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Abstract

This thesis is to develop a novel consensus algorithm or protocol for multi-agent
systems in the event of communication link failure over the network. The structure
or topology of the system is modeled by an algebraic graph theory, and defined as
a discrete time-invariant system with a second-order dynamics. The communication
link failure is governed by a Bernoulli process. Lyapunov-based methodologies and
Linear Matrix Inequality (LMI) techniques are then applied to find an appropriate
controller gain by satisfying the sufficient conditions of the error dynamics. Therefore,
the controller with the calculated gain is guaranteed to drive the system to reach a
consensus. Finally, simulation and experiment studies are carried out by using two
Mobile Robot Pioneer 3-DX sand one Pioneer 3-AT as a team to verify the proposed

work.
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Chapter 1

Introduction

The following sections outline the background for the research work, including a
research motivation, multi-agent system overview with applications, and research

contributions.

1.1 Research Motivation

Multi-agent systems (MAS) are composed of several intelligent agents which are
capable to interact each other through communication channels. Since the advantage
of the larger amount of agents, the multi-agent system are widely used at a relatively
large scale of projects which are difficult or impossible for a single agent system to
achieve. In order to control a multi-agent system for a task, the most important
challenges is to ensure each agent in the system is able to cooperative each others
by sharing information, and eventually reach consensus. The consensus is like a
agreement among the system, each agent needs to follow this agreement in order to
successfully complete the job or task. For example, in a formation control, the goal is
to make all agents move at certain shape with the same speed. It is just like a parade.
Therefore, in this case, the consensus happens when all agents asymptotically move
with the same velocity and form a flock without collisions. In order to reach this
consensus, each agent needs to share its elemental information to others in terms
of velocities, positions or accelerations. This information is also called information
state, which can be single or multiple, depending on what kind of task is required.
Mathematically, the consensus can be reached by designing cooperative control
protocols for each agent based on the local information exchanged from others. Thus

all agents are converged to a common value in state space.

The applications for MAS include space-based combat, surveillance, terrain mapping,
and underwater vehicle’s mine hunting, etc. To enable these applications, various
cooperative control capabilities need to be developed, including formation control,
rendezvous, flocking, foraging, and air traffic control, etc. For MAS consensus, one
of the most important challenges is the uncertainty caused by inter-vehicle communi-

cation, i.e., the information exchange among vehicles is unreliable. Today, agents in
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multi-agent systems are mostly and popularly controlled through wireless networked
systems due to its incomparable advantages in cost, operation range, flexility, and so
on. However, wireless networks are not always as reliable as hardwired ones due to
connection strength, bandwidth constraints, which can cause packet delays and data
losses. Therefore, the networked control system stability has been studied extensively
associated with communication channel constraints. These new interesting and chal-
lenging problems regarding MAS with wireless networked control are the motivation
of the works presented in this thesis.

1.2 Multi-agent System Overview

In order to understand a multi-agent system, first, we need to know what an agent
is. In [1], an agent is a computer system capable of autonomous action in some
environment to achieve its delegated goals. It is shown from Fig. 1.1. An agent
can act like a human, it has sensors to obtain information from the surrounding
environment, and actuators to perform its action, Therefore an qualified agent is
able to percept, decide and act based on the feedback from the environment and
reprogrammed goals.

EENSOrS

F N 5
D2
ey -~
—— S
=i T - \/\. %" )
ervirerment |f —JI? %:_:
) o

eliectors/

actuators

Figure 1.1: A Agent [1]

In [1] multi-agent system is defined as that one system consists a number of agents,
which interact with one-another. In most cases, all agents are programmed by the
same team and collaborated to complete the same task. To ensure a successful in-
teract, each agent requires the ability to cooperate, coordinate, and negotiate with
others, shown in Fig. 1.2. The field of cooperative control of multi-agent systems can
trace back to the late 1980's, when several researchers started to investigate issue in
multiple robot systems. Before that, researches have been mainly concentrated on a
single robot [3]. Thanks to the advent of communication technologies, especially the
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introduction of inexpensive and reliable wireless communication systems, researches
on distributed control of multi-agent systems have been dramatically grown in the
1990’s [4]. By the early 2000's, cooperative control of multiple agents have been
mainly developed by using of unmanned aerial vehicles (UAVs) in United stats [5],
spurring further researches on this field. In Fig. 1.3 shows well-known UAV global
hawk formation flying, which is one of multi-agent system applications. Over the
last decade, this research area has been blossomed, since a single complex system can
be efficiently replaced by an interacting multi-agent system with simpler structures.
In fact, a group of small non-holonomic robots such as, wheeled robots or UAVs
with simple structures can achieve more complex tasks at a lower cost than a single
complex robot owing to their modularity and flexibility [6].

Load Carriage | Mobile Object Catching
Objects Rearrangement \ Work Assembly

Figure 1.2: A Multi-agent System [2]

In [8], the cooperative control for multi-agent systems is categorized into two prob-
lems, one is formation control with applications to mobile robots, UAVs, satellites,
aircraft, and automated highway systems; the other is called non-formation control,
such as task assignment (constructing a building), playload transportation, and role
assignment. Cooperative control of multi-agent systems poses significant theoretical
and practical challenges. In [9], author has listed four challenges. First, the complex
of architecture of MAS, involving several subsystems rather than a single system.
Second, the limitation of communication bandwidth and connectivity among the sys-

tem may cause the information exchanging unreliable. It is also difficult to show how



Figure 1.3: Global Hawk Formation Flying [7]

the communication channel to be established in order to decide what to communicate
and when and with whom the communication takes place. Third, consensus between
the team goals and individual goals need to be achieved. It is challenging to reach
both goals without any compensation. Fourth, since MAS includes multiple agents,
and computational resources of each individual agent will be always limited compared
with a single agent. In this thesis, the research objective is to concentrated on first
two challenges. For example, the first challenges is solved by adopting a directed
algebraical graph, and the second challenge is managed by using Bernoulli process
governed data losses.

1.3 Comnsensus Control Review

Multi-agent System consensus control can be noticeably divided into two phases; one
is an early period, researchers focused on the strategies to ensure each member of
system can be reached consensus without communication channel constraints, and
followed by a recent phase, researcher focused consensus strategies with communica-
tion channel constraints, such as packets dropout and time delays. In this section, it
summarizes consensus controlling techniques in two categories with the most elemen-

tal and recent research articles in this field.



1.3.1 Multi-agent Systems Consensus without Communication
Constraints

Consensus problems have recently been studied with different controlling techniques.
In [10] and [11], a algebraic graph based method is used to ensure the stability of
controlling multi-vehicle formation. The algebra graph theory is widely applied for
controlling of multi-agent systems. A graph consists of a set of nodes or vertices
V' together with a set of edges E. The V is symbolized identified agents, and F
is symbolized the communication channels. If any agent can be reach directly or
indirectly from others, then the system can be converged. Now the problem is
how to prove the system can reach consensus. In [12] an Nyquist criterion that
used the eigenvalues of the graph Laplacian matrix to determine the effect of the
communication topology on formation stability. In [13] and [14], the multi-agent
system is inspired by a topological structure of the network. However it was
characterized by a digraph eventually. By means of transforming the Laplacian of
the digraph into its Frobenius canonical form the system, which can decompose into
one or several minimal-independent subsystems, and ensure each subsystem achieve

consensus in result of entire system reach consensus.

In a higher order dynamics, such as [15]. It modeled the multi-agent system in
a directed graph, where the agents are with dynamical order two. The control
protocol depends on two parameters, position-cooperative and velocity-cooperation
parameter, as well as the Laplacian associated with communication network. Finally
using matrix analysis approached the necessary and sufficient conditions for inertial
state and position and/or velocity inertia-consensus, were given for the second-order
systems. In [16], it also introduced a second-order consensus protocol and derived
necessary and sufficient conditions under uni-directional interaction topologies.
In [17], this paper also modeled agents by identical linear nth order dynamical
systems and the interconnection topology between the agents is modeled as a directed
weighted graph. In [18], this paper addressed the control of a team of nonholonomic
mobile robots navigating in a terrain with obstacles while maintaining a desired

formation and changing formations when required, using graph theory.

In [19], a proposed approach shares many of the limitations of the Extended Kalman
Flitter (EKF), such as a lack of guaranteed stability. Nevertheless, it can be expected
that the wide successful usage of the EKF implies that the current approach will

suffice for many problems of practical interest. The modified relative dynamics can
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be viewed as linear system with uncertain parameters and an optimal guaranteed
cost control law can be applied. In [20], distributed flocking algorithms for a multi-
agent system are designed and analyzed on theoretical framework with considering of
multiple obstacles. An Linear Matrix Inequality (LMI)-based designed to ensure reach
convergence with necessary and sufficient condition. In [21], two model independent
solutions to the problem of controlling wheel-based mobile platforms were proposed.
These two algorithms were based on a so called virtual vehicle approach, where the
motion of the reference point on the desired trajectory was governed by a differential
equation containing error feedback. In [22], author considered undirected formations
for centralized formations and directed formations for decentralized formations.

1.3.2 Summary

Based on literatures in this domain, the algebraic graph theory is a very mature
approach the structure of the multi-agent system. each node is represented as an
agent, the communication transmission is modeled as edges in the graph. This
method is mostly used for a non-predefined trajectory, such as [11]. The other way to
model the system is focused on single agent with predefined trajectory. If all agents
follow their own trajectory, then the system reaches consensus, such as [21]. It used
a called virtual vehicle approach, which is a geometric path following approach. In
this thesis, a non-virtual leader is proposed, the system is flexible and followers reach
consensus based on the information of the leader, which is more practical with wider

applications. Therefore, an algebraic graph theory is used in this thesis.

Once the structure is established, the next step is to decide the system dynamics,
most articles are focused on a single integrator dynamics due to the simplicity.
Normally the higher order can represent more complicated system, such as [15].
In this paper, the controlling algorithm depends on both position and velocity
cooperation. In this thesis, a double integrator dynamics is adopted. The most
important step is to verify the stability of the system. The fundamental condition of
consensus is to share information among system, and ensure each agent can reach the
sharing information. Several techniques are used to verify the stability of the system,
like in [12], an Nyquist criterion that used the eigenvalues of the graph Laplacian
matrix to determine the effect of the communication topology on formation stability.
Moreover in [13] and [14], the stability is proved by transforming the Laplacian of
the digraph into its Frobenius canonical form the system.
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1.3.3 Multi-agent Systems Consensus with Communication Constraints

Recently, the studies on multi-agent system have been considered of communication
channel constraints among the system. Since the MAS control is still considered as
a relatively new technology, a number of technical challenges need to be overcome
before they are to be used effectively. In [23], one of the most important challenges is
the uncertainty caused by inter-vehicle communication,i.e., the information exchange
among vehicles may be unreliable. Therefore, the networked control system stability
has been studied extensively associated with communication channel constraints.
Most of relevant studies still primarily focus on a algebraic graph theory to present
a structure of the system. However communication links are not stable or reliable
anymore. In this phase, researchers need to find a method to represent the constraint
of communication channels, and then prove the system is stable in the event of
communication constraints. In [24], it proves that the agents over arbitrary switching
topologies converge to a common steady state if the undirected or directed interaction
topology is jointly connected. In [25], the multi-agent system had a discrete-time
single-integrator dynamics, and the communication topology was modeled by a
undirected and time-varying graph. This time-varying graph changes depended on a
decentralized Model Predictive Control (MPC).

In [26] and [27], it pointed the integral connectivity was a key concept for solving the
consensus problem under time-variant network, and dynamics of agents was described
by a single and double-integrator respectively in these two papers. In [28], author
studies the affection of both packet dropout and transmission delays induced by
communication channels in the system. Both continuous-time and discrete-time cases
were studied, and the proposed LMIs technique was based on Lyapunov-Razumikhin
and Lyapunov-Krasovskii function method respectively. In [29], an Hoo controller
synthesis was studied with time delay system approach. The goal was to utilize an
Hoo norm to provide a pe-specified disturbance attenuation level, and alternatively
to analyze robust stability of dynamical system. Again, a LMI technique was to
examine the condition of stability in order to ensure the consensus of the multi-agent

system.

In [30], the interaction topologies were studied with dynamically changing, which
can represent some certain communication links were broken due to bandwidth
constraints. Both discrete and continuous update schemes were proposed for infor-

mation consensus. This note shows that information consensus under dynamically
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changing interaction topologies could be achieved asymptotically if the union of the
directed interaction graphs have a spanning tree frequently enough as the system
evolves. In [31], each member of group updated its current state based on the
current information received from neighboring agents. The neighboring agents could
be varied from time to time depended on the strength of communication channel
and designed topologies. Once more, the stability analysis is based upon a blend of
graph-theoretic and system-theoretic tools. In [32], the agent’s information was only
updated from the closet agent. The system model was based on the Vicsek model,
which was proposed by Vicsek at 1995. It was a simple but compelling discrete-time
model of n autonomous agents. Finally, author approved that a graphic example of
a switched linear system which was stable using Vicsek model.

In [33], authors used Euler—Lagrange systems for distributed coordinated tracking
problems. A group of followers were modeled by full-actuated Euler-Lagrange equa-
tions, and track a dynamic leader whose vector of generalized coordinates was time
varying under the constraints. However in [34], it was also used Euler-Lagrange
systems, a adaptive controller that could achieve global full-state synchronization.
For example, the difference between the agents positions and velocities asymptot-
ically converges to zero. In [35], author considered a team of continuous-time of
second order agents communicating via switching topology, which was modeled by
Bernoulli random process. A necessary and sufficient condition of the solvability of
the mean-square robust consensus problem was established to ensure the consensus

of the multi-agent system.

1.3.4 Summary

Once the system is subjected to a communication constraints, the focus is to prove
the system’s stability in the even of communication constrains, such as data losses,
packet delays. Therefore a static or original algebra graph theory cannot be applied
directly. Most researcher implemented a time-variant switching graph, and then prove
the system to reach consensus by using different methods, such as Model Predictive
Control, Hoo, and Lyapunov based methods, followed by a LMI technique which is
to examine the condition of stability in order to ensure the consensus of the multi-
agent system. The communication constrain can be represented by the Vicsek model,
Euler-Lagrange systems or Bernoulli random process. Therefore, after reviewed all
relevant articles, a switching algebra graph governed by Bernoulli process is used to
model the structure of the system, since it has been widely used. Lyapunov based



methods and LMI techniques also are used to examine the condition of stability.

