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Chiral spin textures of strongly interacting particles in quantum dots
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We probe for statistical and Coulomb-induced spin textures among the low-lying states of repulsively interacting
particles confined to potentials that are both rotationally and time-reversal invariant. In particular, we focus
on two-dimensional quantum dots and employ configuration-interaction techniques to directly compute the
correlated many-body eigenstates of the system. We produce spatial maps of the single-particle charge and spin
density and verify the annular structure of the charge density and the rotational invariance of the spin field. We
further compute two-point spin correlations to determine the correlated structure of a single component of the
spin vector field. In addition, we compute three-point spin-correlation functions to uncover chiral structures. We
present evidence for both chiral and quasitopological spin textures within energetically degenerate subspaces in
the three- and four-particle systems.
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I. INTRODUCTION

The investigation of correlations among electrons con-
fined to quantum dots (QDs) is an active area of re-
search in condensed-matter physics due to their experimental
tunability,1,2 theoretical efficacy,3 and application in, for ex-
ample, quantum information science.4–9 For two-dimensional
QDs with circular confinement, the combination of confine-
ment and long-range Coulomb repulsion results in charge
densities peaked in annular regions about the dot center.
Calculations of two-point correlation functions10 have further
revealed that these confined electrons exhibit textures akin to
Wigner molecules. Numerical work has shown these behaviors
to depend on the size and shape of the QD, as well as the
strength of the applied magnetic field.11

Since the spin of confined electrons provides a viable imple-
mentation of qubits,12,13 an understanding of the configurations
and correlations formed among confined spins is crucial for
the implementation of spin qubits. Furthermore, the degree of
control in fabrication and manipulation of QDs makes them
ideal environments for the study of fundamental behaviors
of both spin and charge. In this paper, we investigate the
correlations that exist between the spins of electrons trapped
in circular QDs. We are specifically interested in the formation
of topological spin textures that may arise due to interaction
or statistical effects among the confined charges.

A significant challenge in the development of spin-based
QD quantum computing is the suppression of decoherence
of the spin states for time scales much longer than the
time required to controllably flip a spin.14,15 The potential
to encode information using topological degrees of freedom
is appealing since the enhanced stability can mitigate the
burden of error correction. Various schemes which exploit
a system’s topological structure have been proposed.16–19 The
advantage of these is that they are physically fault tolerant; they
are immune to local perturbations that degrade the coherent
evolution of the state, a necessary ingredient in quantum
computation.20 Possible systems include two-dimensional spin
models17 (for example, atoms in an optical lattice21) and
fractional quantum Hall systems.18 These proposals rely on
the existence of non-Abelian anyons in the excitation spectrum
of the models for the information processing.

However, even in the absence of anyonic excitations,
textures with topological structure are expected to be long-
lived in and of themselves due to their global correlations.
Since correlations decrease decoherence,22–24 these topolog-
ical structures could form an important processing element
in more conventional quantum computing schemes. Even in
finite-sized systems, where true topological stability likely
does not occur, the relevant relaxation and decoherence times
can be significantly enhanced. In Ref. 22, for example, even
moderate charge correlations were sufficient to more than
double the decoherence time.

Numerical work has predicted the formation of spin textures
in QDs immersed in a magnetic field.25 Experimental evidence
suggests the existence of fermionic spin textures in a two-
dimensional electron gas (2DEG) confined in semiconductor
heterostructures,26 vertical QDs,27 and few-electron lateral
QDs.28,29

A topological spin qubit would be advantageous as it could
be more robust against local environmental perturbations.
Nuclear magnetic resonance measurements of GaAs/AlGaAs
quantum wells have shown evidence for the localization
of topological skyrmion spin textures as the temperature
approaches 0 K.30,31 Recently, topological spin textures
have been experimentally observed in topological insulators
by means of spin-resolved angle-resolved photoemission
spectroscopy.32 The emergence of a skyrmion lattice has
also been detected in the chiral magnet MnSi using neutron
scattering.33 Topological textures that are predicted to appear
in QDs include vortices34–38 and merons.39–41 Vortices occur
in the presence of a strong external magnetic field, when
electron current circulates in a plane around localized regions
of low electron density. Merons are topological spin textures
characterized by a central “up” or “down” spin which smoothly
transitions into an in-plane 2π winding along its boundary.42

As developed in the theory, the realization of both types of
quasiparticles requires the presence of an external magnetic
field.

In this work, we present evidence for the existence of
spin textures in circular QDs for both three-electron and four-
electron systems in the absence of an external magnetic field.
The electronic wave functions are calculated by configuration
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interaction techniques. Two-point and three-point spin cor-
relations are calculated in order to uncover both correlation
and chirality in the spin textures which are concealed in
superpositions of different configurations.

In Sec. II, we introduce our model and the founda-
tion upon which our calculations are based. Section III
describes specifically the spin correlation calculations used
to examine the spin textures in the QD. We then go on
to describe our results for systems of three (Sec. IV) and
four (Sec. V) interacting particles. We conclude with a
summary of our findings, their implications, and suggestions
for further investigations in Sec. VI.

II. QUANTUM-DOT SYSTEM

Our system consists of N interacting quasiparticles of
charge e, bound to a two-dimensional (2D) plane and laterally
confined by a parabolic potential. The 2D Hamiltonian used
to describe this “standard model” is

Ĥ =
N∑
i

ĥi + 1

2

N∑
i �=j

e2

ε|r̂ i − r̂j | , (1a)

where ε is the dielectric constant of the medium and
ĥ is the single-particle Hamiltonian describing harmonic
confinement,

ĥ = 1

2m∗

(
p̂ + e

c
Â(r̂)

)2

+ 1

2
m∗ω2

0 r̂
2, (1b)

where m∗ is the effective mass, r̂ = (x̂,ŷ) the position operator,
and ω0 the parabolic confinement frequency. Throughout this
paper, we take the magnetic field to be zero and therefore set
the vector potential Â(r̂) = 0.

Two harmonic-oscillator quantum numbers, n,m =
0,1,2, . . . , characterize the eigenstates of the single-particle
Hamiltonian43 [Eq. (1b)]. These eigenstates are the “atomic
orbitals” of the QD and are given by

|nm〉 = 1√
n!m!

