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Abstract

The Barzilai-Borwein (BB) method for unconstrained optimization has attracted at-

tention for its ”chaotic” behaviour and fast convergence on image deconvolution prob-

lems. However, images with large areas of darkness, such as those often found in

astronomy or microscopy, have been shown to benefit from approaches which impose

a nonnegativity constraint on the pixel values. We present a new adaptation of the

BB method which enforces a nonnegativity constraint by projecting the solution onto

the feasible set, but allows for infeasible iterates between projections. We show that

this approach results in faster convergence than the basic Projected Barzilai-Borwein

(PBB) method, while achieving better quality images than the unconstrained BB

method. We find that the new method also performs comparably to the Gradient

Projection-Conjugate Gradient (GPCG) method, and in most test cases achieves a

lower restoration error, despite being a much simpler algorithm.

x
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Chapter 1

Introduction

The goal of image restoration is to take an image which has been degraded by noise

or blur and, through various mathematical techniques, recover the true image. Image

restoration algorithms are used widely in many different fields of study. One of the

early applications of computer image processing was the restoration of the first images

of the moon taken during the Ranger mission in 1964 [15]. The images were corrected

for distortion caused by the on-board television camera and blur due to the motion

of the spacecraft. More recently, the first images from the Hubble Space Telescope

were notoriously blurry due to an error in the main mirror, but were corrected using

restoration techniques for three years before the mirror could be fixed [3]. Astronom-

ical imaging is still one of the main applications of image restoration, as the images

are unavoidably blurred by the bending of light as it travels through the atmosphere,

as well as by the optical components in telescopes and cameras.

Medical imaging is another important area in which image restoration methods

are applied. Images obtained through different techniques such as X-rays, magnetic

resonance imaging (MRI), computerized tomography (CT), and positron emission

tomography (PET), can all be enhanced by post-processing of the images [15]. Ob-

taining a clear image is often crucial to making an accurate diagnosis.

Another popular imaging technique in medicine and other scientific research is

fluorescence microscopy. In fluorescence microscopy, biological specimens can be im-

aged at the cellular level, either by their natural fluorescence or by treatment with

fluorescent chemicals. This has allowed researchers to study sub-cellular components

in living cells, something which was previously impossible [23, 41]. Image deblurring

is particularly important in this field because light is emitted from all parts of the

fluorescent specimen, not just the part which is in the focal plane, and thus the raw

images appear blurry.

Other fields in which image restoration techniques are used include geography,

1
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which makes use of aerial and satellite photos; law enforcement, where photographs

and security videotapes of crime scenes can be enhanced to provide important de-

tails; archaeology, where restoration techniques have been used to restore photographs

which are the only records of artifacts which have since been broken or lost, and so

on [3, 15].

With some knowledge of the imaging system, image blur and noise can be modelled

mathematically. Image restoration algorithms attempt to reverse the processes which

led to the degradation, and thus recover the original or “true” image. A large number

of algorithms exist, and the choice of an appropriate algorithm may depend on a

number of factors, including the type of blur and whether or not a good estimate of

the blurring function is known, the type and amount of noise, the computing power

and time available, the importance of accuracy in the solution, and the application

towards which the end result will be directed [7, 15, 19].

In this thesis, we focus on image restoration algorithms which impose a nonnega-

tivity constraint. Such constrained algorithms are particularly appropriate for astro-

nomical and microscope images, or any images with large dark areas [17, 26, 39]. Non-

negatively constrained algorithms include Richardson-Lucy [33], projected Landwe-

ber [7], Modified Residual Norm Steepest Descent [26], Gradient Projection [40],

and Gradient Projection-Conjugate Gradient [25, 4]. We propose a new algorithm

called Barzilai-Borwein with Infeasible Iterates, based on the existing unconstrained

Barzilai-Borwein method [6]. Other projected Barzilai-Borwein methods have been

proposed [8, 42], but we find that by projecting less often we achieve superior results.

The new approach is also much simpler than many of the existing algorithms for

nonnegative image deconvolution.

The thesis is organized as follows. In Chapter 2, we present an overview of im-

portant concepts in digital image processing, such as mathematical models of image

blurring and noise, the discrete inverse problem, and methods of evaluating the re-

sults of restoration. We also include a discussion of fluorescence microscopy and the

specific problems in that area. In Chapter 3 we present a number of different restora-

tion algorithms, beginning with the most basic approaches and moving on to more

sophisticated techniques which take into account the nonnegativity constraint. We
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then propose our new approach, and explain why it avoids some of the slow conver-

gence behaviour observed in other projected Barzilai-Borwein methods. In Chapter 4

we show the results of our algorithm on a number of test cases, and compare it with

several pre-existing algorithms. We find that Barzilai-Borwein with Infeasible Iterates

performs comparably to the others in all cases, and much better in some cases. We

also apply the new algorithm to real, three-dimensional microscope images and show

that it achieves acceptable results. Finally, in Chapter 5 we discuss some conclusions

based on the results of our study.



Chapter 2

Background

In this chapter, we give a brief overview of how image degradation is modelled math-

ematically, including the effects of blurring and noise. Some simplifying assumptions

are explained. We then discuss some of the challenges associated with solving in-

verse problems, particularly discrete inverse problems, and methods of evaluating the

results. Finally, we discuss fluorescence microscopy in particular, including how it

works, its applications, and some limitations.

2.1 The Image Degradation Model

In order to develop an algorithm to remove the effects of blurring and noise, we

must first understand how these degradations affect the true image, and develop a

mathematical model to describe these processes.

2.1.1 Image Blur and Noise

Image degradation consists of two parts: blurring and noise. Image blurring may

result from a number of factors, including motion blur, aberrations in the lenses of

cameras, atmospheric turbulence in the case of astronomical or satellite images, or

the contribution of light from outside the focal plane in light microscopy [19, 36]. In

many cases the blur is unavoidable, and must be removed from the image after the

acquisition process.

In most situations image blur is linear [19]. Image blur may be described math-

ematically by a blurring operator, commonly known as the point spread function or

PSF. It is called this because it describes the effect of the blur on a single point of

light. Linear system theory states that the response of a linear system can be char-

acterized completely by its response to an impulse, in this case a point source of light

[15]. In general the PSF might change depending on the location of the point source,

but here we assume that the blur is spatially invariant, as is commonly the case [19].

4
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We also require that the PSF integrates to one (that is, no light is lost or gained in

the blurring process).

If we let the true image be denoted by the function f(x), where typically x will

be two-dimensional, the blurry image by b(x), and the PSF by h(x), then the linear

blurring process can be modelled as

b(x) =

∫
h(x − x′)f(x′)dx′ (2.1)

which can also be expressed as

b = h ∗ f (2.2)

where ∗ represents the convolution operator. Because image blurring is mathemati-

cally equivalent to convolution, the process of de-blurring images is often known as

image deconvolution.

The second component of image degradation is noise. Noise typically enters the

system while the image is being recorded or transmitted, and can depend on a number

of different factors. For instance, if the imaging system uses a charge-coupled device

(CCD), then the light levels and sensor temperature are known to affect the amount

of noise [15]. In microscope imaging, the primary source of noise is photon shot

noise, especially at low light levels [35]. Image noise can be modelled by a number of

different probability distributions, such as Gaussian, Poisson, uniform, or exponential,

depending on the situation [15].

In many cases the PSF is known, or can be estimated, either through mathematical

analysis of the components of the imaging system (mirrors, lenses, and so on), by

carrying out experiments in which something approximating a point source is recorded

and the resulting image used to approximate the PSF, or by computational methods.

In general the noise is not known, although in some cases it may be possible to

estimate statistical properties of the noise, such as the variance or mean.

The image acquisition process is represented graphically in Fig. 2.1. If we denote

the blurred, noisy image by g, then we have

g = b + w = h ∗ f + w. (2.3)

When dealing with noise as well as blur, it is useful to quantify the amount of noise

relative to the amount of information in the image. One way to do this is by calcu-

lating the blurred signal-to-noise ratio, or BSNR. We use the definition given in [3],
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Figure 2.1: Graphical representation of the image degradation process. Typically, the
image is blurred by the imaging system (e.g., camera), and affected by noise in the
recording system (e.g., CCD).

namely

BSNR = 10 log10

(
σ2

b

σ2
w

)
dB (2.4)

where σ2
b is the variance of the blurred image, and σ2

w is the variance of the noise. For

a given image, increasing the amount of noise will decrease the BSNR, and decreasing

the amount of noise will increase the BSNR.

2.1.2 Formalism

Because we will often want to work in the Fourier domain, it is worth pointing out

here that (2.2) and (2.3) are equivalent to

B = HF (2.5)

and

G = HF + W (2.6)

by the Convolution Theorem, where H denotes the Fourier transform of h, F denotes

the Fourier transform of f , and so on. In particular, H is called the optical transfer

function, or OTF, of the imaging system. So performing convolution in the spatial

domain is equivalent to performing multiplication in the frequency domain, when H

is bounded and F is square-integrable [7].

In the linear model, there exists an operator A which could multiply with f to

achieve the same blurring result as convolution. This operator is rarely computed
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in practice, for reasons explained in Section 2.2. However it is useful to reformulate

(2.1) as

b(x) = (Af)(x) =

∫
h(x − x′)f(x′)dx′ (2.7)

and (2.3) as

g = Af + w (2.8)

Here we consider A to be an integral operator on the continuous function f . We will

discuss the structure of A in more detail in the next section, but note that A is linear,

bounded, and continuous [7].

