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Many lithium transition-metal oxides (LiMO„M=Ti, V, Cr, Mn, Fe, Co, Ni) have structures made

up of oxygen atoms occupying a cubic close-packed fcc or distorted fcc lattice, with cations occupying
all octahedral interstices. The cation lattice is therefore also fcc and the arrangements of the cations on

that lattice can be studied with a lattice-gas model. The LiNi02, layered LiCo02, spinel LiCoO&,

Li2Ti204, and y-LiFe02 structures are predicted for appropriate values of first- (Jl) and second- (J2)
neighbor interactions within such a model by analogy with binary-alloy materials having similar struc-
tures. W'e are able to assign allowable ranges for the interactions for each of the oxides above based on

their position in the J,-J2-T phase diagram. A surprising result is that the layered and spinel LiCo02
structures are equally stable over the same wide range of J& and J2, as predicted by mean-field and

Monte Carlo results. Although LiMnO& is structurally related to the above materials, the LiMnO& struc-

ture is not stable for any choice of J„J„orT. Further neighbor interactions or anisotropies in the
near-neighbor interactions are needed to stabilize the LiMnO, structure.

I. INTRODUCTION

Many lithium transition-metal oxides (LiMOz) (where

M is a 3d transition metal) have structures derived from

cubic close-packed oxygen atoms with cations filling all

octahedral interstices. The cation lattice is also fcc and

the arrangement of the cations on the lattice determines
the structure of the material. The oxygen lattice simply
provides a framework of sites in which the cations reside;
a perfect scenario for the application of a lattice-gas mod-
el. LiMOz compounds are used in advanced batteries'
and in electrochromic displays. Many of them are inter-
calation compounds. Therefore, these materials are im-

portant to understand for scientific and technical reasons.
Here we apply a lattice-gas model to LiMOz compounds
to understand their structures.

Hewston and Chamberland reviewed the structure
and properties of LiMO2 compounds. Of these materials

LiNi02, LiCo02, LiCr02, LiVOz, LiTi02, LiMn02, and

y-LiFe02 have all been shown to have the Li and M
atoms arranged in a superstructure. LiNi02 (and

LiCr02) have Li and Ni (Cr) atoms segregated into layers
normal to one of the cubic (111) directions. LiCoOz
adopts two structures, the first of which is isostructural
to LiNiOz. The second structure, prepared at low tem-

peratures (called LT-LiCoO~), is spinel related with'

cations in the 16c (Li) and 161 (Co) sites of the space
group Fd3m. LiVOz also adopts both the layered and
spinel structures. LiTi02, synthesized at high tempera-
ture, has disordered cations. However, if it is made by in-

tercalating Li into LiTi204 to make Li2Ti204, it takes the
spinel structure of LT-LiCo02. The cations in y-LiFeOz
adopt yet another superlattice ordering which leads to a
tetragonal unit ce11. LiMnOz adopts a fourth superlat-
tice arrangement. Figure 1(a) shows the arrangement of

Li and M cations in the Li2Ti204 spinel structure. The
unit cell consists of a 2 X 2 X 2 cubic supercell of the basic
fcc primitive cell. Figures 1(b)—1(d) show the layered
LiNi02 structure, the y-LiFe02 structure, and the LiM-

n02 structure, respectively, in the same 2 X 2 X 2 super-
cell. Each of the latter three structures can be described

up

(a) Spinel (b) LiNiO,

& ~ ar~
—~

(c) p-LiFeO, (d) LiMnO,

FIG. 1. The 2X2X2 cubic supercell shows the cation posi-
tions only in (a) spinel structure (e.g. , Li&Ti204) (b) layered struc-
ture (e.g. , LiNiO&) (c) y-LiFeO& structure and (d) LiMnO& struc-
ture. In (a) the conventional unit ce11 is equal to the size of the
2X2X2 cell, while the conventional cells in (b), (c) and (d) are
indicated with thick lines. The conventional fcc lattice is indi-

cated with thin lines.
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with a smaller unit cell, which we have indicated in the
figures. When the structures are described with their
conventional cells, the close structural relationship be-
tween the phases is not obvious. By showing the four
structures on the same 2X2X2 super cell we show the
similarities between them. For example, LiMn02,
LiNiOz, and LizTiz04 are made up of [001] planes of
identical structure with cation rows parallel to (110).
The structures only differ in the stacking sequence and
rotation of the planes.