(a†)n(b†)m|00〉, (2)

where a† and b† are the usual Bose creation operators and |00〉
is the single-particle ground state. These orbitals have energy
εnm given by

εnm = h̄�+
(
n + 1

2

) + h̄�−
(
m + 1

2

)
, (3)

where �± = (
√

4ω2
0 + ω2

c ± ωc)/2 and ωc = eB/(m∗c) is the
cyclotron frequency. This energy reduces to h̄ ω0(n + m + 1)
in the absence of a magnetic field.

The single-particle Hamiltonian, the z component of the
orbital angular momentum, L̂z, and a component of the spin
operator—which we take to be the z component Ŝz—form
a set of commuting observables which we take to classify
our states: L̂z|nms〉 = h̄(n − m)|nms〉, Ŝz|nms〉 = h̄s|nms〉,
ĥ|nms〉 = εnm|nms〉.

We are interested in spatial textures formed by the spin
field, so we require the position-space representation of the
orbitals.43 These are given by44

φnm(r,θ ) = (−1)nr
1√

2πl0

√
nr !

(nr + |m′|)!

×eim′θ e−r2/(4l2
0 )

(
r√
2l0

)|m′|
L|m′|

nr

(
r2

2l2
0

)
, (4)

where r and θ are the polar coordinates in two dimensions; l0 =√
h̄/(2m∗ω) is the effective length with ω =

√
4ω2

0 + ω2
c/2,

n′ = n + m, m′ = n − m, nr = (n′ − |m′|)/2; and L(α)
n (x) is

the generalized Laguerre polynomial.45

The eigenstates of the interacting system are determined by
exact diagonalization of Eq. (1a). This procedure begins by
determining many-particle basis states (Slater determinants),
eigenstates of Eq. (1b), that are composed of antisymmetrized
products of the single-particle states in Eq. (2). We use 288
single-particle states and as many as 4900 many-particle basis
states in the diagonalization routine. Without loss of fidelity,
and for computational efficiency, the number of many-particle
basis states is reduced when determining the two-point and
three-point spin-correlation calculations over the range of the
entire QD. Block-diagonalization is performed for a given set
of parameters. These include system parameters (B, ω0, m∗,
ε) and the conserved quantities N , Lz, Sz, S2. The Coulomb
matrix elements are evaluated using the convenient closed-
form expression derived in Ref. 46.

With the eigenstates determined, we calculate one-, two-,
and three-point position-dependent spin-correlation functions
over energetically degenerate manifolds. The structure of the
particular operators used in these calculations is discussed in
the next section.

III. PRODUCT SPIN OPERATORS

For our investigation, we require the products of up to
three one-body spin operators. Here we introduce the product
operators used in the calculations shown in the proceeding
sections. The details associated with the derivation of each
product-operator are discussed in the Appendix.

A. One-body spin operators

Except where indicated, all averages are taken over ener-
getically degenerate manifolds. That is to say,

〈A〉 = Tr(ρ̂ Â)

Tr(ρ̂)
, (5a)

where the density operator ρ̂ is defined as

ρ̂ =
n∑

i=1

|Ei〉〈Ei |, (5b)

and where the states |Ei〉 are all the states in a given degenerate
manifold of Eq. (1): Ĥ|Ei〉 = const. |Ei〉 for all i = 1,2, . . . n.

Our analysis begins with the evaluation of both spin density
and number density at position r in the QD system. We are
specifically interested in isolating the spin-up and spin-down
densities along the coordinate axes. Due to the conservation
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FIG. 1. (Color online) Radial dependence of the single-particle
spin and number density in the three-particle ground-state manifold.
(Inset) Densities in absence of Coulomb interaction. Inset axes have
the same dimensions as the main plot.

of spin in the system, these one-body spin operators can only
distinguish the spin-up density from the spin-down density
along a single axis. We therefore define a set of spin operators
Ŝ±z(r) that separately determines the spin-up and spin-down
densities along z at position r . In canonical form [see Appendix
Eq. (A1)], this is given by

Ŝs z(r) =
∑
i j

Uijs ĉ
†
is ĉjs , (6)

where Uijs = sφ∗
i (r)φj (r)/2, with s = ±1 (h̄ = 1). Note that

the composite indexes i and j each represent a set of orbital
quantum numbers n and m.

The number-density and spin-density operators at position
r are then given by

n̂(r) =
∑

s

ψ̂†
s (r)ψ̂s (r) = 2(Ŝ+z(r) + Ŝ−z(r)), (7)

Ŝz(r) = 1

2

∑
s

sψ̂†
s (r)ψ̂s (r) = (Ŝ+z(r) − Ŝ−z(r)), (8)

where ψ̂
†
s (r) and ψ̂s(r) are field operators that respectively

create and annihilate a fermion at position r , with spin s. In
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FIG. 2. (Color online) Two-point spin correlation functions for
the three-particle ground-state manifold. Distributions are shown for
the spin-up (a) and spin-down (b) densities at r1 given a spin-up
particle at r0 = (39 nm, 0), denoted by a cross.
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FIG. 3. (Color online) Trace along rmax = 39 nm in the three-
particle ground-state manifold, revealing the spin distribution with
respect to a spin-up particle at r0 = (rmax,0).

terms of the eigenstates |nms〉 of Eq. (1b), the field operators
are given by

ψ̂†
s (r) =

∑
n m

φ∗
nm(r) ĉ†nms, (9)

with φnm(r) = 〈r|nm〉 given in Eq. (4).
The effects of Coulomb interaction between the particles are

apparent when the expectation values of the above operators
are compared between the interacting and noninteracting
systems.

