Dipyrrins, Pyrrolyldipyrrins, Prodigiosenes and Their Complexes

by

Sarah M. Crawford

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia
September 2011

© Copyright by Sarah M. Crawford, 2011
The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled “Dipyrrins, Pyrrolyldipyrrins, Prodigiosenes and Their Complexes” by Sarah M. Crawford in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Dated: 29 September, 2011

External Examiner: _________________________________
Research Supervisor: _________________________________
Examining Committee: _________________________________

Departmental Representative: _________________________________
DALHOUSIE UNIVERSITY

DATE: 29 September, 2011

AUTHOR: Sarah M. Crawford

TITLE: Dipyrrins, Pyrrolyldipyrrins, Prodigiosenes and Their Complexes

DEPARTMENT OR SCHOOL: Department of Chemistry

DEGREE: Ph.D. CONVOCATION: May YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted material appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author
TABLE OF CONTENTS

LIST OF TABLES .. vi
LIST OF FIGURES .. vii
LIST OF SCHEMES ... viii
ABSTRACT ... x
LIST OF ABBREVIATIONS USED.. xi
ACKNOWLEDGEMENTS ... xiii

CHAPTER 1 INTRODUCTION ... 1
 1.1 DIPYRRINS AND THEIR COMPLEXES ... 1
 1.2 PYRROLYLDIPYRRINS, PRODIGIOSENES AND THEIR COMPLEXES 4
 1.3 SCOPE OF THESIS .. 5

CHAPTER 2 PRODIGIOSENE SYNTHESIS AND MODIFICATION 6
 2.1 BACKGROUND ... 6
 2.2 THE CHEMISTRY OF PRODIGIOSENES ... 10
 2.2.1 Synthetic Approaches to Prodigiosenes Reported in the Literature 10
 2.2.2 The Chemical Modification of Prodigiosenes ... 13
 2.3 RESULTS AND DISCUSSION ... 18
 2.3.1 Optimization of the Synthesis of Ethyl Ester Prodigiosene 1 18
 2.3.2 Biomimetic Synthesis of Prodigiosenes ... 27
 2.3.3 Hydrolysis of Ethyl Ester Prodigiosene 1 .. 32
 2.3.4 Transesterification of Ethyl Ester Prodigiosene 1 38
 2.3.5 Investigation of Prodigiosene Protection Methods 41
 2.4 CONCLUSIONS AND IMPLICATIONS ... 44

CHAPTER 3 SYNTHESIS AND INVESTIGATIONS INTO PYRROLYLDIPYRRINATO COMPLEXES .. 46
 3.1 BACKGROUND ... 46
 3.1.1 Prodigiosene Complexation .. 46
 3.1.2 Fluorescent Dipyrrinato Complexes ... 48
 3.2 THE CHEMISTRY OF PYRROLYLDIPYRRINATO COMPLEXES 51
3.3 RESULTS AND DISCUSSION .. 51
 3.3.1 The Synthesis and Chemical Manipulation of Precedented
 Pyrrolyldipyrrinato Complexes .. 51
 3.3.2 Synthesis of Additional Pyrrolyldipyrrins for Complexation ... 55
 3.3.3 Synthesis and Structural Determination of a Series of
 Pyrrolyldipyrrinato Tin(IV) Complexes 61
 3.3.4 Investigations into the Optical and Biological Properties of
 Pyrrolyldipyrrinato Tin(IV) Complexes 72
3.4 CONCLUSIONS AND IMPLICATIONS ... 79

CHAPTER 4 BODIPY SYNTHESIS, DEPROTECTION AND
 MODIFICATION .. 81
4.1 BACKGROUND .. 81
4.2 THE CHEMISTRY OF BODIPYS .. 82
 4.2.1 Synthesis of Dipyrrins, Dipyrrinato Complexes and
 F-BODIPYs .. 82
 4.2.2 Modification of the Dipyrrin Core 84
 4.2.3 meso-Modification of Dipyrrinato Complexes 85
 4.2.4 Modification of the Boron Centre of F-BODIPYs 86
4.3 RESULTS AND DISCUSSION ... 88
 4.3.1 Development of F-BODIPY Deprotection Methodology 88
 4.3.2 meso-Modification of F-BODIPYs and Improvements to
 the Synthesis of the Fully Unsubstituted F-BODIPY 100
 4.3.3 Explorations into X-BODIPY Synthesis 110
4.4 CONCLUSIONS AND IMPLICATIONS ... 114

CHAPTER 5 EXPERIMENTAL SECTION ... 117
5.1 GENERAL EXPERIMENTAL .. 117
5.2 ABSORBANCE AND FLUORESCENCE MEASUREMENTS 118
5.3 BIOLOGICAL ACTIVITIES ... 119
5.4 EXPERIMENTAL PROCEDURES ... 119

CHAPTER 6 CONCLUSIONS ... 197
REFERENCES .. 201
APPENDIX A X-RAY CRYSTALLOGRAPHIC DATA 209
APPENDIX B NMR DATA FOR SYNTHESIZED COMPOUNDS 221
LIST OF TABLES

Table 1. Investigation of decarboxylation conditions for 24 ... 21
Table 2. Hydrolysis conditions for prodigiosene 1 .. 33
Table 3. Conditions for transesterification of prodigiosene 1 .. 39
Table 4. Conditions for hydrolysis of zinc complex 51 ... 53
Table 5. Yields of pyrrolyldipyrrinato tin(IV) complexes .. 71
Table 6. Optical properties of tin pyrrolyldipyrrinato complexes and F-BODIPY complex 52 in DCM at 22 °C ... 73
Table 7. MIC data (μg/mL) for prodigiosene tin complexes 83 .. 77
Table 8. Mean in vitro activity of prodigiosenes and their complexes over 60 human cancer cell lines ... 78
Table 9. Optimization of the microwave-promoted deprotection of F-BODIPY 104 92
Table 10. Microwave-assisted deprotection of F-BODIPY derivatives in the presence of 6 equivalents of potassium tert-butoxide in tert-butanol at 92 °C for 40 min ... 93
Table 11. O-BODIPY deprotection ... 97
Table 12. Optimization of the synthesis of F-BODIPY 97 .. 107
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure and numbering of the dipyrrin unit</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>κ^2 Binding in a dipyrrinato complex</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>BODIPY framework and numbering</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Pyrrolyldipyrrin skeleton and suggested nomenclature</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Prodigiosin</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Obatoclax (GX15-070)</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>C-Ring modified prodigiosenes</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Retrosynthesis for the first approach to prodigiosene derivatives</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Retrosynthesis for the second approach to prodigiosene derivatives</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Retrosynthesis of ester-functionalized pyrroles to be incorporated into prodigiosene derivatives</td>
<td>17</td>
</tr>
<tr>
<td>11</td>
<td>Mechanism for the formation of dipyrrin 29</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>Known boron difluoride complexes of pyrrolyldipyrrins</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>Cu(II) complex of C-ring oxidized prodigiosin</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Highly fluorescent dipyrrinato metal complexes</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>Thermal ellipsoid diagram (50%) of 93</td>
<td>67</td>
</tr>
<tr>
<td>16</td>
<td>Thermal ellipsoid diagram (50%) of 1</td>
<td>68</td>
</tr>
<tr>
<td>17</td>
<td>Thermal ellipsoid diagram (50%) of 52</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td>Pyrrolyldipyrrinato complexes in dichloromethane solution visualized under ambient light and long wave UV irradiation</td>
<td>73</td>
</tr>
<tr>
<td>19</td>
<td>Normalized absorption and emission spectra of 93 obtained using 520 nm excitation in DCM at 22 °C</td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>Synthesis of meso-unsubstituted dipyrrins</td>
<td>82</td>
</tr>
<tr>
<td>21</td>
<td>Synthesis of meso-substituted dipyrrins</td>
<td>83</td>
</tr>
<tr>
<td>22</td>
<td>Crude 1H NMR spectra of dipyrrin 105 isolated from reactions conducted at temperature X</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>Vinylic dipyrrrole byproduct</td>
<td>95</td>
</tr>
<tr>
<td>24</td>
<td>Postulated alkylation intermediate</td>
<td>104</td>
</tr>
<tr>
<td>25</td>
<td>Thermal ellipsoid diagram (50%) of 1421</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme 1.</th>
<th>Outline of the biosynthesis of prodigiosin</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2.</td>
<td>General McFayden-Stevens reduction of bipyrrrole ester</td>
<td>11</td>
</tr>
<tr>
<td>Scheme 3.</td>
<td>D’Alessio’s methodology for the synthesis of prodigiosenes</td>
<td>12</td>
</tr>
<tr>
<td>Scheme 4.</td>
<td>Dairi’s synthesis of bipyrrrole aldehyde</td>
<td>13</td>
</tr>
<tr>
<td>Scheme 5.</td>
<td>Synthesis of thioglycolic acid substituted prodigiosenes</td>
<td>14</td>
</tr>
<tr>
<td>Scheme 6.</td>
<td>Synthesis of amido functionalized prodigiosenes</td>
<td>15</td>
</tr>
<tr>
<td>Scheme 7.</td>
<td>Reported synthesis of prodigiosene</td>
<td>19</td>
</tr>
<tr>
<td>Scheme 8.</td>
<td>Synthesis of pyrrole</td>
<td>20</td>
</tr>
<tr>
<td>Scheme 9.</td>
<td>Modified synthesis of pyrrole</td>
<td>21</td>
</tr>
<tr>
<td>Scheme 10.</td>
<td>Synthesis of pyrrolinone</td>
<td>23</td>
</tr>
<tr>
<td>Scheme 11.</td>
<td>Synthesis of dipyrrin zinc complex</td>
<td>24</td>
</tr>
<tr>
<td>Scheme 12.</td>
<td>Synthesis of bipyrrrole aldehyde</td>
<td>28</td>
</tr>
<tr>
<td>Scheme 13.</td>
<td>Attempted hydrolysis of 2,4-pyrrole diesters under acidic conditions</td>
<td>30</td>
</tr>
<tr>
<td>Scheme 14.</td>
<td>Attempted hydrolysis of 2,4-pyrrole diesters under basic conditions</td>
<td>31</td>
</tr>
<tr>
<td>Scheme 15.</td>
<td>Synthesis of a modified C-ring using a selective hydrolysis method</td>
<td>31</td>
</tr>
<tr>
<td>Scheme 16.</td>
<td>Attempted hydrolysis of prodigiosene</td>
<td>33</td>
</tr>
<tr>
<td>Scheme 17.</td>
<td>Synthesis of tert-butyl ester prodigiosene</td>
<td>36</td>
</tr>
<tr>
<td>Scheme 18.</td>
<td>Microwave-promoted transesterification of prodigiosene</td>
<td>39</td>
</tr>
<tr>
<td>Scheme 19.</td>
<td>Synthesis and hydrolysis of N-methylated prodigiosene</td>
<td>42</td>
</tr>
<tr>
<td>Scheme 20.</td>
<td>N,N,N-Trimethylprodigiosene dipyrrilcarbinol ether equilibrium</td>
<td>43</td>
</tr>
<tr>
<td>Scheme 21.</td>
<td>Synthesis of zinc (51) and boron (52) complexes of prodigiosene</td>
<td>52</td>
</tr>
<tr>
<td>Scheme 22.</td>
<td>Attempted hydrolysis of zinc complex</td>
<td>53</td>
</tr>
<tr>
<td>Scheme 23.</td>
<td>Synthesis of B-ring alkyl pyrrolyldipyrins</td>
<td>56</td>
</tr>
<tr>
<td>Scheme 24.</td>
<td>Synthesis of C-ring alkyl substituted pyrroles</td>
<td>58</td>
</tr>
<tr>
<td>Scheme 25.</td>
<td>Synthesis of C-ring alkyl prodigiosenes</td>
<td>59</td>
</tr>
<tr>
<td>Scheme 26.</td>
<td>Synthesis of fully alkyl substituted pyrrolyldipyrin</td>
<td>61</td>
</tr>
<tr>
<td>Scheme 27.</td>
<td>Synthesis of a tin complex of ethyl ester prodigiosene</td>
<td>62</td>
</tr>
<tr>
<td>Scheme 28.</td>
<td>Synthesis of prodigiosene dibutyltin complex</td>
<td>63</td>
</tr>
<tr>
<td>Scheme 29.</td>
<td>Pyrrole diketone synthesis</td>
<td>64</td>
</tr>
<tr>
<td>Scheme 30.</td>
<td>Synthesis of a hydrazone derivative of</td>
<td>65</td>
</tr>
</tbody>
</table>
Scheme 31. Synthesis of a crystalline tin complex 93 .. 66
Scheme 32. General synthetic scheme for the synthesis of pyrrolyldipyrrinato tin(IV) complexes .. 71
Scheme 33. Removal of the BF\textsubscript{2} unit from an F-BODIPY .. 87
Scheme 34. Attempted deprotection of F-BODIPY 104 .. 87
Scheme 35. F-BODIPY deprotection with potassium tert-butoxide .. 89
Scheme 36. Microwave-promoted deprotection of F-BODIPY 104 ... 90
Scheme 37. O-BODIPY synthesis ... 96
Scheme 38. Synthesis of C-BODIPY 124 ... 98
Scheme 39. Attempted deprotection of F-BODIPY 52 .. 99
Scheme 40. Synthesis and deprotection of prodigiosene F-BODIPY 126 99
Scheme 41. Synthesis of F-BODIPY test compound ... 100
Scheme 42. \textit{meso}-Alkylation of C-BODIPY 124 ... 103
Scheme 43. \textit{meso}-Alkylation of F-BODIPY 108 ... 103
Scheme 44. Arylation of F-BODIPY 108 at -45 °C ... 104
Scheme 45. Arylation of F-BODIPY 108 at 22 °C ... 105
Scheme 46. Optimization of the synthesis of F-BODIPY 133 .. 107
Scheme 47. Alkylation of F-BODIPY 133 and F-BODIPY 135 .. 108
Scheme 48. Arylation of F-BODIPY 135 .. 109
Scheme 49. Arylation of F-BODIPY 133 .. 110
Scheme 50. Synthesis of boronium cations using boron trihalides, BX\textsubscript{3} (X = Cl, Br, I) ... 112
ABSTRACT

Dipyrrins, pyrrolyldipyrrins and prodigiosenes are a closely related series of molecules: pyrrolyldipyrrins are dipyrrins with a pyrrolic substituent and prodigiosenes are a special class of pyrrolyldipyrrins with a methoxy substituent. Prodigiosenes are known for their anticancer activity, but although there have been a number of developments in their synthesis, chemical manipulation of prodigiosenes is rare. Development of a methodology for the chemical manipulation of prodigiosenes would allow a convergent synthesis of a closely related series of prodigiosenes ideal for investigations into structure activity relationships.

Chemical manipulation of dipyrrins is also rare, but this is largely overcome by first converting dipyrrins to dipyrrinato complexes. The same strategy could potentially apply to pyrrolyldipyrrins and prodigiosenes, but there are very few known pyrrolyldipyrrinato complexes. Three projects were undertaken in order to investigate the chemical manipulation of dipyrrins and pyrrolyldipyrrins.

The first project was to investigate the synthesis of a library of prodigiosenes by way of a convergent approach. The synthesis of a functionalized prodigiosene, with demonstrated anticancer activity, was optimized and many methods for functional group interconversion of an ester attached to the prodigiosene core were investigated. Ultimately, this method was unsuccessful in the synthesis of a library of prodigiosenes due to instability of prodigiosene intermediates.

The second project was to investigate the synthesis of pyrrolyldipyrrinato complexes. A series of pyrrolyldipyrrinato tin(IV) complexes with a previously unobserved binding mode for pyrrolyldipyrrins were successfully synthesized and one complex of the series was characterized using x-ray crystallography. Although fluorescent dipyrrinato complexes, with the exception of boron difluoride complexes, are rare, all of the pyrrolyldipyrrinato tin(IV) complexes were highly fluorescent with fluorescence quantum yields between 0.28 to 0.61.

The third project was to develop a protection method for pyrrolyldipyrrins using dipyrrins as model compounds. A general, high yielding method was developed to remove the BF$_2$ group from a dipyrrinato boron difluoride complex to generate a dipyrrin. Preliminary application of this deprotection methodology to prodigiosene boron difluoride complexes shows promise. This deprotection methodology allowed for the development of a new methodology for the synthesis of meso-alkyl substituted dipyrrins via meso-modification of their corresponding boron difluoride complexes.
LIST OF ABBREVIATIONS USED

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ</td>
<td>Chemical shift</td>
</tr>
<tr>
<td>ε</td>
<td>Molar extinction coefficient</td>
</tr>
<tr>
<td>Φ_F</td>
<td>Fluorescence quantum yield</td>
</tr>
<tr>
<td>Ac$_2$O</td>
<td>Acetic anhydride</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acetic acid</td>
</tr>
<tr>
<td>BME</td>
<td>Benzylmethyl ether</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>BOC</td>
<td>tert-Butylcarbonyl</td>
</tr>
<tr>
<td>F-BODIPY</td>
<td>4,4'-Difluoro-4-bora-3a,4a-diaza-s-indacene</td>
</tr>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-Dichloro-5,6-dicyanobenzoquinone</td>
</tr>
<tr>
<td>dec.</td>
<td>Decomposition</td>
</tr>
<tr>
<td>DEF</td>
<td>Diethylformamide</td>
</tr>
<tr>
<td>DIPEA</td>
<td>Diisopropylethylamine</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(Dimethylamino)pyridine</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>2,4-DNP</td>
<td>2,4-Dinitrophenylhydrazone</td>
</tr>
<tr>
<td>dsDNA</td>
<td>Double stranded deoxyribonucleic acid</td>
</tr>
<tr>
<td>eq</td>
<td>Equivalents</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>GI$_{50}$</td>
<td>Growth inhibition, 50%</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HBTU</td>
<td>2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>J</td>
<td>Coupling constant</td>
</tr>
<tr>
<td>LC$_{50}$</td>
<td>Lethal concentration, 50%</td>
</tr>
<tr>
<td>lit</td>
<td>Literature</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting point</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MW</td>
<td>Microwave irradiation</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>OAc</td>
<td>Acetate</td>
</tr>
<tr>
<td>Ph</td>
<td>Phenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure Activity Relationship</td>
</tr>
<tr>
<td>SEM</td>
<td>2-(Trimethylsilyl)ethoxymethyl</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TEA</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>TEOF</td>
<td>Triethylorthoformate</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>Tf$_2$O</td>
<td>Trifluoromethanesulfonic anhydride</td>
</tr>
<tr>
<td>TGI</td>
<td>Total growth inhibition</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMOf</td>
<td>Trimethylorthoformate</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>Ultraviolet-visible</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

"It is the dull eventless times that have no duration whatever. A time splashed with interest, wounded with tragedy, crevassed with joy—that's the time that seems long in the memory."

~ John Steinbeck (East of Eden)

I would first like to thank my supervisor, Prof. Alison Thompson for her support throughout my graduate studies. Under her guidance, I have developed many skills in chemical research, writing and teaching. I would also like to thank my committee members for their support and helpful suggestions during the course of this work. Financial support for my research was provided by the Natural Sciences and Research Council of Canada and Dalhousie University.

In addition, I am indebted to several members of the Department of Chemistry and would like to thank them for their assistance: Dr. T. Stanley Cameron, for solving the X-ray crystal structures of the compounds contained herein; Dr. Xiao Feng, for recording and processing the mass spectra of the compounds contained herein; Dr. Mike Lumsden for help troubleshooting 119Sn and 15N HMBC NMR experiments; Dr. Srinivasulu Bandi, Dr. David L. Jakeman and Dr. Susan E. Douglas for conducting the antimicrobial screening; and Dr. Neil Burford, for kindly providing laboratory space for me to work in from September 2010 to September 2011.

I would also like to acknowledge my fellow researchers and colleagues whom I have had the pleasure to know, interact with and learn from over the past four years: Dr. Adeeb Al-Sheikh Ali, Heather Cosh, Dr. H. Martin Gillis, Brandon Groves, Cassandra Hawco, Carla Jackson, Travis Lundrigan, Christy MacDonald, Dr. Estelle Marchal, Jennifer Melanson, Beth Pearce, Dr. Deborah Smithen, Dr. Srinath Thirumalairajan and
Dr. Md. Imam Uddin. I would also like to extend a special thanks to Dr. Adeeb Al-
Sheikh-Ali for his help and guidance when I was a new graduate student. I would also
like to extend a special thank-you to the current members of the Thompson group who
have been very accommodating while I have been working in a separate laboratory space.

I have also had the opportunity to work with a volunteer and two summer students
over the past four years and benefited greatly from the experience, as I hope they did. I
would like to acknowledge Matthew White (for his work with the selective hydrolysis of
pyrrole dicarboxylates), Lauren Longobardi (for her work with bis(dipyrrinato) F-
BODIPY complexes), and Lloyd Tucker (for his work with bis(dipyrrinato) complexes).

Lastly, I would like to thank my family. Thanks especially to my husband Nathan for
his support, understanding and encouragement throughout my graduate studies. Finally,
thanks to my parents, Stephen and Joan Bennett; my sister and brother, Elizabeth Bennett
and Matthew Bennett; my parents in-law, Dale and Carol Crawford; and my grandparents
in-law, Ken and Wendy Dickson for their support over the past four years.
CHAPTER 1 Introduction

1.1 DIPYRRINS AND THEIR COMPLEXES

Dipyrrins are fully conjugated, planar molecules that consist of an azafulvene attached to a pyrrole through the 2-position. The structure and nomenclature of the dipyrrin skeleton, as recommended by IUPAC,\(^1\) is depicted in Figure 1.

Figure 1. Structure and numbering of the dipyrrin unit

\[
\begin{array}{c}
\text{N} \\
\text{1} \\
\text{2} \\
\text{3} \\
\text{4} \\
\text{5} \\
\text{6} \\
\text{7} \\
\text{8} \\
\text{9} \\
\end{array}
\]

The 1- and 9-positions are commonly referred to as the \(\alpha\)-positions, the 2-, 3-, 7- and 8-positions are commonly referred to as the \(\beta\)-positions and the 5-position is commonly referred to as the \textit{meso}-position.

Dipyrrins have varying levels of stability, which correlate with the number, location and type of substituents. The fully unsubstituted dipyrrin (Figure 1) is not stable above \(-40\,^\circ\text{C}\) due to its susceptibility to both nucleophilic and electrophilic attack.\(^2\) Alkyl substitution at the 1-, 2-, 3-, 7-, 8-, and 9-positions increases the stability of the resulting dipyrrin, but adding an aryl substituent at the 5-position greatly increases the stability. Dipyrrins without an aryl substituent in the 5-position are routinely isolated as their hydrochloride or hydrobromide salts, which are more stable than their corresponding free-base dipyrrins. The \(NH\) proton of a dipyrrin can be removed with a strong alkali base to give the dipyrrinato anion of the corresponding metal salt, which can coordinate to a metal centre, typically bound in a \(\kappa^2\) fashion as shown in Figure 2.
A wide variety of isolable dipyrrinato metal complexes have been synthesized, varying both in complexation geometry and metal ion. Dipyrrinato complexes of select alkali metals, alkaline earth metals, transition metals and non-metals are all known. The chemical manipulation of dipyrrinato complexes is far more commonly reported in the literature than the direct chemical manipulation of dipyrrins. This is presumably because in dipyrrinato complexes the nitrogen atoms of the dipyrrin are effectively protected by the metal cation to which they are coordinated.

The most thoroughly studied dipyrrinato complexes are the borondifluoride complexes. These complexes have high thermal and photochemical stability, impressive chemical robustness and high fluorescence quantum yields, as well as tunable fluorescence properties. These properties are broadly exploited in their use as dyes, as fluorescent probes in biological systems, as materials for incorporation into electroluminescent devices, and as chemical sensors. These complexes are formally known as 4,4’-difluoro-4-bora-3a,4a-diaza-s-indacenes and commonly referred to as BODIPYs. The nomenclature of the structure is based on that of the analogous all-carbon tricyclic ring, and the numbering of the substituents follows that of indacene, as highlighted in Figure 3.
The numbering scheme for BODIPYs is not consistent with the dipyrinn numberin
scheme (Figure 1). It is useful to instead refer to the 5- and 3-positions as the α-
positons, the 1-, 2-, 6-, and 7-positions as the β-positions and the 8-position as the meso-
position when comparing a BODIPY with its parent dipyrinn, or to adopt the dipyrinn
numbering scheme, in order to avoid confusion between the different numbering
schemes. As the boron centre of the BODIPY can be substituted with groups other than
fluoride, it is customary to add a prefix to the abbreviation to denote the type of
substituent at boron: F for fluoro, O for oxygen, C for alkyl or aryl, E for alkynyl, H for
hydrido and X for the other halogens.

One area in this field that remains underexplored is the chemical modification and
manipulation of dipyrins, which is likely due to the inherent instability of the free-base
dipyrinn unit. However, in the past ten years, there have been an increasing number of
reports of direct chemical modification of dipyrinnato complexes. The majority of these
examples involve simple functional group transformations remote to the dipyrinnato core,
but there are also some reports of direct modification to the dipyrinnato core of a
BODIPY. Another area in the field that remains underexplored is the synthesis of other
dipyrinnato complexes with interesting optical properties: the majority of reported
dipyrinnato complexes, with exception of BODIPYs, exhibit limited to no fluorescence.

The work reported here aims to explore the existing methodologies and develop
new methodologies for the synthesis and chemical manipulation of F-BODIPYs, dipyrrens and their derivatives, and to investigate the properties of new dipyrrinato complexes.

1.2 PYRROLYLDIPIRRINS, PRODIGOSENES AND THEIR COMPLEXES

Pyrrolyldipyrrins are a special class of dipyrrin in which a pyrrole is joined to the dipyrrin through the 9-position (Figure 4). The numbering system shown is adopted from the parent dipyrrin to avoid confusion, and a nomenclature for the different rings in the tripyrrolic system is also shown.

Figure 4. Pyrrolyldipyrrin skeleton and suggested nomenclature

The most well known member of the pyrrolyldipyrrin family is the natural product prodigiosin. Members of the prodigiosin family (commonly called prodigioisenes) are pyrrolyldipyrrins with a methoxy substituent at the 7-position of the tripyrrolic skeleton. There have been a number of prodigioisenes isolated from natural sources and many others synthesized chemically in the laboratory, due to interest in their biological activity.6, 7

Although there have been many developments in the synthesis of pyrrolyldipyrrins of the prodigiosene family,6 there has been little work to date on the direct chemical modification of the pyrrolyldipyrrin skeleton. Direct chemical modification of a prodigiosene could potentially allow for a convergent synthesis of a
library of closely related of prodigiosenes, ideal for exploring structure activity relationships. This work explores optimization of the synthesis of prodigiosenes and the feasibility of direct chemical modification of a prodigiosene in order to generate a library of closely related prodigiosenes for investigation of anticancer structure activity relationships.

Pyrrolyldipyrrins, including those of the prodigiosene family, are potentially interesting ligands because they can coordinate in the same fashion as a dipyrrinato ligand, but they have a potentially non-innocent substituent in the 9-position, which could coordinate to the metal centre. Aided by the chelate effect, the pyrrolic substituent could potentially coordinate to the metal through its nitrogen atom in a η^1 fashion or in a face-on η^5 interaction to give a π complex. This is an underexplored area as there are currently only Zn(II)8-11, Cu(II)11 and BF$_2^{12}$ complexes of pyrrolyldipyrrins known. The work reported herein will describe the synthesis and characterization of the first series of fluorescent pyrrolyldipyrrinato complexes.

1.3 Scope of Thesis

The overall goal of the projects contained herein is the exploration of the synthesis, reactivity and properties of dipyrrins, pyrrolyldipyrrins and prodigiosenes. CHAPTER 2 will discuss the synthesis and chemical manipulation of prodigiosenes. CHAPTER 3 will outline the synthesis of pyrrolyldipyrrin and prodigiosene complexes and investigations of their photophysical properties. CHAPTER 4 will outline newly developed methodologies for the conversion of F-BODIPYs into dipyrrins, meso-substituted F-BODIPY synthesis, and dipyrrinato boronium cation synthesis.
CHAPTER 2 Prodigiosene Synthesis and Modification

2.1 BACKGROUND

Prodigiosin (Figure 5) is a tripyrrole, bright red pigment and the parent of a family of alkaloid natural products characterized by a common 4-methoxypyrrrolyldipyrin core unit. These bright red pigments are secondary metabolites produced by certain bacteria, including those of the Serratia and Streptomyces genera. Like many bacterial strains, these bacteria prefer starch-rich growth media and the colonies they produce have a distinct bright red color due to the production of prodigiosene pigments.

![Figure 5. Prodigiosin](image)

There are many reports of “bleeding” food found in the historical literature that have since been attributed to the growth of these bacterial colonies. In 322 BCE, during Alexander the Great’s siege of Tyre, Macedonian seers interpreted the “blood” a soldier found on the inside of his piece of bread as an indication that the city, which they were about to besiege, would fall. In 1263, at the Church of Saint Christina near Bolsena, a priest, feeble in faith, was celebrating mass and observed “blood” dripping from the sacramental bread. His faith was restored and this miracle is commemorated today as the festival of Corpus Christi and is the most famous example of “bleeding” food on record.6
Although the scientific nature of these “miracles” is understood today, prodigiosenes remain a compound class of interest because they exhibit immunosuppressive, antimicrobial, antifungal, antiprotozoal, antimalarial and anticancer properties. An early chemotherapeutic, Coley’s toxin, which consisted of a mixture of sterilized cultures of *Streptococcus* species and *Serratia marcescens*, was used to treat cancerous tumors from 1893 to 1963, before it was banned by the FDA. One can speculate that the presence of prodigiosin in the sterilized cultures contributed to the efficacy of this chemotherapeutic. Prodigiosin itself is not suitable for clinical development as an anticancer pharmaceutical because it exhibits systemic toxicity at effective anticancer doses. In contrast, prodigiosenes (synthetic derivatives of the natural product prodigiosin) are considered to be attractive targets for development as anticancer chemotherapeutics as they are able to induce apoptosis in several human cancer cell lines and also show *in vitro* cytotoxicity for several cell lines.

The diverse molecular mechanisms by which prodigiosenes induce apoptosis are still under widespread investigation. However, the anticancer activity of prodigiosenes is currently thought to arise from their abilities to interfere with protein kinase C isozymes, interfere with the Bcl-2 family of intrinsic apoptotic regulation proteins, damage and intercalate into DNA, and modify the pH of cellular organelles. Prodigiosenes are able to raise intracellular pH by acting as rapid and reversible symporters of H\(^+\) and Cl\(^-\), which may trigger apoptosis. In structure activity relationship (SAR) studies, the tripyrrolic core has been determined to be essential to this symport mechanism as protonation of the basic site allows for the formation of a tight ion pair that allows transmembrane transport of the H\(^+\)/Cl\(^-\) ion pair. Prodigiosenes bind to double stranded
DNA (dsDNA) through intercalation into the minor groove, and oxidatively cleave
dsDNA in a copper-mediated reaction.19, 20 All of the nitrogen atoms in the tripyrrolic
structure bind to Cu(II) in a complex where the C-ring of prodigiosin has been oxidized,
making the tripyrrolic core essential for this mode of activity.11 Published SAR studies all
confirm that the triheterocyclic core of prodigiosenes, featuring either a pyrrolic or an
indolic A-ring, is essential for anticancer activity.21-24 Obatoclax (GX15-070), shown in
Figure 6, is an A-ring indole prodigiosene that functions as a Bcl-2 inhibitor to induce
apoptosis.25

Figure 6. Obatoclax (GX15-070)

Obatoclax, developed by Gemin X and recently acquired by Cephalon, is currently in
Phase 2b clinical trials against extensive stage small cell lung cancer.26 Other SAR
studies of prodigiosenes have shown that the methoxy group on the B-ring is essential for
cytotoxicity.27, 28 With this knowledge, future SAR studies should focus on modifying the
A- and C-rings of the tripyrrolic prodigiosene core structure.

Recently, the Thompson group has reported the synthesis of C-ring modified
prodigiosenes that have pendant ester groups (Figure 7)29 attached to the prodigiosene
core \textit{via} either an ester or a ketone linkage. Incorporation of ester functionality on the C-
ring has two major benefits: (i) the placement of a carbonyl group adjacent to the
heterocyclic skeleton has been found to have a stabilizing effect that serves to facilitate
synthesis and isolation; and (ii) the ester group, be it directly conjugated to the prodigiosene core or pendant to it, provides opportunity for further functionalization of the prodigiosene.

Figure 7. C-Ring modified prodigiosenes

Of the synthetic C-ring modified prodigiosenes synthesized in the Thompson laboratory through 5 exhibited significant H⁺/Cl⁻ transmembrane transport, although the introduction of the carbonyl group adjacent to the pyrrolic skeleton decreased transport efficiency, relative to prodigiosin itself. The synthetic prodigiosenes were shown to maintain the oxidative, copper-mediated DNA cleavage ability of the parent prodigiosene, although at a slightly slower rate than the parent prodigiosin. Of the synthetic C-ring esters, prodigiosene 1 exhibited the best combination of activity in both H⁺/Cl⁻ transmembrane transport and copper-mediated DNA cleavage ability and also showed decoupled growth inhibition and cytotoxicity properties in vitro, making it an interesting target for further investigation.
2.2 The Chemistry of Prodigiosenes

2.2.1 Synthetic Approaches to Prodigiosenes Reported in the Literature

In nature, prodigiosenes are synthesized by way of an enzyme-catalyzed condensation reaction between proline-derived 3-methoxy-5,5'-bipyrrole-2-carbaldehyde (6) and 2-methyl-3-pentylpyrrole (7), the latter derived from 2-octenal (Scheme 1).30

Scheme 1. Outline of the biosynthesis of prodigiosin

In the laboratory, prodigiosenes have been synthesized using a variety of methods. The routes can be divided into two main categories: those involving a biomimetic condensation between bipyrrrole carbaldehyde 6 and a pyrrole as the final synthetic step, and those involving a carbon-carbon bond forming cross-coupling reaction as the final synthetic step.
The very first total synthesis of prodigiosin, in 1962, relied on a biomimetic condensation step31 and this method remained the most popular for some time. The methods used to generate the bipyrrolic aldehyde precursor varied, but the final step of each method relied on a low-yielding McFayden-Stevens reduction of an ester (8) to generate bipyrrrole aldehyde 6 (Scheme 2).6

Scheme 2. General McFayden-Stevens reduction of bipyrrrole ester 8

In 1996, D’Alessio and co-workers reported an alternate synthetic route, which avoided the synthesis of bipyrrrole aldehyde 6 (Scheme 3). The reaction relied on the formation of a dipyrrinone (11) from the base-catalyzed condensation of the 2-formyl pyrrole 9 with the commercially available pyrrolinone 10. The dipyrrinone was converted to its corresponding triflate (12), which was then converted to undecylprodigiosin by way of a one-pot Suzuki coupling and BOC deprotection.32 This method represented an improvement over all of the other synthetic routes as it was both scalable and higher yielding.
Many syntheses of prodigiosin itself and synthetic derivatives of the prodigiosene family rely on this methodology.22, 33-37 A modified version of D’Alessio’s methodology has been implemented in the synthesis of prodigiosenes in the Thompson group.29 The modification involves using potassium hydroxide as the base and tetrahydrofuran as the solvent in the condensation step to form pyrrolinone. These modifications were adopted because they were found to give higher, and more reproducible, yields than the original method.

In 2006, Dairi and coworkers from Gemin X Biotechnologies Inc. published a high-yielding synthesis of bipyrrrole aldehyde 6 (Scheme 4), which made the biomimetic condensation a feasible synthetic route to prodigiosenes. The procedure involved the synthesis of a bromopyrrole enamine followed by a Suzuki coupling with N-Boc-pyrrole-2-boronic acid (13).38
This methodology is gaining popularity in prodigiosene synthesis30, 39, 40 and has also been adapted for use in the large scale production of Obatoclax41. Unfortunately, other researchers who have implemented this synthetic route reported modified protocols to prepare both bromoenamine 14 and bipyrrrole carbaldehyde 6, suggesting that this route suffers from unreliable results42, 43.

\subsection*{2.2.2 The Chemical Modification of Prodigiosenes}

Very little work has been published to date on the direct modification of prodigiosenes. One literature report detailed the photoinduced redox reaction of an A-ring modified prodigiosene derivative with thioglycolic acid to generate a series of thiolated prodigiosenes (Scheme 5).37
Scheme 5. Synthesis of thioglycolic acid substituted prodigiosenes

The thioglycolic conjugates (16, 17, and 18) formed in sequential fashion, with the monothioglycolic conjugate (16) forming first followed by the di- and trithyoglycolic conjugates (17, 18). This route is not a synthetically viable route as it produces multiple products in low yields. Also worthy of note is the fact that when the phenyl A-ring of 15 is replaced with a pyrrole the resulting tripyrrolic compound does not react to give thioadducts under the same reaction conditions. For this reason, the synthetic manipulation of 15 can be considered a direct modification of a dipyrrin, rather than that of a prodigiosene.

Another route to the functionalization of prodigiosenes was developed by Rosa I. Sáez Díaz, a former post-doctoral fellow in the Thompson group.9 This method involved the base-catalyzed hydrolysis of an ester to give a carboxylic acid followed by a coupling reaction to generate a series of alkyl, aryl and allyl amide-functionalized prodigiosenes. This method is outlined in Scheme 6.
To our knowledge, these are the only reports in the literature of direct chemical modification of prodigiosenes. The core of the prodigiosene skeleton contains a dipyrrin and although there is some precedent in the literature for the chemical manipulation or dipyrrins and dipyrrinato complexes, this area is also underexplored. The synthesis and chemical manipulation of the dipyrrin unit will be discussed in more detail in CHAPTER 4.

The overall goal of this project was to synthesize and evaluate the biological activity of derivatives of the ethyl ester prodigiosene 1. Initially, the goal was to synthesize and evaluate a small library of derivatives where the alkyl group of the ester had been replaced with other alkyl, benzyl and aryl groups. Two approaches were investigated for the synthesis of prodigiosene esters. In the first approach to derivatives
of 1 (Figure 8), the synthesis of ethyl ester prodigiosene 1, using a modified version of
D’Alessio’s method,29 needed to be optimized and then an investigation of the direct
derivitization of ethyl ester prodigiosene 1 needed to be undertaken.

Figure 8. Retrosynthesis for the first approach to prodigiosene derivatives

To our knowledge, there was no literature precedent for the hydrolysis or
transesterification of an ester directly attached to the tripyrrolic core of prodigiosin or the
hydrolysis of an ester directly attached to a dipyrrin or dipyrrinato complex. However,
the acid- or base-promoted hydrolysis of esters directly attached to the tetrapyrrolic core
of porphyrins and metalloporphyrins has been reported.44-46 In a slight modification of
the first approach, prodigiosene 1 could be converted to a metal or boron complex prior
to hydrolysis. The addition of a complexation step could serve to both protect and modify
the electronic structure of the prodigiosene ligand to render the ester group more
susceptible to hydrolysis.
In the second approach to derivatives of 1 (Figure 9), different functionalized 3-carboxylate pyrroles would be joined to the bipyrrrole aldehyde 6 by means of a condensation reaction, thus synthesizing the prodigiosene derivatives directly.

Figure 9. Retrosynthesis for the second approach to prodigiosene derivatives

Here, the modified pyrrole that would become the C-ring of the prodigiosene derivative could be synthesized starting from a Knorr pyrrole. A selective deprotection and esterification strategy followed by a decarboxylation reaction could be utilized to arrive at the desired 3-carboxylate pyrrole products as outlined in Figure 10.

Figure 10. Retrosynthesis of ester-functionalized pyrroles to be incorporated into prodigiosene derivatives
Hydrolysis of 2,4-pyrrole diesters is selective, with acidic conditions favoring hydrolysis of various alkyl groups on the ester at 4-position and basic conditions favoring the hydrolysis of the various alkyl groups on the ester at the 2-position, and there are several recent examples of selective hydrolysis of 2,4-pyrrole dicarboxylates. This ability to selectively hydrolyze ester groups in the 2- and 4-positions of pyrroles allows for the preparation of a variety of pyrrole derivatives featuring different esters at the 4-position for incorporation into the prodigiosene skeleton.

With two promising synthetic strategies with which to access C-ring modified prodigiosenes, the synthesis of a small library of derivatives where the alkyl group of the ester has been replaced by other alkyl, benzyl and aryl groups was undertaken as part of this project. Once isolated and characterized, the biological activity of these derivatives were to be evaluated in order to determine if modification at this position is tolerated in terms of maintaining anticancer and H⁺/Cl⁻ transport.

2.3 RESULTS AND DISCUSSION

2.3.1 Optimization of the Synthesis of Ethyl Ester Prodigiosene 1

In order to investigate the transesterification and hydrolysis of the ethyl ester prodigiosene 1, its synthesis had to be optimized in terms of efficiency and scalability, such that multi-gram quantities were available. The Thompson group had previously reported the synthesis of 1 as outlined in Scheme 7.
This synthesis29 was in need of improvement as it was low yielding (20\% over the three steps shown in Scheme 7), but one of the major difficulties in its optimization was the synthesis of pyrrole 20. The benzyl group of pyrrole 23,50 the product of a Knorr reaction between benzyl acetoacetate and ethyl acetoacetate, may be removed in quantitative yields by hydrogenolysis over palladium on carbon. Pyrrole 2051 may be synthesized from the resulting pyrrole-2-carboxylic acid 2452 by way of a decarboxylation followed by a formylation with both steps conducted in one pot under two different sets of conditions (A or B), as shown in Scheme 8. The one-pot procedure for installing a formyl group in the α-position of substituted pyrroles removes the necessity for the isolation of α-unsubstituted pyrroles, which, depending on substitution patterns, can be unstable.
Scheme 8. Synthesis of pyrrole 20

In the first method (Conditions A), pyrrole carboxylate 24 is heated in DMF, to effect decarboxylation, followed by treatment with the Vilsmeier reagent to give 2-formyl pyrrole 20. Unfortunately, this one-pot procedure gave low and variable yields of 20. In the second method (Conditions B), pyrrole carboxylate 24 is treated with TFA, to affect the decarboxylation, and then trimethylorthoformate, which acts as a formylating reagent, to give pyrrole 20 in 61% yield. This second strategy was higher yielding and more reproducible than the first, though the yield was still low for such an early point in the synthesis. Recently, α-unsubstituted pyrrole 25 has been reported in the literature to be air and water stable and so it was believed that the decarboxylation and
formylation steps could be implemented independently in this case in order to obtain higher yields of 2-formyl pyrrole 20.

The synthesis of 2-formyl pyrrole 20 was therefore broken down into two steps, with the isolation of the decarboxylation product 25 preceding the Vilsmeir reaction. Several decarboxylation conditions were investigated as outlined in Scheme 9 and Table 1.

Scheme 9. Modified synthesis of pyrrole 20

![Scheme 9](image)

Table 1. Investigation of decarboxylation conditions for 24

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Isolated Yield of 25/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF, 150 ºC, 1 h</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>DMF, 150 ºC, 12 h</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>MeOH, p-toluenesulfonic acid, 65 ºC, 3 h</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>215 ºC (neat), 15 min</td>
<td>98</td>
</tr>
</tbody>
</table>

The first attempted one-pot procedure to provide 20 involved first heating a solution of 24 in DMF at 150 ºC for 1 h (Table 1, entry 1). When the product mixture of this reaction was isolated and purified, the required decarboxylated product 25 was obtained in 40% yield and the carboxylic acid starting material 24 was recovered in 58% recovery. Heating carboxylic acid 24 in DMF for 12 h or in methanol with an acid catalyst did not give substantial increases in yield of pyrrole 25 (Table 1, entries 2 and 3). The highest yielding method involved heating the neat pyrrole-2-carboxylate 24 past its melting point.
and waiting for the evolution of carbon dioxide gas to cease. These conditions lead to quantitative purified yields of 25 (Table 1, entry 5). When 25 was subjected to the Vilsmeir formylation conditions, 20 precipitated out of solution and was isolated as an off-white powder using suction filtration. Using the newly developed two-step procedure, purified yields of 20 were consistently between 85 and 98%; this represents a great improvement over the previous purified yield range of 19 to 40% using the one-pot decarboxylation and formylation method.

