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Critical exponents and amplitude ratios for corrections to the scaling limit are calculated for a randomly
diluted, weakly inhomogeneou3(m) Heisenberg model in an expansion és4—d. Calculations for the
exponents and amplitude ratios are given corre@te®) andO(e), respectively, for the heat capacityoth
above and belowW ) and for the susceptibilityaboveT). The new amplitude ratios associated with dilution
effects are calculated for both the first-ordassociated with critical exponenfs;= — a,A,=wv) and the
second-ordefassociated with critical exponents;= —2a,A,= — a+ wv,As=2wv) corrections to scaling.

The dilutedO(m) model has the feature that the correction to scaling associatedti#ithwhich is formally

of first order with respect to the perturbative coupling constants, becomes negligible for sufficiently small
[t| relative to|t|2s, which is formally of higher order in the perturbative coupling constant expansion. The
implications of these results for the analysis of experimental data are discussed.

. INTRODUCTION sality class of this modét.!! References 12 and 13 contain
field-theoretic renormalization-group calculations on the
The critical properties of inhomogeneous magnetic sysleading universal amplitude ratios, and also survey and pro-
tems have received a great deal of attention over the payide references to earlier work on this model.
several years. Extensive theoretical studies have been carried There are, however, many magnets witk-1 which are
out both analytically and numerically on a variety of sys-also of interest. For example, the three-dimensi¢&a)) di-
tems. Such investigations are important because diluted sy&ltéd Heisenberg model ham=3. For present purposes
tems probably resemble real physical magnets more acctip=3 disordered ferromagnets can be loosely classified into
rately than do models of pure systems. three groups. In the case of very weakly diluted systems,
Theoretical work based on renormalization-grbfip ONIY @ small number of the magnetic lattice ions are ran-
analysis often begins by considering an effective Ginzburggic;rg%erreeglafeerfor?}yagﬁ ent?c]:ﬁ]; e(t)|rcd érpe%urg;ﬁz.ryMgﬁgyztroensgplg_
Landgu-vyllson Hamiltonian where only ternjs up to qyarhccia”y near their percolation threshold, may be considered to
coupling in them-component order parametgrare explic-  pe an extreme case of dilution. In the case of amorphous
itly included. In the much studied pure and isotro@¢m)  ferromagnets, a regular lattice does not exist. In some re-
ferromagnet, for example, the starting point would be thespects, this actually simplifies matters insofar as a number of

effective Hamiltonian otherwise strong perturbations on tREm) symmetry are
1 \ supressed by the lack of long-range structural order and crys-
oy dyl = y 2, 232 N2 2 talline anisotropy. Thus, certain amorphous ferromagnets
7 f d X[ 2[(V¢(X)) A 4! (67007, may well be in theO(m) universality class, provided their

(1.1 coarse-grained average inhomogeneity is describable in

- ) - ’ ) terms of a local critical temperature which varies slowly in
where V &(x))“=Z;(V ¢i(x))“. This model has been stud- space and has suitably short-ranged autocorrelations.

ied for quite some time and its properties are well under- = The present work concerns randomly and weakly diluted,
stood. For example, the leading critical exponénisjversal  or related types of weakly inhomogeneous, ferromagnets.
amplitude ratios, as well as the correction to scaling Our particular objective has been to carry out a theoretical
exponentsand several of the universal correction to scalingstudy of the weakly diluted Heisenberg model using
amplitude ratios™’ are all known to at least second order in renormalization-group methods to determine critical expo-
e=4—d. nents and amplitude ratios for the corrections to scaling for
Real physical systems are usually described by somewhée specific heatabove and belowW¢), and for the zero-field
more complicated Hamiltonians than that in E.1). susceptibility (above T¢). It is hoped that this additional
Hence, terms of a lower symmetry group are often added ttheoretical information may assist in the determination of
describe spin or spatial anisotropy present in crystallingeliable critical exponents and amplitude ratios from the
samples, and dilution by nonmagnetic impurities is oftenanalysis of high-quality experimental data.
taken into account by putting.?— x?(x). This essentially To be specific, consider the zero-field susceptibility
exploits the fact, pointed out by Harfighat the crucial ef-  x(t), for t>0
fect of introducing weak disorder is to cause variations in the
local critical temgerature. X(O=TT7(1+a,t"“+ay,t*), 1.2
The dilute Ising model h=1) has received particular wheret is the reduced temperature (T—Tc)/Tc. The cor-
attention since it is known that dilution changes the univer+ection to scaling term involving®” is the usual thermal
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correction due to the fact that 0. This thermal correction 1 R _ . N