B. Two-body spin operators

We next investigate the two-point correlations as projected
onto the z axis. (Any other choice yields identical results.)
Unless otherwise indicated, a spin-up (spin-down) particle

x

y

z

α

FIG. 4. (Color online) Canting angle α with respect to the axis
of quantization (the z axis). The spin is not fully polarized along
either the +z or −z axis but has components of both projections, thus
smearing out along a cone of probability about the z axis.
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FIG. 5. (Color online) Canting angle α as a function of θ1 along
the ring of maximum single-particle density rmax = 39 nm in the
three-particle ground-state manifold. The net spin density from the
two-point calculation along the same ring rmax is shown for reference.

refers to a particle with spin polarized along the positive
(negative) axis of quantization (in this work, the z axis). Specif-
ically, we investigate 〈S+z(r0)S+z(r1)〉 and 〈S+z(r0)S−z(r1)〉.
In canonical form, the operators are given by

Ŝ+z(r0)Ŝσz(r1) = 1

2

∑
ijklss ′

Qss ′σ
ijkl ĉ

†
is ĉ

†
js ′ ĉls ′ ĉks , (10a)

with

Qss ′σ
ijkl = 1

4 (φ∗
i (r0)φ∗

j (r1)φk(r0)φl(r1)δs↑δs ′σ

+φ∗
j (r0)φ∗

i (r1)φl(r0)φk(r1)δsσ δs ′↑), (10b)

and σ = ±1. As in Eq. (6), the indexes i through l in
Eq. (10) are again composite indexes of pairs of orbital
quantum numbers. The two-point spin correlations measure
the probability of finding a particle with spin projection σz at
position r1 given the existence of a particle with spin projection
+z at position r0.

Finally, the correlation between a spin-up particle at r0 and
the net spin density at r1 is

Ŝ+z(r0)Ŝnet z(r1) = Ŝ+z(r0)Ŝ+z(r1) − Ŝ+z(r0)Ŝ−z(r1). (11)

These two-point spin correlations are useful for determining
parallel or antiparallel spin properties such as magnetic
ordering.10 They are insufficient, however, for determining
chiral textures where correlations are measured with respect
to orthogonal axes. For that we turn to the three-point spin-
correlation functions next.

C. Three-body spin operators

We compute three unique three-point correlations:

〈S+x(r0)S+y(r1)Snet x(r2)〉, (12a)

〈S+x(r0)S+y(r1)Snet y(r2)〉, (12b)

and

〈S+x(r0)S+y(r1)Snet z(r2)〉. (12c)

These three-point spin correlations measure the probability of
finding a particle with spin projected along the x, y, or z axis,
respectively, given that there is a particle at position r0 that is
spin-up along the x axis and a particle at position r1 that is
spin-up along the y axis. Whereas the two-point functions can
determine whether the spin projection of a second particle is
parallel or antiparallel to the spin projection of the first particle,
it cannot determine the orientation of the spin of the second
particle in a plane other than that of the spin of the first particle.
The three-point functions in Eq. (12) can indeed uncover such
chiral structure. Explicitly, the three-body spin operators can
be expressed as

Ŝ+x(r0)Ŝ+y(r1)Ŝnet x(r2)

= 1

3!

∑
ijklmn
s1 s2 s3

K
s1 s2 s3
ijklmnĉ

†
is1

ĉ
†
js2

ĉ
†
ks3

ĉns3
ĉms2

ĉls1
, (13a)
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FIG. 6. (Color online) Three-point spin correlations, Eq. (12), along the ring rmax = 39 nm for the three-particle ground-state manifold.
(a) The net Sy is plotted given a spin-up particle along the x-axis at θ0 = 0◦ and a spin-up particle along the y axis at θ1. (b) The three-point
correlations for net spins along the x, y, and z axes for θ0 = 0◦ and θ1 = 126◦ on the ring rmax.
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where

K
s1 s2 s3
ijklmn = 3

16δs1 s2
δs2 s̄3

× [is3φ
∗
i (r0)φ∗

j (r1)φ∗
k (r2)φm(r0)φn(r1)φl(r2)

− iφ∗
i (r0)φ∗

k (r1)φ∗
j (r2)φm(r0)φl(r1)φn(r2)

− φ∗
i (r0)φ∗

j (r1)φ∗
k (r2)φn(r0)φm(r1)φl(r2)

− φ∗
k (r0)φ∗

i (r1)φ∗
j (r2)φm(r0)φl(r1)φn(r2)],

(13b)

and with similar expressions for the remaining two operators
in Eq. (12). In Eq. (13), each of the six indexes i through n

is once again a composite index over pairs of orbital quantum
numbers. Furthermore, in Eq. (13b), s̄i ≡ −si , with si = ±1
denoting the usual spin projections.

The choice for the first two spin projections is not unique;
due to the absence of a preferred spin orientation in the system,
each expression is equivalent to any cyclic permutation of the
spin components. We focus below on the cases where two of
the three spins operators lie in the (x-y) plane of the dot.

IV. THREE-PARTICLE SYSTEM

In this section, we investigate spin correlations that exist
in the two lowest-lying states of a system with three charged
particles. Our system is modeled with GaAs parameters (ε =
12.4 and m∗ = 0.067me), and our confinement potential is
ω0 = 1.0 meV, yielding an effective length at B = 0 of l0 =
23.8 nm.

A. Ground-state manifold

At zero magnetic field, the ground state of the three-
particle system is fourfold degenerate, with quantum numbers
Lz = ±1, S = 1/2, and Sz = ±1/2. We compute 〈S+z(r)〉 and
〈S−z(r)〉 within this degenerate subspace [see Eq. (5)]. From
these, we determine both the net density, 〈n(r)〉 [Eq. (7)] and
the net spin 〈Sz(r)〉 [Eq. (8)]. We then go on to calculate the
two-point spin functions to demonstrate correlations between
parallel and antiparallel spin components, followed by the
three-point functions to uncover chiral correlations.

1. Single-particle densities

To illustrate the effects of long-range Coulomb repulsions,
we consider the spin density with and without interactions. In
the noninteracting case, each eigenstate is a single antisym-
metrized orbital configuration. For the three-particle system,
there are two particles on the |nm〉 = |00〉 orbital and one on
either the |10〉 or |01〉 orbital. This yields four degenerate states
with quantum numbers (S,Sz,Lz) = (1/2,±1/2,±1). For the
interacting case, these symmetries are not explicitly broken;
the degeneracy and the quantum numbers remain the same,
but the states themselves are now correlated, involving many
other orbital configurations consistent with the symmetry.

Figure 1 shows single-particle densities for the total ground-
state manifold as a function of radial distance from the
center for both the interacting and noninteracting cases. There
is azimuthal symmetry for these configurations due to the
underlying circular symmetry of the dot itself, manifest in
the Hamiltonian [Eq. (1)].
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FIG. 7. (Color online) Net spin distribution in the plane of the
QD for the three-particle ground-state manifold, as determined by
three-point spin correlations. The magnitude is denoted by the color
bar and the direction is indicated by the vector field. The z component
is negligible here. The calculation is done with respect to a particle
of spin-up projection on the x axis at r0 = (39 nm,0◦) and a particle
of spin-up projection on the y axis at r1 = (39 nm,126◦). (These
locations are denoted by the blue arrows.)