2.1.3 The Inverse Problem

Given an equation of the form Af = b, where we can think of A as a system, f as the

input, and b as the output, the forward problem is to find b if A and f are known.

Usually this is not difficult. The inverse problem is to find f if A and b are known,

or to find A if f and b are known. This problem is usually more difficult, and can be

made much more difficult if the output b is known only with errors. Inverse problems

belong to the class of ill-posed problems [18], which can be difficult to solve.

Image restoration is a classic example of an ill-posed problem. For reasons to be

discussed in Section 3.1.1, the solution may not exist if the OTF is zero at any point.

The uniqueness of a solution is not guaranteed, particularly in band-limited systems

such as telescopes and microscopes. Finally, depending on the nature of the blurring

function and the noise, the blurred and noisy image g may not depend continuously

on the true image f [7].

2.2 Digital Image Restoration

Up to this point we have assumed all functions and variables to be continuous; however

this is not the case with digital images. Rather, continuous data is converted to

discrete data by two processes: quantization and sampling.

Quantization refers to the discretization of the amplitude values, typically rep-

resented as integers between 0 and 2k − 1, where k is the number of bits used for

storage [15]. For example, 8-bit images would have values ranging from 0 to 255,
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with 0 representing black and 255 representing white. In applications such as mi-

croscopy, 12-bit images or higher are typical [24]. The image values do not have to

be integers; sometimes instead they are normalized to lie between 0 and 1.

Sampling refers to the discretization of the coordinate values into m rows and n

columns [15]. Once this has been done, the image can be represented by a m × n

matrix F, such that F(i, j) = v, 1 ≤ i ≤ m, 1 ≤ j ≤ n, v ∈ 0, 1, 2, . . . , vmax. Each

element in the matrix is called a picture element, or pixel.

We can still use the notation of Eqn. (2.8) if we reinterpret the continuous functions

as discrete vectors: let f be a (mn × 1)-dimensional vector made up of the rows of

the matrix F, w be a (mn×1)-dimensional vector representing the noise, and A be a

(mn×mn)-dimensional blurring matrix. The blurred, noisy image is then represented

by a (mn × 1)-dimensional vector g. The problem is now equivalent to a system of

linear equations:

g = Af + w. (2.9)

The matrix A depends on two things: the PSF and the boundary conditions [19]. It

is clear from looking at a PSF that the blurring of one pixel affects the pixel values

of its neighbours. So pixels on or near the boundary of the image are being affected

by theoretical pixels which are just outside the boundary. To deal with this problem,

we must make assumptions about what the pixel values outside the boundary would

be, if they existed. The assumptions we make define the boundary conditions of the

problem, and can have a serious effect on the solution.

One possible assumption is zero boundary conditions, i.e., that all the pixel val-

ues outside the image boundary be zero. This is a simple choice, but is not usually

physically accurate except in cases such as astronomical or microscope imaging. An-

other choice is periodic boundary conditions, which assume that the image repeats

itself periodically both vertically and horizontally. A third common choice is reflex-

ive boundary conditions, which assume that the image pixels are reflected across the

boundary, to form a mirror image on the other side. Each of these options is valid,

and the choice will depend on the nature of the image at hand.

The exact structure of A will vary depending on the PSF and the choice of bound-

ary conditions. Table 2.1 is taken from [19] and summarizes the different structures
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for the three types of boundary conditions discussed above, and separable and non-

separable PSFs. A separable PSF is one in which the vertical and horizontal com-

ponents of the blur can be described separately. The acronym BTTB stands for

“block Toeplitz with Toeplitz blocks,” BCCB stands for “block circulant with circu-

lant blocks,” BTHB stands for “block Toeplitz with Hankel blocks,” BHTB stands

for “block Hankel with Toeplitz blocks,” and BHHB stands for “block Hankel with

Hankel blocks.” Properties of each of these different matrices can be found in [19]

or [18].

Boundary Condition Nonseparable PSF Separable PSF
Zero BTTB Kronecker product of Toeplitz

matrices
Periodic BCCB Kronecker product of circulant

matrices
Reflexive BTTB + BTHB +

BHTB + BHHB
Kronecker product of Toeplitz-
plus-Hankel matrices

Table 2.1: Different structures for the blurring matrix A.

Given a PSF it is theoretically possible to use these guidelines to construct the

blurring matrix A. In practice, however, it is often not practical to compute A.

Even for a relatively small image of size 256 × 256 pixels, the matrix A would have

2564, or 4.2950 · 109, elements. For this reason, it is often more useful to compute

multiplications by the OTF in the Fourier domain, than by the blurring matrix in

the spatial domain.

The discretization of an ill-posed problem usually leads to an ill-conditioned prob-

lem [7]. The condition number of A is given by cond(A) = smax/smin, where smax

and smin are the maximum and minimum singular values of A. A high condition

number means the problem is ill-conditioned, while a condition number close to one

means that the problem is well-conditioned. In general terms, the value of the condi-

tion number represents the numerical stability of the solution – in an ill-conditioned

problem, some small perturbations in A may lead to large changes in the solution.

In the context of image restoration, this means that a small amount of noise can lead

to arbitrarily large perturbations in the solution. This could be image noise from

any of the sources mentioned above, or even small perturbations introduced due to
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the limits of the numerical accuracy of the deconvolution program. Some methods of

regularizing the solution are discussed in Chapter 3.

2.3 Evaluation

In order to compare different methods of image deconvolution we must have some

way of evaluating the results. Choosing an appropriate image quality metric can be a

difficult task. Because the goal of most deblurring tasks is to produce an acceptable

image for human viewers, it has been argued that the best metric would be a subjec-

tive measure of quality, such as the mean opinion score [43]. On the other hand, it

is more practical in most cases to use an objective measure, such as the mean square

error [39], improved signal-to-noise ratio [3], Cramer-Rao bound [35], or some other

well-defined mathematical quantity [10].

One common approach is to use the restoration error [5, 11, 26, 27, 42]. The

restoration error, also known as the relative error, measures the difference between

the restored image f̂ and the true image f :

Erest =
‖f̂ − f‖2

‖f‖2

(2.10)

where ‖·‖2 is the �2 norm. The limitation of this measure is that it requires knowledge

of the true image f , which is possible when using constructed test cases but not in

real-life applications.

2.4 Deconvolution Microscopy

One area in which image deblurring is widely used is fluorescence microscopy. Flu-

orescence microscopes can be used to obtain 3D images of living cells and biological

tissues, but the images are distorted by the imaging system and require computational

post-processing.

2.4.1 Fluorescence Microscopy

Fluorescence microscopy was invented almost 100 years ago, but was originally limited

to imaging samples which were naturally fluorescent. The field grew as scientists

developed ways to stain biological specimens with fluorescent dyes. In 1994 a living
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organism was imaged using green fluorescent protein, motivating a wave of popularity

for the field [41]. Today, fluorescence microscopy is commonly used to capture three-

dimensional or even four-dimensional images showing the location and interactions of

proteins in living cells [23].

There are two main types of fluorescence microscopes: wide-field and confocal. In

wide-field microscopes, the 3D image is produced by recording a series of 2D focal

planes. (In 4D microscopy, time acts as the fourth dimension, and the 4D data is a

series of 3D data sets.) Any light that is emitted from within each focal plane is in

focus; however light from outside the focal plane is also recorded. Thus each resulting

slice contains out-of-focus light as well as in-focus light, and appears blurry.

Confocal microscopes mitigate this problem by adding a pinhole in front of the

detector, which removes most of the out-of-focus light. The downside is that it also

reduces the total amount of light reaching the detector, which can lead to a poor

signal-to-noise ratio [35, 41]. This type of microscopy also requires more time, which

can make it inappropriate for imaging live, moving specimens [36].

In both cases the images can be improved by deconvolution, although the re-

sults are more pronounced in the case of wide-field microscopy [39]. Typically the

term “deconvolution microscopy” refers to the application of restoration algorithms

to wide-field microscopy [24].

2.4.2 Principles of Fluorescence

Fluorescence is a natural phenomenon which occurs when a molecule emits light of

a particular wavelength after light of a different wavelength is incident upon it. The

incident photon gives the molecule enough energy to move into a higher energy state.

When it returns to its ground state, it emits a photon (usually of a lower energy, i.e.,

longer wavelength, than the incident photon). Compounds which exhibit fluorescence

are called fluorophores; dyes which can be used to make other materials fluoresce are

called fluorochromes [41].

Almost any protein can be labelled using a fluorescent protein, which is part of

what makes fluorescence microscopy so popular. In the past 20 years, a wide range of

fluorescent proteins have been discovered or engineered, with different properties ap-

plicable to a variety of experimental situations. An excellent review of how fluorescent
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proteins can be used to label living cells can be found in [23].

2.4.3 Degradations

As mentioned above, the main source of blur in fluorescence microscope images is due

to light contributions from structures outside the plane of focus. However, blur can

also be caused by other aspects of the imaging system. Because the lens aperture is

of finite size, diffraction ring patterns are observed [24, 36]. In addition, the lenses

may have slight irregularities, and spherical aberrations can be observed when the

light travels through different materials [36]. All of these effects should be accounted

for in an accurate PSF measurement.

