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Bloch oscillations of magnetic solitons in anisotropic spin-12 chains

Jordan Kyriakidis* and Daniel Loss†

Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
~Received 12 March 1998!

We study the quantum dynamics of solitonlike domain walls in anisotropic spin-1
2 chains in the presence of

magnetic fields. In the absence of fields, domain walls form a Bloch band of delocalized quantum states while
a static field applied along the easy axis localizes them into Wannier wave packets and causes them to execute
Bloch oscillations, i.e., the domain walls oscillate along the chain with a finite Bloch frequency and amplitude.
In the presence of the field, the Bloch band, with a continuum of extended states, breaks up into the Wannier-
Zeeman ladder—a discrete set of equally spaced energy levels. We calculate the dynamical structure factor
Szz(q,v) in the one-soliton sector at finite frequency, wave vector, and temperature, and find sharp peaks at
frequencies which are integer multiples of the Bloch frequency. We further calculate the uniform magnetic
susceptibility and find that it too exhibits peaks at the Bloch frequency. We identify several candidate materials
where these Bloch oscillations should be observable, for example, via neutron-scattering measurements. For
the particular compound CoCl2•2H2O we estimate the Bloch amplitude to be on the order of a few lattice
constants, and the Bloch frequency on the order of 100 GHz for magnetic fields in the Tesla range and at
temperatures of about 18 K.@S0163-1829~98!06933-1#
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I. INTRODUCTION

Bloch oscillations1–3 of a quantum state in a periodic on
dimensional structure can be characterized as anoscillatory
response to aconstantforce. The phenomenon is a remar
able example of the counterintuitive nature of quantum m
chanics. Not only does the particle oscillate in response
static and homogeneous force, but the amplitude of the
cillation is inversely proportional to the magnitude of th
force.

The prototypical system in which to observe Bloch osc
lations ~BO’s! has historically been a band electron in
external electric field.1–3 In the absence of inelastic scatte
ing and interband~Zener! transitions, the electron, in mo
mentum space, continually traverses the Brillouin zo
Upon reaching a zone boundary, the electron is reflecte
the opposite boundary and thereby reverses its momen
In real space, the motion is likewise periodic—a const
force thus produces oscillatory motion. But the existence
BO’s has been controversial ever since its theoretical pre
tion many decades ago~Ref. 2 contains an early review!. The
controversy surrounding the theory was largely concer
with the use, or rather the misuse, of Bloch’s theorem
systems where the lattice periodicity was explicitly brok
by a constant external field. Experiments were not conclus
because, in these early times, bulk solids were the only
tems available. Their bandwidths, however, are typically
large, the lattice constants too small, and the inelastic s
tering so frequent that the phase coherence of the par
state, essential for the existence of BO’s, is rapidly
stroyed.

However, with the advent of semiconduct
heterostructures—in particular layered superlattices w
large lattice constants, and thus small bandwidths, which
low many coherent BO’s before phase coherence is lost—
debate about BO’s seems to be settled. Recent experim
now provide convincing evidence that BO’s of electrons c
PRB 580163-1829/98/58~9!/5568~16!/$15.00
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indeed occur. This confirmation comes from the detection
the coherent radiation emitted as ensembles of electrons
ecute BO’s.4 There is also work which directly measures t
physical displacement of electrons in superlattices as t
oscillate.5

The search for BO’s has not been limited to electro
Recently, the effect was observed with ultracold ato
placed in an optical standing wave.6 The standing wave
served as the periodic potential, and a force was simulate
accelerating this periodic potential. The momentum distrib
tion of the atoms had the time dependence expected from
theory of BO’s.

Current studies of BO’s are moving beyond the establi
ment of their existence. In atom-optical systems, BO’s
being used to test other aspects of quantum theory. For
ample, nonexponential decay of unstable systems was
recently observed in the same systems used to observe
and the Wannier-Stark ladder.7 In electronic systems, BO’s
are being studied as a means of producing fast emitter
coherent radiation. The radiation emitted by the oscillat
charges can be tuned over a wide range of frequencies
ply by changing the electric-field strength. Typical wav
lengths are in the submillimeter range.

An entirely different class of systems in which such c
herence phenomena can be expected are magnetic sys
which brings us to the main subject of this work. It has be
pointed out recently that BO’s should exist in purely ma
netic systems—in the quantum dynamics of domain wa
with solitonlike behavior.8 This proposal for magnetic BO’s
was based on a semiclassical treatment9 of the quantum dy-
namics of extended domain walls moving in a periodic p
tential and containing a large number of spinss, with s@1.
In the present work, we shall extend this investigation to
fully quantum-mechanical regime of anisotropic spin1

2

chains and demonstrate that BO’s occur in the quantum
namics of elementary excitations such as spin solitons. S
solitons represent the extreme limit of a magnetic dom
5568 © 1998 The American Physical Society
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wall with a width of only one lattice constant. In contrast
the cases mentioned above~electrons and atoms!, magnetic
BO’s are an inherently many-body effect. The soliton moti
is a cooperative phenomenon resulting from spin-spin in
action. Nevertheless, we will see that magnetic BO’s sh
many properties with their electronic counterpart.

A remarkable feature of magnetic BO’s is that they gi
rise to oscillations of the magnetization at a Bloch frequen
which can be continuously varied by an external magn
field. Thus, besides being of fundamental interest, BO’s
magnetic solitons may also prove relevant for applicatio
since they provide a natural source ofmagnetic dipole
radiation—typically in the microwave regime.

The outline of this work is as follows. In the next sectio
we define and discuss the one-soliton approximation in
presence of a magnetic fieldB applied along the easy axis
thereby extending the zero-field results obtained previou
for antiferromagnets10 ~AFM’s! and for ferromagnets
~FM’s!.11 We show that the externalB field localizes the
eigenstates of the Bloch band and discretizes the spec
into a set of equally spaced levels which we call t
Wannier-Zeeman ladder~WZL!, in analogy to the Wannier
Stark ladder in electronic systems. We mention several s
models capable of supporting BO’s, but our main focus is
Ising-like FM chains with biaxial anisotropy—a mod
which accurately describes compounds such a12

CoCl2•2H2O. We then go on to discuss the spin correlati
functions and calculate the wave vector and frequen
dependent dynamical structure factorSzz(q,v) for two
cases: zero and finite magnetic fields. For finite magn
fields, the structure factor consists of peaks at frequen
corresponding to integer multiples of the Bloch frequen
These frequencies are typically in the GHz range. This re
means that, for example, neutron-scattering measurem
on samples in thermal equilibrium can be used to observe
WZL. In zero magnetic field, we obtain a structure factor
FM’s that is very similar in form to the one obtained fo
AFM’s,10 apart from a wave-vector dependence that refle
the difference in magnetic ordering between FM’s a
AFM’s. After a brief digression on theB→0 limit, we turn
to an investigation of specific materials which are promis
candidates in which to observe BO of magnetic solitons.
focus on one particular Ising-like FM,12 CoCl2•2H2O, which
appears to be the best characterized of the ones we
identified. Other materials, though less well characteriz
are potentially better candidates. Finally, we close with
summary of the main results, along with an outlook on futu
directions.

II. THE ONE-SOLITON APPROXIMATION

In the following we concentrate on one-dimension
Ising-like magnets with nearest-neighbor exchange inte
tions Ja and in the presence of a magnetic fieldbn
5gmBBn . The general anisotropic spin Hamiltonian is giv
by

H52(
n,a

~JaSn
aSn11

a 1bn
aSn

a!, ~1!

wheren denotes lattice sites anda denotes Cartesian coo
dinates. The exchange constantsJa are either positive
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~FM’s! or negative~AFM’s!, with uJzu@uJx,yu. Thus, the
~Ising! easy axis is along thez axis. In systems with such a
strong easy axis, domain walls, or solitons~we shall use
these terms interchangeably!, are well defined. At suffi-
ciently low temperatures, the system is in its ground sta
ferromagnetic order for FM’s, and Ne´el order for AFM’s.
The excitations consist of domain walls. In a pure Ising ch
(Jx5Jy50) with zero field (bn

a50), the spectrum consist
of discrete energy levels, where each level correspond
states with a fixed number of domain walls. If, as is usua
the case, there are additional exchange couplings in the
rections transverse to the Ising axis (JxÞ0 or JyÞ0), then
the degeneracy is lifted. The energy spectrum consists
series of continua separated by gaps. Each continuum
sists of states with a fixed number of domain walls. T
one-soliton approximation considers only the lowest ba
and neglects all transitions to higher bands.

The spectrum described in the preceding paragraph
been verified numerically13 for the anisotropicx-y model; for
very large anisotropy~near the Ising limit!, isolated bands
with large gaps were observed, with the gap tending to z
as the isotropic limit was approached. The one-soliton
proximation was used by Villain10 in his pioneering work on
spin-12 solitons in Ising-like AFM chains. The result of hi
calculation—the existence of a dispersive soliton mode~the
Villain mode! below the two-particle continuum—was fur
ther verified by theoretical14 and numerical15 work, inelastic
neutron-scattering experiments on the Ising-like AFM
CsCoCl3 ~Refs. 16,17! and CsCoBr3 ~Refs. 18,19!, as well as
electron-spin resonance,20 nuclear magnetic resonance,21 and
optical22 experiments.