The noninteracting case is characterized as Gaussian-like
with a peak at the origin. When Coulomb interactions are
considered, the repulsion smears out the density over different
orbital configurations.47 The competition between repulsion
and confinement results in an annular density about the origin.
These interaction effects are strong; the ground-state energy of
the interacting system is 10.30 meV for these experimentally-
relevant system parameters—more than twice the ground-state
energy of the noninteracting case (4.0 meV).

The effects of Coulomb repulsion are also reflected in
the single-particle spin densities as well. Note, however, that
in both cases we have 〈S+z(r)〉 = 〈S−z(r)〉: 〈Snet z(r)〉 = 0
everywhere in the dot; therefore, the one-point calculations are
insufficient for showing the Coulomb effects on spin. This is a
consequence of the SU(2) symmetry present at zero magnetic
field.
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FIG. 8. (Color online) Two-point spin correlations in the four-
particle ground-state manifold given a spin-up particle at r0 =
(48 nm, 0) (white cross). The distributions are shown for the net
spin-up density (a) and spin-down density (b).
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FIG. 9. (Color online) Two-point spin correlations in the four-particle ground-state manifold. (a) Trace is along the ring of maximum
single-particle density rmax = 48 nm, with respect to a spin-up particle located at r0 = (rmax,0◦). (b) Net spin in the QD, given a spin-up particle
at r0 = (rmax,0◦).

2. Two-point spin correlations

For the two-point spin correlations [Eq. (10)], we consider
the case where r0 is fixed at the location of maximum single-
particle density, rmax ≡ 39 nm, as obtained in the previous
section. We further define the angular location of r0 to be
θ0 = 0. We do not the discuss the noninteracting limit for
these calculations.

The two-point correlations 〈S+z(r0)S+z(r1)〉 and
〈S+z(r0)S−z(r1)〉 for the interacting ground-state manifold
are shown in Fig. 2 as a function of r1 for r0 = (rmax,θ0).
Two peaks are evident along the ring of radius rmax. Note that
our averages [Eq. (5)] are obtained by tracing over all the
degenerate states in the ground-state manifold. An incipient
Wigner crystallization is apparent with the spins forming a
classical-like lattice at the vertexes of a triangle.10,11 This
structure is not seen in the noninteracting case, implying that
the Coulomb repulsion between the particles is responsible
for this spin texture.

To more clearly probe the angular inhomogeneity, we plot
in Fig. 3 results along the ring rmax. In particular, we show the
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FIG. 10. (Color online) Canting angle α as a function of θ1 along
the ring of maximum single-particle density rmax = 48 nm in the
four-particle ground-state manifold. The net spin density from the
two-point calculation along the same ring rmax is shown for reference.

net spin Sz as well as the individual components S±z, given a
spin-up particle at r0. Note as r1 approaches r0 the remaining
spin-up density goes to zero, indicative of a Pauli vortex48 at
that position. As well, the spin density at the two peaks is not
fully polarized, indicating a degree of canting away from the
z axis: The net spin tilts toward the x-y plane. The lack of
equal magnitudes of spin-up and spin-down probabilities at
every point along rmax in Fig. 3 indicates that the spin density
never lies completely in the x-y plane. Since the spin density
never crosses through the plane, it cannot have winding order.
Windings are important in these spin systems as they represent
clear examples of topologically stable structures.

The two-point correlations are insufficient to determine the
probable orientation of the spin in the x-y plane, so the results
of these calculations can be interpreted as the smearing out of
the net spin across the surface of a cone centered at a local z

axis at every point measured in the calculation. The opening
angle of the cone is twice that of the local canting angle, the
degree of tilting from the local z axis, of the spin. This cone,
along with the canting angle, is illustrated in Fig. 4.

The canting angle can be determined in the following
manner: If we consider the spin-density field shown in Fig. 3
as itself a spin-half field, we may generally write its local
orientation as

|ψ(rmax,θ1)〉 = 1

N
(c+| + z〉 + eiβc−| − z〉), (14)

where c± are real and may be defined as

c+ = 〈S+z(r0)S+z(rmax,θ1)〉 ≡ N cos
α

2
, (15a)

c− = 〈S+z(r0)S−z(rmax,θ1)〉 ≡ N sin
α

2
, (15b)

and where N =
√

c2+ + c2− is a local normalization. The
symmetry of the two-point functions prevents discrimination
of different values of the azimuthal angle β, but it can
determine the canting angle α.

For each of the two peaks in Fig. 3, the canting angle with
respect to the positive z axis is determined to be α = 131◦. That
is, relative to a spin-up particle at r0, the spin-density peaks
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FIG. 11. (Color online) Three-point spin correlations along the ring of maximum single-particle density rmax = 48 nm for the four-particle
ground state. Specifically, the net Sx (a) and net Sy (b) are determined with respect to a particle of spin-up projection along the x axis at
r0 = (rmax, 0) and a particle of spin-up projection along the y axis at r1 = (rmax,θ1).

describing the other two particles both occupy the surface of a
cone with canting angle 49◦ from the negative z axis. Figure 5
shows the resulting canting angle from the positive z axis of
the local Bloch vector for each value of θ1 along the ring rmax.
The canting angle becomes greatest (α approaches 180◦) as
θ1 approaches θ0 = 0, and is a minimum at θ1 = 180◦. (Pauli
exclusion dictates that α → 180◦ as θ1 → θ0.)

The two-point functions in this system with SU(2) symme-
try are insufficient to distinguish chiral structures. Three-point
functions are necessary to resolve spin components in the plane
perpendicular to the axis defined by the two-point functions.
We turn to these next.

3. Three-point spin correlations

As described in Sec. III C, we compute the three distinct
three-point correlation functions given in Eq. (12). Other three-
point functions can be related to one of these three due to the
symmetry of the underlying Hamiltonian.