term is independent of inhomogeneity effects, and has pre~7f=f ddX{ 5[(V¢(X))2+M2(X)¢2(X)]+ E((/JZ(X))Z],
cisely the same value regardless of whether dilution is ) 2.1)
present or not. The other correction to scaling term involving

t°¢, where « is the specific-heat exponent of the purehere7%(x) is a random function characterizing the disor-
Heisenberg model, arises from the inhomogeneity and is nQjer. At each poink, the probability distribution ofz2(x) is
present in discussions of pug(m) ferromagnets™**How-  assumed to be a Gaussian centered about a mean NMAlue
ever, Eq.(1.2) contains only the corrections to scaling due to o, quenched randomness, the logarithm of the partition
the first-order terms in the power-series expansions of th@,nction should be averaged over the impuriti2& These

coupling constants about the fixed point. We must expect, ifyg facts enable the use of the replica proce#ure gener-
general, an infinite series of such correction terms. Thegyte g new translationally invariant Hamiltonian:

second-order correction to scaling exponents, for example,

are expected to be 2a,— a+wv, and 2wv. This is veri- 10

fied below. We also calculate the associated amplitudes and , _ dy) = 7 2, 232
several amplitude ratios associated with these new correc- S fd X[ .21 LV i)™+ w76 ()]
tions. In particular, we find the amplitudes associated with
[t| 2« to be nonzero. Since- 2a~0.24 andwv~0.55 for
the 3D Heisenberg systetf;'8 this means that part of the
second-ordelft| ~2* corrections to scaling will be dominant
over part of thefirst-order |t|“” contribution to the correc-
tions to scaling, fott| sufficiently small. This effect clearly

eneralizes to higher-order terms in the expansion of th ; L : : .
gouplinézconstanltz ! xpansi provided the limitn— 0 is taken.7,,, contains two quartic
The conclusion can thus be drawn that the analysis of datgouplmgs,_each W'th different symmetry W'th. respect to the
on the diluted Heisenberg modgind certain other models as replica mdpe{we still haveO(m) sym_metry with respect to
éhe Cartesian components edchreplica vectol. The cou-

well) is somewhat delicate in that special procedures are . ) - .
needed to account for the|P* and [t| 9" terms (for pling \, is the original from Eq(2.1), and the new coupling

D, q positive integers Of course, these procedures are re-M characterizes the strength of the disortféf In this no-

quired in the analysis of data on amorphous ferromagnets i];?tion,)\1<0 and\,>0. From Eq.(2.2), the partition func-

order to establish their universality class. The possible prest-Ion is formed in the. us_uaI way. After including the effect of
ence of other relevant perturbatiofesg., dipole-dipole inter- an external magnetic field,

actions, magnetoelastic couplingsay place further restric-

tions on the interpretation of measurements on the correction noo dos 3

to scaling amplitudes and exponents. It is hoped that the Zmn[B]= .1;[1 vfffﬁi(x)exl{—.%mﬁj d xBi-¢>i},

Lo, - Nowr -
3 FO0B0+ 712 (6007

Ay
+ —
4152,

(2.2

gtudying this Hamiltonian is equivalent to studying E24.1)

results derived below help in such future analyses and will 2.3
also motivate further theoretical work aimed at extending the
present low-ordee-expansion results. and the solution proceeds by way of the loop expan&on.

The rest of the paper is organized as follows. Section Il The Legendre transform of the free energy, which is also
outlines the renormalization procedure used and thene generating functional of the one-particle irreducible

renormalization-group equations for the particular vertexgreen's function® (also known as the vertex functionsan
functions of interest are derived and solved. Section Il conye found via the definition

tains calculations on the correction to scaling amplitude ra-

tios and exponents. For the most part, details of the calcula- o L

tions are avoided. Outlines and a few intermediate results are 1“[¢]Ef d9xB* ¢ — InZy B, (2.9
given, along with some general references to background

material. Finally, Sec. IV concludes with a summary and

some pertinent discussion. A limited comparison of theoryVhere repeated indices imply summation. Hefes the field
and experiment is given in this final section. conjugate to the external fieB and is thus proportional to

the magnetizatioM. In the above, and in all that follows,
Latin indices will always denote replica fields and Greek
indices will always denote Cartesian components. Perform-