Analytic work guided by physical reasoning, exact n
merical work on finite systems, and experimental work
real physical systems all point to the existence of the Villa
mode and thus justify the one-soliton approximation. Wh
then are the conditions necessary for the Villain mode
exist? Two conditions should be met. First, a large easy a
is required; the system must be near the Ising limit. T
ensures not only that domain walls are well-defined exc
tions, but also that states with different numbers of dom
walls are well separated in energy. Second, the domain w
must have dynamics. It is the dynamics of the domain wa
which induce the band structure. In a pure Ising chain,
example, a localized domain wall is an eigenstate of
Hamiltonian and therefore has no dynamics. The Villa
mode does not exist in pure Ising chains.

Most of the existing work has focused so far on AFM’
and only recently has it been pointed out that dispersive s
ton modes can also exist in Ising-like FM’s~Ref. 11! and
other spin chains, as discussed next.

A. Primary model

In view of the candidate materials to be identified in Se
IV, we focus mainly on spin-12 FM’s with a Hamiltonian
given by Eq. ~1! with Ja.0.11 We consider a static and
homogeneous fieldb along thez axis ~the Ising direction!
and rewrite the Hamiltonian in a more suggestive form:

H5HI1Ha1H', ~2a!
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HI52Jz(
n

Sn
zSn11

z 2b(
n

Sn
z , ~2b!

Ha52
1

4
~Jx2Jy!(

n
~Sn

1Sn11
1 1Sn

2Sn11
2 !, ~2c!

H'52
1

4
~Jx1Jy!(

n
~Sn

1Sn11
2 1Sn

2Sn11
1 !, ~2d!

whereSn
65Sn

x6 iSn
y are the usual raising and lowering o

erators. In preparation for the one-soliton approximation,
introduce the one-soliton states$um,Q&%, defined by

um,1&5u•••↑↑
m

↓↓•••&, um,21&5u•••↓↓
m

↑↑•••&. ~3!

The right-hand sides are expressed in theSz basis. Here,m
50,61,62, . . . denotes the soliton position (m50 corre-
sponds to the center of the spin chain!, and Q561 is the
charge of the soliton. We can define the soliton positi
charge, and translation operators—m̂, Q̂, and T̂n ,
respectively—as

m̂um,Q&5mum,Q&,

Q̂um,Q&5Qum,Q&, ~4!

T̂num,Q&5um1n,Q&,

wherem̂ andQ̂ are Hermitian operators, whereasT̂n is uni-
tary with T̂n

†5T̂2n .
The one-soliton approximation is tantamount to consid

ing our system as containing one domain wall and discard
those terms in Eq.~2! which create additional solitons. Fo
example,H' in Eq. ~2d! should be discarded because the
terms will always create solitons, butHa in Eq. ~2c! contains
terms which translate the soliton by two sites, which will
identified with T̂2 and T̂2

† . Projecting Eq.~2! onto the one-
soliton subspace, we therefore obtain

H1-sol5
1

2
Jz1D~T21T22!2bQm,

D5~Jy2Jx!/4, ~5!

where we have dropped the hats over the operators, and
measuring energy relative to the fully polarized~ferromag-
netic! state. The bandwidthD is different from zero only if
JxÞJy , in contrast to AFM’s or alternate field configuration
~see below!. In what follows, we shall work in a fixed charg
sector. Thus,Q is effectively a constant and we will setQ
521 to be definite. Equation~5! is then formally equivalent
to a single-band tight-binding model of an electron in
external electric field. Solitons play the role of electrons, a
a magnetic field the role of the electric field. We can now
on to discuss the eigenstates and energy spectrum, bo
which are qualitatively very different in the finite- and zer
field regimes, respectively. Bloch oscillations can be deriv
either semiclassically from the zero-field solution, or fu
quantum mechanically from the finite-field solutions. W
discuss each of these in turn.
e
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1. Semiclassical solution

We will first consider the known physics in zero extern
field in order to make contact with previous work o
AFM’s,10 FM’s,11 as well as with semiclassical derivation
of BO’s. For b50, and with periodic boundary conditions
the eigenstates of Eq.~5! describing the soliton are extende
Bloch states labeled by the wave vectork:

uk,Q&5
1

ANtot
(
m

eikmum,Q&. ~6!

Here, we have set the lattice constanta equal to one. The
periodic dispersion relation resulting from these eigensta
is given by11

E~k!5
1

2
Jz12D cos~2k!. ~7!

This is the ferromagnetic analog of Villain’s result10 for
AFM’s. As mentioned below, Villain’s result for the band
width D contains the sum, rather than the difference, of
transverse couplings.

Semiclassically, we can reproduce the derivation of BO
as it is given in conventional electronic treatments.3,23 In the
absence of scattering, the effect of the field-dependent t
bQm in Eq. ~5! is to drive the soliton through the band. Th
velocity v(k) of this motion is found by differentiating Eq
~7! with respect tok. On the other hand, the wave vectork

acquires a time dependence through the forceF5\ k̇5b/a.
Integratingv„k(t)… over time then yields the semiclassic
Bloch oscillations. Ifx(t) denotes the soliton position, the

x~ t !5const2
1

2
ABcos~vBt !, ~8!

with the Bloch amplitudeAB and the Bloch angular fre
quencyvB given by

AB54Da/b, \vB52b52gmBB. ~9!

2. Quantum solution (Exact)

We can compare the above semiclassical derivation
BO’s with a fully quantum treatment by keeping a nonze
magnetic field in the Hamiltonian right from the outset. Fo
spin-12 chain withNtot52N11 sites, and withb.0, we can
exactly diagonalize Eq.~5! to yield energy eigenstates

uEm&5 (
n52N

N

Cmnun&, ~10a!

Cmn5^nuEm&5
11~21!m2n

2
J~m2n!/2~a!, a5D/b,

~10b!

whereJn is the ordinary Bessel function of ordern, and we
have dropped the labelQ521 in the state vectors. The sta
uEm& is localized about the lattice sitem in the sense tha
lim

n→`
^nuEm&50 for arbitrary m. We have thus chosen

vanishing boundary conditions—a reasonable choice for
calized states. The degree of localization is given by
argument of the Bessel function@see Eq.~14! below#; strong
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fields act to localize the states. For example, ifb→`, then
a→0, and only them5n term contributes to the sum in Eq
~10! sinceJn(0)5dn,0 . The eigenstate is therefore strong
localized. As the field decreases, the wave packet spre
The eigenstates at finiteb are Wannier-like states and a
thus qualitatively different from the extended Bloch states
zero field. This difference is also reflected in the ene
spectrum:

H1-soluEm&5(
n

Cm,n@D~ un12&1un22&)1bnun&]

5(
n

@D~Cm,n221Cm,n12!1bnCm,n#un&

5(
n

FD 2

a S m2n

2 DCm,n1bnCm,nG un&

5bm(
n

Cm,nun&5bmuEm&, ~11!

and thus

Em5bm. ~12!

The important first term on the third line in Eq.~11! was
obtained using the Bessel function identity24

zJn21(z)1zJn11(z)52nJn(z). The spectrum$Em% is dis-
crete. It consists of a series of equally spaced levels with
energy-level spacing given byb. The analog of this spectrum
for electronic systems, which has been observ
experimentally,25 is known as the Wannier-Stark ladde
Hence, for magnetic solitons, the term Wannier-Zeemanlad-
der ~WZL! seems appropriate and we shall adopt this te
below.

The states$uEm&% are exact eigenstates only up to boun
ary terms:

H1-soluEm&5bmuEm&1boundary terms, ~13a!

where a typical boundary term is given by

J@m6~N12!#/2~a!u6N&. ~13b!

For largeN and finite b ~hence finitea), these boundary
terms are negligible contributions. The soliton dynamics
not expected to depend on the boundary conditions for
ficiently large chains, especially since the soliton eigensta
uEm& are strongly localized by the field. Forn[um2Nu/2
@1, and fixed, finitea, the Bessel function in Eq.~13b! can
be replaced by its asymptotic form24

Jn~a!'
1

A2pn
S ea

2nD n

, ~n@1!, ~14!

and therefore decays asn2n, provided the argumenta re-
mains fixed at some finite value. IfN@1, and assuminga is
indeed fixed, then the correction terms in Eq.~13! can be
neglected so long as the center of the eigenstate wavepa
is not near the boundaries of the chain. Exact numerical
agonalization of finite chains~see below! indicates that the
states$uEm&% can be considered eigenstates everywhere
cept at a small,b-dependent boundary layer on either end
ds.

t
y

n

d

-

e
f-

es

ket
i-

x-
f

the chain. The correction terms can hence be considered
face effects which become negligible in the thermodynam
limit.