There are three methods of obtaining the PSF: experimental, analytical, and

computational [35]. Experimental techniques involve imaging tiny fluorescent beads.

If the beads are small enough, then the resulting images can be used as estimates of the

effect of the system on a point source. Analytical techniques involve calculating the

PSF based on mathematical models of diffraction. Finally, computational methods

involve estimating the PSF along with the deblurred image simultaneously, using

algorithms which perform so-called “blind deconvolution.” Blind deconvolution uses

image information to generate or improve the PSF estimate, and can be useful when

the other two methods are impractical or impossible.

Microscope images are also affected by noise. The main source of noise is photon

noise. Fluorescence is caused by the emission of photons from the sample, which is a

random process that follows a Poisson distribution. The number of photons arriving

at the detector is proportional to the intensity of the fluorescence signal [41]. Gaussian

noise due to electronic devices can also be a factor, although it is typically less of an

issue with modern equipment [36].

Fluorescence microscope images may also suffer degradations due to the nature

of the samples. Normally when a fluorescent molecule is exposed to an appropriate

light source it enters the excited state, then returns to the ground state, and so on.

However prolonged exposure to the light source may mean that the molecule does not

return to the ground state, and instead may undergo a chemical reaction and even

become non-fluorescent. This is known as photobleaching [41, 36]. Another potential

problem occurs when prolonged exposure to light damages the living sample. The
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energy can result in the production of free radicals, which can lead to the death of the

cell [36]. These issues impose a practical limit on the exposure time and the intensity

of the illumination. Again, wide-field microscopes capture more light than confocal

microscopes in the same exposure time, which may help reduce some of these negative

effects, but the images will require deconvolution.



Chapter 3

Methods

There are a vast number of image deblurring algorithms. In this chapter we offer a

quick introduction to some of the most basic and most popular algorithms, and then

focus on the ones which will be used as benchmarks in the next chapter; namely pro-

jected gradient-conjugate gradient, Barzilai-Borwein, and projected Barzilai-Borwein.

We then propose Barzilai-Borwein with Infeasible Iterates as an improvement over

existing methods.

3.1 Direct Methods

These methods directly compute the deblurred solution, in contrast to iterative meth-

ods. Their advantage is their speed, which can be an important factor in real-time

applications. However as we shall see, they also have some serious drawbacks, espe-

cially when the image data is noisy. These algorithms are included for completeness

but will not be used as a basis of comparison in the upcoming sections.

3.1.1 Inverse Filtering

The simplest approach to image restoration is to estimate the solution F̂ in the

frequency domain as to divide both sides of (2.5) by H, such that

F̂ =
B

H
(3.1)

where the division is element-wise division. If there is any noise, then the expression

becomes

F̂ =
B + W

H
= F +

W

H
. (3.2)

If there is no noise then this approach can work well, although it can be affected by

numerical issues. However if there is noise, then even if we know H we cannot recover

F exactly without knowing W. Furthermore, if H is ever zero then the solution may

14
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not even exist. Even if the values of H are merely very small, the second term can

dominate the whole expression. For these reasons, inverse filtering is not useful in

practice.

Fig. 3.1 shows the results of inverse filtering on a test image of a satellite. The

solution does exist for this particular PSF, as its corresponding OTF does not contain

any zeroes. However the solution is completely contaminated by noise, and therefore

useless.

3.1.2 Wiener Filtering

Another approach to image deblurring is to minimize the mean square error between

the true image f and the solution f̂ , given by E{‖f − f̂‖2}, where E{x} denotes the

expectation value of x. In the Fourier domain, the minimum of this function is given

by F̂ = RWG, with

RW =
H∗

|H|2 + |W|2
|F|2

(3.3)

where H∗ denotes the complex conjugate of H, |H|2 = H∗H, and |W|2 and |F|2 are

defined similarly. This filter is known as a least square error filter or Wiener filter [15].

The second term in the denominator helps alleviate some of the problems of in-

verse filtering by providing regularization. As the noise increases, the regularization

term increases, which reduces the effect of small values in H. Note that in the ab-

sence of noise and numerical inaccuracies, Wiener filtering reduces to inverse filtering.

Comparing the results of filtering noisy images in Fig. 3.1 and Fig. 3.2, it is clear that

Wiener filtering performs much better than inverse filtering in the noisy case. How-

ever, Wiener filtering requires knowledge of both the noise W and the true image F,

which are not typically available.

3.1.3 Tikhonov Filtering

Tikhonov filtering [37] is a popular approach, where F̂ = RTikG and the filter RTik

is given by

RTik =
H∗

|H|2 + λS
. (3.4)

S is a regularization operator, often chosen to be a derivative matrix, and λ is called

the regularization parameter and controls the amount of smoothing. If λ is chosen
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Figure 3.1: Inverse filtering. Top left, the original image. Top right, the point spread
function used to blur the image (called“PSF1” in Chapter 4). Bottom left, the image
blurred by the PSF and then degraded by additive Gaussian noise such that the
BSNR = 20 dB. Bottom right, the results of inverse filtering.
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Figure 3.2: Wiener filtering. The image is the same same test case as in Fig. 3.1.
On the left, the blurred and noisy image. On the right, the solution after Wiener
filtering.

too small, then noise dominates the solution and it is said to be under-regularized.

On the other hand, if λ is chosen too large, then the solution will be over-regularized

and will be very blurry. Clearly, choosing an appropriate value of λ is crucial to

the success of this algorithm. A number of papers have been written on different

methods of choosing the regularization parameter, including the discrepancy criterion,

the L-curve criterion, and the generalized cross-validation method [14, 20, 29, 18].

However, this is still an area of active research. As Hansen states in his recent book

on inverse problems [18], “no one has devised a general-purpose parameter-choice

algorithm which will always produce a good [regularization parameter], such that

the regularized solution is a good approximation to the unattainable exact solution.

What we currently have at our disposal is a collection of methods which, under

certain assumptions, tend to work well; but all of them can and will occasionally fail

to produce good results.”

3.2 Iterative Methods

A different approach to image restoration is to treat it as a least squares problem.

The residual of (2.8) is given by Af̂ − g, ignoring the noise, so the least squares

formulation is given by

min
{

1
2
‖Af̂ − g‖2

2

}
. (3.5)
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As an aside, the least squares formulation is equivalent to the maximum likelihood for-

mulation in the case of Gaussian noise with zero mean [7]. Other likelihood functions

may be more appropriate for other types of noise [11]. However, even in applications

such as fluorescence microscopy, where the noise is more accurately described by a

Poisson distribution, Verveer et al. [39] have found that, “even for high levels of noise

the assumption of Gaussian noise did not yield results significantly inferior to those

resulting from the (correct) assumption of the Poisson noise.”

We can reformulate (3.5) as a quadratic programming problem:

1
2
‖Af − g‖2

2 = 1
2
fTATAf − fTATg + 1

2
gTg. (3.6)

It follows that the gradient is given by γ = ATAf − ATg = AT (Af − g) and the

Hessian is given by H = ATA. Iterative line search methods for minimizing (3.6)

take the general form

fk+1 = fk + αkdk (3.7)

where dk is the search direction for the k-th iteration, and αk is the step size.

In many iterative methods, the number of iterations can be used as the regu-

larization parameter [7]. In a plot of restoration error against number of iterations,

the error decreases and then increases again. Too few iterations lead to an over-

regularized, blurry solution. Too many iterations lead to a noisy, under-regularized

solution, as the iterates converge to the inverse solution. This property is known as

semiconvergence and is common to most iterative methods [18].

3.2.1 Steepest Descent

One way to find the minimum of (3.6) would be to step repeatedly in the direction of

the negative of the gradient. In the classic steepest descent (SD) method, the search

direction is given by

dk = −γk (3.8)

and the step size is given by

αk =
γT

k γk

γT
k ATAγk

. (3.9)

This method results in a strictly monotonic decrease in the function to be minimized.

It has been proved to converge to the exact solution for quadratic functions in the
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Figure 3.3: Slow convergence of steepest descent. This figure shows how the steepest
descent method can be very slow to converge when the minimum lies in a long, narrow
valley. (From Numerical Recipes [30].)

absence of noise [7]. However, one characteristic of steepest descent is that the direc-

tion of each step is always perpendicular to the direction of the previous step [30].

This can lead to very slow convergence, as illustrated in Fig. 3.3.

See Fig. 3.4 for an example of iterative regularization using the steepest descent

method. We can see that as the number of iterations increases, the error decreases and

then increases again, illustrating the semiconvergence property discussed in Sec. 3.2.

The Landweber method is similar to steepest descent but uses a fixed step size

α such that 0 < α < 2/‖H‖2. For a complete discussion, see [7].

3.2.2 Conjugate Gradient

One of the reasons that the SD method can be slow to converge is that the algorithm

takes repeated steps in the same direction. It would be better to take only one

step in each direction, leading to convergence after n steps in n dimensions. The

conjugate gradient (CG) method takes steps which are conjugate to the gradient, as

well as conjugate to the previous steps, thus avoiding those unnecessary iterations

[30]. In the 2D case illustrated in Fig. 3.3, for any point on one of the level curves,

the conjugate gradient points towards the center of the ellipse [7]. Thus from any

starting point, the CG method can reach the minimum point in at most two steps.