A previously reported three-step procedure was implemented to generate 4-methoxy-3-pyrrolin-2-one (10) from commercially available methyl acetoacetate (26). As shown in Scheme 10, methyl acetoacetate was treated with trimethylorthoformate under acidic conditions, to give 27 in quantitative yields after purification via vacuum distillation. Compound 27 was then brominated using NBS in the presence of benzoyl peroxide to give 28 in a 91% yield after purification via vacuum distillation. Compound 28 was then stirred at room temperature in aqueous ammonium hydroxide to give pyrrolinone 10, after extraction with dichloromethane and crystallization from methanol, in a 40% yield. This final step posed some difficulty, as pyrrolinone 10 is quite soluble in aqueous media. Heating the reaction mixture to 65 °C did not improve the overall yield and performing the reaction in a solution of methanolic ammonia led to an unidentified byproduct. Further investigations into the isolation of the product found that the yield could be improved by approximately 15 to 20% by continuously extracting the aqueous reaction mixture with dichloromethane over four days. This new method allows for the isolation of multi-gram quantities of pyrrolinone 10.
The condensation of pyrrole 20 with pyrrolinone 10 (Scheme 7) was reported to produce dipyrrinone 21 in a 41% yield. This yield was improved by 20% by increasing the nitrogen degassing time from 10 minutes to 40 minutes. The synthesis of triflate 22 from dipyrrinone 21 also proved problematic. Once isolated and purified, 22 was found to be unstable on the bench top and was either used immediately or stored in the freezer under an atmosphere of nitrogen to prevent decomposition. Triflation reactions of different dipyrrolic analogues of dipyrrinone 21 are reported in the literature and all use similar conditions with reported yields ranging from 65 to 94%, indicating that it should be possible to obtain high yields of 22. Rigorous drying of solvents and reagents is necessary as the presence of water lowers the yield of the reaction to 40-60% through the production of a byproduct that was identified, via spectroscopic methods, as symmetrical dipyrrin 29. In order to confirm the identity of dipyrrin 29, a tetrahedral zinc(II) complex was generated according to a previously published procedure, as shown in Scheme 11.
Characterization using NMR spectroscopy and mass spectrometry indicated that the tetrahedral zinc complex 30 had been successfully synthesized, confirming the identity of dipyrrin 29. Figure 11 depicts a possible mechanism for the generation of this dipyrrin byproduct. The byproduct is thought to arise from the hydrolysis of dipyrrinone 21 to a 2-formyl pyrrole and an α-free pyrrole. The self-condensation of two molecules of ethyl 2,4-dimethyl-pyrrole-3-carboxylate would lead to dipyrrin 29.
Figure 11. Mechanism for the formation of dipyrrin 29
This proposed mechanism accounts for the fact that the reaction to produce dipyrrin 29 took place under acid catalysis in the presence of water. Some other mechanistic possibilities, not illustrated in Figure 11 are that dipyrrin 29 was generated from the acid catalyzed coupling of two molecules of B with the loss of formaldehyde. Now, rigorously dried solvents are used in the triflation procedure, and purified yields of triflate 22 are thus routinely 85% and higher.

Once the triflation procedure was optimized, the Suzuki coupling of the triflate 22 with N-BOC protected pyrrole-2-boronic acid (Scheme 7) was investigated. It was noted that the yield of prodigiosene 1, could be increased from 60% to greater than 80% when the reaction was conducted on a scale of 300 milligrams or larger. This is likely due to catalyst deactivation, which has a greater effect on the small scale reaction.

Using an optimized version of a synthetic scheme already used for the production of prodigiosenes in the Thompson laboratory, ethyl ester prodigiosene 1 can now be routinely synthesized in six steps with an average overall yield of 34%. With a robust route to 1 in hand, efforts were then focused upon its chemical modification.

2.3.2 Biomimetic Synthesis of Prodigiosenes

Before we proceeded with the direct chemical modification of the prodigiosenes, we wanted to investigate the feasibility of the second method in synthesizing C-ring modified prodigiosenes. One popular, recently reported route to prodigiosenes and other related natural products involves the synthesis of the bipyrrrole aldehyde 6 followed by a condensation of a pyrrole, in a biomimetic step, to give the desired prodigiosene. Bipyrrrole aldehyde 6 can be synthesized from the pyrrolinone 10 using a reported method as shown in Scheme 12.38
The synthesis of the bromopyrrole enamine 14 proved more difficult than anticipated. The literature procedure involved generating a Vilsmeir reagent from diethylformamide and phosphorous oxybromide, adding it to a solution of pyrrolinone 10 and heating the reaction mixture for several hours. Reportedly, the reaction mixture was poured on ice, the pH adjusted to neutral and the precipitate formed was isolated via suction filtration to give 6. Under these work-up conditions, no product could be isolated in our hands. When the reaction mixture was subjected to aqueous work-up, dried, concentrated and a series of triturations with hexanes and dichloromethane were performed a white powder resulted. A broad singlet at 14.0 ppm in the 1H NMR spectrum of this isolated material indicated the presence of an HBr salt of 14. Due to this result, the literature procedure38 was modified to include a basic pH adjustment in the work-up. This modification allowed for the isolation of 14 in a 45% yield. Although the original literature procedure reported a yield of 70%, three recent publications that use this procedure for the production of 14 reported yields closer to 50%.$^{30, 40, 61}$
The Suzuki coupling of the bromopyrrole enamine 14 with N-BOC protected pyrrole-2-boronic acid 13 to produce bipyrrrole 6 has been attempted multiple times, but has not been successfully accomplished to date, despite the fact that four published procedures30, 38, 40, 61 report quantitative yields of 6. Over the course of the reaction, under all the attempted conditions, the bromopyrrole enamine 14 is consumed, and monitoring using TLC shows the production of six new products. However, the NMR spectrum of the crude material indicates that the desired product is not present. These products, when isolated using column chromatography, are a minor proportion of the overall mass of the crude material. The reaction has been carried out with a number of variations. For example, the tetrakis triphenylphosphine palladium catalyst has been generated \textit{in situ} using palladium acetate and triphenylphosphine, and purchased tetrakis triphenylphosphine has been added to the reaction as a solid; dimethoxyethane and dioxane have both been used as solvents; the sodium carbonate base has been replaced with sodium methoxide; and lithium bromide has been added. The time of the reaction has also been modified with reaction times from one to eighteen hours. These experimental variations all give similar results. One recently published procedure61 reports a much longer reaction time and the addition of sodium methoxide in the last thirty minutes of the reaction indicating that there are difficulties with the originally reported procedure and personal correspondence with other researchers who have used this procedure42, 43 also indicates that this procedure suffers from reproducibility difficulties.

Concurrently to the investigations of the synthesis of the bipyrrrole aldehyde 6, the development of a selective hydrolysis methodology for the synthesis of pyrrole
carboxylates, to be incorporated as a prodigiosene C-ring, was explored in some detail. Few specific procedures were published in the literature for the selective hydrolysis of 2,4-pyrrole diesters. However it was found, as alluded to in a communication, that the hydrolysis of the ester at the 2-position of 2,4-pyrrole diesters can be accessed selectively using basic conditions and the ester at the 4-position can be accessed using acidic conditions. Another interesting point of note is that the nature of the R group of the ester appears to affect the success and progress of the hydrolysis reaction. This effect is showcased by the use of similar acidic hydrolysis conditions, on two different 2,4-pyrrole diesters shown in Scheme 13.

Scheme 13. Attempted hydrolysis of 2,4-pyrrole diesters under acidic conditions

These results seem to suggest that the benzyl ester at the 2-position deactivates the reactivity towards hydrolysis of the ethyl ester in the 4-position. Under basic hydrolysis conditions, both the benzyl and ethyl groups of the ester at the 2-position were hydrolyzed, as shown in Scheme 14. The hydrolysis of the ethyl ester required a longer period of time than that of the benzyl ester.
Scheme 14. Attempted hydrolysis of 2,4-pyrrole diesters under basic conditions

Due to the success of the selective hydrolysis, a synthesis of a modified C-ring pyrrole was conducted as shown in Scheme 15.

Scheme 15. Synthesis of a modified C-ring using a selective hydrolysis method

This method involved a selective hydrolysis of the ester in the 4-position of the pyrrole diester 31. This was followed by an esterification procedure, adapted from the
literature,48 to give pyrrole diesters 33 and 34 in good yields. As a further proof of concept, a selective hydrolysis of the ester in the 2-position of pyrrole diester 33 gave pyrrole carboxylate 35. The corresponding α-free pyrrole could then be generated from 35 through a decarboxylation reaction, presumably using conditions similar to the decarboxylation conditions described in the first method. This pyrrole could then be condensed with the bipyrrrole aldehyde 6 to give a prodigiosene derivative.

Although the synthesis of substituted pyrroles with different esters in the 4-position was quite successful, difficulties in the synthesis of the bipyrrrole aldehyde 6 made this biomimetic method less favorable for use in the synthesis of C-ring modified prodigiosenes. The method described previously, by which prodigiosene ethyl ester 1 is chemically modified, was therefore chosen for the synthesis of C-ring modified prodigiosene derivatives. It should be noted that pyrrole esters, such as 35, could be converted into pyrrole aldehydes and be used to generate new prodigiosene derivatives in the method used for the synthesis of ethyl ester 1.

2.3.3 Hydrolysis of Ethyl Ester Prodigiosene 1

The majority of reported ester hydrolysis reactions are conducted using acid or base catalysis.62 Acids catalyze the reaction by making the carbonyl carbon atom more electropositive and, therefore, more susceptible to nucleophilic attack. Typical acid catalysts for ester hydrolysis include sulfuric, sulfonic, phosphoric and hydrochloric acids. Bases catalyze the reaction by providing a more powerful nucleophile than water, the hydroxide anion. Unless a molecule is base-sensitive, ester hydrolysis is almost always conducted under base-mediated conditions because it allows formation of the salt of the acid and thus drives the equilibrium towards the desired product.62 Typical bases
used for ester hydrolysis include aqueous potassium and sodium hydroxide in
tetrahydrofuran, ethanol, dimethylformamide or pyridine. Methods for ester hydrolysis
have been reviewed in detail.62-64

Acid- and base-catalyzed hydrolysis conditions were employed in initial attempts
for the hydrolysis of the ester of 1. The hydrolysis of 1, shown in Scheme 16, proved to
be more difficult than anticipated and attempts to hydrolyze the ester using acid- and
base-catalyzed hydrolysis are summarized in Table 2.

Scheme 16. Attempted hydrolysis of prodigiosene 1

Table 2. Hydrolysis conditions for prodigiosene 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H2SO4, THF (1:1), 22 °C, 18 h</td>
<td>Starting material decomposes</td>
</tr>
<tr>
<td>2</td>
<td>H2SO4, TFA (1:1), 22 °C, 1 h</td>
<td>Starting material recovered</td>
</tr>
<tr>
<td>3</td>
<td>H2SO4, TFA (1:1), 22 °C, 18 h</td>
<td>Starting material decomposes</td>
</tr>
<tr>
<td>4</td>
<td>HCl, MeOH (1:10), reflux, 18 h</td>
<td>Starting material recovered</td>
</tr>
<tr>
<td>5</td>
<td>HCl, MeOH (1:10), reflux, 72 h</td>
<td>Starting material decomposes</td>
</tr>
<tr>
<td>6</td>
<td>5 M KOH, THF (1:1), reflux, 48 h</td>
<td>Starting material recovered</td>
</tr>
<tr>
<td>7</td>
<td>6 M KOH, EtOH (1:10), reflux, 48 h</td>
<td>MS (ESI+) shows 36</td>
</tr>
<tr>
<td>8</td>
<td>5 M KOH, pyridine (1:10), reflux, 96 h</td>
<td>Starting material recovered</td>
</tr>
</tbody>
</table>

A variety of acid-catalyzed hydrolysis conditions were attempted (Table 2, entries 1
through 5). Prodigiosene 1 was treated with H2SO4 in both tetrahydrofuran and
trifluoracetic acid (Table 2, entries 1 through 3). At room temperature the starting
material was found to decompose under these conditions if left for greater than 12 hours. In contrast, if the reaction was quenched before decomposition, the starting material could be recovered nearly quantitatively. Similar results were obtained using HCl in methanol (Table 2, entries 4 and 5). The isolated material was still red in color, indicating the possible presence of the tripyrrolic core of prodigiosene. The isolated material was sparingly soluble in water and had low solubility in common organic solvents. The components of these decomposition mixtures could not be identified using NMR spectroscopy or mass spectrometry and purification was not possible due to the poor solubility of the mixtures.

Several sets of base-catalyzed hydrolysis conditions were also used (Table 2, entries 6 through 8). Heating solutions of prodigiosene 1 in mixtures of 5 M potassium hydroxide and tetrahydrofuran or pyridine to reflux temperature for 2 days resulted in a quantitative recovery of starting material (Table 2, entries 6 and 8). Heating solutions of prodigiosene 1 in a 1:10 mixture of 6 M potassium hydroxide:ethanol to reflux temperature, appeared to generate the desired carboxylic acid 37 (Table 2, entry 7), according to mass spectrometry data obtained using the crude product. Unfortunately, this result could not be confirmed using NMR spectroscopy due to difficulties in the isolation and purification of the product. The crude product was sparingly soluble in methanol and water, and attempts to recrystallize the crude product from these solvents were not successful. Subjection of the crude reaction mixture to trifluoroacetic anhydride followed by the addition of an alcohol, esterification conditions that have been shown to be effective for pyrroles substituted with carboxylic acids in the 4-position,48 did not lead to an esterified product. Repeated manipulations of the crude product led to increasingly
intractable dark purple material indicating that the product may also be of limited
stability.

Due to the difficulty of the hydrolysis of the ethyl ester, attempts were made to
synthesize tert-butyl ester prodigiosene 43, as shown in Scheme 17. Because the tert-
butyl group is acid labile,63 this prodigiosene has the potential to be hydrolyzed easily,
which would be ideal in the prodigiosene. There is also the potential that hydrolysis could
occur through a different mechanism. There are two commonly observed mechanisms for
the acid-catalyzed hydrolysis of esters. The second, and less commonly observed,
mechanism is the A\textsubscript{AL}1 mechanism;62 an S\textsubscript{N}1 mechanism that involves alkyl-oxygen
cleavage. This mechanism is only operative when the ester has a tertiary alkyl, allylic or
benzylic group which can leave as a stable carbocation, as in the case of the tert-butyl
ester but not the ethyl ester.62 A route for the synthesis of the tert-butyl ester prodigiosene
is outlined in Scheme 17. The synthetic sequence is very similar to the synthesis of the
ethyl ester prodigiosene 1 and differs only in the starting Knorr pyrrole 37. There is some
risk associated with carrying the tert-butyl group through so many synthetic steps as it is
relatively labile and carboxylic acid derivatives of the desired products may be generated,
thus leading to lower overall yields. However, if the ester group is particularly labile at
one particular step this may provide an opportunity for esterification at an alternate step
in the synthesis.
Scheme 17. Synthesis of tert-butyl ester prodigiosene 43

Scheme diagram with chemical reactions and conditions.
Hydrogenolysis of Knorr pyrrole 37 gave carboxylic acid 38 in excellent yield, which was then decarboxylated in excellent yield to give pyrrole 39. Pyrrole 39 was then submitted to Vilsmeir reaction conditions to give formyl pyrrole 40 in low yield. Formyl pyrrole 40 was then condensed with pyrrolinone 10 to give dipyrринone 41 in low yield.

The triflation of dipyrринone 41 was difficult. When the reaction was performed in dichloromethane using triflic anhydride, 1H NMR spectroscopy and mass spectrometry showed the presence of three products: the desired triflate 42, the carboxylic acid of triflate 42 and the carboxylic acid derivative of 41. All purification attempts resulted in decomposition and loss of material. When the reaction was buffered with excess diisopropylethylamine, triflate 42 was the major product along with a small amount of the carboxylic acid of pyrrole 40. As purification proved difficult, the crude material was subjected to the Suzuki coupling conditions, upon which decomposition of the starting material occurred without the production of prodigiosene. Analysis of the crude material by ESI mass spectrometry did not show any of the desired prodigiosene ester (43) or the corresponding prodigiosene acid (37).

As dipyrринone 41 appeared to be easily hydrolyzed, we thought to perform the hydrolysis and subsequent esterification at this stage of the synthesis. Treating 41 with TFA generated the desired carboxylic acid derivative of 41. A 1H NMR recorded in DMSO-d_6 indicates the generation of the desired carboxylic acid, but the insolubility of the derivative in any available deuterated solvents including D$_2$O prevented any further characterization. Subjection of the crude material to esterification conditions used for simple pyrroles65 was similarly unsuccessful.
In summary, all attempts to hydrolyze esters directly attached to the prodigiosene core were unsuccessful. Although the crude reaction mixture from the hydrolysis with potassium hydroxide in ethanol appeared to contain some hydrolysis product, the product could not be isolated and had limited stability. Due to the failure of the hydrolysis approach, investigations were undertaken to develop a transesterification methodology for the generation of ester analogues of prodigiosene 1.

2.3.4 Transesterification of Ethyl Ester Prodigiosene 1
Transesterification is a process in which one ester is transformed directly into another ester. This is the favorable method of modifying one ester into another, as it requires a single step compared to the two-step hydrolysis and esterification procedure.

Transesterification reactions are normally carried out using nucleophiles, enzymes, and metal complexes as catalysts. While metal complexes such as aluminum halides, titanium tetraalkoxides and organotin compounds are the most widely used for transesterification in the literature,64 they are not ideal for the transesterification of prodigiosenes because prodigiosenes are potentially good ligands for metals. Nucleophiles used for transesterification include sulfides, selenides, halides, cyanides and alkali metal alkoxides. Methods for transesterification have been extensively reviewed.64

It has been reported that a combination of DBU and lithium bromide in the presence of molecular sieves in an alcoholic solvent is an effective transesterification system.66 Using this combination of reagents in the presence of \textit{n}-butanol the free-base of prodigiosene 1 was not transesterified; instead, 97\% of the starting material was recovered. Another report indicated that potassium \textit{tert}-butoxide is an effective catalyst for transesterification.67,68 Employing these conditions,67,68 a mixture of the free-base of
prodigiosene 1 along with n-butyl acetate and potassium tert-butoxide was stirred under aspirator vacuum at 65 °C. Although no transesterified project was isolated, 95% of the starting material was recovered.

Microwave-promoted esterifications have proved successful for pyrrole substrates in the past. Both ambient pressure and high-pressure microwave-promoted reaction conditions were used for the transesterification of prodigiosene 1 to generate the methyl ester prodigiosene 44. This transformation is shown in Scheme 18 with investigated conditions highlighted in Table 3.

Scheme 18. Microwave-promoted transesterification of prodigiosene 1

![Scheme 18](image)

Table 3. Conditions for transesterification of prodigiosene 1

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>1.2 eq NaOMe, MeOH, MW, 125°C, 10 min</td>
<td>Mixture of 1 and 44</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>1.5 eq NaOMe, MeOH, MW, 125°C, 20 min</td>
<td>44 (75-87%)</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>1.5 eq NaOMe, MeOH, reflux, 20 min</td>
<td>1 recovered</td>
</tr>
<tr>
<td>4</td>
<td>nBu</td>
<td>15 eq NaOnBu, nBuOH, MW, 200°C, 40 min</td>
<td>1 : 1 Mixture of 1 and 45</td>
</tr>
<tr>
<td>5</td>
<td>tPr</td>
<td>125 eq NaOiPr, iPrOH, MW, 140°C, 40 min</td>
<td>1 : 1 Mixture of 1 and 46</td>
</tr>
</tbody>
</table>

Methyl ester 44 was successfully synthesized using 1.5 equivalents of sodium methoxide and heating to 125 °C for 20 minutes in methanol (Table 3, entry 2). Using fewer equivalents of sodium methoxide (Table 3, entry 1) or using conventional heating methods (Table 3, entry 3) did not result in the isolation of the transesterified product 44.
When this method was adapted to \textit{n}-butyl and \textit{iso}-propyl alcohols (Table 3, entries 4 and 5), 1H NMR spectra of the crude reaction mixtures after work-up showed the formation of the desired product along with the starting material in 1:1 ratios. Re-subjecting these mixtures to the reaction conditions did not improve the ratio of starting material to product. The product mixtures were inseparable by column chromatography and decomposed on attempted conversion of the free-bases to HCl salts. Although the reaction with methanol was reproducible, the reactions with \textit{iso}-propanol and \textit{n}-butanol suffered from poor reproducibility, making optimization practically impossible. Although this method produced the methyl ester derivative in good yields, it is not a general method and no further investigations into optimization were undertaken.

With limited success in the nucleophilic and microwave-promoted transesterification methods, we attempted to investigate metal-based transesterification methods. Titanium tetraalkoxides and organotin reagents are the most common metal catalyst for transesterification reactions although copper and rare earth metal alkoxides are known to catalyze the reaction as well.64 We began by investigating the milder organotin reagents as catalysts for transesterification of 1. Dibutyltin oxide is a reagent that has been shown to be an effective, mild transesterification catalyst.70 In this method, the alcohol, ester and 10 mole percent of dibutyltin oxide are typically heated at reflux temperature for 12 hours to give the transesterified product. When prodigiosene 1 was subjected to these conditions, a highly fluorescent product was formed in low yields. 1H NMR spectroscopy and mass spectrometry data indicated that this material was not the transesterified product, but rather the dibutyltin complex of prodigiosene 1. Resubjection of the complex to the original transesterification conditions did not result in the isolation
of any transesterified product. Further investigations into the synthesis, structure and properties of these prodigiosene tin complexes will be detailed in CHAPTER 3.

2.3.5 Investigation of Prodigiosene Protection Methods

The hydrolysis, esterification and transesterification of prodigiosene 1 proved difficult. Acid- and base-promoted hydrolysis reactions did not result in the isolation of carboxylic acid and, although a microwave-promoted transesterification method was found for the generation of methyl ester prodigiosene 44, it was not generalizable to other esters. The solubility and stability of isolated hydrolysis products also proved quite unpredictable and the adoption of a strategy which stabilizes and enhances the solubility of the products would be ideal. This could potentially be accomplished by N-protection of the prodigiosene or by appending an alkyl or removable thioalkyl chain\(^{71}\) at the C-2 position of the prodigiosene A-ring. A-ring modification was less favourable because it would introduce one or more extra steps in the overall synthesis and, therefore, N-protection was investigated.

\(^{N}\)-Protection strategies for the ester-functionalized prodigiosenes had to be carefully designed due to the fact that acidic and basic conditions are used in hydrolysis and esterification. Traditional pyrrole protection strategies could involve using the 2-(trimethylsilyl)ethoxymethyl (SEM) protecting group, which is resistant to reductive, oxidative, acidic and basic conditions and may be removed in two steps\(^ {72}\) or the benzylmethyloxymethyl ether (BME) protecting group, which is stable to acidic and basic conditions and can be removed in two steps.\(^ {72}\) Because both of these strategies required expensive reagents and the addition of three steps to the synthesis, \(^{N}\)-methylation was first investigated as a test case as several examples of \(^{N}\)-monomethyl and \(^{N}\)-monobenzyl
substituted prodigiosenes have been synthesized successfully in the past.73 \textit{N,N-}

Dimethylated prodigiosene 47 was synthesized and isolated, according to Scheme 19, in 45% yield along with an amphiphilic byproduct.

Scheme 19. Synthesis and hydrolysis of \textit{N}-methylated prodigiosene 48

\begin{center}
\begin{tikzpicture}
\node[] (1) at (0,0) {\includegraphics[width=0.4\textwidth]{reaction.png}};
\node[] (47) at (4,0) {\includegraphics[width=0.15\textwidth]{product47.png}};
\node[] (48) at (4,-1.5) {\includegraphics[width=0.15\textwidth]{product48.png}};
\node[] (49) at (7,-3.5) {\includegraphics[width=0.15\textwidth]{product49.png}};
\end{tikzpicture}
\end{center}

Subjection of the \textit{N}-protected product (47) to 6 M sodium hydroxide in ethanol led to hydrolysis product 48, according to preliminary results deduced from 1H NMR spectra. Purification of the product using reverse-phase chromatography was difficult, as was characterization due to the low solubility and general instability of the product. It is interesting to note that 48 is partially soluble in water.

The isolation of the amphiphilic byproduct from the methylation reaction using normal- and reverse-phase chromatography was not successful. Previous work regarding the \textit{N,N}-methylation of dipyrrins74 indicates that the structure of the amphiphilic byproduct likely corresponds to that of compound 49. When the crude reaction mixture
was treated with potassium hydroxide in methanol, the solution of the amphilic byproduct went from deep purple to colorless, indicating the disappearance of the dipyrrin chromophore and formation of the corresponding dipyrrylcarbinol ether (50) as shown in Scheme 20.

Scheme 20. \(N,N,N \)-Trimethylprodigiosene dipyrrylcarbinol ether equilibrium

Dipyrrylcarbinol ether 50 was converted to \(N,N,N \)-trimethylprodigiosene 49 upon treatment with HCl. Unfortunately, compound 50 was of limited stability and could not be isolated. Based on the methylation test reaction, applying traditional pyrrole \(N \)-protection to prodigiosene 1 was anticipated to be difficult and to require a significant amount of optimization. Both the BME and SEM protecting groups are introduced via a reaction with a sodium pyrrolyl anion and may result in amphilic products, similar to those isolated in the methylation case. The \(N,N \)-dimethylated prodigiosene carboxylic acid (48) was not investigated further as such derivatives are known to be biologically inactive\(^7\) and the methyl groups can only be removed under harsh reducing conditions incompatible with the ligand.\(^7\)

A final possibility for prodigiosene \(N \)-protection relied upon complex formation. Because there are very few prodigiosene metal complexes known, before this method could be investigated in detail it was necessary to undertake a general study of the
complexation behaviour of prodigiosenes. This approach will be discussed in more detail in CHAPTER 3.

2.4 CONCLUSIONS AND IMPLICATIONS

The goal of this project was to synthesize and evaluate the biological activity of a small library of derivatives of ethyl ester prodigiosene 1 where the alkyl group of the ester has been modified. Two methods were investigated for the synthesis of the library of derivatives.

The first approach involved the synthesis of ethyl ester prodigiosene 1 followed by direct chemical modification to afford derivatives. The first step of this approach involved optimization of the synthesis prodigiosene 1: prodigiosene 1 can now routinely be synthesized in six steps with an average overall yield of 34%. The second approach involved a biomimetic condensation of bipyrrrole aldehyde and a 4-pyrrole ester to directly generate the prodigiosene derivatives with various appended esters. Although a successful method has been found for the convergent synthesis of a variety of C-4 ester substituted pyrroles, bipyrrrole aldehyde 6 could not be successfully isolated, despite a systematic investigation of the reaction parameters. For these reasons, the first approach was adopted to generate the prodigiosene derivatives.

The second step of the first approach involved direct chemical modification of the prodigiosene ethyl ester 1 by hydrolysis followed by esterification or transesterification. Unfortunately, this proved to be difficult. Although base-mediated hydrolysis of prodigiosene 1 and its N,N-dimethyl protected derivative gave somewhat promising results initially, this method was largely unsuccessful predominantly due to the poor stability and solubility of the isolated materials which translated to insurmountable
difficulties in the isolation of the products. Transesterification methods also proved largely unsuccessful in generating modified prodigiosene esters with one exception. Ethyl ester prodigiosene 1 was successfully transformed into methyl ester prodigiosene 44 by way of reaction with sodium methoxide in methanol using microwave irradiation in a closed vessel at high pressure. This method was found to be reproducible and high yielding for the synthesis of the methyl ester prodigiosene (44), but it was not widely applicable to generation of esters via alternate alkoxide reagents.

In conclusion, the direct hydrolysis or transesterification of ethyl ester prodigiosene 1 and its N,N-dimethyl protected derivative 47 proved largely unsuccessful due to the poor stability of the carboxylic acid (36). Due to the inherent instability of the carboxylic acid (36), it was concluded that the proposed convergent method, by which 1 was chemically transformed, was not suitable for providing access to a library of prodigiosenes with modified ester alkyl groups.
CHAPTER 3 Synthesis and Investigations into Pyrrolyldipyrrinato Complexes

3.1 BACKGROUND

3.1.1 Prodigiosene Complexation

Due to our difficulties in directly modifying an ester appended to the prodigiosene core (0, Section 2.3), we sought to investigate complexation strategies as a method for stabilizing the prodigiosene core. There are numerous examples of dipyrrinato complexes in the literature and metal complexation is often employed as a purification strategy for free-base dipyrrins which can be difficult to isolate and/or have limited stability.3 Prodigiosenes and pyrrolyldipyrrins, which do not contain the 7-methoxy substituent, are potentially interesting dipyrrinato type ligands because they can coordinate in the same fashion as a dipyrrinato ligand but have a potentially non-innocent substituent in the 9-position, which could also coordinate to the metal centre. Aided by the chelate effect, the pyrrolic substituent could potentially coordinate to the metal through its nitrogen atom in a η¹ fashion or it could coordinate in a face on, η⁵ interaction to give a π complex.

The literature contains only three types of prodigiosene metal complexes and in these examples the prodigiosene only exhibits two modes of binding. The first example is a homoleptic zinc(II) complex where the two dipyrrinato units of two identical prodigiosenes bind to the zinc metal centre. These are the most common examples of prodigiosene metal complexes in the literature and there are four reported examples, one employing prodigiosin itself as a ligand¹¹ and the others employing different synthetic prodigiosenes as ligands.⁸-¹⁰ Notably, a zinc(II) prodigiosene protection strategy has also been utilized in prodigiosene synthesis.⁹
The second example is a boron difluoride complex of a synthetic pyrrolyldipyrrin where the dipyrrinato unit of a single pyrrolyldipyrrin binds a boron difluoride unit. There is currently one pyrrolyldipyrrinato boron difluoride complex which is commercially available from Invitrogen™ for use as a fluorescent probe for biological systems.12 A derivative of this F-BODIPY, where the carboxylic acid group of the pyrrolyldipyrrin has been esterified to give a 4-sulfotetrafluorophenyl ester, has also been reported.75 These complexes are shown in Figure 12. To our knowledge, these are the only two examples of fluorescent pyrrolyldipyrrinato complexes reported in the literature prior to our work.

Figure 12. Known boron difluoride complexes of pyrrolyldipyrrins

The last example is a copper(II) complex of prodigiosin in which the C-ring is oxidized. In this complex, all of the nitrogen atoms in the tripyrrolic structure bind copper(II), which is also coordinated to a chloride ligand,11 as shown in Figure 13. To our knowledge, this is the only example of a prodigiosene-type ligand that coordinates a metal centre through all three of its nitrogen atoms. However, because the prodigiosin C-
ring is oxidized, the tripyrrolic core is no longer a pyrrolyldipyrin and the ligand is monoanionic.

Figure 13. Cu(II) complex of C-ring oxidized prodigiosin

In two of the three reported types of prodigiosene metal complexes, the metal ion coordinates to the prodigiosene solely through its dipyrrinato unit. Therefore, in these complexes, a prodigiosene ligand can essentially be considered a dipyrrinato ligand with a pyrrolic substituent in the 9-position.

Although there are relatively few examples of pyrrolyldipyrrinato metal complexes in the literature, there are many examples of dipyrrinato metal complexes. A wide variety of isolable dipyrrinato metal complexes have been synthesized varying both in complexation geometry and in metal ion. The geometry at the metal centre in these complexes is largely influenced by the steric interactions between the substituents in the 1- and 9-positions of the dipyrrinato ligands, which are brought in close proximity to one another upon complex formation.

3.1.2 Fluorescent Dipyrrinato Complexes

With the exception of the BODIPY class, dipyrrinato metal complexes do not generally exhibit detectable fluorescence emission. There is currently great interest in developing new fluorescent dipyrrinato metal complexes for use in electroluminescent devices and there are several recent examples in the literature of fluorescent dipyrrinato complexes.
Several weakly fluorescent, homoleptic dipyrrinato complexes (ML$_2$) with rotationally restricted meso-aryl groups have been isolated and characterized. A zinc(II) complex of this type has the highest quantum yield (Φ$_F$ = 0.36), but complexes of indium(III) and gallium(III) have also been found to exhibit weak fluorescence (Φ$_F$ = 0.02 - 0.07).

Another homoleptic rhodium(III) complex (ML$_3$) with rotationally unrestricted meso-aryl groups has been found to exhibit very weak fluorescence (Φ$_F$ not determined). Some coordination polymers containing zinc(II) dipyrrinato complexes bridged by various rigid meso-phenylethynyl spacers are also reported to weakly fluoresce (Φ$_F$ not determined).

Recently there has also been enhanced interest in the synthesis of heteroleptic dipyrrinato complexes (MLX$_n$). An unusual dimeric zinc(II) complex, featuring a meso-pyridyl moiety which is rotationally restricted by coordination of the pyridyl nitrogen to the zinc metal centre of a neighbouring complex, has been reported to be weakly fluorescent (Φ$_F$ = 0.06). More recently, several fluorescent dipyrrinato zinc(II) and calcium(II) dipyrrinato complexes (MLX) have also been reported (Φ$_F$ = 0.58 - 0.70). In these complexes, the dipyrrinato ligand was π extended and contained either a rotationally unrestricted meso-aryl group or was meso-unsubstituted. The metal centre was also coordinated to an acetate group, as shown in Figure 14, and the authors also indicated that fluorescent complexes can be obtained using yttrium(III), lanthanum(III) and gallium(III), but these species have not been isolated or characterized.
More recently, several fluorescent dipyrrinato aluminium(III) complexes (MLX₂) have been reported (Φ_F = 0.23 - 0.72). In these complexes, the dipyrrinato ligands have two pendant phenolic groups, whose phenolates coordinate to the metal, and either a rotationally unrestricted meso-aryl group (Φ_F = 0.23) or a rotationally restricted meso-aryl group (Φ_F = 0.72), as shown in Figure 14. A fluorescent tin(II) dipyrrinato complex (MLX) has also been isolated (Φ_F = 0.42). In this complex the dipyrrinato ligand contains a rotationally restricted meso-aryl group and the metal centre bears an additional triflate ligand. The precursor to this fluorescent tin complex contains a chloride ligand and exhibits only weak fluorescence (Φ_F = 0.04). There is also one example of a platinum(II) dipyrrinato complex with a rotationally restricted meso-aryl group which exhibits very weak fluorescence (Φ_F = 0.01) and several iridium(II) complexes which exhibit solid state phosphorescence (Φ_P = 0.06 - 0.12).

With these few examples, the development of fluorescent dipyrrinato metal complexes is still under explored. Several trends seem to emerge from the known fluorescent dipyrrinato complexes: in order to obtain high fluorescence quantum yields,
the ligand must be rigidified by additional coordination sites and the dipyrrinato unit must either be meso-unsubstituted or meso-substituted with a rotationally restricted aryl group. Pyrrolyldipyrrins, which contain a potential extra site of metal coordination, are therefore good ligand candidates for the development of fluorescent dipyrrinato complexes.

3.2 The Chemistry of Pyrrolyldipyrrinato Complexes

In the literature there are only two examples of the direct modification of a pyrrolyldipyrrinato complex. Both of these examples involve the hydrolysis and esterification of an ester remote to the pyrrolyldipyrrin core, one on a pyrrolyldipyrrinato zinc complex\(^9\) and the other on a pyrrolyldipyrrinato boron difluoride complex.\(^{75}\) The limited number of examples highlighting the reactivity of pyrrolyldipyrrinato metal complexes emphasizes the need to further explore their synthesis and reactivity.

3.3 Results and Discussion

3.3.1 The Synthesis and Chemical Manipulation of Precedented Pyrrolyldipyrrinato Complexes

As zinc(II) and boron difluoride complexes of prodigiosenes are known, we began our explorations into complexation by synthesizing these complexes of prodigiosene ethyl ester 1. The zinc complex was synthesized according to a previously published procedure\(^{59,60}\) and was monitored using UV/Vis spectroscopy: the starting material had a wavelength of maximum absorption at 475 nm, while the complex had a wavelength of maximum absorption at 519 nm. The boron difluoride complex was also synthesized using a common procedure for dipyrrinato boron difluoride complex formation.\(^4,5\) The synthetic scheme for both complexes is shown in Scheme 21. Both complexes were
bench stable crystalline materials that could be purified over silica, in contrast to the corresponding free-base, which could not be purified over silica.

Scheme 21. Synthesis of zinc (51) and boron (52) complexes of prodigiosene 1

Once both complexes were in hand we attempted to investigate the hydrolysis of the ethyl ester, hoping that complexation would facilitate isolation of the elusive carboxylate product. We started with chemical manipulation of the zinc complex as there is one previously reported hydrolysis of an ester remotely attached to a prodigiosene zinc(II) complex.\(^9\) Because acid facilitates decomplexation of the ligand from the zinc, the hydrolysis of 51, shown in Scheme 22, was only attempted under basic conditions, as summarized in Table 4.
Scheme 22. Attempted hydrolysis of zinc complex 51

Table 4. Conditions for hydrolysis of zinc complex 51

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 M KOH, THF (1:1), 7 days, reflux</td>
<td>Starting material recovered</td>
</tr>
<tr>
<td>2</td>
<td>5 M KOH, pyridine (1:10), 4 days, reflux</td>
<td>Starting material decomposed</td>
</tr>
<tr>
<td>3</td>
<td>6 M KOH, EtOH (1:10), 2 days, reflux</td>
<td>Starting material decomposed</td>
</tr>
</tbody>
</table>

From the base-catalyzed hydrolysis attempts, it appears that protection via zinc complexation does not facilitate the isolation of a hydrolyzed prodigiosene carboxylate. Zinc complex 51 was subjected to the same conditions that were successful in generating the transient, unstable prodigiosene carboxylate (36) from prodigiosene 1 (Table 4, entry 3). Zinc complex 51 did not withstand these conditions and analysis of the crude reaction mixtures by mass spectrometry showed multiple products that did not contain zinc. These decomplexed products were only sparingly soluble in water and methanol, solubility properties that are similar to those of the products of the attempted hydrolysis of unprotected prodigiosene 1. More recently, Dr. Md. Imam Uddin has synthesized a prodigiosene bearing a benzyl ester on the C-ring.\(^{58}\) Formation of a prodigiosene zinc complex followed by hydrogenolysis of the benzyl ester over palladium on carbon generates zinc complex 53 \textit{in situ}, but the complex could not be isolated or characterized.
as it decomposed readily. It can be trapped in situ following hydrogenolysis, via a coupling reaction with both esters and amides, but the resulting products are isolated in yields under 12% with complete consumption of starting material, indicating that the esterification reaction is in competition with the decomposition reaction.58

Attempts were also made to hydrolyze the ethyl ester of prodigiosene F-BODIPY 52 using 6 M KOH in ethanol. These conditions resulted in the complete consumption of starting material and a mixture of highly polar products, one of which was identified to be the unstable prodigiosene carboxylate 36 from a mass spectrum of the crude reaction mixture after aqueous work-up. A ^{11}B NMR spectrum of the same material indicated that the crude material did not contain boron and, although the mass spectrum indicated the presence of one other compound, it could not be identified. Purification of the crude material over neutral alumina was unsuccessful as the material adhered strongly to the alumina and could not be removed.

The base-catalyzed hydrolysis of methyl esters directly attached to the aryl group of meso-phenyl dipyrin ligands coordinated to cobalt(III) has been previously reported, consequently, the synthesis of the cobalt(III) complexes of prodigiosene 1 was attempted according to the published procedure, using commercially available Na$_3$[Co(NO$_2$)$_6$]. This reaction initially proved unsuccessful and a repeated attempt, monitored using UV/Vis spectroscopy, showed the slow disappearance of starting material without the corresponding formation of another UV active species, indicating that no complexation occurred, although the starting material was consumed, presumably via a decomposition pathway. It may be that prodigiosene 1 generates a ligand that is too sterically demanding to form an octahedral Co(1)$_3$ complex, or that it is oxidized in a redox couple with the
Synthesis of the analogous iron(III) complex also proved unsuccessful, providing further evidence that prodigiosene 1 does not form stable octahedral metal complexes.

Although complexation was not a viable method for the chemical manipulation of prodigiosenes under basic conditions, zinc(II) and BF₂ complexes of prodigiosene 1 could be isolated in high yields. Our next goal was to investigate the synthesis of previously unreported complexes in order to explore the binding modes and properties of prodigiosene and pyrrolyldipyrrinato complexes.

3.3.2 Synthesis of Additional Pyrrolyldipyrins for Complexation

The synthesis of pyrrolyldipyrins of the prodigiosene family has been previously discussed in detail (0, Section 2.3). However, in order to investigate the complexation of pyrrolyldipyrins as a general class, it was necessary to synthesize a variety of pyrrolyldipyrins and prodigiosenes with substituents, varying in electronic and steric properties, around the C-ring and the A-ring. In order to do a preliminary study, efforts were focused on synthesizing three classes of pyrrolyldipyrins: C-ring ester and B-ring alkyl substituted, C-ring alkyl and B-ring methoxy substituted, and B- and C-ring alkyl substituted.

We began by focusing on the synthesis of pyrrolyldipyrins without the methoxy group characteristic to the prodigiosene family. Although common to pyrrolyldipyrins, a methoxy group in the 7-position is uncommon in dipyrrins and, to our knowledge, there are no examples of dipyrrinato complexes that contain an aryloxy or alkoxy substituent at this position. In order to synthesize these derivatives, we used a modified version of D’Alessio’s methodology that was previously optimized for the synthesis of ethyl ester prodigiosene 1, but in place of 4-methoxy-3-pyrrolin-2-one, we used 4-ethyl-3-methyl-3-
pyrrolin-2-one as it contains alkyl substituents, which are common to both dipyrins and dipyririnato ligands. Two pyrrolyldipyrins were synthesized using this methodology, as shown in Scheme 23.

Scheme 23. Synthesis of B-ring alkyl pyrrolyldipyrins

In this procedure, benzyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate (54), is condensed with 4-ethyl-3-methyl-3-pyrrolin-2-one (55) in the presence of 4 M KOH. When this condensation is conducted in tetrahydrofuran, dipyrinone 56 is isolated in a low yield of 16%. In attempts to optimize the reaction, the solvent was changed to methanol. This change resulted in the isolation of the transesterified methyl ester dipyrinone 57 in 40% yield. Dipyrinone 57 was converted into its corresponding triflate and, as the resulting triflate was observed to be unstable in solution, it was subjected to a Suzuki coupling reaction with N-BOC-pyrrole-2-boronic acid (13) immediately following work-up. Conversion of the product of the Suzuki coupling into
its corresponding HCl salt via work-up with aqueous hydrochloric acid gave pyrrolyldipyririn 58 in a 35% yield. Dipyrrinone 56 was also converted into a pyrrole dipyririn via a Suzuki coupling, but was transformed directly into its corresponding metal complex. As the instability of the triflate was thought to be a major contributor to the low yield of the Suzuki coupling step, attempts were made to synthesize a bromodipyririn derivative of 57 using phosphorous oxybromide, as bromodipyririns have been found to be more stable to air and temperature than triflates. The bromination of the dipyrrinone 57 was not a viable synthetic step because the reaction was sluggish, even with continual addition of new phosphorous oxybromide, and resulted in multiple products that were difficult to separate using column chromatography.

Secondly, our focus moved to the synthesis of C-ring alkyl, B-ring methoxy substituted pyrrolyldipyririns. Alkyl groups directly attached to the dipyririn core are found more commonly in dipyririnato complexes than ester groups. Before synthesis of the alkyl-substituted prodigiosenes was attempted a series of alkyl-substituted pyrrole-2-carbaldehydes with varying alkyl chain lengths had to be synthesized as precursors as shown in Scheme 24.
Scheme 24. Synthesis of C-ring alkyl substituted pyrroles

In this method, ethyl 3,5-dimethyl-1H-pyrrole-2-carboxylate89 is alkylated using a series of acid chlorides to give the 2,4-pyrrole carboxylates (60 - 63). Reduction of the ketone directly attached to the pyrrole with \textit{BH}_3•\textit{THF} gave the corresponding 4-alkyl-pyrrole-2-carboxylates (64 - 67) in high yields. Hydrolysis of the ethyl ester under basic conditions followed by decarboxylation and formylation resulted in the isolation of the desired 4-alkyl-pyrrole-2-carbaldehydes (68 - 71) in moderate yields over two steps. An additional pyrrole-2-carbaldehyde with a 4-ethyl group (72)90 was generated \textit{via} the Vilsmeier formylation of commercially available kryptopyrrole.

With the pyrrole starting materials in hand, attempts were made to synthesize several prodigiosene derivatives with different alkyl chain lengths as shown in Scheme 25.
Scheme 25. Synthesis of C-ring alkyl prodigiosenes

In this method, 4-alkyl-pyrrole-2-carbaldehydes were condensed with 4-methoxy-3-pyrrolin-2-one under basic conditions in methanol. Yields of the dipyrrinone ranged from good (73) to moderate (74, 75) for dipyrrinones with short alkyl chains. There were no other products generated in these reactions and some starting material was recovered. The synthesis of dipyrrinones 76 and 77 was not successful. Even after increased reaction times, starting material was recovered. Trace amounts of product were isolated, but could not be separated from the pyrrole-2-carbaldehyde starting materials using crystallization or column chromatography. The poor solubility of these derivatives in refluxing
methanol was a concern, but changing the solvent to lower polarity tetrahydrofuran did not result in an improvement in the yield. Dipyrrinones 73, 74 and 75 were converted into their corresponding triflates, in crude yields over 90%, and subsequently underwent a Suzuki coupling to give prodigiosenes 78-80. The crude yields of these products were all under 4% and, despite repeated attempts to purify these products over neutral and basic alumina, impurities remained. Although these yields were low, no triflate starting material could be isolated from any of the crude reaction mixtures and no other pyrrole-containing compounds were isolated by way of column chromatography over basic alumina.

Attempts were also made to synthesize a bromodipyrrin from dipyrrinone 75 using POBr₃, with hopes that higher yields could be obtained in the Suzuki coupling reaction starting from this material as opposed to the dipyrrin triflate. The reaction was sluggish and after 2 weeks at reflux temperature and the addition of a total of 10 equivalents of POBr₃ the majority of the starting material still remained. This method was not a viable method for synthesizing C-ring alkyl substituted prodigiosenes and there was insufficient material to use these ligands in the pyrrolyldipyrrin complexation investigations.