More severe problems arise in the limit of vanishing fie
(a→`). In this limit, the above asymptotic form of th
Bessel functions cannot be used since nowboth the order of
the Bessel function (}N) as well as its argument (}1/bz)
diverge. The appropriate asymptotic form forJn(a) depends
on the ration/a; for both a→` and n→` ~with n.a
@1), we have24

Jn~a!'A 1

2pS 1

n22a2D 1/4S a

n1An22a2D n

eAn22a2
.

~15!

This expression reduces to Eq.~14! in the limit n@a. Equa-
tion ~15! shows thatJn(a) is negligible only if un22a2u
@1. This effectively implies that no matter how large th
system size becomes, there will always be a field sufficien
small, such that the present framework fails. In practice, t
becomes problematic only when discussing the ‘‘Villa
limit’’ of vanishing field, where, in any case, soliton colli
sions must explicitly be considered~see below!.

Another approach is to compare the analytic spectr
Em5bm with that obtained by numerically diagonalizing fi
nite chains~usingH1-sol). In Fig. 1~a!, we plot the results for
b/D53. This shows that for such fields, our analytic expre
sions are quite good and can be used with confidence.
contrast, Fig. 1~b! shows a comparison of numeric and an
lytic results forb/D55/N. We see here that the width of th
boundary layer has increased greatly.@The boundary layer
consists of those points which deviate substantially from
linear analytic result. In Fig. 1~a!, the boundary layer is no
discernible.# The boundary layer is not a function ofN. It is
a function ofb. As N increases withb fixed, the boundary
layer therefore becomes less and less important. Never
less, asb tends to zero, the boundary layer increases u
eventually the present framework of localized eigenfunctio
must be abandoned. This is our first indication of the pro
lems associated with theb→0 limit. We shall return to this
limit below in connection with the calculation of the dynam
cal structure factor. For most of this paper, however, we s
consider either sufficiently large fields such that Fig. 1~a! is
the relevant scenario, or zero fields, where a dispersive m
with Bloch-like extended states is the correct descripti
These are the two experimentally relevant regions within
one-soliton approximation.

Assuming a sufficiently large field~in the sense of the
previous paragraph! and neglecting surface effects, the spe
trum of Eq. ~5! is the WZL, Em5bm. The presence of the
magnetic field thus destroys the continuous band structur
Eq. ~7! and replaces it with an evenly spaced ladder of
ergy levels, with the spacing between adjacent levels gi
by b. How are BO’s manifested within this fully quantum
mechanical framework? To compare with the semiclass
result of Eqs.~8! and ~9!, we should specify an initial state
and compute the expectation value ofm̂ as a function of
time. Let us keep the initial state arbitrary and wri
uc(0)&5(mCmuEm&. Then,
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^m~ t !&5^c~ t !umuc~ t !&

5(
m

muCmu22
1

2
ABReS e2 ivBt(

m
Cm* Cm22D ,

~16!

where Re denotes the real part. If we assume, for exam
that all Cm are real, and also that(mCmCm2251, then the
oscillating piece of Eq.~16! is identical to the oscillating
piece of Eq.~8!. However, if we take as the initial state on
which is completely localized at one lattice site,uc(0)&
5um&, then the oscillating piece identically vanishes. Th
situation corresponds to the state vector evolving symme
cally about both sides of the initial positionm in a sort of
breather state. Thus, the behavior depends sensitively u
the initial conditions.

Semiclassically, we have seen that BO’s result from
soliton being pushed unscattered through the band and
dergoing Bragg reflection at the zone boundary. By contr
in a full quantum treatment, BO’s result from the time ev
lution of a state which is not a~Wannier-Zeeman! eigenstate
of the Hamiltonian. The frequency of oscillation is given b

FIG. 1. ~a! Comparison of numerical and analytical results f
the energy spectrum of Eq.~5! for moderate field values. Only
every fifth energy level is shown.~There is one level at each intege
value ofm.! For such fields, the analytic spectrumEm5bm is es-
sentially exact.~b! The same plot as in~a!, but with a much smaller
field. Here, about 20% of the points show significant deviation
tween the analytic and numerical results. Asb continues to de-
crease, this boundary region increases. For such low fields, the
tem exhibits approximate translational invariance and so
momentum representation becomes more appropriate.
le,

i-

on

e
n-
t,

-

twice the energy between adjacent states. This is a resu
the fact that Eq.~5!, with b50, contains an intrinsic period
icity of two lattice constants, which also accounts for the fa
that the Brillouin zone is halved, as shown by Eq.~7!. This
effect can be understood semiclassically in terms of
Berry phase of the spins and is a result of the spin parity~see
Ref. 9 for more details!.

Finally, we note that BO’s are a many-body effect whi
should be distinguished from Larmor precession of u
coupled spins in an external field. The former yields an
cillating magnetic moment along the direction of the appli
field whereas the latter yields oscillations in directions tra
verse to the field.

We have focused on biaxial FM’s because the mater
we have identified as candidates for observing BO’s are
biaxial FM’s. In the next subsection, we show that BO’s
magnetic solitons can also exist in uniaxial FM’s (Jx5Jy) if
the field is tilted away from the Ising axis. We also show th
BO’s exist in anisotropic AFM’s if an inhomogeneous fie
is applied.

B. Other models

1. Ferromagnets

It is not necessary to have a biaxial FM in order to cre
BO’s. In fact, a uniaxial FM (Jx5Jy) may be preferable
because the bandwidth can then be externally controlled.
example, consider Eq.~1! with ferromagnetic couplings
with Jx5Jy, and with a homogeneous magnetic field alo
both thex andz axes (z is still the Ising axis!. The Hamil-
tonian is almost the same as Eq.~2!; the differences are tha
Ha now vanishes~becauseJx5Jy) and there is a new term
coming from the field in thex direction:

Ha852
1

2
bx(

n
~Sn

11Sn
2!. ~17!

This term gives hopping by one site. The one-soliton Ham
tonian is

H1-sol
uni 5

1

2
Jz2

1

2
bx~T11T21!2bzQm, ~18!

which is practically identical to Eq.~5!. Thus, uniaxial FM’s
exhibit the WZL if the external field is tilted away from th
Ising axis. The important difference between this and
biaxial case is that now the strength ofboth terms are adjust-
able externally. The energy eigenvalues here are as in
~12!, but the eigenstates are replaced by

uEm&uni5(
n

Jm2n~2bx/bz!un&. ~19!

Although some of the materials we will identify in the fo
lowing sections are reported to have only uniaxial anis
ropy, the material which seems to be the best characteri
and for which we provide the most detailed analysis, is o
which is reported to be a FM with biaxial anisotropy.

2. Antiferromagnets

It is more difficult to achieve BO’s in AFM’s because o
the local Néel order. We mentioned above that BO’s can
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viewed, at least semiclassically, as the result of applyin
force on a particle in a band. How can one apply a force
an antiferromagnetic domain wall? The force is given byF
52¹(nbn•Sn . If the external fieldb is homogeneous, the
the force quickly averages to zero over the chain. Howe
applying aninhomogeneousfield produces a net force. Equa
tion ~2! can still be used, but the couplings are now negat
andHI must be slightly altered to reflect the inhomogene
of the field:

HAFM
I 5uJzu(

n
Sn

zSn11
z 2( bn

zSn
z . ~20!

The one-soliton states must also be redefined. Rather
Eq. ~3!, we should write

um,Q&5u•••↑↓↑↓
m

↓↑↓↑•••&. ~21!

The chargeQ can be defined by the first spin at the end
the chain:11 Q521 for spin-up, andQ511 for spin-down.
Now it is Ha in Eq. ~2c! which will always create additiona
solitons~and thus should be discarded in the one-soliton
proximation!. Conversely,H' translates solitons. As a spe
cific example, we can take a magnetic field along the e
axis that linearly increases along the chain axis:bn

z5nbz

~such a field satisfies Maxwell’s equation¹•B50). Project-
ing down to the one-soliton sector, we obtain

H1-sol
AFM5

uJzu
2

1DAFM~T21T22!2
bzQ

2
~21!mS m1

1

2D ,

DAFM5~Jy1Jx!/4. ~22!

This Hamiltonian is again similar to Eq.~5!. The spectrum
again consists of the WZL, but due to the antiferroma
netism, the dependence of the spectrum on the position v
ablem is slightly altered:

Em5
1

2
bz~21!mS m1

1

2D . ~23!

The eigenstates are also very similar to Eq.~10!. Only a
must be slightly changed, again to reflect the antiferrom
netism:

a5~21!m
Jx1Jy

2bz
~Q521!. ~24!

Thus, much of what follows applies also to AFM’s where t
anisotropy can be either uniaxial or biaxial. One must o
replace the homogeneous field with a linearly increas
field.

In most of what follows, we shall consider biaxial FM
with static and homogeneous fields. The present subsec
however, shows that the same analysis can be carried o
almost without change, to uniaxial FM’s and to biaxial a
uniaxial AFM’s.

