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Abstract

The single-particle momentum is studied as a tool for the visualization of the elec-

tronic regions in atoms and molecules. The limiting values of this function correctly

obey two fundamental theorems: Kato's cusp condition and the Ho�mann-Ostenhof

and Ho�mann-Ostenhof exponential decay. The local momentum also depicts the

electron shell structure in atoms as given by its local maxima and in�ection points.

The integration of the electron density in a shell gives electron populations that are

in agreement with the ones expected from the periodic table of the elements. The

shell structure obtained is in agreement with higher level of theory computations.

The average of the local kinetic energy associated with the local momentum is the

Weizsäcker kinetic energy. It is shown that this quantity provides an estimate of steric

interactions in molecules.

The single-particle momentum is a practical tool for the exploration of new stabi-

lizing interactions for all kinds of molecular systems. It provides a three-dimensional

representation of the molecular structure and depicts the polarizability regions, a

feature not available with other continuous analyses.

A general de�nition of the radius of an atom in terms of its ionization energy

is found. A relationship between these two fundamental properties is derived from

the radial distribution function and the local momentum for the valence electrons.

Strong correlations with well-known atomic radii suggest that this is a universally

valid de�nition of the atomic radius.

The stability of peptides in the α-helix conformation upon replacement of the

central amino acid is studied. These systems were optimized with a continuous solvent

model and a recently developed DFT functional with empirical terms accounting for

dispersion interactions. Both, the dispersion terms and the solvent model are directly

related to the polarizability of the involved atoms. A new formula for an ab initio

computation of the polarizability is introduced and tested for the amino acids.

xiii
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Chapter 1

Introduction

The electronic structure of molecules can be studied from many di�erent perspec-

tives. In crystals, for instance, the continuous electronic states are described in the

reciprocal space by the band structure. Observable properties related to the electrical

conductivity can be addressed using this representation of the electronic states, which

helps in obtaining simple models useful in the simulation and design of electronic

semiconductor devices, for example. Unfortunately, for non periodic systems there is

no analysis equivalent to that of the band structure which can depict the electronic

structure of molecules in the three-dimensional (3D) coordinate space.

Several proposals for a 3D representation of the electronic structure in chemistry

have �ourished within the past three decades. Each of them deals with terms such as

�the electron pair� or �the chemical bond� which do not unambiguously correspond to

directly measurable physical quantities. Nevertheless, due to their conceptual utility,

clear and rigorous physical de�nitions of these and related terms are indispensable.

In the present thesis a new tool for the analysis of the electronic regions in atoms,

molecules and crystals is developed. It depends explicitly on the electron density and

can be derived formally from the local quantum theory. The main variable studied

is closely related to other quantum chemical theories, such as the density functional

theory (DFT) and the quantum theory of atoms in molecules (QTAIM).

The main motivation for this work was the idea that an electron density analy-

sis must provide complete information about chemically-relevant electron regions in

atoms and molecules. This assumption is supported by the Hohenberg-Kohn theorems

(HKT), which state that the external potential is uniquely de�ned by the electron den-

sity ρ; and that any trial density leads to an energy that is greater than or equal to

the energy of the ground state.1 According to the HKTs, the electron density com-

pletely characterizes the ground state of any molecular system. The electron density

also provides a theoretical bridge between the Hilbert space where the molecular wave

function ψ is represented, and the three-dimensional world.2 These theorems clearly

suggest that the physics and the chemistry of any molecular system can be completely

1
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studied in the 3D coordinate space, similar to how the classical systems are studied.3

However, a direct analysis of the electron density is impractical for the identi�ca-

tion of electronic regions in the 3D space. Speci�cally, ρ changes by several orders

of magnitude within a few angstroms, making direct 3D analysis di�cult. It is nec-

essary to apply precise transformations to the electron density in order to visualize

chemically-relevant regions.

The original motivation for the present thesis was the development of a theoretical

tool for the study of the electronic regions in molecules. In a preliminary attempt,

each coordinate point in the 3D space is given by a pixel that is coloured according

to a sigmoid function applied to ρ, and the transparency and intensity of each pixel is

calibrated with the density values. An example of this application appears in Figure

1.1, which reveals certain chemical features like the core regions in oxygen atoms and

the presence of bonding interactions. This is a practical tool for a quick assessment

of certain regions of interest in molecular systems, but any improvement required

additional research.