1.4 Applications Overview

In this section, it summarizes some of the main applications for the control of multi-
agent systems.

1.4.1 Formation Control

With the development of advanced technologies, modern military systems have been
becoming increasingly sophisticated with unmanned vehicles. Especially, at early
2000's, unmanned aerial vehicles (UAVs) were significantly attracted military’s inter-
est because of low cost, easy maneuver, high stealthy and the most important is zero
casualty. One of the simplest cooperative control problems is flight formation control
over multiple UAVs by cooperating with other UAVs. Basically, in a flight forma-
tion control, each member needs to know at least the relative locations and speeds of
nearby aircraft. The earliest research on this area was proposed by Parker in [36]. The
control laws for cooperative agent teams utilized a combination of local and /or global
knowledge to achieve a formation. It presented some general guidelines and princi-
ples for determining the appropriate level of global versus local control. According
to [37], back to 2002, NASA also implemented a very courageous experiment in flight
formation control by using F/A-18 fighters . It proved that unmanned aerial vehicles
can reduce human error and increase accuracy during a formation flight, shown in
Fig. 1.4.

Figure 1.4: F/A-18 Formation Flight [38]
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1.4.2 Rendezvous and Cooperative Attack

Another application of multi-agent system for military is to rendezvous the troops
and attack cooperatively. Fig. 1.5 shows a battle space management scenario and
illustrates that each member of troop, such as tanks, aircrafts, control bases can
receive and send commands to each other to form a multi-agent system. It highly

increases the efficiency of operation.

Figure 1.5: Multi-agent System Application in Modern Military Operation [39]

1.4.3 Data Collecting and Sampling

Since multi-agent systems have more advantages in massive tasks because of larger
number of agents. In many areas, MAS are used to collect and sample data, such as
biology, geography, and oceanology. In [40], it shows an autonomous ocean sampling
network created by monterey bay aquarium research institute is an example of an
environmental sampling network. This system consists of a collection of robotic ve-
hicles that used for sampling. Another example is to patrol and map in an unknown
environment by sending a group of vehicles and mapping rapidly based on informa-
tion or data collected by each member. Fig. 1.6 shows a number of robots employ in

the patrolling task, and each closed loop represents a trajectory of each robot.
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Figure 1.6: Multi-agent System Application in Mapping [41]

1.4.4 Intelligent Transportation System

The application of multi-agent system in transportation systems are also received
considerable attentions over the last few decades. One of examples is an intelligent
transportation system. The goal is to use modern communication and information
technology to increase the efficiency of a transportation management system in
order to optimize vehicle life, fuel efficiency, safety, and traffic. In this system, each
vehicle can be treated as an agent, and they can communicate and share information
between each other, shown in Fig. 1.7.

Another example is called an automatic highway system. A group of automatically
driven cars are in a close spacing in the highway, which is a method of increasing
the capacity of roads without adding any traffic lane. In 1997, California Partners
for Advanced Transit and Highways (PATH) demonstrated an automatic highway
system by allowing cars to be driven automatically down a highway at a very close
spacing, shown in Fig. 1.8.

As density of air traffic continues to increase, air traffic control systems are another
area where multi-agent system cooperative control can be applied ( [44] and [45]). It
is like the automatic highway system, the air traffic control can reduce human error

during a heavy load of air traffic, and increase the operational efficiency.
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Figure 1.7: Multi-agent System Application in Intelligent Transportation System [42]

Figure 1.8: Multi-agent System Application in Automatic Highway System [43]

1.5 Thesis Contribution

The main contribution of this thesis is to develop a novel consensus controlling
algorithm for a cooperation control problem of a multi-agent system with stochastic

communication link failures among the system.

i) Specifically, the topology of MAS is modeled by a direct algebraic graph, and
each transmission of communication link is assumed to be unreliable. Therefore
a Bernoulli Process is implemented to represent the packet dropout during data

transmission.

ii) A system dynamics is defined as a discrete time-invariant with second-order
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system. The consensus problem is first converted into a corresponding error dynamics

in order to form a leader following consensus.

iii) Lyapunov-based methodologies and Linear matrix inequality (LMI) techniques
are applied to find the sufficient conditions of the error dynamics for the stabilization

controller design.

iv) Moreover, it systematically summarizes the effect of data loss rate, communication

weight, initial value, and sampling time on the efficiency of the controller.

v) Another important contribution is to experiment the consensus controller into
Pioneer 3 wheeled robots by modifying kinematic model of the nonholonomic
differentially driven mobile robots.

vi) Finally, these simulation results and experiments approved the feasibility and

effectiveness of the proposed controller.

1.6 Thesis Outline

The thesis outline is structured as follows. In Chapter 2, a background of algebraic
graph theory associated with multi-agent system is introduced. In Chapter 3 and
4, the design of the consensus control strategy for distributed cooperation control
problems of multi-agent system with group random communication failure is demon-
strated. In Chapter 5, the simulation works are proceeded to test the effectiveness and
feasibility of the proposed algorithm by discussing effects by data loss, communication
weight, initial value, and sampling time. In Chapter 6, simulation results on Pioneer
3 robots are shown by modifying a double-integrator into a single-integrator system.
Moreover, simulation results show the actual trajectories of robots. A comparison
study is also conducted in this chapter to prove the effectiveness of the designed con-
troller. In Chapter 7, the experimental results regarding the main works represented
in Chapter 3 are shown. Chapter 8 presents the conclusions and future works.



Chapter 2
Multi-agent System with Graph Theory

2.1 Algebraic Graphic Theory

In order to completely understand the consensus control of multi-agent systems, al-
gebraic graphic theory is one of the most fundamental concepts and approaches. In
multi-agent systems, the information exchanging is normally modeled by directed or

undirected graphs.

2.1.1 Directed and Undirected Graph

In [46] and [47], a directed graph also called digraph consists of a set of nodes or
vertices V' together with a set of edges E. The digraph is represented as G(V, E),
the V is symbolized identified agents, and FE is symbolized the communication
channels. For example, if (,7) is an edge in F, then Agent i can receive information
from Agent j. In contrast, for an undirected graph, the edge (i,j) represents
Agent i and j can exchanged information in both directions. In other words,
the undirected graph also can be considered as a combination of two directed
graph edge with opposite directions. For example, in Fig. 2.2(a) , there are five
vertices, and each of them represented as an agent, then V = (1,2,3,4,5), and
E = (5,4)(1,5)(2,5)(4,1)(2,1)(3,2). For example, (5,4) means the formation can
be only transferred from Agent 4 to 5. At (b), it is an undirected graph, then
V = (1,2,3,4,5), with E = (5,4)(5,1)(4,1)(2,1)(2,3). For example, (5,4) means
the formation can be transferred from Agent 4 to 5 and vice versa. Therefore,
an undirected graph is more reliable than a directed graph due to its unique
double direction of transmission. In this thesis, the focus is on a system with an
unreliable network; thus the directed graph is chosen to model the multi-agent system.

2.1.2 Adjacency Matrix

Firstly, some terminologies in the graphic theory need to be defined. In [48], spanning
tree is a connected graph that contains no cycles. In a tree, every pair of points is

connected by a unique path. That is, there is only one way to get from node i to

14
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I3

(a) (b)

Figure 2.1: (a) Directed Graph (b) Undirected Graph with 5 Agents

_l

(a) (b)

Figure 2.2: (a) Directed Spanning Tree (b) Strongly Connected Directed Graph

j. Fig. 2.2(a) illustrates a directed tree. A directed graph is strongly connected if
any vertex in G is reachable for from each other vertex, which is shown on Fig. 2.2(b) .

Degree in the graph theory is the number of vertices adjacent to a given vertex is
called the degree of the vertex and is denoted d(v). It can be obtained from the
adjacency matrix of a graph by simply computing each row sum. For example, the
degree of vertex 5 in Fig. 2.2(b) is 4. However in the case of the directed graph,
the degree is defined as indegree and outdegree. The indegree is the number edges
pointing to a node V' (i.e. incoming edge), denoted id(v). For example, the id(4) in
Fig. 2.2(b) is 2, because two incoming edges point toward to node 4. The outdegree
is the opposite definition of indegree, the od(4) in Fig. 2.2(b) is 1. In this thesis,
all degrees are unified as the indegree. Every graph is associated with an adjacency
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matrix to represent the relationship of connection among agents. It is a binary n x n
matrix A, where n is the number of agents. The adjacency matrix A, = [a;; - w;;] is
defined as a; =0, and a;; = 1 if (j,7) € E where i # j. For example, at Fig. 2.1(a) ,
the adjacency matrix A, is defined as

0 0 0 0 lws
1WQ1 0 0 0 1(")25
Aa = 0 1Ld32 0 0 0 (21)

1Ld41 0 0 0 0
0 0 0 1&)54 0

where w;; called communication weight or weight can be independently added in each

channel to define a corresponding information flow rate. It is represented as w;;, and
which means there is a weight w;; added on the edge of Agent j to 7. In [47], w;; is
a percentage gain to control the information flow rate in the channel, 1 means 100%
of information capacity, and 0 means the channel is disconnected. Therefore, w;; is
selected from 0 to 1.

2.1.3 Laplancian Matrix

A Laplancian matrix L of a directed graph is an n x n matrix as well, L = [[;;] € R™*™
aslij =, aijwij and li; = —a;;-w;j for all i # j. Note that of (j, ) is not connected,
then l;; = —a;; - w;; = 0. According to the definition as shown from the above, Fig.

2.1(a) has Laplacian matrix L as following:

lwis 0 0 0 —1lws
—lwor lwis + lwes O 0 —lwas
L= 0 —lwsy lwsy 0 0 (2.2)
—lwy 0 0 lwn 0
0 0 0 —lwsy lwsy

If the w;; is one for all links, then Laplacian matrix L becomes

1 0 0 0 -—1]
-1 2 0 0 -1
L=w;| 0 =11 0 0 (2.3)
-1 0 0 1 0
0 0 0 -1 1 |
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As known from [48], for an undirected graph, L is symmetric. However, for a directed
graph, in both types of graphes, since row sums are 0, 0 is an eigenvalue of L with
associated eigenvector 1 £ [1,...1]7, which is the n x 1 column vector of ones, and [ is
diagonally domain and has non-negative diagonal entries. According to Gershorin”s
disc theorem [49], for an undirected graph, all of the nonzero eigenvalues of L are
positive, while for the undirected graph, the L has the positive real parts for the
nonzero eigenvalues. Then the real eigenvalues of L satisfies 0 = A\; < Ay < A3 < Ay
[48]. In [12], for a directed graph, 0 is a simple eigenvalue of L if the directed
graph is strongly connected. From [48], because the column vector 1, of ones is
an eigenvector associated with the zero eigenvalue, which implies that span{l,} is
contained in the kernel of L. It follows that if zero is a simple eigenvalue of L,
then x(t) — Z1,, where x(¢) is information state, and Z is a scalar constant, which
implies that |z;(t) — z;(t)] — 0, as t — oo, for all 4, j = 1,...n., where z;(t) and
x;(t) represent the Agent ¢ and j’s information states. If |z;(¢) — x;(¢)] — 0, then
both information state in Agent ¢ and j will be convergent. Therefore the consensus
is reached, then ensuring zero is a simple eigenvalue of L is the condition of the
consensus in term of the system’s topology. The next section lists a few examples to

prove this condition.

2.2 Consensus Condition in MAS Networks

Consensus control in multi-agent systems can be divided into centralized and de-
centralized approaches. In this thesis, all of consensus algorithms are based on the
decentralized or distributed control method, since it only needs to deal with the local
neighbor-to-neighbor interaction, and evolve in a parallel manner. Because of these
facts of distributed control, it reduces the communication requirements, and improves
the system’s reliability. Compared to the centralized control, if one agent failed, the
entire system will be dysfunctional. The consensus problem is to design an update
law, which allows the information states of all agents in the network to converge into
a common value. The information state can be selected as local positions of each
vehicle, or velocity and direction of the motion. This problem is a canonical problem
in distributed coordination, and it can be solved by using algebraic graph theory. In
particularly, we assume that each agent is located at and that it can only measure
the relative position of its neighbor, i.e it can only measure x; — z;,V; € N;.
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2.2.1 Single Integrator as An Example

If each agent has single integrator dynamics, i.e. &; = u;,then the continuous consen-
sus algorithm is given in [48].

X; = — Z(Xl - X;j) (2.4)
JEN;
where N; is the set of agents or robots adjacent to Robot ¢, and it can also be
represented as adjacency matrix. since the network is assumed to be static dynamics,
the adjacency matrix A, is unchangeable. Then Eq.(2.4) can be rewritten as

n

X; = — Zaij(xi - Xj). (2.5)

J=1

Expanse the Eq.(2.5)

N
x; = —deg(v;)x; + Z a;jX; (2.6)
i=1
where the deg(v;) is the indegree of node i in the directed graph, and a;; is the
adjacency. Because

L=D-A,

where D is the indegree matrix. and A, is the adjacency matrix. Eq.(2.6) can be

written in the Laplacian matrix

X = —Lx (2.7)

where x = [x;,....,xy|T. By [48], it is known that the system’s stability properties
are entirely dependent on the eigenvalues of L matrix. But from the previous section,
we know that as long as graph G is connected, and the L is positive semi-definite,
then the — L is the negative semi-definite with a single zero for one of the eigenvalues,
and all others are real and negative. As such, the system is stable, and x will tend to
be the null-space of L asymptotically, x; — «, as ¢ — 0o, where « is the final state
value. Eq.(2.4)-(2.7) are assumed that there is no communication delay during the
operation. When information is exchanged among vehicles through communication,
time delays from both message transmission and processing after reception must be
considered. Let ¢;; be denoted as the information time delay obtained from vehicle i
to j. Then Eq.(2.5) can be modified as:
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X; = — Z aij[xi(t — dij) — x;(t — 6i5)] (2.8)

If the time delay only affects the information state which is being obtained so that

Eq.(2.8) is written as

X; = — Z aii[xi(t) = x;(t — dij)]. (2.9)

000

Figure 2.3: A Group of Three Agents
In this thesis, the time delay is not considered. Therefore §;; is set to be zero in all
examples.
2.2.2 Simulation Results with Three Agents Consensus

Take Fig. 2.3 as an example, there are three agents represented as a connected span-

ning tree. The Laplacian matrix L is defined as

1 -1 0
L=]1 1 -1 (2.10)
00 0

In order to analyze the consensus stability, eigenvalues need to be calculated. They
are 0, 1, and 1. Therefore there is a simple zero, and the rest are positive, which
ensures the consensus can be reached. The following Fig. 2.4 also proves it.

