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Chiral spin currents and spectroscopically accessible single merons in quantum dots
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We provide unambiguous theoretical evidence for the formation of correlation-induced isolated merons in
rotationally symmetric quantum dots. Our calculations rely on neither the lowest-Landau-level approximation, nor
on the maximum-density-droplet approximation, nor on the existence of a spin-polarized state. For experimentally
accessible system parameters, unbound merons condense in the ground state at magnetic fields as low as
B* = 0.2 T and for as few as N = 3 confined fermions. The fourfold degenerate ground state at B* corresponds to
four orthogonal merons | Q C) characterized by their topological chirality C and charge Q. This degeneracy is lifted
by the Rashba and Dresselhaus spin-orbit interaction, which we include perturbatively, yielding spectroscopic
accessibility to individual merons. We further derive a closed-form expression for the topological chirality in the
form of a chiral spin current and use it to both characterize our states and predict the existence of other topological
textures in other regions of phase space, for example, at N = 5. Finally, we compare the spin textures of our
numerically exact meron states to ansatz wave functions of merons in quantum Hall droplets and find that the

ansatz qualitatively describes the meron states.
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I. INTRODUCTION

Spin states of electrons confined in semiconductor quantum
dots (QDs) are an appealing platform for quantum information
science due to their long dephasing times and controllability.'~
States used for this implementation must be long lived relative
to the time scales required to flip a qubit, and remain coherent
despite system perturbations. Topological states are promising
candidates in that they are expected to have long decoherence
times due to their global correlations and be robust against
local perturbations.’

Skyrmions and merons are examples of topological spin
textures that are predicted to form in two-dimensional (2D)
electron systems.®’ Skyrmion excitations in bulk 2D systems
have been predicted in the v = 1 quantum Hall regime,*®
and can condense into the ground state away from v = 1.°
Experimental evidence supports the existence of skyrmion spin
textures in GaAs/AlGaAs quantum wells.'%!3

A meron can be described as half a skyrmion; it contains a
central spin oriented perpendicular to the 2D plane, which
transitions smoothly into in-plane winding away from the
central spin. Unbound merons are not low-energy states in
bulk 2D systems due to the prohibitive exchange energy of
the in-plane winding. In finite-sized systems, such as the
QDs we are considering in the present work, the textures
are stabilized, and as we show below, they can condense in
the ground state. Recent literature predicts the formation of
merons in confined systems such as QDs in large magnetic
fields.!41°

In this work, we use configuration-interaction techniques
to study a fully interacting QD system to provide conclusive
evidence for the formation of merons in the ground state.
We find that merons form in systems containing as few as
three particles,!” at magnetic fields as low as 0.2 T, and away
from the maximum density droplet regime. These states are
degenerate. However, we show how this degeneracy can be
lifted, and provide a method for predicting when merons will
form in QD systems.
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II. CHIRALITY

The chirality C,,(C) of a vector field v(s) over a closed curve
C in the direction of the unit vector n can be defined as

C,(C) = %ds n - [v(s) x 95v(s)]
C

v (s))?

where v (s) = n x v(s) is perpendicular to n and serves as
a normalization factor; it is the global chiral character of the
vector field in which we are chiefly interested.

We confine ourselves to two-dimensional, rotationally
symmetric QDs centered at the origin, and we take the curve
C to be a circle about the origin with radius r. Furthermore,
we take our direction n to be perpendicular to the plane of
the QD. Our vector field is the spin density S(r) = (S‘(r,é)).
Taking the QD to lie in the x-y plane, Eq. (1) takes the form

ey

1 [ - [S(r,0) x 39 S(r,0
Cz(r):_/ go 2 18@0) x 92(r )] )
21 Jo 1S L(r,0)|
where S| (r,0) = z x S(,0).
We express our spin-density operator as
$(r) =) Ul )6 oo o (r), 3)

where lﬁ; (r) is the field operator creating a fermion with spin
/2 (o = £1) at position r and ¢ is the vector of Pauli
matrices. The chirality then takes the form of a chiral spin
current

1 2w
C.(r) = 2—/ dO Jspin(r,0), “
T Jo
with the chiral spin current density given by
Jspin(r,0) = S (8409 ST — S199S4), ®)
2|84

where S, = (Iﬁl(l’)lﬁi(r». As an example, consider the
state |y) = (L. S;) + yIL, SZ’))/«/E, where |L§’) Sz(/)) is a
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general, correlated N-particle state with orbital angular mo-
mentum (z component) L{” and spin angular momentum
(z component) S!”. For these particular states |v/), Eq. (4)
yields

Co(r) = (L} — L)(S: — S)d5.-5:),1- (6)

Perhaps not surprisingly, states of different orbital and spin
angular momentum must be combined to produce a global
chirality. C, is an integer winding number whose magnitude
indicates the number of full 2w rotations along a closed
curve C about the QD origin, and whose sign indicates the
sense of rotation. In the interacting system, such windings can
spontaneously occur at points of degeneracy in the spectrum.
(Both spin and a component of orbital angular momentum
are conserved in our system.) We show below that this can
occur in parabolic QDs containing three strongly interacting
fermions at a point of fourfold degeneracy. We further show
that the spin-orbit interaction splits this degeneracy into four
spectroscopically distinct merons |QC) with Q,C = +£1.