The starting point of the investigation is the effective ing the loop expansion to first order, the free-energy density
Hamiltonian is expressed as

IIl. RENORMALIZED PERTURBATION THEORY

K2+ w2+

N\ ;¢ N )\24’2)
6 6

lr_z I T m—lf dd12|
n_\/ (¢1IU/ !)\11)\2)_5/14 ¢ +47(n)\1+)\2)(¢ ) +T W n

M1d? N2 1f ddk
2 2 i
e+ pP+——+ 5|+ 3| e

v

dok

) n_lf | N\ % Nyd?
2n ) (2ma"

K2+ u2+ >t ) (2.5
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It is important to note tha@ is the magnitude squared of 2 m+8 mn+20 5mn+82 ,
each bare magnetization replica vector. Replica symmetry is Zo=1+ ;U1+ Ge ux+ 62 72 up
not broken We have taken all thermally averaged replica
vectors¢; to have equal magnitude and to also point in the 5m+28 11m+58
same direction. From Ed2.5), previous calculations done + 62 36e U142
on the pure isotropi©(m) modef (n=1, A;=0), and on
the dilute Ising modéf (m=1) can be reproduced. (m+8)2 3m+14 )
After renormalizing the free enerdy, expressions for the 7 — uz+0(ud), (2.9
o NN AN ; 36e 24¢
specific heat and susceptibility in the perturbative
regime—in contrast to the critical regime—can be found by
simple differentiation.
The theory was renormalized by minimal subtraction with mn+ 2 m+2 m+2
all integrals being dimensionally regulariz&t?®23Explicit Zy=1- ui— UqUp— us+0(ud),
; . . 144 72¢ 144
e expansions for most diagrams needed can be found in Ref. (2.99
27. '
The basic statement is that apart from a small sufsss
below), all vertex functionsI' ™'Y, containingN ¢ fields
andL ¢? fields, can be multiplicatively renormalized: mn+2 m+2
Z¢2:1+ 66 U1+ 66 U2
IR (ki pist, ML, ,K)=Z§’ZZ';52F(N'L>(ki Pi i 2 BN). )
(2.6 (mn+5)(mn+2) 5(mn+2)| ,
* 36€2 VYR
Renormalizing afl ¢ is sufficient to renormalize these func-
tions away fromTC_ as weII,_ since the vertex fu_nctlons are [(Mn+5)(m+2)  5(m+2)
essentially expansion coefficiefitand can be written as + — TR
18¢* 72¢
rNY (ki ,pj s u? _)\- i
(ki Piint k) JJmesme) sy L
2 - u
=> (¢)IIJI Ek NIk, /=0,p;,G;=0;0,0)\)). 30e 144
1d (2.99
(2.7)
The connection between the bare and renormalized param-
eters is A small subsét? of the vertex functions diverge at ze-
roth order in the coupling constants for an infinite cutoff.
Ni=kZiu;  (i=1,2), (2.8  These cannot be multiplicatively renormalized but require
instead a further additive renormalization. The one of interest
M2=Z¢2t, (2.8b here isT'(®?, related to the specific heat. This vertex func-
tion is renormalized as
d=Z7°M. (2.80
Here,e=4—d, t is the reduced temperatund, is the mag- F(O'Z)( 0.0 )
netization,u; are the(dimensionlessrenormalized coupling " R P.02.0ui
constants, ana is an arbitrary wave vector useful for car- — 72 11 (0.2 - N (02 -
rying the dimensions of the bare coupling constants. The Z¢2[F (P;0,0Ai) =I">(p;0,0M) 2= 2]
renormalization constant&,, Z,, Z,, and Z,. are all (2.10

found by minimally subtracting the poles of the primitively
divergent vertex functions*?, 29 andT'?Y. The ver-
tex functions themselves are evaluated using the standard

Feynman rules and proceduf@€3 The results are The nonperturbative character of the renormalization

group can be thought of as a mapging from the critical
regime—where naive perturbation theory breaks down—to
5 the perturbative regime. Thus, it is necessary to derive some
up perturbative results for the noncritical regime. The specific
heat and the susceptibility are of particular importance at
present. These are of course obtained by differentiating the
U, free energy, which must first be renormalized. This is accom-
plished by inserting the definitions of E®8) into Eq.(2.5).
The additive piece fronT'(®? must also be included. Per-
forming these substitutions, the renormalized free energy
density is given by