The CG update rule is given by (3.7) with

αk =
‖γk‖2

dT
k ATAdk

. (3.10)

The first step is taken in the direction of the negative of the gradient, with the search

direction update given by

dk+1 = −γk+1 + βkdk (3.11)
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Figure 3.4: Iterative regularization. On top, the restoration error shows semiconver-
gent behaviour. On the bottom left, the solution after 20 iterations is over-regularized.
In the middle, the solution after 450 iterations is near the minimum of the restoration
error curve. On the bottom right, the solution after 2000 steps is under-regularized.
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with

βk =
‖γk+1‖2

‖γk‖2
and γk+1 = γk + αkA

TAdk (3.12)

for positive quadratic functionals [40]. The CG method results in good solutions for

quadratic or nearly quadratic problems. However its performance worsens in more

general problems or when constraints are added, and it has been shown to exhibit

unstable behaviour on some discrete, ill-posed problems [27, 12, 38].

3.2.3 Barzilai-Borwein

The Barzilai-Borwein (BB) method was introduced by Jonathan Barzilai and Jonathan

Borwein in 1988 [6]. The BB method has been observed to be faster and less sensitive

to ill-conditioning than the classical steepest descent method [6]. Dai and Fletcher

state that it has “completely changed our perspectives on the effectiveness of gradient

methods” [8]. It uses the same search direction as steepest descent (dk = −γk) but

replaces the step size with the option of two different possible step sizes:

αBB1
k =

γT
k−1γk−1

γT
k−1A

TAγk−1

(3.13)

αBB2
k =

γT
k−1γk−1

γT
k−1(A

TA)2γk−1

(3.14)

Most subsequent research has focused on (3.13), although there is evidence which

suggests the two are not dissimilar [12], and strategies which alternate between the

two or which adaptively choose one over the other have been proposed [8, 44]. Note

that (3.13) is equivalent to the SD step length, but using the gradient information

from the previous iteration. This has led to the idea of using gradient information

from two or more iterations ago, but in most cases the benefits were negligible, if

any [13, 8, 38].

The Barzilai-Borwein method is non-monotonic; that is, the objective function

does not strictly decrease but may in fact increase in some iterations. Barzilai and

Borwein proved that it converges for the two-dimensional quadratic case [6]; it has

since been proven to converge in the n-dimensional convex quadratic case [31]. For

the non-quadratic case, it must be combined with a line-search in order to guarantee

convergence [32].
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In general, however, the behaviour of the BB method is not well understood. It

often leads to faster convergence than SD but it is not clear why this is the case. In

his 2005 review paper [12], Fletcher states, “One thing that I think emerges from this

review is just how little we understand about the BB method.” More recently, van

den Doel and Ascher [38] discuss BB along with other similar methods, which they

together call faster gradient methods, and write, “The state of the theory for these

methods is currently unsatisfactory. There exist essential convergence theorems, but

they are at best as strong as the simple convergence theorems available for SD, and

they do not explain why the rate of convergence of these faster gradient descent

methods is more like that of CG than SD.” The step sizes can vary across different

orders of magnitude, and a plot of the restoration error shows seemingly erratic peaks

and valleys as a result (see Fig. 3.5). It has been suggested that the large step sizes

have the effect of increasing the large components of the gradient, and lead to the

spikes in the error. This in turn reduces the contribution of the small components

of the gradient, and allows those components to be removed more easily than in

monotonic methods, such as steepest descent [12]. However, as stated by van den

Doel and Ascher in [38], “no one we know expects any gradient descent variant ever

to perform better than CG for the solution of Ax = b, provided that matrix-vector

multiplications Av for any given vector v are carried out accurately.”

3.3 Constrained Methods

We want to use as much a priori information about a problem as we can when com-

puting its solution. One piece of information relevant to image restoration problems

is that because the pixel values represent light intensities, they can never be nega-

tive. In mathematical terms, this means we now want to consider the constrained

optimization problem given by

min J(f) = min
{

1
2
‖Af − g‖2

2

}
such that f ≥ 0 (3.15)

where by f ≥ 0 we mean that each element of f is nonnegative. The set defined by

f ≥ 0 is closed and convex, and is known as the feasible set Ω. This is a special case

of the more general box-constrained quadratic programming problem, in which we

let the lower bound be zero and the upper bound be infinity. We let the projection
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Figure 3.5: The Barzilai-Borwein method. We consider again the same test case as in
Fig. 3.1. On top, the restoration error shows non-monotonic behaviour. Below, the
step sizes span several orders of magnitude and do not show any discernible pattern
[38].
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operator PΩ be defined as

PΩ(f) = fP s.t. fP =

{
fP

i = fi for fi ≥ 0

fP
i = 0 otherwise .

(3.16)

Enforcing the nonnegativity constraint may in some cases be expensive compared to

the methods outlined in previous sections, but it can produce much more accurate

solutions [17, 26]. It is particularly useful to constrain the solution in images which

have large dark areas, such as astronomical images [17] and microscope images [39].

Nonnegativity constraints have also been shown to have a regularizing effect [5].

3.3.1 Gradient Projection

The gradient projection (GP) method is basically an extension of the steepest descent

method, adapted to handle the nonnegativity constraint [40]. The search direction is

given by

dk = −γk (3.17)

and the step size is chosen by a line search such that

αk = arg min
α>0

J(PΩ(fk + αkdk)). (3.18)

The update rule is then given by

fk+1 = PΩ(fk + αkdk). (3.19)

Given a box-constrained optimization problem, GP has been shown to identify the

optimal face in a finite number of iterations, after which it behaves like the SD

method [4]. This can result in slow convergence and the “zig-zagging” effect that was

seen with steepest descent [42].

3.3.2 Gradient Projection-Conjugate Gradient

The gradient projection-conjugate gradient method (GPCG) aims to combine the

benefits of GP and CG in one algorithm. It was initially developed by Moré and

Toraldo [25].

We first review some necessary terms. With the nonnegativity constraint, the

active set of a feasible point f = (f1, f2, . . . , fn) is

A(f) = {i | fi = 0}. (3.20)
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Points which are not in the active set are in the inactive set

I(f) = {i | fi > 0}. (3.21)

The set of points currently under consideration in the k-th iteration is called the

current face

F(fk) = {f ∈ Ω | fi = 0 for i ∈ A(fk) and fi > 0 otherwise}. (3.22)

The general idea of using GPCG for box-constrained problems is to use the GP

method to identify the optimal face, and then use the CG method to search the face.

In the first step of GPCG, a sequence of GP iterates are produced until either it is

determined that GP is not making sufficient progress, or we are near the optimal

face. In either scenario, the algorithm now uses CG to create a series of iterates in

the current face. If CG is not making sufficient progress, then perform a line search

to determine αk, and calculate fk+1. If fk+1 is in the optimal face, then return to the

CG step and continue searching that face. Otherwise, go back to the GP step to find

a new face.

GPCG is known to be successful for large-scale constrained quadratic program-

ming problems, and therefore makes a good baseline against which to compare new

algorithms [42, 8].

3.3.3 Projected Barzilai-Borwein

The BB method was originally developed to solve the unconstrained minimization

problem, but it can be adapted to work in the constrained case by projecting the

solution onto the feasible set after every iteration [42, 8]. It is then known as the

projected Barzilai-Borwein (PBB) method. The new update rule becomes

fk+1 = PΩ(fk + αBB
k dk). (3.23)

The PBB method requires the addition of a line search strategy in order to safeguard

the decrease of the objective function and guarantee global convergence [42]. How-

ever, it has been reported that using a line search reduces the effectiveness of the

PBB method, and that PBB does not usually fail to converge except on specially

constructed test cases, even without a line search [8].
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Figure 3.6: Comparing the performance of BB and PBB. On top, the restoration error
of PBB decreases smoothly but does not reach as low a value as BB in 200 iterations.
Below, there is a marked difference in the projected BB step size as compared to the
original BB step size (see Fig. 3.5 for comparison). Data is for the same test case as
Fig. 3.1.
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3.4 Barzilai-Borwein with Infeasible Iterates

The projected Barzilai-Borwein method adapts the BB method for use in the con-

strained case; however in the process it diminishes some of the benefits offered by the

conventional BB method. In Fig. 3.6, the restoration error for BB reaches a mini-

mum of 0.38 after 73 iterations; by 200 iterations PBB has achieved an error value

of 0.41. The descent of PBB is smooth, rather than showing the jumps which are

characteristic of the BB method. The reason for this lies in the step size, which after

the first several steps settles into a smooth, slowly decreasing sequence, in contrast

to the BB step sizes shown in Fig. 3.5.

We propose a new algorithm, which projects the solution onto the feasible set less

frequently than PBB. If a projection does not occur on a given iteration, some of the

pixel values may be less than zero. These are called infeasible iterates, because the

solution does not satisfy the constraints. In a recent paper [2], Audet and Dennis state,

“It is not unreasonable to expect in nonlinear optimization that allowing constraint

violations in the course of solving a problem often enables one to solve the problem

with fewer function and constraint evaluations.”

Pseudo-code for the new algorithm, which we call Barzilai-Borwein with Infeasible

Iterates (BBII), is given in Algorithm 1. For Matlab code, see Appendix A.

The goal of the algorithm is to allow for much of the non-monotonic behaviour

which characterizes BB, with projection steps occurring only when the solution vio-

lates the constraints too strongly. The question is: how do we define “too strongly”?