In Eq. (12), we fix r0 on the ring of maximum single-particle
density (rmax = 39 nm) at θ0 = 0. The correlation functions
are then a function of the four variables r1, θ1, r2, and θ2. If
we further choose to probe the system along the ring rmax, we
then obtain the 2D map in the two angles θ1 and θ2 shown
in Fig. 6(a). Explicitly, Fig. 6(a) is a plot of 〈S+x(rmax, 0)S+y

(rmax,θ1)Snet y(rmax,θ2)〉 as a function of θ1 and θ2. As the
angular location of the second spin approaches θ1 = 120◦
with respect to the first spin, a peak emerges in the net
spin distribution along the y axis. The maximum correlations
occur at (θ1,θ2) = (126◦,235◦) and (234◦,125◦). Note the
inversion symmetry about the point (180◦,180◦). Very similar
results are seen for the net spin distribution along the x axis
(not shown).

The three-point correlations for the net spin distributions
along the x, y, and z axes with respect to a spin-up particle
along the x axis at r0 = (rmax,0), and a spin-up particle along
the y axis at r1 = (rmax,126◦) are displayed in Fig. 6(b).
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FIG. 12. (Color online) Three-point spin correlations along the ring of maximum single-particle density rmax = 48 nm in the four-particle
ground-state manifold with respect to a particle that is spin-up along the x axis at r0 = (rmax, 0) and a particle that is spin-up along the y axis
at r1 = (rmax,90◦) (a) and r1 = (rmax,180◦) (b).
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FIG. 13. (Color online) Two-point spin correlations in the first
excited state of the four-particle system with respect to a spin-up
particle at r0 = (48 nm, 0) (white cross). Shown are the spin-up (a)
and spin-down (b) distributions.

Note the net spin distribution along the z axis is negligible
in comparison to the distributions along the x and y axes: Any
spin density that remains in the system lies only in the plane
of the two spins at r0 and r1, respectively.

Figure 7 is a map of the net spin distribution in the three-
particle ground-state manifold, given a spin-up particle along
x at r0 = (rmax, 0) and a spin-up particle along y at r1 =
(rmax,126◦). The peak along the ring rmax occurs at θ3 = 243◦,
and the net spin at this peak has an equal spin-down projection
along both the x and the y axes. Note in this distribution the
peak of the net spin density and the two locations r0 and r1

are each equidistant from each other.
The three-point correlations suggest that the most probable

spin configuration in this three-particle state has a planar,
splayed order, as seen in Fig. 7. Recall, however, that the
results from the two-point correlations imply that the state
does not have a clear winding order.

B. First excited state

Like the three-particle ground state, the first excited state is
also fourfold degenerate. However, in contrast to the ground-
state manifold, Lz = 0 for all four degenerate states in the first
excited state. Degeneracy occurs through the spin quantum
numbers S = 3/2 and Sz = ±3/2, ±1/2.

As in the ground state, the single-particle-density and the
spin-density distributions are rotationally symmetric. When
interactions are considered, the annular distributions peak at
rmax ≡ 41 nm. These distributions are similar to those seen
in Fig. 1 for the ground state and are not shown. As seen in
the ground-state manifold, the net Sz is once again zero every-
where in the QD for both the interacting and the noninteracting
cases. The noninteracting limit is not investigated further.

The two-point spin correlations in the interacting first
excited state are similar to those seen for the interacting ground
state (see Fig. 2); namely, there are two peaks along the ring
rmax. The two-point distribution also shows canting toward the
x-y plane with respect to a spin-up particle at r0 ≡ (rmax, 0).
Unlike the ground state, this canting is constant for all θ along
the ring rmax except at a very small region about θ = 0 in
accordance with Pauli exclusion and has a value of α = 53◦.
Once again a Pauli vortex is present at r0.

We turn now briefly to the three-point spin correlations in
the first excited state along the ring rmax. We fix one spin-up
particle along the x axis at θ0 = 0◦, and the other spin-up
particle along the y axis at θ1 = 120◦, the location of one
of the two peaks determined by the two-point correlation
calculation. Due to the spin-polarized states, minor differences
exist between this manifold and the ground-state manifold, but
otherwise these results are very similar and so results for the
excited-state manifold are not shown.

V. FOUR-PARTICLE SYSTEM

We examine the lowest two energy eigenstates in a system
of four charged particles for the same system parameters
used above. We begin the investigation of the four-particle
system by first determining the radial location of maximum
single-particle density in each state. With this established, we
calculate higher-order spin correlations in this region.

A. Ground state

The ground state of the four-particle system is three-
fold degenerate with quantum numbers Lz = 0, S = 1, and

0
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FIG. 14. (Color online) (a) Trace of the two-point spin distribution along the ring rmax = 48 nm with respect to a spin-up particle at
r0 = (48 nm, 0) in the four-particle first excited state. (b) Net two-point distribution of Sz throughout the QD for the same state.
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FIG. 15. (Color online) Canting angle α as a function of θ1 along
the ring rmax = 48 nm in the four-particle first excited state. The net
spin density from the two-point calculation along the same ring rmax

is shown for reference.

Sz = ±1,0. The single-particle density distribution in the
ground-state manifold (not shown) is annular in shape with a
peak at rmax ≡ 48 nm from the center of the dot. This distance
is greater than in the three-particle states primarily due to the
additional Coulomb repulsion present in the system.

The two-point spin correlations in the four-particle ground
state are calculated with respect to a spin-up particle at
r0 ≡ (rmax, 0). The calculations are similar to those for the
three-particle system. Figure 8 shows the distribution of
the remaining spin-up density and spin-down density in the
ground-state manifold with respect to the spin-up particle
at r0. As seen in the three-particle ground state, there is a
Pauli vortex at r0. Figure 8(a) shows that the probability of
finding another spin-up particle is strongest at θ1 = 180◦.
Conversely, the spin-down distribution in Fig. 8(b) shows
two peaks, one at θ1 = 90◦ and the other at θ1 = 270◦. The
saddle point at θ1 = 180◦ is more than half of the magnitude
of the peaks. Taken together, the two plots in Fig. 8 indicate

an antiferromagnetic alignment of the spins, with each spin
equidistant from each other, distributed along the ring of
maximum single-particle density. This is further revealed in
the net spin distribution, shown in Fig. 9. Figure 9(b) shows
the evident antiferromagnetic tendency in the four-particle
ground-state manifold. However, as shown in Fig. 9(a), in this
small system, the spins are neither fully localized nor fully
polarized in the QD.