(mn+8)%2 3mn+14
362 24e

mn+8 m+2

=1+ -
Z1=1 6e U1 3e

u,+

(MN+12(m+2) 11(m+2)
* 122 36¢

(m+4)(m+2) 5(m+ 2)
* 1262 72

ud+o(wd), (293
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m—1
I'r(t,M ul,uz,x)——tM +—(nu1+u2)M + j—dln K>+t+ = (nu1+u2)M2}

K2+t + 1(

6
1
2

K 1
-~ 2 - 2
ZnI—d(Zw) In| ke+t+ 2(nu1+u2)M }

mn+2 m+2
be u,+ 6e U, |t

- 2
+ on fwln nu,+3u,)M=|+

m
+Zt2;<*f M2+ -

41

(mn+8 m+2

1 1 o
E+_+ (e) |+ 6e u;+ 3e

2
L 12, m8
Tarl et Tee

uz)ulM4

uz)uzM +0O(u). (2.11

AboveT. and in zero external fielthenceM =0), the above expression can be immediately differentiated to yield both the
specific heat and the susceptibility. The specific heat is given by

Cg(t,0 )=li ( ! aZFR) (t>0)
OUp,Uup)=lm| — — —
B 1,Uz2 M~ v a2

=—g(2+|nt)+0(u). (2.12

In the above, we have set=1. The inverse isothermal susceptibility tensor is similarly given by

fim | — L Te t>0
Xai = Aol NV M M | (t>0)
1
= Sap{ t+ 1—2[2u1+(m+2)u2]tlnt+0(u2)]. (2.13

Below T, the presence of Goldstone modes manifests itself in a divergent susceptibility. Hence, only the specific heat will
be calculated below . To obtain the specific heat, tigpontaneoysmagnetization must now also be differentiated with
respect to the reduced temperature. The calculation is simplified if the equation of state

1 alg

B(t,M,uq,u,)= SYETVE (2.19

is first solved on the coexistence curni@=f0) in order to obtairM as a function ot. This expression can then be inserted
into the renormalized free energy, EB.11), yielding an expression with no explidil dependence. The result of these steps
is

dc

1 3 n— 1 d
n—VFR(t<O,M(t),u1,u2)=—E(nul+u2) t+— ﬁln[k —2u,(nuy+uy) t ﬁfwln[kz—m]
+mt2 1+1 3 -1 mn+ 2 Jrm+2 2 3n U2 mn+ 8 +m+2 2
i (nu;+uy) 6e up 6e Uz 2 us(nug+uy) e up 3e Uz
3 o2 m )
+§u2(nul+u2) ;ul+ 6e U, |t°+ O(u). (2.195
Using Eq.(2.15 for the free energy, the specific heat is given by
Ca(t,M(t =i L 7T t<0
s(t,M( ),Ul,UZ)_nlino v iz (<0
3 2u,+ up, m
=—- [1+In( 2t) ]+ —+ — 1 +O(u). (2.19
U2 u2 4

Equations(2.16), (2.12, and(2.13 can be expected to yield valid results only outside the critical regime. Near the critical
point, reliable results are obtained from the solution to the renormalization-group equations, which can be derived by differ-
entiating the § independent bare vertex functions™'Y) with respect tok. Using the notation of Ref. 23, the
renormalization-group equations can be written as



11576

Jd 1% J 1
Kﬁ+ﬁ1(ul'u2)z9_ul+B2(ul’u2)a_uz_ E‘}Q/)(Ul,uz)

= SnoOLok “B(Ug,Uy),

where

J N
2K5r<°v2>(p;>\1,>\2)|pzzkz.
(2.18

KiEB(Ul,Uz): _Z<2b

The two B functions are found by the simultaneous solution

to the two equations

d In(u;Z;) N d In(u;Z;)

auy 2 u, (i=1.2).