III. THEORY

Our system consists of N interacting fermions of charge e,
bound to a 2D plane and laterally confined by a parabolic
potential. The 2D Hamiltonian used to describe this “standard
model” is

. N 1 & &2 N
H= hi + = —— + Hyp, 7
R T

where € is the dielectric constant of the medium and / is the
single-particle Hamiltonian describing harmonic confinement
in a perpendicular magnetic field:

h=

P2(7) + lm*wgfz + gupS. B., (7b)
2m* 2

where 7 = (%,9) is the position operator, m* is the effective
mass, and w is the parabolic confinement frequency. We work
in a finite magnetic field perpendicular to the plane of the
QD,andso P = p + ZA(F), with A (F) = g (—9,%,0) in the
symmetric gauge. The final term in Eq. (7b) is the Zeeman
energy and plays no significant role in what follows due to the
relatively small magnitude of both the g factor (g ~ —0.44
in GaAs) and the magnetic field (B < 1 T). The final term
in Eq. (7a) is the spin-orbit interaction, which we deal with
perturbatively in a subsequent section. In what follows, we
fix the material parameters in Eq. (7) to typical values for
GaAs heterostructures: m* = 0.067m,, € = 12.4, and hiwg =
1 meV.'8-2° Finally, we take /i/2 = 1.

Neglecting for now the spin-orbit interaction, we obtain
the correlated eigenstates and the energies of Eq. (7) by
configuration-interaction methods. The single-particle system,
Eq. (7b), can be solved exactly yielding the well-known Fock-
Darwin spectrum?' with states |mns) labeled by harmonic
oscillator numbers m,n = 0,1,2, ..., and spins = £1/2. We
use these states to build up a basis of antisymmetrized many-
body states, and write the Hamiltonian as a block-diagonal
matrix with blocks segregated by the conserved quantities of
particle number N, total spin S, z component of spin S, and
orbital angular momentum L ..
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FIG. 1. (Color online) Low-lying spectra for N = 3 interacting
particles with 2D harmonic confinement, Eq. 7. L, and § quantum
numbers are displayed for each state. The field B* at which merons
form in the ground state is marked.

The simplest system exhibiting meron textures occurs
already for N = 3 confined particles. The low-lying spectrum
is shown in Fig. 1. For the system parameters given above,
a ground-state degeneracy exists at a field of B* = 0.365 T.
This degenerate manifold is spanned by the four spin-1/2
states |L,,S;) = | —1, £ 1/2), | — 2, & 1/2). In the harmonic
oscillator basis, these correlated states typically contain several
thousand Hartree-Fock states in order to reach convergence in
the energies to within 0.05%.

IV. MERON TEXTURES

The degenerate ground-state subspace at B* described
above contains merons. An explicit form that is important
in what follows is

C_l—C 11 , 5 1

00 =7 (|- 13)-i¢] -2 - 3))
1+C 1 1
—((-1-= -2.-)). @
e (BB RUTREE)

These four states for C = +1, Q = £1 are orthogonal and
yield the spin textures (8(r)) shown in Fig. 2. These spin
textures are plotted using the real-space wave functions of the
2D harmonic trap.?? Previous work'4~'® has focused on lowest-
Landau-level physics or on semiclassical approximations.
The present numerically exact results show that merons can
exist far beyond the semiclassical regime; right down to the
extreme quantum limit of very few confined particles where
correlations are strongest. In particular, the three-particle
ground states shown in Fig. 2 are not spin-polarized states, nor
do they correspond to the v = 1 maximum density droplet.
The states in Fig. 2 correspond to a filling factor of 2 > v > 1.
[The angular momentum of the N-particle maximum density
dropletis L, = —N(N — 1)/2.]

