have replaced this by the constant factor of 1/2. This is not In CoCl-2H,0, the magnetic Co ions form chains along
quite proper since the period of the oscillation is a functionthec axis. The coupling is ferromagnetic between ions in the
of  (and not just a constantNear the cutoff frequencf,, same chainwe consider interchain exchange bejowhe
this error becomes the most apparent because the rest of tagchange anisotropy is such that theaxis is an easy axis.
function in Eq.(37) is also a rapidly varying functiofit is ~ The work of Ref. 12 confirms unambiguously that the Ising-
tending to a square-root singulaityin the inset of Fig. 5, like spin- Hamiltonian of Eq.(2) describes this system very
we have plotted the ratio well. In Table I, we list the material parameters of this fer-
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TABLE |. Relevant parameters for the candidate materials dis- AFM FimM
cussed in the text. A dashed entp-) means that no value was T by 7 ext Lot
. . H
given in the references. Lot fr o
T tT t L+ 7
ex ext
Parameter Value O0<H™<He Hy <H®Y<H,
b
CCH CCN CoTAC®  FeTAC FM Fijous = —1.0T
J 18.3K 10K 142K 17.4K +r 1 3/9pB = —0.
H; = 31T
NN 3.7K — — — ror o1 Ho = 45T
W+ I 56K — — — HO>Hey ¢ '
Jz —46K  —34K 0-1§3K —0.02K FIG. 6. The three phases of Co&H,0 for T<17.2 K. The
J3 -0.9K — —10°K 0.00K spin chains run perpendicular to the page dfdand J3 are the
a 3.55A 3.66 A 3.63A 3.68A interchain antiferromagnetic couplings. These couplings can be
g 6.81 5.49 6.54 7.49 considered internal fields, and so they too affect the Bloch oscilla-
Tao 17.2K 3.17K 414K 3.12K tions. In fact, Bloch oscillations can potentially exist in all three

phases. This figure has been adapted from Ref. 12.

4CoCl,-2H,0 (Ref. 12.

°CoCl,-2NCsHs (Ref. 3. field of H,,,=0.81 T, can be realized in all three phases when
Z[(CHs)sNH]COC%'ZHzo (Ref. 32. these internal fields are taken into account. Explicitly, we
[(CHs)sNH]FeCk-2H,0 (Ref. 33. have(for H,;=0.81 T)

romagnetic salt(We have taken the crystél axis to coin- AFM: Htft: —Hex— 4% /gug+ 2J§/gMB:>HeXt:2_8 T,
cide with thez axis of the Cartesian coordinate frameé/e (439
also list two antiferromagnetic interchain couplingé/e fol-
low Ref. 12 in neglecting the small non-Ising part of the FIM: H‘f’t:—HeXt— 45 Igug—235/gug=H'=3.6 T,
interchain exchangeWe shall consider this interchain cou- (43b
pling in a mean-field treatment by considering the total field
at a given site to be the sum of the externally applied field FM: H*=H®%43/gug+235/gug=H*'=5.2T.
and some internal field due to interchain exchange. (43¢0

Let us first neglect the interchain interaction and consider ot i
just a single chain in the presence of a static and homogelhe notationH ™, for example, denotes the total field at a
neous field along the axis. Then, the one-soliton approxi- chain with spin down, where “down” is defined as being
mation should be valid if the external fieltf=gugHZ, is opposite to th_e externa_l field. Th_us, in the ferromagne_tlc
less than the Ising exchange coupliffg For the parameters phase, all chains are spin up. In Fig. 7 we plot the resulting

given in Table I, this puts a restriction on the field strength ofPredictions for the Bloch frequency aridverse Bloch am-
HZ.<4 T. For example, if we apply a 0.81 T field— plitude as a function of external field in all three phases. The

comfortably below this upper bound—then the Bloch ampli_gntiferrom?‘gnetic ﬁnd ferrrzmagnstichphases show dtWO cu&ves
; ecause these phases have both spin-up and spin-down
tude and frequency are given from E@) as chains, and these chains each feel a different field. The dot-
2 ted horizontal lines are bounds, outside of which the results
Jy=Ix - ws _ g“BHext%lsﬂr GHz. become equivocal; near the upper bound, the total field be-