Eq.(2.10) is the Laplacian matrix of Fig. 2.3, and the weight w is assumed to be 1.
Since each distance of the link between any two agents is the difference, the weight
can ensure that a specific final value can be reached, such as average consensus. This
will be discussed in the next example. Fig. 2.4 shows the simulation of three agents
or robots in the network of Fig. 2.3 conducting a rendezvous operation. It shows
that Robot 3 is the only information sender to the rest of the two robots. Therefore
the Robot 3 is not receiving any information and remains to be stationary, if the
information state is considered as the position, while Robot 1 and 2 are converging
to meet with Robot 3.
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Figure 2.4: Simulation Result of a Group of Three Agents in A Connected Spanning
Tree

1 -1 0
L=]0 1 -1 (2.11)
0 -2 2

Fig. 2.5 is a weighted graph, and the Eq.(2.11) is the Laplacian matrix, whose eigen-
values are 0, 1, and 3. Fig. 2.6 is to show the simulation result at topology of Fig.
2.5. Since the communication link between Robot 2 and 3 are double than the rest of
links, Robot 2 and 3 should be converged double faster than the previous example.
From Fig. 2.4, the convergent time between Robot 2 and 3 is 4.5 seconds, while with
a weight 2 added in the link, the time is reduced to 2.2 seconds, obtained from Fig. 2.6.

The weight, w;; is not a absolute but a percentage and relative number, which is to
control the information flow rate. The highest number in the weight means 100% of
information flow rate, then other numbers in the weight is proportionally decreased.
Therefore, w;; € (0,1). Each communication channel is like a pipe, and communica-
tion weight is the valve installed in each pipeline. If the weight equals one, it means
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Figure 2.6: Simulation Result of a Group of Three Agents in Communication Weight

the valve is fully open, otherwise it is proportionally closed with the weight decreases,
until it is fully closed with weight becomes zero. Therefore, Eq.(2.11) actually can be

simplified as

05 —05 0
L=| 0 05 —05 (2.12)
0 -1 1

The simulation result based on Eq.(2.12) is exactly the same with Fig. 2.6, and shown
below in Fig. 2.7.

2.2.3 Simulation Results with Four Agents Consensus

Now consider a unreachable convergence example. A group of four agents are shown
in Fig. 2.8.

1.5 -1 -05 0

L= (2.13)

The eigenvalues of Eq.(2.13) are 0, 0; 1.5, and 2. Since it has two zeroes, it is shown
that the consensus is unable to be reached. Then Fig. 2.9 can prove it.
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Figure 2.7: Simulation Result of a Group of Three Agents with Simplified Weights
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Figure 2.8: a Group of Four Agents
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2.3 Summary

In this chapter, a basic background on algebraic graph is introduced, and shown
that it can be used to model the topology of multi-agent systems. In order to reach
consensus for all agents in the system, an important condition is to make sure the
graph is connected. Therefore, the L matrix is positive semi-definite, then the —L is
the negative semi-definite with a single zero for one of the eigenvalues, and all others
are real and negative. As such, the system is stable, and can be reached to consensus.
Moreover, Fig. 2.6 and Fig. 2.7 proves that the weight, w;; € (0,1) is not a absolute
but a percentage and relative number, which is to control the information flow rate.
The highest number in the weight means 100% of information flow rate, then other

numbers in the weight is proportionally decreased.



Chapter 3

Problem Formulation

In this chapter, a problem formation of multi-agents system is described by a combi-
nation of an algebra graph and a Bernoulli process. The algebra graph is to represent
the topology of the system, and Bernoulli process is to represent the random data
loss situation among the system, which is described as discrete-time with a double

integrator dynamics.

3.1 System Descriptions
A single control system dynamics is expressed in a continuous-time system as follows

%,(t) = Acxi(t) + Boui(t) (3.1)

where x;(t) € R is the state vector, u;(t) € R is the control input. ¢ is the time.
For example, the initial state is described as x(0), and i € 1,2,...n represents the
identity of the agent. n is the total number of agents in the system. A. and B,
are two known constant matrices with appropriate dimensions. For a simple double

integrator system,

(3.2)

A, and B, are,

01 0
HESl s

A state-feedback controller

u = —Kx;,i=1,2,...,n (3.4)

is designed to stabilize the system (3.1). However, in many practical control systems,
such as computer-based control systems, the continuous time system is controlled
by a digital controller, which accepts continuous-time signals as inputs and gives

out continuous-time signals as outputs. Therefore, the continuous system has to be
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converted into the discrete system by zero-order hold and sampler. The sampler is
used to convert continuous signals into a train of amplitude-modulated pulses and
maintain the value of the pulse for a prescribed time duration, and then can be read
by digital controller. The zero-order hold is then to saturate the discrete signal into

continuous ones. Fig. 3.1 shows the block diagram of the digital control system.

Zero-order Continuous
hold System

Sampler

Controller

Figure 3.1: The Block Diagram of Sampled-Data System

Thus, Eq.(3.2) is converted to a discrete time system by a zero-order holder.

where x; € R, and u; € R denote the state and control input of Agent i respectively.
The A. and B. are constant appropriate size of matrices. The Ay and By are varied
according to the sample time period (T's). For example, if the T's is set as 0.1 second,
then the A; and By in discrete time system are

0.005
,B=DB;= . 3.7
¢ [ 0.1 ] (37)

0 0.1

A=A, =
Tl 1

Thus, in multi-agent systems, the close-loop control system is expressed in discrete
time system. Consider a group of n agents, the linear dynamic can be illustrated by
Fig. 3.2. If the open-loop system is asymptotically stable, i.e. p(A) < 1, the p(-)
is the spectral radius of a matrix. Based to Eq.(3.5), the protocol asymptotically
solves the consensus problem, if and only if for any initial state, the agents agree
upon a common state, i.e. limy_||zi(k) — x;(k)|| = 0 for any i # j. Moreover,
if limg—oo E(||zi(k) — x;(K)||)* = 0 for any i # j, the system (3.5) will reach mean
square consensus asymptotically. A discrete-time consensus controller is proposed as
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x,(k+1) = Ax, (k) + Bu, (k)

x, (k)
>

Controller Agenti

x,(k+1)=Ax,(k)+ Bu,(k)

Figure 3.2: The Block Diagram of Sampled-Data System

n

uilk) = K ay(k)wi;(x;(k) = xi(k)), (3.8)
j=1
where w;; is the communication weight added on communication link (7,j). For

simplification, set w;; = 1, then the close-loop system is

x;(k+1) = Ax;(k) + BKZ aij(k)(x; (k) —xi(k)), (3.9)

where k is the communication event. a;;(k) € {0, 1} is the (i, j) entry of an adjacency
matrix A, = [a;;] € R™*", (referred to Eq.(2.1)), at the discrete-time index k. The
matrix A, is dependant on the topology of the system.

3.2 Communication Channels and Data Losses

Fig. 3.2 illustrates how any two agents transfer information from one to another. This
can be any communication link among the multi-agent systems, which is modeled by
an algebra graph. When the system is not subjected to communication constrains,
the information which is x can be freely and guaranteed to transmitted at anytime.
Now, the challenge is to model the system in a switching graph. It means each link
can be broken in any time step. If the system is discrete time system, and the data
loss is shown in Fig. 3.3. T's is the sampling time. information transferred from Agent
1 to j is subjected to an unreliable connection.

In [50], a Markov chain is adopted to model the packet-loss process in the commu-
nication channel. The Markov chain presents transition from one state to another
between a finite number of possible states. The process is random and memoryless.
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Figure 3.3: Data Flow Diagram of the Packet Loss
The next state depends only on the current state and not on the sequence of events
that preceded it. Take Fig. 3.4 as example, there is three states, and the probability
of transmission from state to state is specified. Therefore the probability of each state

is corresponding to transmission probabilities.If State 1 receives 25% probability from
State 0 and 2, respectively, then the probability of State 1 is 50%.

State 0

15‘3&\

25%

2

40%

Figure 3.4: Data Flow Diagram of Markov Chain [51]

In order to ensure a successful data transmission, a packet delay also needs to be
considered. Fig. 3.5 shows a data transmission subjected to both packet losses and
delays. Now, the challenge is to find an optimal way to model communication channels
with both packet losses and delays. A Bernoulli process is considered to model the
packet losses in every time step. If there is not data receiving in current time step,
it will trace backward to previous data. The process is random and memoryless, and
guaranteed the information received is the latest successful data. If the transmission
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Figure 3.5: Data Flow Diagram of The Packet Loss and Delays

delay is over the certain sampling period, the process will drop the data and consider
as a packet loss instead of a packet delay. Therefore, Bernoulli process combines data

losses and delays into a single data loss case.

3.3 Modeling with Bernoulli Process

The Bernoulli Process is described as

where 0,;(k) € R is a stochastic variable satisfying interval Bernoulli distribution,
and @ € {0,1}. The i and j mean the signal is transferred from Agent j to Agent i. If
Agent i cannot successfully receive the signal from Agent j at time k, the 6;;(k) = 0,
otherwise 6;;(k) = 1. Moreover Eq.(3.10) is a recursive procedure. For example, if at
k =1, Agent i can receive the signal, while £ = 2, 3 cannot receive data serially, then

where

then

x;(3) = x;(1).

Therefore, Agent ¢ receives the most recently successfully transferred data. Substitute
the Eq.(3.10) into x; and x; of Eq.(3.9), shown on Fig. 3.6. Then Eq.(3.9) becomes
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xi(k+1) = Axi(k) + BKi a5 (K) [0 (k)% (k) + (1 = 04(k))x; (k — 1) (3.13)

—0;;(k)xi(k) — (1 — 0;;(k))xi(k — 1)],

where 6;;(k) and 60;;(k) are depended on success of the transmission from Agent i to j
and from Agent j to i, respectively. If it is successful, then 6,;(k) and 6;;(k) = 1. The
communication reliability of each channel is theoretically independent in the system,
which means 6;;(k) or 6;;(k) could be different in the same time k. In this thesis, all
0(k) is assumed to be uniform and synchronous. All 6;;(k) = 0;;(k) = 0(k) at the
same time. Therefore, Eq.(3.13) is simplified as

x;(k+1)= Ax;(k)+ BKzn: a;;(k)[0(k)x;(k) + (1 —0(k))x;(k —1)

—0(k)xi(k) — (1 = 0(k))x(k — 1)].

(3.14)

Based on Fig. 3.2, Agent j sends signals to Agent i, and it is governed by Bernoulli
process, which is shown in Fig. 3.2.

Bernoulli Process u; (k)

Controller Agenti

Figure 3.6: The Block Diagram of Bernoulli Process in Multi-agent Systems

So far, Eq.(3.13) is based on a two agent system, in order to find the general equation
to define a n agent system. Let assume there is a number of n agents. Therefore
finding the information state of cach agent at time k£ + 1 is represented as



J=1

—0;(k)x1(k) — (1 = 0(k))xi (k = 1)]

xa(k+1) = Axo(k) + BKZH: as; (k)[0(k)x;(k) + (1 —6(k))x,;(k — 1)

J=1

—0(k)xa(k) — (1 = 0(k))x2(k —1)]

x,(k+1) = Ax,(k)+ BK ianj(k)[é’(k;)xj(k) + (1 —-0(k))x;(k—1)

From simplicity, a;; =

J=1

— (k)% (k) — (1 — 0(k))x(k — 1)].

agent system is the following equation,

X(k+1) = (Iixn ® A) - x(k) + L1 ® BK - x(k) + Ly ® BK - x(k — 1)

where x = [x1, Xy, - X,]T, L; € R™" and L, € R™"

Ly

L,

[ Z?:l Cl1j9 a0 te a1n0n
az10; - Z?:l a2j9j ce 2,0,
an16h Ap20> E Z?Zl anﬂ
=2 j-1015(1 = 0) a12(1 = 0) ain(1 = 0)
CL21(1 —9) _Z;‘l:1 agj(l —9) agn(l —‘9)
anl(l —0) ang(l —6) _Zglzl anj(l —9)

3.4 Summary
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(3.15)

a;;(k), and 6 = 6(k). Thus, the final general form of multi-

(3.16)

In summary, a discrete time system with a double integrator dynamics is proposed.

The structure is modeled with a switching algebra graph, and each link is governed by

Bernoulli random process. In this thesis, the random process is assumed to uniform

for any communication link. It means links are subjected to the link failure or the

data loss at the same time step. Since the communication constraints are related to
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packet losses and delays. Bernoulli process can convert a packet delay case into a
packet loss situation. For example, if a packet delay is over than a sampling time,
then the data transmission is considered as lost. Therefore, with Bernoulli process
implementation, the communication constraint then is mainly focused on the data
loss.



Chapter 4
Controller Design

In this chapter, a controller is designed based on a leader following consensus. In order
to develop a leader following consensus algorithm, an error dynamics is created by
setting one of agents as a leader. Lyapunov-based methodologies and Linear matrix
inequality (LMI) techniques are then applied to find an appropriate controller gain
by satisfying the sufficient conditions of the error dynamics. Therefore, the controller

with the solved gain by LMI is guaranteed to drive the system to reach a consensus.

4.1 Error Dynamics in Leader Following Consensus

As mentioned before, in order to verify the stability of the system, limy_,.o(||x;(t) —
x;(t)]])* has to reach zero, and where x;(k) — x;(k) = e(k) , the information state
error between Agent ¢ and j. Since Agent j sends the signal, and can be defined as
the leader. Agent i needs to reach Agent 7 in the term of information states to achieve
the consensus. Then the next step is to find the error dynamics. At the Eq.(4.1),
Agent 7 is set to be the leader, and labeled as 1.

ek+1)= zi(k+1)—a21(k+1)
= Azi(k) — (k) + Zaij [0z (k) + (1 — 0)z;(k — 1)

n

—0xi(k) — (1 — 0)z;(k —m)] — Z ay;l0z;(k) + (1 —0)x;(k — 1)
j=1
+0x1(k) — (1 — 0)x1(k —m)]
(4.1)
where i = 2,3,--- ,n. Since A(z;(k) — x1(k)) is already in the error dynamic form,
then rearrange Eq.(3.13)

x;(k+1) = Az;(k) + BKZ;(k + 1)
where

32
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i(k+1) Z a[0z;(k —0,)a;(k —1) — Oz;(k) — (1 — O)ay(k — 1)) (4.2)

and

n n

> ayban(k)=) b (k) (4.3)

Jj=1 j=1

Zn:a,»j(l —0))x Za 1— —1). (4.4)

Add Eq.(4.3) and Eq.(4.4) into Eq.(4.2), then

Ri(k+1) = > ay(0x;(k) — 0y (k )—i—Za 1—0)z;(k—1) — (1 —0)zy(k —1)]

—Zaij(xﬂ —110) — ‘ a;;[(L—0)(zj(k —1) — (1 — 0)z1(k — 1)]

(4.5)
and

—%1(k+1) Zah 025 (k) —0;21 (k) =Y ar;[(1—0;)z;(k—1)— (1—0,)z; (k—1)].