Finally, attempts were made to synthesize a pyrrolyldipyrrin with both B- and C-ring alkyl substitution. Unsymmetrical bromodipyrrin 81 can be synthesized in high yields from tert-butyl 4-ethyl-3,5-dimethyl-2-pyrrole-carboxylate, which can be generated from the corresponding 4-acetyl pyrrole. Bromodipyrrin 81 was converted into pyrrolyldipyrrin 82 via the typical Suzuki coupling reaction, as shown in Scheme 26.
Pyrrolyldipyrrin 82 was isolated in low yields and was difficult to isolate in pure form as it had limited stability on silica, neutral alumina and basic alumina. This reaction also suffered from poor reproducibility and the product was isolated in yields ranging from 12 to 25%.

With a series of differentially substituted pyrrolyldipyrrins in hand, including some prodigiosenes, investigations into the synthesis, stability and properties of pyrrolyldipyrrinato complexes could begin.

3.3.3 Synthesis and Structural Determination of a Series of Pyrrolyldipyrrinato Tin(IV) Complexes

In attempts to transesterify ethyl ester prodigiosene 1 using a literature procedure that employed catalytic amounts of dibutyltin oxide,70 a small amount of a highly fluorescent material was isolated. When this reaction was repeated using a stoichiometric amount of dibutyltin oxide, tin complex 83 was isolated in 93% yield, as shown in Scheme 27.
Scheme 27. Synthesis of a tin complex of ethyl ester prodigiosene 1

It was postulated that 83 was a five-coordinate, prodigiosene tin(IV) complex. In this postulated structure, the prodigiosene is a dianionic ligand (LX₂) and the tin metal centre is coordinated to all three nitrogen atoms of the tripyrrolic prodigiosene core. In the only other reported prodigiosene complex, where all three nitrogen atoms of the tripyrrolic prodigiosene core coordinate to a metal, the C-ring of the prodigiosene is oxidized so the prodigiosene is no longer a dianionic ligand (LX₂), but a monoanionic (L₂X) ligand. Although it was postulated that the pyrrole ring in complex 83 coordinates and stabilizes the tin center, it is also feasible that the carbonyl group could stabilize the tin of a neighboring complex through an intermolecular interaction in the solid state.

Although no prodigiosene tin(IV) complexes have been reported to our knowledge, dibutyltin(IV) complexes of 1,9-diacyldipyrromethanes have been extensively investigated. In these complexes, the carbonyl groups in the 1- and 9-positions of the dipyrromethane are required to stabilize the tin centre. The omission of a carbonyl group in either the 1- or 9-position prevents the formation of the complex. Reactions of pyrrole with tin sources are known and have been exploited for the synthesis of N-tributylstannyl pyrrole, which is prepared via the azeotropic dehydration of bis(tributyltin) oxide and pyrrole, or heating tributyltin methoxide with pyrrole.
In order to investigate the structure and bonding in these complexes, it was necessary to obtain an X-ray crystal structure. Attempts to grow crystals of suitable quality for X-ray diffraction using slow evaporation, solvent diffusion, vapor diffusion and slow cooling resulted only in small (< 1 mm length) fractal crystals of 83. These difficulties in crystallization led us to the synthesis of derivatives with functionalities that could potentially increase the crystallinity of the corresponding tin complexes.

In order to increase the overall crystallinity of the tin complexes, investigations focused on appending alternate functionality to the prodigiosene core. In the first attempt, prodigiosene 84 was converted into its tin complex in high yields as shown in Scheme 28.

Scheme 28. Synthesis of prodigiosene dibutyltin complex 85

Although difficulties were encountered in crystallizing 85, it was hoped that by introducing hydrazone functionality, which is known generally to exhibit high crystallinity and low solubility, via the attached ketone, crystallization could be facilitated. Attempts to convert 85 to its 2,4-DNP hydrazone using 2,4-DNP and acetic acid in ethanol resulted in loss of fluorescence and recovery of the parent prodigiosene 84 indicating that the complexes are acid sensitive. Attempts to convert prodigiosene 84 to its 2,4-DNP hydrazone prior to tin complexation led to an insoluble product.
When this crude product was subjected to tin complexation conditions, it gave a fluorescent product that unfortunately decomposed upon purification and upon standing in solution.

In a second attempt to generate a crystalline complex, a new prodigiosene with a ketone incorporated on a 6-carbon chain attached to the C-ring was proposed. This compound, or an intermediate in its synthesis, could then be converted into its corresponding hydrazone for increased crystallinity. This synthesis, outlined in Scheme 29, began with a Lewis acid-mediated acylation of pyrrole 86 with functionalized acid chloride 87 to give pyrrole 88. Hydrogenolysis over palladium followed by decarboxylation gave α-free pyrrole 90, which could later be incorporated into a prodigiosene as a C-ring.

Scheme 29. Pyrrole diketone synthesis
Once pyrrole diketone 90 was generated, attempts were made to formylate the 2-position of the pyrrole using Vilsmeier formylation conditions and also using trifluoroacetic acid (TFA) and triethylorthoformate (TEOF). These attempts led to mixtures of multiple products. It is proposed that the diketone may cyclize under the acidic conditions and so the ketone was converted into its 2,4-dinitrophenylhydrazone, as shown in Scheme 30, prior to formylation.

Scheme 30. Synthesis of a hydrazone derivative of 90

Formylation of 91 using Vilsmeier reaction conditions resulted in decomposition of the starting material. Formylation using a modified literature procedure employing TFA and TEOF appeared to be successful, from the analysis of NMR spectra of the crude material. As expected, the material was very insoluble and attempts at purification by crystallization were unsuccessful. Due to the added difficulty in synthesis upon introducing the additional ketone functionality, focus was moved to a third strategy.

In a third attempt to isolate crystals of a prodigiosene tin complex, an extra carbonyl group was introduced to the A-ring of 1 according to a literature procedure. Although the reaction was not very reproducible and gave variable yields, 93 was isolated following tin complexation as shown in Scheme 31.
Many thanks to Dr. Adeeb Al-Sheikh Ali who successfully generated an X-ray diffraction quality crystal of prodigiosene dibutyltin complex 93 via slow evaporation from a dichloromethane solution in the presence of a few drops of methanol.

All crystals in the sample were found to be non-merohedral twins and solving the X-ray crystal structure first with twinned data led to the possible location of the composite plane, which allowed for dissection of a fragment of untwinned crystal, as shown in Figure 15. The disorder still present in the crystal is likely dynamic as the crystal survives cooling to \(-73\) °C, but shatters after some time, when cooled to \(-93\) °C.

The structure shows a pentacoordinate tin atom with distorted trigonal bipyramidal geometry. All three nitrogen atoms of the pyrrolyldipyrpin are coordinated to the tin center making this structure, to the best of our knowledge, the first example of a
pyrrolyldipyrrinato complex, which binds through all three of its pyrrolic nitrogen atoms and behaves as a dianionic, \(\text{LX}_2 \) ligand.

Figure 15. Thermal ellipsoid diagram (50%) of 93

Sn(1) butyl groups and all hydrogen atoms removed for clarity. Selected bond distances (Å): Sn(1)-N(1), 2.309(2); Sn(1)-N(2), 2.128(2); Sn(1)-N(3), 2.239(2). Selected bond angles (deg): N(1)-Sn(1)-(N2), 81.46(9); N(1)-Sn(1)-N(3), 155.25(10); N(2)-Sn(1)-N(3), 73.85(10); C(43)-Sn(1)-C(47), 137.84(14) (C(43) and C(47) are the carbon atoms of each attached butyl group respectively).

The N(3)-Sn(1)-N(1) bond angle of 155.25(10)° is the largest of the angles involving the tin center, suggesting that N(1) and N(3) are occupying the pseudoaxial positions in the complex. However, the C(43)-Sn(1)-C(47) bond angle is larger than the 120° degrees normally separating equatorial substituents in a trigonal bipyramidal complex with a value of 137.84(14)°. The bond angles between N(1)-Sn(1) or N(3)-Sn(1) and the equatorial atoms (N(2), C(43), C(47)) range from 73° to 95° while the bond angles between C(43)-Sn(1) or C(47)-Sn(1) and N(1), N(2) or N(3) range from 93° to 112°. The trigonal pyramidal geometry is significantly distorted in the complex, likely
due to the restrictions imposed by the rigid pyrrolyldipyrrinato ligand framework. The

tin-nitrogen bond lengths in complex 93 range from 2.128 to 2.309 Å. These bond

lengths are within the reported ranges of other nitrogen tin bonds in neutral,
pentacoordinate tin(IV) complexes.103-105

The coordinated pyrrolyldipyrrinato unit is essentially planar in complex 93. In

the X-ray crystal structure of the hydrochloride salt of ethyl ester prodigiosene 1, which

contains a similar pyrrolyldipyrrinato unit to 93 (differing only in an acyl group on the

pyrrole ring), the pyrrolyldipyrrin is also planar, as shown in Figure 16.

Figure 16. Thermal ellipsoid diagram (50%) of 1

Hydrogen atoms removed for clarity. Selected bond angles (deg): C(10)-C(9)-C(8) 132.6(5); Selected contact distances (Å): H(22)-Cl(1) 2.195, H(21)-Cl(1) 2.169, H(20)-

Cl(1) 2.226; Selected torsional angle (deg): N(1)-C(4)-C(5)-N(2) -2.8(9).
This planarity has also been observed in other crystal structures of pyrrolyldipyrrin hydrochloride salts and is enforced by hydrogen bonds between the chloride counteranion and the pyrrolyldipyrrin, but not all hydrochloride salts exhibit this planarity. X-ray diffraction quality crystals of F-BODIPY 52 were isolated by slow evaporation of a dichloromethane solution in the presence of a few drops of methanol. Interestingly, in F-BODIPY 52, the uncoordinated pyrrole unit is 16° out of the plane of the coordinated dipyrrinato unit as shown in Figure 17. This twist is likely to accommodate a hydrogen bond between the hydrogen attached to the pyrrolic nitrogen atom and the fluorine atom below the dipyrrinato plane with a contact distance of 1.860 Å. In a published X-ray crystal structure of the zinc(II) complex of prodigiosin, which coordinates to zinc through its dipyrrinato ligand alone, the dipyrrinato portion of the ligand is planar but, in a similar fashion to the F-BODIPY complex, the uncomplexed pyrrole unit is twisted 20.6° out of the plane of the dipyrrin.
Hydrogens removed for clarity. Selected bond distances (Å): B(1)-N(1), 2.309(2); B(1)-N(2), 2.128(2); Selected bond angle (deg): N(1)-B(1)-N(2), 81.46(9); Selected torsional angle (deg): N(1)-C(1)-C(10)-(N3), -16.09; Contact distance (Å): N(3)-H···F(1) 1.860.

With success in the synthesis and confirmation of the bonding mode in these complexes, attempts were focused on synthesizing other examples of pyrrolyldipyrinato tin complexes. The pyrrolyldipyrins were converted to their corresponding dibutyltin complexes by heating a methanolic solution of each pyrrolyldipyrin with an excess of dibutyltinoxide at reflux temperature for a period of 18 h, as shown in Scheme 32, Table 5. Similarly, several pyrrolyldipyrins were converted into their corresponding diphenyltin complexes by heating a methanolic solution of pyrrolyldipyrin with an excess of diphenyltin oxide at reflux temperature, as shown in Scheme 32, Table 5.
Scheme 32. General synthetic scheme for the synthesis of pyrrolyldipyrrinato tin(IV) complexes

![Synthetic Scheme](image)

Table 5. Yields of pyrrolyldipyrrinato tin(IV) complexes

<table>
<thead>
<tr>
<th>Starting Material</th>
<th>Product</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>R⁴</th>
<th>R⁵</th>
<th>Isolated yield /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
<td>CO₂Et</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>nBu</td>
<td>93</td>
</tr>
<tr>
<td>92</td>
<td>93</td>
<td>CO₂Et</td>
<td>OMe</td>
<td>H</td>
<td>C(O)Me</td>
<td>nBu</td>
<td>95</td>
</tr>
<tr>
<td>94</td>
<td>95</td>
<td>CO₂Bn</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>nBu</td>
<td>90</td>
</tr>
<tr>
<td>56</td>
<td>96</td>
<td>CO₂Bn</td>
<td>Et</td>
<td>Me</td>
<td>H</td>
<td>nBu</td>
<td>86</td>
</tr>
<tr>
<td>82</td>
<td>97</td>
<td>Et</td>
<td>Et</td>
<td>Me</td>
<td>H</td>
<td>nBu</td>
<td>22</td>
</tr>
<tr>
<td>94</td>
<td>98</td>
<td>CO₂Bn</td>
<td>OMe</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>82</td>
</tr>
<tr>
<td>58</td>
<td>99</td>
<td>CO₂Me</td>
<td>Et</td>
<td>Me</td>
<td>H</td>
<td>Ph</td>
<td>84</td>
</tr>
<tr>
<td>82</td>
<td>100</td>
<td>Et</td>
<td>Et</td>
<td>Me</td>
<td>H</td>
<td>Ph</td>
<td>33</td>
</tr>
</tbody>
</table>

The conversion of the pyrrolyldipyrrins to the corresponding tin(IV) complexes was quantitative in all cases according to analysis using TLC, and the isolated yields of the pyrrolyldipyrrinato dibutyl and diphenyl tin(IV) complexes were generally high with the exception of the fully alkyl substituted derivatives 97 and 100 (Table 5). The diphenyltin complexes (98-100) exhibited some decomposition to return the pyrrolyldipyrrin starting material upon purification over neutral or basic alumina, a procedure that was utilized to remove the excess diphenyltin oxide. Attempts to optimize the reaction and subsequent purification were conducted using pyrrolyldipyrrin 94. Unfortunately, if only 1 equivalent of diphenyltin oxide was used in the reaction of 94 the reaction was sluggish and small amounts of unreacted 94 remained in the reaction.
mixture after four days at reflux temperature. Attempts to use crystallization as a purification strategy were similarly unsuccessful.

Notably, the diphenyltin complexes are less stable in solution than their corresponding dibutyltin complexes and decompose to free pyrrolyldipyrins slowly over the period of a week. The diphenyltin and dibutyltin complexes are sensitive to acid and the corresponding pyrrolyldipyrin HCl salts are generated rapidly and quantitatively after adding aqueous hydrochloric acid to a solution of the corresponding tin complex in a 1:1 solution of dichloromethane and methanol. This is not unsurprising as protic acids with a pKa less than about 25 are known to cleave the Sn-N bond.98

Attempts were also made to synthesize a diphenylsilicon complex of prodigiosene 94 using dichlorodiphenylsilane. Although the reaction appeared to be successful in generating a single, highly fluorescent compound according to analysis using TLC, isolation proved difficult under standard conditions as quenching the dichlorodiphenylsilane resulted in decomplexation. The complex is, unsurprisingly, both air and moisture sensitive. Further studies into silicon complexes would need be undertaken under air and moisture free conditions in a glovebox.

3.3.4 Investigations into the Optical and Biological Properties of Pyrrolyldipyrinato Tin(IV) Complexes

Although the pyrrolyldipyrin ligands do not display detectable fluorescence, all of the synthesized tin complexes exhibit appreciable fluorescence quantum yields (ΦF = 0.28 to 0.61) in dichloromethane with maximum wavelengths of emission in the orange region (584 and 622 nm). The complexes also exhibit broad absorption bands between 550 and 625 nm (ε 7-11 x 10^4 M^-1 cm^-1) (Table 6, Figure 18).
Table 6. Optical properties of tin pyrrolyldipyrrinato complexes and F-BODIPY complex 52 in DCM at 22 °C

<table>
<thead>
<tr>
<th>Complex</th>
<th>Absorbance λ_{max} /nm</th>
<th>ϵ /10$^{-4}$ M$^{-1}$ cm$^{-1}$</th>
<th>Emission λ_{max} /nm</th>
<th>Φ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>561</td>
<td>8.78</td>
<td>584</td>
<td>0.53a</td>
</tr>
<tr>
<td>93</td>
<td>570</td>
<td>11.6</td>
<td>582</td>
<td>0.61a</td>
</tr>
<tr>
<td>95</td>
<td>561</td>
<td>8.82</td>
<td>584</td>
<td>0.53a</td>
</tr>
<tr>
<td>96</td>
<td>585</td>
<td>8.69</td>
<td>607</td>
<td>0.52b</td>
</tr>
<tr>
<td>97</td>
<td>599</td>
<td>11.6</td>
<td>617</td>
<td>0.28b</td>
</tr>
<tr>
<td>98</td>
<td>561</td>
<td>7.40</td>
<td>583</td>
<td>0.55a</td>
</tr>
<tr>
<td>99</td>
<td>587</td>
<td>8.63</td>
<td>609</td>
<td>0.51b</td>
</tr>
<tr>
<td>100</td>
<td>603</td>
<td>8.70</td>
<td>622</td>
<td>0.32b</td>
</tr>
<tr>
<td>52</td>
<td>543</td>
<td>10.5</td>
<td>559</td>
<td>0.92b</td>
</tr>
</tbody>
</table>

a Relative to rhodamine 6G in EtOH ($\Phi_F = 0.94$); b Relative to rhodamine 101 in EtOH ($\Phi_F = 0.96$).

Figure 18. Pyrrolyldipyrrinato complexes in dichloromethane solution (~7.0 x 10$^{-5}$ M) visualized under ambient light (top) and long wave UV irradiation (bottom)

The F-BODIPY pyrrolyldipyrrinato complex (52) has the highest fluorescence quantum yield of all of the compounds ($\Phi_F = 0.92$) and this value is comparable to the fluorescence quantum yields of other strongly emitting F-BODIPYs.4 The pyrrolyldipyrrinato tin complexes show an interesting pattern in their quantum yields based on the substitution pattern about the ligand. When the ligand contains a conjugated
ester substituent (83, 93, 95, 96, 98 and 99) the fluorescence quantum yield was high ($\Phi_F > 0.50$). However, when the ligand contained only alkyl substituents (97 and 100) the fluorescence quantum yields were much lower ($\Phi_F < 0.32$). The Stokes shifts of the complexes were small and range from 435 to 833 cm$^{-1}$.

These complexes displayed similar fluorescence properties to several recently reported fluorescent dipyrrinato metal complexes. There have been two recent reports of π-extended dipyrrinato complexes of Ca(II) and Zn(II) ($\Phi_F = 0.58 - 0.70$) and a tetradentate N_2O_2-type dipyrrinato Al(III) complex ($\Phi_F = 0.23$) which display moderate to high fluorescence quantum yields. In the case of the aluminum complex, the ligand is held in a rigid position by the additional coordination of phenolic oxygens. In the case of the π-extended dipyrrinato complexes, the ligands contain esters in the 1- and 9-positions and the proximate carbonyl oxygen atoms likely play a role in ligand-metal bond stabilization. This series of pyrrolyldipyrrinato tin(IV) complexes is a further example of dipyrrinato-type complexes which exhibit high fluorescence quantum yields. The added rigidity induced through coordination of the A-ring pyrrole reduces the number of pathways for non-radiative decay, allowing for higher observed fluorescence quantum yields than those of traditional dipyrrinato complexes with only two coordination sites. F-BODIPY 52 has the highest fluorescence quantum yield of the synthesized complexes. Although the pyrrolide unit is not bound to the boron centre in this complex, the pyrrolyldipyrrin rigidity is due to the presence of the hydrogen bond between the unbound pyrrole NH and the neighboring fluorine atom.

The effects of changing the substituents around the pyrrolyldipyrrinato core of the complexes are evident after analysis of the wavelengths of maximum absorption. When
the pyrrolyldipyrrin ligand contained both ester and methoxy groups (83 and 95) the wavelength of maximum absorption was 561 nm (83 and 95). When the methoxy group was replaced with an alkyl group (96), the wavelength of maximum absorption shifted 24 nm bathochromically and when the ester group was also replaced with an alkyl group (97) the wavelength of maximum absorption was bathochromically shifted 14 nm. The same trend is observable for the diphenyltin complexes. When the pyrrolyldipyrrinato ligand was not modified, but the groups on the tin center were changed from butyl to phenyl, there was little to no effect on the wavelength of maximum emission or the quantum yields of fluorescence for the related complexes (compare 95 and 97 with butyl substituents to 98 and 100 with aryl substituents).

All of the absorption spectra have a similar band structure in the visible region: a large peak with a shoulder. This band structure is commonly observed for dipyrrinato complexes.76, 107 For each complex, the emission spectrum is approximately the mirror image of the absorption spectrum, but the vibronic features are less prominent in the emission spectrum. The normalized absorption and emission spectrum of tin complex 93 is shown in Figure 19 as a representative example.
This high yielding route to dibutyltin complexation and decomplexation allows for a potential new pyrrolyldipyrrin purification strategy, similar to that used for 1,9-carbonyl substituted dipyrrromethanes. Many pyrrolyldipyrrins of the prodigiosene family are generated via a Suzuki coupling reaction with a boronic acid-containing pyrrole. If the reaction is not clean, the resulting mixture is often difficult to purify, and thus tin complexation has promise as a useful purification strategy.

Currently, the most popular use of fluorescent ligand-metal complexes is as chemical sensors in solution. In order to develop complexes as fluorescent sensors for tin(IV), the ligand would need to be modified so that the material was highly stable in solution and the reaction conditions would need to be modified so that the complexation reaction occurs at an appreciable rate at room temperature.

Neutral tin(IV) complexes are well known in the literature for their antimicrobial activity and have also found use in biocidal paints for ships. Dialkyl or aryl substituted tin complexes are of intermediate toxicity to trialkyl or aryl and monoalkyl or aryl. The toxicity of the complexes appears to correlate with their total molecular surface area and
their overall hydrophobicity. Although the mechanisms of action of tin(IV) complexes on microbial processes are still poorly understood, many bacterial membrane functions can be inhibited by organotin complexes. Many organotin(IV) complexes with nitrogen-containing ligands exhibit antimicrobial activity. Pyrrolyldipyrrinato complex 83 was submitted and tested for antimicrobial activity against several *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Pseudomonas aeruginosa*, *Enterococcus faecalis* and *Bacillus subtilis* strains. The minimum inhibitory concentrations can be found in Table 7.

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC (μg mL⁻¹)</th>
<th>Erythromycin</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus C622; ATCC 25923</td>
<td>16</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Staphylococcus aureus C623</td>
<td>2</td>
<td>>128</td>
<td>1</td>
</tr>
<tr>
<td>Staphylococcus aureus 305</td>
<td>8</td>
<td>0.125</td>
<td>0.5</td>
</tr>
<tr>
<td>Staphylococcus aureus Becker CP8 stanis</td>
<td>4</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Staphylococcus aureus Becker Lyc12 CP336 stanislaus</td>
<td>32</td>
<td>0.125</td>
<td>0.5</td>
</tr>
<tr>
<td>Staphylococcus epidermidis C960; ATCC14990</td>
<td>>128</td>
<td>0.125</td>
<td>1</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa H188</td>
<td>>128</td>
<td>64</td>
<td>>128</td>
</tr>
<tr>
<td>Salmonella enteric s. Typhimurium C587</td>
<td>128</td>
<td>64</td>
<td>>128</td>
</tr>
<tr>
<td>Escherichia coli C498</td>
<td>32</td>
<td>32</td>
<td>>128</td>
</tr>
<tr>
<td>Enterococcus faecalis C625; ATCC 29212</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bacillus subtilis C971; ATCC 6633</td>
<td>2</td>
<td>0.125</td>
<td>0.125</td>
</tr>
</tbody>
</table>

The erythromycin control had comparable or better activity against all of the strains with the exception of *S. aureus* 623 (a clinical methicillin resistant *Staphylococcus aureus* isolate); compound 83 was found to have a MIC of 2 μg mL⁻¹ against *S. aureus* C623,
while the erythromycin control had a MIC of \(> 128 \mu g \cdot mL^{-1} \). Further investigation of the antimicrobial activity of 83 or the other pyrrolyldipyrinato complexes was not undertaken.

As previously discussed in 0, pyrrolyldipyrrins of the prodigiosin family are known to exhibit anticancer activity through several different mechanisms, some of which require complexation of the tripyrrolic core to a metal or anion.\(^6\) In addition, there are also examples of neutral, 5-coordinate tin complexes, which exhibit \textit{in vitro} anticancer activity.\(^{105, 109}\) Because several of the prodigiosenes used in this complexation study are known to exhibit anticancer activity,\(^{15, 29}\) investigations on the effect of tin complexation on anticancer activity were undertaken. Complexes 95 and 98 were selected for cell inhibition studies against the NIH/NCI 60 cancer cell lines. The results are summarized along with those of the free ligand (94) in Table 8.

Table 8. Mean \textit{in vitro} activity of prodigiosenes and their complexes over 60 human cancer cell lines

<table>
<thead>
<tr>
<th>Compound</th>
<th>Log({10})mean GI({50})</th>
<th>Log(_{10})mean TGI</th>
<th>Log({10})mean LC({50})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prodigiosin(^a)</td>
<td>-7.85</td>
<td>-5.68</td>
<td>-6.65</td>
</tr>
<tr>
<td>94(^a)</td>
<td>-7.02</td>
<td>-5.82</td>
<td>-5.00</td>
</tr>
<tr>
<td>95(^a)</td>
<td>-7.53</td>
<td>-6.27</td>
<td>-5.43</td>
</tr>
<tr>
<td>98</td>
<td>-8.07</td>
<td>-5.84</td>
<td>-4.90</td>
</tr>
</tbody>
</table>

\(^a\)Average of 2 repeat screens

Compared to the free ligand (94), complexes 95 and 96 show growth inhibition and total growth inhibition similar or larger in value to that of prodigiosin. Both complexes show lower lethal concentrations than prodigiosin, which is too cytotoxic to be used as a therapeutic. These biological results are preliminary as further studies are necessary to address the stability of the tin-nitrogen bonds under the test conditions.
Preliminary comparison of the activity data of complexes 95 and 98 to the free ligand 94, appear to suggest that the observed activities are not due to the free ligand alone. Although the observed biological activities may be complex specific, they could alternatively be due to the nonspecific action of hydrolyzed R₂Sn⁺ moieties, known for their undesirable neurotoxicity and immune suppression, in conjunction with the free ligand.

3.4 Conclusions and Implications

A series of previously unreported pyrrolyldipyrrinato tin complexes have been prepared. The bonding mode in these complexes was determined using X-ray crystallographic analysis for a representative complex. The series of compounds have been analyzed using UV/Visible and fluorometric analysis in order to discover the effects on fluorescence of modifying substituents on the ligand and substituents at the tin(IV) centre. The complexes are all highly fluorescent with quantum yields ranging between 0.23 and 0.61. The series of complexes show larger quantum efficiencies of fluorescence when the ligand contains an electron-withdrawing group conjugated to the C-ring. Substitution on the B-ring has a much smaller effect. Several of the synthesized derivatives have also been tested for antimicrobial activity. Two derivatives were selected for cell inhibition studies against the NIH/NCI 60 cancer cell lines and the results of these experiments, although preliminary, are interesting. In-house cell-inhibition studies would need to be done in order to determine the stability of the Sn-N bonds under the experimental conditions.

In the future, the synthesis of other prodigiosene metal complexes should be attempted as their remains very little known about prodigiosene metal complexes, their binding modes and their biological activity. Particularly of interest would be the synthesis
of palladium, platinum, and zirconium pyrrolyldipyrrinato complexes, which could have potential applications in catalysis. Before a detailed investigation of pyrrolyldipyrrinato complexation can be undertaken, a more efficient method for the synthesis of non-prodigiosene pyrrolyldipyrrins would also need to be developed, as the current one is not sufficient for the generation of moderate to high yields of the desired pyrrolyldipyrrins.

It would also be interesting to investigate the possible applications of the prodigiosene tin complexes. Some biological testing has already been conducted on the prodigiosene tin complexes, but there are also potential applications of these pyrrolyldipyrrinato complexes in the field of materials given their high fluorescence quantum yields.
CHAPTER 4 BODIPY SYNTHESIS, DEPROTECTION and MODIFICATION

4.1 BACKGROUND

Dipyrrins are historically noted to be difficult to manipulate and purify, presumably due to the azafulvenium and pyrrolic nitrogen moieties contained within. Strategies have been developed to protect dipyrrins and thus concurrently facilitate their purification. Most of these involve converting the dipyrrin to its corresponding metal complex prior to functionalization. While a wide variety of synthetic modifications can be carried out on the resulting dipyrrinato complexes, strongly acidic and reductive conditions must be avoided to prevent decomplexation.

In contrast, when a dipyrrin is converted to its BF$_2$ complex, the resulting compounds have high thermal and photochemical stability, good solubility and are chemically robust. They also emit sharp fluorescence peaks with high quantum yields. F-BODIPYs are routinely synthesized in high yields by trapping the parent dipyrrin as its BF$_2$ complex. Ideally, dipyrrins could be protected as stable F-BODIPY compounds, chemically modified, purified, and then deprotected to give functionalized dipyrrins. To our knowledge, a general methodology for the removal of the boron center from a F-BODIPY to generate the parent dipyrrin has not been investigated. This chapter will focus on the development of a methodology to remove the boron center from F-BODIPYs, the development of a methodology to alkylate the meso-position of F-BODIPYs and initial attempts to synthesize a new class of halogenated BODIPYs (X-BODIPYs).
4.2 The Chemistry of BODIPYs

4.2.1 Synthesis of Dipyrrins, Dipyrrinato Complexes and F-BODIPYs

Methods for the synthesis of dipyrrins have been reviewed in detail.3 meso-Unsubstituted dipyrrins are commonly generated through the acid-catalyzed condensation of pyrroles as shown in Figure 20.

Figure 20. Synthesis of meso-unsubstituted dipyrrins

In Method 1, an α-unsubstituted pyrrole, usually generated in situ from a pyrrole with an α-carboxylic ester, is treated with formic acid and hydrobromic acid or TFA and triethylorthoformate to generate symmetrical meso-unsubstituted dipyrrins. In Method 2, a pyrrole with an α-formyl group is combined with an α-unsubstituted pyrrole in the presence of a strong acid, usually hydrobromic acid, to generate unsymmetrical meso-unsubstituted dipyrrins.
To produce meso-substituted dipyrrins, one can condense two equivalents of an \(\alpha \)-unsubstituted pyrrole with an acid chloride (Method 3) or oxidize a dipyromethane to the corresponding dipyrrin (Method 4) as outlined in Figure 21.

Figure 21. Synthesis of meso-substituted dipyrrins

Method 3

\[
\begin{align*}
\text{R}_1^\text{N} & \text{R}_2^\text{R}_3^\text{R}_4^\text{Cl} \\
\text{R}_1^\text{N} & \text{R}_2^\text{R}_3^\text{R}_4^\text{O} \\
\text{R}_1^\text{N} & \text{R}_2^\text{R}_3^\text{R}_4^\text{H}_\text{N} \\
\text{R}_1^\text{N} & \text{R}_2^\text{R}_3^\text{R}_4^\text{H}_\text{N} \\
\end{align*}
\]

Method 4

\[
\begin{align*}
\text{R}_1^\text{R}_2^\text{R}_3^\text{R}_4^\text{R}_5^\text{R}_6^\text{R}_7 \\
\text{oxidant} \\
\text{R}_1^\text{R}_2^\text{R}_3^\text{R}_4^\text{R}_5^\text{R}_6^\text{R}_7 \\
\end{align*}
\]

Method 3 is limited to the synthesis of symmetrical dipyrrins while Method 4 is currently limited to the synthesis of dipyrrins with meso-H or meso-aryl substituents. Dipyrrins with meso-alkyl substituents can be synthesized from alkyl acid chlorides. These compounds are generally isolated as their corresponding BF\(_2\) complexes, most likely due to the fact that meso-alkyl dipyrrins are unstable: they posses an allyl acidic proton and can therefore undergo a base-promoted isomerization to give the corresponding dipyrrinylethenes.\(^{111}\) Yields for the synthesis of meso-alkyl \(F \)-BODIPYs are either unreported\(^{115}\) or below 20\%.\(^{112-114}\) The synthesis of meso-alkyl substituted \(F \)-BODIPYs is an area that requires further exploration.
A wide variety of isolable dipyrrinato metal complexes have been synthesized, varying both in complexation geometry and metal ion. They are most commonly synthesized from purified dipyrrins. Similarly, F-BODIPYs are routinely synthesized in high yields from crude or purified dipyrrins. According to a recently reported procedure, symmetrical F-BODIPYs can also be generated from α-formyl pyrroles in one pot, without isolation of the parent dipyrrin. Methods for the synthesis of dipyrrinato complexes and F-BODIPY complexes of dipyrrins have both been reviewed in detail.

4.2.2 Modification of the Dipyrrin Core
There are relatively few examples of the direct modification of dipyrrins. Most of these transformations involve the interconversion of functional groups installed prior to dipyrrin synthesis and are carried out exclusively on dipyrrinato and F-BODIPY complexes. The remaining few examples involve the direct modification of the dipyrrin core.

Substituents can be appended directly to the dipyrrin core of an F-BODIPY in the 2- and 6-positions by way of electrophilic substitution. This type of reactivity has been exploited to synthesize F-BODIPYs that are sulfonated, chlorinated, brominated, and iodinated in the 2- and 6-positions. A recent report indicates that substituents can also be directly appended to the dipyrrin core of an F-BODIPY in the 3- and 5-positions by way of oxidative nucleophilic hydrogen substitution; however, the reaction is currently limited to carbon and nitrogen centered nucleophiles.

Methyl substituents at the 3- and 5-positions of F-BODIPYs can be deprotonated under mild conditions and undergo a Knoevenagel condensation with a variety of aldehydes, oxidized to their corresponding ketones and aldehydes using DDQ, or
oxidized to their corresponding acetates using lead tetraacetate.123, 124 If good leaving
groups are incorporated at the 3- and 5-positions of the F-BODIPY, carbon, oxygen,
nitrogen and sulfur based nucleophiles can be introduced at these positions by direct
nucleophilic substitution.125-127

4.2.3 \textit{meso}-Modification of Dipyrrinato Complexes

There are many examples in the literature of the modification of functional groups
appended to \textit{meso}-aryl groups of F-BODIPYs and dipyrrinato complexes. These
examples include hydrogenation of nitro substituents,86 hydrolysis of esters,86
esterification of carboxylic acids,86 copper-mediated azide-alkyne coupling128 and, most
commonly, conversion of aryl halides \textit{via} palladium catalyzed aryl-aryl coupling to
species with new carbon-carbon bonds.3 These examples emphasize that molecules
containing the dipyrrin core can undergo multiple chemical manipulations while
protected as F-BODIPYs or as dipyrrinato complexes.

Examples of direct nucleophilic or electrophilic substitution at the \textit{meso}-position
of dipyrrins, dipyrrinato complexes or F-BODIPYs are rarely reported in the literature.
\textit{meso}-Cyano dipyrrins can be directly generated from \textit{meso}-unsubstituted dipyrrins
through cyanide anion attack at the \textit{meso}-position, followed by protonation, to give the
corresponding dipyrromethane, which can then be oxidized back to the dipyrrin.124 There
are several examples in the literature of the reactions of various bile pigments129, 130 and a
prodigiosin analogue37 with sulfur-based nucleophiles to give \textit{meso}-substituted
derivatives. Bile pigments are also reported to undergo electrophilic substitution to give
the corresponding bromo and nitro \textit{meso}-substituted derivatives using elemental bromine,
nitronium tetrafluoroborate and nitric acid.131, 132 Direct \textit{meso}-modification of \textit{F}-
BODIPYs is limited to \(F \)-BODIPYs that possess a meso-thioalkyl substituent. The meso-thioalkyl group of the \(F \)-BODIPY can be displaced by nitrogen-based nucleophiles to generate other meso-substituted \(F \)-BODIPYs.\(^{133,134}\) This approach has been limited to symmetrical BODIPYs as the meso-thioalkyl BODIPY is generated by the reaction of thiophosgene with two equivalents of a substituted pyrrole to give the corresponding dipyrrrolthione, which is then alkylated to give the thioalkyl dipyrpin and trapped as its BF\(_2\) complex.\(^{134}\) The meso-thioalkyl group of the \(F \)-BODIPY can also be coupled in the Liebeskind–Srögl cross-coupling reaction with aryl and alkenyl boronic acids to generate meso-aryl and meso-alkenyl substituted \(F \)-BODIPYs.\(^{135}\)

4.2.4 Modification of the Boron Centre of \(F \)-BODIPYs

Use of substituents other than fluorine at the boron center of the BODIPY core is currently under wide investigation with the goal of identifying BODIPYs with exotic spectroscopic properties. A variety of \(B \)-aryl, \(B \)-alkyl (\(C \)-BODIPY) and \(B \)-alkynyl (\(E \)-BODIPY) derivatives have been synthesized utilizing organolithium or Grignard reagents.\(^{136-142}\) \(B \)-Dialkyl \(C \)-BODIPYs have additionally been synthesized directly from their corresponding dipyrrins using bromodimethylborane, dibutylboron triflate and 9-BBN triflate.\(^{107}\) In addition, \(B \)-dialkoxy and \(B \)-diaryloxy derivatives (\(O \)-BODIPYs) have been synthesized via fluorine displacement with either alkoxydes or alcohols in the presence of Lewis acids.\(^{143-145}\) In these procedures, alkyl, cyclic and aryl alcohols can displace the fluorine atoms of \(F \)-BODIPY complexes to give \(O \)-BODIPYs.

There is one example in the literature where the BF\(_2\) unit is removed from an \(F \)-BODIPY to generate the corresponding dipyrpin\(^{146}\) as shown in Scheme 33.
In this example, an F-BODIPY with an amine or acylated amine in the 3-position was subjected to treatment with hydrochloric acid in ethanol to generate the corresponding dipyrrin. The authors were primarily interested in the synthesis of new F-BODIPY analogues and did not attempt to explore the general applicability of this method for BF$_2$ removal or investigate the mechanism of the reaction. Attempts to apply this methodology to F-BODIPY 104, as shown in Scheme 34, failed and F-BODIPY 104 was quantitatively recovered in spite of increases to both reaction temperature and time. Presumably, the amino groups of 101 and 102 have a participating role in the deprotection, making this a method of limited utility.

Several synthetic approaches to the deprotection of F-BODIPYs to regenerate the parent dipyrrin are envisioned: (i) protonation of the dipyrrinato nitrogen atoms followed by release of the BF$_2$ moiety, (ii) nucleophilic attack at the boron center and cleavage of the boron-nitrogen bonds to give the dipyrrinato anion which could be subsequently
protonated, or (iii) nucleophilic attack at the *meso*-position and cleavage of the N-B bonds, with subsequent protonation and elimination of the nucleophile to return the dipyrrin.

4.3 Results and Discussion

4.3.1 Development of *F*-BODIPY Deprotection Methodology

As protonation of the dipyrrinato ligand using ethanolic hydrochloric acid proved unsuccessful for removal of the BF₂ group of *F*-BODIPY 104, focus was shifted to a strategy involving nucleophilic attack at the boron centre for boron removal. This approach necessitated the use of a reagent that would potentially preferentially bond to boron, displacing the dipyrrromethene. Alkoxides, nitrogen bases and carbenes were proposed as possible reagents to effect this transformation as they would form strong bonds with boron. As boron-oxygen bonds are the only boron-element bond stronger than the boron-fluorine bond,¹⁴⁷ we began by investigating the use of oxygen-based reagents to deprotect *F*-BODIPYs. It was envisioned that a borophilic, oxygen-based, sterically hindered nucleophile would attack at the boron centre, break the dative boron-nitrogen bond and prevent its reformation due to steric effects. This would then lead to further attack at the boron centre and eventual release of the dipyrrinato anion. *F*-BODIPYs are known to undergo nucleophilic displacement of the fluoride atoms from boron in the presence of alkoxides in alcoholic solvents at high temperatures,¹⁴³ or in the presence of Lewis acid catalysts in alcoholic solvents.¹⁴⁵ For this reason, *tert*-butoxide, a moderate to poor nucleophile with high steric bulk, was selected.

It was thought that if the *tert*-butoxide could attack at the boron centre, the boron-nitrogen formally dative bond would break and have difficulty reforming through
displacement of the tert-butoxide due to the steric bulk of the tert-butoxide group and the superior strength of the boron-oxygen bond compared to that of the boron-nitrogen bond. These factors made tert-butoxide a good choice as a starting point for the investigation of F-BODIPY deprotection. In order to test possible deprotection methods, F-BODIPY 104 with a meso-aryl substituent was chosen because the deprotected product would be a meso-aryl dipyrrin: meso-aryl dipyrrins are generally more stable than meso-unsubstituted dipyrrins and would be easier to isolate and purify following BF₂ deprotection.

In the first deprotection trial, F-BODIPY 104 was treated with 6 equivalents of potassium butoxide in tert-butanol at 82 °C as shown in Scheme 35. After 18 h the reaction mixture was no longer fluorescent and upon aqueous work-up the desired dipyrrin (105) was isolated in 23% yield along with a variety of unidentified decomposition products.

Scheme 35. F'-BODIPY deprotection with potassium tert-butoxide

This extremely encouraging preliminary result indicated that the boron centre could be removed from the F-BODIPY and prompted further investigations. Disappointingly, the reaction was not reproducible and attempts to optimize the reaction condition, by varying the temperature and equivalents of potassium tert-butoxide used, all led to decomposition of the starting materials without the generation of the deprotected product (105). When
the reaction was carried out under microwave irradiation, the deprotected product, dipyrrin 105, could be generated in reproducibly high yield. This procedure involved heating a sealed mixture of \(F\)-BODIPY 104 and 6 equivalents of potassium tert-butoxide in tert-butanol to 92 °C under 600 W microwave irradiation for 15 minutes (Scheme 36), followed by an aqueous work-up with a saturated solution of sodium bicarbonate to give the deprotected product (105). The crude material isolated from this reaction was of sufficient purity to carry forward in a synthetic sequence and any boron-containing byproducts were easily removed by work-up by treatment with a saturated solution of sodium bicarbonate.

Scheme 36. Microwave-promoted deprotection of \(F\)-BODIPY 104

Attempts to optimize this reaction focused on adjustments to the temperature of the reaction, the time of the reaction and number of equivalents of potassium tert-butoxide utilized. The purity of the crude material was found to be dependent on the reaction temperature. Heating the reaction mixture to 92, 82 and 72 °C under 600 W of microwave irradiation resulted in the complete consumption of the \(F\)-BODIPY starting material (104), but, as the temperature was decreased, the degree of decomposition increased. This effect could be best observed by comparing proton NMR spectra of the crude product from reactions conducted at varying temperatures as shown in Figure 22.

Figure 22. Crude \(^1\)H NMR spectra of dipyrrin 105 isolated from reactions conducted at
This increase in decomposition is clearly seen in the regions between 9.0 and 10.0 ppm, 1.5 to 2.0 ppm and 2.5 to 3.0 ppm. When the reaction was conducted at 92 °C, these regions of the crude proton NMR were essentially free of signals, but as the temperature of reaction was decreased there became a visible increase in the number of signals in these regions. This trend of increasing of decomposition with decreasing in temperature is unusual. In spite of the decomposition at lower temperatures, the product could be isolated in pure form from these reaction mixtures using column chromatography over basic alumina. It was essential to use basic alumina as the dipyrrin adheres strongly to both silica and neutral alumina. The additional products produced at lower temperatures were difficult to isolate because they were produced in such small quantities and could not be characterized.

In order to investigate the role of potassium tert-butoxide in the reaction, attempts were made to use other reagents in the deprotection reaction. The results of these investigations are outlined in Table 9.
Table 9. Optimization of the microwave-promoted deprotection of \(F\)-BODIPY 104

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Solvent</th>
<th>Temperature /°C</th>
<th>Time /min</th>
<th>Yield /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)BuOK (6 eq)</td>
<td>(t)BuOH</td>
<td>92</td>
<td>15</td>
<td>92</td>
</tr>
<tr>
<td>(t)BuOK (3 eq)</td>
<td>(t)BuOH</td>
<td>92</td>
<td>15</td>
<td>0(^a)</td>
</tr>
<tr>
<td>NaH (6 eq)</td>
<td>DMF</td>
<td>92</td>
<td>15</td>
<td>0(^b)</td>
</tr>
<tr>
<td>NaH (6 eq)</td>
<td>DMF</td>
<td>165</td>
<td>15</td>
<td>0(^b)</td>
</tr>
<tr>
<td>LiHMDS (6 eq)</td>
<td>DMF</td>
<td>165</td>
<td>15</td>
<td>0(^b)</td>
</tr>
<tr>
<td>KI (6 eq)</td>
<td>DMF</td>
<td>120</td>
<td>120</td>
<td>0(^a)</td>
</tr>
</tbody>
</table>

\(^a\)starting material recovered; \(^b\)decomposition

The use of three equivalents of \(t\)ert-butoxide, rather than six equivalents, resulted in the isolation of only starting material. Lithium hexamethyldisilazane and sodium hydride were used in place of potassium \(t\)ert-butoxide, as non-oxygen based non-nucleophilic bases; however, in both cases, NMR spectroscopic analysis indicated the formation of only trace amounts of the deprotected product 105, alongside many decomposition products. Replacement of the potassium \(t\)ert-butoxide in \(t\)ert-butanol with sodium isopropoxide in \(i\)so-propanol gave the \(O\)-BODIPY with two \(B\)-isopropoxide groups in 47\% yield, along with trace amounts of the desired deprotected product. Attempts to separate the \(B\)-isopropoxide derivative from the trace amounts of deprotected product using column chromatography over basic alumina were unsuccessful. These results indicate that a sterically bulky alkoxide is necessary to accomplish the deprotection.