fe agMBHéxt  2n fim

(42 ool | las

AFM FM {4.0

This amplitude is small enough to impede the destructive 600 | Fim las

influence of any scattering events, and the frequency falls so0l _3'0
within the capabilities of neutron scattering. This is therefore»z (GHz) “a/Ap

an encouraging result. 200y 17*°

Due to the antiferromagnetic interchain couplirifsand 300 | 1*°

%, the material undergoes a three-dimensional ordering 200} 1

transition at about 17 K. Below this temperature, and in zero 1ol e

external field, there still exists ferromagnetic order within 198

each chain, but the chains are ordered antiferromagneticall 1 2 3
with respect to each other. As the field is turned on there are
successive transitions from antiferromagnetic, to ferrimag-

netic, and finally to ferromagnetic order at fieltg, and i, cocl,-2H,0 as a function of external field below the three-
Heo, respectively. At all times, the intrachain order is ferro- gimensional ordering temperature of about 17 K. The discontinuous
magnetic. This is depicted in Fig. 6, where we also list thumps in the curves are a result of transitions from anti-, to ferri-,
interchain coupling valuééand the critical fieldS™**When  and finally to ferromagnetic order of the chains relative to each
determining the Bloch amplitude and frequency, one shoul@ther. Ferromagnetic order is always maintaiméthin each chain.
also include these internal fields. For example, a Bloch amThe horizontal dotted lines denote upper and lower bounds, beyond
plitude of one lattice constant, which results fromtaaal  which the present analysis should not be expected to hold.

a4 5 6
Hext (T)

FIG. 7. A plot of Bloch frequency and inverse Bloch amplitude
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comes comparable to the Ising exchange consignhear netic susceptibility about the Bloch frequency should also
the lower bound, the amplitude becomes too large, so thatetect the WZL.
scattering effects should probably be taken into account. Several materials are promising candidates for observing
There is however, a fairly large intermediate range of oveBO’s and the WZL. We have chosen to focus our estimates
400 GHz where the effect should be noticeable. on the one-dimensional salt Cg&H,0. Although this ma-
terial is not an ideal one-dimensional substaftmetter ones
have been identified aboyeBO’s of amplitude one lattice
constant(about 3.6 A and frequency of about 154 GHz are
Another material we wish to mention here is possible with applied fields of a few Tesla. The other mate-
CoCb-2NGsHs (Ref. 31). This material differs from the one rials we have mentioned are less well characterized than the
above only by the spacer material—pyridine moleculesone just described. However, the much smaller interchain
rather than water. Pyridine is a larger molecule than watecoupling indicates that they are better one-dimensional
and so the magnetic chains are further apart by about a facteamples—a statement further supported by their three-
of 1.7 (9.4 A versus 5.5 A for the water spagefhis mate-  dimensional ordering temperature, which is much lower than
rial is thus a better one-dimensional material thanCoClL-2H,0. It is possible that these materials contain only
CoCl-2H,0. The three-dimensional ordering temperature isuniaxial anisotropy. If so, BO’s can be achieved by tilting
about 5.4 times smaller than it is in Co&H,0O (3.17 K  the external field away from the Ising axis.
rather than 17 K The material parameters are summarized A question we are currently investigating is what effect
in Table I. Because the experimental work on this materiakoliton-soliton interactions have on the WZL, as well as the
seems less extensive than that on GeZH,O, we have not related question on the influence of the higher-soliton states.
made any predictions for BO’s in this material. But due toThe WZL and BO’s should survive if the number of solitons
the reduced three-dimensional ordering temperature, this mé conserved. In Ref. 19, a study is presented of soliton dy-
terial should be a better candidate for observing BO’s andhamics in the two-soliton sect@out in zero applied field If
the WZL. Even if there really is no transverse anisotropyone enforces periodic boundary conditions, then only even
(Jy=Jy), BO’s could still be induced by simply applying a numbers of solitons can exist. But quantities calculated in the
transverse field in addition to the one along the Ising axighermodynamic limit should be independent of the boundary
(see Sec. lIB1L conditions employed. Therefore, as expected, this work
Most of the preceding paragraph applies even more enfound practically the same result for the dynamical structure
phatically to the final two materials listed in Table I, particu- factor as Villain did working in the one-soliton sector. How-
larly to FeTAC23 The small magnitude of the interchain cou- ever, the two-soliton sector brings with it an opportunity to
plings and the lower three-dimensional ordering temperaturdirectly detect thecoherent oscillation of solitond~or ex-
indicate that these materials may be quite suitable for BO’sample, two solitons can form a bound state which should be
We have again chosen not to provide predictions for thiddentified as a magnon in spichains. Multiple magnon
compound since we believe further material characterizatiobbound states can then be formed in which a cluster of adja-
iS necessary. cent spins are all flipped relative to the majority of the fer-
In summary, we have shown in this section that there areomagnetically aligned spins in the chain. Indeed, these are
a number of materials which may exhibit a dispersive solitorprecisely the excitations measured in the work of Ref. 12
mode as well as BO’s. We have not discussed any AFMwhich concerns the optical excitation of multiple-magnon
chains because we have been unable to identify any with theound states. An enticing scenario exists if the ends of these
appropriate material parameters such that the Bloch freelusters also undergo Bloch oscillation. Rather than having
guency and amplitude fall within experimentally accessiblethese excitations thermally created, as we have been assum-
regimes. Should any such chains exist, Sec. Il B 2 shows thatg above, one can then optically create these excitations
BO’s may exist under an applied inhomogeneous magneticoherentlyby infrared radiation. The resulting Bloch oscilla-
field. tions will then also be coherent, and this may be detected, for
example, by looking for coherent emission of magnetic di-
pole radiation in the microwave regime. In this scenario, the
V. SUMMARY AND OUTLOOK magnetic Bloch oscillator is an emitter of coherent micro-

