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Abstract

Wireless Sensor Networks (WSNs) are ad-hoc networks consisting of tiny battery-

operated wireless sensors. The sensor nodes are lightweight in terms of memory,

computation, energy and communication. These networks are usually deployed in

unsecured, open, and harsh environments, where it is difficult for humans to perform

continuous monitoring. Consequently, it is very crucial to provide security mecha-

nisms for authenticating data among sensor nodes. Key management is a pre-requisite

for any security mechanism. Efficient distribution and management of keys in WSNs

is a challenging task. Many standard key establishment techniques have been pro-

posed using symmetric cryptosystems. Unfortunately, these systems often fail to pro-

vide a good trade-off between memory and security and since WSNs are lightweight

in nature, these cryptosystems are not feasible. On the other hand, public key in-

frastructure (PKI) is infeasible in WSNs because of its continuous requirement of a

trusted third party and heavy computational demands for certificate verification.

Pairing-Based Cryptography (PBC) has paved the way for how parties can agree

on keys without any interaction. It has relaxed the requirement of expensive certificate

verification on PKI systems. In this thesis, we propose a new hybrid identity-based

non-interactive key management protocol for WSNs, which leverages the benefits of

both symmetric key based cryptosystems and pairing-based cryptosystems. The pro-

posed protocol is scalable, suits many applications and can be deployed in multiple

types of networks without modifications. We also provide mechanisms for key refresh

when the network topology changes. A security analysis is presented to prove that

the scheme is resilient to many types of attacks. To validate our scheme, we have

implemented it on Crossbow TelosB motes running TinyOS and analyzed the perfor-

mance in terms of memory, communication, computation and energy consumption.

The results indicate that our scheme can be deployed efficiently to provide high level

of security in a large-scale network without increasing memory, communication and

energy overheads.

xi



List of Abbreviations and Symbols Used

A (λ+ 1)×N Matrix

CPk Cached Private Key on Node with ID k

Cn Number of Member Nodes in a Cluster

D (λ+ 1)× (λ+ 1) Symmetric Matrix

Ek(·) An Encryption Algorithm with Key k

G (λ+ 1)×N Vandermonde Matrix

Gk Group Session Key

H (λ+ 1)×N Matrix

KMλ Vector of λ+ 1 Key Materials

Kij Common Shared Key between Node i and Node j

R Vector of Compromised Node IDs

S Master Secret Key used for PBC Operations

Sx Private Key used in PBC Operation for Node with
ID x

X Bit Vector of Size N

Φ A hashing-and-mapping Function
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Chapter 1

Introduction

1.1 Overview of Wireless Sensor Networks

Wireless sensor networks (WSNs) are essentially wireless ad hoc networks composed

of many tiny battery-operated sensors. These sensors are deployed in harsh envi-

ronments to collect different types of data, such as temperature, pressure, humidity,

soil makeup, vehicular movement, noise levels, lighting conditions, the presence or

absence of certain kinds of objects or substances, mechanical stress levels on attached

objects, and other properties [1, 2, 3]. The collected data is then sent back to one

or more special nodes called the base station (BS) either directly or via other sensor

nodes [4]. Base stations are usually connected to the Internet or a WiMAX network

and send this data to a remote location for further processing (Figure 1.1).

Figure 1.1: Wireless sensor network. (Legend: BS = Base Station; SN = Sensor
Node)

WSNs are going to be widely used in the near future due to the breadth of their

applications, specifically where it is difficult for humans to perform continuous moni-

toring. There are many applications of WSNs [5, 6, 7, 8] ranging from simple habitat

monitoring in a forest to highly secure military applications. According to the areas

of deployment, applications of WSNs can be categorized as follows [5, 7]:

1
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• Military applications: Early developments in wireless sensor networks were mo-

tivated by military applications, which have the highest security requirements

among the various application of WSNs [8]. Military sensing networks are de-

signed to detect and gain as much information as possible about enemy move-

ments, explosions, and other phenomena. Typically, wireless sensor nodes are

integrated with military command, control, communications, computing, intelli-

gence, surveillance, reconnaissance and targeting systems. Examples of military

wireless sensor network applications include battlefield surveillance, guidance

systems for intelligent missiles, detection of attacks by weapons of mass de-

struction such as nuclear, biological, or chemical weapons and other monitoring

applications [9, 10, 11].

• Environmental monitoring: Environmental monitoring can vary from indoor to

outdoor monitoring. In a large building, sensor nodes can be set up to monitor

light, temperature, status of frames (windows, doors), air streams and indoor air

pollution [12]. Additionally, WSNs can be used for reducing the impact of fire

and earthquake damages. A fire and smoke detector system integrated with light

signals indicating exits can be built to help guide the trapped residents through

the safest route and save their lives [13]. In another scenario, earthquake damage

can be measured by incorporating wireless sensors inside cement blocks during

construction, or their attachment to structural units. Inspecting a building

after an earthquake using such a system will not only facilitate evaluation of

cracks and damages, but will also provide real data for modeling and prediction

of structural damages to the building in future events [14].

Outdoor monitoring is another vast area of application for WSNs, especially for

habitat monitoring. One of the most representative examples of such application

is Great Duck Island (GDI) [15]. Multiple types of sensors including temper-

ature, barometric pressure, humidity, passive infrared and photo-resistors were

used to monitor the natural environment of birds and impact of climate change

on their behavior. Another application in the same category focuses on endan-

gered species. A WSN was set up in Volcano National Park to discover why

some species can only live in a specific region [16]. The outcome of the study

would be useful when trying to prevent endangered species from extinction.
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Other applications pertaining to outdoor monitoring includes environmental

observations and forecasting weather phenomena.

In a nutshell, WSNs are ideal for remote monitoring, especially monitoring and

event detection in geographically large regions or inhospitable areas.

• Agriculture applications: WSNs have a wide variety of applications in agri-

culture. The applications in this category are mainly focused on enhancing

the efficiency and growth of cultivations. For example, WSNs are used in a

vineyard to monitor temperature of grapes and to perform survey of the micro-

climate [17]. It turns out that the network was not only helpful for the farmers,

but every participant in the wine making process, from the time of growing the

grapes to wine production and marketing, benefited from it. A similar system

is also used for controlling the water usage in an efficient and economic way by

monitoring moisture in soil, air humidity and weather forecasting [18]. Other

goals of this system include frost detection and warning as well as pesticide

application and disease detection. In general, crop management, lowering costs

and increasing quality are in the scope of applying sensor network technology

to agriculture.

• Industrial applications: Industries can take most benefit out of WSNs. The

industrial WSN global survey 2012 [19], stated that 70% of the industrial users

are planning WSNs or additional deployments within the next 18 months. Some

of the important sectors of industry where WSNs can benefit include factory au-

tomation, process control, real-time monitoring of the health of the machinery,

detection of liquid/gas leakage, remote monitoring of contaminated areas, and

real-time inventory management, etc. In one interesting application, British

Petroleum (BP) used WSNs to improve safety and product quality by monitor-

ing warehouses and storage management of barrels [20]. The concept is that

motes attached to barrels will be capable of locating nearby objects (other bar-

rels), detecting their content and alerting in case of incompatibility (danger of

a chemical reaction), aging effects of the enclosure, etc. Similar to BP, other

oil companies installed sensors to measure temperature in their pipeline sys-

tems [21]. In another application, BP used a system where each customer’s oil
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tank is monitored so that the supply department of the company has a knowl-

edge of the quantity of oil remaining [20]. Besides oil industries, electricity

energy systems can also benefit from deploying sensor networks. It benefits

both consumers and producers of electricity by monitoring and reducing excess

electricity usage. Such a scheme is being investigated in CITRIS [22], where

smart energy distribution and consumption is deployed.

• Health-care applications: WSNs can benefit health science and health care sys-

tems. Many medical systems are equipped with a large number of tiny, non-

invasive sensors, located on or close to the patient’s body for health monitoring.

Such systems are being designed to measure diverse physiological parameters

such as blood pressure, electrocardiogram, blood oxygen level, activity recogni-

tion, etc., and are available in many different forms, including wrist wearable,

ambulatory devices and as part of biomedical smart clothes [6]. The term body

sensor network (BSN) [23] has been coined to represent these types of appli-

cations. One such notable use of WSNs was carried out by Intel in Portland

and in Las Vegas (Proactive Health Research) [24] to help monitor and con-

trol cognitive disorders (which could perhaps lead to Alzheimer’s) at their early

stages. The nodes can be used to record recent actions (taking medication, last

visitor, etc.), remind senior citizens to take the intended dosage of medication,

or monitor for any potential health issues. Similarly human vision restoration

by retina prosthesis, early detection of clinical deterioration through real-time

patient monitoring in hospitals, and large-scale field studies of human behavior

and chronic diseases are few among the plethora of WSNs applications in the

area of health care [5].

• Emergency services: WSNs can help manage emergency situations during dis-

asters. WSNs have been used to enhance the capability of the first responder

to provide emergency care through automatic electronic triage [25, 26]. Triage

protocols for emergency medical services [27] already exist for monitoring mass-

casualty disasters. The effectiveness of the services can quickly degrade with

increasing number of victims. Moreover, there is a need to improve the assess-

ment of the first responders’ health status during such mass-casualty disasters.



5

The WSNs can be used to automatically report the triage levels of numerous vic-

tims and continuously track the health status of first responders at the disaster

scene more effectively.

1.2 Security Challenges in WSNs

Many applications in WSNs require exchange of sensitive information. Therefore,

they need to rely on secure and reliable data transfer from the sensor nodes back to

the processing center. Besides, the communication in WSNs is done via the wireless

medium, which is inherently insecure and invariably incurs various types of security

threats. Many attacks such as denial-of-service, replay, fabrication, sybil, hello flood,

wormhole, etc., which are common in other wireless networks (i.e., mobile ad hoc

network (MANET), wireless fidelity (WiFi), etc.) are also applicable to WSNs [6, 28].

However, many well-known security mechanisms devised for other wireless networks

cannot be applied directly to the resource-limited WSNs because of the architectural

disparity of the networks. Furthermore, a majority of sensor networks are deployed in

hostile environments with presence of intelligent adversaries. Hence, security is critical

for the practical deployment of WSNs [29]. In the next subsections, we describe the

major security challenges in WSNs.

1.2.1 Limited Resources

Security comes with an overhead. WSNs consist of tiny sensors which suffer from the

lack of processing, memory and battery power [4]. Applying any encryption scheme

requires transmission of extra bits, with consequent processing, memory and battery

power consumption which are very important resources for the sensor’s longevity.

Applying encryption can also increase delay and packet loss in wireless sensor net-

works [30].

1.2.2 Wireless Broadcast

The mode of transmission in WSNs is wireless. Wireless networks are usually more

vulnerable to various security threats, as unguided transmission channels are more

susceptible to security attacks than guided channels [31, 29]. Moreover, because of
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harsh environments where WSNs are typically set up, error and loss of information

is very common. Therefore, providing security becomes more challenging.

1.2.3 Lack of Physical Protection

Unlike traditional wireless networks, sensors are expected to be deployed arbitrarily

in an enemy territory (in military reconnaissance scenarios) or over dangerous or

hazardous areas. In this setup, an adversary can easily capture the physical mote

(which is essentially a node in the sensor network. In this thesis, we use mote and

node interchangeably.) and read sensitive information such as cryptographic keys

stored in the internal memory [29, 32, 33]. In addition, the adversary can take control

of and manage the mote remotely, which makes it further difficult to detect physical

tampering. Even if the base station resides in a friendly or safe area, the sensor

nodes need to be protected from being compromised. Therefore, protocols should

have built-in mechanisms to limit the damage in the event of node capture and other

physical attacks.

1.3 Key Management in WSNs

Before a WSN can exchange data securely, encryption keys must be established among

sensor nodes. One critical issue in the design of secure WSNs is the key management

− how the keys are generated, disseminated, revoked, renewed, or assigned on a

new sensor for ensuring robust security for the network [2, 34]. Like security, key

management extends across multiple layers. A common link layer protocol used in

WSNs is IEEE 802.15.4 and a widely used application layer security suite for WSNs is

TinySec [35]. Although these protocols require key usage for secure data transmission,

they do not provide any mechanism for exchanging keys securely. Besides application

and link layers, network layer may also need to exchange keys securely. This leaves

open a key management problem, which is the focus of much recent research. Many

security-critical applications [8, 9, 10, 11] depend on key management processes to

operate but also demand a high-level of fault tolerance when a node is compromised.
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1.4 Motivation and Objectives

Securing and authenticating the communication between the nodes in a WSN is very

challenging, especially because the nodes are typically deployed unattended, often in

conditions unfavorable to human monitoring and lacks a mechanism for secure stor-

age for cryptographic keys, which make them vulnerable to many attacks [36, 37, 29].

Moreover, these tiny sensor nodes are limited in power, computation, memory and

bandwidth, which make it harder to implement other existing security infrastructure

such as public key cryptography. Therefore, in WSNs, it is necessary for the communi-

cating parties to share encryption keys before a secure communication can take place.

This necessitates the use of robust key management protocols that handle the task

of distributing, establishing and managing keys between sensor nodes [2]. Many re-

searchers have focused on providing viable solutions to the key management problem

in WSNs based on symmetric key pre-distribution [38, 39, 40, 41, 42], since symmet-

ric cryptosystems are lighter and faster as compared to asymmetric cryptosystems.

However, managing the keys and agreeing upon a shared key requires additional over-

heads. Moreover, the key pre-distribution approach usually cannot guarantee entire

connectivity of the network even with high deployment density. Besides, symmetric

key cryptosystem fail to provide authentication for the communicating parties.

In Public Key Cryptography, (PKC) communicating parties only have one pair

of keys namely, the private and public key. This scheme is scalable and provides

authentication service easily. This convenience, though, comes at a price: a method

for authenticating the public key must be provided. Traditionally, this has been done

by introducing a trusted Certification Authority (CA) and verifying digitally signed

certificate by the CA, which is a computationally expensive operation [43]. Since

WSNs are battery powered and have limited computational power, many researchers

have argued about the suitability of traditional PKC in WSNs [44, 45, 46]. However,

recent advances in Pairing-Based Cryptography (PBC) have made it possible to use

it in the field of resource-constrained WSNs. PBC is an emerging technology that

makes well-known cryptographic protocols more efficient by enabling Identity-Based

Encryption (IBE) which in turn facilitates a complete public key based scheme called

Identity-Based Cryptography (IBC). The main advantage of an IBC-based system

over a PKC is that in traditional PKC there is no correlation between an individual’s



8

ID and their public key. Hence, a trusted third party is needed to establish this

correlation. However, in the case of IBE, known information that uniquely identifies

the user (such as email address, IP address, etc.) can be used to derive its public

key. As a result, keys are self-authenticated and certificates by a trusted third party

is unnecessary. Here, the only constraint is that the ID of the user has to be unique

and only a trusted authority should be able to generate the ID. In other words, it

requires a Private Key Generator (PKG), a trusted entity responsible for generating

and escrowing the user’s private key and PKG has to be unconditionally trusted by

all the entities. Due to this constraint, IBE may not be suitable for many well-known

scenarios on the Internet [47]. However, in the case of WSNs, this is not a problem

because when the WSNs will be deployed, a trusted authority, namely, the BS of

WSN will assign a unique ID to each node and load the required software before

the deployment of the network. In this case, we can assume the BS will take the

responsibility of assigning unique ID to the nodes.

Using IBE, we can design a non-interactive secure key distribution scheme for

WSNs, where each node is issued a unique ID and a unique secret, not shared with

any other entity [47, 48]. A pair of nodes can derive a common secret by knowing

just each other’s ID and not transmitting any messages. Then, they can derive a

cryptographic key using their common secret and establish a secure communication

with each other. Although the PBC-based schemes are very much viable for WSNs,

the implementation is quite difficult and computationally expensive. Leonardo et

al. [47] recently pointed out that even with the advanced sensor network hardware,

it takes almost two seconds to perform the PBC based operations. Therefore, at

least until now, it has not been possible to solely use PBC-based schemes for key

management in large WSNs. This is the research gap addressed in this thesis towards

the advancement of the state-of-the-art in key management protocols.

1.5 Contributions

The purpose of this research is to provide a light-weight key management infras-

tructure for resource constrained networks, such as WSNs, that supports scalability

without increasing memory overhead. Motivated from the fact that dynamic pair-wise

symmetric key is light-weight and pairing-based schemes require less keys, we have
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combined these two schemes to propose a new non-interactive hybrid key manage-

ment protocol for resource constrained networks. The main contributions are given

below:

1. We propose an efficient key agreement scheme based on symmetric key encryp-

tion. Blom [40] has presented a key distribution method that allows any pair

of nodes in a network to be able to compute a pair-wise secret key as long

as no more than λ nodes are compromised, where λ is the security parameter

proposed in [40]. However, the original Blom’s scheme was not proposed for

wireless sensor networks and require multiple interactions. We have optimized

Blom’s scheme to propose a non-interactive efficient key agreement protocol

that respects the constraints of WSNs.

2. We have extended the above contribution by providing secure mechanisms for

i) new node addition process ii) nodes (compromised) eviction process and iii)

key refresh process, thereby making it a complete key management protocol for

WSNs.

3. The contribution discussed in (1) suffers from a scalability problem because se-

curity parameter λ is directly related to memory of each node and network size.

To address this problem, we combine it with pairing based cryptography and

proposed a scalable hierarchical key agreement solution that does not increase

memory overhead.

4. Finally, we have extended the contribution (2) to provide support with (i) new

node addition, (ii) node revocation, and (iii) key refresh.

1.6 Outline

The remainder of the thesis is organized as follows. A literature review of related key

management schemes of WSNs is discussed in Chapter 2. We provide a discussion

on required background knowledge in Chapter 3. Details of our proposed key man-

agement scheme are presented in Chapter 4. Results and performance analysis are

discussed in Chapter 5. A detail security analysis of the proposed scheme is presented

in Chapter 6. Finally, concluding remarks are presented in Chapter 7.



Chapter 2

Literature Survey

In this chapter, we start with an overview of the key management in WSNs. We

then discuss the services provided by the key management protocol followed by a

discussion of some threats on the key management protocol in WSNs. After this,

we provide a survey of different key management techniques in WSNs. We conclude

the chapter by highlighting gaps in the existing literature and a discussion on how to

bridge the gaps.