(4.6)
By summing Eq.(4.5) and Eq.(4.6), then the general error dynamics becomes
e(k+1) = +BKZ i — ay;)0e ( +BKZ ai; — ay;)(1 — 0)e;(k — 1)
—BKZCLUH@ BKZ —1)
j=1
(4.7)
where
ei(k+1) =zi(k+1)—z(k+1)
ei(k) = zi(k) — z1(k)
¢; (k) = (k) — 1 (k)
ej(k 1) =zj(k —1) =z (k - 1)
eilk—1) =xi(k—1)—ax1(k—1)

with i # j, 1 = 2,3, ...,n. Now, write Eq.(4.7) into a matrix form, then
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62(1{7 + 1) = ABQ(]C) + BKzn:(CLQj — alj)Oej(k)

+3Ki(a2j - ;U)(l — B)e;(k—1) — BKianeez(k)
—BK]zn:agj(l — O)ea(k — 1) -

es(k+1) = Ae:(;c) + BKZn;(agj — ay;)0;¢; (k)
+BK§(CL3J- —ay;)(1 = O)e;(k — 1) — BKizlagj@eg(k;) )
~BK “ag;(1 - 0)es(k — 1)

en(k+1) = Ae, (k) + BKi(an]— — ay;)0¢;(k)

j=2

+BKZ anj — ;) (1 = 0)ej(k — 1) = BKY ay;fe, (k)

J=1

—BKZ% —1)

ei(k: + 1) = Aez(k:) + BKZn:((ZU - alj)Oe]—(k:) + BKZH:((ZU — (le)(l - 0)6](1{7 — 1)

Jj=2 Jj=2

—BKiaijﬁei BKZ% —1)

J=1

(4.9)
Therefore, from Eq.(4.9), a general matrix form of error dynamics can be presented
as

e(k+1) =T, 1xn1®A)-e(k)+ L, ® BK -e(k) + Ly ® BK -e(k — 1)
= (In-1xn-1 ® A+ L1 @ BK) -e(k) + L, ® BK -e(k — 1) (4.10)
—(I®A+L ®BK)-e(k)+ L, BK -e(k — 1)

where e = [e,es,...,en)T,] € RV 1 L[, € RV "1 and L, € R L
The system (3.16) asymptotically reaches consensus in mean square if and only if
limi oo E(||le(k + 1)||?) = 0. ® is called Kronecker product, which is an operation
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on two matrices of arbitrary size resulting in a block matrix [52]. If A is an m X q
matrix and B is a p X q matrix, then the Kronecker product A ® B is the mp x nq
block matrix.

(a22 - 012)9 — O (023 - a13)0 tot (azn - a1n)9
E (032 - a12)9 (a33 - 013)9 -0y - (asn - a1n)9
1= . .
(%2 - Cl12)19 (%3 - a13)03 s (Clnn - aln)en — O3
where n Z 2,thus, 01 = Zagﬂ, 02 = Zagje, 03 = Zanﬂ, and I/] =
Jj=1 j=1 j=1

Il n-1)x(n1), Where l; = (a@i1)gi1) — ai+n)0Ge1), when i # j and [; =

(a(z’—i-l)(i—!—l) - al(z’+1))9 - Za(iﬂ)j@-

j=1
(a2 — a12)S1 — Q4 (a3 — a13)Ss e (agn — a1,)Sy
i, - (a32 —-alg)Sl (a3 — Cllgf)SQ — Qs . (asn, —:aln)Sn
(@po —-alg)Sl (an3 —'alg)Sg » (@pn — alT'L)Sn - Qs
where n > 2.thus, @, = En:anSj, S=01-0), @ = i:a:ngj, Qs = En:anjsj,
i=1 i=1 i=1

and L, = [[z‘j](n_l)x(n_l), where l~ij = (ag+n)(G+1) — a1G+1))(1 — 0), when ¢ # j and

lii = (a(i+1)(i+1) - al(i+1))<1 - 9) - Z a(i+1)j(1 - 0)-

j=1
4.2 Controller Gain Design

Theorem 1. For the uncertain networked control system (3.16), if there exist positive-
definite matrices, Hy € RXn=1x2n=1) 5 ([, € R2n=Dx20=1) 5 ( matrices K €
RY>" P =ePy, Py' = X € RMn=Dx200=1 " X — diag[X,,, Xin], KX = Yy, € RV,
such that both following matriz inequalities Eq.(4.11) and Eq.(4.12) hold,

<0, (4.11)



where

with

and

where

with

I® X, A)r

(
Bz = (L ®Y,IBT)(1—7r)
i

(a22 - Cl12) - ZCZQJ‘ (023 - a13)

j=1

(Cl32 - alz) (a33 - Cl13) - Za?,j

j=1
(anz - Cl12) (ans - a13)
'y 0 I3 [y

* —HO 0 0
* *  —(1-rdX 0
* * * —rX

FH = 7"[:[0—1—(1—7")[:[1—)(
Fs= (29X, AT)1—-r)+ (LT, @ YIBT)(1—71)
Iy= (I®X,AD)r+ (LT, @ YTBT)r

n

(a22 - Cl12) - Zazj

7=1
(6132 - au)
(%2 - Cl12)

(Cl23 - Cl13)
n
(ass — ai3) — Zasj
j=1
(%3 - a13)
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J=1 i
<0, (4.12)
(a2n - aln)
(a?m - aln)
(a'rm - CLln) - anj
Jj=1 |
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with the controller gain K = Y,, X!, the system (3.16) is then mean square stable.

Proof :
Choose a Lyapunov functional candidate for it follows

n

Vi=elBei+el (k—1)Qies(k— 1)+ Y el (k—1)Rje;(k—1) (4.13)
J=Lj#i
then,
V(k) = €T (k)P.e(k) + e (k — 1)H,e(k — 1) (4.14)

where P = diag[P, ..., P,], H = diag[Q; + Zﬁ’j, oy Qn + Zﬁ’j]. P, Q , and R are
j=1 j=1
positive-defined matrices with appropriate dimensions. The packet loss probability is

defined as Pr(0(k) =0) =r, (k) = s, and s € {0, 1}.

E{V(k+1)|V(k)} — V (k)
= E{e"(k+1)Pe(k+1) + e (k)H.e(k)} — (e (k)Pe(k) + " (k — 1)H,e(k — 1))
= B{{I® A+ L,®BK)-e(k) + Ly, @ BK -e(k — 1)]"(rPy + (1 —7)P,)

JI® A+ L, ® BK) -e(k) + Ly ® BK - e(k —1)]}

+E{e” (k)(rHo + (1 = r)Hi)e(k)} — e (k) Poe(k) — e (k — 1) Hoe(k — 1)
— [I® A+ Ly, ® BK)e(k) + (Ly, @ BK )e(k — )]T(rPO +(1-r)P)

{I®A+ L, ® BK)e(k) + Ly, @ BK - e(k — 1)]

+e”(k)(rHo + (1 — r)Hy)e(k) — e” (k) Pye(k) — e (k — 1)Hoe(k — 1)

(4.15)
Set Eq.(4.15) as follows
E{V(E+DV(E)} = V(k)
= [DI" (P + (1 —rP)[D]
. (4.16)

+e (Mo + (1= r)Hh)ek) — e (k) re(k) — e"(k — 1) Hoe(k 1)
B

where D = (I ® A+ Ly, @ BK)e(k)+ (Lys @ BK )e(k—1). If the E{V (k+1)|V (k)} —
V (k) < 0, then limy_. E(||e(k + 1)||?) = 0, the system (3.9) is mean square stable,
e.g. e;(k+1) tends to zero asymptotically, which means Agent i in the group is able
to track the leader’s trajectory.

where



38

a= [I®A+ Li,® BK)e(k) + Lys ® BKe(k —1)]"(rPy + (1 — ) P,)
(I ® A+ Ly, @ BK)e(k) + Ly, ® BKe(k — 1)]

- [ B(Z(f)l) [ (I® A+ Li;® BK) Ly, ® BK ]T(TPO+ (1—7)P)

| U®A+ L 9BK) Lo BK |

e"MT(rPy+ (1 —r)P,)Me
&"[MT(rPy)M + M™ (1 —r)P,M]e

e’ll e
where
M= [U®A+ﬂb®BK)E%®BK}
H1 = MT(T'P())M + MT(l - T)P]M
o= [e(h) e(k—1) |
and
p= el THO + ( 1 —r)Hy)e(k) — e (k)Pye(k) — e’ (k — 1)Hpe(k — 1)
_ (rHo+(1—7)H)—F 0 e(k)
B 0 —Hy | | e(k—1)
o rHO—i- 1—r)H)-P 0 |_
= gl 0 _H, e
= elll,e
where
m,_ | CHo+(L=nH) =P 0 ] (17
0 —H,
I = (I, + IIy) (4.18)
If E{V(k + 1)|V(k)} — V(k) < 0 holds, then
a+p=e"(Il, +I)e <0 (4.19)

By applying Schur Complement to Eq.(4.18)



= M"(rPo)M+ MT(1—r)P M +1l,
= MT(rP)(rPy) Y (rPo)M + MT(1 —r)P,M + 11,
MT(1—7)PM + 1, MT(rPR)

(rPy)M —rB

< 0

then by using Schur Complement again to M7 (1 — r)P M + I,

11, MT(1—7r)P,

MIA=nA(A=nP) A=nPM+T =\ | p 0 p

Then put Eq.(4.21) into Eq.(4.20),

H2 MT(l—’I")Pl MT(’I"PQ)
II= (1—7”)P1M —(1—7”)P1 0 <0
(T’Po)M 0 —T’PO

Combine Eq.(4.17) with Eq.(4.22), thus

IIi; 0 I3 Iy
—H II II
M — * 0 23 24 <0
* x  —(1—r)P 0
* * * —rbB

where

H11: THO+<1—’I")H1—P0

M3= (I®A+L,®BK)T(1-r)P,
M= (I®A+L,®BK)T(rp)
Iy = (Lys ® BK)T(1—1)Py

My = (Lys ® BK)T(rPp)

Now, pre- and post-multiply the both side of Eq.(4.23) by diag(Py ", Py *, P!

PO— 1 PO— 1
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(4.20)

(4.21)

(4.22)

(4.23)

) P0_1)7
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= 0 =13 Zn
- _ * —Po_lHopo_l 523 :24
B * —(1-r)P ! 0
* * * —rPO_l

where

rPy'HoPy ' + (1 — )Py "Hi Pyt — P!

—_
—_

i3 = Pg_l(f ® A+ I~/1 & BK)T(l —r)
B = Pg_l(f A+ I~/1 & BK)TT

Zp3 = Py YLy ® BK)'(1—r)

S0y = Py YLy, ® BK)'r(PyP)

Let Py = diag[Pm, P, ..-]Q(n_])xz(n_]),Pygl = X c RQXZ,X _
diag[Xm, Xm, - Jom-1)x2m-1),KXm = Y € Rlxz,[:fo = Po_lftlvopo_1 > 0,]?[1 =
P()_lHlPO_l > 0, assume P, = ¢Fy, and ¢ > 0, Pfl = %)X

[
[e)

1
=

1
=

= _ *  —H =23 Zi24 (4 24)
- * x  —(1-— r)(%)X 0 '
% * * —rX

where

S = rHy+(1—r)H, - X

= (I 9 XpnAT)1 —7)+ (LT, ® YIBT)(1 —r)
(I® X, AT)r + (LT, @ Y,IBT)r

Ep = (LL®YIBT)(1-7r)
(
(

1
|

L3, @ Y B )r(7)

Soq =

Since the s € {0,1}, Eq.(4.23) can be considered into two cases,

Case 1: s = 0, Packet Lost

Eq.(4.23) becomes

H]l 0 H13 Hl4
— II
mo | * THo i 20 (4.25)
* x —(1-rP 0
* * * —rP

where



H11: THO+(1—T)H1—PO
H13 = (I X A)T(l — T')Pl
H14 = (I X A)T(Tpo)
Hgg = (LQO Y BK)T(l — T)Pl
H24 = (L20 & BK)T(T’P())
with
(a22 - Cl12) - ZCZQJ‘ (023 - a13)
j=1
- (Cl32 - alz) (a33 - Cl13) - Za?,j
Ly = j=1
(anz - Cl12) (ans - a13) (ann
Case 2: s =1, Packet Received
Eq.(4.23) becomes
H]l 0 H13 Hl4
—H
H _ * 0 0 O < 0
* x —(1-r)P 0
* * * —rF

where

Hll T’H()“‘(l—T’)Hl _PO
H13 (I@A—FEH ®BK)T(1 —T’)Pl
H14 = (I (4] A + Ell 3 BK)T(TP())

with
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(a2n - aln)
(a?m - aln)
- aln) - Zanj
=1
(4.26)
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_ n -

(a22 - Cl12) - Q9 (Cl23 - Cl13) T (a2n - aln)
j=1
n
- (Cl32 - alz) (a33 - Cl13) - Za?,j T (a?m - aln)
Ly = j=1
) n
(@n2 — a12) (@ns — a13) s (oo = 1) = Y,
L J=1 i

If the both inequalities Eq.(4.25) and Eq.(4.26) hold,, then E{V (k+1)|V (k)}—V (k) <

0, which means system (3.9) is mean square stable.

4.3 Selection of Parameter in Theorem 1

In Theorem 1, the inequality Eq.(4.24) is derived by using Lyapunov func-
tion. In order to ensure this inequality holds, Linear matrix inequality tech-
nique is implemented based on pre- and post-multiply the both side of Eq.(4.23)
by diag(Py"', Py, Pty Pyt). If the LMI is feasible, then the inequality holds.
H P, Py, X,,,Y,, are assumed to be known and existing positive-define matrices,
A, B matrices are dependent on the sampling time while the continues-time system is
converted into discrete-time system. Moreover, r is the loss rate, and € is an arbitrary
number which is the fraction of P; to F,y. In this thesis, ¢ = 0.5. If all selected pa-

rameters make LMI feasible, which is a sufficient condition, then Theorem 1 is valid.