(2.19

—€=p

The results are

m+2
3

mn+8
— €+ 6 u1+

3mn+14 )
u
12 1

B1(ug,Uy)=u, U—

11(m+2)
BEECE

5(m+2)

2 3
36 us;+0(u®)

(2.203

5mn+82
36

3m+14 2, o043
1 Y2t (u®)

m+8
6

2

—e+2u;+ ujg

Bo(Ug,Uz)=U, u,—

11m+58

~ 18 Uil —

(2.20D

The Wilson functions are similarly found:

_aInZ¢, +aInZ¢,
Yg(U1,Up) = au, Pt o, B2
_mn+2 2+m+2 Jrm+2 24 O
=77y Uit g5 Wl 5 Up (u®),
(2.213
. Jd |nZ¢2 n d |nZ¢2
Yg2(Ug,Up)= au, Pt au, 2
_mn+2 +m+2 5(mn+2) ,
T WTTg 72 1
5(m+2) 5(m+2)
—Tuluz—Tu§+O(u3).
(2.21h

14
N+M—
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IS (t,M,ug,Up, 1)

J
+ o
&M) y(bz(ulluZ) L t(?t

(2.17

MO 1)

=(k\)¥nNL v " Q¢

X E(N),M(N),Ui(N), )

NN [E(N))2
_5N05L2K_EJ ( ( )) (N) " B(ui(N")),

YA

(2.22
where
N(d—2)

‘PN,L:d_ZL_—Z ’ (2233

M(N) 1 (rxdN'

I\(A—ZEXF{_ELT7¢(U1()\')auz()\'))}

(2.23b

t(\ NI
(T):eXF{J' TWZ(Ul()\'),Uz(?\'))}’ (2.239

1

ot
)_W’ (2.239
~ M(\)
M= Co@ar: (2.239
Au;(N) .
O\ :ﬁi(ul()\)ruz()\)) (|:1,2)
(u1(1),uz(1))=(ug,uy). (2.23f

Judiciously fixing the value of théas yej arbitrary param-
eter A allows the vertex function on the right-hand side of
Eq. (2.22 to be evaluated in the perturbative regime. This
was the purpose of evaluating the specific heat and suscep-
tibility outside the critical regime. The usual choice of fixing

N is

(2.29

where the+ (—) is used when working abovgelow) T.

Ill. CORRECTIONS TO SCALING

This section deals with the calculation of the various
quantities appearing in E42.22. The correction to scaling

Using the standard method of characteristics, the solutioamplitudes will naturally appear. It can easily be shown from

to Eq.(2.17 is given by

the results in Sec. Il that the critical domain corresponds to
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A—0. If the initial coupling constantgu,(1),u,(1)) lie uy =0, (3.29
within the domain of attraction of an infrared stable fixed

point (uj ,u3), then the critical regime also corresponds to ut = 6 e+ 18(3m+14) E2+0(ed) (3.2b
(ur(\),ux(N))—(uf ,u3). The fixed point is a zero of both 2 m+8 (m+8)° '

p functions in Egs(2.20. Itis infrared stable if the real part provided|u;| is sufficiently small relative tai,, correspond-
of the eigenvalues of the matrix ing to a low level of inhomogeneity in the physical system.

The flow diagram for the diluted Heisenberg model can be

3.1) foqnd_ in Ref. 15._In all that foIIovys, we assume the fi_xed
- ' point in Egs.(3.2) is the one to which the running coupling
12 constants flow.
are positive. To the order th@ functions are currently The explicit solution to Eq(2.22 is mainly a matter of
known, there does exist such a fixed pafthiThe running  expanding all quantities about the fixed point (u}). For
coupling constants will flow to the pur@e., impurity fre¢  exampleu;(\) is found by expanding the right-hand side of
fixed point Eq. (2.23f) as

dB1lduy  dB11du,
dBylduy 9B, 1du,

d 1
N[ O) = U 1= [us (M) = uF 19187 +[Ua(N) = U3 12687 + S[us(N) — U 103,87 +[us(N) —uf JLua(M) — 5 193,87

2N
1 *72 92 % *13 ;
"‘E[Uz()\)_uz] 95,87 +O([u(N)—u*]®)  (i=1,2), (3.3
|
where t(n)\t * rd\N ' .
(T) ZKL7¢ZXL8XF)rLf0T[’yd,z(ui()\'))—’y(ﬁg]},
B B 3.6b
&iﬁ?5<a_u<]> ; a?iﬁ:z(au-au- ' 35
Voluy g T T+ where!
(3.9
] . . . . ) od\’ .
The solution to this set of coupled differential equations will X=ex JT[WZ(Ui()‘,))_%Z] , (3.79
be of the form !
—1 (od\’
[Ui(N) = UF 1= 0 \P1+ v oA P2+ 0\ Ps Yzexpl' TJ T[y(/,(ui()\'))—y}‘)]]. (3.7b
1
+Ui4)\p4+vi5)\ps+ - (3.5