Here we show how a lattice-gas model with first- (J, )

and second- ( Jz} neighbor interactions can be used to ex-

plain most of the observed structures of LiMO2 com-

pounds. The same model has already been applied to ex-

plain the cation ordering which occurs in Li„Niz „Oz
(Ref. 8} as a function of composition x. Here, we fix the
number of Li atoms and the number of transition-metal
atoms to be each equal to half the number of oxygen
atoms and investigate the phase diagram as a function of
J(, J~, and T.

II. GROUND STATES

We start with a lattice-gas-model Hamiltonian,

hbor

First-Nearest-Neigh&or
Interaction

FIG. 2. The first-nearest-neighbor- and the second-nearest-
neighbor interactions are shown for the black site in the cation
lattice. The gray balls are the second-nearest-neighbor sites and
the checkerboard balls are the first-nearest-neighbor sites.

where r is a position vector in the cation lattice, t„.has
two states, t, .=1, and t„.=0, to designate that the site is
filled by a transition metal or a lithium, respectively.
J(r—r') is the interaction potential between sites r and r'

and p is the chemical potential of the transition-metal
atoms in the lattice. We use the convention that positive
J corresponds to a repulsive interaction. Li-Li interac-
tions are accounted for through the absence of M-M in-
teractions. J& and Jz are denoted for the first- and the
second-nearest-neighbor interactions, respectively. Fig-
ure 2 shows the 12 nearest neighbors and the 6 second-
nearest neighbors.

The fcc lattice gas has been extensively studied with
application to A-B alloys (see Ref. 9 for a review). We
will draw heavily on that work here. The ground-state
phase diagram of the fcc lattice gas with nearest-neighbor
(NN) and next-nearest-neighbor (NNN) interactions has
been calculated. ' Figure 3 shows the ground-state phase
diagram for the fcc lattice gas as a function of J& and J2.
Studies of the fcc lattice gas with repulsive (positive) J,
and J2, such that J2 (J, /2, predict ground states with
cations arranged as in y-LiFe02. ' ' For repulsive J,
and Jz such that Jz )J, /2, the ground state' ' has cat-
ions segregated into alternate planes normal to the cubic
(111)directions as in CuPt. This is the cation arrange-
ment observed in LiNi02. Furthermore, by analogy with
their statements about CuPt, Richards and Cahn' imply
without proof that the spinel atom arrangement found in
LT-LiCo02 and in Li2Ti204 is energetically equivalent to
the layered arrangement. Clapp and Moss' did not men-
tion the spinel phase in their work, but did identify
phases with atoms arranged as in LiNi02 and y-LiFe02.
The ground states of the fcc lattice gas with first- and
second-neighbor interactions listed in Ref. 9 include the

degenerate layered and spinel structures. The authors of
Ref. 9 state that the degeneracy is lifted if tetrahedron in-
teractions are introduced. Gahn used Monte Carlo com-
puter simulations to study the ground states of binary fcc
structures with first- and second-nearest-neighbor interac-
tions. ' For Jz/J, )0.5 and J, )0, he reported that
after cooling from the high-temperature disordered
phase, only the layered structure appears. On the other
hand, Phani and Lebowitz reported, based on privately
communicated unpublished results, ' that the spinel
phase weakly dominates at low temperatures for the same

Jz=-Ji, J~&0

Layered Spinel

Ji=2Jz, Js)0

LiFeO~

Clustering
Jz=0, Js)0

CuAu

&1,0,0)

Jc=0, Jz&0

FIG. 3. The phase diagram of the fcc lattice predicted by
mean-field theory as a function of Jl and J2. The positions of
the layered, spinel, and y-LiFe02 structures have been indicated
as have the family of ordering wave vectors in each single-phase
region.
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set of interactions used by Gahn. Finel used the low-
temperature series-expansion method to predict that the
layered structure is the most stable for J& &0, and the
spinel is most stable for J& (0.' Clearly, there is some
confusion in the literature about the relative stability of
these phases at finite temperature.