Potassium iodide was also used in place of potassium \(t\)ert-butoxide in the reaction. This was done to test the hypothesis that deprotection could occur through a nucleophilic attack at the \(meso\)-position and subsequent loss of the BF\(_2\) group. Iodide is a good nucleophile and could potentially operate through attack at the \(meso\)-position. After an increased reaction time of 2 hours, only starting material was present in the reaction mixture indicating that nucleophilic attack at the \(meso\)-position is not a viable deprotection route to pursue.
The optimized method was then tested for its general applicability to F-BODIPY deprotection. To investigate the scope of the reaction, a series of F-BODIPYs ($106, 108, 110, 112, 114, 116$) were synthesized from their corresponding dipyrarin HBr or HCl salts, using 9 equivalents of boron trifluoride diethyl etherate and 6 equivalents of triethylamine according to a common procedure found in the literature.4 To successfully deprotect meso-unsubstituted F-BODIPYs, a reaction time of 40 minutes was required and this extended reaction time was adopted when investigating the scope of the reaction. A series of F-BODIPYs were successfully deprotected using the new methodology as shown in Table 10.

Table 10. Microwave-assisted deprotection of F-BODIPY derivatives in the presence of 6 equivalents of potassium tert-butoxide in tert-butanol at 92 °C for 40 minutes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting Material</th>
<th>Product</th>
<th>Isolated Yield /%</th>
</tr>
</thead>
</table>
| 1 | $\text{N}_2\text{N}_2\text{BF}_2$
$104\ R = H$
$106\ R = \text{CF}_3$ | N_2HN
$105\ R = H$
$107\ R = \text{CF}_3$ | 105 91
107 90 |
<p>| 2 | N_2BF
108 | N_2HN
109 | 86 |
| 3 | N_2BF
110 | N_2HN
111 | 92a |</p>
<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting Material</th>
<th>Product</th>
<th>Isolated Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

a Compound isolated as its zinc complex as the dipyrrin is a sternutator.

The symmetrical *meso*-aryl *F*-BODIPYs, 104 and 106, and the *meso*-unsubstituted *F*-BODIPY 108, were deprotected in high yields (Table 10, entries 1 and 2), along with unsymmetrical *meso*-unsubstituted *F*-BODIPY 114 (Table 10, entry 5). The β- and *meso*-unsubstituted *F*-BODIPYs 110 and 112 were also deprotected to give dipyrrins 111 and 113 (Table 10, entries 3 and 4). The low yield of dipyrrin 113 can possibly be attributed to the sterically bulky substituents in the α-positions of the dipyrrin, which may shield the boron centre from approach of the tert-butoxide anion. No starting material was recovered from the reaction mixture. The *meso*-benzyl 116 and *meso*-methyl 118 *F*-BODIPYs were deprotected in high yield to generate the corresponding
unstable meso-substituted dipyrrins (Table 10, entries 6 and 7).111 These compounds were isolated as their HCl salts to prevent tautomerization to the vinylic dipyrrroles, which are known to be unstable in air.111 This was accomplished by adding a dilute hydrochloric acid wash as the final step in the extraction procedure. Removal of trace amounts of tert-butanol from the HCl salt 117 resulted in conversion to the vinylic dipyrrrole 120 (Figure 23), which was, unsurprisingly, unstable in solution.

Figure 23. Vinylic dipyrrrole byproduct

As the reaction had been so successful with F-BODIPYs, a series of BODIPYs with oxygen and carbon based substituents on the boron center were investigated to explore the scope of the deprotection reaction. The O-BODIPYs were synthesized from their corresponding F-BODIPYs through nucleophilic displacement of the fluoride atoms from boron in the presence of alkoxides.143 The synthesis of the O-BODIPYs is shown in Scheme 37.
Once the O-BODIPYs were in hand, they were subjected to the optimized deprotection conditions, as shown in Table 11.
Table 11. O-BODIPY deprotection

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting Material</th>
<th>Product</th>
<th>Isolated Yield /%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-</td>
<td>0a</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-</td>
<td>0a</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

a Starting material recovered quantitatively

The O-BODIPYs 121 and 122, with two B-alkoxy substituents, could not be deprotected under the optimized conditions, and starting material was quantitatively recovered even after an extended reaction time. Interestingly, O-BODIPY 123, with one B-alkoxy substituent, was deprotected successfully to obtain dipyrrin 109 in an isolated yield of 75%. This result again infers the importance of a steric component to the success of the deprotection.

A C-BODIPY was synthesized using an alkyl Grignard reagent according to literature procedures as outlined in Scheme 38.
Unsurprisingly, C-BODIPY 124 with two B-methyl groups could not be deprotected using this methodology, which further serves to highlight the importance of a steric component to the success of the deprotection.

This methodology represents the first general method for the removal of the boron centre from a F-BODIPY to generate the corresponding dipyrrin. This methodology has been successfully applied to a series of meso-unsubstituted, meso-substituted, symmetrical and unsymmetrical F-BODIPYs to generate the corresponding dipyrrins in high yields. The methodology is currently limited to F-BODIPYs with at least one fluorine substituent on the boron centre.

Application of the methodology to the deprotection of prodigiosene F-BODIPYs has also been attempted. The F-BODIPY of prodigiosene 1 (52) has been subjected to the standard deprotection conditions, as shown in Scheme 39. The starting material (52) was completely consumed during the course of the reaction and a mass spectrum (ESI⁺) of the crude reaction mixture after work-up indicated that prodigiosene carboxylate 36 had formed. This result indicates that the F-BODIPY deprotection was successful but that the ethyl ester was hydrolyzed under the basic reaction conditions. Due to the inherent instability of prodigiosene carboxylate 36, it was not isolated.
To further explore the applicability of this methodology to F-BODIPY prodigiosene deprotection, a prodigiosene without an ester directly attached to the C-ring (125)29 was selected for further deprotection trials. The corresponding F-BODIPY (126) was synthesized in moderate yield and the derivative was successfully deprotected under the general deprotection conditions, as highlighted in Scheme 40.

The basic reaction conditions used for the deprotection also hydrolyzed the pendant ester
of the prodigiosene and the resulting prodigiosene carboxylate (127) had limited solubility, impeding characterization. Further optimization of the synthesis of \(F \)-BODIPY 126, which currently suffers from low yields, and investigations into a method to quantitatively esterify the resulting prodigiosene carboxylate 127 in high yields, for characterization purposes, will be necessary before this deprotection methodology can have general utility in prodigiosene synthesis.

4.3.2 \textit{meso}-Modification of \(F \)-BODIPYs and Improvements to the Synthesis of the Fully Unsubstituted \(F \)-BODIPY

Many procedures exist in the literature for the functionalization of \(F \)-BODIPYs; however, most require a \(F \)-BODIPY with a modifiable functional group and focus on functionalization of the substituents appended to the BODIPY core. In order to design a methodology for the \textit{meso}-modification of BODIPY compounds, a symmetrical, easily synthesized \(F \)-BODIPY 108116,149 was chosen as a test compound. This compound was chosen as it can be synthesized on a 5 g scale in near-quantitative yields, according to the procedure shown in Scheme 41.

Scheme 41. Synthesis of \(F \)-BODIPY test compound

With 108 in hand, electrophilic substitution at the \textit{meso}-position was investigated. Reports of electrophilic bromination of bile pigments (containing multiple dipyrrin units)123,131 and porphyrins are common in the literature.150 Attempted bromination of \(F \)-BODIPY 108 with elemental bromine, elemental bromine and iron(III) chloride, and
NBS at several temperatures all resulted in the formation of complex mixtures of five or more products, which could not be separated using column chromatography over silica or alumina. The large number of products indicates that the alkyl substituents of the dipyrrin are likely being brominated in competing reactions. The exploitation of electrophilic iodination, using bis(trifluoroacetoxy)iodobenzene and iodine, conditions optimized for porphyrins, was not successful and only the starting material was recovered. Attempts to react \(\text{108} \) with benzoyl chloride were similarly unsuccessful.

The possibility of using \(F\)-BODIPY \(\text{108} \) in a Heck coupling reaction with bromobenzene was also investigated. It should be noted that meso-aryl substituted BODIPYs with pendant halogen atoms on the meso-aryl groups are commonly elaborated using palladium-catalyzed carbon-carbon bond forming reactions in the literature. In the current case, the reactions were carried out in DMF, using 1.2 equivalents of bromobenzene, 10 mole percent palladium catalyst (tris(dibenzylideneacetone)-dipalladium(0) or palladium(II) acetate) and 20 mole percent phosphine ligand (tri-2-furylphosphine, tri-\(t \)-butyl phosphonium tetrafluoroborate, triphenylphosphine, tri-\(o \)-tolylphosphine, 1,3-bis(diphenylphosphino)propane, tricyclicexylphosphine, or 1,1-bis(diphenylphosphino)ferrocene). None of the ligand-catalyst combinations resulted in production of the meso-substituted \(F\)-BODIPY after heating to 90 °C for 19 hours. A series of test reactions proved that our catalyst systems were successful in mediating the Heck coupling between bromobenzene and methyl acrylate and that \(F\)-BODIPY \(\text{108} \) did not poison the palladium catalyst.

Porphyryn and their metal complexes are susceptible to nucleophilic substitution at the meso-position and the resulting intermediate may then be oxidized in one pot to
generate *meso*-substituted porphyrins.152,153 Aryl and alkyl lithium reagents are the commonly used nucleophiles in these reactions, which could potentially pose a problem in the case of *F*-BODIPYs. Aryl, alkyl and alkynyl lithium complexes have been used to generate *C*-BODIPYs (BODIPYs in which the boron-fluorine bonds have been replaced with boron-carbon bonds), starting from *meso*-alkyl, *meso*-aryl and *meso*-H *F*-BODIPY compounds;141 however, it should be noted that the yields of the corresponding *C*-BODIPYs are all under 45\% and that the yield in the single example of a *meso*-H *C*-BODIPY synthesized from a *meso*-H *F*-BODIPY is only 20\%. In another case, the reaction of a *meso*-H *F*-BODIPY with 2 equivalents of a perfluorinated aryl lithium reagent (prepared from reacting the perfluorinated bromobenzene with *n*-butyllithium) resulted in the isolation of a small amount of a *meso*-butyl substituted *F*-BODIPY compound.154 The authors proposed that this was the result of the second equivalent of aryl lithium reagent deprotonating the *meso*-position and reacting with residual *n*-butyl bromide, present in the reaction mixture as a byproduct from the generation of the perfluorinated aryl lithium reagent with *n*-butyllithium.154

In order to investigate the scope of the nucleophilic substitution of BODIPY compounds, a test compound that could not undergo nucleophilic attack at the boron centre was selected in hopes of preventing the formation of multiple products. *B*-Dimethyl *C*-BODIPY \textbf{124} was chosen as a suitable test compound as the methyl groups would block nucleophilic attack at the boron centre and it could also be synthesized in high yields (Scheme 38). When an ethereal solution of \textbf{124} was subjected to *n*-butyllithium at - 78 °C, followed by DDQ oxidation after warming to room temperature,
the meso-butyl C-BODIPY with a single methyl group oxidized to the corresponding aldehyde (129) was isolated in 45% yield as shown in Scheme 42.

The oxidation of the \(\alpha \)-methyl group using DDQ is a known reaction for dipyrrinones155 and one \(F \)-BODIPY.156 Dipyrrins are also known to undergo a similar reaction under Mn(II) oxidation.157 Despite the undesired oxidation, this unoptimized reaction was encouraging and the same alkylation protocol was attempted on \(F \)-BODIPY 108 to determine if the alkylation was selective for the meso-position over the boron center. Under similar conditions, meso-butylated product 130 was isolated in 61% yield as shown in Scheme 43.

This result was exciting as it represents a new method for the synthesis of alkyl substituted \(F \)-BODIPYs and dipyrrins in better yields that the existing published methods.112-115 The color changes observed during the course of the reaction also serve to give some indication of the mechanism. The solution of \(F \)-BODIPY 108 in
dichloromethane was bright orange and fluorescent, but once the n-butyllithium was added the solution went light yellow and clear. The loss of color indicated the disruption of the dipyrrin chromophore. This is likely caused by the nucleophilic attack of the butyl anion at the meso-position to give a charged dipyrromethane intermediate as shown in Figure 24.

![Figure 24. Postulated alkylation intermediate](image)

This proposed intermediate is structurally and electronically related to the intermediate proposed for nucleophilic meso-substitution of porphyrins.153

The reaction of F-BODIPY 108 under similar conditions using phenyl lithium did not result in the isolation of any meso-phenyl product, but rather the isolation of C-BODIPY 131, with no meso-substituted product, as shown in Scheme 44.

![Scheme 44. Arylation of F-BODIPY 108 at -45 °C](image)

When the same reaction was conducted at room temperature, in the absence of DDQ, a mixture of C-BODIPY 131 and C-BODIPY 133, with the desired meso-phenyl substituent, were generated as shown in Scheme 45.
Although the mixture of C-BODIPY 131 and C-BODIPY 132 could not be separated using column chromatography, integrations of signals in the proton NMR spectrum revealed that the two compounds were present in a 1.0 to 0.2 ratio respectively. The lack of F-BODIPY products isolated from the reaction mixture when the reaction was carried out at both low and room temperature indicates that nucleophilic attack at the boron centre occurs preferentially to nucleophilic attack at the meso-position with the use of phenyllithium as a nucleophile. This reactivity has been exploited in the synthesis of C-BODIPYs from meso-substituted F-BODIPYs, but the products are generally isolated in yields below 50 %.141 The preferential substitution at boron over the meso-positon also presents a problem in using this F-BODIPY meso-modification methodology for a new synthetic route to dipyrrins, as the microwave-promoted deprotection of BODIPYs is currently limited to the deprotection of F-BODIPYs. The absence of DDQ in the reaction conducted at room temperature also indicates that this transformation may be occurring through an alternate mechanism than the analogous meso-alkylation. The color changes observed in the analogous alkylation reaction could not be observed in the arylation reaction, as the phenyllithium reagent was orange in color and was used in excess.
In F-BODIPY 108, two methyl groups effectively shield the meso-position and may hinder the substitution reaction. In order to investigate the steric requirements of the nucleophilic meso-alkylation and meso-arylation of F-BODIPYs, F-BODIPY 133 and F-BODIPY 135 were chosen as test compounds. F-BODIPY 135 has only one methyl group shielding the meso-position and 133 has no methyl groups shielding the meso-position.

While F-BODIPY 135 is easily synthesized using traditional methods,158 the synthesis of F-BODIPY 133 has only recently been reported.159-161 Of the three syntheses published, one involves a four-step procedure,159 while the other two methods are one-pot reactions, which involve trapping an unstable dipyrrin intermediate,4, 5 with reported yields under 10 percent.160, 161 These low yields are attributed to the instability of the dipyrrin, which has been reported to decompose above -40 °C.2 The authors were primarily interested in the fluorescence properties of F-BODIPY 133 and so yield was not their greatest concern, but in order for this one-pot method to be synthetically viable in our hands, the yields needed to be drastically increased. Unsubstituted dipyrromethane 134 was synthesized using Wang’s method162 or purchased from Frontier Scientific. Using modifications of the procedure developed by Tram and coworkers,161 a series of trials were conducted in order to optimize the oxidant used in the dipyrrin formation reaction and the base used in the F-BODIPY formation reaction. The synthesis and optimization of the F-BODIPY forming reaction is outlined in Scheme 46 and Table 12.
Scheme 46. Optimization of the synthesis of F-BODIPY 133

Table 12. Optimization of the synthesis of F-BODIPY 97

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidant</th>
<th>Base</th>
<th>Oxidation Reaction</th>
<th>BODIPY Formation Reaction</th>
<th>Isolated Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DDQ</td>
<td>TEA</td>
<td>-78 °C 1 h</td>
<td>-78 to -30 °C 3 h</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>DIPEA</td>
<td>-78 °C 1 h</td>
<td>-78 to -30 °C 3 h</td>
<td>0.76%</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>DBU</td>
<td>-78 °C 1 h</td>
<td>-78 to -30 °C 3 h</td>
<td>0.61%</td>
</tr>
<tr>
<td>4</td>
<td>p-chloranil</td>
<td>DIPEA</td>
<td>-78 °C 1 h</td>
<td>-78 to -30 °C 3 h</td>
<td>29%</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>DIPEA</td>
<td>-78 °C 1 h</td>
<td>-78 to -30 °C 3 h</td>
<td>23%</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>DIPEA</td>
<td>-78 °C 1 h</td>
<td>-78 to -30 °C 3 h</td>
<td>10%</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>DIPEA</td>
<td>-40 °C 3 h</td>
<td>-40 to 22 °C 18 h</td>
<td>76%</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>DIPEA</td>
<td>-40 °C 3 h</td>
<td>-40 to 22 °C 18 h</td>
<td>70%</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>DIPEA</td>
<td>-40 °C 3 h</td>
<td>-40 to 22 °C 18 h</td>
<td>72%</td>
</tr>
</tbody>
</table>

No product observed in the reaction mixture

It was found that using sterically hindered amine bases and changing the oxidant from DDQ to the milder p-chloranil gave a substantial increase in the yield of F-BODIPY 133; however, this procedure suffered from varying yields between 10 and 29% (Table 12, entries 4 through 6). Increasing the oxidation time period to 3 h, the oxidation temperature to -40 °C and allowing the BODIPY formation reaction to warm to room temperature over a period of 18 h before work-up (Table 12, entries 7 through 9) substantially increased the yield of F-BODIPY 133 and improved the reproducibility of the reaction. The increased temperature and reaction time for the dipyrrromethane oxidation appear to be key to the increase in yield of the product F-BODIPY. The yield of F-BODIPY 133 can now be increased to 72% ± 4% (95% confidence, based on Table 12, entries 7 through 9). Notably, the solvent can be changed from DCM to toluene.
and F-BODIPY 133 can be generated in 72 % ± 6 % (95 % confidence, 3 trials). This represents a significant improvement over the reported literature methods involving in situ oxidation of dipyrromethane 134 followed by F-BODIPY formation, which report yields under 10%.160,161 The majority of trials (Table 12, entries 1 through 8) were conducted on a 0.5 to 0.6 mmol scale of 134, while one trial (Table 12, entry 9) was conducted on a 3.4 mmol scale, indicating the scalability of the procedure. With a reproducible and high yielding method to synthesize F-BODIPY 133 developed, further explorations into the meso-alkylation and meso-arylation of F-BODIPYs were possible.

The reaction of F-BODIPY 133 with n-butyllithium gave F-BODIPY 136 in 26% yield and the reaction of F-BODIPY 135 with n-butyllithium gave F-BODIPY 137 in 42% yield, as shown in Scheme 47.

Scheme 47. Alkylation of F-BODIPY 133 and F-BODIPY 135

While the reactivity of these compounds is similar to that of F-BODIPY 108, the yields of the meso-alkylated product were found to decrease as the substitution around the F-BODIPY core decreases. This decrease in yield may be due to the fact that the charged dipyrrromethane-type boron-containing intermediate decreases in stability as the substitution about the dipyrrin core decreases, in a fashion similar to the analogous dipyrrin series.3,4
Explorations into the reaction of aryllithium reagents with meso-unsubstituted BODIPYs 133 and 135, as a method for the synthesis of aryl-substituted F-BODIPYs were also of interest. It was found that the reaction of F-BODIPY 135 with phenyllithium gave the C-BODIPY 138 and the C-BODIPY 139 in a 1.0 to 0.67 ratio as shown in Scheme 48. This ratio is slightly larger than that observed from the reaction of F-BODIPY 108 with phenyl lithium (1 to 0.20) and indicates that steric crowding of the meso-position is indeed a deterrent in BODIPY meso-substitution.

Scheme 48. Arylation of F-BODIPY 135

The reaction of F-BODIPY 133 with phenyl lithium resulted in two products that could not be separated using column chromatography, partially due to the small amount of material isolated, and, therefore, characterization using NMR spectroscopy and mass spectrometry was carried out on the mixture. A broad singlet in the boron NMR spectrum of the mixture indicated that the products formed were C-BODIPYs and the mass spectrum (ESI^+) indicated that the isolated material was a mixture of C-BODIPY 140 and C-BODIPY 141, as shown in Scheme 49.
A comparison of the relative integrations of the pyrrolic hydrogen peaks in the proton NMR spectrum of the product indicated that C-BODIPY 140 and C-BODIPY 141 were present in a 1.0 to 0.61 ratio respectively. This ratio is similar to the ratio of C-BODIPY 138 to C-BODIPY 139 (1 to 0.67 ratio), formed under the same reaction conditions, and indicates that there is no increase in meso-arylated product going from F-BODIPY 135, with a single methyl group blocking the meso-position, to F-BODIPY 133, with no methyl groups blocking the meso-position.

4.3.3 Explorations into X-BODIPY Synthesis

Substitution of the fluorine atoms at the boron centre to give B-aryl, B-alkenyl, B-alkoxy and B-aryloxy derivatives has been accomplished successfully to generate a wide variety of C-BODIPY$^{137-140}$ and O-BODPY$^{143-145,163}$ compounds. Recently, more exotic BODIPY derivatives have been synthesized as well,164,165 including a H-BODIPY,166 however, to our knowledge, BODIPY analogues of the heavier halogens have not been reported. This is not unsurprising as boron-halogen bond strengths decrease in the order F $>>$ Cl $>$ Br $>$ I and, consequently, B-Cl, B-Br and B-I bonds are much more labile than B-F bonds.167 It was expected that changing the substitution at the F-BODIPY boron centre from fluorine to the heavier halogens will have a significant effect on the
fluorescence properties of the resulting X-BODIPYs. The presence of the heavier halogens will likely facilitate quenching by internal conversion, intersystem crossing, or charge transfer and enhance the non-radiative decay pathways by increasing spin-orbit coupling.

There is only one reported BODIPY analogue that contains a B-X bond. In this example, a meso-methyl substituted dipyrirnato sodium complex is treated with PhBCl$_2$ to produce the C,Cl-BODIPY analogue bearing one chloride and one phenyl substituent at the boron centre.168 There is only one other example in the literature of the reaction of a dipyrrin or dipyrirnato complex with a boron trihalide other than a BF$_3$ adduct. In this example, a dipyrrin bearing a catechol-functionalized meso-position is treated with BCl$_3$. This reaction results in a series of three cyclic oligomers where the boron centre links one dipyrrin to another by binding to the dipyrrin moiety of one molecule and the catechol moiety of the second molecule.169

Although BODIPY analogues of the heavier halogens have not been isolated, BCl$_2$, BBr$_2$ and BI$_2$ β-diketiminato complexes, which are structurally related to dipyrrins, can be generated via treatment of a silyl protected β-diketinate with BCl$_3$, BBr$_3$ and BI$_3$.170,171 All of these complexes were prepared and manipulated in a dry and oxygen-free atmosphere and were characterized using single-crystal X-ray diffraction studies.170,171 Similarly, structurally related diboryl BF$_2$, BCl$_2$ and BBr$_2$ complexes of porphyrins are known.172

F-BODIPYs are synthesized from dipyrrins or dipyrrin salts via reaction with excess triethylamine and BF$_3$•OEt$_2$. Following this method, the formation of the X-BODIPYs of the heavier halogens of the symmetrical dipyrrins 105 and 109 were
investigated by carrying out the reactions under the same conditions, but replacing
BF$_3$•OEt$_2$ with BCl$_3$, BBr$_3$ or BI$_3$. Following the general procedure for the formation of F-
BODIPY derivatives, triethylamine was added to a solution of the dipyrrin hydrobromide
salt in dichloromethane followed by the addition of nine equivalents of the boron
trihalide as a 1.0 M solution in dichloromethane (in the case of BCl$_3$ and BBr$_3$) or as a
solid (in the case of BI$_3$). After 24 h, the solution was treated with methanol. The
resulting deep red solution was subjected to an aqueous work-up and the resulting crude
products were purified over neutral alumina. Due to the presence of water in the work-up
procedure, isolation of the heavier halogen X-BODIPYs themselves would be unlikely,
but some derivatives thereof (i.e. O-BODIPYs) would be possible to isolate.

As expected, the heavier halogen X-BODIPY analogues were not isolated from
the reaction mixtures on aqueous work-up and neither were the expected O-BODIPYs.
However, the previously unknown boronium salts $\textbf{142}$ and $\textbf{143}$ were isolated in various
yields from the corresponding boron trihalides, as shown in Scheme 50.

Scheme 50. Synthesis of boronium cations using boron trihalides, BX$_3$ (X = Cl,
Br, I)
X-ray diffraction quality crystals of 142I, containing an iodide counterion, were grown and analyzed. The X-ray crystal structure can be found in Figure 25.

Figure 25. Thermal ellipsoid diagram (50%) of 142I.

![Image of 142I crystal structure]

Hydrogen atoms removed for clarity.

The environment around the boron is tetrahedral with N-B-N angles ranging from 106.67° to 112.07° and the B-N bond lengths range from 1.547 Å to 1.550 Å, which is within the sum of covalent radii for the B and N atoms (1.55 Å). The two dipyrrinato units are nearly orthogonal to each other as the angles between the planes made up by the dipyrrinato units are 95° and 85° respectively. This orthogonality of dipyrrinato ligands is a common feature of homoleptic dipyrrinato complexes and is enforced by the steric crowding of the methyl groups in the 1- and 9-positions of the dipyrrinato ligand.3 There is some observable disorder in an ethyl group attached to one of the dipyrrinato ligands.

Conversion of dipyrrins without substituents in the α-positions into their corresponding boronium cations was unsuccessful and led to intractable products. There
are many examples of boronium cations with nitrogen donors. 174-176 Recent advances in boronium cation chemistry include the use of boronium cations as catalysts in propylene oxide polymerization and Diels-Alder reactions. 174 In light of these possible applications, attempts were made to synthesize chiral variants of our boronium cations using bis(dipyrrins), attached by alkyl and ester linkages, to the corresponding boronium cations. In the case of the alkyl linked dipyrrins, no boronium salts were isolated and in the case of the ester linked dipyrrins, the ester linkages were cleaved to give the corresponding diol, but no boronium salts could be isolated from the reaction mixture.

4.4 Conclusions and Implications

A methodology has been developed to remove the boron centre from F-BODIPYs to regenerate the corresponding dipyrrins. This methodology has been successfully applied to a series of meso-unsubstituted, meso-substituted, symmetrical and unsymmetrical F-BODIPYs to generate the corresponding dipyrrins in high yields. The methodology is currently limited to BODIPYs with at least one fluorine substituent on the boron centre and it requires the use of a bulky alkoxide. Attempts to deprotect C-BODIPYs and O-BODIPYs with two alkoxy, alkyl, or aryl substituents of the boron centre were unsuccessful.

The development of this methodology is significant because it allows the BF$_2$ moiety of the F-BODIPY to be conceptualized as a protecting group for a dipyrrin and could potentially have widespread use in the synthesis and purification of dipyrrins. Ideally, a dipyrrin could be protected as its more stable and more easily purified F-BOIDPY and then chemically modified, purified and deprotected using the new microwave-promoted deprotection methodology to give the desired dipyrrin. The
methodology is also extremely efficient as the majority of the crude dipyrrin products obtained using the microwave-promoted deprotection method are clean according to proton NMR spectral data and do not require any purification after work-up. One drawback of the methodology is that the scale of the microwave-promoted reaction is limited by the size of the sealed microwave vessels available: our reactions were conducted using sealed, quartz lined vessels that held a maximum volume of 30 mL.

Investigations into the direct chemical modification of a F-BODIPY unfunctionalized at the meso-position were undertaken. F-BODIPYs have been successfully monoalkylated at the meso-position using n-butyllithium. This new method to generate these compounds in moderate yields represents an improvement to the current methods used to generate symmetrical, meso-alkylated F-BODIPYs. It also allows for the synthesis of the previously unaccessible unsymmetrical, meso-alkylated F-BODIPYs. This methodology could potentially be extended to other alkyl lithium reagents to generate a variety of different meso-substituted F-BODIPYs, potentially with additional sites for further functionalization.

Attempts to extend the meso-modification methodology to meso-arylation were not straightforward. Phenyllithium was found to preferentially attack at the boron centre of the F-BODIPY to generate B-diaryl C-BODIPYs before attacking at the meso-position to generate the desired meso-arylated derivative. Under modified conditions, the meso-unsubstituted and meso-aryl B-diaryl C-BODIPYs could be isolated with the ratio of the products corresponding to the steric accessibility of the meso-position.

Initial attempts to synthesize X-BODIPYs from BX₃ boron sources resulted in the isolation of previously unknown boronium cations. These boronium cations could be
isolated from all BX₃ boron sources with the highest yield (56%) isolated using BI₃ and the lowest yield (6%) isolated using BCl₃. Attempts were made to synthesize boronium cations from α-free dipyrrins, bis(dipyrrin)s and chiral linked bisdipyrins; however, these attempts were largely unsuccessful. The synthesis of X-BODIPYs under air- and moisture-free conditions in a glove box is currently under investigation by Thompson group member Travis Lundrigan.
5.1 General Experimental

All 1H NMR (500 MHz), 13C NMR (125 MHz), 11B NMR (160 MHz), and 119Sn NMR (186 MHz) spectra were recorded on a Bruker Avance AV-500 spectrometer. 19F NMR (235.2 MHz) were recorded on Bruker AC-250 spectrometer. Chemical shifts are expressed in parts per million (ppm) using the solvent signal $[\text{CDCl}_3 (^1\text{H} 7.26 \text{ ppm}, ^{13}\text{C} 71.23 \text{ ppm}); \text{DMSO-}d_6 (^1\text{H} 2.50 \text{ ppm}, ^{13}\text{C} 39.52 \text{ ppm}); \text{MeOD-}d_4 (^1\text{H} 3.31 \text{ ppm}, ^{13}\text{C} 49.00 \text{ ppm}); \text{Acetone-}d_6 (^1\text{H} 2.05 \text{ ppm}, ^{13}\text{C} 29.84 \text{ ppm})]$ as an internal reference for 1H and 13C, BF$_3$•OEt$_2$ as an external reference for 11B, C$_6$H$_5$CF$_3$ as an external reference for 19F, and Sn(CH$_3$)$_4$ as an external reference for 119Sn. Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. All coupling constants (J) are reported in Hertz (Hz). Mass spectra were obtained using ion trap (ESI) instruments operating in positive or negative mode, as indicated. Melting points are uncorrected.

Two microwave systems were used in the deprotection experiments. A CEM MARS-X microwave reaction system equipped with quartz lined QXP-1500Plus vessels, an RTP-300Plus Fiber Optic Temperature Control Sensor, and an ESP-1500Plus Internal Pressure Sensor was used in the transesterification and deprotection experiments. A Biotage Initiator microwave reaction system with EXP vessels was also used in one deprotection experiment.

Column chromatography was performed using 230-400 mesh ultra pure silica; 150 mesh Brockmann III activated, neutral alumina oxide; 150 mesh Brockmann III activated, basic alumina oxide; or 230-400 mesh Reversed Phase C18 ultra pure silica as
indicated. Crude solvents for column chromatography and work-up, were distilled under 1 atm of air prior to use. All other chemicals were used as received. 1-(tert-Butoxycarbonyl)-1H-pyrrol-2-ylboronic acid (13) was purchased form Frontier Scientific and 4-ethyl-3-methyl-1H-pyrrol-2(5H)-one (55), hexanoyl chloride, octanoyl chloride, tetradecanoyl chloride, pentadecanoyl chloride, 3-ethyl-2,4-dimethylpyrrole and 6-oxovaleric acid, were purchased from Aldrich. Compound 112 was a gift from Dr. Kevin Burgess and Liangxing Wu (Texas A & M University), compound 94 was a gift from Dr. Md. Imam Uddin, and compound 125 was a gift from Dr. Estelle Marchal. Compounds 10, 23, 28, 31, 37, 59, 81, 86, 87, 91, 86, 87, 100, 105, 107, 109HBr, 111HBr, 117HCl, 119HCl and 128 were synthesized according to the reported procedures.

5.2 Absorbance and Fluorescence Measurements

The absorbance measurements were performed using a CARY 100 Bio UV/Visible spectrophotometer. The fluorescence measurements were performed using a Shimadzu RF-5301PC Spectrofluorimeter. A 10 mm quartz cuvette was used in all measurements. For the fluorescence experiments, the slit width was 3 nm for both excitation and emission. Relative quantum efficiencies of derivatives were obtained by comparing the areas under the emission spectra of the test with that of a solution of rhodamine 101 in ethanol ($\Phi_F = 0.96$) or rhodamine 6G in ethanol ($\Phi_F = 0.94$). The excitation wavelength was 520 nm for rhodamine 6G and the compounds measured against it. The excitation wavelength was 546 nm for rhodamine 101 and the compounds measured against it. Quantum yields were determined using Equation 1.
\[
\phi_X = \phi_{st} \left(\frac{I_X}{I_{st}} \right) \left(\frac{A_{st}}{A_X} \right) \left(\frac{\eta_X^2}{\eta_{st}^2} \right)
\]

...Equation 1

Where \(\phi_{st}\) is the reported quantum yield of the standard, \(I\) is the area from the integrated emission spectra, \(A\) is the absorbance at the excitation wavelength and \(\eta\) is the refractive index of the solvent used. The \(X\) subscript denotes the unknown, and “\(st\)” denotes the standard.

5.3 Biological Activities

Mean *in vitro* activities of pyrrolyldipyrinato complexes 94, 95, 98 against the National Cancer Institute 60 human tumor cell line anticancer drug screen (NCI60) were measured at the National Cancer Institute (NCI) of the National Institute of Health (NIH). Details of the screening experiments can be found online\(^{14}\) and details of the development and utility of the screen have been reviewed in detail.\(^{186}\)

MIC values of pyrrolyldipyrinato complex 83, in DMSO solution, were determined by Dr. Srinivasulu Bandi in collaboration with Dr. David L. Jakeman and Dr. Susan E. Douglas.\(^{110}\)

5.4 Experimental Procedures

5.4.1 Ethyl (\(Z\))-2-((4-methoxy-1\(H\),1\(H\)-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2\(H\)-pyrrole-4-carboxylate hydrochloride (1)\(^{29}\)

This compound was synthesized according to a published procedure.\(^{29}\) Compound \(22\)\(^{29}\) (571 mg, 1.35 mmol) was dissolved in dimethoxyethane (30 mL) and LiCl (172 mg, 4.06
mmol), 1-N-Boc-pyrrole-2-boronic acid (13) (569 mg, 2.70 mmol), and Pd(PPh₃)₄ (156 mg, 0.135 mmol) were added. The resulting solution was purged by bubbling with nitrogen for 10 min then a solution of Na₂CO₃ (2 M, 2.71 mL, 5.41 mmol) was added, and the reaction mixture was stirred at 85 °C for 18 h. The crude reaction mixture was poured onto a saturated aqueous solution of sodium bicarbonate (50 mL). Extraction with ethyl acetate (3 x 30 mL), followed by washing of the combined organic fractions with brine (30 mL), drying over anhydrous sodium sulfate and removal of the solvent under reduced pressure gave the crude product. The crude product was purified using flash chromatography on basic alumina with ethyl acetate:hexane (30:70) as an eluent, concentrated in vacuo and dissolved in HPLC grade acetone (3 mL). 1 M HCl in diethyl ether (2 mL) was added to the solution and a fine red precipitate formed which was isolated using suction filtration and rinsed with ether (3 x 2 mL) to give 1 as a bright pink solid (432 mg, 1.15 mmol, 85%). m.p. = 230-231 °C; δ_H (500 MHz, CDCl₃) 13.00 (1H, bs), 12.76 (1H, bs), 12.69 (1H, bs), 7.30 (1H, s), 7.13 (1H, s), 7.02-7.00 (1H, m), 6.40-6.39 (1H, m), 6.11 (1H, s), 4.32 (2H, q, J=7), 4.06 (3H, s), 2.82 (3H, s), 2.52 (3H, s), 1.38 (3H, t, J=7). δ_C (125 MHz, CDCl₃) 166.8, 164.6, 160.5, 150.1, 140.6, 128.5, 132.6, 122.2, 119.1, 116.0, 113.0, 112.5, 93.5, 60.0, 59.2, 14.9, 14.6, 11.9. The recorded ¹³C NMR data matches (within 0.2 ppm) the reported data for the compound.²⁹ UV/Vis (DCM, 22 °C) λ_max = 528 nm (ε = 87200 mol L⁻¹ cm⁻¹); m/z ESI⁺ found 340.1665 [M+H]⁺ calculated for C₁₉H₂₂N₃O₃ 340.1656. A crystal suitable for X-ray crystallography was obtained from a slow evaporation of a solution of compound 1 in dichloromethane in the presence of few drops of methanol. Data for 1: C₁₉H₂₂N₃O₃Cl, M = 375.85 g, deep-red, needle, 0.39 x 0.10 x 0.01 mm, primitive orthorhombic, Pbca (#61), a = 7.9121(3) Å, b =
19.2314(8) Å, c = 24.6951(10) Å, V = 3757.6(3) Å³, Z = 4, T = 293(1) K, ρ = 1.329 g cm⁻³, μ(MoKα) = 2.268 cm⁻¹, 35806 reflections (5492 unique, Rint = 0.224), R = 0.0457, Rw = 0.0426, GOF = 1.134.

5.4.2 \textit{N-}((5-Bromo-4-methoxy-2H-pyrrol-2-ylidene)methyl)-\textit{N}-ethylethanamine (14)38

This compound was synthesized using a modified literature procedure.38 A solution of phosphorous oxybromide (12.6 g, 44 mmol) in chloroform (15 mL) was added dropwise to a mixture of diethylformamide (5.8 mL, 53 mmol) in chloroform (5 mL) at 0 °C. The resulting suspension was stirred at 0°C for 30 min and the solvent was then removed \textit{in vacuo}. After pumping dry over 20 min, chloroform (20 mL) was added and the resulting suspension was cooled to 0 °C. A solution of 1057 (2 g, 17.7 mmol) in chloroform (10 mL) was added dropwise and the mixture was warmed to room temperature and then heated at 60 °C for 5 h. The mixture was poured onto ice (75 mL), and the pH of the aqueous solution was adjusted to pH 14 by treatment with 6 M NaOH. The aqueous layer was extracted with EtOAc (3 x 75 mL). The organic layers were combined, washed with 6 M NaOH (2 x 150 mL), dried over sodium sulfate and the solvent was then removed \textit{in vacuo}. Purification over silica gel using ethyl acetate:hexane (30:70) gave 14 as a yellow oil which solidified on standing (2.02 g, 8.0 mmol, 45%). m.p. = 35-37 °C; δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 6.99 (1H, s), 5.59 (1H, s), 4.12 (2H, q, J=7), 3.76 (3H, s), 3.39 (2H, q, J=7), 1.27-1.31 (6H, m). The recorded 1H NMR data matches (within 0.03 ppm) the reported data
for the compound.38 m/z ESI+ found 259.0453, 261.0424 [M+H]+ calculated for C\textsubscript{10}H\textsubscript{16}79BrN\textsubscript{2}O 259.0441.

5.2.3 Ethyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate (20)187,188

POCl\textsubscript{3} (4 mL) was added dropwise to a solution of dimethylformamide (4 mL) in anhydrous dichloromethane (4 mL) stirring at 0 °C under nitrogen. The solution was stirred for 20 min at 0 °C. This solution was added dropwise by syringe to a solution of 25 (770 mg, 4.6 mmol) in anhydrous dichloromethane (4 mL). The resulting solution was heated at reflux temperature for 2 h and then allowed to cool to room temperature. The cooled mixture was poured slowly onto a solution of sodium bicarbonate (8 g) in water (60 mL) and the solution was heated at reflux temperature for 12 h. The resulting beige precipitate was isolated \textit{via} suction filtration and pumped dry overnight to give 20 as a beige solid (909 mg, 4.6 mmol, 99%). m.p. = 164-166 °C (lit. 165 °C);188 \(\delta\)\textsubscript{H} (500 MHz, CHCl\textsubscript{3}) 10.42 (1H, bs), 9.60 (1H, s), 4.30 (2H, q, \(J=7\)), 2.58 (3H, s), 2.55 (3H, s), 1.36 (3H, t, \(J=7\)). \(\delta\)\textsubscript{C} (125 MHz, CHCl\textsubscript{3}) 177.5, 165.1, 143.9, 136.5, 128.4, 114.3, 59.8, 14.6, 14.4, 10.8. m/z ESI+ found 218.0786 [M+Na]+ calculated for C\textsubscript{10}H\textsubscript{13}NNaO\textsubscript{3} 218.0788. Previously reported \(^1\)H and \(^{13}\)C NMR data was recorded in DMSO-\textit{d}6.187
5.4.4 Ethyl (Z)-5-((3-methoxy-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (21)29

This compound was synthesized using a modified literature procedure.29 A solution of 1057 (871 mg, 7.7 mmol) in tetrahydrofuran (40 mL) was purged with N\textsubscript{2} for 20 min. To this solution was added a purged solution of aqueous potassium hydroxide (4 M, 4.5 mL, 17.9 mmol). This solution was stirred at 60 °C for 1 h and then 27 (1.0 g, 4.5 mmol) was added and the solution stirred under N\textsubscript{2} for 2 days at 60 °C. Methanol:dichloromethane (9:1, 400 mL) and water (300 mL) were added to the residue. The layers were separated, the aqueous layer was washed with methanol:dichloromethane (9:1, 3 x 300 mL), the combined organic layers were dried over sodium sulfate and concentrated \textit{in vacuo} to give 21 as a bright yellow solid (1.04 g, 3.6 mmol, 70%). m.p. = 279-281 °C; δ\textsubscript{H} (500 MHz, DMSO-\textit{d}6) 10.91 (1H, bs), 9.72 (1H, bs), 6.02 (1H, s), 5.26 (1H, s), 4.17 (2H, q, \textit{J}=7), 3.85 (3H, s), 2.46 (3H, s), 2.22 (3H, s), 1.27 (3H, t, \textit{J}=7). δ\textsubscript{C} (125 MHz, DMSO-\textit{d}6) 170.7, 166.8, 164.7, 139.0, 125.2, 123.9, 122.0, 111.4, 94.4, 91.3, 58.7, 58.4, 14.3, 13.5, 10.8. This13C NMR data matches (within 0.6 ppm) the reported data for the compound.29 m/z ESI+ found 291.1330 [M+H]+ calculated for C\textsubscript{15}H\textsubscript{19}N\textsubscript{2}O\textsubscript{4} 291.1339.
5.4.5 Ethyl (Z)-2-((3-methoxy-5-(trifluoromethylsulfonyloxy)-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (22)

This compound was synthesized using a literature procedure.29 Tf₂O (1.2 mL, 6.7 mmol) was slowly added to a solution of 21 (1.3 g, 4.5 mmol) in dry dichloromethane (225 mL), under nitrogen at 0 °C. The reaction mixture was stirred for 2 h at 0 °C and then poured onto a saturated aqueous solution of sodium bicarbonate. The layers were separated, the aqueous layer was extracted with dichloromethane (3 x 60 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel using ethyl acetate:hexane (10:90) as an eluent resulted in 22 as a bright yellow solid (1.64 g, 3.9 mmol, 86%). δH (500 MHz, CHCl₃) 10.99 (1H, bs), 7.13 (1H, s), 5.43 (1H, s), 4.31 (2H, q, J=7), 3.90 (3H, s), 2.57 (3H, s), 2.43 (3H, s), 1.37 (3H, t, J=7). The ¹H NMR data matches (within 0.01 ppm) that of the reported compound.29 Further characterization was avoided due to the general instability of the derivative.