Figure 1.1: Electron densities for Arg and Trp at HF/6-31G level with the software
SOLID, FIDIC 2000© by H. J. Bohórquez and M. Obregón, (C++
& Open Inventor libraries, SGI). The original black background was
digitally changed to white.

The object of this thesis is thus to develop a theoretical tool capable of providing

an accurate description of the electronic regions in atoms and molecules by using the

electron density as the main variable. Here it is demonstrated, through a series of

papers (published or to be submitted), that the single-particle local momentum is

especially well suited for the localization of chemical bonds and paired electrons in

the three-dimensional coordinate space.
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The method developed here is entirely based on the electron density and accom-

plishes a set of requisites:

1. It is derivable from �rst principles.

2. It provides a direct and practical visualization of di�erent electronic regions in

the coordinate space.

3. It is universal in the sense that it is equally applicable to atoms, molecules,

molecular complexes, clusters and crystals.

4. It is consistent with other electron density analyses such as QTAIM.

5. It provides a visualization consistent with both the physics and the chemistry

of the system.

6. It is independent of the level of theory used.

Several quantum-chemical analyses found in the literature already accomplish the

items of this list. For instance, the electron localization function (ELF) of Edgecombe

and Becke4 ful�ls all requirements except item 4, which may be a consequence of its

DFT conceptual origins.

In this thesis, the single-particle momentum has been systematically studied as a

density-based analysis tool. The single-particle momentum can be derived from the

local quantum mechanics of a single particle. As it has been shown in a series of pub-

lications, the single-particle momentum is able to identify the electron density regions

in atoms, molecules, complexes and crystals. With this analysis, electronic sub-regions

such as covalent bonds or atomic shells can be readily located in the 3D space, and

therefore it is called the �localized electrons detector� LED. The method has been

extensively tested for a variety of systems in order to validate its applicability. It has

been demonstrated that LED is fully compatible with QTAIM theorems. For instance,

the central variable for the topology of the electron density is the gradient function

which is the current density associated with the single-particle local momentum. In

addition, LED is conceptually related to DFT. The kinetic energy density associated

with the single-particle momentum is the Weizsäcker term, τw, which appears as a

�gradient correction� in generalized gradient approximations (GGAs). Moreover, in

conceptual DFT τw leads to an estimate of steric e�ects, as recently shown by Liu.5
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During the development of this theoretical tool several important �ndings have

been achieved. For instance, a topological criterion for the precise de�nition of electron

shells in atoms was found (Chapter 3). These ideas suggest that it is possible to

determine the e�ective cores used in relativistic approximations in a rational way, as

is sketched in Chapter 4.

The electronic structure depicted by LED also indicates the existence of an observable-

dependent con�nement region for the atom. This idea leads to the proposal of an

experimentally-based atomic radii table (Chapter 5). It is also linearly correlated

(R > 0.9) to �ve di�erent sets of theoretical atomic radii.

For molecules (Chapters 6-8), LED reveals a wealth of chemically-relevant infor-

mation. It depicts the core electrons in a spherically-symmetrical shape and typical

covalent bonds as rods connecting the involved nuclei. This 3D picture alone con-

stitutes an ab initio molecular structure that agrees with the chemical intuition. In

addition, and perhaps more importantly, LED reveals the local electronic polariza-

tion of the valence electrons. This feature helps in understanding challenging bonding

situations that contradict chemical intuition. For instance, it helps to explain how

certain types of hydrogen-hydrogen interactions can actually stabilize the phenan-

threne molecule, contrary to what might be expected. A quantitative estimate of

this e�ect is given by the Weizsäcker kinetic energy density. In addition, a new set

of topological properties for the stationary points of the electron density have been

found that may be added to the existing properties as described by QTAIM. These

�ndings indicate that LED provides a clear graphical representation of all kinds of

interatomic interactions, from covalent to metallic bonds.

One of the main goals of this project was to develop tools for the theoretical

assessment of electronic features in molecules, with an aim for the characterization

of organic macromolecules. Despite recent developments in QTAIM algorithms, the

level of theory available is still too prohibitive to be practical in �elds such as drug

design, where the classical mechanics approach still dominates.