Monte Carlo methods are used here to investigate the
structures for x = 1 in Li„M2 02 with first- and
second-neighbor interactions. Our results show that the
layered and spinel structures are degenerate not just at
T=O; but also degenerate at T &0. The free energy and
entropy of the two structures upon warming are the same
(within statistical error) in the entire range of tempera-
ture 0(T Tc for various values of J, and J2. The lay-
ered and spinel structures also appear with equal proba-
bilities in cooling runs.

All of the ground states shown in Fig. 3 can be de-
scribed in terms of Fourier modes or concentration
waves, with various wave vectors. The layered LiNi02
structure corresponds to the ( —,', —,', —,') phase with a single
wave vector and the spinel Li2Ti204 phase corresponds to
an equal mixture of the four ( —,', —,', —,') wave vectors,

q4=( —
—,', —

—,', —,'). In the region J, )0 and 0& J2 & —,'J, ,

the wave vector ( —,', 0, 1) corresponds to the structure of
y-LiFe02. For the lower right corner (J, )0, J2 &0),
wave vectors of the type (100) correspond to the structure
of CuAu.

The literature cited above describes these ground states
in the context of binary alloys with formula A B&
where 0&x & l. If we write LiMO2 as 2( A„B,„0)with
A =Li, 8=transition metal, and x =

—,', the correspon-
dence becomes clear. Table I provides a translation from
the commonly used binary-alloy nomenclature and the
corresponding LiMO& structures. This will be useful to
readers interested in studying the binary-alloy literature.

By inspection of Figs. 1(a) and 1(b), the number of
M-M contacts in each of the layered and spinel structures
is equa1 to 6, which contributes 6J& to the internal ener-

gy. Similarly, the number of second-neighbor (0) and
third-neighbor (12) contacts is also identical. In fact, we
wi11 now prove that the number of M-M contacts at any
distance in the two structures is the same! This is easily
shown. Consider the atom at the origin (the center of the
supercell) of Fig. 1(a). The spinel structure can be
changed to the layered structure by rotating the (001)
planes at z=(n+ —,')a by vr/2 about the z axis. Xo dis

tances from any atom to the atom at the origin are
changed by this flotation. Since this choice of origin and

III. PHASE DIAGRAM AT FINITE TEMPERATURE

The J&-J2-T phase diagram for the fcc lattice-gas mod-
el is shown in Fig. 4. The center of the diagram corre-
sponds to the high-temperature disordered phase with the
rocksalt (NaC1) structure. No new ordered phases that
do not exist at T=O appear at finite temperature for
x =

—,'. For many values of J& )0, the critical tempera-
tures have been reported previously. ' ' '

We have also calculated critical temperatures for J& &0
using the Monte Carlo method ' on an 8 X 8 X 8 fcc lat-
tice. Critical temperatures were determined from the
maximum in the Iluctuations of the order parameter (i.e.,
the maximum in the ordering staggered susceptibility).
The composition x= —,

' was maintained by fixing the
transition-metal chemical potential,

p= —6Ji-3Jq . (2)

To compare our critical temperatures with those of much
of the previous work, one must remember that lattice-
gas-interaction constants (J's) will diifer by a factor of 4,
from those of an Ising model with a Hamiltonian of the
form (1).

eO
2

0 This work

Ref. 20

~ Ref. 15 CuAu

axes is arbitrary, any point in each of two lattices has the
same number and type of M-M, M-Li, and Li-Li contacts
out to infinite distance. Thus the ground-state energies of
the layered and spinel structures are the same, provided
only pairwise interactions are included.