In this work, we have shown that BO’s of magnetic soli- Wave radiation. This is essentially the analog of the elec-
tons occur in anisotropic spih-chains. Although we have tronic BO experiments, where the charge carriers are opti-

focused primarily on biaxial Ising-like FM's, we have shown €ally excited with visible light, ‘and the electron dipole
that BO's can also occur in uniaxial FM's by applying a oscillations radiate in the submillimeter regime. There are no

transverse field in addition to the longitudinal field. We have€Xciton effects in our spin chains and so the detection of the
also shown that BO's may exist in Ising-like AFM's by ap- magne_tlc radlat'lon w_ould be a clear S|gnal of magnch Bloch
plying an inhomogeneous field. oscnlatlons_. Thls intriguing problem will be the subject of a
We have been mainly envisioning a heutron-scattering exfuture publication.
periment in this work because the dynamical structure factor
shows clear evidence of the WZL; it contains sharp peaks at
integer multiples of the Bloch frequency. At zero wave vec-
tor, all the peaks vanish except for the one at zero frequency We thank Guido Burkard, Alain Chiolero, Jack Harris,
and those at the Bloch frequencywg. Thus, a measure- Bruce Normand, and Eugene Sukhorukov for discussion and
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B. Other materials

ACKNOWLEDGMENTS



5580 JORDAN KYRIAKIDIS AND DANIEL LOSS PRB 58

the ITP, Santa Barbara, where the initial stage of this work
was completed. This work was funded by the Swiss NSF, the =———
U.S. NSF under Grant No. PHY94-07194, and the Canadian 4 sirf(q/2)
NSERC.

1
Sw)+ =, e PEK
Z%

X 8(w—E(k+q) + E(k))) . (AB)
APPENDIX A: THE DYNAMICAL STRUCTURE FACTOR

IN ZERO FIELD The Dirac delta function can be written as

Without a magnetic field, the eigenstates are the Bloch

states Eq(6). Substituting these states, for a fixed charge of S(w—E(k+q)+E(k)= o+ Qq sin(2k+a)),

Q=—1, into Eq.(26) yields (A7)
04=4A sinq, (A8)
1
z _= “BE()| /11| QZ| A |2 where (), represents an upper bound or cutoff on the fre-
Soa.w) ZKEK, € (K ISg[k)] guency. Above this frequency, the structure factor vanishes.