The PBB method never allows any pixel values to fall below zero without projecting.

A softer criterion might be to let only some percentage of pixel values fall below zero,

or let them fall only to some minimum value vmin < 0 before projecting. Here, after

some experimentation, we choose the following rule: calculate the average squared

value of all the negative pixel values, and divide by the average squared value of all

the pixels. That is,

r =

1

M

∑
i | fi<0

f 2
i

1

N

∑
i

f 2
i

(3.24)

where M is the number of negative pixels in f and N is the total number of pixels in



28

Algorithm 1 Barzilai-Borwein with Infeasible Iterates

Input: Blurred and noisy image g, PSF h, number of iterations kmax, initial threshold

τ > 0, decay rate 0 < ρ ≤ 1.

1: Select initial guess f0, and set k = 1.

2: Calculate the initial gradient γ1.

3: for k = 1 : kmax do

4: if k == 1 or a projection occurred on the previous step then

5: αk = αSD
k

6: else

7: αk = αBB1
k

8: end if

9: fk = fk−1 − αkγk

10: Calculate rk using (3.24) with f = fk.

11: if k ≥ 10 and median(rk−9, rk−8, . . . , rk) > τ then

12: Project onto the feasible set.

13: Reduce threshold τ = ρτ .

14: end if

15: Calculate the new gradient γk+1.

16: end for
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f . When the value of r increases past some threshold τ , then project.

For an example of why this rule might work, consider Fig. 3.7. For the first

several iterations, projecting has little benefit in terms of reducing the restoration

error. However, it seems that after around 75 iterations, the restoration error would

be significantly decreased if the solution was now projected onto the nonnegative set.

Looking at the plot of the average negative value, this corresponds to projecting when

the value of r increases past some threshold, in this case perhaps τ = 0.05.

In fact, it is not quite this simple, for reasons which are also apparent from Fig. 3.7.

The increase in r which occurs at 75 iterations corresponds to the “jumpy” behaviour

in the restoration error. In order to avoid projecting in a peak, which could increase

the restoration error, we instead keep track of the r values for the past 10 steps.

Rather than project when the current value reaches τ , we project when the median of

the values over the past 10 steps reaches τ . This effectively postpones the projection

step until after the solution has settled down, leading to a larger decrease in the error.

Furthermore, using the median has the effect of low-pass filtering the r values. This

effectively removes “spikes” in the r values, such as that seen at 45 iterations in the

middle plot in Fig. 3.7, which rapidly increase and then immediately decrease the r

value. In the bottom plot of Fig. 3.7, we can see that this spike has been removed by

considering the median.

In some cases, particularly cases with low BSNR, the PBB method actually does

quite well. As an example, consider Fig. 3.8. The BB method does well for the first

few iterations, but the PBB method soon achieves a lower error norm by projecting

in every step. Ideally, we would like an algorithm which can range between never

projecting, in cases where BB does well on its own, and always projecting, in cases

where PBB does better. To allow for this, we choose an initial threshold τ > 0

so that the algorithm can benefit from the fast convergence the BB method shows

in the first several iterations. Then every time a projection occurs, we decrease the

threshold slightly, by a factor of ρ. For cases where the pixel values do not tend to fall

much below zero, the threshold stays close to the initial value and projections occur

rarely. For cases where the average squared negative pixel value is consistently high,

the value of the threshold decreases and approaches zero. Thus the behaviour of the

algorithm approaches that of PBB as the number of projections approaches infinity.
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Figure 3.7: Relationship between restoration error and r value. On top, the blue
(solid) line shows the restoration error for the BB method. The green (dashed) line
shows what the restoration error would be, if the solution was projected on that
iteration. In the middle, the value of r, given by (3.24), at each iteration. On the
bottom, the median value of r over the past 10 iterations. Data is for the same test
case as Fig. 3.1.
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Figure 3.8: Good performance of PBB. Shown is the restoration error for the head
test image from Chapter 4, blurred by a motion blur of length 20 at an angle of 45◦,
with BNSR = 30. BB is the blue (solid) line and PBB is the green (dashed) line.

The general idea of allowing infeasible iterates and then gradually tightening the

constraints has been the focus of a number of recent papers in the field of sequential

quadratic programming, appearing under different names: trust funnel method [16],

progressive barrier method [2], and tolerance tube method [34]. However it has never

been applied to the problem of image deconvolution or to any variant of the BB

method.

Compare the results of BBII in Fig. 3.9 with those of PBB in Fig. 3.6. The

restoration error of BBII is non-monotonic, like that of BB. The step sizes cover

a wide range of values. Rather than projecting on every step, projections occur

occasionally. The projections are important though: at around 90 iterations, the

solution is projected on several iterations, and at the same time the restoration error

for BBII decreases while the error for BB increases. It is our hope that the BBII

algorithm will be able to give us “the best of both worlds,” that is, that we can

benefit from the large step sizes and fast convergence of BB, while at the same time

use the nonegativity constraint to increase the quality of the solution.

3.5 Stopping Criteria

Choosing an appropriate stopping point for iterative methods is not an easy task

[27]. One approach is called the discrepancy principle, and it involves stopping the
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Figure 3.9: Comparing the performance of BB and BBII. On top, the restoration
error for the two methods is the same until the first projection in BBII. After the
point that the BB error starts to increase again, the BBII error is still decreasing.
On the bottom, the step sizes for BBII. Iterations on which a projection occurs are
marked with green circles. Data is for the same test case as Fig. 3.1.
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iterations when ‖Afk − g‖ = e, where e is an estimate of the energy of the noise

[7]. The discrepancy principle is useful only in cases where a good estimate of e is

available. Another common stopping criterion is ‖γk‖ ≤ ε‖γ1‖, where ε is a tolerance

which can be set as high or low as necessary for the application at hand [8, 42, 44]. Yet

another approach is to calculate the relative error norm, given by ‖fk+1 − fk‖/‖fk+1‖,
and stop the iterations when the relative error norm falls below some threshold [21].

In a similar vein, the relative residual norm ‖Afk −b‖/‖Af0 −b‖ can be computed,

and iterations stopped when it falls below some threshold [38].

Rather than get involved in a comparative study of all possible stopping criteria,

we assume here that an appropriate stopping criterion has been established, and

concern ourselves instead with which methods achieve the lowest error norm, and

how long it takes to get there. This is a common methodology in research on image

restoration algorithms [17, 27].



Chapter 4

Results

We calculate the restoration error for BBII for a number of test cases, and compare it

to the restoration error for unconstrained BB. Additionally, we compare with PBB,

which has been the subject of recent research on how to apply BB to a constrained

optimization problem [8, 42]. Finally we also compare with GPCG, which has been

used as a basis of comparison for PBB in the previously mentioned works [8, 42], and

was studied in depth in a recent PhD thesis [4].

4.1 Two-Dimensional Image Restoration

Here we test the algorithms on three two-dimensional images, with four blurring

matrices and three different noise levels, for a total of 36 test cases. We show the

resulting restoration error curves, as well as the minimum error achieved in each test

case.

4.1.1 Test Cases

Nonnegativity constraints are most useful in cases where the images contain large

dark areas, where pixel values are close to zero [17]. For this reason, and also to avoid

boundary value effects, we choose three well-known test problems with black back-

grounds, shown in Fig. 4.1. The first image we consider is a CT scan of a human head,

from [15] and available at http://www.imageprocessingplace.com/root_files_

V3/image_databases.htm. The second image is a satellite test image from the US Air

Force Phillips Laboratory, Laser and Imaging Directorate, Kirtland Air Force Base,

New Mexico [27]. We consider the version included with the Matlab package Re-

storeTools, available at http://www.mathcs.emory.edu/nagy/RestoreTools. More

information about the RestoreTools package can be found in [28]. Along with the true

image, the data includes a PSF which simulates the blurring effect of atmospheric

turbulence. We call this blurring matrix “PSF1”. The third image we consider is also

34
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(a) Head (b) Satellite (c) Text

Figure 4.1: Test images.

from the RestoreTools toolbox, and consists of white text on a black background.

Each of the images is of size 256 × 256.

As well, we include three additional PSFs. The PSFs are shown in Fig. 4.2. The

first is a Gaussian with a standard deviation of seven. It can be reproduced in Matlab

by typing:

PSF=fspecial(‘Gaussian’,256,7);

We label it “PSF2”. Gaussian blur can be used to model atmospheric turbulence

[3]. (Note however that PSF1 is not a Gaussian.) Next we consider “PSF3”, which

models motion blur. It can be reproduced by:

PSF=fspecial(‘motion’,20,45);

The parameters indicate a motion across 20 pixels and in the direction of 45◦ be-

low the horizontal. Finally, “PSF4” is a two-dimensional slice taken from a three-

dimensional microscope PSF, from the test data available at http://bigwww.epfl.

ch/deconvolution/.

In addition to blurring the images, we add zero-mean Gaussian noise to the images.

Gaussian noise is a good model for the noise in many real-life applications [3]. Even in

cases where the noise is not actually Gaussian, it can serve as a good approximation,

especially in high SNR cases, due to the central limit theorem [35, 36]. We test

at three different noise levels: 20 dB, 30 dB, and 40 dB. At 40-50 dB the noise is

not visible in the image anymore [7], and below 20 dB the images are generally too

corrupted and it is impossible to achieve a good solution.