A model incorporating two-, three-, and four-body in-
teractions has been used to explain more complex struc-
tures. ' Clapp and Moss' determine the regions of
ground-state stability for the fcc lattice gas with first-,
second-, and third-neighbor interactions. Kanamori and
Kakehashi report the ground states for arbitrary concen-
tration with fourth-neighbor interactions. '

TABLE I. Structure types of AB alloys and LiMO& com-
pounds.

4
-4 -3 -2 -1 0 1 2 3 4

J /kT
Alloy

Nomenclature
Binary alloy

example

Cupt

CUAU

Lithium transition-
metal oxides

LiNiO, {layered)
LiCo02 {spinel)

y-LiFeO,

FIG. 4. The phase diagram calculated by Monte Carlo
methods. The region inside the data points around the origin
{0,0) is the high-temperature disordered phase. Outside the data
points, where careful calculations were made, the ordered struc-
tures indicated are formed. The black circle and the black
square data points are from Refs. 15 and 20, respectively.
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As the layered and spinel structures are rather com-
mon for LiMO2 materials, we feel it is important to study
the relative stability of the structures at finite tempera-
ture. Just because the ground states are equal in energy
by no means implies that the free energies or entropies
are the same at finite temperature. If one structure has a
higher density of low-lying excited states it will have a
higher entropy at finite temperature, hence being stabi-
lized and preferentially selected upon slow cooling. As
mentioned above, some conflicting work on this question
exists in the literature and, to our knowledge, no pub-
lished Monte Carlo work exists for the case J& &0. We
hope to settle this question using both conventional
Monte Carlo and recently introduced histogram Monte
Carlo methods by which the density of states and the
entropy can be calculated directly.

As stated previously, and spinel structure can be con-
verted to a layered structure by simply rotating every
other layer [i.e., those labeled by half integers in Fig. 1(a)]
by 90, about the z direction. One can also extend this
idea to excited states. Any low-lying excited state above
the spinel ground state can be converted, by 90' rotation,
to a corresponding low-lying excited state above a layered
ground state. When J&=0, the neighboring layers are
uncoupled and there is no change in energy upon such ro-
tation of any excited state. As a result, for every low-
lying excited state above the spinel ground state there is a
corresponding excited state above one of the layered
ground states, with exactly the same energy. This one to
one correspondence means that the density of low-lying
excited states above the spinel and layered ground states
is identical, and also that no thermal selection will occur
upon slow cooling, when J

&
=0. When J& %0, the neigh-

boring layers become coupled and our simple proof no
longer applies. Nevertheless, this rigorous result for
J, =0 provides an important test of the Monte Carlo
methods described below, which we use to address the
question of thermal selection when J&%0. Indeed, we
find that for J& =0, the Monte Carlo method predicts an
identical (within statistical error} low-temperature entro-
py and density of low-lying excited states, upon warming
from spinel and layered ground states. This gives us
confidence in our Monte Carlo results for the case J,XO.

The transition-metal atom densities for the spinel and
layered structures are described by the same set of four
wave vectors, with Fourier amplitudes rl, , q2, rl3, and r14,
respectively. Layered structures are described by any one
of the four modes, whereas the spinel structure has equal
contributions from all four modes. The root-mean
squared Fourier amplitude,

Hp(E)
Pp(E) =

g Hp(E}
(5)

where the energy E is distributed over a finite number of
discrete bins, and Hp(E} is the number of Monte Carlo
configurations generated with energy E during the simu-
lation, i.e., Hp(E) is an energy histogram obtained from a
simulation at inverse temperature P. If Pp(E) is known