2.1 Key Management in WSNs

A key management protocol is one of the first requirements for setting up a secure

communication in WSNs, because most cryptographic operations (encryption, au-

thentication, etc.) depend on keys. Key management is the set of techniques and

procedures supporting the key establishment and managing keys between authorized

party. Key management includes the following procedure and techniques [34]:

• initialization of the users;

• generation, distribution and installation of the keying materials (secret private

information used for generating the cryptographic key);

• control the use of keying materials;

• update, revocation, and destruction of keying material; and

• storage, backup/recovery, and archival of keying material.

Keys may be symmetric or asymmetric. In symmetric key algorithms, the same

key is used for both message encryption and decryption (Figure 2.2). It is very impor-

tant in a such system that the keys must be chosen, distributed and stored securely.

In contrast, asymmetric key systems, use two distinct but mathematically related

10
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keys, namely, public and private keys, one for encrypting and other for decrypting a

message or vice-versa [49], (Figure 2.1). Asymmetric key algorithms rely on a Public

Key Infrastructure (PKI), a type of key management system that uses digital certifi-

cates to provide validity of the public keys. Public keys need not be stored securely

and may be used for encryption and user authentication. In general, the key idea of

symmetric key algorithms is based on substitution and permutation of data applied

many times, which makes such algorithms faster and easier to compute. On the con-

trary, asymmetric key algorithms use expensive mathematical operations with large

prime factors to encrypt and decrypt messages and therefore are computationally

expensive. Nevertheless, in both cases managing keys is crucial to the security of the

system.

Figure 2.1: Asymmetric key algorithm.

2.2 Objective of Key Management System

The goal of a good cryptographic design is how it can reduce more complex problems

by using trusted secured software or hardware to manage a small number of crypto-

graphic keys. The objective of key management is to maintain keys and/or keying

material in a manner which counters relevant threats, such as [34]:

1. Compromise of confidentiality of secret keys.

2. Compromise of authenticity of secret or public keys.

3. Unauthorized use of secret or public keys.
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Figure 2.2: Symmetric key algorithm.

2.3 Key Management Services

In this section, we provide basic services provided by a key management protocol.

2.3.1 Key Setup

Before any secure communication can take place, global parameters for cryptographic

operations, key length, etc., need to be setup. The key setup phase involves many

important steps including user registration, key generation, security parameter gener-

ation and key backup. This is an important phase in key management as all commu-

nicating parties need to agree on common security parameters before they can take

part in secure communication.

2.3.2 Key Exchange

Key exchange is the most important service of a key management system. In this

phase, depending on the type of keys, for instance in case of symmetric key system this

may require exchanging identical information. In the case of asymmetric key systems,

it may only require the exchange of public keys. Although public keys can be openly

exchanged, a secure channel is required for exchanging symmetric key because if an

interceptor gets the symmetric key, it would enable him/her to decrypt the cipher

text.
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2.3.3 Key Refresh

In any system, when keys are used for a longer period of time, an adversary may gain

knowledge of the keys. To prevent or make such a situation harder for the adversary,

the key management system should support refresh of keys, where all the existing

keys of the users should be refreshed to a new and unrelated keys. Coupled with

this, the key management service should provide efficient and secure mechanisms for

supporting network changes, such as adding new users or deleting existing users to

and from the network.

2.3.4 Key Revocation

Key revocation is an important part of key management because it allows eviction of

compromised nodes from the network. Sometimes it may not be possible to completely

prevent keys being compromised. Under those circumstances, the key management

system should provide mechanisms by which compromised keys of identified nodes

could be revoked or made unusable in the system.

2.3.5 Challenges of Key Management in WSNs

Unlike other contemporary wireless networks, WSNs possess different types of con-

straints, which makes the deployment of key management exceedingly challenging.

Among other challenges, key management in WSNs has the following specific chal-

lenges:

• Lack of physical security : An adversary can easily capture a node and extract

sensitive information including security key stored in the node’s memory.

• Wireless communication: Broadcast nature of wireless communication makes it

harder to prevent unauthorized reception of the message.

• Scalability : Nodes in WSNs can easily become dense. With the increase of

network size, the complexity of managing and supporting different protocols,

and keys also increases.

• Lack of infrastructure: The topology of the WSNs can change dynamically,

thus, centralized control is difficult. The key management protocol in WSNs
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has to consider the fact and adapt with the dynamic change of topology.

• Resource constraint : Constraints in resources such as memory, power, and com-

putation in sensor nodes put additional challenges on the key management pro-

tocol in WSNs. Hence, resource conscious key management techniques become

a necessity in WSNs.

2.3.6 Requirements of a Key Management Protocol in WSNs

The requirements for key management can be divided into security and operational

requirements [50]. The security requirement covers overall security requirements of

WSNs. Table 2.1 depicts details of security requirements in WSNs key manage-

ment [50].

Table 2.1: Security requirements
Services Functions

1) Robustness When some nodes are compromised, the entire net-
work should not also become compromised. The
quantitative value with which this requirement
should be satisfied depends on the application.

2) Self-organization Nodes should be independent and flexible enough
to be self-organizing (autonomous) and self-
healing (failure tolerant).

3) Confidentiality Nodes should not reveal any data to any unin-
tended recipients.

4) Authentication Data used in decision-making processes must orig-
inate from the correct source.

5) Integrity Data should not be changed between transmissions
due to the environment or malicious activities.

6) Data Freshness Old data should not be used as new (i.e., prevent
replay attacks).

7) Availability The network should not fail frequently.
8) Time Synchronization Collaborative node applications need time syn-

chronization. Time synchronization protocols
should not be manipulated to produce inaccurate
time.

9) Secure Localization Nodes should be able to accurately and securely
acquire location information.

Apart from the security requirements, performance requirements act as constraints
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in the design and realization of key management. Table 2.2 depicts the performance

requirements in WSNs key management [50].

Table 2.2: Operational requirements
Requirement Description

1) Accessibility Intermediate nodes should be able to perform
data aggregation by combining data from differ-
ent nodes. Neighboring nodes should also be able
to passively monitor event signals to prevent large
amounts of redundant event signaling information.

2) Flexibility Node should be replaceable when compromised.
On-the-fly addition of nodes should also be sup-
ported.

3) Scalability Even if with the key management in place the
WSNs should be scalable in number of nodes it
supports.

2.3.7 Attacks on Key Management Protocols in WSNs

Node Capture Attack

Node capture attacks result from the combination of passive, active, and physical

attacks by an intelligent adversary. In order to initialize or set up an attack, the

adversary will collect information about the WSNs by eavesdropping on message ex-

changes, either local to a single adversarial device or throughout the network with the

aid of a number of adversarial devices deployed throughout the network [37]. Even

if message payloads are encrypted, the adversary can extract information about the

network operation and state, effectively learning about the network structure and

function. In addition to passive learning, the adversary can actively participate in

network protocols, probing the network for information and maliciously injecting in-

formation into the network. Once a sufficient amount of passive and active learning

has taken place, the adversary can physically capture nodes. The gathered informa-

tion can be used to help the adversary make an informed decision of which sensor

nodes to capture in order to optimize the performance of the attack with respect to

a specific attack goal.
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Wormhole Attacks

In wormhole attacks, a malicious node tries to cheat its neighbours that it is very

near the base station. Thus, the malicious node can collect and drop all data from

the neighbours and let the real base station not get any information from that area.

Typically, the wormhole attacks require two distant malicious nodes, which have an

invisible link underlying sensor network. The adversary deploys one malicious node

close to the base station and the other close to the interested area. The adversary

could convince the nodes of the interested area that the malicious node is near the

base station by using the invisible link [50, 31].

Replay Attack

In a replay attack, a malicious node captures some valid protocol messages that have

been exchanged between legitimate nodes. At a later point the same messages are

replayed. The main intention of the attack is to get illegal access or to break the

synchronization of the protocol [31].

Energy Consumption Attack

Due to the limited energy of sensor nodes, security protocols for WSNs must be energy

efficient. However, the adversary can deploy some malicious nodes which repeatedly

broadcast nonsense messages to consume the energy of normal nodes [32].

Traffic Analysis

Even when the messages transferred are encrypted, it still leaves a high possibility for

the analysis of the communication patterns. Sensor activities can potentially reveal

enough information to enable an adversary to cause malicious harm to the sensor

network [29].

2.4 Symmetric Key Management in WSNs

Symmetric key based schemes are most popular among researchers in WSNs, largely

due to their reduced computation times. Therefore, many researchers have focused on

providing viable solutions to key management problem in WSNs based on symmetric
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key based schemes [38, 45, 39, 40, 41, 42]. Key management schemes in wireless sensor

network can be categorized as follows: (i) Single shared key schemes [45], (ii) Pair-wise

key pre-distribution schemes [39], (iii) Trusted third-party based schemes [46], (iv)

Probabilistic key pre-distribution schemes [38, 51, 52, 38], (v) Matrix-based key pre-

distribution schemes [40, 53], (vi) Polynomial-based key pre-distribution schemes [41],

(vii) Location-aware key management schemes [54, 39].

2.4.1 Single Shared Key Schemes

Lai et al. [45] proposed an easy and efficient key management solution for WSNs.

In their scheme, a master key is pre-distributed and stored in each sensor in the

network. A pairwise key can be established by using this master key and a random

number exchanged between each sensor. This scheme is infinity scalable and very

attractive since it only requires one key to be stored in each node. In addition, new

node addition is very simple. However, the drawback is obvious. When the master

key of a node is compromised that would compromise all the pair-wise keys of the

network, and as a result the whole network would become compromised. Therefore,

the scheme lacks resilience against node capture. Moreover, it does not provide any

authentication since all nodes in the network uses the same master key.

2.4.2 Pair-wise Key Pre-distribution Schemes

Pair-wise key pre-distribution schemes use different secret keys for each connection

with different nodes. In other words, if there are N nodes in the network, this scheme

requires each node to store (N− 1) distinct keys in the memory. Chen and Perrig [39]

proposed such a system in which a distinct pairwise key between each pair of sensors is

pre-distributed and directly stored in each node before sensor deployment. Although

this solution provides the most resilience against node capture, it fails to provide scal-

ability. This means that when the network size becomes large, this scheme becomes

impractical for memory constrained sensor nodes. In addition, it is difficult to add

new sensors because every sensor has to store new key when a new sensor joins the

network.
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2.4.3 Trusted Third-party Based Schemes

In these schemes, a mediator node acts as a trusted node for two communicating

nodes. Chan and Perrig [46] propose peer intermediaries for key establishment in

sensor network called “PIKE”, where the key establishment between two sensor nodes

is based on the common trust of a third node. For any two nodes of A and B, there is

a node C that share a key with nodes A and B. The main drawback of this scheme is

that sometimes it may be difficult to find such mediator node in the wireless sensor

network.

2.4.4 Probabilistic Key Pre-distribution Schemes

The above schemes have many limitations. One such limitation is in large or dynamic

networks, each node needs to store too many keys in its memory even though not all

keys are needed for communication. In addition, to accommodate node addition and

deletion to and from network or to refresh all the keys, a large number of expensive op-

erations have to be performed and a large number of messages need to be exchanged.

To solve these problems, Eschenauer and Gligor [38] have proposed a probabilistic

key distribution scheme. In this scheme, initially, every node randomly selects a sub-

set of keys from a large key pool and store the keys and their identities in memory;

this step is referred as the key pre-distribution phase. The size of the random subset

can be pre-determined using random graphs [51, 52, 38]. The technique aims to pro-

vide a connected graph with desired probability. If two neighbouring nodes want to

communicate securely, they first exchange and compare the list of identities in their

key-chains. If they happen to find a match, then they can establish a direct secure

link between these two nodes — this is called shared-key discovery phase. In case of

a mismatch, the scheme uses a path-key establishment phase, where it selects some

intermediate nodes with a common key between the two sensor nodes to establish

a common session key. That session key is then used as a path key to the selected

sensor-node pairs.

This approach is better in terms of resilience to node capture since in case a

malicious attacker captures a node it only reveals a subset of keys. However, this

scheme still requires a large number of keys to be stored in the sensor node and a

large number of messages need to be exchanged between the nodes to get shared key.
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Moreover, this approach does not define any process for revoking and refreshing keys.

A simple improvement of this scheme is proposed in the Hashed Random Key

Pre-distribution [42] scheme. In this scheme the keys are hashed from the key pool

a different number of times for distinct nodes. The ith node receives its (i− 1)-times

hashed version of key, as well as the value i. If any two nodes, say, A and B want to

discover a shared key, then they need to exchange their key ID’s and the value of i. For

example, if nodes A and B are loaded with KA = Hashi
a

(Ki) and KB = Hashi
b

(Ki)

respectively, where (ia > ib). Then, B can easily compute KA = Hashi
a
−ib(KB).

The advantage of this modification is that if a node is captured, then it reveals fewer

number of keys compared to Gligor’s scheme [38]. In a nutshell, it provides the same

functionality of Gligor’s scheme [38] with a little extra resilience against node capture

with additional computation overhead.

Another improvement over Gligor’s scheme [38] is proposed by Chen et al. [46].

In Chen’s scheme, they shared at least q pre-distributed keys where 1 < q < n,

instead of just a single one, to establish a pair-wise key between two nodes. There-

fore, an attacker now needs to compromise more nodes than in the original Gligor’s

approach [38] to compromise the network.

2.4.5 Matrix-based Key Pre-distribution Schemes

Blom [40] has proposed another major pair-wise key distribution solution that avoids

some of the communication overhead involved in shared-key discovery phase in Gligor’s

scheme [38]. The basic idea of this scheme is based on polynomial based key genera-

tion scheme. In this scheme, at key pre-distribution phase, a public (λ+1)×n matrix

M and a secret (λ + 1)× (λ + 1) symmetric random matrix D are generated. Each

node i stores rowi of (D ·M)T matrix as private information, and coli , the i
th column

of M , which is used as public information. After deployment, in the key discovery

phase, all nodes broadcast their public column instances of M , allowing any pair of

nodes i and j to compute Kij = rowi × colj = rowj × coli = Kji. This works because

of the symmetric property of matrix K = (D ·M)T ·M , where Kij = Kji, computed

from the public and private instances of all the nodes. Blom’s scheme is λ secure,

meaning that capturing up to λ nodes does not reveal the network key. However, the

capture of more than λ nodes would compromise the entire network.
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This scheme has attractive properties. Since it allows creation of pair-wise keys,

node authentication and key revocation are made easy. It also provides good key con-

nectivity while respecting the resource constraints of sensor nodes. Additionally, the

resilience of the node capture can be adjusted by choosing the λ value appropriately.

However, the size of λ is directly proportional to the memory size of the node. Thus,

one has to take care in choosing λ to select adequate trade-off between security and

efficiency.

An optimized version of Blom’s scheme is proposed in [53], where the authors

optimize the generation of M matrix using Vandermonde matrix and using node ID

as seed for the Vandermonde matrix. As a result, nodes do not need to store the

public column vector; instead they can generate the value of public column from the

seed. In addition, a substantial improvement of their protocol is that it completely

avoids the key discovery phase and any pair of nodes can generate the secret key

only knowing each other IDs without requiring additional communications. They also

provide a complete key management protocol including key-refresh and key revocation

schemes.

Du et al. [55] combined Blom’s [40] and Gligor’s scheme [38] to provide a solu-

tion called Multiple-Space Key Pre-Distribution Scheme. It provides more resilience

against node capture with less memory overhead. Like Blom’s scheme [40] , they use

a (λ + 1) × n public matrix M and a set containing ω secret random n × (λ + 1)

matrices Di, 1≤i≤ω, which defines a set of ω spaces (Di ·M). Before the network is

deployed, a trusted authority generates and distributes initial key materials to every

node in the network. Every sensor node j stores jth column of matrix M , in addition

it selects τ number of randomly chosen rows from matrix (Dj ·M)T . When two nodes

want to establish a common shared key between them then one node broadcasts its

column instance together with the τ IDs of the spaces it carries. If the other node

shares a common space among these τ spaces, they can establish a pair-wise key

following Blom’s Scheme [40]; otherwise, a common key can be generated using the

Gligor’s path-key establishment protocol [38]. Although this scheme provides very

good resilience, it requires large storage and communication overhead. Moreover, due

to the complex steps involved in the scheme it is difficult to implement.

Another extension of the Blom’s scheme [40] is proposed by Chien et al. [54]. They
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use a master secret key K together with information loaded by Blom’s scheme [40].

After deployment, a node j selects a random number Rj which is XORed with K and

broadcast with its colj instances. Other nodes can re-constitute Rj by performing

XOR with the master key K already stored in their memory. After computing the

common key Kij = rowi × colj = rowj × coli = Kji, following Blom’s scheme [40], it

creates a reinforced shared keyKr
ij = Hash(Kij‖Ri‖Rj) with all its neighbours. Then,

it deletes the instances of colj, rowi and K from its memory, preventing an attacker

from using such information in the future. This scheme provides good resilience

against node capture. If an attacker compromises more than λ nodes after the keys

are erased, it will not gain any information about the keys or reinforced keys. However,

the deletion of keys also introduces some drawbacks, since operations such as new node

addition and key refresh will become difficult as the previous keys or key materials

would have been deleted by the nodes.

2.4.6 Polynomial-based Key Pre-distribution Schemes

Blundo et al. [41] have analyzed the Blom’s protocol [40] and proposed the polynomial-

based key pre-distribution scheme. In this scheme, a λ-degree bi-variate symmetric

polynomial

f(x, y) =

λ
∑

i,j=0

aijx
iyj

over GF (q) is used, where q is a large prime number over Gaussian Field. In the key

pre-distribution phase for each sensor node i, the Key Generator (KG), generates and

stores a partial polynomial f(i, y) evaluated at node index i. In this manner each

node stores (λ+ 1) · log2(q) polynomial shares in their memory. In the key discovery

phase, node i can establish a common key with node j by evaluating f(i,y) at node

j and vice versa. Since they use symmetric functions, they both generate the same

key.

Similar to Blom’s protocol [40], this scheme has the same λ-secure property and

good key connectivity, as well as it can identify and authenticate individual nodes.

However, since each node needed to store polynomial shares, it has higher memory

overhead, this can increase dramatically when the network size increases to facilitate

better security.
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Liu and Ning [56] extended Blundo’s scheme [41] by combining the Gligor’s scheme [38]

with it. They proposed the Polynomial Pool-based Key Pre-distribution scheme which

uses a set containing ω randomly generated λ-degree bi-variate symmetric polynomial

f(x, y) =
λ

∑

i,j=0

aijx
iyj over GF (q)

Broadly speaking, this scheme is similar to Du’s scheme [55] except that instead of

using matrices they use a set of polynomials. On the one hand, when the set of poly-

nomial contains single polynomial their scheme degenerates to Blundo’s scheme [41].