The Wilson functions in the integrands of E®.6) are in a
where p;=2p;, ps=pi+p2, and ps=2p,. The coeffi- form which permits an expansion about the fixed point. The
cientsy;; and the powerg; are constants to be determined. integrals can then be explicitly performed and the exponen-
The solution now proceeds by substituting E845) into Eq.  tials expanded resulting in series in powers.ofin a similar
(3.3) and equating coefficients of equal powers\adn either  way, F&N'L) as well as the final additive term in E(R.22
side of the equation. In this way explicit expressions can b&an be expanded about the fixed poiat (u}), which also
found for all coefficients and powers in E(.5 except for  results in series in powers af 3
two. This is expected since, although E@.23f has the Once everything is expressed in termsof Eq. (2.24)
initial conditionsu;(1)=u;, they cannot be used here since can be used to convert to the reduced temperattiFais can
the solution Eq(3.9) is only valid near\=0 (i.e., near the  pe seen by writingfor t>0)
fixed poin). Hence, the solutions to the differential equations
must contain two constants of integratian, andv,, were R
chosen for this purpose and contain nonuniversal information i
on the initial coupling constants.

M(\) and t(\) are similarly found. Equation$2.23h
and(2.239 can be rewritten &s

(3.8

Assuming the left-hand side of this equation has been ex-
pressed as a power serieshirusing the prescription outlined
above, the series can then be inverted to obtaas a series
(M()\))N NV ON p{ —NJ'*d)\’ in powers oft. The form of the series is
— | =N""YVexp —— | —
M 2 Jo N
A=Agt2o[ 1+ (A tA14 A,th2)

><[y¢(ui()\’))—y’;]], (3.69 +(Agtis+ A th+ Actds)+- - -], (3.9
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where  Ag=v,A1=p1v,A,=p,v,A3=2A1,A,=A; 1Ay, +(agt 2 +agt ¥ e+ at?e)+ -],
Ag=2A,. The further identification ofA;=—-a« and

A,=wv, wherea is the specific-heat exponent and’ the (3.11a9
correction to scaling exponent of the pure Heisenberg model,

is made on the basis of comparing the publisleeexpan- X(t)=A;t‘V[1+(a;1t‘“+ a;zt“’”)

sions of the exponenté:!’ In the case ofA;=— «, general et wten .t 20
arguments also apph/:*® F(at “ta,t tattr) -,

In this way, the right-hand side of Eq.22 can be cal- (3.11b
culated explicitly as a series in powers of the reduced tem-
peraturet.®2 The two quantities of interest here are the spe-where+ (—) denotes>(<)0. The exponents
cific heat and the isothermal susceptibility giverfby

4—m (m+2)%(m+28)

Ce=—T?, (3.108 _ B .
i " “T2(m+8) € A(m+8)° ¢ +0(€%), (3.123
Xap=(TE0) A=x(1)5,5 (B=0T>Tc).
Performing the steps outlined above, these quantities are ex- wr= §6+ Wf +0(€), (3.129
pressed as

R o L have been given elsewhe¥e'’ The correction to scaling am-
Ca(t)=Act™ “[1+(agt™ *+a,t””) plitudes are

. wa m(m+8) 1 m(m3-13m?—118n+40) o
8= VX eIy e T T emP—2san+ 768 Ol€

) (3.133

P Lt m*+26m°+ 126n2+44m—656+o 313
=022 1 T 6(m+2)(m+8)? (). (3.130
© oo M(M+8)(M?—22m+24) 1
acz=vX 2 2
36(m—16)(m—4) €
. m(5mé—202m°+2940m*— 1248m%— 153152n?+ 193536n— 137216 1 O[O 313
72(m—16)2(m—4)3 O], (3.139
S m(m+8) 1 . m(5m?+ 21m-+ 46) 1+o 0 313
ac4_ U110 22 18 ZZ 3am+2) Z (6 ) ’ ( . d
© 2 ue|(M=4)(M+2) 1 5m*+84m3+180m°—416m—9601 o 313
Ao =0 22X 36 72Am+8)2 e O, (3.139
e 2({m+8 1+2 25m?+118n— 296 1I olh o 314
qa=vX | "3 =g e T 3| (m—a&mre) 22O (3143
- o m—4 1 [m*+32m°+156m*+344m+736 m—4
Agy=0X 5 < 1AMt 2)(m+8) +—5-In2|+0(e) . (3.14h