4.4 Summary

Chapter 4 is the main theory contribution. A double integrator dynamics with
discrete-time system associated with a proposed controller is defined for a multi-agent
system. A algebra graph is to represent the topology of the system, and Bernoulli
process is to represent the random data loss situation among the system. In order to
ensure the followers Agent 2,...,n to reach the consensus with the leader, Agent 1,
an appropriate controller gain is obtained by implementing Lyapunov-based method-
ologies and Linear Matrix Inequality (LMI) techniques.



Chapter 5

Simulation Results and Parametric Studies

The simulation results are simulated in Matlab, and analyzed in several different
scenarios to verify the effectiveness of the controller designed in Theorem 1. Matlab
is used to solve the LMI problems as described in Chapter 4 to find a sufficient
condition in order to obtain a controller gain K. The following sections discuss the
effect on efficiency of consensus in four cases; 1) effect of data loss rate(r); 2) effect of
communication weight w;;; 3) effect of initial values; 4) effect of sampling time; and
finally, a five agent example is studied as well to verify the effectiveness of controller

in a large number of agent system.

5.1 Effect of Data Loss Rates

In this section, the simulation results are focused on studying consensus ability and
consensus (convergence) time on different examples with eight data loss rates from
5% to 96%. Since a data loss rate is very small in a stable condition, six out of eight

examples are studied within 50% of data loss rate.

5.1.1 Simulation Configuration

The topology of multi-agent system is modeled by a directed graph with three ver-
tices, means three agents, shown in Fig. 5.1. Agent 1 is considered as a leader, which
is only capable of sending signals to the rest of agents, and Agent 2 and 3 are follow-
ers. They can receive the signals from Agent 1. Beside the communication between
the leader and followers, among followers, there is also a communication channel.
Therefore, followers can not only receive signals from the leader but also from the
neighboring agent. In case of the failure of communication link between Agent 1 and
2, Agent 2 can still receive information from Agent 1 indirectly by passing through
Agent 3. Thus this topology maximizes the formidability during the operation.
Moreover, the communication weight w;; = 1 for all channels, and sampling time
Ts = 0.1 s throughout this section. In order to each consensus, one of conditions

is to ensure that zero is a simple eigenvalue of Laplacian matrix L (refer to Chapter 2).
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Leader

Agentl

State Information X

Followers
Agents 2-3

Figure 5.1: A Group of Three Agents in A Directed Graph Topology

Based on Fig. 5.1. the adjacency matrix A, and Laplacian matrix L are respectively:

A, = JL=|-1 2 -1 (5.1)

-1 -1 2

e N e)
= o O
S = O

The eigenvalues of L are 0,3,5, which satisfies the condition that zero is a simple
eigenvalue of Laplacian matrix L . Therefore this topology of the system can be
consentable.

5.1.2 Simulation Results

In this section, eleven simulation results were investigated and studied in order to
show how the data loss rate affect the consensus ability and time with the designed

controller.

Example 1: r=5%

Firstly, a 5% data loss rate is studied. The controller gain (K) is obtained by LMI
with the data loss rate bound set as 0.05. With a group of three agents, set Hy =
diag[Hyy, Hy)**, Hy = diag|Hyy, Hyo)*** then the control gain is designed from this
case based on the sufficient condition in Theorem 1 (Referred to Chapter 4). Since
this gain is only satisfied a sufficient condition of LMI, it might not be a optimal gain
but it does guarantee the consensus of the system when the packet loss rate is no
more than 5%.
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K=Y,X'=102713 2.0399 ]. (5.2)

Based on this gain, Fig. 5.2 is the result of example 1. Information states x; and
T were both converged with agent 1. If each agent represents a mobile robot, and
then z; is the position, and x5 will be the speed. In this figure, it does not show the
actual moving trajectory of agents but information state consensus. Fig. 5.2 (a) is
one dimensional, meaning all agents are located in one straight line, and only able
to move in this line backward or forward. However, for a actual trajectory in a X-Y
plane, it will be shown on in Chapter 6. In which, the system will be modeled by the
kinematic model of Pioneer 3 mobile robots. Fig. 5.2 (b) Agent 1 started at 0 with
initial speed of 1 m/s, while Agent 2 and 3 start at position 5 and 10, which means
they are from 5 and 10 m away from the origin 0 in the one dimensional plane, with
initial speed of 0 m/s. At 1 second, Agent 2 is speeded up to 0.29 m/s toward to
Agent 1. Since the speed direction of Agent 1 is defined as positive, and then the
—0.39 m/s means Agent 3 is moving in an opposite direction of Agent 1 while it is
approaching. Fig. 5.3(a) shows mean square error of Agent 2 and 3, respected to
Agent 1, and the mean square error is defined in Eq.(5.3).

Error = /(x1; — 211)2 + (225 — 221)T'5)2, (5.3)

where xz; and xo; are the current position and speed of Agent i, the i is 1,2,3,...,n.
Based on Eq.(5.3), the error reaches zero if position and speed of Agent 2 and 3
are both converged to Agent 1. Fig. 5.3(b) shows the distribution of data loss rate
among the system. The Bernoulli variable is represented as 6. If § = 1, it means
the packet is received by followers at this particular time step. If # = 0, it means
the packet is lost. In order to determine the consensus time, arbitrary bound is
introduced and set as b = 0.05. If the Error is under 0.05, then the system is
considered as consensus achievement. Therefore, from Fig. 5.3, at 38 second, the
system is converged completely. Fig. 5.4 shows controller input of gain (K) in respect
of time. The higher number of input in magnitude means the lager effort of controller
acting on agents. Once the system reaches consensus, the input will become zero.
The controller input is defined in Eq.(5.4).

u=—Kx, (5.4)

where K is the gain from Eq.(5.2), and x is [y, 25)7
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Figure 5.2: Simulation Results of Position and Speed in One Dimensional Plane with
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Figure 5.4: Controller Input (u) with r=5%

Example 2: r=10%

In the second example, the data loss rate was set as 10%. Therefore the controller
gain (K') was obtained by LMI with the data loss rate bound set as 0.1. Then

K = [0.1150 1.0506]. (5.5)

The rest of conditions are the same with Example 1. Fig. 5.5(b) shows Agent 2 and
3 are raised up to 0.4 and 0.1 m/s at 1 second, respectively. Fig. 5.6(a) shows the
mean square error, in which the system reaches consensus at 44 second. Fig. 5.7 again
shows the controller input into Agent 2 and 3.

Example 3: r=20%

In this example, the data loss rate is set to be 20%. Therefore the controller gain (K)
was obtained by LMI with the data loss rate bound set as 0.2. Then

K = [0.1036 0.6603]. (5.6)

Fig. 5.8 shows the simulation result in terms of the position and the speed of agents.
Fig. 5.9 shows the mean square error and data loss distribution at r = 20%. Fig. 5.10
shows the controller input into Agent 2 and 3. Compared to Fig. 5.7 while the loss

rate is at 10%, the controller effort in Fig. 5.10 is much intensive from the first 10
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Figure 5.5: Simulation Results of Position and Speed in One Dimensional Plane with

r=10%
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Figure 5.8: Simulation Results of Position and Speed in One Dimensional Plane with

r=20%
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seconds. Therefore, with stronger effort of the controller, at 27 second, the system

achieves consensus. It is faster than Example 2 by 17 seconds.

Example 4: r=30%

With increase of the loss rate, the controller gain is obtained as:

K = [0.0877 0.4223]. (5.7)

It is easy to see that with higher loss rate, the controller gain is decreasing. At
Example 1, when the loss rate is 5%, the K is [0.2713 2.0399]. Because a higher loss
rate raises the uncertainty of the system, the controller gain has to be reduced in

order to reach consensus.

(a)

60 T T T T
— r=30%,K=[0.0877 0.4223] i
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Figure 5.11: Simulation Results of Position and Speed in One Dimensional Plane
with r=30%

Fig. 5.11 shows the simulation results after the loss rate becomes 30%. Fig. 5.12
shows the mean square error and data loss distribution. Since each gain has a differ-
ent controller input, Fig. 5.13 shows the controller with gain of [0.0877 0.4223]. From
the first 10 seconds, the slop of curve is very steep, and without any noticeable over-

shoot after. It means the correcting effort is much stronger than previous examples.
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Therefore, with exact same other conditions, the system reaches consensus in just 21

seconds.

Example 5: r=40%

The gain becomes K = [0.0673 0.2728], once the rate loss increases to 40%. The
simulation results are shown in Fig. 5.14, and the mean square error with loss rate
distribution are shown in Fig. 5.15. Fig. 5.16 shows the controller input on Agent 2
and 3. The curve of this figure shows there is a overshoot after 15 second. However
it barely can see a similar overshoot in Example 4. Thus the consensus time is 33

seconds which is longer than 21 seconds in Example 4.
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Figure 5.14: Simulation Results of Position and Speed in One Dimensional Plane
with r=40%

Example 6: r=50%

With the data loss rate bound set as 0.5, the controller gain is

K = [0.0050 0.0494]. (5.8)

In previous examples, the time range is 50 seconds. However, the time range in this
example is 70 seconds due to the higher loss rate. From both Fig. 5.17 and Fig. 5.18,
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Figure 5.19: Controller Input (u) with r=50%

even with an expanded time range, the system is still not consented at 70 seconds.
In Fig. 5.18(a), both of Agent 2 and 3 are convergent at 5 and 10 second, and then
divergent after those points. At 55 seconds, the error reaches to zero again. It is like
a ball bounces a few time before it can be settled down. Because the higher loss rate
increases the uncertainty of the system, as a result, the controller gain decreases. A
weaker controller causes a larger oscillation while controlling the system. Therefore
the consensus time is extended. It happens once the loss rate reaches 40%. Fig. 5.19
shows the controller input. Since the controller gain is very small compared with
previous examples, at 70 seconds, the controller input is still correcting the system in
order to reach consensus.

Example 7: r=90%

After studying examples within 50% in loss rate, in order to analyze the effectiveness
of designed controller, the data loss rate reaches 90%. The controller gain is K =
[0.0002 0.0080], which is extremely small. The time range maintains as 70 seconds,
in Fig. 5.20, Agent 2 and 3 far beyond to reach consensus with Agent 1 within this
time frame. It also can be seen from Fig. 5.21(a), the mean square errors of Agent
2 and 3 converges in the first 5 and 10 seconds respectively. However both of errors
bounces back to higher values of error. At 70 seconds, the error reaches 40, which is
just like the phenomena happens in Example 6. Fig. 5.21(b) shows 10% of 6 equals
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one, which means that only 10% of packet can be successfully received by Agent 2
and 3. From Fig. 5.21, the controller inputs for both agents are very limited. They
start at —0.005 and —0.008 respectively, and slowly increase to —0.0105 and —0.011
at 70 second. In order to study more in the case of higher loss rate, the time range is
expanded to 1000 seconds instead of 70 seconds.
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Figure 5.20: Simulation Results of Position and Speed in One Dimensional Plane
with r=90%

Fig. 5.23 shows the result of the system within a 1000 seconds of time frame. The
speed of Agent 2 and 3 reaches 1 m/s while the time approaches to 1000 second. In
Fig. 5.24, it is clear to see that the mean error of the system bounces six time within
1000 seconds. at 1000 second, the error is about 2.

Example 8: r=96%

Now, in order to determine the maximum data loss rate bound, the data loss rate
reaches 96%. The controller gain is K = [—0.0001 0.0037], which is extremely small.

Fig. 5.25 and Fig. 5.26 show the system cannot reach consensus anymore. Therefore,
the maximum data loss rate of the proposed controller is about 95%.
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Figure 5.23: Simulation Results of Position and Speed in One Dimensional Plane
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Table 5.1: Effects of data loss rates (r)

Example | Loss Rate(r%) | Controller Gain(K) | Consensus Time(s)

@) 5% [0.2713 2.0399) 38

2) 10% [0.1150 1.0506] 44

(3) 20% 0.1036 0.6603] 27

(4) 30% [0.0877 0.4223) 21

(5) 40% [0.0673 0.2728] 33

(6) 50% [0.0226 0.1493] > 70

(7) 90% [0.0002 0.0080] > 1000

(8) 96% 0.0001 0.0037] o0

5.1.3 Summary on the Effect of Data Loss Rate

In summary, the simulation results for a group of three agent system are explored and
discussed with different data loss rates. Table 5.1 shows all results of examples with
corresponding time. Each gain obtained from LMI is only satisfied for a sufficient
condition, it means this gain might not the optimal gain but it does guarantee the
system can be reached consensus at corresponding data loss rate. For example, with
20% of data loss rate, a gain K = [0.0877 0.4223] ensures the system to reach the
consensus. Consensus time in Table 5.1 only shows that whether the controller
drive the system to reach consensus or not. The maximum data loss rate of effective
controller is 95%, because at 96%, the controller is not able to converge the system
anymore. Based on the result, the proposed controller is more efficient within 50% of

loss rate.

5.2 Effect of Communication Weights

In Section 5.1, the communication weight w;; was assumed to be 1 for all channels.

In this section, the effect of weight on consensus time is studied.

5.2.1 Simulation Configuration

As same as Section 4.1, the topology of multi-agent system was modeled by a directed
graph with three vertices, as shown Fig. 5.27. The sampling time is still 0.1 second
which is the same with section 4.1, and the data loss rate is r = 20% for all examples.
In order to analyze the effect of weight, the communication link between Agent 2
and 3 is removed. Therefore Agent 2 and 3 can independently and exclusively receive
information from Agent 1. Refer to Chapter 2, the w;; € (0,1) is a proportional

weight, which is to increase the information flow rate. Each communication channel
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is like a pipe, and communication weight is the valve installed in each pipeline. If
the weight equals one, it means the valve is fully open, otherwise it is proportionally
closed with the weight decreases, until it is fully closed with weight becomes zero.
Four examples are studied on effect of communication weight of consensus ability and
time. The first example, set wo;=w3;=1, which is the standard example with both
channels are fully open. The second example, set wy; = 1, while w3; = 0.1, which is
ten times smaller than Example 1. Therefore, the effect of communication weight
on the channel between Agent 1 and Agent 3 can be summarized while comparing
with Example 1. The third example, set wo; = 0.1 instead, and maintain ws3; = 1.
Therefore the result from Example 2 can be verified in the channel between Agent 1
and Agent 2. The last example, set wy; = 0.5 and w3; = 1. The purpose of Example
4 is to explore if the consensus ability or time is proportional to the weight w;;.