C. Conditions for observation

Here, we briefly touch on the conditions necessary to
serve BO’s in physical systems. This discussion will have
a
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remain rather vague, as it requires a detailed knowledge
specific material properties and, based on that, further th
retical investigations. Still, we can list a few essential con
tions in general terms, which are very similar to the on
studied in the context of mesoscopic effects in electro
systems.26

First, there should be no Zener transitions~interband tun-
neling!. The soliton oscillates only when it is reflected fro
one zone boundary to the opposite one within the same b
If the force on the soliton is too strong, it will gain so muc
energy at the top of the band that it will tunnel into a high
energy band. This tunneling will produce classical linear m
tion, rather than the quantum-mechanical BO’s. Such tra
tions can be neglected if the Bloch frequency is much lar
than the Zener transition rate. This effectively puts an up
bound on the field driving the particle. In the present conte
it means that the exchange constantJz along the easy axis, a
measure of the band gap, should be much larger than
magnetic fieldb.

Second, there should be no inelastic scattering. S
events occur, for example, by emission and absorption
phonons, or via soliton-soliton interaction. Inelastic scatt
ing may destroy the phase-coherent motion of the partic
necessary for BO’s to occur. A detailed investigation into t
nature and especially the magnitude of the spin-lattice c
pling in the spin chains we shall be discussing below is
yond the scope of the present work, and is, in any ca
probably a matter best determined experimentally~e.g., from
the measured linewidth in the structure factor!. It is known,
however, that the spin-lattice couplings are far weaker th
the analogous charge-lattice couplings. Also, if the soli
density is low enough, soliton-soliton interactions, bei
typically of short-range nature, can be neglected and the
sults of band theory are still valid. In Ising-like spin chain
a low-density requirement implies that the temperat
should be less than the exchange couplingJz . Again this can
be typically satisfied.

Finally, elastic scattering, such as scattering from sta
random impurities, may also be a problem~although typi-
cally less restrictive!. Here, one should consider the Ande
son localization length induced by random disorder in lo
dimensional systems. This length, which is on the order
the elastic mean free path of the propagating quasipartic27

~in the present case, the soliton!, should be greater than th
Bloch amplitude, which places a lower bound on theB field
driving the soliton. However, since the Bloch amplitude c
typically be on the order of the lattice constant, this poses
severe constraints.

Although the above conditions are demanding, it is qu
encouraging that the presence of extended states of dis
sive solitons~i.e., the Villain mode! has been establishe
experimentally in Ising-like antiferromagnets.16–22 This sug-
gests that, at least for certain spin chains, inelastic scatte
and disorder can be neglected to first approximation. In
end, the inelastic mean free timet in should be compared
with the Bloch frequencyvB . Bloch oscillations are possible
if vB.1/t in . Typical values forvB lie between 40 and 600
GHz ~see below!.

III. THE DYNAMICAL STRUCTURE FACTOR

In this section, we show that the dynamical structure f
tor Sb

zz(q,v) at finite field contains sharp peaks at integ
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multiples of the Bloch frequencyvB—clear evidence of the
WZL. Thus, inelastic neutron scattering, for example, c
detect the WZL. By contrast, we also calculate the dynam
structure factorS0

zz(q,v) at zero field and thus give the fe
romagnetic analog of the Villain mode for AFM’s.

For a translationally invariant system such as the
Hamiltonian in Eq.~2!, the dynamical structure factor is de
fined in the standard way:28

Szz~q,v!5
1

2pE2`

`

dt e2 ivt^dS2q
z ~0!dSq

z~ t !&, ~25!

wheredSq
z5Sq

z2^Sq
z&. The Fourier transform of the spin op

erator is also defined in the standard way: for a finite ch
with Ntot52N11 sites,Sq

z5(n52N
N eiqnSn

z . ~We continue to
set a51.! If the eigenbasis$ucm&% is orthonormal and dis-
crete, one may write

Szz~q,v!5
1

Z(
m,n

e2bEmu^cnuSq
zucm&u2d~v2En1Em!

2u^Sq
z&u2d~v!, ~26!

whereEm is the energy eigenvalue. In the following subse
tion, we give results forb50 and later give results forb
Þ0.

A. The dispersive mode„b50…

The dynamical structure factor forb50 is calculated in
Appendix A. The final expression is given in Eq.~A17! as

S0
zz~q,v!5

ebv/2cosh@~1/2! bAVq
22v2cot q#

4p sin2~q/2!I 0~2Db!AVq
22v2

, ~27!

where the bandwidthD is given in Eq.~5!, the cutoff fre-
quencyVq in Eq. ~A8!, and whereI 0 is the modified Besse
function of zeroth order. Equation~27! is plotted in Fig. 2 for
D50.925 K andT518 K. ~These parameters are relevant f
the following discussion on the material CoCl2 • 2H2O.! The
plot shows the frequency dependence at a fixed wave ve

FIG. 2. A plot of S0
zz(q,v) for q5p/2, as given by Eq.~A17!,

with D50.925 K andT518 K. We have also convolutedS0
zz(q,v)

with a Gaussian, and so the square-root singularities atv56Vq

have been rounded, as expected if collisions and interactions
taken into account.
n
al

ll

n

-

tor

of p/2. In addition, we have convoluted the dynamical stru

ture factor with a GaussianR(v)5(1/Aps)e2v2/s with
As'4 GHz. Thus, the square-root singularities atv5
6Vq have been rounded, which is the expected effect
soliton-soliton collisions and other interactions we have
taken into account here. This structure factor is very sim
to that found in AFM’s by Villain10 and Boucheret al.,17

who also worked in the one-soliton subspace, and by Na
et al.,18,19 who worked in the two-soliton subspace. As a
gued by Nagleret al., similar results should be expected fo
all cases where the soliton number stays fixed.

Equation~A17! assumes the existence of only one solit
in the system, whereas there will always be some finite d
sity of solitons. Since the~thermal! energy required to creat
a soliton is Jz/2, the result in Eq.~A17! may be crudely
weighted by a Boltzmann factor given by17 S0

zz(q,v)

→e2bJz/2S0
zz(q,v). A more proper treatment would be t

include soliton interaction, with the possibility of creatio
and annihilation of solitons. Nevertheless, Eq.~A17! should
be qualitatively correct for Ising-like FM’s just as the an
ferromagnetic analog qualitatively describes the experim
tal findings.

An important difference between the result above
FM’s and the result for AFM’s is the wave-vector depe
dence. The factor of sin2(q/2) in Eq. ~A17! for FM’s is re-
placed by cos2(q/2) for AFM’s. This difference between sin
and cosine is related to the difference in ordering betw
FM’s and AFM’s; for AFM’s, q5p is commensurate with
the spatial spin order near the ground state, while for FM’s
is q50 which is commensurate with the ordering. Thus, o
can replaceq by p2q in going from FM’s to AFM’s; this
changes sin2(q/2) into cos2(q/2). Actually, cotq andVq also
change signs, but Eq.~A17! is invariant under this change
Also, the difference in the bandwidthD (Jy1Jx for AFM’s
andJy2Jx for FM’s! has been discussed in Sec. II B 2.

It should not be so surprising that the result for FM’s a
AFM’s is so similar in the absence of magnetic fields. Aft
all, we have already seen in Sec. II that a variety of Ising-l
models gets mapped onto an effective tight-binding mo
for solitons in the one-soliton approximation. For examp
in zero magnetic field, Eq.~5! for FM’s is formally identical
to Eq. ~22! for AFM’s. Differences between the two onl
arise in the presence of a field. But even then, one can ch
different field configurations for FM’s and AFM’s in order t
obtain similar structure factors; as shown before, the W
also exists in AFM’s if an inhomogeneous field is applied

Equation~A17! shows a divergence asq→0. This should
not be viewed as a physical result, but rather as an indica
of the failure of the one-soliton approximation in this limi
In contrast, when we consider thebÞ0 case below, we shal
see that theq→0 limit is well behaved. This is because th
soliton states are now localized and the one-soliton Ham
tonian is no longer translationally invariant on the lattic
~Thus,k is no longer a good quantum number.! This local-
ization should dramatically decrease the collision rate. In t
way, the magnetic field provides a physical cutoff for t
above singularity atq50. We will come back to this issue in
the following subsection.

For an estimate of the soliton-soliton collision rate, w
can employ the results in Ref. 17. These authors have loo

re
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at the model described byH1-sol
AFM in Eq. ~22!, with bz50, and

so we can use their results for our ferromagnetic model if
simply substituteD for DAFM. Following Ref. 17, the soliton
density is given byns5e2bJz/2 and the soliton occupation
probability byp(k)5e2bE(k)/Z. The soliton velocity, given
by the derivative of the dispersion relation, isvk5
24D sin(2k), and the average soliton velocity is defined
v05(1/Ntot)(kuvkup(k), whose evaluation yields

v05
4 sinh~2Db!
pbI 0~2Db! →

2Db!1
8D/p. ~28!

The collision ratevc(k) depends on bothns andvk , and is
given by

vc~k!'ns(
k8

p~k8!uvk82vku'nsv0@12~12p/2!sin2~2k!#.

~29!