A= VX 36m-16(m—4)2 &

m’—71m®+ 1098n°— 6352n*— 23520m%+ 397824n°— 291840n— 262144 m(m+ 8)(m?— 18m+ 104)
* 36(m—4)3(m—16)2 T 36 m—4)(m—16)

) 2a{ m(m+8)2(m?—18m+104) 1

1

In2

+0(e°)], (3.140



ais=0 22x2w[

+

UNIVERSAL CORRECTION TO SCALING AMPLITUDE RATIOS ... 11 579
(2(m+8) 1 m3+16m2—132m—416+ 2am+2) 11 t1a
2 72(m+2) g 2|t Ol (3.149

A= —UX 4T +
c4 1022 9 &2

(m—4)(m+2) i

3m*+ 44m3— 12m?+ 96m+ 3136+ (m—4)(m+2) |

n2

36 €

72(m+8)? 36

1
E+0(e°)] ., (3.14e

. _[m(m+8) 1 2m(m®-20m*— 164m—240) o 315
A=V 6(m—4) € 24m®—1152n+ 3072 (e)], (3.153
T m+21+m3+18mz+36m+8+o 315
a)(Z__UZZ 6 Z 12(m+8)2 (E) ’ ( . b

2 XZ“[ m(m+8)2(m?—25m+36) 1 m(2m°®—71m°+ 1872n*— 6848m*—68416n°—77568n+ 101376 1

=— +
BT o 36m-16(m-4)2 & 72(m—4)%(m—16)2 e
+0(€% |, (3.159
. -t av m(m*+7m-8) 1 N m(m*—3m®-36m?—112m+96) 1 O 315
dpa= vz 18m-4) & 18— 10am+576 < O (3159
e 2 une,|MFTM+10 1 . 2m4+27m3—30m2—848n—13921+ o 315
A5~ V2 36 & 72(m+8)? PR (3.159
|
Finally, the dimensionless correction to scaling amplitude a;, 1 281

ratios, which are independant®f;, v,,, X, as well as the 2.5 ﬁ)eﬂL O(€?)~0.20-0.51e+ O(€?),

renormalization scheme, and are therefore universal, are X2 (3.17h

given form=3 hy

N
da_3, (3,32 €+0(€%)~0.75+0.77e+O(€?)
a; 4 |4 88 ’
(3.163
ez _ +(11 N e O(2)~ 14075+ O(&2
ac_z_ 10 2 € (6 )~ . (6 )l
(3.16h
a§3_33+ 87781+3In2 Lo
a, 59 |76582" B9 | €T O(€)
~0.56+1.18+ O(€?), (3.160
ac, 3 (5619 15 In2 Lo
a, 47\3520 “4a |<TOLE)
~0.75+ 1.36e+ O(€?), (3.160
ags 11
—=1+|——In2|e+O(€?)~1+1.51e+O(€?),
acs 5

F

(3.169

7
-1+ 2—26+0(62)~ —140.32+0(€?),
(3.173

8 _ 11, 6977 +0(e?)~—1.1+1.06¢+ O( €
a;; 10 6600° ()~-11+1. (€%,
(3.179

aa 1 41
L 4 0(€?)~0.5-1.86+O( €2),

a, 2 22
(3.179

+
B 1243 O(€?)~0.125-0.17+ O(€?).
a;; 8 1408

(3.179

Equations (3.16H and (3.17h have been previously
published®® To our knowledge, the remaining eight are pre-
sented here for the first time.

IV. SUMMARY AND DISCUSSION

The main objective of this work has been the determina-
tion by renormalization-group methods of thegher-order
corrections to scaling associated with inhomogeneity such as
dilution by nonmagnetic impurities. We have explicitly cal-
culated critical exponents and universal amplitude ratios for
both first-order and second-order corrections to scaling. By
“first order” and “second order,” we refer to the corre-
sponding terms which occur in the formal expansion of
renormalized vertex functions in powers of the deviations of
the renormalized coupling constants from their values at the
fixed point. The critical exponentd;=—a and A,=wv
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were known previously. The relationshipaz;=2A,, polycrystalline Fg_, Al, over the range &x=<0.04, Col-
A,=A;+A,, andAs=2A, have not previously been given lins et al2 determined3=0.366(2) to be the mean value of
explicitly, but they are as expected on general grounds. Cotfive measurements. The influence of the first-order correc-
responding to these higher-order corrections to scaling, eighions to scaling was considered. Hargraves and Ddflap
universal amplitude ratios have been calculated, six of whiclstudied the ac susceptibility of the quaternary transition-
are absent in pure systems and arise only in the presence wfetal-based amorphous alloys gili,Fe,B ;,Sig and inter-
inhomogeneity. preted their results in terms of an effective exponegi.