The electronic polarizability is responsible for many fundamental properties of

biomolecules. In fact, the electronic multipole polarizations of the side chains of amino

acids lead to a quantum classi�cation resembling their experimental biochemical clas-

si�cation. Unfortunately, such polarizability is absent in most classical mechanics

models.

The �nal part of this thesis is concerned with the molecular similarity problem
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(Chapters 9-11). In addition, a study of the stability of peptides in α-helix conforma-

tion upon replacement of the central amino acid is introduced. These systems were

optimized with a continuous solvent model and a recently developed DFT functional

with empirical terms accounting for dispersion interactions. Both, the dispersion

terms and the solvent model are directly related to the polarizability of the involved

atoms. A formula for an ab initio computation of the polarizability is introduced and

tested for the amino acids.



Chapter 2

Theoretical Background

�Today, we celebrate the fact that mathematics has invaded chemistry,

that by means of theoretical calculations we can predict a large variety of

chemical phenomena...

An atom consists of a nucleus and electrons. The motion of the electrons

is described by the laws of quantum mechanics. When these laws were

formulated more than 70 years ago, researchers realized immediately that

in them was contained the explanation of the chemical bond.�

Professor Björn Roos delivering the Presentation Speech for the 1998 No-

bel Prize in Chemistry at the Stockholm Concert Hall.

Such an enthusiastic speech makes partial account of the famous prediction made by

Paul Dirac regarding his views on chemistry and physics, seven decades before:

�The underlying laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known,

and the di�culty is only that exact applications of these laws lead to

equations which are too complicated to be soluble. It therefore becomes

desirable that approximate practical methods of applying quantum me-

chanics should be developed, which can lead to an explanation of the

main features of complex atomic systems without too much computation.�

P.M.A. Dirac, Proceedings of the Royal Society A 123, 714 (1929)

Interestingly, the �rst part of the quotation is usually the most cited, but it sounds

rather pessimistic and has been the target of critics because of its implicit �reduction-

ism� of chemistry to physics.i The second part of Dirac's phrase adds a more realistic

view, because it clearly states that any practical quantum model of chemical systems

iA notable adherent of this view is Roald Ho�mann (Nobel Laureate in Chemistry, 1981), who
says: �only the wild dreams of theoreticians of the Dirac school make nature simple�, within a philo-
sophical paper exposing several of his �concerns� regarding the contemporary role of theoreticians in
chemistry.6

6
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will be merely an approximate one. Such is the character of every computational

solution of a molecular system.

A precise simulation of the physicochemical properties of matter requires precise

computations of the electronic properties of molecules. But a system involving more

than one electron is technically considered a many-body system. Therefore, any chem-

ical system of interest falls into this category. This fact, together with the inherently

probabilistic nature of the wave function, makes the solution of the Schrödinger equa-

tion a formidably complex computational task, even for the simplest molecule. Such

level of complexity demanded by molecular computations is commonly referred to

as the exponential wall of quantum mechanics. As Walter Kohn admits, overcoming

these limitations was one of the main motivations for developing the density functional

theory (DFT).3 Another reason, Kohn points out, is the fundamental understanding

gained by a simpli�ed, but equivalent, formulation of the quantum theory in terms of

the electron density.

DFT transforms a many-body system into a system of non-interacting particles

that move within an e�ective potential, similar to other mean �eld theories. Walter

Kohn's contribution to DFT was awarded with the 1998 Nobel Prize in Chemistry,

which he shared with John Pople, one of the developers of modern computational

techniques for the numerical solution of molecular wavefunctions.

In this section, some of the fundamentals that are used in this thesis are brie�y

outlined. In particular, some of the basic ideas of QTAIM are mentioned after a

digression on the interpretation of the electron density.

2.1 The Electron Density as the Input

Richard Feynman published in 1939 a short paper entitled �Forces in Molecules�

that greatly in�uenced the theoretical chemistry language afterwards, mainly through

the quantum-mechanical principle known as the Hellmann-Feynman theorem.7 This

theorem expresses in electrostatic terms a way to correlate the quantum nature of

molecules with classical observables. For example, the average electrostatic forces are

given by

FXγ
= −

〈
∂Ĥ

∂Xγ

〉
(2.1)
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where FXγ
is the force acting on the Xγ-component of a given nucleus, and Ĥ is the

molecular Hamiltonian. After replacing the Hamiltonian, the force FXγ
is given in

terms of the single-particle electron density ρ

FXγ
= −Zγ

(
ˆ

drρ (r)
x−Xγ∣∣r−R

γ

∣∣ −
∑

α 6=γ
Zα

Xα −Xγ∣∣Rα −R
γ

∣∣

)
(2.2)

where the �rst term is the electron-nucleus interaction and the second one the nucleus-

nucleus.