In the four-particle ground-state manifold, the net spin
density from the two-point calculation shows canting along the
ring rmax as a function of θ1 similar to that in the three-particle
ground-state manifold. The canting angle becomes antiparallel
(α = 180◦) relative to the spin-up particle at r0 = (rmax, 0) as
θ1 approaches zero, passing through the x-y plane when the
net spin density from the two-point function is zero along the
ring rmax (near θ1 = 130◦ and θ1 = 230◦), and has a positive
projection on the z axis at θ1 = 180◦, where the two-point
function shows the net spin density to be predominantly
spin-up. The canting angle along rmax is consistent with
the antiferromagnetic ordering suggested by the two-point
correlation calculations. The result is shown in Fig. 10.

To investigate possible chiral textures, we examine three-
point spin correlations in the four-particle ground-state man-
ifold with respect to one-particle spin-up along the x axis
at r0 and a second-particle spin-up along the y axis at
r1 ≡ (rmax,θ1). Figure 11(a) shows the net x spin distribution
and Fig. 11(b) shows the net y spin distribution in the system
at every angular position θ2 as a function of θ1. (The net z

correlations are negligible and are not shown.)
As θ1 approaches 90◦, two peaks (the two remaining

particles) emerge in the net x and y spin distributions at
θ2 = 180◦ and θ2 = 270◦. As θ1 approaches 180◦, two different
peaks arise at θ2 = 90◦ and θ2 = 270◦. There is a third
region, at θ1 = 270◦ of large correlation that mirrors that
at θ1 = 90◦. Note the inversion symmetry through the point
(θ1,θ2) = (180◦,180◦). Figure 12 focuses on the two regions
of large correlation, when θ1 = 90◦ and 180◦, showing the net
x, y, and z spin distributions as a function of θ2.
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FIG. 16. (Color online) Three-point correlations along the ring rmax = 48 nm in the four-particle first excited state with respect to a spin-up
particle along the x axis at r0 = (rmax, 0) and a spin-up particle along the y axis at r1 = (rmax, θ1). Shown are the spin distributions along
r2 = (rmax, θ2) for the net spin along the x axis (a) and along the y axis (b).

115306-9



CATHERINE J. STEVENSON AND JORDAN KYRIAKIDIS PHYSICAL REVIEW B 83, 115306 (2011)

(a () b)
-5×10-13

-4×10-13

-3×10-13

-2×10-13

-1×10-13

0

1×10-13

2×10-13

 0  60  120  180  240  300  360

! 2 (degrees)θ2

3
nm

−
6 3

nm
−

6

0

1×10-13

2×10-13

3×10-13

4×10-13

5×10-13

120 nm

S+x(r0)S+y(r1)Snet(r2)
S+x(0)S+y(90◦)Snet x(θ2)
S+x(0)S+y(90◦)Snet y(θ2)
S+x(0)S+y(90◦)Snet z(θ2)

FIG. 17. (Color online) (a) Trace along the ring rmax, revealing the net spin distributions in the four-particle first excited state given a spin-up
particle along x at r0 = (rmax, 0) and a spin-up particle along y at r1 = (rmax, 90◦). (b) The corresponding net spin distribution in the plane of
the QD. The vector field depicts the orientation and the color depicts the magnitude. The locations r0 and r1 are indicated by the blue arrows.

From these plots we conclude that chiral spin structures ex-
ist in the ground-state manifold of the interacting four-particle
system, but the structures cannot be readily characterized by a
definite winding about any axis.

We now go on to consider the lowest-energy excitation
above this ground-state manifold, where we do uncover
winding textures.

B. First excited state

The first excited state in the four-particle system is
nondegenerate with quantum numbers Lz = 0, S = 0. It too
has a circularly symmetric single-particle density distribution
about the origin, with a peak at rmax ≡ 48 nm.

Figure 13 shows the two-point spin correlations throughout
the plane of the dot with respect to a spin-up particle at
r0 ≡ (rmax, 0). The distribution of the spin-up and spin-down
densities are shown. The spin-up density shown in Fig. 13(a)
contains two peaks at θ1 = 90◦ and θ1 = 270◦, both along the
ring rmax. The probability drops to approximately one-tenth
of its magnitude between the peaks, at θ1 = 180◦. The spin
density goes to zero as r1 approaches r0, giving evidence for a
Pauli vortex at r0. The spin-down density shown in Fig. 13(b)
has three peaks, the largest at θ1 = 180◦, and two smaller ones
of equal magnitude at θ1 = 90◦ and θ1 = 270◦. In contrast to
the ground state (see Fig. 8), this manifold does not exhibit
antiferromagnetic order.

The two smaller peaks in the spin-down distribution are
approximately half the magnitude of the large peak and

approximately equal to the magnitude of the two peaks in
the spin-up distribution. The net Sz distribution at θ1 = 90◦
and θ1 = 270◦ is therefore approximately zero, indicating an
in-plane orientation. This is further evident in the trace along
the ring rmax shown in Fig. 14(a) and the net spin distribution
shown in Fig. 14(b).

The single peak at θ1 = 180◦ is composed primarily
of a single spin species. These results are consistent with
two-point spin correlations in Ref. 10. Of note here is that,
in the transition from spin-up at θ1 = 0◦ to spin-down at
θ1 = 180◦, the spin lies almost completely in the plane of the
QD. Calculation of the canting angle along the ring rmax as a
function of θ1 is plotted in Fig. 15. In this case there are two
locations where the net spin has the greatest canting. Relative
to the spin-up particle at r0 = (rmax, 0), as θ1 approaches
θ0 = 0 and also as θ1 approaches 180◦, the canting angle
approaches 180◦. In the regions along rmax where the net spin
distribution is almost zero, the canting angle approaches 90◦,
showing that the net spin exists in the x-y plane. However,
the two-point correlation function is incapable of determining
the orientation of the spin within the plane. We therefore turn
to the three-point correlation function in order to determine
the orientation of the in-plane spin component as it transitions
between spin-up and spin-down.

We calculate three-point spin correlations along the ring
rmax with respect to a spin-up particle along the x axis at
r0 = (rmax, 0) and a spin-up particle along the y axis at r1 =
(rmax,θ1). The net x and net y spin distributions are shown in
Fig. 16 as a function of θ1 and θ2.

TABLE I. Summary of textures uncovered in the respective degenerate manifolds.