5.4.6 4-(Ethoxycarbonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (24)

Triethylamine (0.1 mL, 0.66 mmol) and palladium on activated carbon (10 % by wt., 1 g) and were added to a solution of 23 (10 g, 33 mmol) in tetrahydrofuran (100 mL). The reaction mixture was stirred for 16 h under 1 atm of hydrogen gas, diluted with methanol.
(50 mL) and filtered through a plug of Celite, rinsing with methanol (2 x 25 mL), to give 24 as a white crystalline solid (6.30, 30 mmol, 90 %). m.p. = 204-205 °C (lit. 203-204 °C);\(^{56}\) \(\delta_H\) (500 MHz, DMSO-\(d_6\)) 12.37 (1H, bs), 11.73 (bs, 1H), 4.16 (2H, q, \(J=7\)), 2.45 (3H, s), 2.39 (3H, s), 1.26 (3H, t, \(J=7\)). \(\delta_C\) (125 MHz, DMSO-\(d_6\)) 164.7, 162.2, 138.8, 129.0, 118.2, 112.1, 58.6, 14.3, 13.4, 11.7. \(m/z\) ESI\(^+\) found 234.0733 [M]+ calculated for C\(_{10}\)H\(_{13}\)NNaO\(_4\) 234.0737. The previously reported \(^1H\) NMR data for this compound were recorded in pyridine-\(d_5\).\(^{56}\)

5.4.7 Ethyl 2,4-dimethyl-1\(H\)-pyrrole-3-carboxylate (25)\(^{92, 187}\)

![Image]

4-(Ethoxycarbonyl)-3,5-dimethyl-1\(H\)-pyrrole-2-carboxylic acid (24)\(^{56}\) (1.0 g, 4.7 mmol) was placed in a round-bottom flask and the flask was then equipped with a condenser. The round-bottom flask was placed in a heating mantle preheated to 215 °C until the solid melted and bubbling ceased (approximately 15 min). The flask was then removed from the heating mantle and the contents allowed to cool to room temperature. Purification over silica gel using ethyl acetate:hexane (2:1) as an eluent followed by the removal of solvent \textit{in vacuo} gave 25 as a beige powder (909 mg, 4.6 mmol, 97%). m.p. = 69-70 °C (lit. 75-76 °C);\(^{92}\) \(\delta_H\) (500 MHz, CDCl\(_3\)) 8.19 (1H, bs), 6.35 (1H, q, \(J=1\)), 4.27 (2H, q, \(J=7\)), 2.48 (3H, s), 2.24 (3H, d, \(J=1\)), 1.35 (3H, t, \(J=7\)). \(\delta_C\) (125 MHz, CDCl\(_3\)) 166.5, 136.1, 121.7, 114.3, 110.8, 59.2, 14.6, 14.2, 12.7. \(m/z\) ESI\(^+\) found 190.0845 [M+Na]\(^+\) calculated for C\(_9\)H\(_{13}\)NNaO\(_2\) 190.0838. The previously reported \(^1H\) and \(^{13}C\) NMR data for this compound were recorded in DMSO-\(d_6\).\(^{187}\)
5.4.8 Ethyl (Z)-5-((4-(ethoxycarbonyl)-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (29)

Tf$_2$O (0.9 mL, 5.3 mmol) was slowly added to a solution of ethyl-(Z)-5-((3-methoxy-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (21) (1.03 g, 3.5 mmol) in wet dichloromethane (60 mL) at 0 °C under nitrogen. The reaction mixture was stirred for 2 h at 0 °C and then poured onto a saturated aqueous solution of sodium bicarbonate. The layers were separated, the aqueous layer was extracted dichloromethane (3 x 60 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel using ethyl acetate:hexane (0:100 to 15:85) as an eluent resulted in 29 as a bright orange powder (600 mg, 1.7 mmol, 49 %). m.p. = 133 °C dec.; $\delta$$_H$ (500 MHz, CDCl$_3$) 8.50 (s, 1H), 7.00 (s, 1H), 4.30 (q, 4H, J=7), 2.58 (s, 6H), 2.47 (s, 6H), 1.37 (t, 6H, J=7); $\delta$$_C$ (125 MHz, CDCl$_3$) 165.2, 156.9, 144.6, 137.6, 120.1, 119.5, 59.9, 17.5, 14.6, 12.0; UV/Vis (DCM, 22 °C) $\lambda$$_{max}$ = 454 nm (ε = 16 300 mol L$^{-1}$ cm$^{-1}$); m/z ESI$^+$ found 345.1776 [M]$^+$ calculated for C$_{19}$H$_{24}$N$_2$O$_4$ 345.1809.

5.4.9 Zn(29)$_2$ (30)
A solution of zinc acetate dihydrate (115 mg, 0.52 mmol) and sodium acetate (71 mg, 0.52 mmol) in methanol (5 mL) was added to a solution of 29 (75 mg, 0.22 mmol) in chloroform (5 mL). The reaction mixture was stirred 12 h at room temperature and the resulting dark yellow solution was diluted with dichloromethane (30 mL) and poured onto water (40 mL). The layers were separated and the organic fraction was dried over sodium sulfate, filtered and concentrated in vacuo. Purification over silica gel using ethyl acetate:hexane (35:65) as an eluent gave 30 as a bright yellow crystalline powder (128 mg, 0.18 mmol, 81%). m.p. = 201-202 °C; δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.41 (1H, s), 4.27 (4H, q, \textit{J} = 7), 2.60 (6H, s), 2.21 (6H, s), 1.34 (6H, t, \textit{J} = 7); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 165.1, 161.8, 148.3, 136.5, 125.4, 119.5, 59.6, 17.5, 14.4, 14.2; UV/Vis (DCM, 22 °C) \textit{λ}_{\text{max}} = 487 nm (ε = 224 000 mol L-1 cm-1); m/z ESI+ found 773.2465 [M+Na]+ calculated for C\textsubscript{38}H\textsubscript{46}N\textsubscript{4}NaO\textsubscript{8}Zn 773.2516.

5.4.10 5-(Ethoxycarbonyl)-2,4-dimethyl-1\textit{H}-pyrrole-3-carboxylic acid (32)189

Concentrated sulfuric acid (0.9 mL) was added dropwise to a solution of 31178 (100 mg, 0.42 mmol) in tetrahydrofuran (10 mL) at room temperature. The resulting solution was stirred for 1 h and then distilled water (5 mL) was slowly added to the reaction mixture. The resulting white precipitate was isolated by suction filtration to give 32 as a white solid (70 mg, 0.33 mol, 80%). m.p. = 227 °C dec. (lit. 123-124);189 δ\textsubscript{H} (500 MHz, DMSO-d\textsubscript{6}) 11.76 (1H, bs), 4.23 (2H, q), 2.45 (3H, s), 2.39 (3H, s), 1.28 (3H, t); δ\textsubscript{C} (125 MHz,
DMSO-d6) 166.3, 160.7, 139.4, 129.8, 117.4, 112.9, 59.4, 14.4, 13.5, 11.8; m/z ESI⁺ found 234.0737 [M+Na]⁺ calculated for C₁₀H₁₃NNaO₄ 234.0737. Full characterization data for this compound has not been reported previously.

5.4.11 2-Ethyl 4-isopropyl 3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate (33)

Trifluoroacetic anhydride (48 μL, 0.68 mmol) was added dropwise to a suspension of 32 (60 mg, 0.28 mmol) in dry toluene (5 mL) under nitrogen and the resulting solution was stirred for 30 min. Isopropyl alcohol (60 μL, 0.34 mmol) was added and the mixture was stirred at room temperature for 1 h. The reaction mixture was diluted with dichloromethane (10 mL) and then washed with 1 M NaOH (2 x 20 mL). The organic layer was dried over sodium sulfate and the solvent was removed in vacuo to give 33 as a light yellow powder (63 mg, 0.25 mmol, 85%). m.p. = 124-125 °C; δH (250 MHz, CDCl₃) 8.92 (1H, bs), 5.19 (1H, p, J=7), 4.33 (2H, q, J=7), 2.56 (3H, s), 2.51 (3H, s), 1.33-1.40 (9H, m); δC (125 MHz, CDCl₃) 165.1, 161.7, 138.7, 131.0, 118.0, 114.2, 67.0, 60.4, 22.4, 14.64, 14.56, 12.1; m/z ESI⁺ found 276.1198 [M+Na]⁺ calculated for C₁₃H₁₉NNaO₄ 276.1206.

5.4.12 2-Ethyl-4-benzyl-3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate (34)
Trifluoroacetic anhydride (74 μL, 0.53 mmol) was added dropwise to a suspension of 32 (93 mg, 0.44 mmol) in dry toluene (5 mL) and stirred for 30 min. Benzyl alcohol (65 μL, 0.53 mmol) was added and the mixture was stirred at room temperature for 18 h. The reaction mixture was diluted with ethyl acetate (10 mL) and then washed with 1 M NaOH (2 x 20 mL). The organic layer was dried over sodium sulfate and the solvent was removed in vacuo to give 34 as a light yellow powder (111 mg, 0.37 mmol, 84%). m.p. = 144-146 ºC (lit. 151-152); δH (250 MHz, CDCl3) 8.97 (s, 1H), 7.42-7.30 (m, 5H), 5.30 (s, 2H), 4.32 (q, 2H, J=7), 2.57 (s, 3H), 2.50 (s, 3H), 1.36 (t, 3H, J=7); δC (125MHz, CDCl3) 165.3, 161.7, 139.1, 136.7, 131.1, 128.7, 128.2, 128.1, 118.2, 113.5, 65.6, 60.5, 14.7, 14.6, 12.2; m/z ESI+ found 324.1192 [M+Na]+ calculated for C17H19NNaO4 324.1206. Full characterization data for this compound has not been reported previously.

5.4.13 4-(isoPropoxycarbonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (35)

6 M NaOH (160 μL, 0.94 mmol) was added to a solution of 33 (61 mg, 0.24 mmol) in ethanol (4 mL) and the reaction mixture was heated at 80 ºC for 48 h. The reaction mixture was diluted with dichloromethane (10 mL) and 1 M NaOH (10 mL) and the layers were separated. The aqueous layer was then extracted with dichloromethane (3 x 20 mL). The basic layer was acidified with 1 M HCl and then extracted with dichloromethane (3 x 20 mL). The combined organic layers were dried over sodium sulfate and concentrated in vacuo to give 35 as a light brown powder (38 mg, 0.17 mmol,
71%). m.p. = 184-185 °C; δH (500 MHz, CD3OD) 5.12 (1H, p, J=7), 2.52 (3H, s), 2.44 (3H, s), 1.33 (6H, d, J=7) (OH and NH not observed); δC (125MHz, DMSO-d6) 164.3, 162.3, 138.8, 129.0, 118.1, 112.4, 65.9, 22.0, 13.5, 11.8; m/z ESI+ found 248.0885 [M+Na]+ calculated for C11H15NNaO4 248.0893.

5.4.14 4-(tert-Butoxycarbonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (38)

Palladium on activated carbon (10 % by wt., 400 mg) was added to a solution of 3725,179 (4.0 g, 12.1 mmol) in ethyl acetate (40 mL). The reaction mixture was stirred for 16 h under 1 atm of hydrogen gas, diluted with methanol (40 mL), and filtered through a pad of Celite, rinsing with methanol (2 x 15 mL), to give 38 as a white crystalline solid. This material was transformed directly into 39 without further purification or characterization.

5.4.15 tert-Butyl 2,4-dimethyl-1H-pyrrole-3-carboxylate (39)

4-(tert-Butoxycarbonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (38) (2.71 g, 11.4 mmol) was placed in a round-bottom flask and the flask was then equipped with a condenser. The round-bottom flask was placed in a heating mantle preheated to 215 °C until the solid melted and bubbling ceased (approximately 15 min). The flask was then removed from the heating mantle and the contents allowed to cool to room temperature.
The resulting beige solid was dissolved in dichloromethane (50 mL) and washed with 2 M NaOH (3 x 50 mL). The organic fractions were combined, dried with sodium sulfate, and concentrated *in vacuo* to give 39 as a beige, crystalline solid (1.97 g, 10.1 mmol, 89%). \(\delta_H \) (500 MHz, CDCl\(_3\)) 8.25 (1H, s), 6.32 (1H, s), 2.45 (3H, s), 2.21 (3H, s), 1.56 (9H, s); \(\delta_C \) (125 MHz, CDCl\(_3\)) 166.0, 135.5, 121.4, 114.2, 112.2, 79.4, 28.7, 14.2, 12.9; \(m/z \) ESI\(^+\) found 218.1151 [M+Na]\(^+\) calculated for C\(_{11}H_{17}NO_2Na\) 218.1157.

5.4.16 tert-Butyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate (40)

POCl\(_3\) (9 mL) was added dropwise to a solution of dimethylformamide (9 mL) in anhydrous dichloromethane (9 mL) stirring at 0 °C under N\(_2\). The solution was stirred for 20 min at 0 °C. This solution was added dropwise *via* syringe to a solution of 39 (1.76 g, 9 mmol) in anhydrous dichloromethane (9 mL). The resulting solution was heated at reflux temperature for 2 h and then allowed to cool to room temperature. The cooled mixture was poured slowly onto a solution of sodium bicarbonate (40 g) in water (500 mL) and the solution was heated at reflux temperature for 12 h. The resulting beige precipitate was isolated *via* filtration and pumped dry overnight in a vacuum oven to give 40 (1.11 g, 5 mmol, 56%). m.p. = 129-130 °C; \(\delta_H \) (500 MHz, CDCl\(_3\)) 9.61 (1H, s), 9.21 (1H, s), 2.52 (6H, s), 1.57 (9H, s); \(\delta_C \) (125 MHz, CDCl\(_3\)) 177.2, 164.2, 142.3, 135.2, 128.1, 115.5, 80.4, 28.5, 14.5, 10.7; \(m/z \) ESI\(^+\) found 246.1101 [M+Na]\(^+\) calculated for C\(_{12}H_{17}NNaO_3\) 246.1106.
5.4.17 *tert*-Butyl (Z)-5-((3-methoxy-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (41)

A solution of 1057 (760 mg, 6.8 mmol) in tetrahydrofuran (40 mL) was purged with N\textsubscript{2} for 20 min. To this solution was added a purged solution of aqueous potassium hydroxide (4 M, 3.9 mL, 15.8 mmol). This solution was stirred at 60 °C for 1 h and then 40 (1.0 g, 4.5 mmol) was added and the solution stirred under N\textsubscript{2} for 2 days at 60 °C. The crude reaction mixture was concentrated *in vacuo* and the resulting brown solid was crystallized from hot methanol, isolated via filtration, and dried in a vacuum oven to give 41 as a bright yellow solid (350 mg, 1.1 mmol, 24%). Concentration of the mother liquor followed by a second crystallization from methanol resulted in the isolation of an additional 170 mg of product to give 520 mg, 1.6 mmol, 36% overall. m.p. = 274-276 °C; δ\textsubscript{H} (500 MHz, DMSO-\textit{d}\textsubscript{6}) 6.02 (1H, s), 5.24 (1H, s), 3.85 (3H, s), 2.43 (3H, s), 2.19 (3H, s), 1.49 (9H, s); δ\textsubscript{C} (125 MHz, DMSO-\textit{d}\textsubscript{6}) 170.7, 166.8, 164.2, 139.0, 124.9, 124.0, 122.2, 112.7, 94.8, 91.2, 78.7, 58.3, 28.2, 13.8, 10.9; *m/z* ESI+ found 341.1472 [M+Na]+ calculated for C\textsubscript{17}H\textsubscript{22}N\textsubscript{2}NaO\textsubscript{4} 341.1477.

5.4.18 Methyl (Z)-2-((4-methoxy-1'H,1''H-2,2''-bipyrrrol-5-y1)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate hydrochloride (44)
Sodium methoxide (1 M solution in MeOH, 50 μL, 0.05 mmol) was added to a solution of 1 (12 mg, 0.03 mmol) in methanol (8 mL). The reaction mixture was heated to 125°C, in a microwave, over a period of 10 min and then held at 125°C for a further 10 min. The reaction mixture was cooled for 20 min and the resulting orange solution was poured onto a 1 M aqueous solution of HCl (10 mL) and extracted with dichloromethane (3 x 10 mL). The organic fractions were combined, dried with sodium sulfate, and concentrated in vacuo to give 44 as a red powder (10 mg, 0.26 mmol, 87%). m.p. = 257 °C dec.; δH (500 MHz, CDCl3) 12.97 (1H, s), 12.75 (1H, s), 12.68 (1H, s), 7.30 (1H, s), 7.11 (1H, s), 7.00 (1H, s), 6.39-6.38 (1H, m), 6.10-6.09 (1H, m), 4.05 (3H, s), 3.85 (3H, s), 2.81 (3H, s), 2.51 (3H, s); δC (125 MHz, CDCl3) 166.8, 165.1, 150.5, 150.3, 140.6, 128.7, 123.6, 122.7, 122.2, 119.1, 115.8, 113.0, 112.6, 93.5, 59.1, 51.2, 14.9, 12.0; UV/Vis (DCM, 22 °C) λmax = 525 nm (ε = 86 100 mol L⁻¹ cm⁻¹); m/z ESI⁺ found 326.1499 [M+H]⁺ calculated for C₁₈H₂₀N₃O₃ 326.1505.

5.4.19 Ethyl (Z)-2-((4-methoxy-1,1'-dimethyl-1H,1'H-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (47)

Sodium hydride (60% in mineral oil, 89 mg, 2.24 mmol) was added to a solution of 1 (105 mg, 0.28 mmol) in DMF (10 mL). The reaction mixture was stirred at 0 °C for 30 min and then iodomethane (0.17 mL, 2.80 mmol) was added slowly and the reaction mixture was allowed to warm to room temperature and stirred for three days. The purple solution was diluted with diethyl ether (20 mL) and poured onto a brine solution (20 mL).
The layers were separated, the aqueous layer was extracted with ether (3 x 15 mL), then the combined organic fractions were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel using ethyl acetate:hexane (9:20) with 1.5% triethylamine as an eluent and removal of the solvent in vacuo gave 47 as an orange solid. (45 mg, 0.12 mmol, 45%). m.p. = 110-111 °C; δ_H (500 MHz, CDCl₃) 6.83 (1H, s), 6.79 (1H, t, J=2), 6.71 (1H, d of d, J=2, 4), 6.19 (1H, d of d, J=3, 4), 5.93 (1H, s), 4.30 (2H, q, J=7), 4.10 (3H, s), 3.91 (3H, s), 3.78 (3H, s), 2.57 (3H, s), 2.46 (3H, s), 1.36 (3H, t, J=7); δ_C (125 MHz, CDCl₃) 167.9, 166.0, 161.9, 144.3, 141.1, 129.0, 128.8, 127.9, 127.4, 115.6, 113.3, 113.1, 108.6, 97.2, 59.4, 58.5, 37.7, 33.3, 14.6, 13.0, 12.5. UV/Vis (DCM, 22 °C) λ_max = 525 nm (ε = 50 300 mol L⁻¹ cm⁻¹); m/z ESI⁺ found 368.1951 [M+H]⁺ calculated for C₂₁H₂₆N₃O₃ 368.1969.

5.4.20 (Z)-2-(((4-Methoxy-1,1'-dimethyl-1'H,1'H-2,2'-bipyrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (48)

An aqueous KOH solution (5 M, 0.5 mL, 2.5 mmol) was added to a solution of 47 (20 mg, 0.05 mmol) in EtOH (5 mL). The reaction mixture was stirred at 86 °C for 3 days. The reaction mixture was poured onto 1 M NaOH (20 mL) and dichloromethane (30 mL) was added. The layers were separated and the aqueous layer was acidified to pH 3 using a 2 M aqueous HCl solution. The resulting solution was extracted with a solution of dichloromethane:methanol (9:1, 6 x 30 mL). The organic fractions were combined, dried over sodium sulfate, and concentrated in vacuo. Purification over reversed phase silica
gel (C-18 Reversed Phase, 16 % C) using methanol:water (30:70) as an eluent gave 48 as a deep purple film. (10 mg, 0.02 mmol, 58%). \(\delta_{\text{H}} \) (500 MHz, D\(_2\)O) 7.38 (1H, s), 7.34 (1H, br s), 7.26-7.25 (1H, m) 6.54 (1H, s), 6.46-6.45 (1H, m), 4.17 (3H, s), 3.99 (3H, s), 3.61 (3H, s), 2.57 (3H, s), 2.42 (3H, s). Further characterization was prevented by the instability and insolubility of the compound.

5.4.21 Zn(1)\(_2\) (51)

To a solution of 1 (100 mg, 0.27 mmol) in chloroform (3 mL) was added a solution of zinc(II) acetate dihydrate (292 mg, 1.33 mmol) and sodium acetate (181 mg, 1.33 mmol) in methanol (3 mL). The resulting solution was stirred at 40 °C overnight. The resulting dark red solution was poured onto water (10 mL) and extracted with dichloromethane (3 x 10 mL). The organic fractions were combined, dried with sodium sulfate, filtered and concentrated \textit{in vacuo}. Purification over basic alumina using dichloromethane as the eluent gave 22 as a bright red crystalline powder (100 mg, 0.27 mmol, 99%). m.p. = 241-243 °C; \(\delta_{\text{H}} \) (500 MHz, CDCl\(_3\)) 9.23 (1H, s), 7.34 (1H, s), 6.59 (1H, s), 6.48-6.49 (1H, m), 6.09-6.10 (1H, m), 6.04 (1H, s), 4.21 (2H, q, \(J=7 \)), 3.97 (3H, s), 2.54 (3H, s), 2.18 (3H, s), 1.29 (3H, t, \(J=7 \)); \(\delta_{\text{C}} \) (125 MHz, CDCl\(_3\)) 166.7, 165.6, 156.4, 155.0, 141.0, 132.9, 131.4, 126.4, 122.7, 117.8, 117.0, 113.9, 110.4, 95.8, 59.1, 58.3, 16.9, 14.4, 12.0; UV/Vis
(DCM, 22 °C) $\lambda_{\text{max}} = 523$ nm ($\varepsilon = 152$ 100 mol L$^{-1}$ cm$^{-1}$); m/z ESI$^+$ found 741.2374 [M]$^+$ calculated for C$_{38}$H$_{41}$N$_6$NaO$_8$Zn 741.2379.

5.4.22 (1)BF$_2$ (52)

Triethylamine (0.2 mL, 1.4 mmol, 21 eq) was added to a solution of 1 (25 mg, 0.07 mmol) in dry dichloromethane, under a nitrogen atmosphere. The resulting reaction mixture was stirred for 10 min and then BF$_3$•OEt$_2$ (0.2 mL, 1.1 mmol, 17 eq) was added slowly and the resulting mixture was stirred at room temperature for 2 h. The reaction mixture was poured into a 5% aqueous solution of citric acid (20 mL) and extracted with diethyl ether (20 mL). The organic layer was washed with 5 % aqueous citric acid (3 x 20 mL), dried over sodium sulfate and concentrated in vacuo. Filtration over a pad of silica eluting with dichloromethane followed by concentration in vacuo gave 52 as a purple, crystalline solid (28 mg, 0.07 mmol, 100%). m.p. = 210-211 °C; δ_H (500 MHz, CDCl$_3$) 10.5 (1H, s), 7.15-7.13 (1H, m), 7.13 (1H, s), 6.94-6.92 (1H, m), 6.39-6.37 (1H, m), 6.14 (1H, s), 4.31 (2H, q, $J=7$), 3.99 (3H, s), 2.80 (3H, s), 2.43 (3H, s), 1.37 (3H, t, $J=7$); δ_C (125 MHz, CDCl$_3$) 165.4, 164.3, 152.9, 151.4, 136.5, 129.4, 129.3, 126.4, 123.5, 118.6, 117.8, 115.0, 111.7, 97.2, 59.7, 58.7, 14.6, 14.4, 11.8; δ_B (80.25 MHz, CDCl$_3$) 1.06 (t, $J_{BF}=36$); δ_F (235.2 MHz, CDCl$_3$) -139 (q, $J_{FB}=31$); 15N HMBC δ_N (CDCl$_3$) -198.3, -221.6. UV/Vis (DCM, 22 °C) λ_{max} (nm) (ε (mol L$^{-1}$ cm$^{-1}$)): 536 (184 000). Fluorescence (DCM, 22 °C) λ_{max} (nm): 551, Φ_F: 0.92. m/z ESI$^+$ found 410.1458 [M+Na]$^+$ calculated for C$_{19}$H$_{20}$BF$_2$N$_3$O$_3$Na 410.1463. A crystal suitable for X-ray crystallography was obtained.
from a slow evaporation of a solution of compound 52 in dichloromethane. Data for 52:
C_{19}H_{20}N_{3}O_{3}BF_{2}, M = 387.19 g, dark-red, needle, 0.39 x 0.13 x 0.08 mm, primitive
monoclinic, P21/c (#14), a = 7.3029(4) Å, b = 25.1293(11) Å, c = 9.7763(5) Å, V =
1779.52(15) Å³, Z = 4, T = 123(1) K, ρ = 1.445 g cm⁻³, μ(MoKα) = 1.116 cm⁻¹, 52752
reflections (19174 unique, R_{int} = 0.074), R = 0.0441, Rw = 0.0557, GOF = 1.022.

5.4.23 Benzyl (Z)-5-((3-ethyl-4-methyl-5-oxo-1H-pyrrol-2(5H)-
ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (56)

![Chemical Structure]

A solution of 4-ethyl-3-methyl-1H-pyrrol-2(5H)-one (1.5 g, 5.9 mmol) in tetrahydrofuran
(50 mL) was purged with N₂ for 20 min. To this solution was added a purged solution of
aqueous potassium hydroxide (4 M, 5.2 mL, 21 mmol). This solution was stirred at 70°C
for 1 h and then benzyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate^{87} (1.1 g, 8.9
mmol) was added and the solution was stirred under N₂ for 2 days at 70°C. The crude
reaction mixture was concentrated in vacuo. The resulting bright yellow solid was
isolated using filtration, and the residue was rinsed with cold methanol (2 x 10 mL) and
dried in a vacuum oven to give 56 as a bright yellow solid (340 mg, 0.93 mmol, 16%).
m.p. = 223-224 °C; δ_H (500 MHz, DMSO-\textit{d}_6) 10.95 (1H, br s), 9.85 (1H, br s), 7.44-7.33
(5H, m), 5.95 (1H, s), 5.23 (2H, s), 2.46 (3H, s), 2.26 (3H, s), 2.25 (2H, q, J=8) 2.08 (3H,
s), 1.00 (3H, t, J=8); δ_C (125 MHz, DMSO-\textit{d}_6) 171.8, 164.6, 141.2, 139.1, 136.9, 131.7,
130.7, 128.5, 127.81, 127.78, 123.4, 122.9, 111.0, 96.6, 64.5, 16.4, 13.8, 13.4, 11.2, 9.3;
m/z ESI⁺ found 365.1865 [M+H]⁺ calculated for C_{22}H_{25}N_{2}O_{3} 365.1860.
5.4.24 Methyl (Z)-5-((3-ethyl-4-methyl-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (57)

![Chemical structure of the compound](image)

A solution of 4-ethyl-3-methyl-1H-pyrrol-2(5H)-one (704 mg, 5.6 mmol) in methanol (32 mL) was purged with N₂ for 20 min. To this solution was added a purged solution of aqueous potassium hydroxide (4 M, 3.3 mL, 13.1 mmol). This solution was stirred at 70°C for 1 h, and then benzyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate (965 mg, 3.8 mmol) was added. The solution was stirred under N₂ for 2 days at 70 °C. The crude reaction mixture was concentrated in vacuo and the resulting bright yellow solid was isolated via filtration, and the residue was rinsed with cold methanol (2 x 10 mL) and dried in a vacuum oven to give 57 as a bright yellow solid (555 mg, 1.5 mmol, 40%).

m.p. = 298 °C (dec); δ_H (500 MHz, DMSO-d₆); 10.92 (1H, s), 9.84 (1H, s), 5.95 (1H, s), 3.70 (3H, s), 2.45 (3H, s), 2.08 (3H, s), 2.25 (3H, s), 2.25 (2H, q, J = 7), 1.01 (3H, t, J = 7) δ_C (125 MHz, DMSO-d₆) 171.8, 165.3, 141.2, 138.8, 131.5, 130.7, 123.3, 122.9, 111.2, 96.6, 50.4, 16.4, 13.6, 13.4, 11.1, 9.3; ESI⁺ found 311.1365 [M+Na]⁺ calculated for C₁₆H₂₀N₂NaO₃ 311.1366.
Triflic anhydride (0.28 mL, 1.6 mmol) was slowly added to a solution of 57 (400 mg, 1.1 mmol) in dichloromethane (25 mL). The reaction mixture was stirred at room temperature for 2 h and then poured onto a saturated aqueous solution of sodium bicarbonate (25 mL). The layers were separated, the aqueous layer was extracted with dichloromethane (2 x 25 mL), and the combined organic layers were dried over sodium sulfate and concentrated \textit{in vacuo}.

The crude solid was dissolved in dimethoxyethane (20 mL) and LiCl (0.13 g, 3.1 mmol), 1-N-Boc-pyrrole-2-boronic acid (0.33 g, 1.5 mmol), and Pd(PPh3)4 (0.12 mg, 0.10 mmol) were then added. The resulting solution was purged by bubbling with nitrogen for 10 min, then a solution of Na2CO3 (2 M, 2.04 mL, 4.1 mmol) was added and the reaction mixture was stirred at 90 °C for 19 h. The crude reaction mixture was filtered through Celite and poured onto a saturated aqueous solution of sodium bicarbonate (25 mL). Extraction with ethyl acetate (3 x 20 mL), followed by washing of the combined organic fractions with brine (20 mL), drying over anhydrous sodium sulfate, and removal of the solvent \textit{in vacuo} gave the crude product. Purification using flash chromatography on basic alumina with a gradient of ethyl acetate:hexane (0:100 to 20:80) as eluent and removal of the solvent \textit{in vacuo} furnished 58 as an orange film. The film was dissolved in ethyl acetate (20 mL) and washed with 0.5 M HCl (20 mL). The organic layer was dried
over sodium sulfate and concentrated in vacuo to give 58HCl as a purple solid (160 mg, 0.39 mmol, 35%). m.p. = 206-209 °C; δ_H (500 MHz, CDCl₃) 13.11 (1H, s), 12.94 (1H, s), 12.55 (1H, s), 7.34 (1H, s), 7.13 (1H, s), 7.01 (1H, s), 6.44 (1H, s), 3.85 (3H, s), 2.82 (3H, s), 2.74 (2H, q, J = 7), 2.53 (3H, s), 2.32 (3H, s), 1.21 (3H, t, J = 7); δ_C (125 MHz, CDCl₃) 165.0, 151.6, 148.4, 145.2, 141.8, 132.3, 130.2, 128.3, 124.6, 121.6, 119.1, 116.2, 115.5, 112.9, 51.2, 18.9, 15.0, 13.5, 12.1, 10.2; UV/Vis (DCM, 22 °C) λ_max = 535 nm (ε = 78 900 mol L⁻¹ cm⁻¹); m/z ESI⁺ found 338.1870 [M+H⁺]⁺ calculated for C₂₀H₂₄N₃O₂ 338.1863.

5.4.26 Ethyl 4-(1-oxoheptanoyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (60)

Heptanoyl chloride (5.1 mL, 33 mmol) was added to a solution of 59₉⁹ (5.0 g, 30 mmol) in dry dichloromethane (100 mL) at 0 °C under a nitrogen atmosphere. Tin(IV) chloride (3.9 mL, 33 mmol) was added dropwise via syringe and the reaction mixture was stirred for 3 h while warming to room temperature. The reaction mixture was poured onto an aqueous 1 M HCl solution (100 mL) and stirred for 20 min. The phases were separated, the aqueous phase was extracted with dichloromethane (2 x 50 mL) and the combined organic phases were dried over sodium sulfate and concentrated in vacuo. The resulting yellow solid was recrystallized from hot ethanol, and isolated using suction filtration to give 60 as a white crystalline solid (6.79 g, 24 mmol, 80%). m.p. = 94-95 °C; δ_H (500 MHz, CDCl₃) 9.45 (1H, s), 4.32 (2H, q, J = 7), 2.71 (2H, t, J = 7), 2.57 (3H, s), 2.51 (3H,
s), 1.67 (2H, pentet, $J=7$), 1.38-1.28 (9H, m), 0.87 (3H, t, $J=7$); δ_C (125 MHz, CDCl$_3$) 198.7, 162.0, 138.1, 129.2, 123.6, 118.0, 60.5, 43.0, 31.9, 29.3, 24.4, 22.7, 15.2, 14.6, 14.2, 12.9; m/z ESI$^+$ found 302.1723 [M+Na]$^+$ calculated for C$_{16}$H$_{25}$NNaO$_3$ 302.1727.

5.4.27 Ethyl 3,5-dimethyl-4-(1oxooctanoyl)-1H-pyrrole-2-carboxylate (61)190

![Chemical structure of Ethyl 3,5-dimethyl-4-(1oxooctanoyl)-1H-pyrrole-2-carboxylate (61)](image)

Octanoyl chloride (5.6 mL, 33 mmol) was added to a solution of 5969 (5 g, 30 mmol) in dry dichloromethane (100 mL) at 0 °C under a nitrogen atmosphere. Tin(IV) chloride (3.9 mL, 33 mmol) was added dropwise via syringe and the reaction mixture was stirred for 3 h while warming to room temperature. The reaction mixture was poured onto an aqueous 1 M HCl solution (100 mL) and stirred for 20 min. The phases were separated, the aqueous phase was extracted with dichloromethane (2 x 50 mL) and the combined organic phases were dried over sodium sulfate and concentrated in vacuo. The resulting yellow solid was recrystallized from hot ethanol, and isolated using suction filtration to give 61 as a white crystalline solid (8.2 g, 28 mmol, 94%). m.p. = 79-80 °C (lit. 79-81);190δ_H (500 MHz, CDCl$_3$) 9.49 (s, 1H), 4.32 (q, 2H, $J=7$), 2.71 (t, 2H, $J=7$), 2.57 (s, 3H), 2.51 (s, 3H), 1.67 (pentet, 2H, $J=7$), 1.37-1.23 (m, 11H), 0.86 (t, 3H, $J=7$); δ_C (125 MHz, CDCl$_3$) 198.7, 162.1, 138.1, 129.2, 123.6, 118.0, 60.5, 43.0, 31.9, 29.5, 29.37, 29.42, 22.7, 15.2, 14.6, 14.2, 12.9. The 13C NMR data matches (within 0.2 ppm) the previously reported data.190 m/z ESI$^+$ found 316.1885 [M+Na]$^+$ calculated for C$_{17}$H$_{27}$NNaO$_3$ 316.1883.
5.4.28 Ethyl 3,5-dimethyl-4-(1-oxotetradecanoyl)-1H-pyrrole-2-carboxylate (62)

Tetradecanoyl chloride (12.3 g, 50 mmol) was added to a solution of 59 \(^{69}\) (7.5 g, 45 mmol) in dry dichloromethane (100 mL) at 0 °C under a nitrogen atmosphere. Tin(IV) chloride (5.8 mL, 50 mmol) was added dropwise via syringe and the reaction mixture was stirred for 3 h while warming to room temperature. The reaction mixture was poured onto an aqueous 1 M HCl solution (100 mL) and stirred for 20 min. The phases were separated, the aqueous phase was extracted with dichloromethane (2 x 50 mL) and the combined organic phases were dried over sodium sulfate and concentrated \textit{in vacuo}. The resulting yellow solid was recrystallized from hot ethanol, and isolated using suction filtration to give 62 as a white crystalline solid (6.5 g, 17 mmol, 38%). m.p. = 80-82 °C; \(\delta_H\) (500 MHz, CDCl\(_3\)) 9.21 (1H, s), 4.33 (2H, q, \(J=7\)), 2.71 (2H, t, \(J=7\)), 2.59 (3H, s), 2.51 (3H, s), 1.67 (2H, pentet, \(J=7\)), 1.38-1.30 (23H, m), 0.87 (3H, t, \(J=7\)); \(\delta_C\) (125 MHz, CDCl\(_3\)) 198.7, 161.9, 137.9, 129.2, 123.7, 118.0, 60.5, 43.1, 32.1, 29.82, 29.81, 29.79, 29.73, 29.68, 29.62, 29.5, 24.4, 22.8, 15.3, 14.6, 14.3, 12.9 (2 CH\(_2\) signals not resolved). \(m/z\) ESI\(^+\) found 400.2818 [M+Na]\(^+\) calculated for C\(_{23}\)H\(_{39}\)NO\(_3\)Na 400.2822.
5.4.29 Ethyl 3,5-dimethyl-4-(1-oxopentadecanoyl)-1H-pyrrole-2-carboxylate (63)

Pentadecanoyl chloride (13.0 g, 50 mmol) was added to a solution of 59 (5 g, 45 mmol) in dry dichloromethane (100 mL) at 0 °C under a nitrogen atmosphere. Tin(IV) chloride (5.8 mL, 50 mmol) was added dropwise via syringe and the reaction mixture was stirred for 3 h while warming to room temperature. The reaction mixture was poured onto an aqueous 1 M HCl solution (100 mL) and stirred for 20 min. The phases were separated, the aqueous phase was extracted with dichloromethane (2 x 50 mL) and the combined organic phases were dried over sodium sulfate and concentrated in vacuo. The resulting yellow solid was recrystallized from hot ethanol, and isolated using suction filtration to give 63 as a white crystalline solid (12.4 g, 32 mmol, 71%). m.p. = 93-94 °C; δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 9.10 (1H, s), 4.33 (2H, q, J=7), 2.72 (2H, t, J=7), 2.58 (3H, s), 2.51 (3H, s), 1.67 (2H, pentet, J=7), 1.39-1.28 (25H, m), 0.87 (3H, t, J=7); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 198.7, 161.8, 137.8, 129.2, 123.7, 118.0, 60.51, 43.1, 32.1, 29.84, 29.82, 29.80, 29.78, 29.74, 29.69, 29.62, 29.5, 24.4, 22.8, 13.4, 14.6, 14.3, 12.9 (1 CH\textsubscript{2} signal not resolved). m/z ESI+ found 392.3146 [M]+ calculated for C\textsubscript{24}H\textsubscript{42}NO\textsubscript{3} 392.3159.
5.4.30 Ethyl 3,5-dimethyl-4-heptyl-1H-pyrrole-2-carboxylate (64)

Ethyl 4-heptanoyl-3,5-dimethyl-1H-pyrrole-2-carboxylate (60) (4.28 g, 15 mmol) was suspended in anhydrous tetrahydrofuran (43 mL) under N\textsubscript{2} and cooled to 0 °C. BH\textsubscript{3}•THF (1 M in THF, 34 mL, 34 mmol) was added slowly dropwise to the stirred solution by way of a dropping funnel and the reaction mixture was stirred for 18 h and allowed to warm to room temperature. The reaction mixture was cooled to 0 °C and water (30 mL) and an aqueous 1 M HCl solution (30 mL) were added sequentially by way of a dropping funnel. The resulting solution was stirred for 30 min at 0 °C and then concentrated \textit{in vacuo}, poured onto water (30 mL), extracted with dichloromethane (3 x 60 mL), dried over sodium sulfate and concentrated \textit{in vacuo} to give 64 as a white solid (4.11 g, 15 mmol, 98%). m.p. = 51-53 °C; δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 8.74 (1H, s), 4.29 (2H, q, J=7), 2.34 (2H, t, J=7), 2.26 (3H, s), 2.19 (3H, s), 1.40 (2H, pentet, J=7), 1.38-1.27 (11H, m), 0.88 (3H, t, J=7); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 161.9, 129.6, 127.2, 122.5, 116.8, 59.7, 32.0, 31.0, 29.6, 29.4, 24.2, 22.8, 14.7, 14.2, 11.6, 10.8; m/z ESI+ found 288.1920 [M+Na]+ calculated for C\textsubscript{16}H\textsubscript{27}NNaO\textsubscript{2} 288.1934.

5.4.31 Ethyl 3,5-dimethyl-4-octyl-1H-pyrrole-2-carboxylate (65)

190
Ethyl 4-octanoyl-3,5-dimethyl-1H-pyrrole-2-carboxylate (61) (5.22 g, 18 mmol) was suspended in anhydrous tetrahydrofuran (52 mL) under N₂ and cooled to 0 °C. BH₃•THF (1 M in THF, 39 mL, 39 mmol) was added slowly dropwise to the stirred solution by way of a dropping funnel and the reaction mixture was stirred for 18 h and allowed to warm to room temperature. The reaction mixture was cooled to 0 °C and water (30 mL) and an aqueous 1 M HCl solution (30 mL) were added sequentially by way of a dropping funnel. The resulting solution was stirred for 30 min at 0 °C and then concentrated in vacuo, poured onto water (30 mL), extracted with dichloromethane (3 x 60 mL), dried over sodium sulfate and concentrated in vacuo to give 64 as a white solid (4.90 g, 18 mmol, 97%). m.p. = 55-56 °C (lit. 55-57);¹⁹⁰ δH (500 MHz, CDCl₃) 8.78 (1H, s), 4.29 (2H, q, J=7), 2.33 (2H, t, J=7), 2.27 (3H, s), 2.20 (3H, s), 1.41 (2H, pentet, J=7), 1.39-1.26 (13H, m), 0.88 (3H, t, J=7); δC (125 MHz, CDCl₃) 161.9, 129.6, 127.2, 122.5, 116.8, 59.7, 32.0, 31.0, 29.7, 29.6, 29.5, 24.2, 22.8, 14.7, 14.2, 11.6, 10.8. The ¹³C NMR data matches (within 0.3 ppm) the recorded data for the compound.¹⁹⁰ m/z ESI⁺ found 280.2264 [M+H]⁺ calculated for C₁₇H₃₀NNaO₂ 280.2271.

5.4.32 Ethyl 3,5-dimethyl-4-tetradecyl-1H-pyrrole-2-carboxylate (66)¹⁹¹

Ethyl 4-tetradecanoyl-3,5-dimethyl-1H-pyrrole-2-carboxylate (62) (3.0 g, 8.0 mmol) was suspended in anhydrous tetrahydrofuran (30 mL) under N₂ and cooled to 0 °C. BH₃•THF
(1 M in THF, 17.5 mL, 17.5 mmol) was added slowly dropwise to the stirred solution by way of a dropping funnel and the reaction mixture was stirred for 18 h and allowed to warm to room temperature. The reaction mixture was cooled to 0 °C, water (20 mL) and an aqueous 1 M HCl solution (20 mL) were added sequentially by way of a dropping funnel and the solution was stirred for 30 min at 0 °C. The resulting white precipitate was isolated using suction filtration to give 66 as a white solid (2.80 g, 7.7 mmol, 97%). m.p. = 64-65 °C; δ_H (500 MHz, CDCl₃) 8.66 (1H, s), 4.29 (2H, q, J=7), 2.35 - 2.32 (2H, m), 2.26 (3H, s), 2.19 (3H, s), 1.40 (2H, pentet, J=7), 1.36-1.26 (25H, m), 0.88 (3H, t, J=7); δ_C (125 MHz, CDCl₃) 161.9, 129.5, 127.2, 122.6, 116.8, 59.7, 32.1, 31.0, 29.83, 29.80, 29.7, 29.6, 29.5, 24.2, 22.8, 14.8, 14.3, 11.7, 10.8 (4 CH₂ signals not resolved). m/z ESI⁺ found 386.3030 [M+Na]⁺ calculated for C₂₃H₄₁NNaO₂ 386.3030.

5.4.33 Ethyl 3,5-dimethyl-4-pentadecyl-1H-pyrrole-2-carboxylate (67)

Ethyl 4-pentadecanoyl-3,5-dimethyl-1H-pyrrole-2-carboxylate (63) (6.0 g, 815 mmol) was suspended in anhydrous tetrahydrofuran (50 mL) under N₂ and cooled to 0 °C. BH₃•THF (1 M in THF, 31 mL, 31 mmol) was added slowly dropwise to the stirred solution by way of a dropping funnel and the reaction mixture was stirred for 18 h and allowed to warm to room temperature. The reaction mixture was cooled to 0 °C, water (30 mL) and an aqueous 1 M HCl solution (30 mL) were added sequentially by way of a
dropping funnel and the solution was stirred for 30 min at 0 °C. The resulting white precipitate was isolated using suction filtration to give 67 as a white solid (4.9 g, 13 mmol, 85%). m.p. = 69-71 °C; \(\delta_H \) (500 MHz, CDCl\(_3\)) 8.57 (1H, s), 4.29 (2H, q, \(J=7 \)), 2.35-2.32 (2H, m), 2.26 (3H, s), 2.19 (3H, s), 1.40 (2H, pentet, \(J=7 \)), 1.37-1.25 (25H, m), 0.88 (3H, t, \(J = 7 \)); \(\delta_C \) (125 MHz, CDCl\(_3\)) 161.8, 129.5, 127.2, 122.6, 116.8, 59.7, 32.1, 31.0, 29.9, 29.83, 29.81, 29.7, 29.6, 29.5, 24.3, 22.8, 14.8, 14.3, 11.7, 10.7 (4 CH\(_2\) signals not resolved); \(m/z \) ESI\(^+\) found 400.3178 [M+Na]\(^+\) calculated for C\(_{24}\)H\(_{43}\)NNaO\(_2\) 400.3186.

5.4.34 3,5-Dimethyl-4-heptyl-1H-pyrrole-2-carbaldehyde (68)

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\end{align*}
\]

Water (7 mL) and sodium hydroxide (995 mg, 23.6 mmol) were added to a stirred suspension of ethyl 3,5-dimethyl-4-heptyl-1H-pyrrole-2-carboxylate (64) (3.0 g, 11.3 mmol) in 95% ethanol (30 mL). The solution was heated with stirring at 85 °C for 18 h and then poured onto water (75 mL). The solution was acidified using an aqueous 2 M HCl solution, which resulted in the separation of a brown oil. Dichloromethane (75 mL) was added and the layers were separated. The aqueous layer was extracted with dichloromethane (3 x 30 mL). The combined organic layers were dried over sodium sulfate and then concentrated in vacuo to give a brown oil (1.57 g) which solidified on standing.