On the other hand, when the degree of the polynomial is one, this scheme becomes

Gligor’s scheme [38]. This scheme shares some features from Blundo’s scheme [41],

such as λ-secure property, node-to-node authentication capability, and dynamic node

addition. Although this scheme provides good secure connectivity, it increases mem-

ory overheads and communication overheads as the network size increases.

2.4.7 Location-aware Key Management Schemes

Other researchers have tried to improve the efficiency by relaxing some parameters

such as adding location information or prior deployment knowledge to the key man-

agement problems. One notable example in this category is the Du et al. [39], Group-

based Deployment Scheme, where they assume that nodes will be deployed as a group

over a rectangular area. In their scheme, they use Gligor’s approach [38] with location

information and divided the key pool such that known neighbours will have higher

possibility of sharing common keys, thus improving the overall performance. In an-

other approach Liu and Ning [57] have added location information to the Random

Pair-wise Scheme [39] and are able to improve the scalability and key connectivity

without impacting on the amount of memory needed to store keys. The authors in [58]

have combined Blundo’s approach [41] with deployment knowledge, by assuming the

nodes are deployed in groups and following Gaussian distribution around the point

of deployment. The network is then modelled as hexagonal grid that covers all the

nodes. Each hexagon receives a coordinate and associated with three cells. Finally,

each cell is given a λ-degree polynomial and thus each node stores three polynomial

shares and can establish keys in the same manner as in Blundo’s protocol [41].
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2.5 Asymmetric Key Management in WSNs

Some researchers believe that asymmetric key based schemes are computationally

expensive for WSNs because of their constraints. However, motivated by recent im-

provement in sensor hardware and optimization of cryptographic algorithms, several

research groups [59, 60, 61] have shown impressive results which indicate asymmetric

key scheme may also be used in wireless sensor networks.

2.5.1 RSA-based Key Management for WSNs

A notable RSA-based public key scheme has been proposed by Watro et al. [60] called

TinyPK. It allows authentication and key agreement between resource constrained

sensors. This scheme uses basic RSA to generate private and public key pair for

each node in the network. In this scheme, they assume that there is a certification

authority (CA) available before the start of the protocol and any third party that

wishes to interact with the motes also requires its own public/private key pair and

must have its public key signed by the CA’s private key, thus establishing its identity.

To perform authentication, the external party submits its signed public key and some

text signed with its private key. The protocol operation starts when the third party

provides a challenge to the sensor network. This challenge consists of two parts: the

first part consists of the public key of the node, signed by the CA’s private key; the

second is a compound object consisting of a nonce (a time-stamp) and a message

checksum, signed with the third party’s own private key. This information is sent as

clear text and the nonce serves to detect any replay attacks, wherein a malicious party

records previous valid messages and re-broadcasts the message in order to provide false

identification or otherwise attack a system. The checksum is used to ensure message

integrity.

When the message is received by a node, it uses the preloaded CA public key to

verify the first part of the challenge and extract the third party’s public key. It then

uses this public key to verify the second part of the message and extract the nonce and

checksum. The nonce and checksum are validated. If they pass validation, the third

party has been successfully authenticated to the sensor network and is considered an

authorized entity for sensor data. Then, the sensor node uses this key to encrypt the
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session key plus the received nonce using the third party’s public key. Following this,

the message is sent back to the third party, which decrypts it using its private key,

checks that the nonce is the same as the one it sent, and if so, can record the session

key for future use.

2.5.2 ECC-based Key Management WSNs

Malan et al. [59] present a public-key infrastructure for key distribution in TinyOS

based on elliptic curve cryptography. They have implemented the ECC based pub-

lic key infrastructures in WSNs mote on TinySec [35]. They argue that public-key

infrastructure is viable for TinySec keys distribution. Improving ECC based public

key scheme Ren et al. [61] proposed another public key scheme for WSNs. They have

proposed n− authentication, where if a user can successfully authenticate with any

subset of sensors out of a set of n sensors, the n − authentication succeeds. In this

scheme, each user of the WSN is equipped with a public/private key pair (PK/SK),

and signs every message he/she broadcasts with the SK using a digital signature.

To prove the user’s ownership over his/her public key, the sink (network planner) is

also equipped with a public/private key pair and serves as the certificate authority.

For the purpose of message authentication, sensor nodes are preloaded with PKSink

before the network deployment; and message verification contains two steps: the user

certificate verification and the message signature verification. Although ECC based

schemes require less storage, it is computationally expensive for resource-constrained

wireless sensor motes. In addition, a trusted third party (that is CA) must be avail-

able to certify the user’s public key using digital signature. Verifying the digital

signature requires expensive mathematical operations. Therefore, practically it is not

feasible to apply in a WSN.

2.5.3 ID-based Key Management in WSNs

The motivation of identity-based encryption is to simplify the certificate-based public

key encryption system. In the certificate-based public key encryption system, a user

has to verify another user’s certificate before using his/her public key. As a result, each

user requires a large storage and computing time to store and verify each other’s public

keys and the corresponding certificate. The basic idea of the identity-based encryption
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scheme is that an arbitrary string can work as a public key. As a consequence, a user

can use any ID, such as email, to calculate a public key, rather than extracting from

the certificate issued by a certificate authority [62].

Shamir [63] first introduced identity based cryptography to simplify the manage-

ment of public keys in a public key based crypto-system, in which he tried to address

how a party’s public key can be generated from the party’s identity. Although his

idea was very appealing, for a long time it was an open research problem to obtain

an efficient and secure IBE scheme. Recently, Sakai [64] and Joux [65] have shown

an excellent improvement and a way how IBE can be used efficiently in a variety of

applications. Almost at the same time, another remarkable research was conducted

by Boneh and Franklin [66] in the same area and able to come up with promising

results to use the IBE scheme in different cryptographic applications. The building

blocks of IBE is based on the concept of bilinear pairing — or pairing for short. The

followings are necessary facts about the pairing using the notation of [67].

• G1, G2 and GT are multiplicative groups of prime order p.

• g1 is a generator of G1and g2 is a generator of G2.

• ψ is an isomorphism from G2 to G1 with ψ(g2) = g1.

• ê is a map ê : G1 ×G2 → GT .

The map ê must have the following properties:

• Bilinear : ∀u ∈ G1, ∀v ∈ G2 and ∀a, b ∈ Z we have ê(ua, vb) = ê(u, v)ab

• Non-degenerate: ê : (g1, g2) 6= 1.

• Computable: there is an efficient algorithm to compute ê(u, v) for all u ∈ G1

and v ∈ G2.

Note that the map always exists, but the issue here is whether or not it can be

efficiently computed within an acceptable time limit. For the sake of simplicity and

without loss of generality we could write g1 = g2 i.e., G1 = G2 = G.

Using the IBE, it is possible to design a non-interactive secure key distribution

scheme for WSNs, where each node is given a unique ID and a unique secret, not
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shared with any other entity on the network. A few recent notable research works

focusing on the use of IBE in key management of WSNs can be found in [68, 69, 70, 71].

2.6 General Discussion

Although symmetric key schemes are light-weight and widely used in WSNs, there

are some notable drawbacks. Firstly, managing the keys and agreeing on a shared

key requires additional overhead. Secondly, the key pre-distribution approach usu-

ally cannot guarantee entire connectivity of the network even with high deployment

density. Finally, symmetric key cryptosystems fail to provide authentication for the

communicating parties. In contrast, in asymmetric key schemes, communicating par-

ties only have one pair of keys namely, the private and public key. This scheme is

scalable and provides authentication service easily. This convenience though comes at

a price: a method for authenticating the public key must be provided. This tradition-

ally been done by introducing a trusted CA and verifying digitally signed certificate

by the CA, which is a computationally expensive operation [43]. However, using an

ID-based scheme, known information that uniquely identifies the user can be used

to derive its public key. As a result, keys are self-authenticated and certificates by a

trusted third party is thus unnecessary. Here, the only constraint is that the ID of

the user has to be unique and only a trusted authority should be able to generate the

ID. Although ID based schemes are promising in WSNs, a recent research [47] shows

that the most efficient implementation of IBE on most state-of-the-art sensor nodes

still takes about two seconds to perform one complete key generation, which in our

opinion still not feasible solution for a large WSNs. Therefore, there remains a gap

in providing key management solution in WSNs that not only light-wight, but also

performs well in a large size network.

In this thesis, we propose a hybrid solution to the key management problem in

WSNs where we combine the matrix-based key pre-distribution scheme with pairing-

based scheme to provide efficient and scalable key management protocol. Although

we combined pairing-based technique in the proposed scheme, it is used rarely, so that

the overall computational overhead of pairing-based calculations are minimized. The

proposed key management protocol supports multiple types of networks and provide

scalability without increasing memory overhead. In addition, it provides flexible
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mechanisms for key refresh, key revocation and new node addition.



Chapter 3

Background Knowledge

In this chapter, we elaborate the background techniques used in the proposed key

management protocol. First, we present details of the matrix based key pre-distribution

scheme [40] followed by a discussion on security analysis of the scheme. Following

this, we elaborate the identity-based encryption schemes [67, 72] and provide their

security analysis. Finally, we conclude with a classification of different clustering

techniques in WSNs.

3.1 Blom’s Scheme

Blom [40] has presented a key distribution method that allows any pair of nodes in a

network to be able to find a pair-wise secret key as long as no more than λ nodes are

compromised. It is a simplified version of Blundo’s polynomial-based approach [41]

and can be optimized for non-interactive and identity based scheme. Each party

requires only an index i, 1 ≤ i ≤ N , which uniquely identifies the party with which it

is to form a shared key. Each user is assigned a secret vector of initial keying material

(base key) from which it is then able to compute a pairwise secret (derived key) with

each other user.

The scheme is efficient in terms of memory and may be engineered to provide

unconditional security against coalitions of a specified maximum size (λ). The initial

keying material assigned to each user (a row of A values, corresponding to λ keys)

allows computation of a larger number of derived keys (a row of λ values, providing

N keys), one per each other user. Storage savings result from choosing λ less than

N . It involves two phases, key pre-distribution and key agreement.

3.1.1 Key Pre-distribution

In this phase a trusted third party first constructs a (λ)×N matrix G over a finite field

GF (q), where N is the size of the network and GF (q) is a q-bit prime number large

28
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enough to accommodate the key size. G is considered public and everyone may have

information about G matrix. To achieve the λ-security the columns of the G matrix

must be linearly independent. One such matrix could be a Vandermonde matrix with

each term of a geometric progression [73]. For example, an λ×n Vandermonde matrix

is shown below:

V =





















1 1 1 . . . 1

s s2 s3 . . . sn

s2 (s2)2 (s3)2 . . . (sn)2

...
...

...
. . .

...

sλ (s2)λ (s3)λ . . . (sn)λ





















The trusted third party then creates a random λ × λ symmetric matrix D over

GF (q), and computes N × λ matrix A = (D×G)T , where (D×G)T is the transpose

of D ×G. Matrix D is the secret information and should not be disclosed to anyone

(although only one row of A will be distributed to each sensor node). Since D is

symmetric, the key matrix K = A×G can be written as:

K = A×G = (D ×G)T ×G = GT ×DT ×G = GT ×D ×G = (A×G)T = KT

This means that K is also a symmetric matrix. Therefore, Kij = Kji, where Kij

is the element in K located in the ith row and jth column. Node i uses Kij and

node j uses Kji as pair-wise key to communicate with each other. Figure 3.1 depicts

an illustration of the pair-wise key Kij = Kji generation process. Finally, the base

station distributes, for k = 1 . . .N : kth row and kth column of matrix A and G

respectively to node k as its key material.

Figure 3.1: Pair-wise key genaration in Blom’s scheme
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3.1.2 Key Agreement

When any pair of nodes i and j want to find a pair-wise key between them, they first

exchange their column of G, then they can compute Kij and Kji, respectively, using

their private rows of A. Since G is allowed to be known by everyone, there is no harm

in transmitting its columns in plain-text.

We summarize the scheme in Algorithm 1.

Algorithm 1 Blom’s symmetric key pre-distribution system adopted from [34]

Input: Each of n users is given initial secret keying material and public data.

Output: Each pair of users Ui, Uj may compute an m-bit pairwise secret key Kij .

1: A λ× n generator matrix G of an (n, λ) MDS code (see 3.1.3) over a finite field

Fq of order q is made known to all n system users.

2: A trusted party T creates a random λ× λ symmetric matrix D over Fq.

3: T gives to each user Ui the secret key Si, defined as row i of the n × λ matrix

A = (D ·G)T . (Ai is a λ-tuple over Fq of λ · lg(q) bits, allowing user Ui to compute

any entry in row i of (D ×G)T ×G).

4: Users Ui and Uj compute the common secret Kij = Kji of bit length m = lg(q)

as follows:

• Using Ai and column j of G, user Ui computes (i, j)th entry of the n × n

symmetric matrix K = (D ×G)T ×G).

• Using Aj and column i of G, user Uj similarly computes (j, i)th entry (which

is equal to (i, j)th entry since matrix K is symmetric).

3.1.3 Security Analysis of Blom’s Scheme

Background on Maximum Distance Separable Codes

The motivation for Blom’s scheme (Algorithm 1) arises from well-known concepts

in linear error-correcting codes, which are summarized here. Let G = [IλA] be a

λ × n matrix where each row is an n-tuple over Fq (for q a prime or prime power).

Iλ is the λ × λ identity matrix. The set of n-tuples obtained by taking all linear

combinations (over Fq) of rows of G is the linear code C. Each of these qλ n-tuples is
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a code-word, and C = {c : c = mG,m = (m1, m2, . . .mλ), mi ∈ Fq}. G is a generator

matrix for the linear (n, λ) code C. The distance between two codewords c, c’ is the

number of components they differ in. The distance d of the code is the minimum

such distance over all pairs of distinct codewords. A code of distance d can correct

e = ⌊b(d1)/2⌋ component errors in a codeword, and for linear codes d ≤ nλ + 1 (the

Singleton bound). Codes meeting this bound with equality (d = n− λ+ 1) have the

largest possible distance for fixed n and λ, and are called maximum distance separable

(MDS) codes [34].

λ-secure Property

The condition d = n − λ + 1 dening MDS codes can be shown equivalent to the

condition that every set of λ columns of G is linearly independent. From this, two

facts about MDS code follows [34]:

(i) any λ components uniquely define a codeword;

(ii) any j ≤ λ− 1 components provide no information about other components.

In case of Blom’s scheme, the choice of the λ is crucial because if λ or more users are

compromised, then they are able to recover the secret keys of all other users. Since, λ

conspirators may compute λ rows of K, or equivalently λ columns, corresponding to

λ components in each row. Each row is a codeword in the MDS code generated by G,

and corresponds to the key of another user, and by the above remark λ components

thus define all remaining components of that row. However, if fewer than λ users

conspire, they obtain no information whatsoever about the keys of any other user (by

similar reasoning). Thus Blom’s scheme is j-secure for j ≤ λ− 1.

3.2 Identity-based Encryption

3.2.1 General Overview of IBE

IBE is another form of public-key encryption technology that allows a user to calcu-

late a public key from an arbitrary string. One can change the arbitrary string to

avoid a user having the same IBE key forever. Usually, it is useful to include some

information about the user’s identity or validity period of the key in the string. The
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ability to calculate keys as needed gives IBE systems different properties than those

of traditional public-key systems, and these properties provide significant practical

advantages in some situations. Although there are probably few situations in which

it is impossible to solve any problem with traditional public-key technologies that can

be solved with IBE, the solutions that use IBE may be much simpler to implement

and much less expensive to support than alternatives.

In a traditional public-key system, either the user or an agent working on behalf

of user randomly generates public-private key pair. After it is created, the public key,

along with the user’s identity need to be registered with a CA. The CA is responsible

to verify the authenticity of the user’s information before it can digitally sign the

user’s public key to generate a digital certificate. A copy of the digital certificate

is then sent to the owner of the private key and another copy is stored in a public

certificate repository that is accessible by others who might need to get a user’s key.

The verification of the user’s identity is carefully handled by the CA before a digital

certificate is issued to the user, a process that is typically very expensive. The process

of generating public-private key pairs can also be computationally expensive. Gen-

erating two 512-bit prime numbers that are suitable for use in creating a 1, 024-bit

RSA private key is certainly feasible, but generating larger primes gets progressively

more expensive [72]. Creating two 7, 680-bit primes that are suitable for use in cre-

ating a 15, 360-bit RSA private key is not an operation that widely used computers

can easily perform, yet such keys are needed to securely transport the 256-bit AES

keys that are used today [72]. Since generating keys and verifying user’s identities

can be expensive, digital certificates are often issued with fairly long validity periods,

often between one and three years. Due to the relatively long validity period of the

public keys managed by digital certificates, it is often necessary to check the key in a

certificate for validity before using it.

To use the public key that is signed by a CA, a user must verify that the certificate

is not expired or revoked. This can be done either by sending queries to the public

repository for new certificate or by checking a list of invalid certificates or by querying

an online service that returns validity status of the certificate. After any necessary

validity checking is done, the user can use the public key to encrypt information and

send it to the owner of the pubic key. Since only the recipient has the private key
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corresponding to the public key, he can decrypt and get the information [72].

An IBE system has similarities with traditional public-key systems. However, it

can be different in other ways. While in traditional public-key system, the certificate

contains all the necessary parameters to use the key, to use an IBE system, typically

a user needs to contact a trusted third party and get all the necessary parameters to

generate the key. When he receives necessary parameters, it can generate IBE public

key of any user and use it to encrypt information.

Figure 3.2: Generation of keys in an IBE system. (adapted from [72].)

When an IBE encrypted message is received by a user, the user contacts PKG and

authenticates himself in some way. The PKG is a trusted third party responsible for

generating IBE private key that corresponds to the IBE public key used to generate

the encrypted message. The PKG typically uses some secret information called master

key and user’s information to generate the IBE private key. After the private key is

generated, it is securely distributed to the authenticated user. The authenticated user

then uses the IBE private key to decrypt the information. This is shown in Figure

3.2. The building blocks of IBE is based on the concept of bilinear pairing — or

pairing for short.
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3.2.2 Bilinear Pairing

In this section, we describe general overview of necessary facts about the pairing using

the notation of [67]. Let r be a prime number. Let G1, and GT be cyclic groups of

order r. Let G2 be a group where each element has order dividing r. In particular,

G2 is not necessarily cyclic. Again, we use multiplicative group notation. A bilinear

pairing ê is an efficiently computable function:

ê : G1 ×G2 → GT

such that

• Bilinear : ∀g1 ∈ G1, ∀g2 ∈ G2 and ∀a, b ∈ Z we have ê(g1
a, g2

b) = ê(g1, g2)
ab

• Non-degenerate: (g1, g2) = 1GT
for all g2 ∈ G2 if and only if g1 = 1G1

, and

similarly (g1, g2) = 1GT
for all g1 ∈ G1 if and only if g2 = 1G2

.