Manifold Single-particle densities Two-point Three-point Canting

Three-particle ground state rmax = 39 nm Triangular lattice Splayed 131◦a

Three-particle first excited state rmax = 41 nm Triangular lattice Splayed 53◦

Four-particle ground state rmax = 48 nm Antiferromagnetic order No winding Varies
Four-particle excited state rmax = 48 nm In-plane configuration In-plane winding Varies

aAt peaks.
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These distributions reveal strong correlations at θ1 = 90◦
and θ1 = 270◦, consistent with the previous two-point corre-
lation. Note the inversion symmetry about the point (θ1,θ2) =
(180◦,180◦). The plots further show that for θ1 = 90◦ (270◦),
the net spin is predominantly spin-down along x at θ2 = 180◦
and predominantly spin-down along y at θ2 = 270◦ (90◦).
Focusing attention to the case of θ1 = 90◦, we plot in Fig. 17(a)
the spin distribution along the ring rmax given a spin-up particle
along x at θ0 = 0◦ and a spin-up particle along y at θ1 = 90◦.
Figure 17(b) shows the effect of this correlation on the net spin
distribution throughout the plane of the QD.

These results for the net x and y spin distributions are
consistent with the z distributions calculated by the two-
point correlations (see Fig. 14). Those two-point correlations
revealed a single peak at 180◦ indicating a spin antialigned to
the one at θ0 = 0 along the ring rmax. The three-point function
with respect to a spin-up particle along x at r0 = (rmax, 0) and
a spin-up particle along y at r1 = (rmax, 90◦) yields a net spin
polarized along the negative x axis at θ = 180◦ and a net spin
polarized along the negative y axis at θ = 270◦, on the ring
rmax. This is evidence of a winding along the ring rmax. From
the symmetry of our correlation operators [Eq. (13a)], we can
deduce that there are, in fact, four orthogonal windings that
wind about the origin in this manner: two which begin with
a particle spin-up along the x axis at r0 = (rmax, 0) and then
differ in the direction of their spin polarization along the y

axis at r1 = (rmax, 90◦) (i.e., in the chirality of the rotation)
and two which begin with a particle spin-down along the
x axis at r0 = (rmax, 0), and again differ in their chirality
along the ring rmax. Thus, we can characterize the first excited
state of the four-particle droplet as a superposition of four
different windings, differing by their chirality (clockwise and
counterclockwise) and by a topological charge (±1). (See
Ref. 49 for a thorough semiclassical description).

VI. SUMMARY

We have computed spin correlations in the two lowest-lying
states of three-particle and four-particle circular 2D QDs to
resolve spin textures that exist in the system in the presence of
strong, long-range Coulomb repulsion at zero magnetic field.
Our findings are summarized in Table I.

From the one-point correlation, we determine the annular
regions of maximum spin density in the QD. As expected,
the radial distance of this region from the origin depends on
the number of confined particles and on the strength of the
Coulomb repulsion.

We further compute two-point spin-correlation functions
to determine the correlations in the spin field along a
given direction. Each resulting spin distribution is symmetric
through the diameter of the QD on which one particle is
located. The details of the spin configurations are dependent
on the unique quantum characteristics of the state, particularly
the spin and orbital angular momentum quantum numbers.
The two-point correlation calculations for each state suggest
the presence of a Pauli vortex at the position of the fixed
particle. In addition, these results reveal an incipient Wigner
phase in the states examined above.

To uncover chiral textures, the three-point spin correlations
are calculated. We plot the spin density with respect to two

particles with mutually perpendicular spins. The three-particle
states we have investigated exhibit splayed textures. The four-
particle ground state exhibits an antiferromagnetic texture, and
the first excited state exhibits winding textures. Here the results
indicate that, given a particle with spin at a point in the dot,
the spin field rotates through a plane perpendicular to the
original spin orientation with a full 2π winding as one moves
along a closed trajectory about the origin. Importantly, given
the finite size of the system and the full O(3) spin symmetry
present, these winding textures are only quasitopological in
character. The rotational spin symmetry, in particular, allows
the spins to continually deform into the trivial texture (or,
rather, to the ground-state texture). In a larger, semiclassical
system with at least uniaxial anisotropy, the analogous textures
will have topological character. In fact, in 2DEGs and bulk
systems, skyrmions, and other spin textures have been shown
to exist.26,30–33

In the present small but fully quantum system, incipient
topological structures may manifest themselves if a coupling
were introduced between the spin field and the spatial orien-
tation of the QD itself, analogous to the anisotropies typically
found in much larger magnetic systems. This could come about
through spin-orbit coupling. There is evidence that such a
coupling may break the degeneracy between the spin-winding
states.50 Together with the strong Coulomb repulsion present in
these small quantum systems, the chiral structures that emerge
should exhibit longer lifetimes and lower decoherence rates
than their more conventional counterparts.

Improvements in the lifetime of these states could be
determined, for example, by comparing the relaxation rates
of the states at and away from their degeneracy point by
use of single-shot measurements.51,52 Experimental methods
exist for differentiating between fully polarized spin states and
correlated spin texture states in the ground state of a QD by
measuring the excitation spectra of the QD as a function of
magnetic field.27–29 These methods can be used to determine
when a spin texture state is present in the system. The issues
of spin-orbit coupling and state lifetimes will be investigated
in future work.
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APPENDIX: DERIVATION OF PRODUCT SPIN
OPERATORS

In this Appendix we discuss the general properties of the
product-operators used in our above analysis, as well as the
details associated with the derivation of each product operator.

1. One-body spin operators

A general one-body operator is expressed in canonical
second-quantized form as

Û =
∑
α β

Uαβ ĉ†α ĉβ, (A1)
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where Uαβ = (α|Û |β) is a matrix element of the operator53 and
ĉ†α and ĉα are second-quantized Fermi operators, respectively
creating and destroying a particle in state |α〉.