36

(a) PSF1 (b) PSF2

(c) PSF3 (d) PSF4

Figure 4.2: Test PSFs. All PSFs have been padded with zeros to size 256× 256. The
images have been scaled for display purposes.

4.1.2 Parameters

It has been shown that the Barzilai-Borwein method is more sensitive to the initial

starting point than either the steepest descent or conjugate gradient methods [38].

Given the findings of the aforementioned paper, we choose the initial starting point

for BB, PBB, and BBII to be a matrix of all zeros. The first BB step length is

arbitrary, so we use a steepest descent step length for α1, given by (3.9).

For GPCG, we use the default parameters given in the code by Johnathan Bardsley

which accompanies [40], available at http://www.math.montana.edu/~vogel/.

For BBII, we must choose both an inital threshold value τ and a decay rate ρ. To

choose τ , we use the following heuristic: decide on the average minimum value, and

then calculate what the corresponding value of r would be. In these cases, we choose

an average negative value of −0.01, which, using (3.24), leads to an r value of

(−0.01)2

1

N

∑
i

g2
i

(4.1)
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where g is the test image at hand and N = 2562 = 65536, since each image is of size

256 × 256. We choose this value as the initial threshold. For example, for the head

test case with PSF1 and SNR 20, this leads to τ = 0.00065. In contrast, for the text

test case with PSF4 and SNR 40, it leads to τ = 0.0161. If a lower average minimum

value was chosen, then the initial threshold would be higher, and the method would

explore further into the infeasible region before a projection occured. Other heuristics

could surely be derived, but after much experimentation we find that the important

thing is to keep in mind the physical meaning of the quantities, rather than choose

numbers blindly.

For the decay rate, we use ρ = 0.97, and we compute the median average negative

value over the previous 10 iterations.

4.1.3 Evaluation and Efficiency

We use the restoration error, defined by (2.10), to evaluate the performance of the

algorithms. We do not plot the error vs. the number of iterations, because the GPCG

algorithm computes many inner GP and CG iterations within a single outer GPCG

iteration, making it many times more computationally intensive per iteration than

the other algorithms we consider. Rather, in all of the algorithms we consider, the

most computationally costly operation is the matrix-vector multiplication, which is

computed using a Fast Fourier Transform (FFT). The complexity of the FFT is

Θ(mn log(mn)) for an image of size m by n [15]. The next most expensive operation

in our algorithms is element-wise multiplication, which is O(mn), and calculation of

the �2 norm, which is also O(mn). So instead we plot the restoration error against

the total number of FFTs (including inverse Fast Fourier Transforms, or iFFTs).

One advantage to BB is that, like SD, it only requires two FFTs per iteration

using the recurrent gradient update rule

γk+1 = γk − αkA
TAγk. (4.2)

In PBB, the recurrent gradient update does not hold, and the true gradient must be

computed at each step. The overall cost per iteration is three FFTs. (For the reasons

discussed in Sec. 3.3.3, we do not include a line search in our implementation.) One

advantage of BBII over PBB is that the true gradient need only be computed after a
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projection step, so the average cost per iteration is between two and three FFTs per

iteration, depending on how many projections are necessary.

For GPCG, the cost per iteration depends on how many GP and CG iterations

are performed. The number of FFTs is output by Bardsley’s implementation. In

some cases, many FFTs are computed before the solution update is performed, which

accounts for the “boxy” nature of the GPCG plots.

4.1.4 Restoration Error

In this section we present plots of the restoration error vs. the number of FFTs for

the four algorithms. Note the different scales on the x- and y-axes. The curves

are averaged over five different noise configurations. The error bars represent one

standard deviation from the mean, and are displayed only every 20 FFTs to improve

clarity.

To the right of each plot, two images are displayed. The top image is the blurred

and noisy image (for one noise configuration), and the bottom image is the resulting

image after deconvolution using BBII, where we stop the iterations at the minimum

point in the restoration error curve.

We then display tables showing the minimum restoration error for each method

and test case, and the number of FFTs required to reach the minimum value. The

method which achieves the lowest value in each test case is indicated with bold font.

Note that the algorithms were stopped after a maximum of 2000 FFTs.
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.3: Head test image with PSF1
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.4: Head test image with PSF2
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.5: Head test image with PSF3
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.6: Head test image with PSF4
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.7: Satellite test image with PSF1
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.8: Satellite test image with PSF2
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.9: Satellite test image with PSF3
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.10: Satellite test image with PSF4
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.11: Text test image with PSF1
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.12: Text test image with PSF2
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.13: Text test image with PSF3
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(a) SNR 20

(b) SNR 30

(c) SNR 40

Figure 4.14: Text test image with PSF4
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BB PBB GPCG BBII
min FFTs min FFTs min FFTs min FFTs

PSF1 BSNR 20 0.2713 138 0.2567 1895 0.2578 362 0.2578 342
PSF1 BSNR 30 0.2310 244 0.2378 1997 0.2210 1690 0.2208 1160
PSF1 BSNR 40 0.2083 620 0.2353 1997 0.2028 1968 0.1985 1999
PSF2 BSNR 20 0.2504 88 0.2392 1427 0.2398 718 0.2413 447
PSF2 BSNR 30 0.2395 228 0.2310 1997 0.2268 1998 0.2281 1999
PSF2 BSNR 40 0.2318 600 0.2298 1997 0.2224 1994 0.2228 1999
PSF3 BSNR 20 0.2075 20 0.1866 77 0.2034 76 0.1968 43
PSF3 BSNR 30 0.1593 34 0.1285 374 0.1410 360 0.1310 118
PSF3 BSNR 40 0.1163 102 0.0802 1529 0.0830 344 0.0840 298
PSF4 BSNR 20 0.3023 84 0.2686 1385 0.2714 718 0.2725 320
PSF4 BSNR 30 0.2643 190 0.2399 1997 0.2269 1994 0.2263 1097
PSF4 BSNR 40 0.2108 414 0.2358 1997 0.1920 1998 0.1960 1999

Table 4.1: Minimum mean error: head test case.

BB PBB GPCG BBII
min FFTs min FFTs min FFTs min FFTs

PSF1 BNSR 20 0.3818 144 0.3587 1997 0.3256 1998 0.3273 1999
PSF1 BNSR 30 0.3225 376 0.3477 1997 0.3023 1998 0.2784 1946
PSF1 BNSR 40 0.2895 690 0.3431 1997 0.2983 1998 0.2642 1983
PSF2 BNSR 20 0.3742 96 0.3408 1997 0.3382 1998 0.3345 1999
PSF2 BNSR 30 0.3616 282 0.3373 1997 0.3274 1998 0.3165 1993
PSF2 BNSR 40 0.3420 1998 0.3364 1997 0.3281 1998 0.3142 1999
PSF3 BNSR 20 0.2753 20 0.1977 227 0.2021 230 0.2056 75
PSF3 BNSR 30 0.2158 36 0.1328 1079 0.1368 444 0.1420 322
PSF3 BNSR 40 0.1646 100 0.0928 1997 0.0830 1580 0.0859 1581
PSF4 BNSR 20 0.4508 150 0.3519 1997 0.3332 1992 0.3361 842
PSF4 BNSR 30 0.3668 252 0.3459 1997 0.2934 1996 0.2785 1417
PSF4 BNSR 40 0.3000 624 0.3431 1997 0.2801 1998 0.2219 1988

Table 4.2: Minimum mean error: satellite test case.

4.1.5 Discussion

BBII tends to benefit from the fast decrease of BB in the first several iterations, but

then continues to decrease after the BB error starts increasing again. A good example

of this behaviour is seen in Fig. 4.7(b). It also differs from BB in the sense that the

error curve is smoother, which means that finding a good stopping criterion is not as

essential. For instance, consider Fig. 4.11(b). For BB, the choice between stopping
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BB PBB GPCG BBII
min FFTs min FFTs min FFTs min FFTs

PSF1 BNSR 20 0.8254 276 0.8359 1997 0.8200 1998 0.8015 1975
PSF1 BNSR 30 0.8045 972 0.8357 1997 0.8192 1998 0.7830 1999
PSF1 BNSR 40 0.7677 1998 0.8357 1997 0.8194 1998 0.7783 1999
PSF2 BNSR 20 0.8386 250 0.8317 1997 0.8270 1994 0.8280 1999
PSF2 BNSR 30 0.8318 752 0.8311 1997 0.8251 1996 0.8224 1915
PSF2 BNSR 40 0.8236 1998 0.8311 1997 0.8251 1998 0.8201 1998
PSF3 BNSR 20 0.5684 58 0.2991 1997 0.2836 1998 0.2845 1999
PSF3 BNSR 30 0.4178 166 0.2363 1997 0.1516 1998 0.1447 1999
PSF3 BNSR 40 0.2753 1998 0.2159 1997 0.0956 1980 0.0705 1999
PSF4 BNSR 20 0.8146 274 0.8186 1997 0.7944 1998 0.7361 1999
PSF4 BNSR 30 0.7168 816 0.8156 1997 0.7891 1996 0.6384 1999
PSF4 BNSR 40 0.5519 1998 0.8145 1997 0.7882 1998 0.6057 1999

Table 4.3: Minimum mean error: text test case.

at 1000 FFTs or 1100 FFTs could have a significant effect on the quality of the

solution. The BBII curve tends not to exhibit this unstable behaviour. In addition,

the BBII curve has smaller error bars, indicating that is less dependent on particular

noise configurations than BB. Note as well that although the error bars are the same

length in the upward and downward directions, we know from our experience with

BB that the sudden spikes typically increase the error, rather than decrease it, as in

Fig. 3.5. Additionally, the error is lower-bounded by zero.