0.2
1/Jg = 1.08

O.i-

0.0
0.2' T/IJ$ = 1.0B

wO. i
'4 o.o

0.8 TJ Jg = f.04

O. i

0.0
0.8 T//Ja = f.08

0.1

For interactions in the spinel and/or layered region of
the phase diagram, slow annealing with the Monte Carlo
method resulted in both the spinel and layered phases
with 50% probabilities. This result was independent of
the sign of J&. This implies that the free energies of the
spinel and layered phases are equal near T, . Figure 5
shows the probability distribution of b, [P(h)], at tem-
peratures near and below T, . The area under the peaks
in the distribution is (50+2)% at any temperature. This
shows that within statistical errors, the system is fluctuat-
ing between the two phases below T, with equal probabil-
ity. The number of Monte Carlo steps needed for a fluc-
tuation between phases increases rapidly below T„mak-
ing low-temperature studies of this problem with conven-
tional Monte Carlo methods diScult.

The energy-probability distribution Pp (E) at inverse
temperature P=1/kT can be calculated approximately
by Monte Carlo methods using

g=(vp+vg+g +ri }' 0.0—1.0
~ I ~ g ~-0.5 0.0 0.5 i.0

makes no distinction between the two phases. However,
the order parameter,

Layered S'pin, el

&=2( I q( I+ I g, l+ I q3I +
I q41 } 3(v)+ gg+ g3+ n4}—'",

(4)

is 1 for perfect spinel order and —1 for perfect layered
order.

FKJ. 5. The probability P(h) of finding a particular value of
h. The layered and spinel phases appear with equal probability
for various temperatures below T, . The calculation is for an
8X8XS lattice using J& =0. 1.0X10 Monte Carlo steps per
site were used to generate the probability distribution. Similar
results are obtained for various values of J&, provided one stays
in the region of stability of the spinel and layered phases.
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then the density of states can also be calculated from

Pp(E) = W(E)e /'E-

y W(E)e -i'E

W(E)e /'E-

Zp
(6)

I
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where W(E) is density of states and Z& is the partition
function. In practice, H&(E) will contain statistical noise
due to the finite duration of the simulation. Assuming
Poisson statistics, the statistical error in H&(E) is simply
H/3(E)'i . Since P/3(E) is strongly peaked near ( E )&, the
counting statistics in the wings of the distribution will be
very poor. This problem can be overcome by combining
histograms from simulations at many different tempera-
tures selected in such a way that all energy bins receive
sufficient sampling. The histograms are then combined in
an optimal manner, described in Ref. 22, resulting in an
estimate for the density of states W(E) or the entropy S&.

Here we use an 8 X 8 X 8 fcc lattice. The spinel and the
layered structures are introduced in the lattice at very
low temperature (0.1 T, ). The system is then gradually

warmed up to a very high temperature (10000 T, ). The
temperatures are properly chosen to ensure that all ener-

gy bins receive sufficient sampling. The relative uncer-
tainty of W(E) is proportional to I/QH;(E). For each
temperature, 5 X 10 Monte Carlo steps are summed, giv-

ing 2X10 configurations over a total of 40 temperature
points.

The spinel and layered ground states are each eightfold
degenerate. Hence the total degeneracy of the ground
state is 16, and the entropy equals ln 16 at T=O. When T
is infinite, the entropy of the system is N ln 2 (N is the to-
tal number of the sites). Therefore, the entropy of the
layered phase and the spinel phase equal each other at
T=O, and T= ~, without dependence on J& and J2. The
difference in entropy of spinel and layered structures at
low temperatures is calculated by warming up from their
ground states, and by equalizing the entropy at T =0 for
the two structures. This can be thought of as a low-
temperature expansion calculated by Monte Carlo
methods.