B. The Wannier-Zeeman ladder„bÞ0…

In this subsection, we derive a central result of this pap
In the presence of a magnetic field applied along the Is
axis, the dynamical structure factor will exhibit the signatu
of the WZL. We shall also find that theq→0 limit is well
behaved, in contrast to the previous subsection on the z
field regime. This, together with the fluctuation-dissipati
theorem, will also enable us to calculate the uniform susc
tibility x9(v), which provides us with a measure of the ma
netization autocorrelation function. We begin first wi
Sb

zz(q,v), followed by x9(v). Most of the technical details
are given in Appendix B.

1. The dynamical structure factor

The dynamical structure factor for finiteb is calculated in
Appendix B. The final expression is given in Eq.~B18! as

Sb
zz~q,v!5

1

2 (
n52N

N

Gn~q!d~v2nvB!, ~30a!

G05
J0

2~z!

cosh~bvB /2!2cosq
, ~30b!

Gn5
Jn

2~z!

2 sin2~q/2!
3H 1, n.0

enbvB, n,0,
~30c!

wherevB52b is the Bloch frequency. Equation~30! indi-
cates in particular that inelastic neutron scattering is cap
of mapping the Wannier-Zeeman ladder. A soliton initially
in some given Wannier-Zeeman state may be excited
higher states. The neutron line-shape intensity for an exc
tion by n levels, is essentially given by square of thenth
order Bessel functionJn

2(z). This means that therelative
amplitudesof the peaks can be controlled through the arg
ment z5(2D/b)usinqu by adjusting the external fieldb
~hence also the Bloch frequency and amplitude!. For ex-
ample, in Figs. 3 and 4, we plot the structure factor a
function of v for q5p/2. In these figures, we have conv
e

s

r.
g

ro-

p-
-

le

to
a-

-

a

luted the structure factor with a Gaussian:

Sb
zz~q,v!→E

2`

`

dv8R~v2v8!Sb
zz~q,v8!,

R~v!5
1

Aps
e2v2/s. ~31!

For the plot in Fig. 3, we have takenT518 K, D
50.925 K ~both as in Fig. 2!, andb53.71 K. The choice of
these numbers is motivated by the candidate materials t
discussed in the following section. These values give a Bl
frequency of about 154 GHz and a Bloch amplitude of ab
one lattice constant.29 For the material CoCl2 • 2H2O dis-
cussed in the following section, this value ofb corresponds
to an external field of about 0.81 T, and the temperature
18 K is just above the three-dimensional ordering tempe
ture. In Fig. 4, we use the exact same parameters as in F
except for b, for which we have setb53.71 K/4
50.9275 K. The Bloch frequency is correspondingly r
duced by a factor of 4, while the Bloch amplitude isin-

FIG. 3. A plot of Eq.~B18! for q5p/2, with AB5a andbvB

50.4. For the material CoCl2•2H2O, this corresponds to an applie
field of H tot50.81 T,vB /2p5154 GHz, andT518 K. The peaks
at v56vB are measured on the left vertical axis and the peak
v50 is measured on the right. The peaks have been broadene
convoluting with a Gaussian as in Eq.~31!, with As'40 GHz.

FIG. 4. The same plot as in Fig. 3, but withb reduced by a
factor of 4. There is a similar decrease in the Bloch frequency,
a similarincreasein the Bloch amplitude. The striking feature is th
change in the relative amplitudes of the peaks, as compared
Fig. 3. Here we have plotted peaks up to three times the Bl
frequency all on the same scale.
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creasedby the same factor. The striking feature here is
relative amplitudes of the peaks, as compared with Fig
with this smaller field, peaks up tov563vB can be distin-
guished on the same scale. The peaks in both figures a
from v50 are the signature of the WZL. There exists o
peak at every integer multiple of the Bloch frequency, w
an amplitude given by the square of a Bessel function.

We have repeated the above calculation numerically~for
finite N) and compared the results with the analytic ones
presented. For any given peak atv5nvB (n50,61,
62, . . . ), thenumeric results converge to the above analy
ones as the system size 2N11 grows. If instead we fixN,
then the numeric results converge to the analytic result
one moves away from the boundaries of the chain at6N.
We may thus conclude that the numeric and analytic res
agree in the thermodynamic limit.

2. The uniform susceptibility

It is interesting to note that in contrast to the dispers
mode forb50, theq→0 limit is well behaved whenbÞ0:

Sb
zz~q→0,v!→

d~v!

4 sinh2~bb/2!

1S D

b D 2

@d~v2vB!1ebvd~v1vB!#.

~32!

We have verified this result by performing the calculation
q50 from the outset, as well as by calculating the imagin
part of the zero wave-vector susceptibilityx9(v) in the Mat-
subara formalism, and then using the fluctuation-dissipa
theorem:

x9~v!5
~gmB!2

2
~12e2bv!Sb

zz~v!

5
1

2 S D

BD 2

~12e2bvB!@d~v2vB!2d~v1vB!#.

~33!

Here, we have expressedx9(v) in units of mB
23s. Equation

~33! represents the response from only one soliton. Th
should be one such factor for each soliton in the syst
Assume, for example, that one soliton exists every ten lat
sites for each chain in the sample.~This requires the Bloch
amplitude to be less than ten lattice sites.! A single-crystal of
CoCl2 • 2H2O, with a volume of 1mm3 will then contain up
to 1018 solitons. Thus, the signal can be quite large a
should thus be observable in standard magnetization m
surements~using, for instance, cantilever or superconduct
quantum interference device technology!.

Again, the structure factor and the susceptibility should
observable as long as the inelastic scattering rate is less
vB . Concrete estimates for the soliton collision rate, for e
ample, in the presence of ab field are even more difficult to
obtain than forb50. Nevertheless, the rate for sufficient
large b should be far lower than the rate forb50. Indeed,
when we turn on the field, the solitons become localized
execute BO’s about their mean positions. By tuning the fi
e
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appropriately, the Bloch amplitude can be kept much sma
than the average distance~i.e., inverse density! between the
localized solitons, and in this case the soliton-soliton int
action can be expected to be negligible. We can now go o
compare the zero-field limit of the above ‘‘Wannie
Zeeman’’ results with the previous ‘‘dispersive’’ results.

C. Discussion of results„b˜0…

As the field decreases, the Bloch amplitude increases
some point, the Bloch amplitude will be equal to the spac
between solitons in the chain. At this point, collision effec
which are not included in our theory, become important a
BO’s will be suppressed. This means that, for a meaning
comparison between our approximate theory and experim
we must considereither the zero-field regime (B50), or the
regime whereB is sufficiently large such that our one-solito
approximation is justified.

In this sense, the limit ofB→0 within the one-soliton
approximation, has no experimental significance. Howev
it is still interesting from a technical point of view since th
limit shows some features reminiscent of the classical li
of a quantum system, in the sense that there might be
pointwise convergence.30 Other well-known examples ar
the harmonic oscillator and a particle in a linear potentia30

In general—and especially when interference effects are
portant, as in the BO problem—some, usuallyad hoc, aver-
aging procedure must be employed in order to obtain
meaningful classical limit.

The problems show up already at the level of the eig
functions and eigenvalues. At finite field, the eigenfunctio
are the localized Wannier states~10b!, ^nuEm&5@11
(21)m2n)]J(m2n)/2(a)/2, which satisfy vanishing boundar
conditions. But atb50, the extended Bloch states^nuk&
5eikn/ANtot satisfy periodic boundary conditions. It is thu
not too surprising that asb→0, the Wannier states do no
converge pointwise to the Bloch states. The same holds
the energy eigenvalues; the band structure cannot be re
ered from the WZL in theb→0 limit.

Similar remarks apply to the partition functions. Keepin
a finite system sizeNtot52N11, the partition functions for
finite and zero fields are, respectively, given by

Zb5 (
m52N

N

e2bbm5
sinh~bbN tot /2!

sinh~bb/2!
, ~34!

Z05 (
k52p

p

e22Db cos~2k!5NtotI 0~2Db!. ~35!

These expressions imply that theb→0 limit must be coupled
to the Ntot→` limit. For example, if we are in the regim
whereDb!1 andbb!bbNtot!1, then to second order in
both Db andbb, Zb converges toZ0 provided we make the
identificationbNtot52A6D. On the other hand, if we are in
the regimeDb!1 andbb!1!bbNtot , the partition func-
tions cannot be matched.

Next, we look at the dynamical structure factor~B18!
which we rewrite here in a slightly different form:
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Sb
zz~q,v!5

Jv/2b
2 ~z!eb~v2uvu!/2

4 sin2~q/2!
(

n52N

N

d~v22bn!

2
J0

2~z!

4 sin2~q/2!

cosh~bb!21

cosh~bb!2cosq
d~v!.

~36!

For b→0, the second term tends to zero and so we need
concern ourselves with the first term. The Bessel funct
Juvu/2b

2 (z)5Juvu/2b
2 (uVqu/2b) can be expanded in it

asymptotic form forb→0. If uvu,uVqu, then

Juvu/2b
2 S uVqu

2b D'
4b

pAVq
22uvu2

sin2F 1

2b SAVq
22uvu2

2uvuarccos
uvu
Vq

D1
p

4 G . ~37!

It is the rapidly oscillating factor which prevents the poin
wise convergence in theb→0 limit; some averaging proce
dure is required. To illustrate this, let us crudely replace
oscillatory factor with 1/2~which is accurate only forv2

!Vq
2):

Juvu/2b
2 S uVqu

2b D'
2b

pAVq
22uvu2

. ~38!