BBII achieves results similar to GPCG in many cases (see Fig. 4.3, 4.4, 4.6, 4.9,

and 4.12, for example). In a number of other cases it does significantly better, such

as in Fig. 4.14.

Not surprisingly, a visual inspection of the resulting images suggests that the

reconstruction results are better for higher signal-to-noise ratios. For instance, if we

consider the head test image with PSF1 and BSNR 20 (Fig. 4.3(a)), the resulting

image appears very noisy in the mostly flat grey area in the middle of the head, and

there is very little detail visible around the nose and eyes. The case with BNSR 40,

shown in Fig. 4.3(c), has fewer noise artifacts and more detail. Comparing across

PSFs, the best results for the head test image are seen in the PSF3 case (Fig. 4.5),

which blurs the image less than the other PSFs. Similar results are seen with the

other test images.

Tables 4.1, 4.2, and 4.3 help to illustrate the trade-off between time and the quality
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of the restored image. For example, in Table 4.1, for test case PSF3 and BSNR 40,

PBB attained the minimum restoration error of 0.0802 in 1529 FFTs. However, BBII

reached a minimum of 0.0840 in only 298 FFTs. In some applications, the difference of

0.0038 in the restoration error might be meaningful, but in time-sensitive applications,

the improvement is negligible compared to the 1231 extra FFTs required to achieve

it.

For the head test image (Fig. 4.1), the constrained methods outperform uncon-

strained BB, confirming that adding a nonnegativity constraint can improve the qual-

ity of the results. PBB achieves the minimum error 50% of the time, and GPCG and

BBII each achieve the minimum 25% of the time. However, the results are very close

for this test image, with the difference in error generally showing up in the second

or even third decimal place. For every case in which all three constrained methods

reach their minimum before the maximum number of FFTs is reached, BBII achieves

its minimum error value in the least number of FFTs.

In the satellite test case (Fig. 4.2), BBII achieves the minimum error 58% of the

time, GPCG 25% of the time, and PBB 17% of the time. There are only two cases

in which PBB converges before the maximum number of FFTs are reached, which is

a testament to its slow convergence.

In the text test case (Fig. 4.3), BBII has the minimum error value in 66% of cases,

with GPCG and BB each doing best 17% of the time.

4.2 Three-Dimensional Microscope Image Restoration

We test the algorithms on three-dimensional data as well, since we are interested in

fluorescence microscopy. Increasing the dimensionality does not change the code, but

it does mean that the stored variables are larger and the operations take longer, which

may present problems for some algorithms.

4.2.1 Test Cases

For the 3D test cases, first we consider the test data provided by the Biomedical Imag-

ing Group at the École Polytechnique Fédérale de Lausanne in Switzerland, available

at http://bigwww.epfl.ch/deconvolution/?p=bars. The data are synthetic test

images of six hollow bars, blurred with a theoretical widefield microscope PSF and
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Figure 4.15: Bars test cases. On the top left, the true image. On the top right, the
PSF. On the bottom left, the blurred image with SNR = 15. On the bottom right,
the blurred image with SNR = 30. (Images have been scaled for visualization.)

corrupted with Gaussian and Poisson noise (see Fig. 4.15). There are two levels of

noise, SNR = 15 dB and SNR = 30 dB. Although these images are synthetic, they

are useful in making comparisons because the true image is also available, and thus

we can compute the restoration error.

We then test the algorithm on real widefield microscope data. The images were ac-

quired in wide-field mode on an Axio Observer Z1 microscope (Zeiss, Jena, Germany)

equipped with a 63X Plan-Aprochromat lens, a solid-state light engine (Lumencor,

Beaverton USA) and a CoolSNAP HQ2 charge-couple device (CCD) camera (Pho-

tometrics, Tucscon, USA) using SlideBook 5.0 software (Intelligent Imaging Innova-

tions (3i), Boulder, USA). The test image consists of two fixed human HeLa cervical

cancer cells that were first immunolabelled with sheep anti-PRP4 kinase antibod-

ies [9] to identify the subnuclear compartment known as splicing speckles domains

[22]. These splicing speckles were then detected by indirect immunofluorescence us-

ing donkey anti-sheep antibodies labelled with the fluorophore Alexa 488 (Invitrogen)

that fluoresces green when illuminated with 488 nm light. A series of micrographs
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was then taken at a spacing of 200 nm in the z-axis to allow the generation of a

three-dimensional image series.

4.2.2 Parameters

The bar images are of size 256× 256× 128. We scale the PSF so that all its elements

sum to one, and scale the true image to lie between zero and one.

To choose the initial threshold, we use the same heuristic described in Section 4.1.2.

In these test cases, although the true image is still scaled to have a maximum value of

one, the blurry images have a much lower maximum value than in the the 2D cases.

For this reason we choose the average minimum value to be −0.001, resulting in inital

thresholds of 0.041 in the SNR 15 case, and 0.038 in the SNR 30 case. We again use

ρ = 0.97 and calculate the median over the previous 10 iterations.

The original image of the cells was of size 956 × 984 × 30, which we cropped to

756× 784× 30, and scaled to between zero and one. Since an experimental PSF was

not available, we used the “PSF Generator” plug-in for ImageJ (available at http:

//bigwww.epfl.ch/deconvolution/?p=plugins) to generate a theoretical PSF. To

perform the calculation, the program requires a number of parameters describing

the microscope, which are given in Table 4.4. We use an initial threshold of 0.056,

corresponding to an average minimum value of -0.05.

Numerical Aperture 1.4
Refractive Index 1.518
Spatial Resolution 102.383 nm
Axial Resolution 100 nm
Wavelength 488 nm (green)

Table 4.4: Microscope parameters for the real 3D test case.

4.2.3 Evaluation

For the parallel bars test case, we plot the restoration error against the number

of FFTs. Note that in this case the FFTs are three-dimensional rather than two-

dimensional, so the time required to run the algorithms increases. Additionally, the

GPCG program consistently caused Matlab to run out of memory after only a few

iterations. As a result, the GPCG curves are not included in the plots.
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For the cell test case, we are unable to calculate the restoration error since there

is no “true” image. Instead we simply show a slice from the middle of the image

after deconvolution, and compare the results visually. For the sake of comparison,

we also include the results which are output by the SlideBook software. We consider

two of its deconvolution algorithms: Nearest Neighbours and Constrained Iterative.

The Nearest Neighbour (NN) algorithm is based on the assumption that most of the

out-of-focus light in a given slice comes from the slices directly on either side. Thus,

it removes only the blur originating from the two neighbouring planes [24]. The

Constrained Iterative (CI) algorithm is based on work by David Agard [1]. It uses a

combination of Wiener filtering and a modified van Cittert update [36] to remove blur,

and Gaussian filtering to reduce noise. It also imposes a nonnegativity constraint.

The NN and CI algorithms use a PSF which is generated internally by the software

and is inaccessible to the user. For this reason, the comparison between our methods

and the software methods is not precise as they do not use the same PSF. However,

it is useful to compare our results with those that would be typically generated and

used in a real laboratory setting.

4.2.4 Discussion

The restoration error curves for the bars test cases, shown in Fig. 4.16 and Fig. 4.17,

look similar to those in 2D. The PBB method leads to a slow, smooth descent, while

the BB method leads to a fast initial descent but does not achieve a very low error

value before increasing again. The BBII method initially behaves similarly to BB,

but then smoothes out and achieves the lowest error value of the three methods after

2000 FFTs. The resulting images shown in Fig. 4.16 and Fig. 4.17 indicate that the

images produced by PBB are blurrier than those produced by BBII.

For the cell test image, the analysis is more subjective. Each image is displayed

such that its lowest pixel value displays as black, and the highest pixel value displays

as white. Fig. 4.18 shows a comparison of BB, PBB, and BBII, while Fig. 4.19 shows

the comparison with NN and CI.

In Fig. 4.18(b), the BB result overfits the noise. The speckles are blurry and the

whole image is covered with a mottled pattern. The PBB and BBII methods lead to

fairly similar results, but the BBII image shows a greater reduction in the amount of
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Figure 4.16: Results for 3D bars test case with SNR = 15. On top, the restoration
error vs. the number of FFTs. Bottom left, the result after 2000 FFTs for PBB.
Bottom right, the result after 2000 FFTs for BBII.
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Figure 4.17: Results for 3D bars test case with SNR = 30. On top, the restoration
error vs. the number of FFTs. Bottom left, the result after 2000 FFTs for PBB.
Bottom right, the result after 2000 FFTs for BBII.
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(a) Raw image (b) BB

(c) PBB (d) BBII

Figure 4.18: Results for the 3D cell image, using BB, PBB, and BBII, after 400 FFTs.
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(a) Raw image (b) NN

(c) CI (d) BBII

Figure 4.19: Results for the 3D cell image, compared to those produced by the Slide-
Book software normally used with the microscope.
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background haze inside the cells.