The Monte Carlo method is used to calculate W(E)
and the entropy of the spinel and layered structures for
J, =0, J, &0, and J, )0, respectively. Figure 6(a) shows
the results of the ratio of W(E) for the two structures
after warming for J, = —

( —,')J2 &0. The results are simi-

lar for cases of J, =0 and J, & 0. The statistical error es-

timation is shown at the same time with two dashed lines.
Eo is the ground-state energy. For (E Eo)/NJ2 —near
zero, the error estimation is quite large since some energy
bins were sampled very infrequently. For (E Eo)/NJ2-
near 0.8, which corresponds to very high-temperature ex-
citations, the error estimation is also large because these
bins are at energies greater than (E ) r „andare, there-
fore, infrequently sampled. The arrow indicates the aver-
age energy at the critical temperature (E)z. . Clearly,

C

the difFerence between W(E), ;„,i and W(E)„„„for
E&(E)z. is within the estimated error. That means

C

there is no difference in the density of excited states for
the layered and spinel structures within statistical error.
Figure 6(b) shows the entropy per site S/N vs tempera-
ture for the layered and spinel structures. For the entire
range of the temperature, the difference of S/N for two
structures is on the order of 5.0 X 10 k~, which is too
small to see in Fig. 6(b). We conclude that the spinel and
layered structures have identical free energy and entropy
in the region of where —J2 &J, & 2J~ and J2 )0.

IV. SUMMARY AND CONCLUSIONS

0.00
0.3 1.0

k T/J
100.0

FIG. 6. (a) Ratio of density of states W(E) for spinel and lay-
ered structures are shown as calculated using Monte Carlo
methods. The dashed lines show the positive and negative {+o.)
error estimations. Eo is the ground-state energy. The arrow in-
dicates the value of (E Eo)z.=z. /NJz=0. 376—. (b) Entropy

C

per site S is shown vs k~ T/J2 for layered and spinel structures.
The difference in S/X for the two structures is less than
5X10-' k, .

The structures of lithium transition-metal oxides
LiMO2 are related to binary alloys, and can be explained
with the lattice-gas model. The spinel and layered struc-
tures, which are common in LiMO2 compounds are
proved to have energetically identical ground states, for
arbitrary pairwise interactions out to any distance. Fur-
thermore, we prove that the spinel and layered structures
have identical free energies and entropies for J& =0. Us-
ing Monte Carlo methods, we extend the conclusion to
the region of —J2 &J, &2Jz and J2) 0 where the spinel
and layered structures also have identical free energy and
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entropy (within statistical error) in the entire range of
temperature.

Distortions of the fcc lattice occur in LiNi02 LiCr02,
layered LiCo02, and layered LiVO2. The distortion
breaks the degeneracy of the spinel and layered phases.
This is because J& takes on two values, one for the six
atoms in the same (111) plane (normal to the Li and Ni
layers) and one for the six atoms in the neighboring (111)
planes (see Fig. 1). Therefore, real materials may be able
to lower their energy by a distortion; LiNi02, LiCr02,
layered LiCo02, and layered LiVO2 are examples of this,
where the distortion is only one or two percent.
In LiMnOz, there is a large distortion [the 2 X2 X2 super-
cell in Fig. 1(d) is stretched by 14% in the vertical direc-
tion ], presumably caused by the Jahn-Teller effect. The
anisotropies in the J's de6nitely need to be accounted for
to explain this structure.

Recent studies of Li„Ni, ,O with 0. 1&x &0.5 (Ref.

8) showed that the same lattice-gas model could fit the
order-disorder transition from the disordered rocksalt
phase to the layered phase, but only if J2) 2i J, i. It is a
challenge to all materials theorists to understand why
NNN interactions are stronger than NN atom-atom in-
teractions, in LiMO2 compounds with layered and spinel
structures.

Scientists studying lithium transition-metal oxides
must beware. Phase transitions between spinel and lay-
ered phases may occur as a function of lithium concen-
tration in Li& M 0 or, perhaps, as a function of applied
pressure. For example, the spinel LiVO2 phase can only
be prepared at high pressure. Since the unit-cell volume
of layered LiCo02 is slightly larger than that of spinel
LiCo02, it is likely that a transition from the layered to
the spinel phases will occur with applied pressure.
Pressure-dependent studies of CuPt may also induce such
a transition.
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