Leader
Agentl

Followers
A gentZ-B

Figure 5.27: A Group of Three Agents in A Directed Graph Topology with Commu-
nication Weight

Because the weight on each channel is changed, the adjacency matrix A, and Lapla-
cian matrix L in this section are defined again based on Eq.(2.1) and Eq.(2.2). There-
fore, each example needs to be obtained a new matrix A, and L based on Eq.(6.8.

0 00 0 0 0
Aa = Cdgll 00 s L= —CUQll CUQll 0 . (59)
Cd311 00 —W311 0 Cd311
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5.2.2 Simulation Results

Example 1: wy=1, w31=1

In this example, wy;=w3; = 1. As a result, matrix A, and L from Eq.(6.8 become
0 00

0
ol.L=]-110]. (5.10)
0 ~1 0 1

A, =

_ = O
o O O

The eigenvalues of L are 0, 1, 1,respectively, which satisfies the condition of control-
lability in Chapter 2.
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Figure 5.28: Simulation Results of Position and Speed in One Dimensional Plane
Wlth Wo1 = W31 — 1, r:20%

Since the data loss rate is set as 20% for all examples in this section, the data loss
distribution is not shown anymore. The figure of controller input is also not shown
again because controller input is only changed with the controller gain, and the value
of K is based on the loss rate. Fig. 5.25 shows the results of simulation while the data
loss rate is 20%, and wy; = w3 = 1. From Fig. 5.29, the consensus time for Agent 2
and Agent 3 is in 20 and 24 second, respectively.
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Figure 5.29: Mean Square Error with wy; = w3; = 1, r=20%

Example 2: CUQ1:1, Cd31:0.1

In the second example, set wy; bigger than ws; with wo; = 1 and ws; = 0.1. Agent
2 can receive information from Agent 1 with 100% flow rate, while Agent 3 can only
receive with a flow rate of 10% compared with Example 1. Since the weigh is changed
in the system, a new matrix A, and L in this example become based onEq.(6.8)

0 00 0 0 0
A= 1 00|,L=| =1 1 0 |. (5.11)
01 0 0 ~0.1 0 0.1

The eigenvalues of L are this example are 0,0.1,1. Within a zero in the eigenvalue,
the system can be consented.

Fig. 5.31 shows Agent 2 can converge with Agent 1 in 20 seconds. It is the same
with Example 1 since the ws; maintains one. However, the consensus time for Agent
3 is over 50 seconds. For this example, it verified the communication weight is to
increase the information flow rate in the channel between Agent 1 and 3. In order
to determine the influence of the weight further, another example is studied with
wo1 = 0.1; w31 = 1.
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Figure 5.30: Simulation Results of Position and Speed in One Dimensional Plane

with we; = 1;ws3; = 0.1, r=20%
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Example 3: CUQ1:O.1, Cd31:1

In this time, if Agent 3 receives information from Agent 1 at 100%, while Agent 2
only receives at 10%. Thus wy; = 0.1 and ws; = 1 and the adjacency matrix A, and
Laplacian matrix L become

0 00 0 0 0
A,=10100|,L=|-01 01 0 (5.12)
1 00 -1 0 1

The eigenvalues of L are 0,0.1, 1, which satisfies the condition to be consented.
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Figure 5.32: Simulation Results of Position and Speed in One Dimensional Plane
with we; = 0.1; w3, = 1, r1=20%

Fig. 5.33 shows that Agent 3 in this example converges with Agent 1 in 24 seconds. it
is increased slightly based on Example For Agent 2, the consensus time is definitely
over 50 seconds. At this point, we can say that Example 1, 2, and 3 verified the

communication weight is to increase the information flow rate in the weighed channel.

Example 4: CUQ1:O.5, Cd31:1

From pervious examples, they approve that the that the communication weight is a
information flow distribution measurement. The higher weight gives a higher infor-

mation flow rate. However, it is reasonable to ask if there a proportional relationship
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between the weight and the consensus time. For example, increase the wo; by double,

does it mean that the consensus time for Agent 2 is reduced by half. Let set wy;=0.5,

and ws;=1. Compared to Example 1, the weight between Agent 1 and 2 is decreased

to 0.5 from 1, and while the weight between Agent 1 and 3 maintains the same. Since

the ws; is the same to Example 1. Therefore the consensus of Agent 3 is expected to

be 24 seconds. In Fig. 5.35, it is approved that the consensus time of Agent 3 is 24.

5.2.3 Summary on the Effect of Communication weight

Table 5.2: Effects of Communication Weight (w;;) with r = 20%

Example | Weight(ws1) | Weight(ws;) | Consensus Time | Consensus Time
of Agent2(s) of Agent3(s)
1) 1 1 20 24
(2) 1 0.1 20 > 50
(3) 0.1 1 > 50 24
(4) 0.5 1 25 24

In summary, the simulation results are explored and discussed for four examples with

different communication weights. Table 5.2 shows all results of consensus time of

Agent 2 and 3, respectively. The simulation results show the weight is a proportional
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of Position and Speed in One Dimensional Plane
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gain of distributing the information flow rate among the system. The higher weight
distribution can shorten the consensus time until the weight reaches to 1. In Example
4, wo1=1 by decreasing half from Example 2. However the consensus time is not

proportionally increase in scale.

5.3 Effect of Initial Values

In Section 4.1 and 4.2, all previous examples have the same initial values, such as
Agent 2 is 5 and Agent 3 is 10. In order to prove the effectiveness of the proposed
controller, effect of initial value for consensus time are studied in this section with
four examples. x11(k) means the first state information value (position) of Agent 1.
x11(1) is the initial value in the term of the position for Agent 1. z5;(1) means the
initial vale of Agent 2. Each example has a unique initial value (z11(1),22:(1)). For
example, (5,10) means the initial value of Agent 2 is 5, and 10 for Agent 3. Moreover,
(10,20), (20,40), (80,160) are studied as well to determine the effect of initial value

on consensus ability.

5.3.1 Simulation Configuration

The configuration is the exactly the same in Section 4.2. Three agent system with all
weight equaling one, data loss rate in all examples is 20%, and sampling time is 0.1
second. Therefore, the adjacency matrix A, and Laplacian matrix L are unaffected.
5.3.2 Simulation Results

Example 1: z;,(0)=5, z2,(0)=10

The initial values of Agent 2 and 3 are 5 and 10, respectively.

Fig. 5.36 and Fig. 5.37 show that consensus time of the system is 27 seconds.
Example 2: 211(0)=10, z(0)=20

In this example, the initial values of Agent 2 and 3 are increased to 10 and
20,respectively.

Fig. 5.38 and Fig. 5.41 show that consensus time of the system is 30 s.

Example 3: $11(0):20, 3321(0):40

The initial values of agent 2 and 3 are increased to 20 and 40 respectively.
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Fig. 5.40 and Fig. 5.41 show that consensus time of the system is 34 seconds. From
Example 1 to Example 3, the initial values are increased fourfold, however the con-
sensus time is only changed from 27s to 34s with 7 increment. From Fig. 5.40, Agent
3, 40 meters away from Agent 1, accelerates to nearly 4 m/s from 0 in just 2 seconds.
Because the controller proportionally increases the acceleration of agents while the
initial value becomes bigger, the initial values does not significantly affect the con-
sensus time. In order to prove this conclusion, another example with initial value of
(80,160) is studied.

Example 4 z1,(0)=80, z2,(0)=160

In the last example, the initial values of Agent 2 and 3 are increased to 80 and 160

respectively.
(a)
200 T T T T T T T T T
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=S |
[e]
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a
o
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5 10 15 20 25 30 35 40 45 50
Time (s)

Figure 5.42: Simulation Results of Position and Speed in One Dimensional Plane
with x11(0)=80, x91(0)=160, r=20%

Fig. 5.42 and Fig. 5.43 show that consensus time of the system is 41 seconds. There-
fore, it approved again the initial value does not significantly effect the consensus
time, because the acceleration is also increased correspondingly.
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Figure 5.43: Mean Square Error with z1;(0)=80, x5,(0)=160, r=20%

5.3.3 Summary on the Effect of Initial Value

Table 5.3: Effects of Initial Value (z;(0)) with r = 20%

Example | No. of Agents | 211(0),291(0)(m) | Consensus Time(s)
) 3 5,10 27
(2) 3 10,20 30
(3) 3 20,40 33
(4) 3 80,160 A1

In summary, the simulation results are explored and discussed for four examples with
different initial values. Table 5.3 shows all results of consensus time of the system
with corresponding initial values. The simulation results show the higher initial value
increases the consensus time. However, the initial value from (5, 10) to (80, 160) only
increases the consensus time from 27 to 41 seconds. The initial value is risen by 16
times, the consensus time is only increased by less than 2 times. Therefore, the initial

value does not significantly affect the consensus time.
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5.4 Effect of Sampling Time

Sampling time is the time between successive measurements of a physical quantity. [53]
discussed the effect of sampling time for a PID controller. It concludes that if the
sampling time is too big, it has a negative impact on controller performance. However,
sampling faster does not necessarily provide better performance. In this section, five
examples are studied with the sampling time (7's) equaling 0.01,0.1,0.5,1, and 10
seconds in order to determine the effect of the sampling time and explore the most
optimal sampling time for the proposed controller.

5.4.1 Simulation Configuration

The configuration is exactly the same as in Section 4.3. Three agent system with all
weights equal to one; data loss rates in all examples are 20%; and initial values are
5 and 10 for Agent 2 and 3 as well. Since the sampling time does not change the
adjacency matrix A, and as result, Laplacian matrix L is unaffected. However, the
controller gain (K) is obtained by LMI, which is based on a double integrator system

with corresponding sampling time. Therefore, each sampling time causes a new gain
(K.

5.4.2 Simulation Results

Example 1: T's= 0.01s

With a sampling time of T's=0.01 second and a data loss rate of r=20%. The system
is operation time is 50 seconds, the controller gain (K) is

K = [0.1079 6.6506]. (5.13)

Fig. 5.44(b) shows the speed of both of Agent 2 and 3 are increased to 0.8 and 0.9
m/s in just 1 second. After that, the speed of followers are barely increased in next
50 seconds. Since the speed is close enough to 1 m/s in first second, the trajectory
of Agent 2 and 3 from Fig. 5.44(a) is controlled to move parallel with Agent 1. Fig.
5.45(a) shows the mean error, and Fig. 5.45(b) is the distribution of data transmission.

Example 2: T's= 0.05s

In this example, sampling time is increased to 0.05 second. The controller gain (K)
was obtained just as the same as Section 4.1 by LMI as
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K = [0.0481 1.328). (5.14)

It is noticeable that with a higher sampling time, the controller gain becomes smaller.
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Figure 5.46: Simulation Results of Position and Speed in One Dimensional Plane
with T's = 0.05, r=20%

At 1 second, Agent 2 and 3 just reach 0.46 and 0.64 m/s in Fig. 5.46. Since the
sampling time increases, the controlling input in the same period is not as strong as
Example 1. The controller is affected by both of position and speed. However Fig.
5.47 shows the system is converged much faster than Example 1 in term of position
and speed. It concludes that a smaller sampling does not guarantee a faster consensus.

Example 3: T's= 0.1s

Once the sampling increases to 0.1 second, the controller gain is the same as Section
4.2 and 4.3, which is K = [0.1036, 0.6603].

Fig. 5.46 shows Agent 2 and 3 accelerate more smoothly. there is no such a sharp
jump like it is shown from Fig. 5.44 and Fig. 5.46. Fig. 5.47 shows the system is
converged in 27 seconds. From previous three examples, a smaller sampling time
can only increase the responding time, but it does not reduce the consensus time. It
seems the consensus time becomes smaller with a higher sampling time. Therefore,
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Figure 5.49: Mean Square Error with T's = 0.1, r=20%

Example 4 is studied and to explore the consensus ability with a 1 second of sampling

time.

Example 4: Ts= 1s

The corresponding controller gain (K) is obtained by LMI as

K = [0.0002 0.0407). (5.15)

The gain is dramatically decreased from K = [0.1036, 0.6603].

Fig. 5.50 shows that at 43 second, Agent 3 just reaches 0.8 m/s. It is 24 seconds in
Example 3 and the accelerations of Agent 2 and 3 are even smaller than all previous
examples. Fig. 5.51 shows at 50 second, the system is not converged at all. Therefore,
a time range is increased to 500 seconds, which is shown in Fig. 5.52. The system is
still not consented completely at 500 second. Therefore, from all four examples, there
is a optimal range of the sampling time. If the sampling time is not big, which can
be treated as a time delay, the controller is too slow to respond, and eventually the
system goes divergency.
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Table 5.4: Effects of Sampling Time (7's) with r» = 20%

Example No. Sampling Time(s) Controller Consensus Time(s)
of Agents Gain (K)
(1) 3 0.01 [0.1079 6.6500] >> 50
(2) 3 0.05 [0.0481 1.3288] > 50
(3) 3 0.1 [0.1036 0.6603] 27
(4) 3 1 [0.0002 0.0407] > 500

5.4.3 Summary on Effect of the Sampling Time

In summary, the simulation results are explored and discussed for four examples with
different sampling times. Table 5.4 shows all results of the system. Each sampling
time is required with a new controller gain in order to satisfy the LMI in Theorem 1.
Therefore, the result from Table 5.4 shows that the consensus ability is not affected
by sampling time, but also affected by corresponding new controller gains. The goal
of controller is to drive the system to reach a consensus in terms of the speed and the
position. Therefore, the speed and the position are coupled, and the best controller
gain is to balance the effect on both of speeds and positions. In Example 1, the
gain obtained from a 0.01 second of sampling shifts the controller input into the
speed instead of the position. Thus the consensus time does not become smaller as
expected. With increase of sampling time, the gain is trended to become optimal for
both speed and position, such as Example 3. However, once the sampling time is too
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big, like Example 4, it takes longer time for system to reach consensus since the gain
is so small. Therefore, for the proposed algorithm, sampling time 0.1 second is in an

ideal range.