This is a direct result of the one-soliton approximation,

X 8(w—E(k")+E(K)~[(S)]?6(w), which yields a dispersion relation with finite bandwidth.

(A1) For a given momentum transfey, the maximum energy a

soliton can absorlior emi, while still remaining in the

same band, i$),. The & function (A7) can be written in a
where E(k) is shown in Eq.(7). (We neglect the constant more usable form by using the relatiof(f(k))==,8(k
factor of J%/2 since it drops out in the endThe partition  —k.)/|f'(k,)|, where thek, are the zeroes of(k). In our
functionZ can be expressed in terms of the modified Bessetase, f’(k) =20, cos(k+q) and thek, are fixed by the

function of order zero: condition
sin(2kn+0) = — /4. (A9)
Z=§k: e PERN=Nlo(2A8). (A2)  If we substitute these results into E@\6), and in addition
take ;he_ continuum limit ¥, — Nyo/dk/27 and Ng— ),
we obtain
The matrix elements cfﬁé in the eigenbasis can be found by _, 12
first noting that So(a, @)+ [(SH[*8(w)
—(1/2)|m), m=n _ 1 5 Niot 2 @~ 2BA cog2ky)
nlm) = (A3) " st () F 572 [20.coq 2k, 1 )] |
(1/2)|m), m<n, 4 sirr(a/2) mL q nTd
from which it follows that (A10)
1 N To perform the sum oven, we must first solve Eq(A9).
21N — e ikm Defining w/Qq=sin ¢, where |¢|<m/2 since |w|<|Q,
Silk) 2|k> ‘/Nmtmzn e""|m). (A4) qu. (_A9)_is rewritten as sin(&,+qg)=—sin ¢. The general
solution is
The one-soliton approximation breaks down as )
q—0.1%1%17f the neutron transfers no momentum to the 2kntq=(—1)""(nm+¢), (A11)

system, then the energy will likely go into the creation of
another solito{actually a soliton-antisoliton pairThese are i
not the processes we are interested in here and are not colﬁyt ?g[ aIIhvaIues Of;] ztare alfweq, tTe. all(t)r\]/vetzotlhvalu"es m:j
tained in our approximation. Rather, we wish to consider thémfs e;: c:jsen SL(;C Hth\ﬂl-’ imp ¥'Eg a d ea ﬁwe

process where a neutragattersthe soliton from one state vajues otn depend on the values o .Oth andg, where
to another, which is less and less likely to happemjas0. | ¢|= /2 and|g|<. For examplen=0 is always allowed,

Below, we shall give estimates of both the soliton density?= 3 iS allowed only ifm=(¢—q)=<3w/2, and|n|=4 is
and collision rate. never allowed. It turns out that for any and q, there are

Limiting the discussion taj#0, the matrix elements of always four values ofi which are allowed—two even values
z . Q2| — (aid — a—igN (eithern=0,2 orn=0,—2) and two odd valueseither n
Sy are given by (k'[Sjlky=(€"96 kiq—e€ ' S)/(1 ~
—¢l% and so the modulus squared becomes =1,3,n==*1, orn=—1,—3). Actually, the specific value
' of n makes no difference; the important point is whethés
even or oddand there are always two of each allowe€or
(Skr gt Okkr)- (A5) example, from Eq(A1l) we can write

which is valid for arbitrary integen (n=0,=1,+2,...).

k'| %k 2_
(k7 IS5i01 4 sirf(q/2)

|/ n — _ 2
From this, we can find the first term in EEAL): |ZQqCOS(2k”+q)|_|( 1)"20q cos ¢l=2 Qq @ -