In the b→0 limit, the sum overn in Eq. ~36! can be made
continuous:

(
n52N

N

d~v22bn!5
1

2 (
n52bN

bN

dS 1

2
v2nD

→
1

2bE2bN

bN

dndS 1

2
v2nD

5H 1/2b, uvu,2bN

0, uvu.2bN.
~39!

Inserting Eqs.~38! and ~39! into Eq. ~36!, and assuming
uvu,uVqu, we can write

lim
b→0

Sb
zz~q,v!'

eb~v2uvu!/2

4p sin2~q/2!AVq
22v2

ÞS0
zz~q,v!.

~40!

Although the last two expressions are not equal, they
nevertheless quite similar. In Fig. 5, we plot the two resu
Eqs. ~40! and ~A17!, using the same parameters as in t
previous figures. The small deviations can be traced bac
the rapidly oscillating sine squared function in Eq.~37!. We
have replaced this by the constant factor of 1/2. This is
quite proper since the period of the oscillation is a funct
of v ~and not just a constant!. Near the cutoff frequencyVq ,
this error becomes the most apparent because the rest o
function in Eq.~37! is also a rapidly varying function~it is
tending to a square-root singularity!. In the inset of Fig. 5,
we have plotted the ratio
ly
n

e

re
,

e
to

t

the

limb→0Sb
zz~p/2,v!

S0
zz~p/2,v!

'
e2buvu/2I 0~2Db!

cosh@~1/2! bAVq
22v2cot q#

,

~41!

as a function ofv for the same values ofD, b, andq used in
previous plots. Nearv50 the agreement is best~the ratio is
near unity!. But asv→Vq , the agreement becomes progre
sively worse. Nevertheless, this rather crude treatm
achieves reasonable agreement—only about 10% error a
worst. The agreement improves if we chooseqÞp/2, but
worsens as the productDb grows.~But Db!1 is the regime
of interest.!

This marks the end of the theoretical development. In
following section, we shall concentrate on various materi
we believe are good candidates for observing the WZL. S
cifically, we shall see that BO’s can exist in certain ferr
magnetic Ising-like salts, with frequencies on the order
150 GHz.

IV. CANDIDATE MATERIALS

We have identified four candidate materials for observ
BO’s and the WZL in purely magnetic systems. The mate
als are all Ising-like FM’s, and consist of chains of magne
ions, with effective spin-12, separated by spacer material. W
focus mainly on CoCl2•2H2O ~Ref. 12!, but give also a brief
discussion on the potentially more promising, but less w
characterized, CoCl2•2NC5H5 ~Ref. 31!,
@(CH3)3NH#CoCl3•2H2O ~Ref. 32!, and
@(CH3)3NH#FeCl3•2H2O ~Ref. 33!.

A. CoCl2–2H2O

In CoCl2•2H2O, the magnetic Co ions form chains alon
thec axis. The coupling is ferromagnetic between ions in t
same chain~we consider interchain exchange below!. The
exchange anisotropy is such that theb axis is an easy axis
The work of Ref. 12 confirms unambiguously that the Isin
like spin-12 Hamiltonian of Eq.~2! describes this system ver
well. In Table I, we list the material parameters of this fe

FIG. 5. A plot of both lim
b→0

Sb
zz(p/2,v) in Eq. ~40!, and

S0
zz(p/2,v) in Eq. ~A17!. Good agreement is obtained, but there

some discrepancy as shown in the inset, which shows the rati
the two functions~41!. This should be a constant~equal to one! if
the two results are the same. The source of this discrepanc
discussed in the text.
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romagnetic salt.~We have taken the crystalb axis to coin-
cide with thez axis of the Cartesian coordinate frame.! We
also list two antiferromagnetic interchain couplings.~We fol-
low Ref. 12 in neglecting the small non-Ising part of th
interchain exchange.! We shall consider this interchain cou
pling in a mean-field treatment by considering the total fi
at a given site to be the sum of the externally applied fi
and some internal field due to interchain exchange.

Let us first neglect the interchain interaction and consi
just a single chain in the presence of a static and homo
neous field along thez axis. Then, the one-soliton approx
mation should be valid if the external fieldbz5gmBHext

z is
less than the Ising exchange couplingJz. For the parameters
given in Table I, this puts a restriction on the field strength
Hext

z ,4 T. For example, if we apply a 0.81 T field—
comfortably below this upper bound—then the Bloch amp
tude and frequency are given from Eq.~9! as

AB5a
Jy2Jx

gmBHext
z

'a,
vB

2p
5

gmBHext
z

\p
'154 GHz.

~42!

This amplitude is small enough to impede the destruc
influence of any scattering events, and the frequency f
within the capabilities of neutron scattering. This is therefo
an encouraging result.

Due to the antiferromagnetic interchain couplingsJ1
z and

J2
z , the material undergoes a three-dimensional orde

transition at about 17 K. Below this temperature, and in z
external field, there still exists ferromagnetic order with
each chain, but the chains are ordered antiferromagnetic
with respect to each other. As the field is turned on there
successive transitions from antiferromagnetic, to ferrim
netic, and finally to ferromagnetic order at fieldsHc1 and
Hc2, respectively. At all times, the intrachain order is ferr
magnetic. This is depicted in Fig. 6, where we also list
interchain coupling values12 and the critical fields.34,12When
determining the Bloch amplitude and frequency, one sho
also include these internal fields. For example, a Bloch a
plitude of one lattice constant, which results from atotal

TABLE I. Relevant parameters for the candidate materials d
cussed in the text. A dashed entry~—! means that no value wa
given in the references.

Parameter Value
CCHa CCNb CoTACc FeTACd

Jz 18.3 K 10 K 14.2 K 17.4 K
Jy2Jx 3.7 K — — —
Jy1Jx 5.6 K — — —
J1

z 24.6 K 23.4 K 0.18 K 20.02 K
J2

z 20.9 K — 21023 K 0.00 K
a 3.55 Å 3.66 Å 3.63 Å 3.68 Å
g 6.81 5.49 6.54 7.49
T3D 17.2 K 3.17 K 4.14 K 3.12 K

aCoCl2•2H2O ~Ref. 12!.
bCoCl2•2NC5H5 ~Ref. 31!.
c@(CH3)3NH#CoCl3•2H2O ~Ref. 32!.
d @(CH3)3NH#FeCl3•2H2O ~Ref. 33!.
d
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field of H tot50.81 T, can be realized in all three phases wh
these internal fields are taken into account. Explicitly,
have~for H tot50.81 T!

AFM: H↓
tot52Hext24J1

z/gmB12J2
z/gmB⇒Hext52.8 T,

~43a!

FIM: H↓
tot52Hext24J1

z/gmB22J2
z/gmB⇒Hext53.6 T,

~43b!

FM: H↑
tot5Hext14J1

z/gmB12J2
z/gmB⇒Hext55.2 T.

~43c!

The notationH↓
tot , for example, denotes the total field at

chain with spin down, where ‘‘down’’ is defined as bein
opposite to the external field. Thus, in the ferromagne
phase, all chains are spin up. In Fig. 7 we plot the result
predictions for the Bloch frequency and~inverse! Bloch am-
plitude as a function of external field in all three phases. T
antiferromagnetic and ferrimagnetic phases show two cur
because these phases have both spin-up and spin-d
chains, and these chains each feel a different field. The
ted horizontal lines are bounds, outside of which the res
become equivocal; near the upper bound, the total field

-

FIG. 6. The three phases of CoCl2•2H2O for T,17.2 K. The
spin chains run perpendicular to the page andJ1

z and J2
z are the

interchain antiferromagnetic couplings. These couplings can
considered internal fields, and so they too affect the Bloch osc
tions. In fact, Bloch oscillations can potentially exist in all thre
phases. This figure has been adapted from Ref. 12.

FIG. 7. A plot of Bloch frequency and inverse Bloch amplitud
in CoCl2•2H2O as a function of external field below the thre
dimensional ordering temperature of about 17 K. The discontinu
jumps in the curves are a result of transitions from anti-, to fer
and finally to ferromagnetic order of the chains relative to ea
other. Ferromagnetic order is always maintainedwithin each chain.
The horizontal dotted lines denote upper and lower bounds, bey
which the present analysis should not be expected to hold.
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comes comparable to the Ising exchange constantJz; near
the lower bound, the amplitude becomes too large, so
scattering effects should probably be taken into acco
There is however, a fairly large intermediate range of o
400 GHz where the effect should be noticeable.