In the same paper, Feynman proposes a hypothetical atomic partitioning of the

electron density, ρ =
∑

i ρi. He also mentions a detailed description of the electrostatic

nature of bonding interactions in molecules; and an explanation to the van der Waals

interactions in terms of the electronic polarizability.

The single-particle electron density ρ is formally de�ned as the diagonal contrac-

tion of the spin-free reduced density matrix, i.e. the trace of the density operator

ρ̂ (r) =
N∑

i=1

δ (ri − r0) (2.3)

where N is the number of electrons8

ρ (r) = Trρ̂ (r) (2.4)

The density operator is a Hermitian operator that describes the statistical state

of a quantum system. Hence the expectation value of an observable Â is

〈
Â (r)

〉
= Tr

[
ρ̂ (r) Â (r)

]
(2.5)

Expectation values of observables are a primary goal in quantum mechanics; how-

ever, for chemistry a more attractive idea is the decomposition of an observable into

atomic contributions and transferable fragments. Such an idea led Richard Bader to

develop the quantum theory of atoms in molecules9 (QTAIM). He demonstrated that

the same boundary conditions that apply to a molecular system are found for atomic

regions. These subsystems are called proper open systems (POS), because they can

exchange electronic population, energy and volume.10

Bader introduced the concept of a proper open system as the quantum chemical

de�nition of the region that pertains to an atom inside a molecule.10 The boundary
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conditions of a POS are equivalent to the boundary conditions of the whole molecule,

which is mathematically expressed by the zero-�ux condition integral

− ~
2

4m

˛

dS∇ρ (r) · n (r) = 0 (2.6)

that leads to the local zero-�ux condition

∇ρ (rS) · n (rS) = 0 (2.7)

that de�nes the inter-atomic surfaces (IAS) as the 2D sub-regions rS ∈ S (Ω) which are

embedded inside the 3D coordinate space. The zero-�ux equation is a local boundary

condition that de�nes the limits between atoms. The 3D space is divided into disjoint

Ωi volumes, where i identi�es each atom in the molecule. Thus, each atom has an

exclusive portion of space where its physical properties can be evaluated.

Bader introduced the dynamical systems analysis for the study of molecular sta-

bility,11 giving rise to the topologically-de�ned molecular structure theory. The main

quantity in this formulation is the gradient of the electron density ∇ρ. The station-
ary points of the electron density are the critical points, i.e. those points where the

gradient vanishes. The molecular structure is given in terms of gradient paths linking

the nuclei through saddle points generically called bond critical points (BCP). The

gradient vector �eld also provides an exhaustive partitioning of the 3D space into

atomic basins ii, i.e. atomic sub-regions where the virial theorem holds.12

It is known from experiments that atoms and functional groups of atoms can

be transferable to a high degree. When this occurs, one can determine the atomic

or group contribution to the total properties for a system. Therefore, any transfer-

ability probe necessarily implies the evaluation of sub-molecular properties. Building

quantum chemical representations of molecules by combining molecular fragments has

been the subject of many studies,13,14,15,16,17 and QTAIM is one of the most popular

theories for the study of chemical groups in terms of its fundamental components.

QTAIM language greatly permeated the conventional analysis of molecular sys-

tems.18 Bader recognizes the source of his inspiration in the works of four Nobel

Laureates in Physics: �... I started o� as an organic chemist, and I had to learn

all of this physics. In my work I quote Schrödinger, Schwinger, Dirac and Feynman

because they are the only references I need. My theory is based on the physics�.19

iiHowever, some non atomic basins can be topologically possible, like in the case of Li2.
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Bader's theory is not limited to the topology of the electron density, although it is

the practical approach followed by most of the theoretical chemists citing his work.