The brown oil was dissolved in dichloromethane (150 mL) at 0 °C under N\(_2\). TFA (5.4 mL, 73 mmol) was added dropwise to the stirred solution. The reaction mixture was
then warmed to room temperature and stirred for 18 h. The reaction mixture was cooled to 0 °C and TMOF (3.6 mL, 15 mmol) was added dropwise. The resulting solution was stirred for 1 h at 0 °C and then poured onto an aqueous 1 M NaOH solution (100 mL). The layers were separated, the aqueous layer was extracted with dichloromethane (2 x 100 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel eluting with ethyl acetate:hexanes (20:80) gave 68 as a beige solid (1.00 g, 4.5 mmol, 41%). m.p. = 84-85 °C; δH (500 MHz, CDCl3) 10.0 (1H, s), 9.44 (1H, s), 2.34 (2H, t, J=7), 2.254 (3H, s), 2.248 (3H, s), 1.41 (2H, pentet, J=7), 1.32-1.24 (8H, m), 0.88 (3H, t, J=7); δC (125 MHz, CDCl3) 175.7, 136.3, 132.6, 127.9, 123.6, 32.0, 30.7, 29.6, 29.4, 23.9, 22.8, 14.2, 11.8, 9.0; m/z ESI+ found 244.1669 [M+Na]+ calculated for C14H23NNaO 244.1672.

5.4.35 3,5-Dimethyl-4-octyl-1H-pyrrole-2-carbaldehyde (69)

Water (7 mL) and sodium hydroxide (944 mg, 23.6 mmol) were added to a stirred suspension of ethyl 3,5-dimethyl-4-octyl-1H-pyrrole-2-carboxylate (65) (3.0 g, 10.7 mmol) in 95% ethanol (30 mL). The solution was heated with stirring at 85 °C for 18 h and then poured onto water (75 mL). The solution was acidified using an aqueous 2 M HCl solution, which resulted in the separation of a brown oil. Dichloromethane (75 mL) was added and the layers were separated. The aqueous layer was extracted with dichloromethane (3 x 30 mL). The combined organic layers were then dried over sodium
sulfate and concentrated in vacuo to give a brown oil (1.54 g) which solidified on standing.

The brown oil was dissolved in dichloromethane (150 mL) at 0 °C under N₂. TFA (5.4 mL, 73 mmol) was added dropwise to the stirred solution. The reaction mixture was warmed to room temperature and stirred for 18 h. The reaction mixture was cooled to 0 °C and TMOF (3.6 mL, 15 mmol) was added dropwise. The resulting solution was stirred for 1 h at 0 °C and then poured onto an aqueous 1 M NaOH solution (100 mL). The layers were separated, the aqueous layer was extracted with dichloromethane (2 x 100 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel eluting with ethyl acetate:hexanes (20:80) gave 69 as a beige solid (1.28 g, 5.4 mmol, 51%). m.p. = 81-82 °C; δ_H (500 MHz, CDCl₃) 10.0 (1H, s), 9.44 (1H, s), 2.34 (2H, t, J=7), 2.254 (3H, s), 2.248 (3H, s), 1.41 (2H, pentet, J=7), 1.32-1.24 (8H, m), 0.88 (3H, t, J=7); δ_C (125 MHz, CDCl₃) 175.7, 136.3, 132.6, 127.9, 123.6, 32.0, 30.7, 29.6, 29.4, 23.9, 22.8, 14.2, 11.8, 9.0; m/z ESI⁺ found 244.1669 [M+Na]⁺ calculated for C₁₄H₂₃NNaO 244.1672.

5.4.36 3,5-Dimethyl-4-tetradecyl-1H-pyrrole-2-carbaldehyde (70)

Water (5 mL) and sodium hydroxide (363 mg, 8.2 mmol) were added to a stirred suspension of ethyl 3,5-dimethyl-4-tetradecyl-1H-pyrrole-2-carboxylate (66) (1.5 g, 4.1
mmol) in 95% ethanol (20 mL). The solution was heated with stirring at 85 °C for 18 h and then poured onto water (50 mL). The solution was acidified using an aqueous 2 M HCl solution, which resulted in the precipitation of a white solid. The solid was isolated using suction filtration and dried overnight before use in the formylation reaction.

The dry solid was dissolved in dichloromethane (100 mL) at 0 °C under N₂. TFA (2.4 mL, 33 mmol) was added dropwise to the stirred solution. The reaction mixture was warmed to room temperature and then stirred for 1 h. The reaction mixture was cooled to 0 °C and TMOF (1.6 mL, 15 mmol) was added dropwise. The resulting solution was stirred for 30 min at 0 °C and then poured onto an aqueous 1 M NaOH solution (100 mL). The layers were separated, the aqueous layer was extracted with dichloromethane (2 x 100 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel eluting with ethyl acetate:dichloromethane (20:80) gave 70 as a light green solid (665 mg, 2.1 mmol, 51%). m.p. = 99-101 °C; δ_H (500 MHz, CDCl₃) 9.91 (1H, s), 9.44 (1H, s), 2.34 (2H, t, J=7), 2.254 (3H, s), 2.247 (3H, s), 1.41 (2H, pentet, J=7), 1.28-1.25 (22H, m), 0.88 (3H, t, J=7); δ_C (125 MHz, CDCl₃) 175.7, 136.1, 132.6, 127.9, 123.6, 32.1, 30.7, 29.8, 29.7, 29.6, 29.5, 23.9, 22.8, 14.3, 11.8, 9.0 (5 CH₂ signals not resolved); m/z ESI⁺ found 320.2941 [M+H]⁺ calculated for C₂₁H₃₈NO 320.2948.
5.4.37 3,5-Dimethyl-4-pentadecyl-1H-pyrrole-2-carbaldehyde (71)

Water (10 mL) and sodium hydroxide (528 mg, 13 mmol) were added to a stirred suspension of ethyl 3,5-dimethyl-4-pentadecyl-1H-pyrrole-2-carboxylate (67) (2.5 g, 6.6 mmol) in 95% ethanol (40 mL). The solution was heated with stirring at 85 °C for 18 h and then poured onto water (100 mL). The solution was acidified using an aqueous 2 M HCl solution, which resulted in the precipitation of a white solid. The solid was isolated by way of suction filtration.

The dry solid was dissolved in dichloromethane (200 mL) at 0 °C under N₂. TFA (4.7 mL, 63 mmol) was added dropwise to the stirred solution. The reaction mixture was warmed to room temperature and then stirred for 1 h. The reaction mixture was cooled to 0 °C and TMOF (3.1 mL, 29 mmol) was added dropwise. The resulting solution was stirred for 30 min at 0 °C and then poured onto an aqueous 1 M NaOH solution (100 mL). The layers were separated, the aqueous layer was extracted with dichloromethane (2 x 100 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel eluting with ethyl acetate:dichloromethane (20:80) gave 71 as a light green solid (885 mg, 2.7 mmol, 41%).

m.p. = 103-104 °C; δ_H (500 MHz, CDCl₃) 9.95 (1H, s), 9.44 (1H, s), 2.34 (2H, t, J=7), 2.254 (3H, s), 2.248 (3H, s), 1.41 (2H, pentet, J=7), 1.29-1.27 (24H, m), 0.88 (3H, t,
$J=7$; δ_C (125 MHz, CDCl$_3$) 175.7, 136.2, 132.6, 127.9, 123.6, 32.1, 30.7, 29.8, 29.7, 29.6, 29.5, 23.9, 22.8, 14.3, 11.8, 9.0 (6 CH$_2$ signals not resolved); m/z ESI$^+$ found 334.3108 [M+H]$^+$ calculated for C$_{22}$H$_{40}$NO 334.3104.

5.4.38 3(Z)-5-((3,5-Dimethyl-4-ethyl-1H-pyrrol-2-yl)methylene)-4-methoxy-1H-pyrrol-2(5H)-one (73)

Aqueous potassium hydroxide (4 M, 6.1 mL, 24.4 mmol) was added to a solution of 3-methoxy-1H-pyrrol-2(5H)-one (1.18 g, 10.4 mmol) in methanol (50 mL) and the resulting solution was purged with nitrogen for 20 min and then stirred at 60 °C for 1 h. 4-Ethyl-3,5-dimethyl-1H-pyrrole-2-carbaldehyde (1.05 g, 6.96 mmol) was added and the solution was stirred under nitrogen for 2 days at 84 °C. The crude reaction mixture was concentrated in vacuo and poured onto water (50 mL). The resulting yellow solid was isolated using suction filtration to give 73 as a yellow solid (1.28 g, 5.20 mmol, 75%). m.p. = 279-280 °C; δ_H (500 MHz, CHCl$_3$) 10.90 (1H, br s), 10.19 (1H, br s), 6.37 (1H, s), 5.09 (1H, s), 3.89 (3H, s), 2.39 (2H, q, $J=7$), 2.35 (3H, s), 2.12 (3H, s), 1.06 (3H, t, $J=7$); δ_C (125 MHz, CHCl$_3$) 173.2, 167.9, 131.9, 125.6, 123.2, 121.7, 121.5, 100.8, 89.7, 58.2, 17.6, 15.5, 11.5, 9.6; m/z ESI$^+$ found [M+H]$^+$ 247.1442 calculated for C$_{14}$H$_{19}$N$_2$O$_2$ 247.1441.
5.4.39 (3Z)-5-((3,5-dimethyl-4-heptyl-1H-pyrrol-2-yl)methylene)-4-methoxy-1H-pyrrol-2(5H)-one (74)

Aqueous potassium hydroxide (4 M, 2.0 mL, 7.9 mmol) was added to a solution of 3-methoxy-1H-pyrrol-2(5H)-one (384 mg, 3.4 mmol) in methanol (20 mL) and the resulting solution was purged with nitrogen for 20 min and then stirred at 60°C for 1.5 h. 4-Heptyl-3,5-dimethyl-1H-pyrrole-2-carbaldehyde (68) (500 mg, 2.3 mmol) was added and the solution stirred under nitrogen for 2 days at 84°C. The crude reaction mixture was concentrated in vacuo and poured onto water (20 mL). The resulting orange solid was isolated using suction filtration. Purification over basic alumina eluting with a gradient of ethyl acetate:hexanes (20:80 to 100:0) gave 74 as an orange solid (409 mg, 1.3 mmol, 56%). m.p. = 155-157 °C; δH (500 MHz, CDCl3) 10.94 (1H, bs), 10.20 (1H, bs), 6.37 (1H, s), 5.09-5.08 (1H, m), 3.89 (3H, s), 2.36 (2H, q, J=7), 2.34 (3H, s), 2.11 (3H, s), 1.57 (2H, pentet, J=7), 1.13-1.27 (8H, m), 0.88 (3H, t, J=7); δC (125 MHz, CDCl3) 173.1, 167.9, 132.4, 126.0, 121.74, 121.69, 121.4, 100.9, 89.6, 58.2, 32.1, 31.1, 29.7, 29.4, 24.4, 22.9, 14.3, 11.6, 9.7; m/z ESI⁺ found 317.2216 [M+H]⁺ calculated for C₁₉H₃₉N₂O₂ 317.2224.

5.4.40 (3Z)-5-((3,5-dimethyl-4-octyl-1H-pyrrol-2-yl)methylene)-4-methoxy-1H-pyrrol-2(5H)-one (75)
Aqueous potassium hydroxide (4 M, 1.9 mL, 7.42 mmol) was added to a solution of 3-methoxy-1H-pyrrol-2(5H)-one (360 mg, 2.12 mmol) in methanol (20 mL) and the resulting solution was purged with nitrogen for 20 min and then stirred at 60°C for 1.5 h. 4-Octyl-3,5-dimethyl-1H-pyrrole-2-carbaldehyde (69) (1.05 g, 6.96 mmol) was added and the solution stirred under nitrogen for 2 days at 84°C. The crude reaction mixture was concentrated in vacuo and poured onto water (20 mL). The resulting orange solid was isolated by suction filtration. Purification over basic alumina eluting with a gradient of ethyl acetate:hexane (0:100 to 20:80) gave 75 as an orange solid (340 mg, 1.02 mmol, 48%). m.p. = 175-177 °C; δ_H (500 MHz, CDCl₃) 10.94 (1H, s), 10.21 (1H, s), 6.37 (1H, s), 5.08 (1H, s), 3.89 (3H, s), 2.31 (2H, t, J=7), 2.34 (3H, s), 2.11 (3H, s), 1.41 (2H, pentet, J=7), 1.29-1.27 (10H, m), 0.88 (3H, t, J=7); δ_C (125 MHz, CDCl₃) 173.1, 167.9, 132.4, 126.0, 121.74, 121.69, 121.4, 100.9, 89.6, 82.3, 32.1, 31.1, 29.74, 29.70, 29.5, 24.4, 22.8, 14.3, 11.6, 9.7; m/z ESI⁺ found 331.2401 [M+H]⁺ calculated for C₂₀H₃₁N₂O₂ 331.2380.

5.4.41 (Z)-4-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3-methyl-1H,1'H-2,2'-bipyrrole (82)

Unsymmetrical bromodipyrrin 81,⁹¹ LiCl (47 mg, 1.12 mmol), 1-N-Boc-pyrrole-2-boronic acid (0.16 g, 0.74 mmol), and Pd(PPh₃)₄ (46 mg, 0.04 mmol) were dissolved in dimethoxyethane (10 mL) and the solution was purged by bubbling with nitrogen for 10 min. A solution of Na₂CO₃ (2 M, 0.75 mL, 1.49 mmol) was added, and the reaction
mixture was stirred at 90 °C for 19 h and then poured into water (20 mL). The crude reaction mixture was filtered through Celite and poured onto a saturated aqueous solution of sodium bicarbonate (25 mL). Extraction with ethyl acetate (3 x 20 mL), followed by washing of the combined organic fractions with brine (20 mL), drying over anhydrous sodium sulfate, and removal of the solvent under reduced pressure gave the crude product. Purification using flash chromatography on basic alumina with a gradient of ethyl acetate:hexane (0:100 to 20:80) as eluent furnished 82 as an orange film after removal of the solvent in vacuo (78 mg, 16%). m.p. = 153-155 °C; δH (500 MHz, CDCl3): 12.97 (1H, s), 12.70 (1H, s), 12.28 (1H, s), 7.24 (1H, s), 6.97 (1H, s), 6.90 (1H, s), 6.38 (1H, s) 2.69 (2H, q, J = 8), 2.58 (3H, s), 2.42 (2H, q, J = 8), 2.26 (3H, s), 2.25 (3H, s), 1.19 (3H, t, J = 8), 1.07 (3H, t, J = 8); δC (125 MHz, CDCl3) 149.8, 149.3, 145.2, 138.8, 129.4, 126.7, 125.8, 125.7, 122.8, 122.6, 116.4, 115.3, 111.5, 18.2, 17.4, 16.3, 14.8, 12.7, 11.6, 10.1; UV/Vis (DCM, 22 °C) λmax = 560 nm (ε = 68 100 mol L⁻¹ cm⁻¹); m/z ESI⁺ found 308.2112 [M+H]+ calculated for C₂₀H₂₆N₃ 308.2121.

5.4.42 (Bu)₂(1)Sn(IV)(83)

Dibutyltin oxide (15 mg, 0.059 mmol) was addd to a solution of prodigiosene 1 (20 mg, 0.05 mmol) in methanol (5 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with ethyl
acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed in vacuo to give the crude product. Purification over basic alumina using dichloromethane as an eluent and removal of the solvent in vacuo gave 82 as a purple film (26 mg, 0.046 mmol, 93%). m.p. = 115-117 °C; δH (500 MHz, CDCl3) 6.97-6.95 (2H, m), 6.82 (1H, d, J=3), 6.43 (1H, dd, J=2,3), 6.06 (1H, s), 4.29 (2H, q, J=7), 4.00 (3H, s), 2.64 (3H, s), 2.45 (3H, s), 1.65-1.18 (15H, m), 0.75 (6H, t, J=7); δC (125 MHz, CDCl3) 168.5, 166.1, 157.2, 152.1, 137.3, 133.4, 132.1, 132.0, 129.5, 115.7, 114.1, 113.8, 112.3, 92.7, 59.4, 58.6, 27.0, 26.4, 24.0, 17.3, 14.7, 13.6, 12.2; δSn (186 MHz, CDCl3) -245.9; δN (50.7 MHz, CDCl3) -229.9, -165.5; UV/Vis (DCM) λmax (nm) ε (mol L⁻¹ cm⁻¹)): 568 (85 000). Fluorescence (DCM, 22 °C) λmax (nm): 579, ΦF: 0.57. m/z ESI⁺ found 594.1749 [M+Na⁺] calculated for C27H37N3NaO3Sn 594.1755.

5.4.43 (Bu)2(84)Sn(IV) (85)

Dibutyltin oxide (22 mg, 0.09 mmol) was addd to a solution of prodigiosene 1 (25 mg, 0.07 mmol) in methanol (5 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with ethyl acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed in vacuo to give the crude product. Purification over silica using ethyl acetate:dichloromethane:triethylamine (20:78.5:1.5) as an eluent and removal of the
solvent in vacuo gave 84 as a purple film (35 mg, 0.065 mmol, 93%). δ_H (500 MHz, CDCl$_3$) 6.875-6.878 (2H, m), 6.74 (1H, dd, J=1,3), 6.34 (1H, dd, J=2,3), 5.97 (1H, s), 3.91 (3H, s), 2.54 (3H, s), 2.374 (3H, s), 2.366 (3H, s), 1.46-1.28 (8H, m), 1.11 (4H, sextet, J=7), 0.65 (6H, t, J=7); δ_C (125 MHz, CDCl$_3$) 195.4, 168.6, 157.5, 151.9, 134.7, 133.5, 132.4, 132.0, 130.0, 125.9, 114.3, 113.5, 112.7, 92.8, 58.6, 31.6, 27.0, 26.4, 24.1, 18.2, 13.6, 13.1; δ_{Sn} (186 MHz, CDCl$_3$) -245.0; δ_N (50.7 MHz, CDCl$_3$) -230.4, -165.1; m/z ESI$^+$ found 542.1824 [M+H]$^+$ calculated for C$_{26}$H$_{36}$N$_3$O$_2$Sn 542.1829.

5.4.44 Benzyl 3,5-dimethyl-4-(6-oxoheptanoyl)-1H-pyrrole-2-carboxylate (88)

Compound 42100 (8.13g, 50 mmol) was added slowly to a solution of 8769 (10.3 g, 45 mmol) in dichloromethane (100 mL) and the solution was cooled to 0°C. SnCl$_4$ (5.9 mL, 50 mmol) was added dropwise and the reaction mixture was warmed to room temperature and then stirred for 4 h. The reaction mixture was poured onto aqueous 0.1 M NaOH (250 mL) and filtered through Celite to remove the white precipitate. The layers were separated and the organic layers was dried over sodium sulfate and concentrated in vacuo to give a red solid which was crystallized from dichloromethane:hexanes (2:1) to give 88 as a beige powder (10.4 g, 27 mmol, 59%). δ_H (125 MHz, CDCl$_3$) 9.03 (1H, s), 7.42-7.34 (5H, m), 5.32 (2H, s), 2.74 (2H, t, J=7), 2.59 (3H, s), 2.49 (3H, s), 2.47 (2H, t, J=7), 2.13 (3H, s), 1.70-1.61 (4H, m); δ_C (125 MHz, CDCl$_3$) 209.0, 197.8, 161.3, 138.2, 136.1, 129.8, 128.8, 128.5, 128.4, 123.7, 117.7, 66.3, 43.8, 42.7, 30.1, 23.8, 23.7, 15.4, 13.0; m/z ESI$^+$ found 378.1676 [M+Na]$^+$ expected for C$_{21}$H$_{25}$NO$_4$Na 378.1681.
5.4.45 3,5-Dimethyl-4-(6-oxoheptanoyl)-1H-pyrrole-2-carboxylic acid (89)

Palladium on activated carbon (10% by weight, 1.0 g) was added to a solution of 88 (10.2 g, 29 mmol) in tetrahydrofuran (150 mL) and the reaction mixture was then stirred under 1 atm of hydrogen for 18 h. Methanol (150 mL) was added to the reaction mixture and the resulting solution was filtered over Celite, and concentrated in vacuo to give a brown solid. This solid was crystallized from hot methanol to give 89 as a beige powder (6.6 g, 25 mmol, 86%). m.p. = 164-166 °C; δ_H (500 MHz, DMSO-d6) 12.41 (1H, s), 11.68 (1H, s), 2.60 (2H, t, J=7), 2.47 (3H, s), 2.43 (2H, t, J=7), 2.42 (3H, s), 2.07 (3H, s), 1.54-1.45 (4H, m); δ_C (125 MHz, DMSO-d6) 208.4, 196.7, 162.4, 137.7, 128.0, 122.3, 118.0, 42.7, 41.6, 29.6, 23.3, 23.0, 14.3, 12.3. m/z ESI− found 264.1262 [M-H]− calculated for C_{14}H_{18}NO_{4} 264.1241.

5.4.46 1-(2,4-Dimethyl-1H-pyrrol-3-yl)heptane-1,6-dione (90)

Compound 89 (3.01 g, 11.4 mmol) was placed in a round-bottom flask and the flask was then equipped with a condenser. The round-bottom flask was placed in a heating mantle preheated to 220 °C until the solid melted and bubbling ceased (approximately 15 min). The flask was then removed from the heating mantle and the contents allowed to cool to
room temperature. Purification over silica gel using ethyl acetate:hexane (13:20) as an eluent and removal of the solvent in vacuo gave 90 as a white powder (2.0 g, 9.1 mmol, 80%). m.p. = 69-71 °C; \(\delta_H \) (500 MHz, CDCl\(_3\)) 8.06 (1H, s), 6.36-6.35 (1H, m), 2.73 (2H, t, \(J=7 \)), 2.49 (3H, s), 2.48 (2H, t, \(J=7 \)), 2.27 (3H, d, \(J=1 \)), 2.14 (3H, s), 1.73-1.62 (4H, m); \(\delta_C \) (125 MHz, CDCl\(_3\)) 209.2, 197.6, 135.5, 120.9, 120.5, 114.9, 53.6, 43.9, 42.2, 30.1, 23.9, 15.5, 14.0; \(m/z \) ESI\(^+\) found 244.1308 [M+Na]\(^+\) expected for C\(_{13}\)H\(_{19}\)NO\(_2\)Na 244.1313.

5.4.47 3-((1Z,6Z)-1,6-Bis(2-(2,4-dinitrophenyl)hydrazono)heptyl)-2,4-dimethyl-1H-pyrrole (91)

Acetic acid (0.2 mL) was added to a solution of 90 (100 mg, 0.38 mmol) and 2,4-dinitrophenylhydrazine (224 mg, 1.03 mmol) in ethanol (5 mL) and the reaction mixture was stirred at 85°C for 18 h. The solvent was removed in vacuo to give a brown solid, which was crystallized from hot ethyl acetate to give 91 as a purple solid (178 mg, 0.31 mmol, 81%). m.p = 175-177 °C; \(\delta_H \) (500 MHz, DMSO-\(d_6 \)) 11.30 (1H, s), 10.77 (1H, s), 10.69 (1H, s), 8.82 (1H, d, \(J=3 \)), 8.78 (1H, d, \(J=3 \)), 8.32 (1H, dd, \(J=3, 10 \)), 8.24 (1H, dd, \(J=3, 10 \)), 7.83 (1H, d, \(J=10 \)), 7.73 (1H, d, \(J=10 \)), 6.45-6.44 (1H, m), 2.81 (2H, t, \(J=7 \)), 2.48 (2H, t, \(J=7 \)), 2.37 (3H, s), 2.17 (3H, s), 2.04 (3H, s), 1.78-1.66 (4H, m); \(\delta_C \) (125 MHz, DMSO-\(d_6 \)) 159.7, 158.0, 144.5, 144.3, 136.6, 136.1, 130.1, 129.9, 129.3, 128.8,
Compound 92 was prepared according to a modified literature procedure.22 Ac\textsubscript{2}O (0.100 mL, 1.06 mmol) and solid AlCl\textsubscript{3} (157 mg, 1.18 mmol) were added to a solution of 1 (100 mg, 0.226 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (30 mL) and the resulting solution was stirred at room temperature for 2 h. The resulting solution was washed with aqueous 0.5 N HCl (100 mL) and then 2 M NaOH (100 mL). The organic layer was dried over sodium sulfate and concentrated \textit{in vacuo}. Purification over neutral alumina using ethyl acetate:hexanes (20:80) as an eluent and removal of the solvent \textit{in vacuo} gave 92 as an orange film (63 mg, 0.165 mmol, 62%). δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.00 (1H, s), 6.95 (1H, d, $J=4.0$), 6.68 (1H, d, $J=4.0$), 5.95 (1H, s), 4.31 (2H, q, $J=7.0$), 3.92 (3H, s), 2.65 (3H, s), 2.48 (3H, s), 2.44 (3H, s), 1.38 (3H, t, $J=7.0$). δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 188.1, 168.6, 165.5, 157.9, 143.9, 141.3, 133.8, 133.5, 133.4, 127.2, 117.8, 115.4, 114.1, 112.9, 95.6, 59.7, 58.6, 25.8, 15.2, 14.6, 11.7; m/z ESI$^+$ found 382.1764 [M+H]$^+$ calculated for C\textsubscript{21}H\textsubscript{23}N\textsubscript{3}O\textsubscript{4} 382.1761.
5.4.49 ((Bu)_2(92)Sn(IV) (93)

Dibutyltin oxide (13 mg, 0.052 mmol) was added to a solution of prodigiosene 92 (20 mg, 0.050 mmol) in methanol (10 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and then extracted with ethyl acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed in vacuo to give the crude product. Purification over neutral alumina using ethyl acetate:hexanes (5:95) as an eluent and removal of the solvent in vacuo gave 93 as a purple film (29 mg, 0.047 mmol, 95%). m.p. = 162-164 °C; δ_H (500 MHz, CDCl_3) 7.18 (1H, s), 6.99 (1H, d, J=3.5), 6.64 (1H, d, J=3.5), 6.13 (1H, s), 4.30 (2H, q, J=7.5), 4.00 (3H, s), 2.66 (3H, s), 2.50 (3H, s), 2.56 (3H, s), 1.66-1.49 (4H, m), 1.38 (3H, t, J=7.5), 1.12-0.97 (8H, m), 0.59 (6H, t, J=7); δ_C (125 MHz, CDCl_3) 189.6, 167.6, 165.8, 156.0, 153.9, 142.5, 139.6, 137.6, 135.3, 128.3, 120.0, 118.3, 117.5, 110.5, 93.0, 59.6, 58.6, 27.1, 25.8, 25.6, 23.9, 17.3, 14.7, 13.5, 12.3; δ_Sn (186 MHz, CDCl_3) -221.9; UV/Vis (DCM) λ_max (nm) (ε (mol L⁻¹ cm⁻¹)): 568 (85 000). Fluorescence (DCM, 22 °C) λ_max (nm): 579, Φ_F: 0.57. m/z ESI⁺ found 614.1993 [M+H]⁺ calculated for C_{29}H_{39}N_{3}O_{4}Sn 614.2035. A crystal suitable for X-ray crystallography was obtained from a slow evaporation of a solution of compound 93 in dichloromethane in the presence of few drops of methanol. Data for 93: C_{29}H_{38}N_{3}O_{4}Sn, M = 611.34 g, dark-red needle, 0.42
x 0.23 x 0.12 mm³, primitive triclinic, space group P-1 (#2), a = 12.1339 Å, b = 13.04640(10) Å, c = 19.65300(10) Å, V = 2903.79(3) Å³, Z = 4, T = 200(1) K, ρ = 1.398 gcm⁻³, μ(MoKα) = 9.167 cm⁻¹, 106009 reflections (22429 unique, Rₓ = 0.065), R = 0.0358, Rw = 0.0439, GOF = 1.082.

5.4.50 (Bu)₂(94)Sn(IV) (95)

Dibutyltin oxide (62 mg, 0.25 mmol) was added to a solution of prodigiosene 94 (40 mg, 0.1 mmol) in methanol (6 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in dichloromethane (15 mL), washed with a saturated aqueous solution of sodium bicarbonate (2 x 15 mL), dried over sodium sulfate and concentrated in vacuo. Purification over basic alumina using dichloromethane as an eluent and removal of the solvent in vacuo gave 95 as a purple film (57 mg, 0.09 mmol, 90%). m.p. = 120-122 °C; δ_H (500 MHz, CDCl₃) 7.46-7.44 (2H, m) 7.40-7.37 (2H, m), 7.34-7.31 (1H, m), 6.95-6.94 (1H, m), 6.94 (1H, s), 6.83 (1H, dd, J=1,3), 6.43 (1H, dd, J=2,3), 6.13 (1H, s), 5.30 (2H, s), 4.00 (3H, s), 2.63 (3H, s), 2.45 (3H, s), 1.52-1.39 (8H, m), 1.22-1.18 (4H, m), 0.75 (6H, t, J=8); δ_C (125 MHz, CDCl₃) 168.6, 165.8, 157.4, 152.2, 137.3, 137.1, 133.4, 132.2, 132.2, 132.0, 129.6, 128.6, 128.2, 128.0, 115.3, 114.2, 113.7, 112.5, 65.4, 58.6, 27.0, 26.4, 24.0, 17.4, 13.6, 12.3; δ_Sn (186 MHz, CDCl₃) -209.5; UV/Vis (DCM) λ_max (nm) (ε (mol L⁻¹·cm⁻¹)): 561(88 000).
Fluorescence (DCM, 22 °C) λ_{max} (nm): 584, Φ_F: 0.53. m/z ESI$^+$ found 634.2082 [M+H]$^+$ calculated for C$_{32}$H$_{40}$N$_3$O$_3$Sn 634.2086.

5.4.51 (Bu)$_2$(((Z)-Methyl 2-((4-ethyl-3-methyl-1H,1'H-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate)Sn(IV) (96)

![Diagram](image)

Triflic anhydride (0.23 mL, 1.4 mmol) was slowly added to a solution of 56 (340 mg, 0.93 mmol) in dichloromethane (25 mL). The reaction mixture was stirred at room temperature for 2 h and then poured onto a saturated aqueous solution of sodium bicarbonate (25 mL). The layers were separated, the aqueous layer was extracted with dichloromethane (2 x 25 mL), and the combined organic layers were dried over sodium sulfate and concentrated in vacuo.

The crude solid was dissolved in dimethoxyethane (10 mL) and LiCl (0.12 g, 2.8 mmol), 1-N-Boc-pyrrole-2-boronic acid (0.30 g, 1.4 mmol), and Pd(PPh$_3$)$_4$ (0.11 mg, 0.009 mmol) were added. The resulting solution was purged by bubbling with nitrogen for 10 min then a solution of Na$_2$CO$_3$ (2 M, 1.86 mL, 3.7 mmol) was added, and the reaction mixture was stirred at 90 °C for 19 h. The crude reaction mixture was filtered through Celite and poured onto a saturated aqueous solution of sodium bicarbonate (25 mL). Extraction with ethyl acetate (3 x 20 mL), followed by washing of the combined organics with brine (20 mL), drying over anhydrous sodium sulfate and removal of the
solvent under reduced pressure gave the crude product. Purification using flash chromatography on basic alumina with a gradient of dichloromethane:hexane (40:60) as gave an orange film after removal of the solvent in vacuo.

Dibutyltin oxide (231 mg, 0.93 mmol) was added to a solution of the orange film in methanol (10 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with ethyl acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed in vacuo to give the crude product. The residue was dissolved in dichloromethane and filtered through basic alumina eluting with dichloromethane and the solvent was removed in vacuo. Purification over basic alumina using dichloromethane:hexanes (1:1) as an eluent and removal of the solvent in vacuo gave 96 as a dark purple solid (36 mg, 0.056 mmol, 86%). m.p. = 91-93 °C; δH (500 MHz, CDCl3) 7.47-7.45 (2H, m), 7.40-7.38 (2H, m), 7.35-7.32 (1H, m), 6.99 (1H, m), 6.93 (1H, dd, J=2,3), 6.83 (1H, s), 6.47 (1H, dd, J=2,3), 5.32 (2H, s), 2.74 (2H, q, J=7), 2.65 (3H, s), 2.48 (3H, s) 2.27 (3H, s), 1.49-1.41 (8H, m), 1.26-1.18 (7H, m), 0.75 (6H, t, J=8); δC (125 MHz, CDCl3) 165.8, 157.2, 152.7, 144.6, 138.2, 137.8, 137.1, 134.2, 132.0, 131.8, 131.3, 128.6, 128.2, 128.0, 115.6, 115.5, 114.2, 113.0, 65.4, 27.0, 26.5, 23.9, 18.5, 17.4, 14.2, 13.6, 12.4, 9.9; δSn (186 MHz, CDCl3) -214.2; UV/Vis (DCM) λmax (nm) ε (mol L⁻¹·cm⁻¹)): 585 (87 000). Fluorescence (DCM, 22 °C) λmax (nm): 607, ΦF: 0.52. m/z ESI⁺ found 645.2473 [M+H]⁺ calculated for C₃₄H₄₄N₃O₂Sn 645.2450.
Dibutyltin oxide (45 mg, 0.18 mmol) was added to a solution of prodigiosene 82 in methanol (10 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated *in vacuo*. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with ethyl acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed *in vacuo* to give the crude product. Purification over basic alumina using an eluent gradient of hexanes:ethyl acetate (100:0 to 10:90) and removal of the solvent *in vacuo* gave 97 as a blue film (17 mg, 0.049 mmol, 22%). m.p. = 99-101 °C; δ_H (500 MHz, CDCl₃) 6.91-6.90 (1H, m), 6.79 (1H, dd, $J=1,3$) 6.75 (1H, s), 6.43 (1H, dd, $J=2,3$), 2.65 (2H, q, $J=7$), 2.41 (2H, q, $J=7$), 2.37 (3H, s), 2.26 (3H, s), 2.02 (3H, s), 1.49-1.38 (9H, m), 1.26-1.18 (9H, m), 1.07 (3H, t, $J=7$), 0.78 (3H, t, $J=7$); δ_C (125 MHz, CDCl₃) 153.9, 150.3, 149.0, 135.1, 134.52, 134.50, 132.4, 129.7, 129.3, 121.2, 115.8, 112.7, 109.8, 27.1, 26.7, 23.3, 18.2, 17.9, 16.4, 15.2, 14.7, 13.6, 10.4, 10.0; δ_{Sn} (186 MHz, CDCl₃) -253.3; UV/Vis (DCM, 22 °C) λ_{max} (nm) (ε (mol L⁻¹ cm⁻¹)): 599 (120 000). Fluorescence (DCM, 22 °C) λ_{max} (nm): 617, Φ_F: 0.28. m/z ESI⁺ found 540.2354 [M+H]⁺ calculated for C₂₈H₄₂N₃Sn 540.2395.
Diphenyltin oxide (54 mg, 0.22 mmol) was added to a solution of prodigiosene 94 (29 mg, 0.07 mmol) in methanol (5 mL) and dichloromethane (5 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with ethyl acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed in vacuo to give the crude product.

Purification over basic alumina using dichloromethane as an eluent and removal of the solvent in vacuo gave 98 as a purple film (40 mg, 0.059 mmol, 82%). m.p. = 262 - 264 °C; δ_H (500 MHz, CDCl₃) 7.61-7.59 (4H, m, tin satellites at 7.69-7.67 and 7.52-7.51, 3J (¹¹⁹Sn-¹H) = 40), 7.44-7.31 (12H, m), 7.12 (1H, s), 6.82 (1H, dd, J=1.3), 6.49 (1H, dd, J=2.3), 6.04 (1H, s), 5.29 (2H, s), 3.98 (3H, s), 2.58 (3H, s), 2.14 (3H, s); δ_C (125 MHz, CDCl₃) 168.9, 165.8, 157.1, 154.3, 141.0, 138.1, 137.4, 136.9, 135.4, 134.2, 133.5, 131.6, 130.1, 129.9, 129.2, 128.9, 128.8, 128.6, 128.3, 128.0, 127.4, 127.3, 115.9, 114.8, 113.7, 93.0, 65.5, 58.7, 18.1, 12.6. δ_Sn (186 MHz, CDCl₃) 367.1; UV/Vis (DCM) λ_max (nm) (ε (mol L⁻¹·cm⁻¹)): 561 (74 000). Fluorescence (DCM, 22 °C) λ_max (nm): 583, Φ_F: 0.55. m/z ESI⁺ found 674.1465 [M+H]⁺ calculated for C₃₆H₃₂N₃O₃Sn 674.1460.
Diphenyltin oxide (49 mg, 0.17 mmol) was added to a solution of prodigiosene 94 (35 mg, 0.08 mmol) in methanol (6 mL) and dichloromethane (1 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with ethyl acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed in vacuo to give the crude product. Filtration through basic alumina eluting with dichloromethane, purification over basic alumina using dichloromethane:hexanes (1:1) as an eluent and removal of the solvent in vacuo gave 99 as a dark purple film (41 mg, 0.06 mmol, 75%). m.p. = 254-256 °C; δ_1H (500 MHz, CDCl₃) 7.60-7.59 (4H, m, tin satellites at 7.69-7.67 and 7.52-7.51, 3J (¹¹⁷Sn-¹H) = 40), 7.52-7.51 (1H, m), 7.36-7.31 (6H, m), 6.99 (1H, s), 6.92-6.91 (1H, m), 6.52 (1H, dd, J=2,3), 3.81 (3H, s), 2.68 (2H, q, J=8), 2.60 (3H, s), 2.27 (3H, s), 2.12 (3H, s), 1.19 (3H, t, J=8); δ_C (125 MHz, CDCl₃) 166.5, 156.9, 154.7, 145.0, 141.1, 138.7, 138.3, 135.4, 135.0, 133.3, 132.1, 131.0, 130.0, 129.2, 116.5, 115.6, 114.9, 113.9, 50.8, 18.5, 18.0, 14.1, 12.4, 9.9; ¹⁵N HMBC δ_N (CDCl₃) -178.2, -217.9. δ_Sn (186 MHz, CDCl₃) 363.5; UV/Vis (DCM) λ_max (nm) ε (mol L⁻¹ cm⁻¹)): 587 (86 000). Fluorescence (DCM, 22 °C) λ_max (nm): 609, Φ_F: 0.51. m/z ESI⁺ found 610.1524 [M+H]⁺ calculated for C_{32}H_{32}N_{3}O_{2}Sn 610.1511.
Diphenyltin oxide (38 mg, 0.13 mmol) was added to a solution of prodigiosene 82 (20 mg, 0.07 mmol) in methanol (5 mL) and dichloromethane (1 mL). The resulting solution was stirred at 65 °C for 18 h and then concentrated in vacuo. The residue was dissolved in ethyl acetate and poured onto a saturated aqueous solution of sodium bicarbonate (20 mL) and extracted with ethyl acetate (3 x 20 mL). The organic fractions were combined, dried with sodium sulfate, and the solvent removed in vacuo to give the crude product. Filtration through basic alumina eluting with dichloromethane, purification over basic alumina using dichloromethane:hexanes (1:5) as an eluent and removal of the solvent in vacuo gave 100 as a blue film (13 mg, 0.022 mmol, 33%). m.p. = 225-227 °C; δ_H (500 MHz, CDCl3) 7.64-7.62 (4H, m, with tin satellites at 7.72-7.70 and 7.56-7.54 3J (119Sn-1H) = 40), 7.40-7.31 (7H, m), 6.90 (1H, s), 6.77 (1H, dd, J=1,3), 6.47 (1H, dd, J=2,3), 2.66 (2H, q, J=7), 2.39 (2H, q, J=7), 2.32 (3H, s), 2.20 (3H, s), 1.79 (3H, s), 1.21 (3H, t, J=7), 1.05 (3H, t, J=7); δ_C (125 MHz, CDCl3) 153.5, 152.7, 149.4, 141.8, 136.1, 135.8, 135.6, 134.8, 132.0, 131.0, 130.0, 129.7, 128.9, 121.7, 115.8, 113.4, 110.8, 18.3, 17.9, 16.3, 15.3, 15.2, 10.3 (1 CH2 unresolved alkyl region); δ_Sn (186 MHz, CDCl3) 363.0; UV/Vis (DCM) λ_max (nm) ε (mol L⁻¹ cm⁻¹): 603 (87 000). Fluorescence (DCM, 22 °C) λ_max (nm): 622, Φ_F: 0.32. m/z ESI⁺ found 579.1694 [M]⁺ calculated for C_{32}H_{33}N_{3}Sn 579.1691.
5.1.56 General procedure for the synthesis of BODIPY compounds (GP1)

A solution of dipyrrin HCl or HBr salt (250 mg) and triethylamine (6 eq) in CH₂Cl₂ (60 mL) was stirred under nitrogen at room temperature for 10 min. Boron trifluoride etherate (9 eq) was then added slowly over 5 min. The resulting solution was stirred for 2 h and then concentrated in vacuo. The residue was diluted with diethyl ether (50 mL), washed with 1 N HCl (3 x 100 mL), dried over anhydrous sodium sulfate and concentrated in vacuo. The resulting material was filtered through a pad of silica, eluting with dichloromethane and the solvent was removed in vacuo.

5.1.57 General procedure for the deprotection of BODIPY compounds (GP2)

Potassium tert-butoxide (6 eq) and BODIPY (50 mg) were suspended in tert-butanol (15 mL) in a QXP vessel. The mixture was heated in the microwave for 40 min. (power = 600 W, ramp time = 2 min, ramp to temperature = 92 °C, hold time = 40 min, stirring = medium). The reaction mixture was allowed to cool to room temperature, diluted with diethyl ether (25 mL) and poured onto a saturated aqueous solution of sodium bicarbonate (75 mL). The layers were separated and the aqueous layer was extracted with diethyl ether (3 x 20 mL). The combined organic layers were dried over anhydrous sodium sulfate and the solvent was removed in vacuo.
5.4.58 1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene (104)148

![Chemical structure of 104]

Synthesized from 105HBr using the general F-BODIPY procedure (GP1) to give 104 as a bright orange solid (214 mg, 83%). m.p. = 172-173 °C (lit: not reported); δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.49-7.46 (m, 3H), 7.30-7.28 (m, 2H), 2.55 (s, 6H), 2.31 (q, J = 7, 4H), 1.29 (s, 6H), 0.99 (t, J = 7, 6H); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 153.7, 140.3, 138.5, 135.9, 132.8, 130.9, 129.1, 128.8, 128.4, 17.2, 14.7, 12.6, 11.7. The 13C NMR data matches (within 0.1 ppm) the reported data for the compound.148 δ\textsubscript{B} (160 MHz, CDCl\textsubscript{3}) 0.65 (t, J\textsubscript{BF} = 32); m/z ESI+ found 403.2128 [M+Na+] calculated for C\textsubscript{23}H\textsubscript{27}BF\textsubscript{2}N\textsubscript{2}Na 403.2133.

5.4.59 (Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole (105)

![Chemical structure of 105]

Synthesized from 104148 using the general deprotection procedure (GP2) to give 105 as a yellow-orange solid (44 mg, 91%). δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.42-7.41 (m, 3H), 7.32-7.30 (m, 2H), 2.33 (s, 6H), 2.28 (q, J = 7.5, 4H), 1.20 (s, 6H), 0.97 (t, J = 7.0, 6H); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 150.3, 138.9, 137.9, 135.9, 135.1, 131.5, 129.8, 128.6, 128.2, 17.7, 15.0, 14.4, 11.9; m/z ESI− found 333.2320 [M+H−] calculated for C\textsubscript{23}H\textsubscript{29}N\textsubscript{2} 333.2325.
5.4.60 2,6-Diethyl-8-(4-trifluoromethylphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (106)

Synthesized from 107HBr using the general F-BODIPY procedure (GP1) to give 106 as a bright orange solid (215 mg, 84%). m.p. = 193-194 °C; δH (500 MHz, CDCl3) 7.77 (d, J = 7.5, 2H), 7.46 (d, J = 7.5, 2H), 2.54 (s, 6H), 2.30 (q, J = 7.5, 4H), 1.25 (s, 6H), 0.98 (t, J = 7.5, 6H); δC (125 MHz, CDCl3) 154.6, 139.9, 138.1, 133.4, 131.4 (q, JCF = 32.5), 130.5, 129.2, 126.1 (q, JCF = 4.0), 125.1, 123.0, 17.2, 14.7, 12.7, 12.0; δB (160 MHz, CDCl3) 0.65 (t, JBF = 32); m/z ESI+ found 471.2001 [M+Na]+ calculated for C24H26BF5N2 471.2007.

5.4.61 (Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(4-(trifluoromethyl)phenyl)methyl)-2,4-dimethyl-1H-pyrrole (107)

Synthesized from 106 using the general deprotection procedure (GP2). The crude product was dissolved in pentane, filtered through basic alumina eluting with ethyl acetate:pentane (2:98), and concentrated in vacuo to give 105 as an orange solid (40 mg, 90%). δH (500 MHz, CDCl3) 7.65 (d, J = 8.0, 2H), 7.42 (d, J = 8.0, 2H), 2.28 (s, 6H), 2.23 (q, J = 7.5, 4H), 1.11 (s, 6H), 0.93 (t, J = 7.5, 6H); δC (125 MHz, CDCl3) 150.9,
142.86, 135.8, 135.5, 134.4, 131.9, 130.4, 125.5 (q, $J_{CF} = 4.0$), 125.4, 123.3, 17.7, 15.0, 14.6, 12.1; m/z ESI$^+$ found 401.2199 [M+H]$^+$ calculated for C$_{24}$H$_{28}$F$_3$N$_2$ 401.2205.