5.5 Summary on Parameters

Table 5.5: Effects of Increasing a Parameter Independently

Case Parameter Gain (K) Consensus Time (s)
(1) Loss Rate Decrease | More Effective under 50%
(2) | Communication Weight | Unchanged Decrease
(3) Initial Value Unchanged Slightly Increase
(4) Sampling Time Decrease | Most Effective with 0.01 s

The parametric studies are conducted in four cases: 1) effect of data loss rate (r);
2) effect of communication weight w;;; 3) effect of initial values; and 4) effect of
sampling time. Table 5.5 summaries the tendency of the effect by four parameters.
Based on the results of Case 1, within » = 50%, it proves that the effectiveness of
the proposed controller design. The maximum of lata loss rate for the controller is
determined in Example 7 with 95%.

The simulation results in Case 2 show the communication weight w;; € (0,1) is
a proportional gain which is to distribute the information flow rate among the
system. The higher weight distribution shortens the consensus time until the weight
reaches the maximum value of 1. However, the consensus time is not proportionately
decreased in scale with the corresponding weight. For instance, in Example 1 and
4, the weight on Agent 2 is decreased from 1 to 0.5, but the consensus time is only

increased from 20 to 25 seconds.

For Case 3, the simulation results show that the larger initial value extends the
consensus time. However, the initial value only slightly affects the consensus ability.
The initial value is increased by 16 times from (5,10) to (80,160), the consensus
time is raised from 27 to 41 seconds.

In Case 4, since each sampling time is required with a new controller gain in order to
satisfy the LMI in Theorem 1, the results show that the consensus ability is not only
influenced by sampling time, but also affected by corresponding new controller gains.
The speed and the position are coupled, and the best controller gain is to balance the
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effect on both of speeds and positions. Therefore the sampling time cannot be too
big or too small in order to reach a consensus in both of the speed and the position.

When the sampling time is around 0.1 second, it is in an ideal sampling range.

Based on the parametric studies, the consensus time is mainly depended on the
controller gain. In Case 1, the controller gain is varied correspondingly by data
loss rate, in result of affecting the consensus time. From Case 4, the controller gain is
to adjust both positions and speeds. Thus the best controller gain is to balance the

effect on both of speeds and positions.

5.6 Case with Five Agents

The last section of this chapter is to explore a case with a system of five agents. The
topology of five agents is shown on the Fig. 5.53. Agent 1 is still the leader, and only
capable if sending signals, while the rest of group members, Agent 2 — 5 are follower
which can receive signals from the leader directly or indirectly through neighbors.
The sampling time is 0.1 second, and The communication weight is 1 for all channels.
The initial positions for Agent 1, 2,3,4, and 5 are 0,5,10,15, and 20, respectively. The
speeds of Agent 1 starts at 1 m/s, and the rest of agents start from 0 m/s. Since
the major contribution of this thesis is to design a controller to seek a convergency
of a multi-agent system in the even of data loss, in this section, two examples are
studied, one is with 20% of data loss rate, and the other one is with 50% of data loss
rate. Both examples verify the effectiveness of the controller in a system with a larger

number of agents.

Example 1: r=20%

With a group of five agents, set Hy, = diag[Ho1, Hoa, Hos, Hos)sxs, H =
diag[H11, Hi2, Hi3, Hi4lsxs,. The control gain with a data loss rate bound 0.2 is

from this particular case based on the sufficient condition in Theorem 1.

K=Y,X.'=10.1038 1.0473 ]. (5.16)

Fig. 5.54 shows the system of five agents is also able to be converged in terms of
the position and the speed with the controller. Fig. 5.55(a) shows at 28 seconds the
system is reached consensus. Fig. 5.56 shows controller input of gain (K) in respect of
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the time. The higher number of input in magnitude means the lager effort of controller

acting on agents. Once the system reaches consensus, the input will become zero.

Example 2: r=50%

The control gain with a data loss rate bound 0.5 is from this example, and based on
the sufficient condition in Theorem 1.

K =Y, X' =[0.0166 0.0283 ]. (5.17)

50| r=50%,K=[0.0166 0.2833]

Distance (m)
w
o

Il
0 5 10 15 20 25 30 35 40 45 50
Time (s)

15
el kN NNk I
@ 0.5F b
£ — Agent 1
g 0 —%— Agent 2
13
<% — Agent 3
®» -05 gent S|
Agent 4
Sk — Agent 5
_15 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

Time (s)

Figure 5.57: Simulation Results of Position and Speed in One Dimensional Plane
with r=50% in Five Agent Case

Fig. 5.57 shows the system of five agents is also able to be converged with 50% of
data loss rate. Fig. 5.58(a) shows at 36 second, the system reaches consensus. Fig.
5.59 shows controller input of gain (K).

5.7 Summary

In order to prove the effectiveness of the controller in a multi-agent system, a five

agent example is simulated. Two examples are studied, one is 20% of data loss rate
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and the other is 50% data loss rate. Both examples prove that the effectiveness in a

larger number of system.



Chapter 6

Simulation Studies on Single Integrator Consensus

In this chapter, in order to prove the proposed controller is efficient, a comparison
study is conducted based on a Bernoulli-based single integrator system controller.
Moreover, an actual hardware model, Pioneer 3 mobile robot, is studied. Since the
kinematic of robot is in a single integrator system,the proposed algorithm needs to

convert into the case of a single integrator.

6.1 Comparison Studies

There are several similar research papers dealing with random data losses. A very
recent one is [56]. It investigates the average consensus with time-varying delays and
data losses for multi-agent systems. The problem is formulated under the sampled-
data framework by discretizing the first-order agent dynamics. The loss of data across
each communication link occurs at certain probability and it is governed by a Bernoulli
process. In order to compare two controllers, both methods need to be modified. For
simplicity, the proposed algorithm in this thesis is called Method 1, and the algorithm
designed in [56] is called Method 2. Since Method 1 is designed based on a double
integrator dynamic, and it needs to be converted to a single integrator dynamic in
order to match with Method 2. Method 2 is to deal with random data losses and time
delays and Method 1 is designed for random data losses only. Therefore, Method 2

needs to eliminate the time delay by setting it to zero.

6.1.1 Method 1 : Modification and Results (Proposed)

In Chapter 3, a double integrator system is defined as

Ty = Tyo
itig = U; (61)
u; = —K,‘Xi, 1= 1, sy 1

where &;; and Z;, represent the first and second information state of ith agent. In

order to convert to a single integrator, Eq.(6.1) becomes

89
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o (6.2)
u; = _Kimi, 1= 1, N

The continuous time system can be converted to a discrete time system by setting
the sampling time, T's = 0.05 seconds, (same as in [56] where T's = 0.05 seconds)
then Eq.(6.2) becomes

. (6.3)
U; = —Ki$i, 1= 1, ., n,

where A=1, and B=0.05. The topology of the system is proposed to be a five agent

system, shown in Fig. 6.1.

Leader
Agent 1

Followers
Agents 2-5

Figure 6.1: A Group of Five Agents in A Directed Graph Topology

Based on Theorem 1, the controller gain (K) is K = 1.3288 with the bound of data
loss rate as 0.2. Initial values are 1, 5, 10, 15, and 20, respectively for all agents. Fig.
6.2 shows the simulation results by Method 1, when the loss rate is set as 20%. Fig.
6.3 shows that the system is converged in 23 seconds, if the value of error is under

0.05 to be considered as reaching its consensus.

6.1.2 Method 2: Modification and Results ( [56])

In [55], the first-order dynamics is defined as
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Figure 6.2: Simulation Result of Position and Speed in One Dimensional Plane by
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Figure 6.3: Mean Square Error and Data Loss Distribution by Proposed Method with
r=20%
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j;i = Uy, 2':1,2,...,n. (64)
With sampling period T and a zero-order hold, the agent dynamics is discretized as

An uniform and time-varying delays and data loss among agents. Therefore a con-
troller is adopted,

ui(k) = —yeXjenvij(k)ag[zi(k — d(k)) — z;(k — d(k))], (6.6)
where ~;;(k)=1 if there is no packet loss from Agent j to agent ¢, and ~,;;(k)=0
otherwise. d(k) is the delay from Agent j to Agent ¢ at time instant k. The packet

loss is governed by a Bernoulli process with uniform probability 0 < p < 1. In order
to compare with Method 1, d(k) is set to be zero. Then Eq.(6.6) becomes

ui(k) = —veXjenvij(k)aij(zi(k) — ;(k)), (6.7)
Set T'=0.05 seconds, p = 0.8, which equals r = 20% in Method 1. The controller gain
w, is 0.6, according to Section IV in [56].

T
Agent 1
—*— Agent 2
Agent 3]
Agent 4
Agent 5| |

Position (m)

0 5 10 15 20 25 30 35 40 45 50
Figure 6.4: Simulation Result of Position and Speed in One Dimensional Plane by [56]
with r=20%

Fig. 6.4 shows a simulation result by Method 2 ( [56]), when all conditions are the
same with Method 1 (Proposed). Fig. 6.3 shows the system is converged in 50 seconds.
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Figure 6.5: Mean Square Error and Data Loss Distribution by Method 2 with r=20%

6.1.3 Discussions

Since both methods are based on different approaches and assumptions, It is hard to
compare directly. The comparison results show that at 20% of data loss rate , 0.05
second of sampling time, and 0 of time delay of conditions and assumptions, Method
1 (Proposed) converges faster than Method 2 ( [56]). It only gives some basic ideas

how efficient of the proposed controller by comparing with others

6.2 Pioneer Robot Modeling and Simulation Studies

As discussed in Chapter 5, all figures are one dimensional, and they only show
the system convergency but actual trajectories of each agent. In this section, a
actual Pioneer mobile robot is used to be modeled as a gent. Therefore, each agent
represents a robot, and then is implemented the proposed controller to study the
performance in a real hardware model. Pioneer mobile robots, shown in Fig. 6.2(a)
are durable, differential-drive robots for academic researchers. In [54], the base
Pioneer 3-DX platform is assembled with motors featuring 500-tick encoders, 19 cm
wheels, tough aluminum body, 8 forward-facing ultrasonic (sonar) sensors, 8 optional
real-facing sonar, 1, 2 or 3 hot-swappable batteries. The base Pioneer 3 — DX
platform can carry a payload of up to 23 kg with maximum forward and backward
speed of 1.2 m/s, and rotation speed of 300 deg/s.
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Figure 6.6: (a) Pioneer 3-DX Mobile Robot [54] ; (b) Hand position for P3 mobile

robot

A kinematic about center position (z,y) can be described in Eq.(6.8); However the
most popular way to describe the kinematic of robots is to define a hand position for
each robot. In [48], a hand position is shown in Fig. 6.2(b). The center position of the
robot is (x,y), and the hand position is (h,,h,) which lies a distance L (L # 0) along
the line that is normal to the wheel axis and intersects the wheel axis at the center
point (z,y). Orientation angle (€) is zero at 0 deg, and counter-clockwise rotation is

defined as positive.

& =wcos(f)
y =vsin(f) (6.8)
0 =w,
where [x,y] is the inertial position of the Pioneer 3 mobile robot, 6 is the orientation
of the robot and [v, w] denote the linear and angular speeds of the robot. Moreover

the hand position can be represented as Eq.(6.9)

hy = x+ Lcos(6)

6.9
h, =1y -+ Lsin(0), (6.9)

Now, differentiate Eq.(6.9) with respect to time and substitute Eq.(6.8) into it, then

hy = cos(8)v — Lsin(f)w
h, = sin(0)v+ Leos(0)w,

ha | cos(8) —Lsin(0) v
[ hy ] a [ sin(@)  Lcos(6) ] [ w ] ' (6.11)

(6.10)

and
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Therefore, based on Eq.(6.10) and Eq.(6.11) the hand position of robot can be con-

trolled by manipulating linear and angular speed (v, w). Let

v = cos()u, — Lsin(0)u, (6.12)
w = —tsin(f)u, + Tcos(O)u,
and
v B cos(0)  Lsin(0) Uy
[ w ] B [ —1sin(f) +cos(0) ] [ Uy ] ’ (6.13)
then )
i) =L
and
h=u. (6.15)

Recall from Section 6.1.1, the ith agent is described as

[ il ] - [”;2 ] . (6.16)

We can see that Eq.(6.14) is a single integrator system, and Eq.(6.16) is a double
integrator system. Therefore the latter has to be converted to a single integrator

system in order to model Pioneer 3 robots. Then

X=u (6.17)
[f”g”] :[“] (6.18)
Ty Uy
The standard system equation is
i = Ax + Bu (6.19)
and
[‘?z —A|l "™ | +B “] (6.20)
Ly Ly Uy

where A € R?*? and B € R?**2. In order to become Eq.(6.18) from Eq.(6.20), then
let
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1
A=V 0| PO (6.21)
00 01
With the sampling time set as 0.1 s, the A and B in discrete time domain become
1 1
PV o 0D (6.22)
0 1 0 0.1

Since the LMI is not changed, and it still can get K from existing LMI with new A
and B in discrete time system. The gain (K) with r = 20% is

K 0.6838 0 ' (6.23)
0 0.6838

Example 1: Rectilinear, r=20%

The data loss rate is very varied and depending on a lot of factors. For a User
Datagram Protocol (UDP), a reasonable packet loss rate is less than 15%, according
to [55]. Moreover, for a Transmission Control Protocol (TCP), there will be no
packet loss. Therefore a data loss rate of 20% is used into these simulations. Fig. 6.7
is the topology of the system is to be simulated, Robot 1 is the leader, and Robot 2
and 3 are followers. Fig. 6.8 shows the schematic of data transmission among robots.
Firstly, Robot 1 sends the data at the first sampling time step, and at the same time
Robot 2 and 3 exchanges the data as well. Secondly, Robot 2 and 3 receive the data
from Robot 1 at the second sampling time step, and then start to move. Therefore,
the transmission delay is about a sampling period, which is 0.1 second.