• Computable: there is an efficient algorithm to compute ê(g1, g2) for all g1 ∈ G1

and g2 ∈ G2.

Note that the map always exists, but the issue here is whether or not it can be

efficiently computed. For the sake of simplicity and without loss of generality we

could write g1 = g2 i.e., G1 = G2 = G.

3.2.3 Boneh-Franklin IBE Scheme

Source Private value Public value

System Parameter s sP
Alice r rP
Bob s · tP = sQID tP = sQID

Table 3.1: Summary of public and private values in Boneh-Franklin IBE. (adapted
from [72].)

So, after calculating the shared secret ê(P, P )rst, Alice hashes the shared secret into

a format compatible with the plain-text. The value of ê(P, P )rst is an element of some

Fq, for example, while a typical message is an element of (0, 1)∗, so that ê(P, P )rst

needs to be mapped into (0, 1)∗ so that it can be combined with the plain-text to
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produce the cipher-text. So, Alice hashes the shared secret ê(P, P )rst to the message

space and combines the resulting hash with the plain-text M to get the cipher-text

C =M ⊕Hash(ê(P, P )rst). Bob then calculates the shared secret ê(P, P )rst, hashes

it to the message space, and recovers M = C ⊕Hash(ê(P, P )rst).

In Algorithms 2, 3, 4, 5, we provide the summary of the steps in Boneh-Franklin

IBE scheme.

Algorithm 2 Boneh-Franklin IBE Setup adapted from [72]

Input: A security parameter k , an elliptic curve E, a plaintext bit length n.

Output: BFParams = (G1, GT , ê, n, P, sP,H1, H2, H3, H4) and master secret s.

1: Select a prime p and prime power q with p | #E(Fq) and p2 ∤ #E(Fq) and

such that the bit security level provided by p and q meets the required security

parameter k. For best performance, p should be a Solinas prime.

2: Select a random P ∈ E(Fq)[p] and let G1 =< P >.

3: Let k be the embedding degree of E/Fq; select a pairing ê : G1 ×G1 → F∗

qk .

4: Let GT =< ê < P, P >>.

5: Select a random s ∈ Z∗

p and calculate sP .

6: Select appropriate cryptographic hash functions H1 : {0, 1}∗ → G1 , H2 : GT →

{0, 1}n , H3 : {0, 1}
n × {0, 1}n → Z∗

p and H4 : {0, 1}
n × {0, 1}n → Z∗

p.

7: The master secret is the value s.

8: The public parameters are BFParams = (G1, GT , ê, n, P, sP,H1, H2, H3, H4).

Algorithm 3 Boneh-Franklin Key Extraction adapted from [72]

Input: A string ID representing an identity and a set of public parameters

BFParams = (G1, GT , ê, n, P, sP,H1, H2, H3, H4).

Output: The private key sQID.

1: Calculate sQID = sH1(ID).

3.2.4 Security of IBE

Note that we can write QID = tP for some (unknown) t, so we have ê(rQID, sP ) =

ê(rtP, sP ) = ê(P, P )rst. So, we can also think of the ciphertext as being C =
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Algorithm 4 Boneh-Franklin Encryption adapted from [72]

Input: A plaintext message M of length n bits, a string ID representing the iden-

tity of the recipient of the ciphertext, a set of public parameters BFParams =

(G1, GT , ê, n, P, sP,H1, H2, H3, H4).

Output: A ciphertext C = (C1, C2, C3).

1: Calculate QID = H1(ID).

2: Select a random σ ∈ {0, 1}n.

3: Calculate r = H3(σ,M).

4: Calculate C1 = rP .

5: Calculate C2 = σ ⊕H2(ê(rQID, sP )).

6: Calculate C3 =M ⊕H4(σ).

Algorithm 5 Boneh-Franklin Decryption adapted from [72]

Input: A ciphertext C = (C1, C2, C3), a set of public parameters BFParams =

(G1, GT , ê, n, P, sP,H1, H2, H3, H4), a private key sQID.

Output: A plaintext message M or an error condition.

1: Calculate σ = C2 ⊕H2(ê(sQID, C1)).

2: Calculate M = C3 ⊕H4(σ).

3: Calculate r = H3(σ,M) and then calculate rP . If C1 6= rP then raise an error

condition that indicates an invalid ciphertext. Otherwise, return the plaintext

M .
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(rP,M ⊕ H2(ê(P, P )
rst). An adversary can obtain P and sP from the public pa-

rameters, can calculate QID = tP from the recipients identity, and observes rP in the

ciphertext. If he can calculate ê(P, P )rst from P , rP , sP , and tP then he can recover

the plaintext message M by calculating (M ⊕ H2(ê(P, P )
rst)) ⊕H2(ê(P, P )

rst = M ,

but calculating ê(P, P )rst in this way is exactly the BDHP. So, if the BDHP is suffi-

ciently difficult, then it will be difficult for an adversary to recover a plaintext message

from a corresponding ciphertext.

Although IBE is a very interesting technique, it has some shortcomings. IBE

requires incessant availability of the PKG and PKG needed to be trusted by all

the users. It also requires some sort of secure and authenticated channel between

PKG and a user to send the IBE private key. In the context of the Internet these

requirements are difficult to implement and therefore IBE has not been very attractive

solutions in Internet. However, this is not a problem in WSNs. Usually, WSNs are

deployed and managed by a single authority and a centralized control is assumed

through the base station node.

3.3 Network Clustering in WSNs

Routing is critical to the operation of WSNs. Since WSNs have unique characteristics,

routing protocols from other networks such as mobile ad hoc networks or cellular

networks are not suitable. Firstly, WSNs are highly resource constrained in terms of

power supply, processing capability and transmission bandwidth. Secondly, a global

addressing scheme such as IP is difficult to design in WSNs because address updating

in a large-scale or dynamic WSNs can result in heavy overhead. Thirdly, many

sensor nodes usually collect data in the same geographic area. As a result there is

high probability of data redundancy, which must be considered by routing protocols.

Finally, most applications of WSNs require many-to-one communication scheme, i.e.,

from multiple sources to one particular sink, rather than multicast or peer-to-peer

communications.

Based on network structure, routing in WSNs can be broadly classified into two

categories: flat routing, and hierarchical routing. In a flat topology, nodes perform

identical tasks and have similar functionalities in the network. All sensor nodes

collaborate together to perform the sensing task and data transmission is performed
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Figure 3.3: Example of flat WSNs. Legend: BS = Base Station; SN = Sensor Network

hop-by-hop basis usually using the form of flooding [74]. Figure 3.3 shows an example

of WSNs with flat routing. Some of the common routing protocols in the flat routing

includes [75, 76, 77]. Since in flat routing nodes use more bandwidth and energy, it

is not very suitable for a large scale networks. In contrast, in a hierarchical topology,

nodes perform different tasks in WSNs and typically are organized into groups or

clusters according to specific requirements or metrics. Often a single cluster head

(CH) is then identified within each group and made responsible for collecting and

processing data from all group member nodes which are then sent to one or more

base stations [78]. In general, nodes with higher energy act as CH and perform the

task of data processing and information transmission, while nodes with low energy

act as member nodes (MNs) and perform the task of information sensing. Figure 3.4

depicts an example of hierarchical routing in WSNs. Some typical clustering routing

includes [79, 80, 81, 82, 78, 83, 84].

Hierarchical routing based on clustering is becoming more active branch of rout-

ing technology in WSNs. Clustering provides a variety of advantages, such as data

aggregation, scalability, load-balancing, less energy consumption, etc. Data aggrega-

tion is a very important optimization, which may increase the lifetime of WSNs. It is

any process in which information is gathered and expressed in a summary form with

minimum information loss [85]. This method can eliminate redundant data transmis-

sions thus reduce energy consumption in wireless sensor networks. The most popular
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Figure 3.4: Example of hierarchical WSNs. Legend: CH = Cluster Head; BS = Base
Station

data aggregation/fusion method is clustering data aggregation, in which each CH

aggregates the collected data and transmits the fused data to the BS. In Table 3.2,

we provide a summary of pros and cons of flat vs. hierarchical routing techniques in

WSNs.

Table 3.2: Pros and cons of flat vs. hierarchical routing.
Flat Routing Hierarchical Routing

Optimal Routing No Yes
Scalability Poor Very Good
Network Lifetime Good Very Good
Resource Management Poor Good
Support for dynamic topology Easy Difficult

Clustering approaches in WSNs can be broadly divided into two main categories:

cluster-head first approach and cluster first approach. Figure 3.5 illustrates an graph-

ical example of clustering. In the cluster-head first approach, as the name suggests,

cluster heads are elected first based on certain metrics, and they agree on how to

assign other nodes to different clusters. In contrast, in cluster first approach, all the
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Figure 3.5: Clustering example

sensor nodes first form clusters, and each cluster then elects its cluster head [78]. In

the next section, for each category, we will discuss most dominant approach in WSNs.

3.3.1 Cluster-head First Approach

LEACH [79] is one of the most popular cluster-head first clustering approaches in

WSNs. It is a distributed, adaptive clustering algorithm where nodes make au-

tonomous decisions without any centralized control. LEACH protocol runs multiple

rounds. Each round contains two phases: cluster setup phase(when the cluster is

organized) and steady phase (when data is transferred to the BS). More specifically

the setup phase can be divided into three more steps: advertisement phase, cluster

setup phase and schedule creation phase.

Advertisement phase: In this phase, each node decides based on a formula

whether or not to become a cluster head for the current round. The formula is shown

in Equation 3.1.

T (i) =

{

p
1−p∗(r∗mod(1/p)

ifi ∈ G

0 otherwise
(3.1)

where variable p allow us to decide the desired percentage of CH node in the

sensor population, r is the current round number and G is the set of nodes that have

not been CHs in the last 1/p rounds. Now each node has to choose a random number

between 0 and 1. If the random number is less than the calculate threshold, this node

will be a good candidate. After this, each node that is elected as a CH will send

a broadcast message advertising all nodes. In the next step, each non-cluster-head

node decides the cluster to which it will belong for this round depending on the signal

strength or the distance.
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Joining phase: At this point, once the cluster head is selected, all nodes join

the corresponding cluster by sending a message to the CH informing that it will be a

member of that cluster. The decision is made based on the distance between the CH

and the respective node considering the broadcast signal strength.

Schedule creation: CH receives all messages from nodes that would like to

be in its cluster. Once the CH knows the number of member nodes, it creates a

TDMA schedule, such that only one node will transmit in each time slot. Then, CH

broadcast the schedule to its member nodes of the cluster. At this point the setup

phase is completed and network enters a steady phase.

The steady phase is divided into slots, all nodes send their data to the cluster head

at most once per frame during their allocated TDMA transmission slot. When all the

data has been received (data aggregation), the CH will compress the information and

transmits this to the base station. When the BS receives all the data aggregation from

the CH, the CH sends a message to all member nodes to start another round. Figure

3.6 depicts a wireless sensor network protocol based on LEACH, which is divided into

four clusters, the black circle in each cluster represents the cluster head, and the rest

of the gray circles indicate non-cluster head nodes. Each cluster has a cluster head

node. The protocol randomly selects cluster head node circularly, the energy of the

entire network load is equally distributed to each sensor node which can achieve lower

energy consumption and improve the network lifetime.

Figure 3.6: Architecture of LEACH

Unfortunately, LEACH assumes that all CH nodes have a one-hop connection with
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BS which makes it impractical in geographically large wireless sensor networks where

it is not possible to communicate with the BS in a single-hop manner. Moreover, the

cluster heads are elected randomly, so the optimal number and distribution of cluster

heads cannot be ensured. The nodes with low remnant energy have the same priority

to be a cluster head as the node with high remnant energy. Therefore, to mitigate

these limitations, some research [81, 86, 80, 87] works have extended this protocol for

making it practically usable in WSNs.

3.3.2 Cluster First Approach

Clique [78] is another seminal approach in WSNs clustering where instead of selecting

the cluster head first it starts with forming clusters with local information and then

elects cluster head, thus it belongs to the cluster first set. All nodes in the same

cluster must agree with the elected cluster head. In other words, all nodes have to

be consistent with the view of its cluster (clique) and its cluster head. The protocol

aims to divide the sensor network into multiple small groups and guarantee that all

the nodes in each clique agree on the same clique membership. The protocol has the

following properties:

• It is fully distributed and uses local information only. Each node computes its

clique only using information from its 1-hop neighbors.

• It is guaranteed to terminate.

• After the protocol terminates, all nodes are divided into mutually disjoint clique.

They have consistent view on their clique membership.

The protocol assumes that each node knows its 1-hop neighbors and they have

and unique ID. Clique has four steps:

Many other techniques based on similar idea are proposed in [88, 83, 84]. One

notable approach in this category is PANEL [82], is a position-based clustering routing

protocol for WSNs. With respect to other CH election protocols, PANEL supports

asynchronous sensor network applications where the sensor node readings are fetched

by the BSs. The main goal of PANEL is to elect aggregators, i.e., CHs, for reliable and

persistent data storage applications. PANEL assumes that the nodes are deployed
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Algorithm 6 CLIQUE clustering steps

Input: A wireless sensor network with N nodes.

Output: A mutually disjoint set of cliques (clusters).

1: Each node exchanges its neighbor list with its neighbors, and computes its local

maximum clique.

2: Each node exchanges its local maximum clique with its neighbors, and update its

maximum clique according to its neighbor nodes local maximum clique.

3: Each node exchanges the update clique with its neighbors and derive its final

clique.

4: Each node exchanges the final clique with its neighbors and check if they are

consistent or not.

in a bounded area, which is partitioned into geographical clusters. The clustering

is determined before the deployment of the network, and each node is pre-loaded

with the geographical information of the cluster to which it belongs. PANEL is an

energy-efficient protocol that ensures load balancing because each node is an elected

aggregator, i.e., CH, nearly equally frequently. Besides, data aggregation is performed

and communication load is reduced, accordingly PANEL can prolong the network

lifetime. However, PANEL assumes that geographic position of the nodes are available

at the node, it also assumes that clusters are determined forehand, which makes it

impractical to support many types of dynamic WSNs applications.



Chapter 4

Proposed Key Management Protocol

In this chapter, we present the proposed key management protocol where we combine

matrix-based key pre-distribution and pairing-based techniques. We begin with a

general overview and assumptions of the network, and then we present mode of oper-

ations of the proposed scheme. Following this, we show how the proposed scheme can

be set up in different types of networks, namely, in flat and hierarchical networks. We

then introduce the different phases of key agreement processes involved in the pro-

tocol and present techniques for key refresh, key revocation and new node addition.

Furthermore, we present some application scenarios where the proposed scheme can

be used. We conclude with two techniques for optimizing the key agreement process

of the proposed scheme.

4.1 Overview and Assumptions

In our proposed scheme, we assume that all sensor nodes are homogeneous in terms of

computational capabilities and memory capacities. Although we assume a hierarchical

deployment structure where a Key Manager (KM) node will manage some Member

Nodes (MN), we do not assume the KM node to be any special or powerful node. Any

node can act as a KM node for a particular time by following a KM node selection

scheme [89, 90]. We only assume that BS node is trusted and powerful in terms of

processing, memory, and power supply.

4.1.1 Optimization of Blom’s Protocol

Blom [40] has presented a key distribution method that allows any pair of nodes in a

network to be able to find a pair-wise secret key as long as no more than λ nodes are

compromised. However, the original scheme proposed by Blom was not proposed for

sensor networks. Therefore, to use it in resource constrained sensor network, a slight

modification was done by [55]. The key pre-distribution phase of original Blom’s

44
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scheme (described in Section 3.1.1) uses (λ + 1) × N matrix G over a finite field

GF (q), where N is the size of the network and GF (q) is a prime number large enough

to accommodate the key size. In our scheme, G is chosen as Vandermonde matrix

because it is well known that any λ+1 columns of G are linearly independent when the

elements in the seeds (i.e., second row) of G are all distinct [91]. Everyone may have

information about G matrix in our system. In our scheme, we used the node ID as

seeds of G. Since all the node IDs are distinct, they constitute a linearly independent

G matrix. Figure 4.1 illustrates the construction of the G matrix. Selecting G as

Vandermonde matrix with node ID as seeds provide two fold benefits in our scheme:

(i) Each node now does not need to store the whole column of G matrix; instead

knowing the ID (i.e., seed for that column), it can compute the whole column.

(ii) When a pair of nodes want to find a pair-wise key between them, they do not

need to share the columns of the G matrix beforehand.

Figure 4.1: G matrix construction.

4.1.2 Protocol Data Structure

Each sensor node in our scheme maintains data structures to compute pair-wise keys

with other nodes. Table 4.1 provides a summary of data structures used in our

protocol with their sizes in bits.

4.2 Mode of Operation

In our scheme, we support adaptive clustering and provide flexibility of setting up

the networks for different type of applications and operations. Therefore, based on
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Table 4.1: Summary of protocol data structure.
Acroname Description Size (Bits)

ID Node ID 16
KMλ Vector of λ+ 1 key materials 64 ×(λ + 1)
Sx Private key for IBE 64
CPx Cache private key 64

application, the network administrator may need to determine two key features of

the network: (i) the maximum number of nodes in each cluster; (ii) number of initial

clusters in the network.

4.2.1 Determining Maximum Cluster Size

The size of a cluster is related to the desirable security threshold λ for that cluster and

available memory size m of the sensor mote. The value of λ states that to compromise

the whole cluster, an adversary needs to capture λ+ 1 nodes. If a secure application

requires a key size of q-bits and if motes have m bits of RAM for both programs and

data storage. Assuming a portion of it (determined by a factor p, 0 < p ≤ 1), is used

for storing keys, then using Equation 4.1, we can easily determine the theoretical

security threshold value for that cluster.

λ = ⌊
m ∗ p

q
⌋ (4.1)

As an example, if an application requires q = 64-bits keys and uses a mote with

m = 10 kB of memory (a typical MicaZ mote [92]), half of the total memory, that is

p = 0.5, is used for storing keys then the security threshold, λ, would be calculated

as, λ = 81, 920 ∗ 0.5/64 = 640.