5.4.62 2,6-Diethyl-1,3,5,7-tetramethyl-8H-4-bora-3a,4a-diaza-s-indacene (108)$^{116, 192}$

Synthesized from 109HBr149 using the general F-BODIPY procedure (GP1) to give 108 as a bright orange solid (201 mg, 89%). m.p. = 176-178 °C (lit: 187-188 °C);149 δ_H (500 MHz, CDCl$_3$) 6.94 (s, 1H), 2.50 (s, 6H), 2.37 (q, $J = 7.5$, 4H), 2.15 (s, 6H), 1.06 (t, $J = 8$, 6H); δ_C (125 MHz, CDCl$_3$) 154.7, 136.7, 132.5, 131.7, 118.7, 17.4, 14.7, 12.6, 9.4; δ_B (160 MHz, CDCl$_3$) 0.76 (t, $J_{BF} = 32$); m/z ESI$^+$ found 327.1815 [M+Na]$^+$ calculated for C$_{17}$H$_{23}$BF$_2$N$_2$ 327.1820.

Compound 108 was also synthesized on large scale according to the following procedure. A solution of dipyrrin HBr salt183 (5 g) and triethylamine (10 eq) in CH$_2$Cl$_2$ (120 mL) was stirred under N$_2$ at room temperature for 10 min. Boron trifluoride etherate (15 eq) was then added slowly over 5 min. The resulting solution was stirred for 2 h and then concentrated in vacuo. The residue was diluted with diethyl ether (200 mL), washed with 1 N HCl (3 x 200 mL), dried over anhydrous sodium sulfate, filtered and the filtrate evaporated to dryness. The resulting material was filtered through a pad of silica eluting with dichloromethane and the solvent was removed in vacuo to give 108 as a bright orange solid (4.10 g, 91%).
5.4.63 (Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole (109)

Synthesized from 108 or 123 using the general deprotection procedure (GP2). The crude product was dissolved in pentane, filtered through basic alumina eluting with ethylacetate:pentane (6:94), and concentrated in vacuo to give an orange solid (40 mg, 96% (starting from 108); 26 mg, 75% (starting from 123)). δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 9.51 (bs, 1H), 6.64 (s, 1H), 2.37 (q, J = 7.5, 4H), 2.30 (s, 6H), 2.13 (s, 6H), 1.06 (t, J = 7.5, 6H); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 151.3, 136.8, 133.3, 130.0, 115.4, 17.9, 15.0, 14.5, 9.6; m/z ESI+ found 257.2003 [M+H]+ calculated for C\textsubscript{17}H\textsubscript{25}N\textsubscript{2} 257.2012.

5.4.64 1,3,5,7-Tetramethyl-8H-4-bora-3a,4a-diaza-s-indacene (110)116

Synthesized from 111HBr181 using the general F-BODIPY procedure (GP1) to give a bright orange solid (208 mg, 94%). m.p. = 202-203 °C (lit: not reported); δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.04 (s, 1H), 6.05 (s, 2H), 2.53 (s, 6H), 2.25 (s, 6H); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 156.9, 141.3, 133.5, 120.2, 119.2, 14.8, 11.4; δ\textsubscript{B} (160 MHz, CDCl\textsubscript{3}) 0.76 (t, J\textsubscript{BF} = 32); m/z ESI+ found 271.1189 [M+Na]+ calculated for C\textsubscript{13}H\textsubscript{15}BF\textsubscript{2}N\textsubscript{2} 271.1194.
5.4.65 Zinc[\(k^2-(3,3’,5,5’\)-tetramethyl-meso-\(H\)-dipyrrinato)]]

(\textit{111Zn})^{149}

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

CAUTION! \textit{111} is a powerful sternutator and must be handled only under adequate ventilation.193 For this reason, \textit{111} was converted \textit{in situ} to its zinc(II) complex \textit{111Zn}. \textit{F-BODIPY 110} (50 mg, 0.20 mmol) and potassium \textit{tert}-butoxide (135 mg, 1.2 mmol) and were suspended in \textit{tert}-butanol (15 mL) in a QXP vessel. The mixture was heated in the microwave for 40 min. (Power = 600 W, ramp time = 2 min, ramp to temperature = 92 °C, hold time = 40 min, stirring = medium). The reaction mixture was allowed to cool to room temperature, and zinc acetate dihydrate (398 mg, 1.81 mmol) was added and the reaction mixture was allowed to stir for 30 min. The mixture was diluted with diethyl ether (25 mL) and poured onto a saturated aqueous solution of sodium bicarbonate (75 mL). The layers were separated and the aqueous layer was extracted with diethyl ether (3 x 20 mL). The combined organic layers were dried over anhydrous sodium sulfate and the solvent was removed \textit{in vacuo}. The crude product was dissolved in pentane, filtered through basic alumina eluting with ethyl acetate:pentane (6:94), and concentrated \textit{in vacuo} to give \textit{111Zn} as an orange solid (88 mg, 96%). \(\delta \)\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.03 (s, 1H), 5.99 (s, 2H), 2.32 (s, 6H), 1.96 (s, 6H); \(\delta \)\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 157.8, 142.0, 136.6, 121.9, 116.8, 16.5, 11.9. The \textit{13C} NMR data corresponds (within 0.1 ppm) to that previously reported for the compound.149 \(m/z\) ESI+ found 462.1756 [M+H]+ calculated for C\textsubscript{26}H\textsubscript{30}N\textsubscript{4}Zn 462.1762.
5.4.66 (Z)-2-((4,5-Dihydro-1H-benzo[g]indol-2-yl)methylene)-4,5-dihydro-2H-benzo[g] indole (113)

Synthesized from 112 using the general deprotection procedure (GP2). The crude material was dissolved in hexane, filtered through basic alumina eluting with hexane:ethyl acetate (91:9), and concentrated in vacuo to give a purple solid (22 mg, 51%). δ_H (500 MHz, CDCl$_3$) 9.68 (bs, 1H), 7.85 (d, $J = 7.5$, 2H), 7.41-7.37 (m, 2H), 7.28-7.27 (m, 4H), 6.75 (s, 1H), 6.64 (s, 2H), 2.98 (t, $J = 7.5$, 4H), 2.84 (t, $J = 7.5$, 4H); δ_C (125 MHz, CDCl$_3$) 150.8, 141.8, 138.7, 130.0, 129.7, 128.7, 128.5, 127.1, 123.6, 122.8, 122.2, 29.8, 22.2; m/z ESI$^+$ found 349.1699 [M+H]$^+$ calculated for C$_{25}$H$_{21}$N$_2$ 349.1705.

5.4.67 (Z)-1-(2-((4-Ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)-2,2,2-trifluoroethanol (115)

Synthesized from 114 using the general deprotection procedure (GP2). The crude material was dissolved in hexane, filtered through basic alumina eluting with ethyl acetate:hexane (1:1), and concentrated in vacuo to give a yellow solid (41 mg, 93%). δ_H (500 MHz, CDCl$_3$) 6.66 (s, 1H), 5.30 (bs, 1H), 4.98 (q, $J = 7.0$, 1H), 2.36 (q, $J = 7.5$, 2H), 2.35 (s, 3H), 2.31 (s, 3H), 2.22 (s, 3H), 2.12 (s, 3H), 1.06 (t, $J = 7.5$, 3H); δ_H (125 MHz, CDCl$_3$) 164.0, 141.8, 138.0, 134.9, 130.6, 126.4, 124.2, 116.1, 115.5, 67.6 (q, $J_{CF} = 34$), 29.9, 18.1, 16.0, 14.6, 13.9, 10.0, 9.7; m/z ESI$^+$ found 327.1687 [M+H]$^+$ calculated
5.4.68 8-Benzyl-2,6-diethyl-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (116)

Synthesized from 117HCl11 using the general \textit{F}-BODIPY procedure (GP1) to give 116 as a bright orange solid (219 mg, 85\%). m.p. = 246-248 °C; δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.31-7.20 (m, 5H), 4.39 (s, 2H), 2.55 (s, 6H), 2.35 (q, J = 7.5, 4H), 2.07 (s, 6H), 1.02 (t, J = 7.5, 6H); δ\textsubscript{C} (125 MHz, CDCl\textsubscript{3}) 153.0, 139.2, 137.2, 136.7, 132.7, 132.2, 129.0, 127.9, 126.6, 34.0, 17.2, 14.9, 13.1, 12.6; δ\textsubscript{B} (160 MHz, CDCl\textsubscript{3}) 0.65 (t, J\textsubscript{BF} = 32); m/z ESI+ found 417.2284 [M+Na]+ calculated for C\textsubscript{24}H\textsubscript{29}BF\textsubscript{2}N\textsubscript{2} 417.2290.

5.4.69 (Z)-3-Ethyl-5-(1-(4-ethyl-3,5-dimethyl-2\textsubscript{H}-pyrrol-2-ylidene)-2-phenylethyl)-2,4-dimethyl-1\textsubscript{H}-pyrrole hydrochloride (117)

\textit{F}-BODIPY 116 (50 mg, 0.13 mmol) and potassium tert-butoxide (85 mg, 0.76 mmol) were suspended in tert-butanol (15 mL) in a QXP vessel. The mixture was heated in the microwave for 40 min. (Power = 600 W, ramp time = 2 min, ramp to temperature = 92 °C, hold time = 40 min, stirring = medium). The reaction mixture was allowed to cool to room temperature, diluted with diethyl ether (25 mL) and poured onto a 1 M HCl solution (75 mL). The layers were separated and the aqueous layer was extracted with
diethyl ether (3 x 20 mL). The combined organic fractions were dried over anhydrous sodium sulfate and the solvent was removed in vacuo to give 117 as an orange solid (43 mg, 88%). \(\delta_H \) (500 MHz, CDCl\(_3\)) 12.2 (bs, 2H), 7.15 (d, \(J = 7.5 \), 2H), 7.07 (t, \(J = 7.5 \), 2H), 7.00 (t, \(J = 7.5 \), 1H), 4.66 (s, 2H), 2.38 (s, 6H), 2.33 (q, \(J = 7.5 \), 4H), 2.0 (s, 6H), 1.02 (t, \(J = 7.5 \), 6H); \(\delta_C \) (125 MHz, CDCl\(_3\)) 150.0, 147.7, 138.6, 137.3, 132.3, 131.3, 128.8, 128.2, 126.0, 40.0, 17.6, 14.5, 12.4, 12.2; \(m/z \) ESI\(^+\) found 347.2482 [M+H]\(^+\) calculated for C\(_{24}\)H\(_{31}\)N\(_2\) 347.2487. The \(^{13}\)C and \(^1\)H NMR spectrum show that residual tBuOH is present. Attempts to remove the tBuOH resulted in the formation of the vinylic bipyrrrole 120 (as shown below). \(\delta_H \) (500 MHz, CDCl\(_3\)) 7.61 (bs, 1H), 7.40 (bs, 1H), 7.19-7.00 (m, 5H), 6.45 (s, 1H), 2.48-2.34 (m, 4H), 2.18 (s, 3H), 2.16 (s, 3H), 2.04 (s, 3H), 1.60 (s, 3H), 1.11 (t, \(J = 7.5 \), 3H), 1.06 (t, \(J = 7.5 \), 3H).

![image of 120]

5.4.70 2,6-Diethyl-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (118)

Synthesized from 119HCl\(^{111}\) using the general F-BODIPY procedure (GP1) to give 118 as a bright orange solid (231 mg, 89%). m.p. = 209-211 °C; \(\delta_H \) (500 MHz, CDCl\(_3\)) 2.56 (s, 3H), 2.45 (s, 6H), 2.35 (q, \(J = 7.5 \), 4H), 2.29 (s, 6H), 1.00 (t, \(J = 7.5 \), 6H); \(\delta_C \) (125 MHz, CDCl\(_3\)) 150.0, 147.7, 138.6, 137.3, 132.3, 131.3, 128.8, 128.2, 126.0, 40.0, 17.6, 14.5, 12.4, 12.2; \(m/z \) ESI\(^+\) found 415.2431 [M+H]\(^+\) calculated for C\(_{24}\)H\(_{31}\)N\(_2\)F\(_2\) 415.2431.
17.8 MHz, CDCl₃) 152.0, 139.9, 136.5, 132.6, 131.9, 17.4, 17.2, 15.1, 14.6, 12.6; δₜ (160 MHz, CDCl₃) 0.46 (t, J = 32); m/z ESI⁺ found 341.1971 [M+Na]⁺ calculated for C₁₈H₂₅BF₂N₂Na 341.1977.

5.4.71 (Z)-3-Ethyl-5-(1-(4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)-2-methyl)-2,4-dimethyl-1H-pyrrole hydrochloride (119)

BODIPY 118 (50 mg, 0.16 mmol) and potassium tert-butoxide (106 mg, 0.94 mmol) were suspended in tert-butanol (15mL) in a QXP vessel. The mixture was heated in the microwave for 40 min. (Power = 600 W, ramp time = 2 min, ramp to temperature = 92 °C, hold time = 40 min, stirring = medium). The reaction mixture was allowed to cool to room temperature, diluted with diethyl ether (25 mL) and poured onto a 1 M HCl solution (75 mL). The layers were separated and the aqueous layer was extracted with diethyl ether (3 x 20 mL). The combined organic layers were dried over anhydrous sodium sulfate and the solvent was removed in vacuo to give 119 as an orange solid (41 mg, 85%). δₕ (500 MHz, CDCl₃) 12.40 (bs, 2H), 2.78 (s, 3H), 2.49 (s, 6H), 2.37 (q, J = 7.5, 4H), 2.05 (s, 6H), 1.04 (t, J = 7.5, 6H); δₐ (125 MHz, CDCl₃) 149.1, 146.9, 136.9, 132.0, 131.5, 24.0, 17.6, 14.6, 12.43, 12.40; m/z ESI⁺ found 271.2169 [M+H]⁺ calculated for C₁₈H₂₈N₂ 271.2174.
5.4.72 2,6-Diethyl-4,4’-dimethoxy-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene (121)

\[
\text{\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\end{array}
\]
}\]

Compound 121 was synthesized using a modified literature procedure. Sodium methoxide (46 mg, 0.81 mmol) was added to a solution of 104 (50 mg, 0.13 mmol) in methanol (5 mL) and the reaction mixture was stirred at reflux temperature for 18 h. The reaction mixture was then poured into water (20 mL) and extracted with ethyl acetate (20 mL). The organic layer was washed with water (2 x 20 mL) and the combined organic layers were dried over sodium sulfate and concentrated \textit{in vacuo} to give 121 as an orange crystalline solid (52 mg, 100%). m.p. = 149-151 °C; \(\delta_{\text{H}}\) (500 MHz, CDCl3) 7.48-7.45 (3H, m), 7.32-7.28 (2H, m), 2.94 (6H, s), 2.53 (6H, s), 2.32 (4H, q, \(J = 7.5\)), 1.29 (6H, s), 1.00 (6H, t, \(J = 7.5\)); \(\delta_{\text{C}}\) (125 MHz, CDCl3) 154.0, 140.1, 136.6, 136.3, 132.3, 128.9 (2C), 128.6, 128.5, 49.2, 17.2, 14.8, 12.3, 11.8; \(\delta_{\text{B}}\) (160 MHz, CDCl3) 2.46 (s); \textit{m/z} ESI+ found 427.2527 [M+Na]+ calculated for C\textsubscript{25}H\textsubscript{33}BN\textsubscript{2}O\textsubscript{2}Na 427.2533.

5.4.73 2,6-Diethyl-4,4’-dimethoxy-1,3,5,7-tetramethyl-8\(H\)-4-bora-3a,4a-diaza-s-indacene (122)

\[
\text{\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{H} \\
\end{array}
\]
}\]

Compound 122 was synthesized using a modified literature procedure. Sodium methoxide (145 mg, 2.68 mmol) was added to a solution of 108 (129 mg, 0.42 mmol) in
methanol (10 mL) and the reaction mixture was stirred at reflux temperature for 18 h.

The reaction mixture was then poured into water (20 mL) and extracted with ethyl acetate (20 mL). The organic layer was washed with water (2 x 20 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo to give 122 as an orange crystalline solid (130 mg, 98%). m.p. = 138-140 °C; δ_H (500 MHz, CDCl₃) 6.90 (s, 1H), 2.84 (s, 6H), 2.47 (s, 6H), 2.38 (q, J = 7.5, 4H), 2.17 (s, 6H), 1.06 (t, J = 7.5, 6H); δ_C (125 MHz, CDCl₃) 154.9, 134.6, 133.8, 131.2, 118.4, 49.3, 17.5, 14.9, 12.3, 9.5; δ_B (160 MHz, CDCl₃) 2.66 (s); m/z ESI⁺ found 351.2214 [M+Na]⁺ calculated for C₁₀H₂₉BN₂O₂Na 351.2220.

5.4.74 2,6-Diethyl-4-fluoro-4-methoxy-1,3,5,7-tetramethyl-8H-4-bora-3a,4a-diaza-s-indacene (123)

Compound 123 was synthesized using a modified literature procedure. Sodium methoxide (18 mg, 0.33 mmol) was added to a solution of 108 (100 mg, 0.33 mmol) in methanol (10 mL) and the reaction mixture was stirred at reflux temperature for 18 h. The reaction mixture was then poured into water (20 mL) and extracted with ethyl acetate (20 mL). The organic layer was washed with water (2 x 20 mL) and the combined organic layers were dried over sodium sulfate and concentrated in vacuo. Purification over silica gel eluting with a gradient of ethyl acetate:hexanes (10:90 to 70:30) and removal of the solvent in vacuo gave 123 as an orange crystalline solid (51 mg, 49%). m.p. = 184-185 °C; δ_H (500 MHz, CDCl₃) 6.92 (s, 1H), 2.88 (s, 3H), 2.48 (s, 6H), 2.37 (q, J = 7.5, 4H), 2.16 (s, 6H), 1.05 (t, J = 7.5, 6H); δ_C (125 MHz, CDCl₃) 154.8, 135.8,
133.2, 131.5, 118.6, 49.3 (d, \(J=6.3 \)), 17.5, 14.8, 12.5, 9.5; \(\delta_B \) (160 MHz, CDCl\(_3\)) 1.86 (d, \(J = 25 \)); \(m/z \) ESI\(^+\) found 339.2014 [M+Na]\(^+\) calculated for C\(_{18}\)H\(_{26}\)BFN\(_2\)ONa 339.2020.

5.4.75 2,6-Diethyl-1,3,4,4'\(^-\),5,7-hexamethyl-8\(H\)-4-bora-3a,4a-diaza-s-indacene (124)

Compound 124 was synthesized using a modified literature procedure.\(^{128}\) Methyl magnesium bromide (1.30 mL, 3.0 M, 3.9 mmol) was added to a solution of 104 (250 mg, 0.82 mmol) in anhydrous diethyl ether (25 mL) and the reaction mixture was stirred at reflux temperature for 3 h. The reaction mixture was then poured into water (50 mL) and the layers were separated. The aqueous layer was extracted with diethyl ether (3 x 20 mL) and the combined organic layers were dried over sodium sulfate and concentrated \(\text{in vacuo} \). Purification over silica gel eluting with ethyl acetate:hexanes (17:83) and removal of the solvent \(\text{in vacuo} \) gave 124 as a red crystalline solid (240 mg, 98%). m.p. = 100-102 \(^\circ \)C; \(\delta_H \) (500 MHz, CDCl\(_3\)) 7.00 (s, 1H), 2.43 (s, 6H), 2.40 (q, \(J=7.5, \) 4H), 2.18 (s, 6H), 1.07 (t, \(J=7.5, \) 6H), 0.20 (s, 6H); \(\delta_C \) (125 MHz, CDCl\(_3\)) 151.6, 132.3, 131.2, 130.7, 119.2, 17.8, 14.9, 14.2, 9.3 (1 CH\(_3\) missing (BCH\(_3\))); \(\delta_B \) (160 MHz, CDCl\(_3\)) -0.54 (s); \(m/z \) ESI\(^+\) found 319.2316 [M+Na]\(^+\) calculated for C\(_{19}\)H\(_{29}\)BN\(_2\)Na 319.2321.

5.4.76 (125)BF\(_2\) (126)
Triethylamine (0.09 mL, 0.66 mmol) was added to a solution of 12529 (48 mg, 0.11 mmol) in dry dichloromethane, under a nitrogen atmosphere and the resulting reaction mixture was stirred for 10 min. BF$_3$•OEt$_2$ (0.10 mL, 0.99 mmol) was added slowly and the resulting mixture was stirred at room temperature for 18 h. The reaction mixture was poured into an aqueous 1 M solution of HCl (20 mL) and extracted with dichloromethane (20 mL). The organic layer was washed with an aqueous 1 M solution of HCl (3 x 20 mL), dried over sodium sulfate and concentrated \textit{in vacuo}. Purification over silica gel eluting with a solvent gradient of ethyl acetate:hexanes (1:1 to 4:1) and removal of the solvent \textit{in vacuo} gave 126 as a purple, crystalline solid (32 mg, 0.07 mmol, 60%). m.p. = 169-170 °C; δ\textsubscript{H} (500 MHz, CDCl$_3$) 10.49 (1H, bs), 7.20-7.18 (1H, m), 7.15 (1H, s), 6.99-6.97 (1H, m), 6.39-6.37 (1H, m), 6.13 (1H, s), 4.13 (2H, q, J=7), 3.98 (3H, s), 2.78 (3H, s), 2.76 (2H, t, J=7) 2.41 (3H, s), 2.31 (2H, t, J=7), 1.72- 1.65 (4H, m), 1.25 (3H, t, J=7); δ\textsubscript{C} (125 MHz, CDCl$_3$) 197.6, 173.7, 164.3, 151.8, 151.6, 133.8, 129.7, 129.4, 127.3, 126.6, 123.4, 118.9, 114.8, 111.8, 97.3, 60.4, 58.8, 42.8, 34.4, 24.9, 23.8, 15.2, 14.4, 12.6; δ\textsubscript{B} (160 MHz, CDCl$_3$) 1.22 (t, J_{BF}=31); UV/Vis (DCM, 22 °C) λ_{max} (nm) (ε (mol L-1cm-1)): 546 (100 000). m/z ESI$^+$ found 494.2011 [M+Na]$^+$ calculated for C$_{24}$H$_{28}$BF$_2$N$_3$NaO$_4$ 494.2033.

5.4.77 2,6-Diethyl-1,3,5,7-tetramethyl-8\textit{H}-4-bora-3a,4a-diaza-s-indacene (129)

\[n\text{-Butyllithium (0.51 mL of a 0.95 M solution in hexanes, 0.48 mmol) was slowly added}\]
under a nitrogen atmosphere to a round-bottom flask containing a solution of 124 (109 mg, 0.29 mmol) in tetrahydrofuran (15 mL) at -78 °C. The solution was allowed to stir while slowly warming to room temperature over 3 h. At room temperature, a 0.1 M aqueous solution of HCl (7 mL) was added dropwise and the mixture was stirred for 5 min. 2,3-Dichloro-5,6-dicyano-p-benzoquinone (658 mg, 4.8 mmol) was then added and the reaction mixture was stirred for 6 h at room temperature. The reaction mixture was diluted with dichloromethane (75 mL) and water (150 mL). The layers were separated and the organic layer was washed with water (3 x 150 mL). The combined organic layers were dried over anhydrous sodium sulfate and the solvent was removed in vacuo.

Purification over silica gel eluting with a slow gradient of dichloromethane:hexanes (40:60 to 60:40) and removal of the solvent in vacuo gave 129 as a bright orange solid (58 mg, 0.13 mmol, 45%). δH (500 MHz, CDCl3) 10.41 (s, 1H), 3.13-3.15 (m, 2H), 2.86-2.82 (m, 2H), 2.49 (s, 3H), 2.43 (q, J = 7.5, 2H), 2.41 (s, 3H), 2.36 (s, 3H) 1.75-1.54 (m, 4H), 1.12 (t, J = 7.5, 3H), 1.08 (t, J = 7.5, 3H), 1.02 (t, J = 7.5, 3H), 0.34 (s, 6H); δC (125 MHz, CDCl3) 186.1, 159.2, 146.6, 137.33, 137.26, 137.1, 136.6, 134.8, 131.3, 127.2, 33.9, 28.8, 23.3, 18.1, 17.5, 15.2, 14.9, 14.3, 14.2, 13.9, 12.3 (1 signal missing (BCH3)); δB (160 MHz, CDCl3) -1.47 (broad s); m/z ESI+ found 367.2929 [M+H]+ calculated for C23H36BN2O 367.2915.

5.4.78 8-Butyl-2,6-diethyl-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (130)
n-Butyllithium (1.06 mL of a 0.95 M solution in hexanes, 1.1 mmol) was slowly added under a nitrogen atmosphere to a round-bottom flask containing a solution of **108** (100 mg, 0.33 mmol) in tetrahydrofuran (15 mL) at -78 °C (dry ice/acetone bath). The solution was allowed to stir while slowly warming to room temperature. At room temperature, a 0.1 M aqueous solution of HCl (5mL) was added dropwise and the mixture was stirred for 5 min. 2,3-Dichloro-5,6-dicyano-p-benzoquinone (749 mg, 3.3 mmol) was then added and the reaction mixture was allowed to stir for 18 h at room temperature. The reaction mixture was diluted with dichloromethane (75 mL) and water (150 mL). The layers were separated and the organic layer was washed with water (3 x 150 mL). The combined organics were dried over anhydrous sodium sulfate and the solvent was removed *in vacuo*. Purification over silica gel eluting with a slow gradient of dichloromethane:hexanes (20:80 to 60:40) and removal of the solvent *in vacuo* gave **130** as a bright orange solid (72 mg, 0.20 mmol, 61%). m.p. = 159-161 °C; δ_H (500 MHz, CDCl$_3$) 2.99-2.96 (m, 2H), 2.50 (s, 6H), 2.41 (q, $J = 7.5$, 4H), 2.33 (s, 6H), 1.66-1.59 (m, 2H), 1.53 (sextet, $J = 7.5$, 2H), 1.05 (t, $J = 7.5$, 6H), 1.00 (t, $J = 7.5$, 3H); δ_C (125 MHz, CDCl$_3$) 152.0, 145.2, 135.8, 132.6, 131.0, 33.8, 28.3, 23.5, 17.3, 15.0, 13.9, 13.4, 12.5; δ_B (160 MHz, CDCl$_3$) 0.46 (t, $J = 32$); m/z ESI$^+$ found 383.2441 [M+Na]$^+$ calculated for C$_{21}$H$_{31}$BF$_2$N$_2$Na 383.2446.
5.4.79 2,6-Diethyl-1,3,5,7-tetramethyl-4,4′-diphenyl-8H-4-bora-3a,4a-diaza-s-indacene (131)

Phenyl lithium (1.83 mL of a 1.8 M solution in di-n-butyl ether, 3.3 mmol) was slowly added under a nitrogen atmosphere to a round-bottom flask containing a solution of 108 (100 mg, 0.33 mmol) in tetrahydrofuran (15 mL) at -45 °C. The solution was stirred for 30 min and then the cooling bath was removed and the mixture was stirred at room temperature 1 h. A 0.1 M aqueous solution of HCl (5 mL) was added dropwise and the reaction mixture was allowed to stir for 5 min. 2,3-Dichloro-5,6-dicyano-p-benzoquinone (749 mg, 10 mmol) was added and the reaction mixture was allowed to stir for 1 h at room temperature. The reaction mixture was filtered through a pad of neutral alumina, dried over sodium sulfate, and concentrated in vacuo to give a brown oil. Purification over silica gel eluting with ethyl acetate:hexanes (7:93) and removal of the solvent in vacuo gave 131 as a bright orange solid (31 mg, 0.08 mmol, 22%). m.p. = 241-242 °C; δ_H (500 MHz, CDCl3) 7.29-7.16 (m, 10H), 2.32 (q, J = 7.5, 4H), 2.21 (s, 6H), 1.75 (s, 6H), 0.98 (t, J = 7.5, 6H); δ_C (125 MHz, CDCl3) 154.0, 134.1, 133.9, 133.8, 132.3, 131.6, 127.3, 125.7, 119.5, 17.7, 14.9, 14.4, 9.5; δ_B (160 MHz, CDCl3) 0.18 (t, J = 32); m/z ESI⁺ found 459.2368 [M+K]⁺ calculated for C21H31BF2N2K 459.2374.
5.4.80 2,6-Diethyl-1,3,5,7-tetramethyl-4,4′-diphenyl-8H-4-bora-3a,4a-diaza-s-indacene (131) and 2,6-diethyl-1,3,5,7-tetramethyl-4,4′,8-triphenyl-4-bora-3a,4a-diaza-s-indacene (132)

Phenyl lithium (4.6 mL of a 1.8 M solution in di-\textit{n}-butyl ether, 8.2 mmol) was slowly added under a nitrogen atmosphere to a round-bottom flask containing a solution of 108 (250 mg, 0.82 mmol) in diethyl ether (15 mL) at 25 °C. The solution was stirred at room temperature for 18 h. Methanol (5 mL) was added dropwise and the reaction mixture was concentrated \textit{in vacuo} to give an orange oil. Purification over silica gel eluting with ethyl acetate:hexanes (4:96) and removal of the solvent \textit{in vacuo} gave a mixture of 131 and 132 as an orange solid (131: 28 mg, 0.06 mmol, 7%, and 132: 142 mg, 0.24 mmol, 29%).

δ\textsubscript{H} (500 MHz, CDCl\textsubscript{3}) 7.49-7.47 (m, 3H, 132), 7.42-7.40 (m, 4H, 132), 7.36-7.34 (m, 2H, 131 and 132), 7.30-7.16 (m, 8.5H, 131 and 132), 7.13 (s, 0.20H, 131), 2.33 (q, J = 7.0, 0.84H, 131), 2.22 (m, J = 7, 5H, 131 and 132), 1.77-1.76 (m, 6.7H, 131 and 132), 1.31 (s, 6H, 132), 0.99 (t, J = 7, 1.3H, 131), 0.90 (t, J = 7, 6H, 132); δ\textsubscript{13C} (125 MHz, CDCl\textsubscript{3}) 154.03, 153.97, 140.9, 140.8, 137.1, 135.4, 134.1, 133.9, 133.8, 132.9, 131.6, 130.9, 129.0, 128.9, 128.5, 127.29, 127.26, 125.7, 125.6, 119.5, 17.7, 17.5, 14.91, 14.89, 14.7, 14.5, 12.1, 9.5 (2 C missing (BC 131 and BC 132)); δ\textsubscript{B} (160 MHz, CDCl\textsubscript{3}) -0.34 (broad s); m/z
ESI\(^{+}\) [M+Na]\(^+\) 443.3, 519.3. Although this mixture could not be separated, assignments are based on those of a pure sample of C-BODIPY 131.

5.4.81 4-Bora-3a,4a-diaza-s-indacene (133)\(^{159-161}\)

\[
\begin{align*}
\text{N} & & \text{N} \\
\text{B} & & \text{F} & & \text{F}
\end{align*}
\]

A suspension of 2,3,5,6-tetrachloro-p-benzoquinone (173 mg, 0.55 mmol) in dichloromethane (10 mL) under a nitrogen atmosphere was added dropwise to a stirred solution of 134\(^{162}\) (73 mg, 0.50 mmol) in dichloromethane (15 mL) at -40 °C under nitrogen. Once the addition was complete, the solution was stirred at -40 °C for 3 h. Diisopropylethylamine (0.52 mL, 3.0 mmol) was added dropwise to the reaction mixture and the solution was stirred 1 h at -40 °C. BF\(_3\)·OEt\(_2\) (0.50 mL, 4.5 mmol) was added dropwise to the reaction mixture and the solution was stirred for 18 h while warming to room temperature. The reaction mixture was filtered through Celite and the solvent was removed \textit{in vacuo}. The crude solid was purified over silica gel eluting with ethyl acetate:hexanes (3:7) and concentrated \textit{in vacuo} to give 133 as a red solid (70 mg, 0.36 mmol, 73%). m.p. = 156-157 °C; \(\delta\)\(_H\) (500 MHz, CDCl\(_3\)) 7.90 (s, 2H), 7.42 (s, 1H), 7.16 (d, \(J = 4.0\), 2H), 6.55 (d, \(J = 4.5\), 2H); \(\delta\)\(_C\) (125 MHz, CDCl\(_3\)) 145.2, 135.0, 131.5, 131.4, 118.9. The \(^{13}\)C NMR data matches (within 0.1 ppm) the data reported for the compound.\(^{159}\) \(\delta\)\(_B\) (160 MHz, CDCl\(_3\)) 0.15 (t, \(J_{BF} = 30\)); \(m/\ell\) ESI\(^+\) found 215.0564 [M+Na]\(^+\) calculated for C\(_9\)H\(_7\)BF\(_2\)N\(_2\)Na 215.0568.
5.4.82 Di(1H-pyrrol-2-yl)methane (134)\(^{162}\)

![Chemical Structure](image)

Compound 134 was synthesized using a modification of a literature procedure.\(^{162}\) Paraformaldehyde (216 mg, 7.2 mmol) was added to a stirred solution of pyrrole (20 mL, 288 mmol) in methanol (10 mL) and acetic acid (30 mL) under nitrogen. The solution was stirred for 20 h at room temperature and then poured onto dichloromethane (100 mL). A saturated solution of sodium bicarbonate was added to adjust the pH to neutral and the layers were separated. The organic layer was washed with an aqueous saturated sodium bicarbonate solution (3 x 75 mL), dried over sodium sulfate and concentrated \textit{in vacuo} to give an off-white solid. Purification over neutral alumina gave 134 as a white solid (434 mg, 2.97 mmol, 41%). m.p. = 73-74 °C (lit 73-74);\(^{162}\) \(\delta_H\) (500 MHz, CDCl\(_3\)) 7.67 (1H, bs), 6.63-6.62 (1H, m), 6.19-6.17 (1H, m), 6.07-6.05 (1H, m), 3.95 (2H, s); \(\delta_C\) (125 MHz, CDCl\(_3\)) 129.2, 117.4, 108.4, 106.6, 26.4; The \(^{13}C\) NMR data matches (within 0.2 ppm) the reported data for the compound. \(m/z\) ESI\(^+\) found 169.0736 [M+Na]\(^{+}\) calculated for C\(_9\)H\(_{10}\)N\(_2\)Na 169.0736.

5.4.83 2-Ethyl-1,3-dimethyl-8\(H\)-4-bora-3a,4a-diaza-s-indacene (135)\(^{158}\)

![Chemical Structure](image)

Synthesized from 2-ethyl-1,3,7,9-tetramethyldipyrrromethene hydrobromide\(^{192}\) using the general F-BODIPY procedure (GP1) to give 135 as a bright red solid (196 mg, 89%). m.p. = 134-136 °C; \(\delta_H\) (500 MHz, CDCl\(_3\)) 7.57 (s, 1H), 7.11 (s, 1H), 6.84 (d, \(J = 4.0\), 1H) 6.39-6.37 (m, 1H), 2.56 (s, 3H), 2.39 (q, \(J = 7.5\), 2H), 2.16 (s, 3H), 1.07 (t, \(J = 7.5\), 3H).
δ_C (125 MHz, CDCl₃) 163.4, 141.2, 137.8, 136.2, 134.9, 132.4, 125.3, 123.6, 115.6, 17.3, 13.4, 14.3, 9.5. The \(^{13} \text{C}\) NMR data matches (within 0.03 ppm) the data reported for the compound.\(^{158}\) δ_B (160 MHz, CDCl₃) 0.42 (t, \(J = 32\)); \(m/z\) ESI\(^{+}\) found 271.1178 [M+Na]\(^+\) calculated for C\(_{13}\)H\(_{15}\)BF\(_2\)N\(_2\) Na 271.1194.

5.4.84 8-Butyl-4-bora-3a,4a-diaza-s-indacene (136)

\(n\)-Butyllithium (1.9 mL of a 1.6 M solution in hexanes, 3.1 mmol) was slowly added under a nitrogen atmosphere to a round-bottom flask containing a solution of 133 (60 mg, 0.31 mmol) in tetrahydrofuran (10 mL) at -78 °C. The solution was stirred while slowly warming to -30 °C. At -30 °C, methanol (2 mL) was added dropwise followed by a 0.1 M aqueous solution of HCl (2 mL) and the mixture was stirred for 10 min. The flask was removed from the cooling bath and 2,3-dichloro-5,6-dicyano-p-benzoquinone (541 mg, 2.4 mmol) was added and the reaction mixture was stirred for 3 h at room temperature. The reaction mixture was diluted with dichloromethane (75 mL) and water (150 mL). The layers were separated and the organic layer was washed with water (3 x 150 mL), dried over anhydrous sodium sulfate and the solvent was removed \textit{in vacuo}. Filtration through a pad of silica eluting with dichloromethane, purification over silica gel eluting with dichloromethane:hexanes (1:1) and removal of the solvent \textit{in vacuo} gave 136 as an orange solid (20 mg, 0.08 mmol, 26%). m.p. = 156 °C dec.; δ_H (500 MHz, CDCl₃) 7.85
(s, 2H), 7.27-7.28 (m, 2H), 6.53-6.54 (m, 2H), 2.95-2.92 (m, 2H), 1.81-1.75 (m, 2H), 1.47 (sextet, $J = 7.5$, 2H), 0.97 (t, $J = 7.5$, 3H); δ_C (125 MHz, CDCl$_3$) 151.4, 143.4, 135.3, 127.9, 118.1, 36.1, 31.3, 23.3, 13.9; δ_B (160 MHz, CDCl$_3$) 0.02 (t, $J_{BF} = 30$); m/z ESI$^+$ found 271.1178 [M+Na]$^+$ calculated for C$_{13}$H$_{15}$BF$_2$N$_2$Na 271.1194.

5.4.85 8-Butyl-2-ethyl-1,3-dimethyl-4-bora-3a,4a-diaza-s-indacene (137)

n-Butyllithium (2.5 mL of a 1.6 M solution in hexanes, 4.0 mmol) was slowly added under a nitrogen atmosphere to a round-bottom flask containing a solution of 135 (100 mg, 0.40 mmol) in tetrahydrofuran (15 mL) at -78 °C (dry ice/acetone bath). The solution was stirred while slowly warming to -30 °C. At -30 °C, methanol (2.5 mL) was added dropwise followed by a 0.1 M aqueous solution of HCl (2.5 mL) and the mixture was stirred for 15 min. The mixture was removed from the cooling bath and 2,3-Dichloro-5,6-dicyano-p-benzoquinone (700 mg, 7.7 mmol) was added and the reaction mixture was allowed to stir for 3 h at room temperature. The reaction mixture was diluted with dichloromethane (75 mL) and water (150 mL). The layers were separated and the organic layer was washed with water (3 x 150 mL). The combined organics were dried over anhydrous sodium sulfate and the solvent was removed in vacuo. Purification over silica gel eluting with ethyl acetate:hexanes (25:75) and removal of the solvent in vacuo gave 137 as a red solid (51 mg, 0.17 mmol, 42%). m.p. = 85-86 °C; δ_H (500 MHz, CDCl$_3$) 7.55 7.54 (m, 1H), 7.00 (d, $J = 3.5$, 1H), 6.40-6.39 (m, 1H), 2.93-2.90 (m, 2H), 2.57 (s, 3H), 1.47 (sextet, $J = 7.5$, 2H), 0.97 (t, $J = 7.5$, 3H); δ_C (125 MHz, CDCl$_3$) 151.4, 143.4, 135.3, 127.9, 118.1, 36.1, 31.3, 23.3, 13.9; δ_B (160 MHz, CDCl$_3$) 0.02 (t, $J_{BF} = 30$); m/z ESI$^+$ found 271.1178 [M+Na]$^+$ calculated for C$_{13}$H$_{15}$BF$_2$N$_2$Na 271.1194.
2.42 (q, J = 7.5, 2H), 2.34 (s, 3H), 1.71-1.65 (m, 2H), 1.52 (sextet, J = 7.5, 2H), 1.06 (t, J = 7.5, 3H), 0.98 (t, J = 7.5, 3H); δc (125 MHz, CDCl3) 160.6, 145.9, 140.2, 136.3, 135.5, 133.8, 133.6, 122.3, 115.0, 34.9, 29.6, 23.5, 17.2, 14.6, 13.9, 13.3, 13.2; δh (160 MHz, CDCl3) 0.20 (t, J = 32); m/z ESI+ found 327.1815 [M+Na]+ calculated for C17H23BF2N2Na 327.1820.

5.4.86 2-Ethyl-1,3-dimethyl-4,4′-diphenyl-8H-4-bora-3a,4a-diaza-s-indacene (138) and 2-ethyl-1,3-dimethyl-4,4′,8-triphenyl-4-bora-3a,4a-diaza-s-indacene (139)

Phenyllithium (2.2 mL of a 1.8 M solution in di-n-butyl ether, 4.0 mmol) was slowly added under a nitrogen atmosphere to a round-bottom flask containing a solution of 135 (100 mg, 0.40 mmol) in tetrahydrofuran (15 mL) at -45 °C. The solution was stirred for 30 min and then the cooling bath was removed and the mixture was stirred at room temperature for 1 h. A 0.1 M aqueous solution of HCl (5 mL) was added dropwise and the reaction mixture was stirred for 5 min. 2,3-Dichloro-5,6-dicyano-p-benzoquinone (908 mg, 10 mmol) was added and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was filtered through a pad of neutral alumina, dried over sodium sulfate, and concentrated in vacuo to give a brown oil. Purification over silica gel eluting with ethyl acetate:hexanes (2:98) and removal of the solvent in vacuo gave a mixture of 138 and 139 as a bright orange solid. The mixture was purified over
silica gel eluting with a gradient of ethyl acetate:hexanes (0:100 to 2:98) and concentrated in vacuo to give a mixture of 138 and 139 as a bright orange solid (138: 14 mg, 0.04 mmol, 10% and 139: 10 mg, 0.02 mmol, 6%). The mixture of 138 and 139 was again purified over silica eluting with a gradient of hexanes to ethyl acetate:hexanes (0:100 to 2:98) and the pure fractions concentrated in vacuo to give 138 as an orange solid and 139 as an orange solid.

2-Ethyl-1,3-dimethyl-4,4′-diphenyl-8H-4-bora-3a,4a-diaza-s-indacene (138)

\[
\begin{align*}
\text{m.p.} &= 203-204 \, ^\circ\text{C}; \\
\delta_H (500 \text{ MHz, CDCl}_3) &= 7.29 (s, 1H), 7.23-7.14 (m, 11H), 6.89 (d of d, J = 1.0, 4.0, 1H), 6.31 (d of d, J = 1.0, 4.0, 1H), 2.41 (q, J = 7.5, 2H), 2.26 (s, 3H), 1.84 (s, 3H), 1.06 (t, J = 7.5, 3H); \\
\delta_C (125 \text{ MHz, CDCl}_3) &= 139.6, 138.0, 136.1, 134.2, 133.3, 132.0, 127.4, 126.0, 124.3, 123.6, 114.9, 105.6, 17.7, 15.0, 14.7, 9.6 (1 \text{ C missing; BC}); \\
\delta_B (160 \text{ MHz, CDCl}_3) &= 0.19 (\text{broad s}); m/z \text{ ESI}^+ \text{ found } 387.1985 \text{ [M+Na]}^+ \text{ calculated for } C_{25}H_{25}BN_2Na 387.2003.
\end{align*}
\]

2-Ethyl-1,3-dimethyl-4,4′,8-triphenyl-4-bora-3a,4a-diaza-s-indacene (139)

\[
\begin{align*}
\text{m.p.} &= 203-204 \, ^\circ\text{C}; \\
\delta_H (500 \text{ MHz, CDCl}_3) &= 7.29 (s, 1H), 7.23-7.14 (m, 11H), 6.89 (d of d, J = 1.0, 4.0, 1H), 6.31 (d of d, J = 1.0, 4.0, 1H), 2.41 (q, J = 7.5, 2H), 2.26 (s, 3H), 1.84 (s, 3H), 1.06 (t, J = 7.5, 3H); \\
\delta_C (125 \text{ MHz, CDCl}_3) &= 139.6, 138.0, 136.1, 134.2, 133.3, 132.0, 127.4, 126.0, 124.3, 123.6, 114.9, 105.6, 17.7, 15.0, 14.7, 9.6 (1 \text{ C missing; BC}); \\
\delta_B (160 \text{ MHz, CDCl}_3) &= 0.19 (\text{broad s}); m/z \text{ ESI}^+ \text{ found } 387.1985 \text{ [M+Na]}^+ \text{ calculated for } C_{25}H_{25}BN_2Na 387.2003.
\end{align*}
\]
m.p. = 155-156 °C; δ_H (500 MHz, CDCl$_3$) 7.48-7.46 (m, 3H), 7.39-7.37 (m, 2H), 7.28-7.23 (m, 8H, overlaps with CHCl$_3$ solvent signal), 7.21-7.17 (m, 3H), 6.36 (d of d, $J = 1.0, 4.0$, 1H), 6.24 (d of d, $J = 1.0, 4.0$, 1H), 2.34 (q, $J = 7.5$, 2H), 1.85 (s, 3H), 1.50 (s, 3H), 1.00 (t, $J = 7.5$, 3H); δ_C (125 MHz, CDCl$_3$) 160.3, 142.4, 139.2, 139.0, 135.6, 135.4, 134.2, 133.5, 133.3, 129.2, 128.9, 128.3, 127.4, 125.9, 124.1, 114.6, 17.6, 15.3, 14.7, 12.7 (1 C missing; BC); δ_B (160 MHz, CDCl$_3$) - 0.09 (broad s); $\text{m/z ESI}^+ \text{ found } 463.2288$ $\text{[M+Na]}^+ \text{ calculated for C}_{31}\text{H}_{29}\text{BN}_2\text{Na } 463.2316$.