B. Other materials

Another material we wish to mention here
CoCl2•2NC5H5 ~Ref. 31!. This material differs from the one
above only by the spacer material—pyridine molecu
rather than water. Pyridine is a larger molecule than wa
and so the magnetic chains are further apart by about a fa
of 1.7 ~9.4 Å versus 5.5 Å for the water spacer!. This mate-
rial is thus a better one-dimensional material th
CoCl2•2H2O. The three-dimensional ordering temperature
about 5.4 times smaller than it is in CoCl2•2H2O ~3.17 K
rather than 17 K!. The material parameters are summariz
in Table I. Because the experimental work on this mate
seems less extensive than that on CoCl2•2H2O, we have not
made any predictions for BO’s in this material. But due
the reduced three-dimensional ordering temperature, this
terial should be a better candidate for observing BO’s a
the WZL. Even if there really is no transverse anisotro
(Jy5Jx), BO’s could still be induced by simply applying
transverse field in addition to the one along the Ising a
~see Sec. II B 1!.

Most of the preceding paragraph applies even more
phatically to the final two materials listed in Table I, partic
larly to FeTAC.33 The small magnitude of the interchain co
plings and the lower three-dimensional ordering tempera
indicate that these materials may be quite suitable for BO
We have again chosen not to provide predictions for t
compound since we believe further material characteriza
is necessary.

In summary, we have shown in this section that there
a number of materials which may exhibit a dispersive soli
mode as well as BO’s. We have not discussed any A
chains because we have been unable to identify any with
appropriate material parameters such that the Bloch
quency and amplitude fall within experimentally accessi
regimes. Should any such chains exist, Sec. II B 2 shows
BO’s may exist under an applied inhomogeneous magn
field.

V. SUMMARY AND OUTLOOK

In this work, we have shown that BO’s of magnetic so
tons occur in anisotropic spin-1

2 chains. Although we have
focused primarily on biaxial Ising-like FM’s, we have show
that BO’s can also occur in uniaxial FM’s by applying
transverse field in addition to the longitudinal field. We ha
also shown that BO’s may exist in Ising-like AFM’s by ap
plying an inhomogeneous field.

We have been mainly envisioning a neutron-scattering
periment in this work because the dynamical structure fa
shows clear evidence of the WZL; it contains sharp peak
integer multiples of the Bloch frequency. At zero wave ve
tor, all the peaks vanish except for the one at zero freque
and those at the Bloch frequency6vB . Thus, a measure
ment of the magnetization autocorrelation function~mag-
at
t.
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netic susceptibility! about the Bloch frequency should als
detect the WZL.

Several materials are promising candidates for observ
BO’s and the WZL. We have chosen to focus our estima
on the one-dimensional salt CoCl2•2H2O. Although this ma-
terial is not an ideal one-dimensional substance~better ones
have been identified above!, BO’s of amplitude one lattice
constant~about 3.6 Å! and frequency of about 154 GHz ar
possible with applied fields of a few Tesla. The other ma
rials we have mentioned are less well characterized than
one just described. However, the much smaller interch
coupling indicates that they are better one-dimensio
samples—a statement further supported by their thr
dimensional ordering temperature, which is much lower th
CoCl2•2H2O. It is possible that these materials contain on
uniaxial anisotropy. If so, BO’s can be achieved by tiltin
the external field away from the Ising axis.

A question we are currently investigating is what effe
soliton-soliton interactions have on the WZL, as well as t
related question on the influence of the higher-soliton sta
The WZL and BO’s should survive if the number of soliton
is conserved. In Ref. 19, a study is presented of soliton
namics in the two-soliton sector~but in zero applied field!. If
one enforces periodic boundary conditions, then only e
numbers of solitons can exist. But quantities calculated in
thermodynamic limit should be independent of the bound
conditions employed. Therefore, as expected, this w
found practically the same result for the dynamical struct
factor as Villain did working in the one-soliton sector. How
ever, the two-soliton sector brings with it an opportunity
directly detect thecoherent oscillation of solitons. For ex-
ample, two solitons can form a bound state which should
identified as a magnon in spin-1

2 chains. Multiple magnon
bound states can then be formed in which a cluster of a
cent spins are all flipped relative to the majority of the fe
romagnetically aligned spins in the chain. Indeed, these
precisely the excitations measured in the work of Ref.
which concerns the optical excitation of multiple-magn
bound states. An enticing scenario exists if the ends of th
clusters also undergo Bloch oscillation. Rather than hav
these excitations thermally created, as we have been as
ing above, one can then optically create these excitati
coherentlyby infrared radiation. The resulting Bloch oscilla
tions will then also be coherent, and this may be detected
example, by looking for coherent emission of magnetic
pole radiation in the microwave regime. In this scenario,
magnetic Bloch oscillator is an emitter of coherent micr
wave radiation. This is essentially the analog of the el
tronic BO experiments, where the charge carriers are o
cally excited with visible light, and the electron dipo
oscillations radiate in the submillimeter regime. There are
exciton effects in our spin chains and so the detection of
magnetic radiation would be a clear signal of magnetic Blo
oscillations. This intriguing problem will be the subject of
future publication.
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APPENDIX A: THE DYNAMICAL STRUCTURE FACTOR
IN ZERO FIELD

Without a magnetic field, the eigenstates are the Blo
states Eq.~6!. Substituting these states, for a fixed charge
Q521, into Eq.~26! yields

S0
zz~q,v!5

1

Z(
k,k8

e2bE~k!u^k8uSq
zuk&u2

3d„v2E~k8!1E~k!…2u^Sq
z&u2d~v!,

~A1!

whereE(k) is shown in Eq.~7!. ~We neglect the constan
factor of Jz/2 since it drops out in the end.! The partition
function Z can be expressed in terms of the modified Bes
function of order zero:

Z5(
k

e2bE~k!5NtotI 0~2Db!. ~A2!

The matrix elements ofSq
z in the eigenbasis can be found b

first noting that

Sn
zum&5H 2~1/2!um&, m>n

~1/2!um&, m,n,
~A3!

from which it follows that

Sn
zuk&5

1

2
uk&2

1

ANtot
(

m5n

N

eikmum&. ~A4!

The one-soliton approximation breaks down
q→0.10,19,17 If the neutron transfers no momentum to t
system, then the energy will likely go into the creation
another soliton~actually a soliton-antisoliton pair!. These are
not the processes we are interested in here and are not
tained in our approximation. Rather, we wish to consider
process where a neutronscattersthe soliton from onek state
to another, which is less and less likely to happen asq→0.
Below, we shall give estimates of both the soliton dens
and collision rate.

Limiting the discussion toqÞ0, the matrix elements o
Sq

z are given by ^k8uSq
zuk&5(eiqdk8,k1q2e2 iqNdkk8)/(1

2eiq), and so the modulus squared becomes

u^k8uSq
zuk&u25

1

4 sin2~q/2!
~dk8,k1q1dkk8!. ~A5!

From this, we can find the first term in Eq.~A1!:

S0
zz~q,v!1u^Sq

z&u2d~v!
k
e
n

h
f

el

f

on-
e

y

5
1

4 sin2~q/2!
S d~v!1

1

Z(
k

e2bE~k!

3d„v2E~k1q!1E~k!…D . ~A6!

The Dirac delta function can be written as

d„v2E~k1q!1E~k!…5d„v1Vq sin~2k1q!…,
~A7!

Vq54D sin q, ~A8!

where Vq represents an upper bound or cutoff on the f
quency. Above this frequency, the structure factor vanish
This is a direct result of the one-soliton approximatio
which yields a dispersion relation with afinite bandwidth.
For a given momentum transferq, the maximum energy a
soliton can absorb~or emit!, while still remaining in the
same band, isVq . The d function ~A7! can be written in a
more usable form by using the relationd„f (k)…5(nd(k
2kn)/u f 8(kn)u, where thekn are the zeroes off (k). In our
case, f 8(k)52Vq cos(2k1q) and thekn are fixed by the
condition

sin~2kn1q!52v/Vq . ~A9!

If we substitute these results into Eq.~A6!, and in addition
take the continuum limit ((k→Ntot*dk/2p and Ntot→`),
we obtain

S0
zz~q,v!1u^Sq

z&u2d~v!

5
1

4 sin2~q/2!
S d~v!1

Ntot

2pZ(
n

e22bD cos~2kn!

u2Vqcos~2kn1q!u D .

~A10!

To perform the sum overn, we must first solve Eq.~A9!.
Defining v/Vq[sinf, where ufu<p/2 since uvu<uVqu,
Eq. ~A9! is rewritten as sin(2kn1q)52sinf. The general
solution is

2kn1q5~21!n11~np1f!, ~A11!

which is valid for arbitrary integern (n50,61,62, . . . ).
But not all values ofn are allowed; the allowed values ofn
must be chosen such thatuknu<p, implying that the allowed
values ofn depend on the values of bothf and q, where
ufu<p/2 anduqu<p. For example,n50 is always allowed,
n523 is allowed only ifp<(f2q)<3p/2, andunu>4 is
never allowed. It turns out that for anyf and q, there are
always four values ofn which are allowed—two even value
~either n50,2 or n50,22) and two odd values~either n
51,3, n561, or n521,23). Actually, the specific value
of n makes no difference; the important point is whethern is
even or odd~and there are always two of each allowed!. For
example, from Eq.~A11! we can write

u2Vqcos~2kn1q!u5u~21!n2Vq cosfu52AVq
22v2.

~A12!