Its contribution to the visualization of molecular interactions and atomic regions is

equally pervasive in quantum chemistry and solid state physics.18

There is a close link between the topology of the electron density and the Nobel lau-

reates mentioned by Bader. His interpretation of the electron density seems to follow

Schrödinger's interpretation of the wavefunction as the charge density spread out over

the in�nite space. Remarkably enough, Kohn most certainly acquired his familiarity

with variational methods, which are key for DFT formulation, during the years he

spent as a PhD student at Harvard University under Julian Schwinger's supervision.

In 1965 Schwinger shared the Nobel prize in physics with Sin-Itiro Tomonaga and

Richard Feynman �for their fundamental work in quantum electrodynamics (QED),

with deep-ploughing consequences for the physics of elementary particles�, as stated

in the o�cial announcement.20 Therefore, at the very core of the fundamental works

on the electron density most widely used in theoretical chemistry, there is a resilient

appearance of the ideas proposed initially by just a few of the developers of quantum

mechanics and quantum electrodynamics.

This brief historical recall of events attempts to illustrate just how convergent the

philosophical views underneath the electron density studies in chemistry developed

during the past �ve decades, from DFT to QTAIM have been. While other ideas

and developments based on the very same quantum mechanical postulates have been

explored since the early days of the theory, not many transcended successfully through

the theoretical chemistry community.

2.1.1 Atomic Properties and Group Additivity

An atomic property corresponding to the ith atom is de�ned as being the volume

integral of the property density, G(r), over the atomic region Ωi:

G(Ωi) =

ˆ

Ωi

G(r)ρ(r)dr (2.8)

QTAIM preserves the additivity of physical properties. That is, the molecular

expectation value of the property G is

〈G〉 =
N∑

i

G(Ωi) (2.9)
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where N is the total number of participating atoms in the 3D volume Ω for property

G(r).

The atomic population, N(Ωi), can be considered as the zeroth charge density

moment,

N(Ωi) = −e
ˆ

Ωi

ρ(r)dr. (2.10)

Thus, the atom's net charge is:

q(Ωi) = Zie+N(Ωi) (2.11)

where Zi is the atomic number of ith atom.

The energy of the ith atom in a molecule, Ee(Ωi), is given by

Ee(Ωi) = T (Ωi) + V(Ωi) (2.12)

where the kinetic energy T (Ωi) and the potential energy V(Ωi) are related by by the

atomic virial theorem,9 and therefore

Ee(Ωi) = −T (Ωi) =
1

2
V(Ωi) (2.13)

The �rst moment of charge density, M(Ωi), provides a measure of the extent

and direction of the atom's charge density dipolar polarization by determining the

displacement of the atom's centre of negative charge from the position of its nucleus:

M(Ωi) = −e
ˆ

Ωi

rΩi
ρ(r)dr. (2.14)

The second moment, Q(Ωi), gives information on planar distributions of charge,

which is particularly prevalent in aromatic groups. This is the quadrupolar polar-

ization of an atomic density. When it is measured with respect to one of the three

orthogonal planes (z), its expression is given by:

Qzz(Ωi) = −e
2

ˆ

Ωi

(
3z2Ωi

− r2Ωi

)
ρ(r)dr (2.15)

and an o�-diagonal element involving the coordinates x and y is

Qxy(Ωi) = −3e

2

ˆ

Ωi

xΩi
yΩi

ρ(r)dr (2.16)
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QTAIM is remarkably insensitive to the choice of the basis set for the solution of

the molecular wavefunction.21,22 Hence this theory might be a useful tool for rational

drug design where interesting molecules include hundreds of atoms, which conditions

the selection of basis sets.18

From the chemical perspective it is relevant to ask about the electron-pair density

and how this information is re�ected in the electron density ρ alone. In a recent

study by Lobayan et al, the electron density is decomposed into the paired and the

e�ectively unpaired contributions, ρ = ρp + ρu, via the density operator formalism.23

Their results show that unpaired electron density concentrations, as accounted by the

Laplacian, occur outside the topological bonding regions, whereas the paired electron

densities exhibit accumulations inside those regions. In addition, the paired density

contribution to the total electron density is a few orders of magnitude bigger than

the unpaired one, i.e. ρp ≫ ρu, and hence ρ ≈ ρp. Therefore, for practical purposes

the topology of the electron density alone provides as much information as the paired

density itself, especially in those regions where electron pairs are usually found, like

inside the core shells or in the covalent-bonding regions. These results and previous

topological studies on the electron pairs24 prove that the quantum chemical topology

has a �rm theoretical support.