There is no absolute equation for determining the cluster size, however, the value

of λ provides a very good guideline to determine the cluster size. Based on the desired

level of security of the application, one might decide on a cluster size. In general, if

ds is the ratio of the total number of compromised nodes in a cluster to Cn (which is

the total number of nodes in that cluster), then λ ≥ Cn/2 if ds needs to be at least

0.5. The maximum theoretical threshold for a cluster size (Cn) is then can be derived

as:
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Cn = ds ∗ λ (4.2)

Following the previous example, with 10 kB mote memory and 64-bits key size,

theoretically a cluster would have maximum of Cn = 640 ∗ 2 = 1280 nodes.

4.2.2 Determining Number of Clusters

Our protocol is flexible to support different types of network layer protocols. It

supports both the cluster based hierarchical networks and flat networks. Based on

maximum theoretical threshold for number of nodes in a cluster, initially one can

choose how many clusters the network would have. If the underlying network layer

requires no clustering, our system can be easily adapted to operate in that mode.

Whereas, without any modification, our system can be also used with an adaptive

clustering based network layer.

4.3 Setup Phase

Before the deployment of the network, the network administrator would determine

the number of clusters in the network. Depending on application requirements and

underlying network layers, one can select either flat or adaptive multiple-cluster setup

phase.

A flat network setup only contains member nodes. The KM node is not required

since no inter-cluster communication is necessary. In this setup, BS follows Blom’s

key pre-distribution phase with optimization discussed in Section 4.1.1 to calculate

KMλ (λ + 1 key materials or private shares) for each node in the network, where

λ is a settable threshold for tolerance on the number of compromised nodes in the

network and can be calculated using Equation 4.1. The BS then securely stores this

KMλ in the node’s memory. An example of this setup is shown in Figure 4.2.

In an adaptive multiple-cluster network, the BS performs the same steps as de-

scribed in flat cluster setup, separately for each cluster. In addition, the BS preloads

KMλ ((λ + 1) secret shares) in the KM node as well as one more secret key (Sx)

to perform pairing-based operations. To generate this additional key, the BS selects

a master secret key S and calculates each KM node’s private key. To do this, it
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Figure 4.2: A example of flat network setup. Legend: MN = Member Node

first maps each KM node’s identity to a point on the elliptic curve, via a public

hashing-and-mapping function Φ. For example, if a KM node’s ID is x, BS generates

Px = Φ(x). Following this, it generates its private secret key as Sx = [s]Px. Then

it preloads this Sx on the KM nodes as an additional secret. Figure 4.3 shows an

example of three cluster network setup. Note that lines between KM nodes represent

a logical connection. An actual path of the KM nodes may include other intermediate

nodes.

Figure 4.3: A example of multi-cluster network setup. Legend: MN = Member Node;
KM = Key Manager; BS = Base Station
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4.4 Key Agreement

Depending on setup, our scheme can have three key agreement phases as follows:

4.4.1 Key Agreement between Nodes of the Same Cluster

In this phase, assume two MN or KM nodes i and j, in the same cluster know the

IDs of each other. They can compute the same secret without requiring any prior

communication. This process is shown in Algorithm 7.

Algorithm 7 Computation of secret common key Kij at Nodei.

Input: Node ID j.

Output: Secret common key Kij .

1: Generates the column cj(G) of G matrix using j as the seed. Where G is a

Vandermonde matrix constructed as described in section 4.1.1.

2: Compute Kij = cj(G) · ri(A), where ri(A) is the ith row of matrix A, which are

secret information stored in node i.

When node j follows the same steps of the Algorithm 7, it can also generate Kji.

Note that Kij = Kji since K is symmetric matrix [40]. Thus both the nodes i and j

now can establish a secure communication using this shared secret.

4.4.2 Key Agreement among KM Nodes

Suppose two KM nodes, i and j from different clusters have to agree on a common

cryptographic key. Using pairing-based operation and only knowing each other’s ID,

they can derive a common secret as follows:

ê(Si, Pj) = ê([s]Pi, Pj) = ê(Pi, Pj)
S = ê(Pi, [s]Pj) = ê(Pi, Sj) = ê(Sj, Pi) (4.3)

Note that node i possesses Si (see the setup phase) and can compute Pj = Φ(IDj).

Likewise, node j possesses Sj and can compute Pi = Φ(IDi). Therefore, both i and

j are able to compute the same secret as: Kij = ê(Si, Pj) = ê(Sj , Pi).
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4.4.3 Key Agreement between Nodes from Different Clusters

When two member nodes from different clusters want to communicate with each

other, they need to establish a secure path via some KM nodes. Let us assume that

node i from one cluster wants to communicate with node j in another cluster. In

such a scenario, node i performs the following steps:

i. Node i finds a KM node in its own cluster and sends an encrypted message to

that KM node using the procedure described in the Section 4.4.1 (key agreement

with nodes among same cluster).

ii. The KM node then sends the message to another KM node belonging to the cluster

of node j using the procedure described in the Section 4.4.2 (key agreement

among KM nodes).

iii. Finally, the KM node of node j sends the encrypted message to node j using the

same procedure described in the Section 4.4.1 (key agreement with nodes among

same cluster).

Figure 4.4 illustrates this process. It is easy to see that the above scheme can be

converted so that two nodes from different clusters can generate a temporary secret

session key via the above procedure and then can establish a secure communication

directly with each other. One such process is described in Section 4.8.1.

Figure 4.4: Key agreement with nodes from different clusters. Legend: MN =Member
Node; KM: Key Manager

Figure 4.5 illustrates all the scenarios of key agreement procedures.
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Figure 4.5: Different phases of key agreement. Legend: MN = Member Node; KM:
Key Manager

4.5 Key Refresh/Revocation

A key management protocol is not complete if it does not provide mechanisms for

revocation and key refresh. Given indefinite time, any network can be compromised

if it does not refresh the key periodically. In addition, it is necessary to revoke

the key of the compromised node once identified to continue with normal network

operation. In our scheme, the base station is responsible for revoking the keys of the

compromised nodes. We assume that with the help of intrusion detection systems,

such as [93, 94], the compromised nodes can be detected and a list, R composed of the

IDs of compromised nodes is sent to the base station. Let us say, R = (n1, n2, · · · , nr)

are the IDs of the compromised nodes in the cluster. The list of compromised node

may contain the KM nodes as well as NM nodes. For each cluster the BS performs

the key revocation operation separately. For each cluster, the BS initiates the key

revocation process as follows:

i. It generates a new random (λ+ 1)× (λ+ 1) symmetric matrix D̄ over GF (q) for

that particular cluster, and computes an Cn × (λ + 1) matrix Ā = (D̄ · G)T ,

where (D̄ ·G)T is the transpose of D̄ ·G for that cluster.
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ii. It then generates a bit vector X of length Cn, where Cn is the number of nodes

in that cluster, such that X [i] = 0 if the node ID i is in R, 1 otherwise.

iii. Then it computes the Cn × (λ + 1) matrix H = Ā + A for that cluster, and

performs ri(H) ·X [i], where ri(H) are the elements of the ith row of H .

iv. To revoke the additional key of the KM node, BS selects a new master secret key

S̄. If the node i is a KM node then it computes a new private secret S̄i = [S̄]Pi

for that node. Then it computes a mask Sh = Si +X [i] · S̄i.

v. For each non-revoked MN node i in that cluster, the base station computes:

Mi = i‖Ekii(ri(H))‖MAC(Kii, i‖Ekii(ri(H)))

where ‖ is the message concatenation and Kii is computed as ci(G) · ri(A).

Ekii(·) is any suitable symmetric encryption algorithm for WSNs using kii as

key. Whereas, for each non-revoked KM node, the BS computes Mi such as:

i‖Ekii(ri(H))‖Sh‖MAC(Kii, i‖Ekii(ri(H))‖Sh)

vi. Finally, the BS computes M = M‖Mi, where i /∈ R and broadcasts R‖M . The

base station then updates D as D̄ and S as S̄ for future revocation.

vii. When a non-revoked MN node t in a cluster receives the revocation broadcast, it

extracts its own share, t‖Ektt(rt(H))‖MAC(Ktt, t‖Ektt(rt(H))) from the broad-

cast message. It then computes:

V =MAC(Ktt, t‖Ektt(rt(H)))

where Ktt is determined using the node’s private share as: ct(G) · rt(A). If V

matches with the received MAC, then it means the broadcast have come from

the base station node. After this the node decrypts Ektt(rt(H)) using ktt and

updates its private share (KMλ) as rt(A) = rt(H)−rt(A). Otherwise, it discards

the broadcast message. Whereas, when a non-revoked KM node receives the

revocation broadcast, it performs the same above operation, in addition to this,

it extracts the Sh value from the message and updates its private secret by

S̄t = Sh − St. It is easy to see that after the update is done, the non-revoked
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node stores rt(Ā) and/or S̄t whereas the revoked node will not be able to update

its key share and therefore will be unable to take part in future communications

with non-revoked nodes.

The key refresh is a special case of key revocation with R being an empty list.

4.6 New Node Addition

To add a new MN node in a cluster, the BS node follows the new node addition

process as follows:

Figure 4.6: Adding new node.

The BS pre-loads the seed value (i.e., node ID) and private secret key shares to

the new node’s memory. For the sake of simplicity, let us assume that the new node

ID is N + 1, then private secret shares for node N + 1 can be computed as shown in

Algorithm 8.

Figure 4.6 illustrates the new node addition process. However, if a new KM node

needs to be added in a cluster, then the BS follows the same algorithm described

in Algorithm 8 as well as computes an additional private secret for KM node. The

additional new private secret is created as follows, if the new KM node ID is IDnew

then BS first maps the new node’s ID to a point on the elliptic curve by PIDnew
=

Φ(IDnew). Following this, a new private secret for the new node will be generated as

SIDnew
= [s]PIDnew

, where s is the current master secret key for the network.
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Algorithm 8 Computation of symmetric key for new node.

Input: New node ID N + 1.

Output: Kλ is the private secret shares of node N + 1.

1: Extend the matrix G by adding a new column using N + 1 as the seed.

2: for i = 1 to (λ+ 1) do

3: for j = 1 to (λ+ 1) do

4: KMλ[i] = KMλ[i] +D[i][j] ·G[i][N + 1]

5: end for

6: end for

4.7 Application Scenarios

Our proposed scheme is flexible to support many application requirements. In this

section, we provide some example applications where our protocols can be easily used

without modifications.

4.7.1 Adaptive Cluster based Network Applications

Most common WSNs applications require periodic data reporting with thousands of

static nodes spread randomly over a large area. Examples include micro-climate,

structural health, volcano monitoring, disaster recovery, pipelines, etc [14, 26, 16].

These and related applications exhibit several common characteristics:

• They consist of many unattended energy-restricted fixed or static nodes, which

may fail unexpectedly. Further, new nodes may be added to the network.

• The nodes communicate over lossy wireless channels.

• Reasonable delivery delays are acceptable, e.g., in agricultural monitoring.

• The data gathered at individual nodes can be pre-processed in the network,

e.g., correlating related data, compressing, or filtering.

• The destinations can be multiple and mobile, e.g., consider scientist with a

laptop walking along agricultural fields with sensor network.
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• The potential clusters are often geographically specified and the nodes have

some position or orientation information, e.g., room or floor of the building

they are installed in, geographic area, etc.

To facilitate such applications, the network is usually divided into clusters. Clus-

tering a large network provide two fold benefits; (i) optimized resource utilization (ii)

easy resource management. Every cluster usually has a cluster head node for central

management of the cluster and many member nodes under it. Beside management,

the CH can also optimize the sensing data by aggregating redundant reading by sim-

ilar member nodes. However, since WSNs nodes are energy-restricted and can fail

unexpectedly, a fixed cluster strategy with fixed CH node is not suitable. Thus the

network has to be adaptive to dynamic nature clusters. Many studies have focused

on this issue and proposed promising network layer protocols for adaptive clustering

in WSNs [83, 74] (refer to Section 3.3 for an overview of adaptive clustering protocols

in WSNs).

Key management protocols for WSNs should support the underlying network layer

by providing easy mechanisms to support this dynamic nature. Our proposed protocol

provides complete support for adaptive cluster-based networks. Any kind of adaptive

clustering approach, such as LEACH [79] or CLIQUE [78] can leverage our scheme

to provide security on top of clustering. Adaptive multiple-cluster setup mode of our

scheme can be used to support adaptive network clustering mechanism. In this setup,

the CH nodes can be considered the KM nodes, and member nodes would be other

nodes in the cluster. Whenever the cluster size is changed or a new cluster head is

selected the following steps are performed:

i. The new CH or KM node will contact the BS with list of member nodes under

it. This message can be encrypted by the currently held key of that node.

ii. BS calculates the partial shares for all the nodes in that cluster and initiates

key refresh process for that cluster. This will refresh the key of the KM node

as well.
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4.7.2 Secure Group Communication

Many WSNs applications such as network and environmental monitoring, air quality

monitoring, forest fire detection, etc., require that the data gathered at individual

nodes can be pre-processed in the network, e.g., correlating related data, compressing,

or filtering. These kinds of applications may require temporary group of nodes to

cooperate with each other by forming a dynamic group. To facilitate such requirement

our protocol can be used to form a dynamic secure group.

Assume a node nm wants to initiate a groupGm with the group members {n1, n2 . . . nm},

where ni : i = 1 . . .m, is the node ID. Node nm then performs the following steps to

create and distribute the group key Gk for group Gm:

i. It computes Gk = Kn1,nm
⊕Kn2,nm

⊕ . . .⊕Knm,nm
. Where ⊕ represents bit-wise

XOR and Kni,nm
is the pair-wise key between node ni and nm.

ii. Then it computes Yi = Gk ⊕Kni,nm
, for i=1 ...m-1

iii. The node nm then broadcast Mg = (n1,Y1) ‖ (n2,Y2) ‖ . . . ‖ (nm−1,Ym−1),

where ‖ is message concatenation.

iv. Receiving the broadcast message Mg, the group member node t extracts its

share Yt and computes the group key Gk = Yt ⊕ Knm,nt
, here Knm,nt

is the

pair-wise key between node t and nm.

As an example of the group creation, let us consider that node i wants to initiate

a group with nodes (1, 3, 5, 8) and it shares pair-wise key with each of these nodes

(Ki1 ,Ki3 ,Ki5 ,Ki8), respectively. Now node i generates the group key

Gk = (Ki1 ⊕Ki3 ⊕Ki5 ⊕Ki8 ⊕Kii)

and broadcasts

(4.4)

Mg = {1, (Ki3 ⊕Ki5 ⊕Ki8 ⊕Kii)

‖ 3, (Ki1 ⊕Ki5 ⊕Ki8 ⊕Kii)

‖ 5, (Ki1 ⊕Ki3 ⊕Ki8 ⊕Kii)

‖ 8, (Ki1 ⊕Ki3 ⊕Ki5 ⊕Kii)}
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When any group member node, say node 5, receives the group creation broadcastMg,

it extracts its part P from Mg and computes the Gk = K5i ⊕ (P ), which is in turn

(Ki5⊕Ki1⊕Ki3⊕Ki8⊕Kii) =Gk. On the other hand, a non-group member node cannot

compute the group key Gk using its pair-wise key and received broadcast message M.

Let us now consider a non-group member node j receives the broadcast M from node

i. In our scheme, each pair of nodes uses different pair-wise keys for communication.

This implies that the pair-wise keys Kj1,Kj3,Kj5,Kj8 , and Kjj between node j and

nodes 1, 3, 5, 8 are completely different from the pair-wise keys between node i and 1,

3, 5, 8 which are Ki1,Ki3 ,Ki5 ,Ki8 , and Kii respectively. Therefore, it is not possible

for node j to compute the Gk from its pair-wise keys between 1, 3, 5, 8 nodes and

received broadcast message Mg.

4.7.3 Dynamic Network Applications

Sensor networks are often deployed in hostile environments, such as military opera-

tions, monitoring marine habitats, tracking targets, floating sensors in rivers, etc. In

such applications the size of the network may not be very large, but requires mobility

and time sensitive data in a highly secure fashion. A long distance peer-to-peer secure

communication between sensor nodes with end-to-end encryption and authentication

may be required. Thus, one primary goal of secure communication is to provide

authentication and/or encryption between any sensor nodes. Moreover, in such ap-

plications, it is very difficult to physically protect the sensor nodes individually. A

few sensor nodes could be captured by adversaries or may destroyed after deployment.

Once a sensor node is captured, it can give away its secrets very quickly. Therefore, a

dynamic and robust key management is required to satisfy these requirements. Our

scheme can be used in a single cluster mode to accommodate these types of applica-

tions. It can quickly compute separate pair-wise keys for each node without any extra

communication. The pair-wise keys can be used to provide authentication, integrity,

and privacy between any pair of nodes in the network. Moreover, our scheme provides

a fair amount of resilience against compromised sensor nodes.
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4.8 Optimization

In this section, we describe two optimization techniques for performance improvement

that can be applied on the proposed scheme. Both optimizations can be applied in

the key agreement between nodes of different clusters phase described in Section 4.4.3.

4.8.1 Creation of Temporary Keys for Different Clusters

Consider a node IDa in a cluster under key manager node IDi. Let us assume that

IDa wants to generate a common key with node IDb of another cluster with KM node

IDj. Node IDa will then send a request message to its KM node (IDi) to generate a

key Kab. This request can be sent in plain text. To generate the key Kab, KM node

IDi follows the steps described in Algorithm 9:

Algorithm 9 Shared key generation process for nodes from different clusters

Input: Common secret key of two KM nodes Kij, node IDs IDa, IDb.

Output: New secret key Kab, for node IDa and node IDb.

1: The KM node, IDi uses a keyed-hash function to generate a common key as

follows:

Kab = Hash(Kij, IDa, IDb)

2: and computes:

CT = EKia
(Kab)

where E is any symmetric key-based encryption algorithm and Kia is the shared

secret key of the KM node IDi and node IDa. Note that the shared key, Kia is

computed following the steps described in Algorithm 7.

3: After this, the KM node, sends the encrypted message, CT to node IDa.

Node IDa will then decrypt this message using Kai and use the key Kab to send

a secure message to node IDb. Notice that, one component of Kab is Kij, since

Kij = Kji, node IDb can also follow the same Algorithm 9 with its KM node IDj

and get Kba. Figure 4.7 depicts such a scenario.



59

Figure 4.7: Computation of common key for the nodes from different clusters. Legend:
MN = Member Node; KM = Key Manager; BS = Base Station

4.8.2 Communication Optimization

Depending on the application, the KM nodes may be more powerful in terms of power

and processing than the MN nodes. Since radio communication consumes most of

the energy in WSNs [95], some applications might want to make a trade-off between

computational time and energy consumption. Here, we extend the process of the key

agreement of nodes from different clusters (described in Section 4.4.3) by removing a

communication step.