A semiclassical (SC) ansatz for a single meron in a quantum
Hall droplet is given in Ref. 16 in terms of spinors and Laughlin
wave functions. Figure 3 shows a direct comparison between
the spin textures (S(r)) for the |QC) = |1 1) meron presented
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FIG. 2. (Color online) Two of the four meron textures for the
three-particle states given in Eq. (8). The spin densities (S, (r)) and
(S,(r)) are represented by the vector field, while (S (r)) is represented
by the color bar. The remaining two configurations are obtained from
these by a local in-plane spin rotation of . The textures shown were
obtained at the fourfold degeneracy point B = B* (see Fig. 1).

here and the SC ansatz for N = 3. Results are shown in
units of £y = /ii/2m*w, where w = \/wl+w2/4, and w, is the
cyclotron frequency. The two chief distinctions between the
curves are the relative suppression of both charge (primarily at
the origin) and spin polarization throughout the dot in the
present work. Both effects can be attributed to the strong
correlation effects captured in the present treatment. The
suppression of charge at the origin is a result of the greater
repulsion among the particles. The correlation-induced mixing
among numerous Landau levels and angular-momentum and
spin-resolved Slater determinants likewise has the effect of
reducing the spin polarization throughout the dot. Indeed we
find a conspicuous lack of full polarization throughout the dot.

V. SPIN-ORBIT COUPLING

To linear order, the spin-orbit interaction splits the degen-
eracy among the four merons states |QC). Remarkably, we
find the Rashba term couples only to merons with positive
chirality, whereas the Dresselhaus term couples only to those
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FIG. 3. (Color online) Comparison of spin density components
for meron |QC) = |11) of Eq. (8) (solid lines) and the semiclassical
result of Ref. 16 (dashed lines) for & = 0. The S, (r) curves vanish at
the origin, and S, (r) is zero in both cases here. Inset: Particle density
for the |1 1) meron (solid) and semiclassical (dashed) result.
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FIG. 4. (Color online) Low-lying spectra for N = 5 interacting
particles with 2D harmonic confinement, Eq. 7. The quantum numbers
L, and S of selected levels are shown. B* marks the field at which
merons form in the ground state.

with negative chirality. Explicitly, the linearized spin-orbit
interaction may be written as>>2°

I:}SO = B(—0x Py +UyPy)+a(axPy —Gny), &)

where o and B are the Rashba and Dresselhaus spin-orbit
coupling strengths, respectively. Within the lowest-energy
degenerate subspace, the spin-orbit-induced energy splittings
E ¢ associated with each state |QC) are

&
Egc = CTQ[<1+c>a+(1 —O)fl, (10)
where
gc_x<—2,9’[(1—1>3015T—<1+1>§ca] —1,—£>,
2 v v 2
11)
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FIG. 5. (Color online) Meron spin texture |QC) = |1 — 3) in the
five-particle system at the degeneracy point B* (Fig. 4). Plotted is
(Sc(r,0)) (solid) and (S,(r,0)) (dashed) around a closed curve at
radius » = 67 nm. The winding number of 3 does not depend on r.
Rather, the amplitudes decay with r due to the finite extent of the
system. Inset: (S,(r)) dependence on radius.
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with A =1/(v/2¢y) and Q,C = =+. Here, @ and b’ in-
dependently lower the orbital angular momentum of the
|L,,S;) states, while S‘i raises or lowers the spin. Also,
v=,1+ 4a)(2)/wf. Note if either « or 8 is zero, or if @ = 8,
a twofold degeneracy remains. Otherwise, the degeneracy is
completely lifted. Since the Rashba term is to some extent
tunable through externally applied gate voltages,’*-3? Eq. (10)
demonstrates a measure of experimental control over the
merons.

VI. PREDICTIONS

Equation (6) predicts that degenerate manifolds with states
of different orbital and spin angular momentum contain
quasitopological winding spin textures. Furthermore, the mag-
nitude of the winding number associated with these states is
equal to the difference between the orbital angular momentum
of the degenerate states. In the case of a fourfold degeneracy,
Eq. (8) generalizes to

1—c¢ . S
|QC) = _2\/§(|LZ?SZ) —iq|L,,S;))

LSy 1 gL S)) (12)
S-S Attt
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where L, # L, |S; — S| =1,c=C/|C|, and ¢ = Q/|Q].
The existence criteria for the quasitopological winding textures
described by Eq. (12) is satisfied throughout the phase space of
the QD. For example, Fig. 4 displays the lowest-lying spectrum
for the five-particle system using the same experimental
parameters listed above.

The fourfold degeneracy at B* = 0.16 T occurs between the
states |L,,S,S;) =|—1,1/2, £1/2) and | —4,1/2, £ 1/2).
According to Eq. (6), the quasitopological winding states that
exist at this point have a winding of 3. Indeed this can be
seen in Fig. 5, where the individual spin components for a
meron state with QC quantum numbers |QC) = |1 — 3) are
plotted.

The large, off-center peak in the (S,(r)) distribution is due
to the increased Coulomb interaction strength relative to the
three-particle system.
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