Similarly, we have



-
i

o
l
l

s

,
-

ne

ore
ma-

ght

the

PRB 58 5581BLOCH OSCILLATIONS OF MAGNETIC SOLITONS IN . . .
22Db cos~2kn!

522Db@~21!ncosf cosq2sin f sin q#

5
b

2
@6~21!n11AVq

22v2cot q1v#, ~A13!

where the top sign (1) is for uqu<p/2, and the bottom sign
(2) for p/2,uqu<p. ~These signs will also prove irrel
evant.! We can use the above two results to write the sum
Eq. ~A10! as

(
n

e22bD cos~2kn!

u2Vq cos~2kn1q!u

5
1

2AVq
22v2(n

expF1

2
b@6~21!n11

3AVq
22v2cot q1v#G . ~A14!

We see now that the magnitude ofn plays no role; it only
matters whethern is even or odd. Since there are always tw
even and two odd values ofn, the sum over the exponentia
becomes a hyperbolic cosine, and therefore the additiona6
also becomes irrelevant:

(
n

expF1

2
b@6~21!n11AVq

22v2cot q1v#G
54ebv/2coshS 1

2
bAVq

22v2cot qD . ~A15!

Gathering the above results, the structure factor become

S0
zz~q,v!1u^Sq

z&u2d~v!

5
1

4 sin2~q/2!

3S d~v!1
ebv/2 cosh@~1/2! bAVq

22v2cot q#

pI 0~2Db!AVq
22v2 D .

~A16!

For the calculation ofu^Sq
z&u2, we proceed by noting that

for qÞ0, ^kuSq
zuk&52e2 iqN/(12eiq). Since this is indepen

dent of k, we haveu^Sq
z&u25u^kuSq

zuk&u251/4 sin2(q/2). Fi-
nally, subtracting this from Eq.~A16!, we obtainS0

zz(q,v):

S0
zz~q,v!5

ebv/2cosh@~1/2! bAVq
22v2cot q#

4p sin2~q/2!I 0~2Db!AVq
22v2

.

~A17!

APPENDIX B: THE DYNAMICAL STRUCTURE FACTOR
IN A FINITE FIELD

Using the eigenbasis of Eq.~10! we can write the dynami-
cal structure factor~26! as35
n

Sb
zz~q,v!5Z21 (

m,n50

2N

e2bbmu^En2NuSq
zuEm2N&u2

3d„v2b~n2m!…2u^Sq
z&u2d~v!. ~B1!

Here, we have shifted the origin of our coordinates to o
end of the chain~with a similar shift in the partition function
Z). Because of the simple energy-level structure Eq.~12!, the
partition function is simply given by

Z5
12e2bbNtot

12e2bb
→

bbNtot@1

1

12e2bb
. ~B2!

We shall assumebbNtot@1 in all that follows.
To obtain the matrix elements ofSq

z , note first that from
Eqs.~A3! and ~10!, it follows that

Sn
zuEm&5

1

2S uEm&22 (
m85n

N

Cmm8um8& D . ~B3!

Using this, along with the relationŝEmum8&5Cmm8 and
^EmuEm8&5dmm8 , we can find the matrix elements ofSq

z :

^Em̄uSq
zuEm&5

Ntotdm̄mdq0

2
2 (

n52N

N

eiqn (
m85n

N

Cm̄m8Cmm8 .

~B4!

The expansion coefficientsCmn are given in Eq.~10b!. The
second term on the right side can be brought into a m
manageable form by interchanging the order of the sum
tions:

(
n52N

N

eiqn (
m85n

N

Cm̄m8Cmm85 (
m852N

N

Cm̄m8Cmm8 (
n52N

m8

eiqn.

~B5!

Performing the geometric sum over the exponential, the ri
side is rewritten as

1

12eiq (
m852N

N

~e2 iqN2eiq~m811!!Cm̄m8Cmm8

5
1

12eiq S 11~21!m̄2m

2 D
3 (

m85~m2N!/2

~m1N!/2

~e2 iqN2eiq~m1122m8!!

3Jm8~a!Jm81~m̄2m!/2~a!. ~B6!

For N→` ~but keepingm finite for now!, the sum over the
product of Bessel functions can be performed using
identity24

(
k52`

`

Jk~r !Jk1n~r!H sin

cosJ ~kw!5Jn~R!H sin

cosJ ~nq!,

~B7!
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where, for all variables real and forn an integer,R andq are
defined through the relationsR5Ar 21r222rr cosw,
R cosq5r2r cosw, andR sinq5r sinw. In particular,

(
m852`

`

e22iqm8Jm8~a!Jm81~m̄2m!/2~a!

5~2 i sgnq!~m̄2m!/2eiq~m̄2m!/2J~m̄2m!/2~2ausin qu!.

~B8!

Now we can substitute Eqs.~B6! and ~B8! into Eq. ~B4!,
which enables us to write the matrix elements in closed fo
as

^Em̄uSq
zuEm&5S 1

2
Ntotdq02

e2 iqN

12eiqD dm̄m

2
11~21!m̄2m

2
~2 i sgnq!~m̄2m!/2

3
eiq~m̄1m!/2

12e2 iq
J~m̄2m!/2~z!, ~B9!

wherez5(2D/b)usinqu.
Taking the modulus squared and shifting the origin as

Eq. ~B1!, we can evaluate the first term in the dynamic
structure factor:

Sb
zz~q,v!1u^Sq

z&u2d~v!

5S 1

4
Ntot212

1

Z (
m50

2N

me2bbmDNtotdq0d~v!

1S 1

2
2J0~z!

1

Z (
m50

2N

cos@q~m11!#e2bbmD
3

d~v!

2 sin2~q/2!
1

Jv/2b
2 ~z!

4 sin2~q/2!

1

Z

3 (
m,n50

2N

8 e2bbmd„v2b~n2m!…. ~B10!

The prime on the final summation indicates that only tho
terms withm2n even should be included. The first of thre
sums in Eq.~B10! is proportional to the derivative of th
partition function:

1

Z (
m50

2N

me2bbm52
1

b

]

]b
ln Z5

1

ebb21
. ~B11!

The second sum in Eq.~B10! can be written as a geometr
series by writing the cosine as an exponential. The resu

1

Z (
m50

2N

cos@q~m11!#e2bbm5
~cosq2e2bb!~12e2bb!

ue2 iq2e2bbu2
,

~B12!
n
l

e

is

For the third and final sum in Eq.~B10!, progress can be
made by breaking it up into one containing terms withn and
m even, and another containing terms withn andm odd; for
the odd sums, we setn→2n11 andm→2m11, and for the
even sums,n→2n andm→2m. If we then recombine these
two sums, and in addition taken[n2m, the final sum in Eq.
~B10! can be written as

(
m,n50

2N

8 e2bbmd„v2b~n2m!…

→~11e2bb! (
m50

N

e22bbm (
n52m

N2m

d~v22bn!. ~B13!

Now we can interchange the order of the sums by using
identity

(
m50

N

e22bbm (
n52m

N2m

d~v22bn!

5 (
n52N

0

d~v22bn! (
m52n

N

e22bbm1 (
n51

N

d~v22bn!

3 (
m50

N2n

e22bbm. ~B14!

The geometric sums can now be performed. Using also
fact thatbbN@1, Eq. ~B13! is written as

(
m,n50

2N

8 e2bbmd„v2b~n2m!…

5Zeb~v2uvu!/2 (
n52N

N

d~v22bn!. ~B15!

Substituting Eqs.~B11!, ~B12!, and ~B15! into Eq. ~B10!
yields

Sb
zz~q,v!1u^Sq

z&u2d~v!

5S 1

4
Ntot2

1

12e2bbD N totdq0d~v!

1S 1

2
2J0~z!

~cosq2e2bb!~12e2bb!

ue2 iq2e2bbu2 D
3

d~v!

2 sin2~q/2!
1

eb~v2uvu!/2Jv/2b
2 ~z!

4 sin2~q/2!
(

n52N

N

d~v22bn!.

~B16!
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The last term is the most interesting one; it will induce tra
sitions between Wannier-Zeeman levels. Let us first, ho
ever, complete the calculation by determiningu^Sq

z&u2. From
Eqs.~B2! and ~B9!, we have

u^Sq
z&u25UNtotdq0

2
2

e2 iqN

12eiq S 12J0~z!
12e2bb

e2 iq2e2bbD U2

5Ntotdq0S 1

4
Ntot2

1

12e2bbD
1S 122J0~z!

~cosq2e2bb!~12e2bb!

ue2 iq2e2bbu2

1J0
2~z!

cosh~bb!21

cosh~bb!2cosqD 1

4 sin2~q/2!
. ~B17!
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Finally, from Eqs.~B16! and~B17! we obtain the dynamica
structure factor:

Sb
zz~q,v!5

1

2 (
n52N

N

Gn~q!d~v2nvB!, ~B18a!

G05
J0

2~z!

cosh~bvB /2!2cosq
, ~B18b!

Gn5
Jn

2~z!

2 sin2~q/2!
3H 1, n.0

enbvB, n,0,
~B18c!

wherevB52b is the Bloch frequency.
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