In Fig. 4.19(b) and Fig. 4.19(d), BBII appears to remove more of the background

haze than NN, which is to be expected since it considers light contributions from

outside the nearest planes. However the speckles in the BBII result are still blurrier

than those in the CI image (Fig. 4.19(c)).

One difference between the cell test case and all the previous test cases is that it is

the only case in which the exact blurring function is not known. The theoretical PSF

which we used is only an estimate of the real PSF. For instance, the top and bottom

“cones” of a measured PSF are typically not exactly symmetric due to spherical

aberration [24]. Additionally, a theoretical PSF does not model the blur which results

from light reflecting off the cover slip. However, it is the nature of experimental

work that the PSF will never be known exactly. We have shown here that it is still

possible to achieve a good result using BBII in conjunction with a simple and free

PSF generator.



Chapter 5

Conclusion

Image deconvolution is difficult due to the ill-posed nature of the problem; however

it has many important applications and is an active area of research in a number of

different fields. We have presented an overview of the basic aspects of the problem

and different approaches to its solution. Direct methods, such as inverse filtering and

Wiener filtering, are simple and fast but do not yield good results in all cases. Itera-

tive methods, such as steepest descent and conjugate gradient, generate a sequence of

estimates before converging on the inverse solution. By stopping the iterations pre-

maturely, we can achieve a good solution which does not overfit the noise. Another

iterative method is the Barzilai-Borwein method, which is non-monotonic and uses

a wide range of step-lengths, and has shown remarkably fast convergence given its

simplicity.

Because pixel values represent light intensities, they cannot be negative. This

suggests that it can be useful to incorporate a nonnegativity constraint into a de-

convolution method. The gradient projection algorithm is a simple algorithm for

constrained optimization, but it can be slow to converge. Better performance can be

achieved by combining the benefits of GP and CG into one method, called GPCG.

Additionally, the BB method has been adapted to solve the constrained problem by

projecting the BB iterates onto the feasible set.

We have proposed a new algorithm which is based on the BB method but imposes

a nonnegativity constraint. However, in contrast to the existing PBB method, we

do not project on every iteration. Instead, we allow infeasible iterates with pixel

values of less than zero. This has the effect of reducing the number of FFTs required

per iteration, and often allows the fast convergence which is characteristic of the

unconstrained BB method. To impose the nonnegativity constraint, we keep track

of the ratio of the average squared value of negative pixels to the average squared

value of all the pixels. When this quantity increases past a pre-defined threshold,
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we project the solution onto the feasible set. Over time, we tighten the constraint

by decreasing the threshold. As a result, we see that the restoration error decreases

more quickly than PBB over the first several iterations, but then does not tend to

increase again as rapidly as with the BB method.

Our method represents a significant improvement over the existing PBB method.

Based on a comparison between the minimum value of the average error curves, BBII

achieved a lower restoration error than PBB in 78% of the 2D test cases, and both of

the 3D test cases for which the restoration error could be calculated. It also showed

faster convergence.

We also compared BBII to GPCG, which was designed for solving large-scale

bound-constrained quadratic programming problems. When compared to GPCG,

BBII performed surpisingly well, given that it is a much simpler algorithm and does

not use the conjugate gradient method, which is well-known for its performance on

unconstrained quadratic problems. BBII achieved a minimum error less than or equal

to GPCG in 65% of the 2D test cases. Furthermore, BBII did not cause Matlab to

run out of memory in the 3D case, as the GPCG implementation did.

In general the constrained methods did better than the unconstrained BB method

on these test cases, which all contain large dark areas, supporting the claim that

nonnegative approaches are to be preferred when faced with images of this type.

We have mentioned in Sec. 4.1.2 a heuristic method for choosing the initial thresh-

old τ ; future work could explore different methods for choosing τ as well as the scaling

factor ρ. We experimented briefly with choosing a different window over which to cal-

culate the median and found that the differences were negligible; however an in-depth

study might yield more information.

We have applied BBII to image restoration, focusing particularly on its applica-

tions to fluorescence microscopy. It would be interesting to explore its application

to real astronomical images, since that is another area in which nonnegatively con-

strained deconvolution is commonly used. Another possibility would be to incorporate

an upper bound as well as a lower bound. An upper bound is not imposed by the

physics of the situation, as the lower bound is, but it might be applicable in some

situations. For instance, we know that the maximum value of our 2D test images is

one, so we could impose the constraint that all solution pixel values lie between zero
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and one.

Another possible extension would be to tackle the problem of blind deconvolution,

which is used when either the PSF is unknown, or only a rough estimate is known.

In real-life applications, such as the 3D microscopy example, the exact PSF is rarely

known. Iterative blind deconvolution algorithms update the estimate of the PSF as

well as the estimate of the true image at each iteration. If it was possible to incor-

porate into BBII some method of improving an estimate of the PSF, the algorithm

might be useful in a wider range of applications.

Looking ahead in a broader context, this type of algorithm can be applied to any

problem in quadratic programming. Applications of quadratic programming can be

found in science and engineering, as well as fields such as management, economics,

and finance. However, it must be noted that nowhere in our results do we consider

the objective function itself; instead we are concerned with maximizing the quality

of the restored image, in this case as measured by the restoration error. Further

investigation would be required to determine how BBII compares to other quadratic

programming methods in terms of minimizing the objective function.

It should be clear by now that aspects of the BB method are not well understood.

However, we have shown that by allowing infeasible iterates rather than projecting

on every step, we can preserve and benefit from some of the BB behaviour while still

constraining the solution to the feasible domain.
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[25] Jorge J. Moré and Gerardo Toraldo. On the solution of large quadratic pro-
gramming problems with bound constraints. SIAM Journal on Optimization,
1:93–113, 1991.



67

[26] James Nagy and Zdenek Strakos. Enforcing nonnegativity in image reconstruc-
tion algorithms. In David C. Wilson et al., editor, SPIE Conference on Mathe-
matical Modeling, Estimation, and Imaging, pages 182–190, 2000.

[27] James G. Nagy and Katrina M. Palmer. Steepest descent, CG, and iterative
regularization of ill-posed problems. BIT Numerical Mathematics, 43:1003–1017,
2003.

[28] James G. Nagy, Katrina M. Palmer, and Lisa Perrone. Iterative methods for
image deblurring: a Matlab object-oriented approach. Numerical Algorithms,
36:73–93, 2004.

[29] Soontorn Oraintara, William C. Karl, David A. Castanon, and Truong Q.
Nguyen. A method for choosing the regularization parameter in generalized
Tikhonov regularized linear inverse problems. In International Conference on
Image Processing 2000, Proceedings, pages 10–13, 2000.

[30] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-
nery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, second edition, 2002.

[31] Marcos Raydan. On the Barzilai and Borwein choice of steplength for the gra-
dient method. IMA Journal of Numerical Analysis, 13:321–326, 1993.

[32] Marcos Raydan. The Barzilai and Borwein gradient method for the large scale
unconstrained minimization problem. SIAM Journal on Optimization, 7:26–33,
1997.

[33] William H. Richardson. Bayesian-based iterative method of image restoration.
Journal of the Optical Society of America, 62:55–59, 1972.
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Appendix A

Matlab Code

function [f,alpha ,proj]= bbii(PSF ,b,iter ,tau ,rho)

% Barzilai -Borwein with Infeasible Iterates

% Kathleen Fraser , July 2011

%

% Input:

% PSF - point spread function

% b - blurry , noisy image

% iter - number of iterations

% tau - initial threshold (tau < 0)

% rho - scaling factor (0 <= rho <= 1)

%

% Output:

% f - deconvolved image

%

% Optional output:

% alpha - step sizes

% proj - record of projections (1 or 0 for projection or no projection)

%

f=zeros(size(b));

alpha=zeros(1,iter +1);

proj=zeros(1,iter);

K=psf2otf(PSF ,size(b));

F=fftn(f);

B=fftn(b);

G = conj(K).*(K.*F-B);

g = real(ifftn(G));

Kg = real(ifftn(K.*G));

alpha (1) = (g(:)�*g(:))/( Kg(:)�*Kg (:));

for k=1:iter ,

if(k>10 && proj(k-1) ~= 0) % projection on last step
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alpha(k)=(g(:)�*g(:))/( Kg(:)�*Kg(:)); % use steepest descent step size

end

f=f-alpha(k)*g; % update solution

less=f<0; % number of elements < zero

if(sum(less (:)) >0)

neg=(f(:).* less (:));

r(k)=( sum(neg (:).^2)/ sum(less (:)))/( sum(f(:).^2)/ numel(b));

else

r(k)=0;

end

alpha(k+1)=(g(:)�*g(:))/( Kg(:)�*Kg (:)); % step size for next iteration

if(k <=10) % finding the median r value

n(k)=r(k);

else

n(1:9)=n(2:10);

n(10)=r(k);

med(k)= median(n);

end

if(k>10 && med(k)>tau) % project if median(r) > tau

f=max(f,0);

num =3;

proj(k)=1;

tau=rho*tau;

else

num =2;

proj(k)=0;

end

if(num ==3) % if projection , use gradient definition

F=fftn(f); % requires an addition FFT

G = conj(K).*(K.*F-B);

else % otherwise use iterative update

G=G-alpha(k)*( conj(K).*K.*G);

end

g = real(ifftn(G));

Kg=real(ifftn(K.*G));

if(k==iter) % always project on last iteration

f=max(f,0); % so output solution is feasible

end

end