Let us assume node i from one cluster wants to communicate with node j in

another cluster via a KM node KMj then it has to perform the following steps:

i. First, node i will send an encrypted message to the KM node (KMj) of j’s cluster.

To send an encrypted message to KMj , node i first uses the public hashing-and-

mapping function Φ and generates the public key of KMj as PKMj
= Φ(KMj).

Then, it uses Algorithm 4 with public key PKMj
to encrypt the message.

ii. When KMj node receives encrypted message from other cluster, it follows Algo-

rithm 5 to decrypt the message using its private key Sk. Finally, KMj forwards

the message to node j using the procedure described in key agreement with

nodes among same cluster.

This optimization is shown is Figure 4.8.
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Figure 4.8: Optimized key agreement phase with nodes from different clusters. Leg-
end: MN = Member Node; KM = Key Manager

Although this optimization removes a communication step from the proposed

scheme, it comes at a price. Now, the sensor nodes need to use the IBE based

encryption (Algorithm 4) and decryption algorithms (Algorithm 5) in order to send

the data packet to the KM node. It is well known that asymmetric cryptosystems

are computationally expensive than symmetric based cryptosystem [34]. Thus this

optimization will increase computational cost over communication cost.

4.9 Summary of Contributions and Advantages

The main objective of our proposed scheme is to provide efficient key management

framework for resource constraint networks such as WSNs. The main contributions

are given below:

1. We have improved Blom’s scheme as a result without communication and only

knowing each other’s ID, any pair of nodes can establish pair-wise keys.

2. We have combined pairing based cryptography with symmetric cryptography

to make the key management protocol scalable without increasing storage re-

quirements.

3. We have provided efficient mechanism for key revocation, key material refresh,

and new node addition without compromising security.

4. Without modification, our scheme supports multiple type of networks, such as

clustered, group, or flat networks.
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5. Authentication and key distribution in one set of protocols. Only nodes that

share common key materials will be able to establish a secure channel.

6. Improved network resiliency and lower memory utilization. Compromise of one

node compromises only a small portion of network. This provides little value

without the additional compromise of more than λ nodes, as specified by Blom’s

scheme and supported in our algorithm.

7. Our scheme is scalable to large networks and suits many different types of

applications.



Chapter 5

Performance Analysis and Experimental Results

In this chapter, we provide a detailed description of experimental setups, implemen-

tations and results of our proposed protocol. We then compare our scheme with

contemporary schemes to measure performance.

5.1 Metrics for Performance Evaluation

5.1.1 Energy Overhead

Since nodes are battery powered and may be deployed in hostile environments, it is

not feasible to frequently change the power source in such networks. Hence, energy

is the most valuable and scarce resource in WSNs.

5.1.2 Computational Cost

Our scheme comprises many cryptographic operations. We will evaluate the per-

formance for each operation. Then, the performance costs for each operation are

accumulated to attain the total cost. Each cryptographic operation needs to be pro-

cessed within a certain period of time, which can be viewed roughly as performance

cost. Therefore, like other research works, this thesis assumes that the performances

of these cryptographic operations can be measured by time. In the case of resource

constraint WSNs, computational cost is very crucial because it has a direct impact

on time and energy consumption.

5.1.3 Communication Overhead

The communication overhead consists of the number of packets exchanged. It also de-

pends on length of the message. Since WSNs are battery operated, energy is the most

valuable resource. Radio communication consumes most of the energy in WSNs [95].

62
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Therefore, communication overhead is a very important metric for measuring perfor-

mance of a key management protocol.

5.1.4 Memory Overhead

Memory is very limited in sensor motes. Therefore, the protocol has to make optimal

use of memory. For the sake of fairness, we used same length keys for every nodes

in the network. We assume the key length is standard on the contemporary security

protocols for WSNs.

5.2 Implementation Software and Tools

5.2.1 TinyOS

TinyOS [96] is an open source, BSD-licensed operating system designed for low-

power wireless devices, such as those used in sensor networks, ubiquitous computing,

personal area networks, smart buildings, and smart meters. Industry and academia

use it worldwide for developing, testing, and running WSNs applications. TinyOS

uses an interface to build components of an application. However, unlike traditional

programming interfaces, TinyOS interfaces are bi-directional. In addition to the

ability for the consumer of an interface to issue a command to its provider, providers

have the ability to signal event callbacks to consumers. This relationship allows for a

split-phase, non-blocking paradigm to emerge. The same paradigm that is typically

seen in hardware [96].

In the split-phase model, the consumer of an interface signals a request for a par-

ticular service. The provider of the interface is then responsible for performing the

service, and signalling an event to the consumer when the service has completed. Pro-

grammatically, in order for these operations to be non-blocking, TinyOS introduces

the concept of tasks, which are code segments that are scheduled to run at a later

time. Tasks are put in a run-to-completion, first-come, first-serve queue. In essence,

one component calls a command on another component. The receiving component

creates a task to be completed, and when this task is eventually run to completion,

it signals an event back to the original calling component.
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5.2.2 NesC

NesC (network embedded systems C) [97] is the programming language of TinyOS.

It is a programming language with a set of cooperating tasks and processes. NesC

is built as an extension to the C programming language with components wired

together to run applications on TinyOS. TinyOS and nesC are the de-facto standard

for developing industrial standard and research applications for WSNs. NesC complies

its raw code into a form that the gcc compiler can use, after which gcc builds the

TinyOS application into bytecode that can run on a mote or in a simulator. Since

nesC is a specialized version of the C language designed for use on wireless sensor

networks, it has some fundamental differences from that of traditional C. One of the

largest differences is that nesC is a static language and does not allow for the dynamic

allocation of memory. This prevents memory fragmentation and run-time memory

errors, such as null pointer exceptions. In addition to this, nesC does not allow

function pointers. This allows the compiler to know the call path of an application

at compile time and perform more rigorous optimizations on the code, resulting in

crucial memory savings.

5.3 Hardware Selection

Choosing the right sensor mote is an important consideration for any WSNs deploy-

ment. A number of “off-the-shelf” motes are available, including the Mica2 [98],

MicaZ [92], IMote2 [99], and TelosB [100]. Table 5.1 compares the features of these

motes. As we will use these motes for research, not a real-world application, the phys-

ical size of the mote would not be a concern. The ideal mote for our research would

be simple to program and have enough memories to store readings from experiments,

with a low price.

5.4 Methodology and Experimental Setup

To test the proposed key management schemes, we have implemented the key agree-

ment phases on TelosB (TPR2420) motes, the latest research oriented mote developed

by UC Berkeley [100]. TelosB has MSP430 microcontroller. MSP430 incorporates an

8MHz, 16-bit RISC CPU, 48K bytes flash memory (ROM) and 10K RAM. The RF
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Table 5.1: Comparison of mote specifications
Mote TelosB Mica2 MicaZ IMote2

Processor Speed 8 Mhz 16 MHz 16 Mhz 13-416 Mhz
Processor Current Draw 1.8 mA 8 mA 8 mA 13-66 mA
Memory Size 10 KB 512 KB 512 KB 32 MB
Radio CC4220 CC1000 CC4220 CC4220
Radio Receive Current Draw 23 mA 10 mA 19.7 mA 44 mA
USB Interface Yes No No Yes
Integrated Sensor Board Yes No No No

transceiver on TelosB is IEEE 802.15.4/ZigBee compliant, and can have 250kbps data

rate. Figure 5.1 shows an image of Crossbow TelosB mote. We have used NesC pro-

gramming language to implement our protocol on TinyOS [96]. The key size GF (q)

is kept to 64 bits, where q is a large prime number that requires 64 bits to store. We

choose 64 bits key size because TinySec [35], which is a fully implemented protocol

for link-layer cryptography in sensor networks, currently uses 64 bits or 8 bytes key

for cryptographic operation. To improve the accuracy of our results, we repeated the

simulations at least 20 times.

Figure 5.1: Crossbow TelosB sensor mote

5.4.1 Energy Consumption

The energy consumption E can be calculated by

E = U · I · t (5.1)

where U is the voltage, I is the current and t is the time duration. TelosB motes

are powered by two AA batteries, so U is approximated equal to three volts. The
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current-supply value varies in different operations as shown in Table 5.2 (abstracted

from [100]).

Table 5.2: Current drawn for different operations on TelosB
Operation Normal Max

MCU On, Radio Off 1.8mA 2.4mA
MCU On, Radio Receiving 21.8mA 23mA

MCU On, Radio Transmitting 19.5mA 21mA

To calculate energy of different phases of our protocol, we first compute the pro-

cessing time of each phase then use Equation 5.1 to calculate energy consumption.

Unless a phase in our protocol specifically requires data transmission, we use the

current draw metric as normal “Micro Controller Unit (MCU) on, Radio off” mode

of data processing. Besides, communication time can be estimated in the following

way. Given 250kbps radio transmission rate, and 29 bytes in each packet (maximum

payload size of TinyOS 2.0.2), the time it takes one sensor node to send or receive a

data packet can be calculated as:

29× 8 bits

250 kbps
= 0.928ms (5.2)

Without considering message loss and retransmission, the total transmission time

for pkt packets can be calculated as:

29× 8 bits

250 kbps
× pkt (5.3)

5.5 Performance Analysis

Our proposed scheme has a set of setup tasks that BS node performs at the network

setup phase. To simplify the experiments, we have simulated the setup phase that

a BS node would do in our protocol. In real deployment scenarios, the BS would

compute the key materials or private key shares for each node and preload it into

node’s memory before the deployment of the network. The key agreement is the

most important phase of our protocol since two sensor nodes, in that phase, will

compute the common secret keys. Our proposed scheme has three different phases of

key agreement. We have implemented each phase separately and measured the time
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and energy cost individually. Finally, we have accumulated these costs to analyze the

computational and energy consumption of entire system.

In our experiments, the code was kept to the bare minimum for key computa-

tion and turning on the LEDs at the start and end of process. When the program

runs, it lights up an LED, computes the pairwise key, and lights up another LED on

completion.

5.5.1 Key Agreement between Nodes of the Same Cluster

One essential part of our proposed scheme is the key agreement of nodes in the same

cluster. In this phase, we used modified Blom’s scheme. Each node stores (λ + 1)

private key materials. To compute the pair-wise key, a node first computes x2, · · · , xλ,

where x is the ID of the other node. The node then evaluates a λ-degree polynomials.

In general, we are interested in measuring the cost of the λ-degree polynomial compu-

tation in sensor mote. Given a share of the polynomial f(x) = a0+a1x+· · ·+atx
λ over

GF (q), the computation of f(x) requires λ modular multiplications and λ modular

additions, plus the computation of values x2, · · · , xλ. In our implementation, we have

chosen q to be 64 bits. Therefore, λ (64-bit × 64-bit) modular multiplications are

required to compute the polynomial. On the 16-bit CPU of TelosB, each 64-bit × 64-

bit multiplication costs 16 word multiplications. To further reduce the computational

cost, we adopt the simplification proposed in [57]. The simplification is based on the

fact that variable x is the sensor ID, which is normally a 16-bit integer. We can use

another finite field GF (q′) for x, x2, · · · , xλ. Therefore, the modular multiplication in

polynomial f(x) is always performed between a 64-bit integer and 16-bit integer. As

the result, the cost of multiplication is reduced by four times. The modular reduction

operation is as important as modular multiplication. Each multiplication must be

followed by a reduction operation. To further reduce the computational cost, we pick

a pseudo-Mersenne prime as q because modular reduction cost on field of a pseudo-

Mersenne prime can be optimized to a negligible amount. A pseudo-Mersenne prime

can be represented as q = 2m − ω, where ω << 2m. Given a 2m-bit multiplication

result B = (b1, b0), (b1, b0 are two m-bit halves), the reduction can be computed based

on the congruence 2m ≡ ω:
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while (b1 6= 0)

(b1, b0) = b1 ∗ ω + b0

B = b0 mod q.

(5.4)

In our experiment, we chose q = 264 − 28 − 1, q′ = 216 − 24 − 1. We tested

the average time delay and power consumption for computing the polynomial with

different λ values. In each test, we randomly generate λ+ 1 64-bit coefficients and a

16-bit variable x, we repeat 20 times to get the average time delay. We also calculated

average memory consumption of our protocol using protocol data structure described

in Section 4.1.2 which is directly proportional to λ, since every node needs to store

(λ+1) 64-bit key materials in its RAM. The test results are shown in Table 5.3 (The

complete experimental results from all runs are given in Appendix A).

Table 5.3: Computation cost of λ-degree polynomial evaluation in sensor node
λ 16 32 64 128

average time consumption 7.9ms 16.8ms 34.94ms 74.07ms
average power consumption 42.66µJ 90.72µJ 188.94µJ 399.98µJ
average memory consumption 154 bytes 282 bytes 538 bytes 1050 bytes

The test results show that the key agreement is efficient even in low-power sensor

nodes. With λ value 128, we could imagine a sensor network of at least 385 motes,

where the network would be secure even with one-third compromised nodes. Results

show that in this setting any pair of nodes can establish a pair-wise key in 74.07 ms

and consumes 399.98 µJ .

5.5.2 Key Agreement among KM Nodes

In an adaptive multiple-cluster setup, a KM node establishes keys with other KM

nodes using pairing-based operations. The most time-consuming part of any PBC

is computing the pairing itself. We have used TinyPBC [47], an efficient PBC im-

plementation of the Tate pairing (realized in the form of the ηT [101] pairing over

supersingular binary curves and a variant of the Tate pairing over prime fields [101])

for resource-constrained nodes. It is an open source library written in both NesC

and C language, compatible with TinyOS. The source code is available at URL

http://sites.google.com/site/tinypbc/. It is by far the most optimized PBC based
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library in TinyOS environment. Once again, we simulated the BS operation and pre-

loaded the private key into node’s RAM. In our protocol, before calculating common

keys using PBC, it is necessary to map the nodes ID to an elliptic curve point so

that the PBC operation can be applied on it. We can use any hash-and-map algo-

rithm for this. However, in our implementation we have used the process described

in Algorithm 10. We have used a binary field F2271 , a square root friendly polynomial

f(x) = x271 + x207 + x175 + x111 + 1, given in [47]. We have used this polynomial

because TinyPBC library uses the same polynomial for its calculations.

Algorithm 10 Hash-and-map-to-point Algorithm in elliptic curves over binary field

F2271

Input: Node ID, Ni ∈ {0, 1}∗ .

Output: Point on a elliptic curve f.

1: Set i = 0 and j = 1

2: digest = Hash(i||Ni) where Hash : {0, 1}∗ → {0, 1}l is a conventional crypto-

graphic hash function. For example, if Hash is SHA-64 based, then l = 64.

3: Encode every two bits of digest to the jth digit of element x ∈ F2271 . Set j =

j + 1.

4: if digest is not long enough for generating all the 271 digits of x then

5: go back to step 2.

6: end if

7: compute f(x) where f is the elliptic curve equation.

8: if f(x) has two roots y0, y1 then

9: set (x, y0) as the output point and return if i is even.

10: set (x, y1) as the output point and return if i is odd.

11: else

12: set i = i+ 1 and go back to step 2.

13: end if

In Table 5.4, we summarize the time and energy consumed for computation of

common key between KM nodes. The complete experimental results from all runs

are given in Appendix A.

Our findings align with findings from [47]. Compared with highest time and

energy cost (i.e., for λ = 128) of key agreement between nodes in the same cluster,
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Table 5.4: Computation cost to calculate ηT -pairing on TelosB mote.
average time consumption 2.2s
average power consumption 11.88mJ
average RAM consumption 732 Bytes

the time and energy consumed in this phase is much higher. However, note that after

computing a common key between KM nodes, they can derive a symmetric key from

it and use that symmetric key for future communications, thus KM nodes can limit

the use of expensive pairing-based operation and improve overall performance.

5.5.3 Secure Communication between Nodes from Different Clusters

In this section, we use Algorithm 9 from Section 4.8.1 to describe the performance

analysis of the key agreement process for nodes among different clusters. In Table

5.5 we show the basic operations of each step from Algorithm 9 and their associated

computational and energy costs. At the last row we accumulate all costs and show

the total cost of computing a common key between nodes from different clusters when

a common shared key between KM nodes is already cached on KM nodes.

Table 5.5: Total cost of common key computation for nodes from different clusters
without key agreement of KM nodes.
Operations Time Energy

Step 1: One SHA-1 hash 4.66ms [35] 25.168µJ
Step 2: One TinySec-AE encryption [35] 0.38ms [35] 2.054µJ
Step 3: Send one packet 0.928ms (Equation. 5.2) 54.288µJ
Step 4: Receive One Packet 0.928ms (Equation. 5.2) 60.69µJ
Step 5: One TinySec-AE decryption [35] 0.38ms [35] 2.054µJ
Total: 7.276ms 144.524µJ

In addition, Table 5.6 shows the total cost of computing a shared key between

nodes from different clusters when a common shared key between KM nodes does not

exist.

5.5.4 Key Refresh/Revocation Performance

In key refresh phase, the BS broadcasts a list with updated key materials to all nodes

in the network. Table 5.7 provides a summary outlining the individual operations
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Table 5.6: Cost of common key generation for nodes from different clusters including
the key agreement of KM nodes.

Computation of common key between KM nodes 2.2s 11.88mJ
Accumulated cost from Table 5.5 7.276ms 144.524µJ
Total: 2.2072s 12.02mJ

that nodes have to do at this stage and their associated computational and energy

consumption costs. The calculation presented in Table 5.7 uses λ = 128.

Table 5.7: Cost of key refresh.
Operations Time Energy

Step 1: One λ-degree polynomial evaluation 74.07ms 399.98µJ
Step 2: One SHA-1 hash 4.66ms [35] 25.178µJ
Step 3: One TinySec-AE decryption [35] 0.38ms [35] 2.054µJ
Step 4: (λ) 64-bit subtractions 0.128ms 0.691µJ
Total: 79.238ms 427.90µJ

In the case of KM node, the cost of key refresh is the total cost from Table 5.7

plus one 64-bit subtraction (which is very negligible to consider).

5.5.5 Scalability and Proof-of-concept

It would have been ideal if we could run the protocol on large number of devices

and test the overall performance. However, such an implementation requires more

than thousand nodes to be deployed in a large geographical area, which is costly and

infeasible to conduct in a lab environment. Therefore, we chose to simulate on the

computer using simulation tools as viable alternative. We simulated our scheme on a

Java platform. We have simulated a network of 5000 sensor nodes. We used multiple

thread mechanism where activities of each node are implemented as a separate thread.