Chapter 3

On the Local Representation of the Electronic Momentum

Operator in Atomic Systems

Reprinted with kind permission from the American Institute of Physics.

H. J. Bohórquez and R. J. Boyd, J. Chem. Phys., 129, 024110 (2008)

3.1 Introduction

The single-particle electron density ρ (r) contains a wealth of chemical information. It

also provides the bridge between the abstract Hilbert space, where the state wave func-

tion ψ is represented, and the three-dimensional world.2 As stated by the Hohenberg-

Kohn theorem (HKT), ρ (r) completely characterizes the ground state of any molecular

system.1 Such statements about the electron density lay down the hypothesis that the

physics of a molecular system can be completely studied in the real, three-dimensional

coordinate space, just as the classical systems usually are.3 Despite proven success for

describing the physics of molecular systems in a comprehensive and practical man-

ner,25,26,18 the validity of single-electron analysis is still an active matter of debate

in quantum chemistry, largely centred on the di�erences between topological density-

based and molecular orbital-based approaches.27 Herein is described an alternative

approach to the physical properties of chemical systems based on results extracted

from a quantum local statistics theory.28

The local quantum theory provides a comprehensive understanding of electron-

density-derived quantities,28 including a representation of the electron momentum in

terms of the single-electron density. The extreme values of this property are con�rmed

by two paramount theorems in quantum chemistry: Kato's cusp condition,29 and the

exponential decay of the electron density found by Ho�mann-Ostenhof and Ho�mann-

Ostenhof.30 Additionally, it is shown how this single physical variable is able to

adequately depict the atomic electron shells. The shell structure is given by the critical

points of the local momentum as obtained from the spherically-averaged electron

13
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density at Hartree-Fock (HF) level. The electrons contained within the shells coincide

with the values expected on the basis of the periodic table of the elements.

These results suggest that the local quantum theory provides reliable statistical

values of the electronic momentum in atomic systems in a formal and uni�ed way.

The approach to the local quantum theory illustrated here is an attempt to show

its practical use as well as its interpretative power in quantum chemistry. Previous

discussions were devoted to the formalism itself rather than to practical numerical

results.31,32,33,34,28,35,36,37

In the next section the minimum aspects of Luo's local theory are reviewed.28 In

the rest of the chapter, the physical properties of the local momentum are discussed.

The potential use of the local quantum theory for the further study of other local

variables in quantum chemistry is also discussed.

3.2 Quantum-Statistical Estimation of Local Observables

Luo derived local values of quantum observables in the 3D coordinate space, whose

results are in perfect agreement with other recent studies on local representation of

observables.32,38 Here the main aspects of local observables theory are merely outlined.

A more comprehensive derivation is found in the original references.28,39,40,32,41,34

According to Luo, �given a quantum mechanical observable A and a quantum

system at a de�nite state ψ, one can construct a classical observable, that is, a real

function in the con�guration space A (r), such that it is the optimal estimate of the

quantum observable, in the sense of minimum variance�.28 The Heisenberg uncertainty

principle prohibits the possibility of simultaneously assigning exact values to conjugate

observables. However, it is possible to assign an exact value to one observable which

serves as a reference observable, and only a statistical average to the conjugate one.

The local quantum theory formally de�nes the proper way to do it.41,40,39 In the

following expressions it is assumed that r is the reference variable, and the momentum

p is described by a statistical average, p (r).

Within the local quantum theory, any physical observable A can be decomposed

into two parts: a real part A (r) (the local value) that corresponds to a classical

approximation of A, and an imaginary part Ã (r) (the local spread) which is a quantum

�uctuation of A. The expectation value of A, 〈A〉ψ, is therefore given by

〈A〉ψ =

ˆ

A (r) |ψ|2 dr (3.1)
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The classical estimate of A when the quantum system is in the state ψ, is the

real function A = A (r) on R
3 (rather than a quantum operator on L2), such that

the variance V arψ
(
Ã
)
is minimized subject to the condition

〈
A
〉
ψ

= 〈A〉ψ , i.e.
〈
Ã
〉
ψ

= 0. This condition guarantees that the real function A (r) is the optimal

estimate of the quantum observable A. Lou shows that the unique solution for this

optimization problem is

A (r) = Re

(
Aψ

ψ

)
(r) (3.2)