5.4.87 4,4′-Diphenyl-8H-4-bora-3a,4a-diaza-s-indacene (140) and 4,4′8-triphenyl-4-bora-3a,4a-diaza-s-indacene (141)

![Diagram of 140 and 141](image)

Phenyl lithium (0.65 mL of a 1.8 M solution in di-n-butyl ether, 1.2 mmol) was slowly added under a nitrogen atmosphere to a round-bottom flask containing a solution of 133 (56 mg, 0.29 mmol) in tetrahydrofuran (11 mL) at -45 °C. The solution was stirred for 30 min and then the cooling bath was removed and the mixture was stirred at room temperature 1 h. A 0.1 M aqueous solution of HCl (4 mL) was added dropwise and the reaction mixture was stirred for 5 min. 2,3-Dichloro-5,6-dicyano-p-benzoquinone (658 mg, 10 mmol) was added and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was filtered through a pad of neutral alumina, dried over sodium sulfate, and concentrated in vacuo to give a brown oil. Filtration through silica gel eluting with ethyl acetate:hexanes (15:85), purification over silica eluting with a
slow gradient of ethyl acetate:hexanes (1:99 to 3:97) and concentration in vacuo gave a mixture of 140 (3.4 mg, 0.01 mmol, 4%) and 141 (2.1 mg, 0.005 mmol, 2%) as an orange solid. \(\delta_H \) (500 MHz, CDCl\(_3\)) 7.55-7.54 (m, 1H), 7.52-7.51 (m, 0.5H), 7.50-7.49 (m, 0.5H), 7.40-7.39 (m, 0.5H), 7.31 (d, \(J = 4 \), 0.50H), 7.25-7.17 (m, 4H), 7.13-7.11 (m, 2H), 7.07-7.01 (m, 6H), 6.91-6.87 (m, 2H), 6.59 (d, \(J = 4.5 \), 0.5H), 6.53 (d of d, \(J = 2.0, 4.0 \), 1H), 6.40 (d of d, \(J = 1.5, 4.0 \), 0.5H); \(\delta_C \) (125 MHz, CDCl\(_3\)) 145.9, 144.5, 136.9, 135.0, 132.8, 132.4, 131.4, 130.6, 129.8, 129.3, 129.2, 128.4, 128.1, 127.6, 127.2, 127.1, 126.4, 126.0, 125.3, 121.2, 117.92, 117.86; \(\delta_H \) (160 MHz, CDCl\(_3\)) 0.80 (broad s); \(m/z \) ESI\(^+\) found 331.1375 [M+Na]\(^+\) calculated for C\(_{21}\)H\(_{17}\)BN\(_2\)Na 331.1382 (140) and found 407.1675 [M+Na]\(^+\) calculated for C\(_{27}\)H\(_{21}\)BN\(_2\)Na 407.1695 (141).

5.4.88 \(\kappa^2-(4,4'-\text{diethyl}-3,3',5,5'-\text{tetramethyldipyrinato}) \) boronium iodide (142I)

To a solution of 4,4'-diethyl-3,3',5,5'-tetramethyldipyrin hydrochloride\(^{183}\) (100 mg, 0.30 mmol) in anhydrous dichloromethane (15 mL) under nitrogen was added triethylamine (0.25 mL, 1.80 mmol) and the solution was stirred for 10 min. Solid BI\(_3\) (1.04 g, 2.70 mmol) was added in parts, slowly, and the resulting solution was stirred for 18 h at room temperature. The reaction mixture was cooled to 0 °C and methanol (4 mL) was added dropwise. The reaction mixture was diluted with dichloromethane (25 mL) and distilled water (25 mL) and the layers were separated. The aqueous layer was extracted with
dichloromethane (2 x 25 mL) and the combined organic fractions were dried over sodium sulfate and concentrated in vacuo to give a red solid. Purification over neutral alumina eluting with a gradient of dichloromethane:methanol (100:0 to 95:5) and removal of the solvent in vacuo gave 142I as a red solid (55 mg, 0.08 mmol, 56%). m.p. = > 300 °C; δH (500 MHz, CD3OD) 7.80 (s, 2H), 2.40 (q, 8H, J=7), 2.35 (s, 12H), 1.75 (s, 12H), 1.01 (t, 12H, J=7); δC (125 MHz, CD3OD) 157.5, 141.2, 136.5, 135.2, 122.4, 17.9, 14.9, 11.6, 9.6. δB (160 MHz, CD3OD) -2.79. UV/Vis (CH3CN) λ (nm), ε (mol L⁻¹ cm⁻¹): 386 (15 600), 531 (57 000). m/z ESI⁺ found 521.3784 [M]+ calculated for C34H46N4B 521.3810. A crystal suitable for X-ray crystallography was obtained from a slow evaporation of a solution of compound 142I in a 1:1 solution of pentane to dichloromethane. Data for 142I: C34H46N4BI, M = 648.48 g, deep-red plate, 0.41 x 0.22 x 0.09 mm³, primitive monoclinic, space group P21/c (#14), a = 10.9061(4) Å, b = 14.5040(5) Å, c = 21.2718(7) Å, V = 3295.91(20) Å³, Z = 4, T = 173(1) K, ρ = 1.307 gcm⁻³, μ(MoKα) = 9.997 cm⁻¹, 25370 reflections (11930 unique, Rint = 0.042), R = 0.0361, Rw = 0.0414, GOF = 1.040.

5.4.89 \(\kappa^2-(4,4'-\text{Diethyl}-3,3',5,5'-\text{tetramethyl-meso-phenyl-dipyrinnato}) \text{boronium iodide (143I)} \)
To a solution of 4,4'-diethyl-3,3',5,5'-tetramethyl-meso-phenyl-dipyrrin (105) (100mg, 0.30 mmol) in anhydrous dichloromethane (15 mL) under nitrogen was added triethylamine (0.25 mL, 1.80 mmol) and the solution was then stirred for 10 min. Solid Bl₃ (1.04 g, 2.70 mmol) was added in parts, slowly, and the resulting solution was stirred for 18 h at room temperature. The reaction mixture was cooled to 0 °C and methanol (4 mL) was added dropwise. The reaction mixture was diluted with dichloromethane (25 mL) and distilled water (25 mL) and the layers were separated. The aqueous layer was extracted with dichloromethane (2 x 25 mL) and the combined organic fractions were dried over sodium sulfate and concentrated in vacuo to give a brown solid. The solid was suspended in methanol, stirred 30 min at room temperature and isolated using suction filtration to give 143I as a brown solid (72 mg, 0.09 mmol, 60%). m.p. = 256-257 °C; δ_H (500 MHz, acetone-d6) 7.70-7.68 (m, 6H), 7.50-7.48 (m, 4H), 2.36 (q, 8H, J=7), 2.06 (s, 12H), 1.46 (s, 12H), 0.93 (t, 12H, J=7). δ_C (125 MHz, acetone-d6) 156.9, 142.8, 141.6, 136.1, 135.4, 134.8, 130.61, 130.58, 128.9, 17.5, 14.9, 12.3, 11.8. δ_B (160 MHz, acetone-d6) 2.41. UV/Vis (CH₃CN) λ (nm), ε (mol L⁻¹.cm⁻¹): 356 (15 200), 514 (63 400). m/z ESI⁺ found 673.4411 [M]⁺ calculated for C₄₆H₅₄BN₄ 673.4436.
CHAPTER 6 Conclusions

The overall goals of this graduate research were to investigate routes to the chemical manipulation of dipyrrins, pyrrolydipyrrins and prodigiosenes. The first project was to investigate the synthesis of a library of prodigiosenes by way of a convergent approach involving the synthesis of a functionalized prodigiosene, with demonstrated anticancer activity, and subsequent functional group interconversion of an ester attached to the prodigiosene core. The second project was to investigate the synthesis of pyrrolyldipyrrinato complexes. The third project was to develop a protection method for pyrrolyldipyrrins using dipyrrins as model compounds.

The first approach involved the synthesis of ethyl ester prodigiosene 1 followed by direct chemical modification to afford derivatives. The first step of this method involved optimization of the synthesis prodigiosene 1: prodigiosene 1 can now routinely be synthesized in six steps with an average overall yield of 34%. Functional group modification of the prodigiosene ethyl ester 1 by hydrolysis followed by esterification or transesterification was the next step. A prodigiosene ethyl ester was successfully generated under microwave promoted transesterification conditions, but the reaction was not applicable to the synthesis of other derivatives. Unfortunately, the hydrolysis approach was also largely unsuccessful predominantly due to the poor stability and solubility of prodigiosene carboxylate 36. Due to this inherent instability, it was concluded that the proposed convergent method, to derivatives of 1, was not suitable for providing access to a library of prodigiosenes with modified ester alkyl groups.

The second project involved the synthesis of new pyrrolyldipyrrinato complexes. A methodology was developed for the synthesis of previously unreported
pyrrolyldipyrrinato tin(IV) complexes. A series of previously unreported pyrrolyldipyrrinato tin complexes have been prepared and the bonding mode in these complexes was determined using X-ray crystallographic analysis of a representative complex. The complexes are all highly fluorescent with quantum yields ranging between 0.23 and 0.61. The series of complexes show increasing quantum efficiencies of fluorescence when the ligand contains an electron-withdrawing group on the C-ring. Substitution on the B-ring has a much smaller effect. Investigations into the biological activity of these derivatives is ongoing and in-house cell-inhibition studies would need to be conducted in order to determine the stability of the Sn-N bonds under the experimental conditions. In the future, the synthesis of other prodigiosene metal complexes should be attempted as there is very little known about these complexes, their binding modes and their biological activity.

The third project was to develop a protection method for pyrrolyldipyrrins using dipyrrins as model compounds. A microwave-promoted methodology has been developed to remove the boron centre from \(F \)-BODIPYs to regenerate the corresponding dipyrrins. This methodology has been successfully applied to a series of \(F \)-BODIPYs to generate the corresponding dipyrrins in high yields, but it is limited to BODIPYs with at least one fluorine substituent on the boron centre. This methodology allows the BF\(_2\) moiety of the \(F \)-BODIPY to be conceptualized as a protecting group for a dipyrrin and could potentially have a widespread use in the synthesis and purification of dipyrrins. The synthesis of the fully unsubstituted \(F \)-BODIPY was optimized and thus it can now be routinely synthesized in high yields of 72\% \pm 6\% (95\% confidence). A methodology to alkylate the meso-position \(F \)-BODIPYs using \(n \)-butyllithium has also been successfully
developed. This method represents an improvement to the current methods used to
generate *meso*-alkylated *F*-BODIPYs and could potentially be extended to other alkyl
lithium reagents to generate a variety of different *meso*-substituted *F*-BODIPYs, with
additional sites for functionalization. Attempts to extend the *meso*-modification
methodology to *meso*-arylation were not successful. Initial attempts to synthesize *X-
BODIPYs from BX₃ sources were made and resulted in the isolation of previously
unreported dipyrrinato boronium cations.

APPENDIX A X-RAY ANALYSIS DATA

APPENDIX A.1 (Z)-Ethyl 2-((4-methoxy-1H,1'H-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate hydrochloride (1)

A. Crystal Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C_{19}H_{22}N_{3}O_{3}Cl</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>375.85</td>
</tr>
<tr>
<td>Crystal Color, Habit</td>
<td>deep red, needle</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.39 X 0.10 X 0.01 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Indexing Images</td>
<td>4 oscillations @ 300.0 seconds</td>
</tr>
<tr>
<td>Detector Position</td>
<td>127.40 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.100 mm</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>a = 7.9121(3) Å</td>
</tr>
<tr>
<td></td>
<td>b = 19.2314(8) Å</td>
</tr>
<tr>
<td></td>
<td>c = 24.6951(10) Å</td>
</tr>
<tr>
<td></td>
<td>V = 3757.6(3) Å³</td>
</tr>
<tr>
<td>Space Group</td>
<td>Pbca (#61)</td>
</tr>
<tr>
<td>Z value</td>
<td>8</td>
</tr>
<tr>
<td>D_{calc}</td>
<td>1.329 g/cm³</td>
</tr>
<tr>
<td>F_{000}</td>
<td>1584.00</td>
</tr>
<tr>
<td>μ(MoKα)</td>
<td>2.268 cm⁻¹</td>
</tr>
</tbody>
</table>
B. Intensity Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71070 Å)</td>
</tr>
<tr>
<td></td>
<td>graphite monochromated</td>
</tr>
<tr>
<td>Data Images</td>
<td>45 exposures</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=0.0)</td>
<td>160.0 - 190.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>360.0 sec./°</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=180.0)</td>
<td>113.8 - 118.8°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>360.0 sec./°</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=0.0)</td>
<td>51.0 - 175.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>360.0 sec./°</td>
</tr>
<tr>
<td>Detector Position</td>
<td>127.40 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.100 mm</td>
</tr>
<tr>
<td>2θmax</td>
<td>60.1°</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 35806</td>
</tr>
<tr>
<td></td>
<td>Unique: 5492 (Rint = 0.224)</td>
</tr>
<tr>
<td>Corrections</td>
<td>Lorentz-polarization</td>
</tr>
<tr>
<td></td>
<td>Absorption</td>
</tr>
<tr>
<td></td>
<td>(trans. factors: 0.773 - 0.998)</td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Structure Solution</th>
<th>Direct Methods (SIR92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinement</td>
<td>Full-matrix least-squares on F</td>
</tr>
<tr>
<td>Function Minimized</td>
<td>$\sum w (</td>
</tr>
<tr>
<td>Least Squares Weights parameters</td>
<td>Chebychev polynomial with 3 parameters 11.2043, -9.0996, 8.5992</td>
</tr>
<tr>
<td>$2\theta_{\text{max}}$ cutoff</td>
<td>52.0°</td>
</tr>
<tr>
<td>Anomalous Dispersion</td>
<td>All non-hydrogen atoms</td>
</tr>
<tr>
<td>No. Observations ($I>3.00\sigma(I)$)</td>
<td>2931</td>
</tr>
<tr>
<td>No. Variables</td>
<td>257</td>
</tr>
<tr>
<td>Reflection/Parameter Ratio</td>
<td>11.40</td>
</tr>
<tr>
<td>Residuals: R ($I>3.00\sigma(I)$)</td>
<td>0.0457</td>
</tr>
<tr>
<td>Residuals: R_w ($I>3.00\sigma(I)$)</td>
<td>0.0426</td>
</tr>
<tr>
<td>Goodness of Fit Indicator</td>
<td>1.134</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum peak in Final Diff. Map</td>
<td>0.74 e$^{-}$/Å3</td>
</tr>
<tr>
<td>Minimum peak in Final Diff. Map</td>
<td>-0.64 e$^{-}$/Å3</td>
</tr>
</tbody>
</table>
APPENDIX A.2 (1)BF₂ (52)

A. Crystal Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C₁₉H₂₀N₃O₃BF₂</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>387.19</td>
</tr>
<tr>
<td>Crystal Color, Habit</td>
<td>dark-red, needle</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.39 X 0.13 X 0.08 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Indexing Images</td>
<td>4 oscillations @ 300.0 seconds</td>
</tr>
<tr>
<td>Detector Position</td>
<td>127.40 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.100 mm</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>7.3029(4) Å</td>
</tr>
<tr>
<td>b</td>
<td>25.1293(11) Å</td>
</tr>
<tr>
<td>c</td>
<td>9.7763(5) Å</td>
</tr>
<tr>
<td>β</td>
<td>97.313(3) °</td>
</tr>
<tr>
<td>V</td>
<td>1779.52(15) Å³</td>
</tr>
<tr>
<td>Space Group</td>
<td>P2₁/c (#14)</td>
</tr>
<tr>
<td>Z value</td>
<td>4</td>
</tr>
<tr>
<td>D<sub>calc</sub></td>
<td>1.445 g/cm³</td>
</tr>
<tr>
<td>F₀₀₀</td>
<td>808.00</td>
</tr>
<tr>
<td>μ(MoKα)</td>
<td>1.116 cm⁻¹</td>
</tr>
</tbody>
</table>
B. Intensity Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71070 Å)</td>
</tr>
<tr>
<td></td>
<td>graphite monochromated</td>
</tr>
<tr>
<td>Data Images</td>
<td>48 exposures</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=0.0)</td>
<td>160.0 - 190.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>540.0 sec./°</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=180.0)</td>
<td>20.0 - 110.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>540.0 sec./°</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=0.0)</td>
<td>22.5 - 112.5°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>540.0 sec./°</td>
</tr>
<tr>
<td>Detector Position</td>
<td>127.40 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.100 mm</td>
</tr>
<tr>
<td>2θ<sub>max</sub></td>
<td>144.5°</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 52752</td>
</tr>
<tr>
<td></td>
<td>Unique: 19174 (R<sub>int</sub> = 0.074)</td>
</tr>
<tr>
<td>Corrections</td>
<td>Lorentz-polarization</td>
</tr>
<tr>
<td></td>
<td>Absorption</td>
</tr>
<tr>
<td></td>
<td>(trans. factors: 0.821 - 0.991)</td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Structure Solution</th>
<th>Direct Methods (SHELX97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinement</td>
<td>Full-matrix least-squares on F</td>
</tr>
<tr>
<td>Function Minimized</td>
<td>$\sum w (</td>
</tr>
<tr>
<td>Least Squares Weights parameters</td>
<td>Chebychev polynomial with 3 parameters: 13.1802, 0.2626, 11.1166</td>
</tr>
<tr>
<td>$2\theta_{\text{max}}$ cutoff</td>
<td>60.0°</td>
</tr>
<tr>
<td>Anomalous Dispersion</td>
<td>All non-hydrogen atoms</td>
</tr>
<tr>
<td>No. Observations ($I>3.00\sigma(I)$)</td>
<td>3160</td>
</tr>
<tr>
<td>No. Variables</td>
<td>333</td>
</tr>
<tr>
<td>Reflection/Parameter Ratio</td>
<td>9.49</td>
</tr>
<tr>
<td>Residuals: R ($I>3.00\sigma(I)$)</td>
<td>0.0441</td>
</tr>
<tr>
<td>Residuals: R_w ($I>3.00\sigma(I)$)</td>
<td>0.0557</td>
</tr>
<tr>
<td>Goodness of Fit Indicator</td>
<td>1.022</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum peak in Final Diff. Map</td>
<td>0.36 $e^/-\AA^3$</td>
</tr>
<tr>
<td>Minimum peak in Final Diff. Map</td>
<td>-0.21 $e^/-\AA^3$</td>
</tr>
</tbody>
</table>
APPENDIX A.3 ((Bu)$_2$(92)Sn(IV) (93)

B. Crystal Data

Empirical Formula \[\text{C}_{29}\text{H}_{38}\text{N}_3\text{O}_4\text{Sn} \]

Formula Weight 611.33

Crystal Color, Habit dark-red, needle

Crystal Dimensions 0.42 X 0.23 X 0.12 mm

Crystal System triclinic

Lattice Type Primitive

Indexing Images 4 oscillations @ 300.0 seconds

Detector Position 127.40 mm

Pixel Size 0.100 mm

Lattice Parameters
\[\begin{align*}
 a &= 12.1339 \text{ Å} \\
 b &= 13.04640(10) \text{ Å} \\
 c &= 19.65300(10) \text{ Å} \\
 \alpha &= 82.876(3) \degree \\
 \beta &= 78.432(3) \degree \\
 \gamma &= 72.742(2) \degree \\
 V &= 2903.79(3) \text{ Å}^3
\end{align*} \]

Space Group P-1 (#2)

Z value 4

\(\text{D}_{\text{calc}} \) 1.398 g/cm\(^3\)

\(F_{000} \) 1260.00

\(\mu(\text{MoK}\alpha) \) 9.167 cm\(^{-1}\)
B. Intensity Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71070 Å)</td>
</tr>
<tr>
<td></td>
<td>graphite monochromated</td>
</tr>
<tr>
<td>Data Images</td>
<td>75 exposures</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=0.0)</td>
<td>20.0 - 200.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>444.0 sec./°</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=180.0)</td>
<td>20.0 - 200.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>444.0 sec./°</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=0.0)</td>
<td>20.0 - 35.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>444.0 sec./°</td>
</tr>
<tr>
<td>Detector Position</td>
<td>127.40 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.100 mm</td>
</tr>
<tr>
<td>2θ_{max}</td>
<td>71.6°</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 106009</td>
</tr>
<tr>
<td></td>
<td>Unique: 22429 (R_{int} = 0.065)</td>
</tr>
<tr>
<td>Corrections</td>
<td>Lorentz-polarization Absorption</td>
</tr>
<tr>
<td></td>
<td>(trans. factors: 0.776 - 0.896)</td>
</tr>
<tr>
<td></td>
<td>Secondary Extinction</td>
</tr>
<tr>
<td></td>
<td>(coefficient: 1.65990e+002)</td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure Solution</td>
<td>Direct Methods (SHELX97)</td>
</tr>
<tr>
<td>Refinement</td>
<td>Full-matrix least-squares on F</td>
</tr>
<tr>
<td>Function Minimized</td>
<td>$\sum w (</td>
</tr>
<tr>
<td>Least Squares Weights</td>
<td>Chebychev polynomial with 3 parameters</td>
</tr>
<tr>
<td>θ_{max} cutoff</td>
<td>52.5°</td>
</tr>
<tr>
<td>Anomalous Dispersion</td>
<td>All non-hydrogen atoms</td>
</tr>
<tr>
<td>No. Observations (I>3.00σ(I))</td>
<td>8120</td>
</tr>
<tr>
<td>No. Variables</td>
<td>696</td>
</tr>
<tr>
<td>Reflection/Parameter Ratio</td>
<td>11.67</td>
</tr>
<tr>
<td>Residuals: R (I>3.00σ(I))</td>
<td>0.0358</td>
</tr>
<tr>
<td>Residuals: Rw (I>3.00σ(I))</td>
<td>0.0439</td>
</tr>
<tr>
<td>Goodness of Fit Indicator</td>
<td>1.082</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum peak in Final Diff. Map</td>
<td>1.01 e⁻/Å³</td>
</tr>
<tr>
<td>Minimum peak in Final Diff. Map</td>
<td>-0.57 e⁻/Å³</td>
</tr>
</tbody>
</table>
APPENDIX A.4 \(\kappa^2-(4,4'\text{-Diethyl}-3,3',5,5'\text{-tetramethyldipyrinato}) \) boronium iodide (142I)

A. Crystal Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>(\text{C}{34}\text{H}{46}\text{N}_4\text{BI})</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>648.48</td>
</tr>
<tr>
<td>Crystal Color, Habit</td>
<td>deep-red, plate</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.41 X 0.22 X 0.09 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Indexing Images</td>
<td>4 oscillations @ 300.0 seconds</td>
</tr>
<tr>
<td>Detector Position</td>
<td>127.40 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.100 mm</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>(a = 10.9061(4)) Å</td>
</tr>
<tr>
<td></td>
<td>(b = 14.5040(5)) Å</td>
</tr>
<tr>
<td></td>
<td>(c = 21.1718(7)) Å</td>
</tr>
<tr>
<td></td>
<td>(\beta = 100.2156(19)) °</td>
</tr>
<tr>
<td></td>
<td>(V = 3295.91(20)) Å³</td>
</tr>
<tr>
<td>Space Group</td>
<td>(\text{P}2_1/c) (#14)</td>
</tr>
<tr>
<td>Z value</td>
<td>4</td>
</tr>
<tr>
<td>(D_{\text{calc}})</td>
<td>1.307 g/cm³</td>
</tr>
<tr>
<td>(F_{000})</td>
<td>1344.00</td>
</tr>
<tr>
<td>(\mu(\text{MoK}\alpha))</td>
<td>9.997 cm(^{-1})</td>
</tr>
</tbody>
</table>
B. Intensity Measurements

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα ((\lambda = 0.71070) Å) graphite monochromated</td>
</tr>
<tr>
<td>Data Images</td>
<td>79 exposures</td>
</tr>
<tr>
<td>(\omega) oscillation Range ((\chi=0.0, \varphi=0.0))</td>
<td>50.0 - 180.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>540.0 sec./°</td>
</tr>
<tr>
<td>(\omega) oscillation Range ((\chi=0.0, \varphi=180.0))</td>
<td>48.5 - 178.5°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>540.0 sec./°</td>
</tr>
<tr>
<td>(\omega) oscillation Range ((\chi=0.0, \varphi=0.0))</td>
<td>47.5 - 182.5°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>540.0 sec./°</td>
</tr>
<tr>
<td>Detector Position</td>
<td>127.40 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.100 mm</td>
</tr>
<tr>
<td>(2\theta_{\text{max}})</td>
<td>71.5°</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 25370</td>
</tr>
<tr>
<td></td>
<td>Unique: 11930 ((R_{\text{int}} = 0.042))</td>
</tr>
<tr>
<td>Corrections</td>
<td>Lorentz-polarization</td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

<table>
<thead>
<tr>
<th>Structure Solution</th>
<th>Direct Methods (SHELX97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinement</td>
<td>Full-matrix least-squares on F</td>
</tr>
<tr>
<td>Function Minimized</td>
<td>(\Sigma w (</td>
</tr>
<tr>
<td>Least Squares Weights</td>
<td>Chebychev polynomial with 3 parameters</td>
</tr>
<tr>
<td></td>
<td>13.0520, -4.8971, 10.6057</td>
</tr>
<tr>
<td>2(\theta_{\text{max}}) cutoff</td>
<td>60.0°</td>
</tr>
<tr>
<td>Anomalous Dispersion</td>
<td>All non-hydrogen atoms</td>
</tr>
<tr>
<td>No. Observations (I>3.00(\sigma(I)))</td>
<td>6538</td>
</tr>
<tr>
<td>No. Variables</td>
<td>373</td>
</tr>
<tr>
<td>Reflection/Parameter Ratio</td>
<td>17.53</td>
</tr>
<tr>
<td>Residuals: R (I>3.00(\sigma(I)))</td>
<td>0.0361</td>
</tr>
<tr>
<td>Residuals: Rw (I>3.00(\sigma(I)))</td>
<td>0.0414</td>
</tr>
<tr>
<td>Goodness of Fit Indicator</td>
<td>1.040</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle</td>
<td>0.000</td>
</tr>
<tr>
<td>Maximum peak in Final Diff. Map</td>
<td>0.67 e(^{-})/Å(^3)</td>
</tr>
<tr>
<td>Minimum peak in Final Diff. Map</td>
<td>-0.49 e(^{-})/Å(^3)</td>
</tr>
</tbody>
</table>
APPENDIX B NMR Data for Synthesized Compounds

APPENDIX B.1 (Z)-Ethyl 2-((4-methoxy-1H,1'H-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate hydrochloride (1)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.2 \(N-((5\text{-Bromo-4-methoxy-2H-pyrrol-2-ylidene})\text{methyl})-N\text{-ethylethanamine} (14) \)\(^{38}\)

\(^1\)H NMR Spectrum in CDCl\(_3\)
APPENDIX B.3 Ethyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate (20)187, 188

1H NMR Spectrum in CDCl$_3$

^{13}C NMR Spectrum in CDCl$_3$
APPENDIX B.4 (Z)-Ethyl-5-((3-methoxy-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (21)²⁹

¹H NMR Spectrum in DMSO-d₆

![¹H NMR Spectrum in DMSO-d₆](image)

¹³C NMR Spectrum in DMSO-d₆

![¹³C NMR Spectrum in DMSO-d₆](image)
APPENDIX B.5 (Z)-ethyl 2-((3-methoxy-5-(trifluoromethylsulfonyloxy)-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (22)²⁹

¹H NMR Spectrum in CDCl₃
APPENDIX B.6 4-(Ethoxycarbonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (24)48

\textbf{\textit{1}H NMR Spectrum in DMSO-\textit{d}_6}

\textbf{\textit{13}C NMR Spectrum in DMSO-\textit{d}_6}
APPENDIX B.7 Ethyl 2,4-dimethyl-1H-pyrrole-3-carboxylate (25)92,

\textbf{1H NMR Spectrum in CDCl\textsubscript{3}}

\textbf{13C NMR Spectrum in CDCl\textsubscript{3}}
APPENDIX B.8 (Z)-Ethyl 5-((4-(ethoxycarbonyl)-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (29)102

\textbf{1H NMR Spectrum in CDCl\textsubscript{3}}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{hnmr_spectrum.png}
\end{figure}

\textbf{13C NMR Spectrum in CDCl\textsubscript{3}}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{cnmr_spectrum.png}
\end{figure}
APPENDIX B.9 Zn\((29)_2\) (30)

\(^1H\) NMR Spectrum in CDCl\(_3\)

\[^{13}C\) NMR Spectrum in CDCl\(_3\)
APPENDIX B.10 5-(Ethoxycarbonyl)-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (32) \(^\text{189}\)

\(^1\)H NMR Spectrum in DMSO-\(d_6\)

\[^{13}\text{C} \text{ NMR Spectrum in DMSO-} d_6\]
APPENDIX B.11 2-Ethyl 4-isopropyl 3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate (33)

1H NMR Spectrum in CDCl$_3$

![NMR spectrum image]

^{13}C NMR Spectrum in CDCl$_3$

![NMR spectrum image]
APPENDIX B.12 2-Ethyl 4-benzyl 3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate (34)\(^ {189} \)

\(^1H \) NMR Spectrum in CDCl\(_3\)

\[\text{Diagram of NMR spectrum} \]

\(^13C \) NMR Spectrum in CDCl\(_3\)

\[\text{Diagram of NMR spectrum} \]
APPENDIX B.13 4-(IsoPropoxycarbonyl)-3,5-dimethyl-1H-pyrrole-2-carboxylic acid (35)

1H NMR Spectrum in CD$_3$OD

^{13}C NMR Spectrum in DMSO-d$_6$
APPENDIX B.14 tert-Butyl 2,4-dimethyl-1H-pyrrole-3-carboxylate (39)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.15 tert-Butyl 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylate (40)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum](image)

^{13}C NMR Spectrum in CDCl$_3$

![^{13}C NMR Spectrum](image)
APPENDIX B.16 (Z)-tert-Butyl 5-((3-methoxy-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (41)

1H NMR Spectrum in DMSO-d_6

13C NMR Spectrum in DMSO-d_6
APPENDIX B.17 (Z)-Methyl 2-((4-methoxy-1H,1'H-2,2'-bipyrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate hydrochloride (44)

\(^{1}H\) NMR Spectrum in CDCl\(_3\)

\(^{13}C\) NMR Spectrum in CDCl\(_3\)
APPENDIX B.18 (Z)-Ethyl 2-((4-methoxy-1,1'-dimethyl-1H,1'H-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (47)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum](image)

13C NMR Spectrum in CDCl$_3$

![13C NMR Spectrum](image)
APPENDIX B.19 (Z)-2-((4-methoxy-1,1'-dimethyl-1H,1'H-2,2'-bipyrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (48)

1H NMR Spectrum in D$_2$O

![NMR Spectrum Image]
APPENDIX B.20 Zn(1)₂ (51)

1H NMR Spectrum in CDCl₃

13C NMR Spectrum in CDCl₃
APPENDIX B.21 (1)BF₂ (52)

\(^1\)H NMR Spectrum in CDCl₃

\(^{13}\)C NMR Spectrum in CDCl₃
APPENDIX B.22 (Z')-Benzyl 5-((3-ethyl-4-methyl-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (56)

1H NMR Spectrum in DMSO-d_6

13C NMR Spectrum in DMSO-d_6
APPENDIX B.23 (Z)-Methyl 5-((3-ethyl-4-methyl-5-oxo-1H-pyrrol-2(5H)-ylidene)methyl)-2,4-dimethyl-1H-pyrrole-3-carboxylate (57)

1H NMR Spectrum in DMSO-d_6

13C NMR Spectrum in DMSO-d_6
APPENDIX B.24 (Z)-Methyl 2-((4-ethyl-3-methyl-1H,1'H-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (58)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.25 Ethyl 4-heptanoyl-3,5-dimethyl-1H-pyrrole-2-carboxylate (60)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.26 Ethyl 3,5-dimethyl-4-octanoyl-1H-pyrrole-2-carboxylate (61)190

\textbf{1H NMR Spectrum in CDCl\textsubscript{3}}

\textbf{13C NMR Spectrum in CDCl\textsubscript{3}}
APPENDIX B.27 Ethyl 3,5-dimethyl-4-tetradecanoyl-1H-pyrrole-2-carboxylate (62)

\[^1H \text{ NMR Spectrum in CDCl}_3 \]

\[^13C \text{ NMR Spectrum in CDCl}_3 \]
APPENDIX B.28 Ethyl 3,5-dimethyl-4-pentadecanoyl-1H-pyrrole-2-carboxylate (63)

1H NMR Spectrum in CDCl$_3$

![NMR spectrum](image1)

^{13}C NMR Spectrum in CDCl$_3$

![NMR spectrum](image2)
APPENDIX B.29 Ethyl 3,5-dimethyl-4-heptyl-1H-pyrrole-2-carboxylate (64)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.30 Ethyl 3,5-dimethyl-4-octyl-1H-pyrrole-2-carboxylate (65)\(^{190}\)

\(^1H\) NMR Spectrum in CDCl\(_3\)

\(^{13}C\) NMR Spectrum in CDCl\(_3\)
APPENDIX B.31 Ethyl 3,5-dimethyl-4-tetradecyl-1H-pyrrole-2-carboxylate (66)¹⁹¹

¹H NMR Spectrum in CDCl₃

¹³C NMR Spectrum in CDCl₃
APPENDIX B.32 Ethyl 3,5-dimethyl-4-pentadecyl-1\textit{H}-pyrrole-2-carboxylate (67)

$^1\text{H NMR Spectrum in CDCl}_3$

$^{13}\text{C NMR Spectrum in CDCl}_3$
APPENDIX B.33 3,5-Dimethyl-4-heptyl-1H-pyrrole-2-carbaldehyde (68)

\[^1H \text{NMR Spectrum in CDCl}_3 \]

\[^13C \text{NMR Spectrum in CDCl}_3 \]
APPENDIX B.34 3,5-Dimethyl-4-octyl-1H-pyrrole-2-carbaldehyde (69)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum](image)

^{13}C NMR Spectrum in CDCl$_3$

![13C NMR Spectrum](image)
APPENDIX B.35 3,5-Dimethyl-4-tetradecyl-1H-pyrrole-2-carbaldehyde (70)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.36 3,5-Dimethyl-4-pentadecyl-1H-pyrrole-2-carbaldehyde (71)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.37 3(Z)-5-(((3,5-Dimethyl-4-ethyl-1H-pyrrol-2-yl)methylene)-4-methoxy-1H-pyrrol-2(5H)-one (73)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum](image)

13C NMR Spectrum in CDCl$_3$

![13C NMR Spectrum](image)
APPENDIX B.38 3(Z)-5-((3,5-dimethyl-4-heptyl-1H-pyrrol-2-yl)methylene)-4-methoxy-1H-pyrrol-2(5H)-one (74)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.39 3(Z)-5-(((3,5-dimethyl-4-octyl-1H-pyrrol-2-yl)methylene)-4-methoxy-1H-pyrrol-2(5H)-one (75)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum in CDCl$_3$](image)

^{13}C NMR Spectrum in CDCl$_3$

![^{13}C NMR Spectrum in CDCl$_3$](image)
APPENDIX B.40 (Z)-4-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3-methyl-1H,1'H-2,2'-bipyrrrole (82)

1H NMR Spectrum in CDCl₃

![1H NMR Spectrum](image1.png)

13C NMR Spectrum in CDCl₃

![13C NMR Spectrum](image2.png)
APPENDIX B.41 (Bu)$_2$(1)Sn(IV)(83)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.42 (Bu)$_2$(84)Sn(IV) (85)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.43 Benzyl 3,5-dimethyl-4-(6-oxoheptanoyl)-1H-pyrrole-2-carboxylate (88)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.44 3,5-Dimethyl-4-(6-oxoheptanoyl)-1H-pyrrole-2-carboxylic acid (89)

$^1\text{H NMR Spectrum in DMSO-d}_6$

$^{13}\text{C NMR Spectrum in DMSO-d}_6$
APPENDIX B.45 1-(2,4-Dimethyl-1H-pyrrol-3-yl)heptane-1,6-dione (90)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.46 3-((1Z,6Z)-1,6-Bis(2-(2,4-dinitrophenyl)hydrazono)heptyl)-2,4-dimethyl-1H-pyrrole (91)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.47 (Z’)-Ethyl 2-((5’-acetyl-4-methoxy-1H,1’H-2,2’-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate (92)

\(^1\)H NMR Spectrum in CDCl\(_3\)

![NMR Spectrum Image]

\(^{13}\)C NMR Spectrum in CDCl\(_3\)

![NMR Spectrum Image]
APPENDIX B.48 \(((\text{Bu})_2(\text{Sn})\text{IV}) (93)\)

$^1\text{H NMR Spectrum in CDCl}_3$

$^{13}\text{C NMR Spectrum in CDCl}_3$
APPENDIX B.49 (Bu)$_2$(94)Sn(IV) (95)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.50 (Bu)2((Z)-Methyl 2-((4-ethyl-3-methyl-1H,1'H-2,2'-bipyrrrol-5-yl)methylene)-3,5-dimethyl-2H-pyrrole-4-carboxylate)Sn(IV) (96)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.51 (Bu)$_2$(82)Sn(IV) (97)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.52 (Ph)$_2$(94)Sn(IV) (98)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.53 (Ph)$_2$(58)Sn(IV) (99)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.54 (Ph)$_2$(82)Sn(IV) (100)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.55 1,3,5,7-Tetramethyl-2,6-diethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene (104)148

\textbf{1H NMR Spectrum in CDCl\textsubscript{3}}

\textbf{13C NMR Spectrum in CDCl\textsubscript{3}}
APPENDIX B.56 (Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole (105)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.57 1,3,5,7-Tetramethyl-2,6-diethyl-8-(4-trifluoromethylphenyl)-4-bora-3a,4a-diaza-s-indacene (106)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum in CDCl$_3$](image)

13C NMR Spectrum in CDCl$_3$

![13C NMR Spectrum in CDCl$_3$](image)
APPENDIX B.58 (Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(4-(trifluoromethyl)phenyl)methyl)-2,4-dimethyl-1H-pyrrole (107)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.59 1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4-bora-3a,4a-diaza-s-indacene (108)116,192

1H NMR Spectrum in CDCl\textsubscript{3}

\[\text{NMR Spectrum Image} \]

13C NMR Spectrum in CDCl\textsubscript{3}

\[\text{NMR Spectrum Image} \]
APPENDIX B.60 1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4-bora-3a,4a-diaza-s-indacene (109)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum](image)

^{13}C NMR Spectrum in CDCl$_3$

![^{13}C NMR Spectrum](image)
APPENDIX B.61 1,3,5,7-Tetramethyl-8-H-4-bora-3a,4a-diaza-s-indacene (110)¹¹⁶

¹H NMR Spectrum in CDCl₃

¹³C NMR Spectrum in CDCl₃
APPENDIX B.62 Zinc[k^2-(3,3', 5,5'-tetramethyl-meso-H-dipyrrinato)] (111Zn)

1H NMR Spectrum in CDCl$_3$

^{13}C NMR Spectrum in CDCl$_3$
APPENDIX B.63 (Z)-2-((4,5-dihydro-1H-benzo[g]indol-2-yl)methylene)-4,5-dihydro-2H-benzo[g] indole (113)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.64 (Z)-1-(2-(((4-Ethyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)-2,2,2-trifluoroethanol (115)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.65 1,3,5,7-Tetramethyl-2,6-diethyl-8-benzyl-4-bora-3a,4a-diaza-s-indacene (116)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.66 (Z)-3-Ethyl-5-(1-(4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)-2-phenylethyl)-2,4-dimethyl-1H-pyrrole hydrochloride (117)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.67 1,3,5,7-Tetramethyl-2,6-diethyl-8-methyl-4-bora-3a,4a-diaza-s-indacene (118)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.68 (Z)-3-Ethyl-5-(1-(4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)-2-methyl)-2,4-dimethyl-1H-pyrrole hydrochloride (119)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.69 4,4-Dimethoxy-1,3,5,7-tetramethyl-2,6-diethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene (121)

$^1\text{H NMR Spectrum in CDCl}_3$

$^{13}\text{C NMR Spectrum in CDCl}_3$
APPENDIX B.70 4,4-Dimethoxy-1,3,5,7-tetramethyl-2,6-diethyl-8-H-4-bora-3a,4a-diaza-s-indacene (122)

1H NMR Spectrum in CDCl$_3$

^{13}C NMR Spectrum in CDCl$_3$
APPENDIX B.71 4-Fluoro-4-methoxy-1,3,5,7-tetramethyl-2,6-diethyl-8-\textit{H}-4-bora-3a,4a-diaza-s-indacene (123)

$^1\text{H NMR Spectrum in CDCl}_3$

\[\begin{array}{c}
\text{Chemical Shift (ppm)} \\
7.26, 6.92, 5.86, 5.83, 4.17, 2.87, 2.11
\end{array} \]

$^{13}\text{C NMR Spectrum in CDCl}_3$

\[\begin{array}{c}
\text{Chemical Shift (ppm)} \\
154.82, 137.65, 128.12, 118.56, 77.24, 72.16, 71.98, 31.47, 30.21
\end{array} \]
APPENDIX B.72 4,4'-Dimethyl-1,3,5,7-tetramethyl-2,6-diethyl-8-\textit{H}-4-bora-3a,4a-diaza-s-indacene (124)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.73 (125)BF₂ (126)

¹H NMR Spectrum in CDCl₃

![¹H NMR Spectrum in CDCl₃](image)

¹³C NMR Spectrum in CDCl₃

![¹³C NMR Spectrum in CDCl₃](image)
APPENDIX B.74 1,3,5,7-tetramethyl-2,6-diethyl-8-\(H\)-4-bora-3a,4a-diaza-s-indacene (129)

\(^1\)H NMR Spectrum in CDCl\(_3\)

\(^{13}\)C NMR Spectrum in CDCl\(_3\)
APPENDIX B.75 1,3,5,7-tetramethyl-2,6-diethyl-8-butyl-4-bora-3a,4a-diaza-s-indacene (130)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.76 4,4-Diphenyl-1,3,5,7-tetramethyl-2,6-diethyl-8 \(H \)-4-bora-3a,4a-diaza-s-indacene (131)

\(\text{\(^1H\) NMR Spectrum in CDCl}_3 \)

\(\text{\(^{13}C\) NMR Spectrum in CDCl}_3 \)
APPENDIX B.77 4,4-Diphenyl-1,3,5,7-tetramethyl-2,6-diethyl-8-H-4-bora-3a,4a-diaza-s-indacene (131) and 4,4-diphenyl-1,3,5,7-tetramethyl-2,6-diethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene (132)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.78 4-Bora-3a,4a-diaza-s-indacene (133)159-161

1H NMR Spectrum in CDCl\textsubscript{3}

13C NMR Spectrum in CDCl\textsubscript{3}
APPENDIX B.79 Di(1H-pyrrol-2-yl)methane (134)162

\textit{¹H NMR Spectrum in CDCl}_3

\textit{¹³C NMR Spectrum in CDCl}_3
APPENDIX B.80 1,3-Dimethyl-2-ethyl-8 H-4-bora-3a,4a-diaza-s-indacene (135)

1H NMR Spectrum in CDCl$_3$

![1H NMR Spectrum](image)

13C NMR Spectrum in CDCl$_3$

![13C NMR Spectrum](image)
APPENDIX B.81 8-Butyl-4-bora-3a,4a-diaza-s-indacene (136)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.82 1,3-Dimethyl-2-ethyl-8-butyl-4-bora-3a,4a-diaza-s-indacene (137)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
APPENDIX B.83 4,4-Diphenyl-1,3-dimethyl-2-ethyl-8H-4-bora-3a,4a-diaza-s-indacene (138)

$^1\text{H NMR Spectrum in CDCl}_3$

$^{13}\text{C NMR Spectrum in CDCl}_3$
APPENDIX B.84 4,4-Diphenyl-1,3-dimethyl-2-ethyl-8-phenyl-4-bora3a,4a-diaza-s-indacene (139)

1H NMR Spectrum in CDCl$_3$

^{13}C NMR Spectrum in CDCl$_3$
APPENDIX B.85 4,4-Diphenyl-8H-4-bora-3a,4a-diaza-s-indacene (140) and 4,4-diphenyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene (141)

1H NMR Spectrum in CDCl$_3$

^{13}C NMR Spectrum in CDCl$_3$
APPENDIX B.86 \(\kappa^2-(4,4'-\text{Diethyl}-3,3',5,5'-\text{tetramethyldipyrrinato}) \) boronium iodide (142I)

\(^1\text{H} \text{ Spectrum in Methanol-}\text{d}_4\)

\(^{13}\text{C} \text{ Spectrum in Methanol-}\text{d}_4\)
^{11}B Spectrum in Methanol-d$_4$
APPENDIX B.87 κ^2-(4,4'-Diethyl-3,3',5,5'-tetramethyl-meso-phenyl-dipyrinnato) boronium iodide (143I)

1H Spectrum in Acetone-d_6

1H Spectrum in Acetone-d_6

1C Spectrum in Acetone-d_6

1C Spectrum in Acetone-d_6
$^{11}\text{B Spectrum in Acetone-}d_6$