(A12)
S519,0) +(SH1?8(w) Similarly, we have
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—2AB cog2k,) ) § N 2
Z , 227 - m En— SZ Em—
=—2AB[(—1)"cos ¢ cosgq—sin ¢ sinq] $1a.0) 2o & Bl SglEm-w)]
i X 8(w—b(n—m))—[(SH)|*8(w).  (B1)

= S[= ()" QG- w’cotqtw], (A1)
Here, we have shifted the origin of our coordinates to one
where the top sign+) is for |g|</2, and the bottom sign end of the chairfwith a similar shift in the partition function
(=) for m/2<|g|<. (These signs will also prove irrel- Z)- Because of the simple energy-level structure &8), the
evant) We can use the above two results to write the sum ifPartition function is simply given by
Eqg. (A10) as
1—e PNt 1
—2BA cod2k;,) = - ., _-
E e co. n 1_ e*ﬁb BbNmt>11_ e*ﬁb
v |2Q4 cog2k,+q)|
We shall assum@bN;,=1 in all that follows.
_ ;E ex;{iﬂ[i(— 1)n+1 To obtain the matrix elements Gﬁ note first that from
205~ w?n 2 Egs.(A3) and(10), it follows that

X5~ w?cotq+ o]

We see now that the magnitude ofplays no role; it only ) ] ] ]
matters whethen is even or odd. Since there are always twoUsing this, along with the relationéE,|m’)=Cy and
even and two odd values of the sum over the exponential {EmlEm)=dmm , we can find the matrix elements 8f:
becomes a hyperbolic cosine, and therefore the addititinal
also becomes irrelevant:

(B2)

N

1
: (Al4) Sﬁ|Em>=§ |Emy—2 2, Cpm|m’)|. (B3)
m’=n

N N
ez _ Ntotéﬁmgqo ign _
<Em|Sq|Em>_ 2 - Z € 2 Cmm’Cmm'-
n=-N m’=n
(B4)

; ex;{%ﬂ[i(— D" OG- w’cotq+ ]

The expansion coefficiens,,, are given in Eq(10b). The

1 second term on the right side can be brought into a more
— wl2, 2 2
=4ef COS"(E'B VG~ w Cth)' (A15)  manageable form by interchanging the order of the summa-

tions:
Gathering the above results, the structure factor becomes
N N N m’
Séz(q,w)+|<Sé>|25(w) E eiqn 2 Cﬁmrcmmr: 2 Cﬁmrcmmr 2 eiq”.
n=-N m'=n m'=-N n=-N
1 (B5)

4 sirf(qg/2) Performing the geometric sum over the exponential, the right

side is rewritten as

ef”2 costi(1/2) B\ Q5 — w?cot ]
x| )t 7l o(2A 8) Q2 — 02 ' 1 X
0 q- @ —igN_ qig(m’ +1)y~—_
(A16) 1—eiqm'§7N (e ¢ o G
For the calculation of(S})|?, we proceed by noting that, _ 1 1+(—1)m_m)
for q#0, (k|Sj|k)=—e"3N/(1—€'%). Since this is indepen- 1—¢id 2
dent ofk, we have|(S;)|*=(k|Sj|k)|?=1/4 sirf(¢/2). Fi- (N2

nally, subtracting this from EqA16), we obtainS{(q, ): > (e-1aN_ gia(m+1-2m"))

m’ =(m—N)/2

efl%costi(1/2) B/Q2— w3cotq] X Imr (@) I 4 (m-mya( @) (B6)

4 sirf(q/2)1o(2A B) QG- w?
(A17) For N—oo (but keepingm finite for now), the sum over the
product of Bessel functions can be performed using the

. . 4
APPENDIX B: THE DYNAMICAL STRUCTURE FACTOR identity”
IN A FINITE FIELD

(9, @)=

* sin sin
Ew Jk(r)Jk+n(p){ cos] (kQD):‘]n(R)( cos] (nd),

Using the eigenbasis of E¢LO) we can write the dynami- k=—
cal structure factof26) as® (B7)
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where, for all variables real and faran integerR and® are  For the third and final sum in EqB10), progress can be
defined through the relationdR=\r?+p°—2rp cose, made by breaking it up into one containing terms witand
R cosd=p—r cose, andR sin d=r sin ¢. In particular, m even, and another containing terms wittandm odd; for
the odd sums, we set—-2n+1 andm—2m+1, and for the

2igm’ B even sumsn—2n andm—2m. If we then recombine these
2 e I (@) I+ (m-myral @) two sums, and in addition take=n—m, the final sum in Eq.

me B B (B10) can be written as
=(—i sgng)m-mPglammmizy o o(2alsing)).