The calculations have been carried out using renormalize@he results of both of these experiments were consistent with
perturbation theory, minimal subtraction, aadexpansions. the values of critical exponents predicted for three-
The critical exponents were evaluated @{e?) while the  dimensional isotropic Heisenberg systems. Critical ampli-
amplitude ratios were calculated ©(€). Although low- tude ratios were not obtained.
order e expansions generally provide reasonable semiquanti- Kaul and Rad studied the electrical resistivity,
tative estimates for critical exponents, theexpansions for magnetization, and ac susceptibility of a series of
amplitude ratios are sometimes more delicat€onse-  Nigy_ Fe,(B,Si),o with (x=10,13,16,20) alloys and ana-
guently, we regard th®(e) estimates of amplitude ratios to lyzed data in terms of a leading critical exponent, which was
be indicative only of the magnitudes to be expected, but notound to be independent of concentration and consistent with
to be quantitatively accurate. Specifically, to achieve accuthe O(3) Heisenberg universality class, together with the
racy at the 10% level, it will be necessary to add at least onéirst-order correction to scaling terms. In addition, estimates
more term in thee expansion. Alternatively, coupling con- for several amplitude ratios for the corrections to
stant expansions at fixed dimension would also be usefukcaling were obtained. Their results for the correction to
However, irrespective of the precise numerical values ofcaling amplitude ratios for thex=10 case were;
these amplitude ratios, it is important to be able to conclude ,/a;;=0.084),  aj/a,=1.04(50)a./a;;=7.7(20),
that the corresponding amplitudes are indeed pre§em  ajy/a;,=4.5(10). These bear little resemblance to the
are nonzero in genenal values  obtained by  simply  puttihng e=1

The major point Whifli_h must ?e gmphasize_d isdthaf[ rt]her??nto Egs. (3.16a,b and (3.17a,b, which yields; a/,/a_;
new correction to scaling amplitudes associated with the. + o + ot oo + ot o
dilution-induced inhomoggneitypnow determine not only the-Fhl'sz’ Acof8c,~1.75, 8cy/8,,~ = 0.68, acy/a,,~ ~0.31.

. ! , i ere does not seem to exist at present any analysis of ex-
leading, _butalso the next-to-leading correctlons to scaling. perimental data which takes into account the strongly
For a diluted O(m) ferromagnet, the usuaffirst orde) (o mperature-dependent second- and higher-order corrections
purely thermal correction to scaling, determined b2, 1o scaling. It is possible that the strong disagreement between
becomes negligible for sufficiently smal rglatlve. to the  {he available theoretical and experimental estimates for cor-
formally second-order correction given 2. This also  rection to scaling amplitude ratios will be reduced when
extends to even higher order corrections to Sca“”gkAl'ﬁhOUQ%ese additional corrections to scaling are taken into account
the leading correction to scaling fopure systems |t|*2) is  ¢lose to the critical point. It is also possible that the effects of
certainly present for inhomogeneous systems, this correctioginer perturbations will need to be taken into account.
is insignificant sufficiently.close t@c. It is dominated by In summary, the absence of crystalline anisotropies sug-
[t[PAs, (p=1,2,3,4), since. A;=-a~0.12  and gests that suitable amorphous ferromagnets may be good
A;=wr~0.55 in the case ofm=31°"'® These results candidates for weakly inhomogenous, isotropic Heisenberg
clearly have significance for the analysis of experimentakystems. The results available at present foleheingcriti-
data. Even if the amplitudes associated with these correctionsa| behavior support this suggestion. However, the correc-
to scaling should be small in a specific range of temperaturgons to scaling(particularly the amplitude ratiosare much
for a given system, it is necessary to consit@rthe very more sensitive. Further theoretical development as well as
leas} the possibility of a crossover to a dilution-dominated jmproved procedures for the analysis of experimental data

regime agt| is reduced. . ~ sufficiently close to the critical temperature will be useful in
A very brief account of the experimental situation will tPFObing these corrections.

now be given. We have previously indicated that the lack o
crystalline long-range order and the possibility of a conse-
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