Robot 1 is the leader, started at (0,500) mm. Robot 2 and 3 are followers, start at
(500,0) mm and (1000,0) mm respectively. Since the sampling time is 0.1 second,
Robot 2 and 3 have 0.1 second delay from Robot 1. It is the reason that robot 1
moves farther than robot 2 and 3 in Fig. 6.9, and it is also the reason, Fig. 6.11 shows
that the mean square error is 206 mm, instead of 0 mm. After the controller gain is
calculated, Fig. 6.9 shows the actual movement trajectory of the system with r = 20%.
Furthermore, it is not physically possible for Robot 2 and 3 are converged with
Robot 1. Therefore, the initial positions of Robot 2 and 3 are arbitrarily shifted to
(1000, —500) mm and (2000, —1000) mm. The virtual trajectory of robotsis converged
to one, shown in Fig. 6.9. However, with such shift of starting points, the actual
trajectory of robot has a safe distance d from its virtual trajectory.
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Figure 6.8: Data Flow Diagram with One Sampling Period Delay

d=/(z; — T:)* + (yi — U:)° (6.24)

where (z;,9;),i=2,3,...,n, is the projected initial position of ith robot. (Z;,¥;) is the
actual initial position. For example, in Fig. 6.9, the projected initial position of Robot

2 is (500,0) mm , and in Fig. 7.4 the actual initial position is (1000, —500) mm. The



d between actual and virtual trajectory is 707.1 mm according to Eq.(6.24).
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Figure 6.9: Trajectory of Pioneer Robots without Offset in r=20%
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Figure 6.10: Trajectory of Pioneer Robots with Offset in r=20%
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Figure 6.11: Mean Square Error with A Rectilinear Trajectory in r=20%

Example 2: Curvilinear, r=20%

At this time, Robot 2 and 3 need to follow a curvilinear trajectory which has 3000
mm radius. Fig. 6.12 shows the actual movement trajectory of the system of three
pioneer 3 — DX robots in a curvilinear trajectory with starting point offset. Robot
1 starts at (0,3000) mm, and Robot 2 and 3 start at (0,0) mm and (2000,0) mm
respectively. Robot 2 and 3 are converged with robot 1 about 11 seconds. In Fig.
6.13, the starting point of Robot 2 and 3 are shifted to (0, —500) mm, (2000, —1000)
mm. Therefore the safe distance d is created. Fig. 6.14 shows the error is under 500
mm after 6 seconds. Because the direction of Robot 1 constantly changes, it is very
challenging for followers to track it’s trajectory. It is hard to maintain the error as
stable as Example 1 for a rectilinear trajectory. At 29 seconds, the error is even over
500 mm again due to a sharp turn of Agent 1. However. it verifies that the controller

is still very effective in a single integrator dynamics.

6.3 Summary

This chapter explores the effectiveness in the single integrator dynamics. A com-
parison study is conducted to show the effectiveness of the controller in the single
integrator dynamics. The comparison study is based on the condition of 20% of data
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Figure 6.14: Mean Square Error with A Curvilinear Trajectory in r=20%

loss rate , 0.05 second of sampling time, and 0 of time delay. Both methods are able
to reach the consensus for a five agent system, but Method 1 (proposed) converges in
23 seconds, while Method 2 ( [56]) converges in 50 seconds. It shows that Method 1
is more efficient than Method 2 in this particular case. Moreover, actual trajectories
are also shown by simulating a three Pioneer 3-DX robot system. Both recliner and

curvilinear examples also verify that the effectiveness in a single integrator dynamics.



Chapter 7

Experimental Studies

7.1 Hardware Setup

An experimental verification is completed based on two Pioneer 3-DX robots, shown
in Fig. 7.1 (a), and a Pioneer 3-AT robot, shown in Fig. 7.1 (b). Pioneer 3-DX is
introduced in Chapter 6 already. Pioneer 3-AT is a similar class, except that it is
an all-purpose outdoor base instead of indoor base for Pioneer 3-DX. The maximum
forward or backward speed is 0.7 m/s, and the maximin rotation speed is 140 deg/s.
It can be loaded up to 12 kg, and it is suitable for asphalt, flooring, sand, and dirt.

Figure 7.1: (a) Pioneer 3-DX Mobile Robot ; (b) Pioneer 3-AT Mobile Robot [54]

A local wireless network over robots is created by a model DIR-615 D-link Router.
Robots are connected through each laptop mounted on the top of corresponding
robots. Once the laptop picks up the wireless connection, a topology of a multi-
agent system can be established according to pre-requirement. Pioneer robots
are programmed by a C++ based interface, called Advanced Robot Interface for
Applications (ARIA). Each communication channel is created by ArSocket function
according to the proposed topology. In this experiment, the topology of the system
is the exactly same with Chapter 6. ArSocket command has two options of choosing
internet protocol suite, one is called User Datagram Protocol (UDP), and the
other one is called Transmission Control Protocol (TCP). TCP is the most reliable

internet transmission protocol, and can retransmit any dropped packets and buffer

102



103

out-of-order packets to be able to deliver the original data stream in the proper
order to the receiver. On the other hand, UDP emphasizes reduced latency over
reliability. Therefore it does not guarantee the success of transmission. During an
actual network testing on UDP, the proximate data loss rate is less than 2% with
5000 packet transmission between robots. If an UDP used for internet transmission
protocol, then the data loss can be negligible among system. Therefore it is not an
ideal experimental environment. The reason of choosing TCP is the data loss rate
can be preset by a function called rand()%100, which randomly generates integer
from 0 to 100 integrates. For example, if the data rate is required to 20%, then
it is just simply set rand()%100 >= 80. It means 80% data can be successfully
transmitted.

The original dynamics is designed for a double integrator dynamics system, while the
controller is to adjust the acceleration. Instead of controlling the acceleration, it is
theoretically feasible to control wheel speeds for Pioneer 3 robots. Eq.(6.12) is derived
angular w and linear speed v of robots, then converted to be right wheel speed v,.,
and left wheel speed v; in Eq.(7.1).

v, =v+4 (7.1)
v =0V — %l
where, v, and v; are right and left wheel speeds. [ is the axial distance between two
wheels. Therefore the controller input is easily commanded by robot.setVel2(vl,vr),

where vl and vr are v, and v; in Eq.(7.1), respectively.

7.2 Experiment Results

In the experiment, two examples are considered like in the simulation on Chapter 6,
one is rectilinear trajectory and the the other is curvilinear trajectory. Both examples
are subjected with a 20% data loss rate. In [50], the network tested in the experiment
was keeping in a stable condition since over 90% packets could be received in a fixed
time domain. Therefore, 20% of data loss rate is comparatively large in a reality.

7.2.1 Example 1: Rectilinear

The goal of this experiment is to validate the simulation in result of verifying the
proposed algorithm. Therefore the experiment is required to set up as close possible
to the simulation in Chapter 6. Robot 1 (Pioneer 3-AT) is the leader due to its
larger size. The starting point is (0,500) mm, which is the same starting point to
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simulation in Chapter 6 (Fig. 6.9 ) with a 45 initial degrees of orientation. Robot 2 and
Robot 3 both are Pioneer 3-DX, and supposedly placed at (0,0) mm and (1000, 0)
mm respectively, and both are in 0 degree orientation. These starting points are
called projected points, which are what robots take these points into the controlling
algorithm. However, all robots would be converged into one point and collided each
others if they are placed in the projected starting points. Same as Chapter 6, both
starting points of Robot 2 and 3 are shifted vertically downward by 1000 mm to
(500, —1000) mm (1000, —2000) mm. These points are called actual starting points
in order to avoid the collision. The speed of both wheels in Robot 1 are programmed
to be 100 mm/s (0.1 m/s) with a initial angle of 45 degrees. The operation time
is 40 seconds. At every 0.5 seconds, a data is stored for further analysis. Same as
simulation, the transmission delay is one sampling period, shown in Fig. 7.2. Fig.
7.3 and Fig. 7.4 are the result of trajectory of all three Pioneer robots without and
with offset, respectively . Due to hardware limitation, at first a couple of seconds,
there is noise-like motions for both Robot 2 and 3 when they was trying to correct
their trajectories based on the proposed controlling algorithm. From Fig. 7.5, about
20 seconds, both Robot 2 and 3 are stable compared to Robot 1’s position. Fig. 7.6
shows the actual test framework from 0 to 30 seconds.
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Figure 7.2: Data Flow Diagram with One Sampling Period Delay
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7.2.2 Example 2: Curvilinear

Another example of curvilinear with a 20% data loss rate is also carried out. The pro-
jected starting points of Robot 1, 2, and 3 are (0,0),(500,0), and (1000,0) mm, while
the actual starting points are (0,0), (500,-1000), and (1000,-2000) mm respectively.
Fig. 7.7 and Fig. 7.8 show both of curvilinear trajectories of robots without and with
offset, respectively. Since Robot 3 is farther than Robot 2, the trajectory of Robot 3
is much more oscillated than Robot 2. Fig. 7.9 is the error curve. Robot 2 and Robot
3 track Robot 1 at 27 seconds. As mentioned at Chapter 6, the error is theoretically
zero. However because of the transmission delay which caused by packet losses.

7.3 Summary

In this chapter, both rectilinear and curvilinear cases are completed based on a test
platform of Pioneer 3 robots. In order to consider the data loss, 20% of data loss
rate is arbitrarily introduced. Compared to the simulation results in Chapter 6, Fig.
6.9 shows the trajectory of robots in simulation. The speed of the leader is 1 m/s,
Robot 2 and 3 are converged with the leader in 7 seconds, which can be shown in
Fig. 6.11. However in Fig. 7.3, the hardware experiment result shows Robot 2 and
3 are experienced oscillations in first 10 seconds, and start to reach consensus with
the leader in 20 seconds. Both results are subjected with 20% data loss rate, and the
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Figure 7.6: Snapshot of Experiment in Rectilinear Trajectory from 0 to 30 seconds
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Figure 7.7: Curvilinear Trajectory of Pioneer Robots without Offset in r=20%, Con-
verged in 27 Seconds

leader has the same speed. However the simulation is more efficient in consensus than
the experiment, because it does not need to consider any hardware limitation, like the
speed of robots. In simulation, Robot 2 and 3 can theoretically reach Robot 1 with
infinite speeds. However in hardware experiment, the speed of robots are limited. It
is more obvious in the curvilinear example. Fig. 6.12 shows Robot 2 and 3 follow the



108

1500

1000

500

-500 -
(500,-1000)
Vs

Y(mm)

-1000

-1500

Leader (Robot1)
4 (1000,-2000) —#— Follower (Robot2)

-2000 Follower (Robot3)

-2500

Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000
X(mm)

Figure 7.8: Curvilinear Trajectory of Pioneer Robots with Offset in r=20%, Con-
verged in 27 Seconds

1200 T

—#— Robot 2
Robot 3

1000

800

600

Mean Square Error

400

200

0 L L L L L L L

Time (s)

Figure 7.9: Mean Square Error of Curvilinear trajectory with r=20%, Converged in
27 Seconds



109

leader very tightly. Moreover, the position of robots in hardware are calculated on
odometry, any uncertainties and error could increase the inaccuracy of the experiment
results. The robot needs time to receive, process, and send data in the experiment
rather than the simulation, which is not considered. All of these reasons could cause
the uncertainty and inaccuracy in the hardware experiment. However, based on
experiment results in both rectilinear and curvilinear examples with consideration
of the limitation of the hardware, the hardware experiment certainly verified the

validation of simulation results in Chapter 6.



Chapter 8

Conclusions and Future Works

This chapter summarizes any founds and results of this thesis and suggests develop-
ments to be pursued in the future.

8.1 Conclusions

In this thesis, a novel consensus algorithm or protocol for multi-agent systems (MAS)
in the event of communication link failure over the network was developed and tested.
The parametric study work shows that the algorithm provides stable results by in-
vestigating four cases; 1) effect of data loss rate, r; 2) effect of communication weight,
w;j: 3) effect of initial values; and 4) effect of sampling time; Based on the results
of simulation, within r = 50%, it proves that the controller is more efficient. The
maximum of lata loss rate for this controller determined is 95%. The higher weight
distribution shortens the consensus time until the weight reaches to 1. However,
the consensus time is not proportionately decreased in scale with the corresponding
weight. The larger initial values extends the consensus time. However,the initial
values only slightly affect the consensus ability. Since each sampling time is required
with a new controller gain in order to satisfy the LMI in Theorem 1, the results show
that the consensus ability is not only affected by sampling time, but also affected by
corresponding new controller gains. The speed and the position are coupled, and the
best controller gain is to balance the effect on both of speeds and positions. There-
fore the sampling time cannot be neither too big nor too small. 0.1 second is a good
comparably good sampling time for this proposed controller. A case with five agents
was simulated in two examples, one is 20% of data loss rate and the other is 50% data
loss rate. Both example prove that the effectiveness in a five agent examples. Theo-
retically, the controller can be used in any number of agents of multi-agent systems.
Experimental tests were also conducted by using the algorithm to verify performance
on a real world system. Two Pioneer 3-DX and a Pioneer 3-AT robots were used
for a test platform. A leader following consensus was conducted in two cases, one
is rectilinear, and the other is curvilinear with 20% of data loss rate. Both cases of

experimental results showed the effectiveness and feasibility of the proposed approach.
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8.2 Future Works

There are some interesting work extensions based on the results of this thesis:

e Consider both packet losses and delays in the communication channels of multi-
agent systems. For packet losses, an alternative option can be used to govern the
random data losses situation, such as Markov chains with time delays introduced
in the controlling algorithm.

e Investigate other consensus problems instead of the leader following, such as a

certain shape formation, an average consensus, and a cooperative construction.

e Research higher integrator dynamics.
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Appendix A
Operations Manual

Simulation

1. Set the sampling time, Ts at c¢2d.m file, then matrix A and B will be given after

running of this .m file.

2. According to matrix A and B with a desired data loss rate,r, a controller gain K

will be calculated by lmi.m file
3. Run robot3.m file with r and k obtained from step 2. It is for parametric studies.
4. Run robot3xy.m file with r and k obtained from step 2. It is for Pioneer robot

simulations.

Experiment

1. Turn on DIR-615 D-link Router to create a local wireless network.

2. Connect each laptop with corresponding Pioneer robot with RS-232 Serial Cable
by ensuring connect in the COM 1, labeled at each laptop.

3. Open service&client folder. For DELL Inspiron, open service project file. For
TOSHIBA Satellite Pro, open clientl project file. For TOSHIBA Satellite, open
client1.

4. Set a data loss rate in line (rand()%100 >= 1 —r), data loss rate is 0.0r%.

5. Set operation time in line (int interval = time) in ms.

6. Place each robot at appropriate starting spots. Make sure each robot has at least

1 m of safe distance.
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7. Run service first, and wait from command window, and then run clientl, and

client2.

8. Save and load datalog.txt, datalog 1.txt, and datalog 2.txt in plot robot trajec-

tory.m for plotting robots’ trajectories.
9. For a rectilinear case, set (double vl = 100; double vr = 100;).

10. For a curvilinear case, set (double vl = 100; double vr = 130;).
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