[’

(B9) N s
_ , e PPMS(w—Db(n—m))
Now we can substitute Eq$B6) and (B8) into Eq. (B4), m.n=0
which enables us to write the matrix elements in closed form N Nem
as —(1+e” ﬁb)E e 260m 3 5(w—2bw). (B13)
1 e laN o
EAISAE N 80— —— | Omi
(Bl SolEm) = %0 4 _ giq ) “mm Now we can interchange the order of the sums by using the
_ identity
1+(-p™m™ =
———— (=i sgng)™™”?
iq(m+m)/2 nom
e —2Bbm
_ e 1] 2b
Xm\](mfmwz@), (B9) 2 V_E_m (@=2bv)
0 N N
where{=(2A/b)|sinq|. _ —28bm
Taking the modulus squared and shifting the origin as in _V:Z_N e 2bv)mzi,, € * 2 d(w=2bv)
Eqg. (B1), we can evaluate the first term in the dynamical
structure factor: N
X >, e 2pom (B14)
m=0
S50, @) + (S I?8(w)
1 The geometric sums can now be performed. Using also the
= ZNtot—l— 7 > me‘ﬁbm) Niot9g00( @) fact thatBbN>1, Eq.(B13) is written as
m=0
1 1 2N
5305 2 co{q(m+1)]eﬁbm) iy
m=0 m%O e PPMs(w—b(n—m))
dw) (@) 1 | N
2 SIr‘?(q/Z) 4 SInZ(CI/Z) z :Zeﬁ(w—\w|)/2 2 5(w—2bn). (815)
2N n=-N
x D' e Ms(w—b(h—m)). (B10)
m,n=0

Substituting Egs(B11), (B12), and (B15) into Eq. (B10)

The prime on the final summation indicates that only thosé”e'ds

terms withm—n even should be included. The first of three
sums in Eqg.(B10) is proportional to the derivative of the

partition function: SiAg,0) + [(SHI?8(w)
1 2N 1
7 E me AdM= %In Z=— (B11) =| 7Nt~ PR N (t0q0 (@)

1
The second sum in E4B10) can be written as a geometric + E—Jo(é)

series by writing the cosine as an exponential. The result is

(cosq—e AP)(1—e FP)
|efiq_e7,8b|2

B _ Blo—|w|) /2J2 (g)
1 2N (cosq—e AP)(1—e FP) o(w) € 120 Slw—2b
Zmzzo cogq(m+1)je = le~ia— g Fb|2 ' 8 2 sirf(g/2) i 4 sirf(q/2) 2N (w=2bn).

(B12) (B16)
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The last term is the most interesting one; it will induce tran-Finally, from Egs.(B16) and(B17) we obtain the dynamical
sitions between Wannier-Zeeman levels. Let us first, howstructure factor:
ever, complete the calculation by determinig§;)|2. From

Egs.(B2) and(B9), we have 1 %
ZZ,
. (qw)=5 2 Gy(q)d(w—nwg), (B183
s7y|2 NiotSqo e 'aN 1—3 1-e A \|? > 27N " ®
(Spl™=|—%—~ —edl 1T o(()m
2
1 1 - J5(0) (B18b
=Niotdg0| 7 Ntot— o 0" cosh Bwg/2)—cosq’
(cosq—e AP)(1—e FP)
120y 23 2(0) 1, n>0
|ela—e A =T o X nBe (B18o
2sirt(q/2) €78, n<O,
) cosiiBgb)—1
cost{Bb)—cosq/ 4 sird(q/2) wherewg=2b is the Bloch frequency.
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