For a system of spin-1/2 fermions, the operator for the spin
density at position r is given by (h̄ = 1)

Ŝ(r) = 1

2

∑
ss ′

ψ̂†
s (r)σ̂ ss ′

ψ̂s ′ (r), (A2)

where σ̂ = (σ̂x,σ̂y,σ̂z) are the Pauli spin matrices and ψ̂
†
s (r)

and ψ̂s(r) are the field operators.
Equation (A2) yields the net spin density at point r . We are

additionally interested in distinguishing the spin-up and spin-
down densities along each coordinate axis. We define a general
set of spin operators Ŝ±α(r) that separately determines the
spin-up and spin-down densities along α = x,y,z at position
r . In the Sz basis, the operator for the ±x spin density, for
example, is given by

Ŝ±x(r) = 1
4 [(ψ̂†

↑(r)ψ̂↑(r) + ψ̂
†
↓(r)ψ̂↓(r))

±(ψ̂†
↑(r)ψ̂↓(r) + ψ̂

†
↓(r)ψ̂↑(r))]. (A3)

This operator can be derived from the field operators, ψ̂†
±x(r) =

[ψ̂†
↑(r) ± ψ̂

†
↓(r)]/

√
2, and Ŝ±x(r) = ψ̂

†
±x(r)ψ̂±x(r)/2. Simi-

larly, the operators along the other two orthogonal directions
are

Ŝ±y(r) = 1
4 [(ψ̂†

↑(r)ψ̂↑(r) + ψ̂
†
↓(r)ψ̂↓(r))

±i(ψ̂†
↓(r)ψ̂↑(r) − ψ̂

†
↑(r)ψ̂↓(r))] (A4)

and

Ŝ+z(r) = 1
2 ψ̂

†
↑(r)ψ̂↑(r), Ŝ−z(r) = 1

2 ψ̂
†
↓(r)ψ̂↓(r). (A5)

By defining the net spin along an axis to be the difference
between the spin-up and the spin-down density along that same
axis [Ŝx(r) = Ŝ+x(r) − Ŝ−x(r), etc.], we obtain the compo-
nents of Eq. (A2). Upon integrating these net spin components
over all space, we recover the usual expressions Ŝx = (Ŝ+ +
Ŝ−)/2, Ŝy = (Ŝ+ − Ŝ−)/(2i), and Ŝz = (Ŝ↑ − Ŝ↓)/2, where Ŝ+
and Ŝ− are Sz raising and lowering operators,respectively.

The operators in Eqs. (A3) and (A4) each contain terms
which flip spins. However, since the Hamiltonian [Eq. (1)]
conserves spin, and since we include spin quantum numbers
to classify our states, these terms give zero contribution to
Eq. (5a) for one-body spin operators. As a consequence of
spin conservation we have for any degenerate manifold at
zero magnetic field 〈Sx(r)〉 = 〈Sy(r)〉 = 〈Sz(r)〉 = 0. Along
the quantization (z) axis, we can distinguish between the spin-
up and the spin-down density at position r , but we cannot
distinguish between the spin-up and spin-down density along

the two orthogonal directions: Formally, 〈S+x(r)〉 = 〈S−x(r)〉,
and similarly for the y direction. Consequently, it suffices
to calculate only the one-point correlations of Ŝ±z(r), as in
Eq. (6).

2. Two-body spin operators

To investigate correlations along a particular axis, the two-
point correlations functions are required. On physical grounds,
we require that operators be symmetric in their indexes.53

For one-body operators, we require that Uαβ = Uβα . For a
two-body operator, we similarly require that Vαβγ δ = Vβαδγ . In
general, a product of N one-body operators is not an N -body
operator. Let Û and V̂ each be a one-body operator. Their
product can be written as

Û V̂ =
∑
ij

(UV )ij ĉ
†
i ĉj + 1

2

∑
ijkl

(UikVjl + UjlVik)ĉ†i ĉ
†
j ĉl ĉk,

(A6)

where (UV )ij ≡ (i|Û V̂ |j ) and UikVjl ≡ (i|Û |k)(j |V̂ |l). The
product of two one-body operators is, in fact, a sum of
canonical one-body and two-body operators.

There is no preferred axis along which to calculate our
two-point correlations because the net spin in each degenerate
manifold is zero, but one may exploit the symmetry; for
example, the correlation between a spin-up particle and the
remaining spin-up distribution is identical to the correlation
between a spin-down particle and the remaining spin-down
distribution. In general, the correlations between a particle
with spin and the remaining particles of parallel spin will
be the same for any orientation, as will the correlations
between a particle with spin and the remaining particles
of antiparallel spin. Due to spin conservation, two-point
correlations between particles with perpendicular spin do not
provide additional correlation information and are therefore
not considered.

The two-point correlations investigated above are
〈S+z(r0)S+z(r1)〉 and 〈S+z(r0)S−z(r1)〉 in Eq. (10). With the
condition r0 �= r1 (while still allowing r0 → r1), the one-body
term vanishes. As described in Sec. A1, spin symmetry implies
that all four of 〈S+z(r0)S±x(r1)〉 and 〈S+z(r0)S±y(r1)〉 are
identical and equal to 〈(S+z(r0)S+z(r1) + S+z(r0)S−z(r1))〉/2.

3. Three-body spin operators

To probe for chiral textures, we compute the three-point
correlation functions. These are a product of three one-body
operators. In canonical form, the product of three one-body
operators is the sum of a canonical one-body, two-body, and
three-body operator,

Û V̂ Ŵ =
∑
i j

(UV W )ij ĉ
†
i ĉj + 1

2

∑
ijkl

((UV )ikWjl + Uik(V W )kl + (UW )ikVkl + (UV )j lWik + Ujl(V W )ik + (UW )j lVik)ĉ†i ĉ
†
j ĉl ĉk

+ 1

3!

∑
ijk
lmn

(UilVjmWkn + UilVknWjm + UjmVilWkn + UjmVknWil + UknVilWjm + UknVjmWil)ĉ
†
i ĉ

†
j ĉ

†
kĉnĉmĉl , (A7)
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where (UV W )ij = (i|Û V̂ Ŵ |j ). Each of the matrix elements
in Eq. (A7) is symmetric under appropriate interchange of
indexes; for a three-body matrix element Vijklmn, for example,
we require Vijklmn = Vikjlnm, and so on.

We express our three-point correlation operators in the
symmetric form shown in Eq. (A7). As in Sec. A2, spin

symmetry implies that the one-body and two-body pieces
of Eq. (A7) vanish when r0, r1, and r2 are all different.
Because our averages are taken with respect to spin-conserving
states, we need only consider terms in the correlation function
which themselves conserve spin. We can thus write the product
operators as they are given in Eq. (13).
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