We have used inter thread communication to simulate communication between nodes.

For simplicity, we assumed that all nodes can directly connect with each other and

there is no underlying routing protocols. However, we divided the network into five

clusters and we distributed 1000 nodes randomly to each cluster. Each node was

given a unique ID and a field to represent which cluster it belongs to. We selected a

cluster head (KM) node for each cluster and every node knew their cluster head node
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ID beforehand. We have used PC with Intel i7 dual core (2.80Ghz/core) CPU and

8GB of RAM. For this simulation, we have selected λ = 128. We have simulated the

BS node, which calculated the key materials for each node in every cluster. Every

node maintains a data structure defined in Section 4.1.2.

To test the key agreement, a tester thread randomly generates a cluster:node

ID pair, such as c1:ID1 and c2:ID2. Then, it sends the c1:ID1 to node with ID2

and c2:ID2 to node with ID1 through inter-thread communication. Each node then

generates key individually and sends the computed key back to the tester thread, the

tester thread then verifies whether they are same or not. To improve the accuracy

of our results, we repeated each test at least 50 times. Figure 5.2 shows two such

instances: first, key agreement of nodes in same cluster, second key agreement of

nodes from different clusters.

Figure 5.2: Simulation snapshot: key agreement phase

Figure 5.3: Simulation snapshot: new node addition and key refresh

We have implemented the new node addition process in our simulation and added

a new member node in a cluster. The simulation shows that other nodes in the cluster

can successfully setup keys with the newly added node. Figure 5.3 shows a snapshot

of such a scenario. We have also simulated the key revocation process of our protocol
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by randomly generating list of revoked node IDs. After this, the BS node calculates

the new key shares for all the nodes in a cluster except the revoked nodes and sends

notification to all the nodes in that cluster with key revocation message. Following

this, each node updates their private shares after verifying the hash of the message.

The BS node then repeats this process for all five clusters. After this phase, we again

performed the key agreement phase with the revoked and the non-revoked nodes.

The simulation showed that key generated between revoked and non-revoked nodes

do not match. However, the key generated between two non-revoked nodes are still

the same. Following similar process, we also refreshed keys for all the nodes in every

cluster. Figure 5.4 depicts a snapshot of key revocation followed by a key agreement.

It shows that revoked nodes cannot establish keys with non-revoked nodes.

Figure 5.4: Simulation snapshot: key revocation/refresh

The simulation gives a proof-of-concept of our proposed scheme and shows possi-

bility of using the system in large-scale networks.

5.5.6 Overall Performance of Proposed Scheme

In this section, we summarize the overall costs of our proposed scheme. The commu-

nication and memory overheads at each Phase of our proposed protocol is shown in

the Table 5.8. Then, in Table 5.9, we show computational and energy consumption

overheads at each phase of our proposed protocol. Finally, Figure 5.5 graphically

depicts these overheads. The result shows that the largest overhead of our protocol

comes from the Phase 3 of Table 5.9, which uses pairing-based operations to compute

common key among nodes from different clusters. However, Phase 3 is only required

when KM nodes have not cached the keys of other KM nodes. Furthermore, overheads
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of our protocol are significantly reduced when KM nodes can cache the common keys

of other KM nodes (Phase 2, Table 5.9).

Table 5.8: Memory and communication overheads of our scheme

Memory requirement of each nodes

MN node (λ+ 1) · q bits

KM node (λ+ 1) · q + q bits

Number of communications required

Key Agreement of MN nodes (intra-cluster) 0

Key Agreement of KM nodes (inter-cluster) 0

Key Agreement of MN nodes (inter-cluster) 1 packet(< 29 bytes) exchange

Key refresh/revocation 1 broadcast; Total size: N · (λ+ 2) · q bits

New node addition 0

Table 5.9: Summary of computation and energy cost of our protocol
Protocol phases Computational costs Energy costs

Phase 1: Key agreement, MN nodes (intra-cluster) 74.07ms 399.98µJ
Phase 2: Key agreement, MN nodes (inter-cluster, without
KM key calculations)

7.276ms 144.52µJ

Phase 3: Key agreement, MN nodes (inter-cluster, with KM
key calculations)

2.207s 12.02mJ

Phase 4: Key refresh/revocation 79.23ms 427.90µJ

5.6 Comparison of Proposed Scheme

Computation, communication and storage complexity are used to measure the effi-

ciency of security schemes in WSNs [62]. Whereas scalability, connectivity and re-

silience are used for measuring performance. In the following subsections, we compare

our scheme with other schemes in terms of efficiency and performance.

5.6.1 Efficiency Comparison

It is important to quantify and compare the efficiency of our scheme with other

schemes in the same category. We compare storage, communication, and computation

overheads of our scheme with the key pre-distribution scheme proposed by Eschenauer
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Figure 5.5: Summary of computation and energy cost of our protocol

and Gligor [38] refereed as EG protocol, centralized ECC based scheme [102] refereed

as C-ECC, and TinyIBE [48] scheme.

Storage Cost

Let us assume a network composed ofM KM nodes and Cn MN nodes, λ is the security

threshold for each cluster. Typically, we have M << Cn and λ ≤ ⌊
(Cn/M)

2
⌋. In our

proposed key management scheme, we used identity-based schemes for generating

both inter and intra cluster keys. Therefore, neither MN nor KM nodes need to

preload private or public keys of other sensor nodes on the network. Each node only

needs to store its secret key or key materials assigned to it by the BS. Hence, after

deployment of the network and without any communication, each node can compute

its shared secret with each of its neighbouring nodes by computing either pairing-

based or polynomial-based operations. Thus total storage requirement (in terms of

key-length unit) for a network with M + Cn sensor nodes and λ security parameter

can be derived as:

((M + Cn)× (λ+ 1)) +M (5.5)

In the case of EG scheme, the probability of connectivity of a network with (M +
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Cn) nodes is calculated by the following equation:

P [Match] = 1−
((P − k)! )2

(P − 2k)!P !
(5.6)

where P is the key pool size, k is the size of the key ring size. With a given

probability of connectivity the total number of preloaded keys in the network can be

calculated as:

(Cn +M) ∗ k (5.7)

Similarly, for TinyIBE scheme, each KM node is pre-loaded with three keys. Thus

total number of pre-loaded keys in the network is:

3 ∗M (5.8)

In the C-ECC scheme each MN node stores a private key and public keys of other

KM nodes. Besides, KM node is preloaded with a pair of private/public key for itself

and with the public keys of other MN nodes. In addition, it also stores a key Kh for

newly deployed nodes. Thus each KM sensor node is preloaded with Cn + 3 keys. In

that case the total number of preloaded keys in the network is:

M ∗ (Cn + 3) + 2 ∗ Cn = (M + 2)× Cn + 3M (5.9)

As an example, let us consider a WSN with M = 50 clusters and Cn = 500

member nodes evenly distributed among all the clusters. With this network and

using λ = ⌊
(500/50)

2
⌋ = 5, the total memory requirements in our proposed scheme

is 3350 keys. Please note that with the λ = 5, an adversary has to compromise at

least half of the member nodes in every cluster to compromise the entire network.

The EG scheme is normally applied in a flat sensor network. Therefore, considering

a flat network setup, let us assume a key pool of 10, 000 keys and each M +Cn = 550

sensor nodes are pre-loaded with 200 keys from the key pool. For a network with

a connection probability not exceeding 85%, the total storage requirement would be

550 ∗ 200 = 11000 keys. This is about 228% more than the total storage requirement

of our proposed scheme. To increase the connection probability in the EG scheme,

we must also increase the size of the key rings, as a result increasing the total key

storage of the network. In contrast, the storage requirement of our proposed scheme

is independent of node connectivity. For the C-ECC scheme, which is an asymmetric
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key-based scheme, the total storage requirement is 26150 keys, which is almost 680%

more than the total storage requirement of our proposed scheme. On the other side,

TinyIBE scheme has a storage cost of only 150 keys, which is much less than the

total network storage required in our proposed scheme. Although TinyIBE has less

memory cost, the operations in TinyIBE is only based on expensive pairing-based

calculations. As a result it incurs high computation and energy overheads.

Figure 5.6: Storage requirements of the proposed and other schemes for large net-
works.

In Figure 5.6 we plot the total storage requirements of our proposed scheme and

other schemes by changing the size of networks. To plot the graph we used Cn =

10, 000 member nodes in each cluster and we have increased the number of clusters

(KM nodes, i.e., M) from 50 to 300 every time increasing by 50. We also used

p = 100, 000 for calculating storage requirements of the EG protocol and varied the

connectivity probability from 33% to 66%. The graph indicates that as the number

of clusters (i.e. M) increases, our scheme performs well compared to other schemes

except TinyIBE. It also indicates that the proposed protocol is scalable in terms of

memory, which means it can be feasibly used in very large sensor networks without

increasing network memory overhead.
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Communication Cost

Energy is precious in WSNs. The most energy-consuming operation in WSNs is

wireless communication. It consumes 80% of the total energy of a sensor mote [103].

Therefore, it is important that transmissions be used carefully. In our proposed

scheme, to establish a secret key with any KM or MN node in the same cluster, it

does not require any prior message exchange. Only knowing each other IDs any pair

of nodes can establish a pair-wise key. However, if nodes from different clusters need

a pair-wise key, it must activate its transmitter twice: once for sending a request to

the KM node and another for receiving an encrypted message of < 29 bytes from the

KM node. Thus only one packet is exchanged by a member node to set up a key with

another member node from different cluster.

In the case of other comparative schemes, each node must exchange at least one

message to establish a secret key. However, the size of the message varies from one

scheme to another. For example, the message broadcast by a node in the EG scheme

contains the list of key identifiers on its key ring. If the key pool contains P = 10, 000

keys and each node is preloaded with k = 100 keys and with a connection probability

of 65%, then each key identifier requires 14-bit. Which can be calculated as: ⌈log2P ⌉

and the broadcast message have a size of 14-bits ∗k = 14 ∗ 100 = 1400-bits or 175

bytes.

In the C-ECC scheme, components include a public key which is a point on the

elliptic curve, its hash value, and a signature comprising two integers provided by

the trusted authority. Using 160-bits, an authenticated ECDH scheme would require

exchange of at least 768-bits or 96 byte.

Now we evaluate the message length of TinyIBE. Using this protocol, the ex-

changed message contains two values C1 and C2. C1 is a point on the elliptic curve

E(F 271
2 ), which can be compressed to 34 bytes and C2 has the size of the session key

(128 − bits). The resulting message has 52 bytes. For our proposed pair-wise key

establishment, typically, nodes in a cluster will need pair-wise keys with its neighbor

in the same cluster thus most of the time we do not require any message exchange.

Therefore, our proposed scheme is much more efficient compared to EG scheme and

TinyIBE. We summarize the comparison of communication costs in Table 5.10.
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Computational Cost

In this section we compare the computational overhead of our proposed scheme with

EG,C-ECC, and TinyIBE schemes. The EG scheme introduces a high storage and

communication overheads, but it has very minimal computational overhead. In this

scheme, a node performs a search in its key ring to find a matched shared key with

other node. Whereas the TinyIBE makes two steps (encrypt and decrypt) on-line to

establish a pairwise session key. The encryption steps involve two hashing operations,

two point multiplications, one exponentiation, one addition, and one XOR operation.

The decryption steps require one ηT pairing calculation and one hashing to retrieve

the session key. On a TelosB mote, result shows it takes 2.62s to perform key compu-

tation in their protocol. On the C-ECC scheme, it uses Elliptic Curve Diffie-Hellman

(ECDH) protocol for key computation and Elliptic Curve Digital Signature Algorithm

(ECDSA) for signature verification in a MICAz mote. The results showed that with

all optimizations enabled, the execution times were: ECDSA initialisation 3,393 ms,

verification 2,436 ms, and for ECDH initialisation 1,839 ms, and key computation

2,117 ms. Hence, key computation and signature verification can take 4.5 seconds,

after initialisation of about 5.2 seconds.

Typically communications in WSNa are limited in neighboring nodes in the same

cluster. In our scheme, key agreement among same cluster nodes take a negligible

time, 74.07ms compared with C-ECC and TinyIBE schemes. Besides, key generation

of nodes from different clusters also shows better result, 2.207s, in our scheme com-

pared with other schemes. If KM node cache the common key of the other cluster

node, then the time for generating the common keys for nodes from different clus-

ters reduces to 7.276ms which is almost 3470 % less than TinyIBE. In Table 5.10 we

summarize the communication, storage and computation costs of all the schemes. It

clearly shows when considered scalability (storage), number of communications and

computational cost of our scheme is better than other compared schemes.

Energy Cost

The total energy consumed in the proposed scheme is 12.99mJ , which is calculated

by adding energy consumption cost of every phase from our proposed scheme shown

in Table 5.9. This is less than 1% of the total available energy in a 3V battery. The
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Table 5.10: Comparison of efficiency of our scheme with different schemes

Scheme Storage Communication Computation
EG scheme (M + Cn) ∗ t 175 Bytes search
C-ECC Scheme M ∗ (Cn + 3) + 2 ∗ Cn = (M + 2)× Cn + 3M 96 Bytes 4.5 Sec
TinyIBE 3 ∗M 52 Bytes 2.62 Sec
Our scheme ((M + Cn)× (λ+ 1)) +M 0, 29 Bytes 74.07 ms, 2.209 Sec

M : # of KM nodes, Cn: # of MN nodes, λ: security parameter

most important task of a sensor mote is sensing. We also compare the total energy

consumed by different phases of our protocol with energy consumption of a typical

sensing operation [95]. The graph in Figure 5.7 shows total energy consumption

of different phases of our proposed scheme versus energy consumption of a single

sensing operation on a sensor mote. It indicates that the total energy consumed by

our protocol is lesser than that by a typical sensing operation, even with Phase 3

(Table 5.9) considered. This implies that our protocol is feasible for deployment in

real-time applications.

Figure 5.7: Energy overheads of proposed protocol vs. sensing
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5.6.2 Performance Comparison

Apart from only being able to provide basic protection, i.e., help in maintaining con-

fidentiality and integrity of information and authenticating the users through secret

keys, a key management scheme in WSNs should be able to provide scalability, con-

nectivity and resilience. These criteria can be used to measure performance of key

management scheme in WSNs [62]. Connectivity means the connection probability

for two nodes have the same predistributed key or establishing a key path between

them. Scalability means whether a scheme support sensor node revocation/addition

for large wireless sensor network. Resilience means the probability that a link is

compromised when an adversary captures a node or the number of sensors required

for adversary to compromise the whole wireless sensor network. In Table 5.11, we

compare the performance of our proposed scheme with key management schemes dis-

cussed in literature survey (Chapter 2). Note that we only show the basic schemes

of each category. The variation schemes may have many differences with the basic

scheme.

Table 5.11: Performance comparison of proposed scheme with other schemes

Scheme Scalability Connectivity Resilience

Single-shared key High 1 1
Pair-wise key pre-distribution Low 1 0
Trusted third-party based scheme High 0

Probabilistic key pre-distribution Medium
((KP − k)! )2

((KP − 2k)!KP ! )
k/KP

Matrix-based key pre-distribution High 1 λ
Polynomial-based key pre-distribution Medium 1 λ
Location-aware key management Medium 1 λ
C-ECC High 1 0
TinyIBE High 1 0
Our scheme High 1 λ

KP: Key pool; k: Key ring



Chapter 6

Security Analysis

In this chapter we present the security analysis of our scheme. Depending on the

network size and security requirements of the application one might choose to use

only pair-wise distributed symmetric based key management (i.e., for flat network

type). To facilitate this option, our proposed protocol can easily be degenerated to a

pair-wise distributed symmetric key protocol as shown in Section 4.3, if it is deployed

in a single cluster mode, the security of the protocol then follows from Section 3.1.3

and would depend on the value of λ, which states that how many nodes the attacker

needs to compromise before he/she can compromise the entire network.

However, if the network size is very large, then one can choose to distribute the

deployment of nodes among different clusters. In that case the security of each indi-

vidual cluster is the same as the security of one cluster scenario. With such setup, the

overall security of the network is improved since, an attacker now has to compromise

M × λ nodes, where M is the number of clusters, to compromise the whole network.

Additionally, to communicate between two clusters the KM nodes use IBC to gen-

erate the keys. The security of IBC is based on the hard Bilinear Diffie-Hellman

Problem (BDHP), which is believed to be difficult to reverse in real-time [67]. A

security analysis of IBC is presented in Section 3.2.4.

Apart from general security discussion, in the following sections we present how

our protocol can withstand some specific security threats.

6.1 Spoofed or Replay Attack

In this type of attack, an attacker may spoof the wireless communication channel and

capture data communication between nodes. Later the attacker replays the captured

message to gain unauthorized access or make the system de-synchronized. In key

agreement phase of our proposed system, only knowing each others ID and without

any message exchange, communicating parties can generate secret symmetric key.
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Therefore, an attacker cannot capture and replay messages. However, in the key

refresh phase, the base station node sends key update materials to all the nodes in

the network. A malicious attacker may capture this update message and replay it

later to launch a de-synchronization attack. To prevent such an attack, note that

the BS encrypts such broadcast messages by each node’s private key (Kii where i is

the node ID), as well as a hash of the message is computed and attached to verify

integrity. After receiving and extracting its part from the broadcast message, each

node first checks the integrity of the message by calculating a hash of the received

message using its currently held private key and comparing it with received MAC. If

the computed MAC matches with the received MAC then, it updates its key. If an

attacker replays a captured broadcast message from BS, the integrity check would fail

because the node would have already updated its private key. Hence, the receiving

node will discard the replayed update/refresh broadcast as bogus message and prevent

replay attack.

6.2 De-synchronization Attack

A de-synchronization attack is launched with an intention to make communicating

parties reach at a different state in their protocol, where they cannot find common

credentials for the communication. In the proposed system, an attacker may prevent

key refresh/update broadcast message to be reached to a particular node. As a result,

all nodes will update their key materials except that particular node. Consequently,

the other nodes will not be able to establish a shared key with it. This would lead to

a de-synchronized state in the system.

To overcome such a situation, when a non-revoked node is unable to establish a

shared key with other non-revoked node, it sends a request to the BS node to resend

the key update/refresh materials for both nodes. For instance, assume node i wants

to send an encrypted message to node j. Node i uses its currently held key Kij for

the encryption and computes MAC of the message. Then, it sends the encrypted

message and the MAC to node j. When node j receives this message it first decrypts

the message and computes MAC of the received message. To verify the integrity of the

message, node j then compares the computed MAC with the received MAC. If they

do not match, then there might by two cases; (i) the key materials used for computing
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Kij or Kji are different on either side, or (ii) some intruder may have modified the

message in transit. In both cases, the receiving node, (i.e., node j ) sends a request

to the BS node to resend the key material update/refresh for both nodes.

Upon receiving such request, the BS node, first keeps a record of the request

and queries both nodes for their current key material values. Once the current key

material values are identified, BS node re-sends the key update/refresh materials to

both nodes separately. If the BS node receives two such requests within a certain

period from the same set of nodes, then it initiates intrusion detection for that part

of the network to determine if the network is under attack. Thus, even though we

cannot completely prevent the de-synchronization attacks, we can detect and recover

from it.

6.3 Denial-of-service Attack

Denial-of-Service (DoS) attack is very difficult to prevent in any system. It is done

with the intention of disrupting the availability of legitimate services. Many DoS

attacks require man-in-the-middle (MiM), where an intruder can actively capture and

modify/drop the data packets. In our scheme, all the broadcast and unicast message

transfers are sent encrypted and a MAC is attached to identify any modifications. If

multiple phenomena are detected, where integrity check fails, nodes can request BS

node to trigger intrusion detection system to identify any potential threats. Another

simple way to launch a DoS attack is by jamming the radio signal. An intruder may

jam the radio signal and disrupt or prevent any message exchange between the BS

node and other nodes. Such attacks are difficult to prevent. However, our protocol

should still perform normally with the non-jammed part of the network.

6.4 Physical Node-capture Attack

As WSNs are deployed in unattended mode, capturing and reading memory contents

of a node is very easy for an attacker. It is challenging to prevent such attacks. In our

scheme, we only store partial key materials in the memory of a node. If an intruder

captures and reads the memory contents of a node, it can only compromise messages

that are transferred between that node with other nodes. However, the attacker will
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not be able to compromise communication of any other set of nodes. To compromise

the entire network, in each cluster, the attacker needs to capture and read the memory

of λ nodes within a short period of time, which makes it hard in the context of WSNs.

6.5 Forward and Backward Secrecy

Forward secrecy means that the sender’s private key is compromised, but the attacker

still cannot recover any previous message M from Ek(M) which is an encrypted text

that the sender sent to somebody before. In contrast, the backward secrecy means

that after compromising the sender’s private key, an attacker cannot compute keys

that would enable him to decrypt future messages that it would send. In our scheme,

if an attacker captures a node and gets hold of its private key materials, then it can

only decrypt messages that were exchanged between that node and other nodes until

the next key update/refresh phase. Once the key materials are refreshed, the new

keys are completely unrelated to old keys. As a result, the attacker cannot infer

anything from the current key materials, and thus, it preserves forward and backward

secrecy.

6.6 Traffic Analysis

In this type of attack, an attacker captures a significant amount of data from the

network and then performs cryptanalysis on the captured data, to gain knowledge of

the encryption and keys used for the encryption. In our scheme, performing traffic

analysis attack would be difficult because as soon as the keys are refreshed, it gets

updated to completely unrelated new key. Moreover, the attacker has to perform the

cryptanalysis and break the security within two key refresh/update phases.



Chapter 7

Conclusion

Key management is a pre-requisite to provide security in WSNs. Because of unique

constraints of WSNs, key management schemes that are used in existing wireless

networks, such as WiFi, WiMAX, MANET, etc, are not applicable in WSNs. More-

over, large network sizes and the lack of physical protection of sensor nodes make key

management harder in WSNs. Symmetric key cryptosystems are lighter in terms of

computation, hence many research works have used such systems to address the key

management problem in WSNs. However, in a very large sensor networks, symmetric

key-based cryptosystems require each node to store a large number of keys. Due to the

constraint on memory in WSNs mote, many such schemes thus become unfeasible. In

contrast, PKI requires fewer number of keys, but expensive in processing and energy

consumption. Signature verification is the most computationally expensive operation

in PKI system. Recent improvements on pairing based encryption techniques have

made it possible to use in WSNs. In PBC, Node’s unique ID is used for key genera-

tion, thus keys are self-authenticated and trusted third-party is not necessary. Large

scale WSNs are typically divided into clusters to optimize resource utilization. A key

management protocol should support the clustered as well as flat networks.

In this thesis, we have presented a hybrid, robust, and non-interactive key man-

agement protocol for WSNs. It combines the pairing based scheme with matrix based

key pre-distribution scheme to propose a novel key management protocol for WSNs.

We provide a scalable key management solution by combining the two schemes that

has better resilience against node capture attack and less memory requirement. It

supports both flat and clustered network type without modification. The proposed

scheme is very flexible and can be adjusted to support the need for many applica-

tions. Because of the computational overhead of PBC, in our scheme, we use the

PBC based scheme at the bootstrapping phase only. After the bootstrapping, nodes

can cache keys for future use, thus we can limit the use of PBC computation very
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occasionally, hence improving the overall performance of our protocol. Our protocol

is non-interactive and ID based, as only IDs are required, in particular no extra public

key data is needed, as a result it uses very less message exchanges and thus less energy

consumption. We do not claim that our scheme is sufficient for providing security in

WSNs and that our scheme is immune from attacks. We do, however, claim that our

protocol is the most feasible solution for many different types of WSNs applications

where it requires scalability, and resilience against node capture, given that there is

no secure storage in WSNs node and memory is scarce. In addition, our scheme can

adopt dynamic network changes without impacting any existing nodes.

The proposed scheme provides mechanisms for new node addition and eviction of

compromised nodes. Additionally, it provides key refresh mechanism without com-

promising security. We have implemented and tested the result of our proposed

scheme in TinyOS using TelosB sensor motes. We then used simulation with result

from real devices to measure performance of our scheme in large-scale network. We

measured efficiency of our scheme in terms of computation, memory, communication,

and energy consumption. To validate our scheme we have compared the results with

other promising schemes in WSNs. Result shows feasibility of using our scheme in

very large networks without increasing memory overhead. Our scheme requires less

computation and provides better security than other schemes. The communication

overhead in our scheme is much less, as a result it consumes less energy. We have also

conducted exhaustive security analysis of our scheme which shows resilience against

many types of attacks. To the best of our knowledge, this is the first protocol in WSNs

which combines the matrix-based key pre-distribution solution with pairing based so-

lution. One important aspect of the proposed scheme is that since it is light-weight,

it can be easily extended to other similar resource constraint emerging networks, such

as MANET, Radio Frequency IDentification (RFID), and Near Field Communication

(NFC).

This thesis provides an effective key management technique that will be of signifi-

cant value to designers of future WSNs and help ensure that their deployment provides

a safe and reliable environment for many important applications. As future work, our

proposed scheme could be extended to provide access control services in a network.

The keys or key materials stored on a node can be used as required knowledge for
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authorizing access to a particular zone or service. When a node requests access to a

specific resource in a network, legitimate nodes in the network can be configured to

verify that the requesting node has a knowledge of the keys / key materials required

for accessing the said resource. Furthermore, our proposed key management scheme

can be extended to heterogeneous wireless sensor networks where cluster head nodes

are powerful in terms of processing, memory and energy. A secure routing structure

can also be devised as an application of our proposed key management scheme (when

used in a flat network setup) so that the network throughput can be increased, data

packet delay can be improved, and routing overhead can be reduced.

Advances in wireless sensor mote hardware in terms of processing, storage, and

energy consumption indicate that it will not take very long time when the sensor motes

would be capable of performing asymmetric operations within acceptable time limits.

If that happens our proposed scheme can take full advantage of the improved hardware

and can be deployed solely using pairing-based scheme (that is without requiring any

member nodes) to provide high security. Additionally, with minimum modifications

the proposed scheme can be applied to other resource-constrained networks such as

mobile ad hoc networks, vehicular ad hoc networks, wireless smart phone networks,

etc. As a final thought, a large scale deployment can be carried out of the proposed

scheme for critical applications to unveil other deficiencies which cannot be dealt with

under simulation.
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[62] M. A. Simpĺıcio, Jr., P. S. L. M. Barreto, C. B. Margi, and T. C. M. B. Car-
valho, “A survey on key management mechanisms for distributed wireless sensor
networks,” Comput. Netw., vol. 54, pp. 2591–2612, Oct. 2010.

[63] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Proceed-
ings of CRYPTO 84 on Advances in cryptology, (New York, NY, USA), pp. 47–
53, Springer-Verlag New York, Inc., 1985.

[64] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems based on pairing,” in
The 2000 Symposium on Cryptography and Information Security, 2000.

[65] A. Joux, “A one round protocol for tripartite diffie-hellman,” Journal of Cryp-
tology, vol. 17, pp. 263–276, 2004. 10.1007/s00145-004-0312-y.

[66] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,”
SIAM J. of Computing, vol. 32, no. 3, pp. 586–615, 2003. extended abstract in
Crypto’01.

[67] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pair-
ing,” in Proceedings of the 7th International Conference on the Theory and
Application of Cryptology and Information Security: Advances in Cryptology,
ASIACRYPT ’01, (London, UK), pp. 514–532, Springer-Verlag, 2001.

[68] C.-K. Chu, J. K. Liu, J. Zhou, F. Bao, and R. H. Deng, “Practical id-based
encryption for wireless sensor network,” in Proceedings of the 5th ACM Sympo-
sium on Information, Computer and Communications Security, ASIACCS ’10,
(New York, NY, USA), pp. 337–340, ACM, 2010.

[69] L. B. Oliveira, R. Dahab, J. Lopez, F. Daguano, and A. A. Loureiro, “Identity-
based encryption for sensor networks,” Pervasive Computing and Communica-
tions Workshops, IEEE International Conference on, vol. 0, pp. 290–294, 2007.



95

[70] Y. Yussoff and H. Hashim, “IBE-Trust: A security framework for wireless sensor
networks,” in Internet Security (WorldCIS), 2011 World Congress on, pp. 171
–176, feb. 2011.

[71] G. YANG, C. ming RONG, C. VEIGNER, J. tao WANG, and H. bing CHENG,
“Identity-based key agreement and encryption for wireless sensor networks,”
The Journal of China Universities of Posts and Telecommunications, vol. 13,
no. 4, pp. 54 – 60, 2006.

[72] L. Martin, Introduction to Identity-Based Encryption (Information Security and
Privacy Series). Norwood, MA, USA: Artech House, Inc., 1 ed., 2008.

[73] Wikipedia, “Vandermonde matrix — wikipedia, the free encyclopedia,” 2013.
[Online; accessed 31-January-2013].

[74] X. Liu, “A survey on clustering routing protocols in wireless sensor networks,”
Sensors, vol. 12, no. 8, pp. 11113–11153, 2012.

[75] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,” IEEE/ACM
Trans. Netw., vol. 14, pp. 479–491, June 2006.

[76] J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-based protocols
for disseminating information in wireless sensor networks,” Wirel. Netw., vol. 8,
pp. 169–185, Mar. 2002.

[77] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Di-
rected diffusion for wireless sensor networking,” IEEE/ACM Trans. Netw.,
vol. 11, pp. 2–16, Feb. 2003.

[78] A. Forster and A. Murphy, “Clique: Role-free clustering with q-learning for
wireless sensor networks,” in Distributed Computing Systems, 2009. ICDCS
’09. 29th IEEE International Conference on, pp. 441 –449, june 2009.

[79] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient com-
munication protocols for wireless microsensor networks,” Hawaaian Int’l Con-
ference on Systems Science, 2000.

[80] K. Hwang, C.-S. Wu, B.-C. Cheng, C.-C. Cheng, J.-B. Lin, and H. Chen, “An
improved leach-based power aware routing protocol in wireless sensor networks,”
in Communications and Networking in China, 2008. ChinaCom 2008. Third
International Conference on, pp. 726 –731, aug. 2008.

[81] Z. Liu, Z. Liu, and L. Wen, “A modified leach protocol for wireless sensor
networks,” in Advanced Computational Intelligence (IWACI), 2011 Fourth In-
ternational Workshop on, pp. 766 –769, oct. 2011.

[82] L. Buttyán and P. Schaffer, “Position-based aggregator node election in wireless
sensor networks,” IJDSN, vol. 2010, 2010.



96

[83] P. Ding, J. Holliday, and A. Celik, “Distributed energy-efficient hierarchical
clustering for wireless sensor networks,” in Proceedings of the First IEEE inter-
national conference on Distributed Computing in Sensor Systems, DCOSS’05,
(Berlin, Heidelberg), pp. 322–339, Springer-Verlag, 2005.

[84] M. Ye, C. Li, G. Chen, J. Wu, and M. Y. E. Al, “Eecs: An energy efficient
clustering scheme in wireless sensor networks,” in In: Proc. of the IEEE Intl
Performance Computing and Communications Conf, pp. 535–540, IEEE Press,
2005.

[85] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation
in wireless sensor networks,” in Distributed Computing Systems Workshops,
2002. Proceedings. 22nd International Conference on, pp. 575 – 578, 2002.

[86] L. Wang, J. Liu, and W. Wang, “An improvement and simulation of leach
protocol for wireless sensor network,” in Pervasive Computing Signal Processing
and Applications (PCSPA), 2010 First International Conference on, pp. 444 –
447, sept. 2010.

[87] J. Xu, N. Jin, X. Lou, T. Peng, Q. Zhou, and Y. Chen, “Improvement of leach
protocol for wsn,” in Fuzzy Systems and Knowledge Discovery (FSKD), 2012
9th International Conference on, pp. 2174 –2177, may 2012.

[88] O. Younis and S. Fahmy, “Heed: A hybrid, energy-efficient, distributed clus-
tering approach for ad hoc sensor networks,” IEEE Transactions on Mobile
Computing, vol. 3, pp. 366–379, 2004.

[89] G. Chen, J. W. Branch, and B. K. Szymanski, “Local leader election, signal
strength aware flooding, and routeless routing,” in In 5th IEEE Intern. Work-
shop Algorithms for Wireless, Mobile, Ad Hoc Networks and Sensor Networks,
pp. 4–8, IEEE CS Press, 2005.

[90] C. Fetzer and F. Cristian, “A highly available local leader election service,”
IEEE Transactions on Software Engineering, vol. 25, pp. 603–618, 1999.

[91] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes
(North-Holland Mathematical Library). North Holland, June 1988.

[92] D. Crossbow, “Micaz — crossbow datasheet,” January 2013.

[93] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing pairwise keys for secure
communication in ad hoc networks: A probabilistic approach,” in Proceedings
of the 11th IEEE International Conference on Network Protocols, ICNP ’03,
(Washington, DC, USA), pp. 326–, IEEE Computer Society, 2003.

[94] M. Boujelben, H. Youssef, and M. Abid, “An efficient scheme for key pre-
distribution in wireless sensor networks,” Wireless and Mobile Computing,
Networking and Communication, IEEE International Conference on, vol. 0,
pp. 532–537, 2008.



97

[95] W. S, O. Rosemary, W. Ninging, H. Michael, O. Brendan, and M. S. Cian,
“Practical wireless sensor networks power consumption metrics for building
energy management applications,” 23rd European Conference Forum Bauinfor-
matik 2011, 2011.

[96] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill,
M. Welsh, E. Brewer, and D. Culler, “Tinyos: An operating system for sen-
sor networks,” in in Ambient Intelligence, Springer Verlag, 2004.

[97] D. Gay, M. Welsh, P. Levis, E. Brewer, R. V. Behren, and D. Culler, “The nesc
language: A holistic approach to networked embedded systems,” in In Proceed-
ings of Programming Language Design and Implementation (PLDI, pp. 1–11,
2003.

[98] Mica2 data sheet, “Crossbow Technology Inc..” http://www.xbow.com/. Ac-
cessed April 20, 2012.

[99] W. Page, “Intel mote 2,” December 2012.

[100] TelosB data sheet, “Crossbow Technology Inc..” http://www.xbow.com/. Ac-
cessed April 20, 2012.

[101] P. S. L. M. Barreto, S. Galbraith, C. O. Heigeartaigh, and M. Scott, “Efficient
pairing computation on supersingular abelian varieties,” in Designs, Codes and
Cryptography, pp. 239–271, 2004.

[102] X. Du, Y. Xiao, S. Ci, M. Guizani, and H.-H. Chen, “A routing-driven key
management scheme for heterogeneous sensor networks,” in Communications,
2007. ICC ’07. IEEE International Conference on, pp. 3407 –3412, june 2007.

[103] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and M. Welsh, “Sim-
ulating the power consumption of large-scale sensor network applications,” in
In Sensys, pp. 188–200, ACM Press, 2004.



Appendix A

Raw Data from Experimental Results

The Table A.1 shows the results of 20 runs from the experiment. For each run, the

computational time for evaluating λ-degree polynomial on a TelosB sensor mote is

shown. The value of the λ is varied from 16 to 128, doubling its value every time.

Table A.1: Computation time for key agreement using matrix-based polynomial eval-
uation on TelosB mote

Run# λ = 16 λ = 32 λ = 64 λ = 128
Running Time in Milliseconds

1 7.903 15.901 34.972 73.917
2 7.507 16.423 33.949 74.197
3 8.052 16.894 35.782 74.107
4 7.523 16.762 34.827 74.11
5 7.833 17.202 34.692 73.917
6 8.012 16.524 34.902 74.119
7 7.021 16.782 34.881 74.211
8 7.611 17.132 34.91 73.817
9 8.23 16.921 35.851 74.271
10 8.113 16.238 34.751 73.915
11 7.239 16.921 35.019 74.198
12 8.124 16.412 35.101 74.17
13 7.824 16.782 34.718 74.224
14 7.123 17.101 34.821 74.187
15 8.34 16.921 34.902 73.991
16 8.702 16.8012 34.912 73.819
17 7.902 17.11 34.981 74.217
18 8.231 16.928 34.891 74.082
19 8.034 16.889 34.987 74.115
20 8.201 17.018 34.864 73.889

Avg. Time (ms): 7.87625 16.78311 34.93565 74.07365

In Table A.2, we show the raw computational time of 20 runs from the experimen-

tal results. In each run, a common key between two nodes is computed on a TelosB

mote using pairing-based calculations. We have used the TinyPBC [47] library for

computing the common key.
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Table A.2: Computation time for key agreement using pairing-based operation on
TelosB mote

Run# Running Time (sec)
1 2.421
2 1.982
3 2.2012
4 1.921
5 2.312
6 2.2589
7 2.342
8 2.012
9 2.123
10 2.298
11 2.134
12 2.201
13 2.312
14 2.19
15 2.312
16 2.223
17 2.231
18 2.121
19 2.2012
20 2.314

Avg. Time (sec): 2.205515
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