Ã (r) = Im

(
Aψ

ψ

)
(r) (3.3)

and

V arψ
(
A− A

)
=

ˆ (
Ã (r)

)2
|ψ|2 dr (3.4)

As demonstrated by Luo,28 the quantum �uctuation is essentially the Fisher in-

formation.42 Summarizing, any quantum observable A can be decomposed into two

local contributions: an average real-valued function A (r) and an imaginary �uctua-

tion iÃ (r),

A (r) ≡ A (r) + iÃ (r) (3.5)

3.3 Local Estimate of Momentum Operator in Coordinate Representation

The single-electron complex wave function ψ (r) can be expressed in polar form as

ψ (r) = ρ (r)1/2 e
i
~
S(r)

, where ρ (r) is the ground state electron density. Using ψ (r)

and the momentum operator in coordinate representation P = −i~∇ in Eq. 3.5, the

following local representation of the momentum operator is obtained

P (r) = ∇S (r)− i
~

2

∇ρ (r)
ρ (r)

(3.6)

Equation 3.6 states that the wave function phase ∇S (r) is responsible for the classical

part of the momentum average P (r) = ∇S (r), while the quantum spread is accounted

for by the term P̃ (r) = −~

2
∇ρ(r)
ρ(r)

.

This local representation is equivalent to the recently proposed deformed momen-

tum operator by Mosna et al.32 which, in turn, is similar to the velocity �eld operator
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for spinning particles by Salesi and Recami.38 Additionally, as derived from Bohmian

quantum mechanics,43,44 Hirschfelder et al. used a similar velocity concept to obtain

imaginary and real streamlines for the study of hydrodynamical aspects of quantum

mechanics.45 Ghosh and Deb also studied general properties of this local momentum

expression within their quantum �uid dynamics.35 In summary, the formal aspects

of the local representation of the momentum operator have already been discussed in

the literature in di�erent contexts. In the present work those concepts are used for

exploring the electron-density based properties of atoms.

From Eq. 3.6 it is easy to derive a local expression for the velocity vector �eld, as

the local momentum P (r) divided by the electron mass, me. In quantum chemistry

the notion of electron velocity is rather uncommon while a closely-related quantity,

the current density, is a very well studied observable. These two properties are related

via the equation J = ρv.43 Following this relationship the local current density can

be de�ned as J (r) = 1
me

P (r) ρ (r), which after replacing Eq. 3.6 leads to

J (r) =
1

me

ρ (r)∇S (r)− i
~

2me

∇ρ (r) (3.7)

It is easy to prove that the �rst term in this equation is exactly the quantum

mechanical vector current density,9 which is de�ned in terms of the single-particle wave

function as ~

2mei
(ψ∗∇ψ − ψ∇ψ∗). The current local value is then J (r) = 1

me
ρ∇S, and

the current �uctuation is given by J̃(r) = − ~

2me
∇ρ (r). Clearly, in the absence of an

external �eld, J (r) = 0, i.e. ∇S (r) = 0.

According to Bader,10 the gradient of the electron density brings the physical

de�nition of the molecular structure and the boundaries of an atom within a molecule.9

This quantity, ∇ρ (r), is the cornerstone of the quantum theory of atoms in molecules

(QTAIM),9 and still is considered a mathematical vector �eld rather than a physical

property, but according to previous equations a physical interpretation is feasible.

In fact, Delle Site suggested a possible extension of Bader's concepts to atoms and

molecules in condensed phases using a local current expression such as Eq. 3.7.46,47

A local velocity vector �eld v (r) can be de�ned via the identity J (r) = ρ (r)v (r),

which from Eq. 3.7 gives

v (r) =
1

me

∇S (r)− i
~

2me

∇ρ (r)
ρ (r)

(3.8)

Kan and Gri�n consider this velocity �eld as a mathematical object due to its
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non-observability in contrast to the proven observability of the current density.37 On

the other hand, according to Bohm's interpretation of quantum mechanics a quantum

particle can have a de�nite velocity (or momentum) in a coordinate representation.43

As demonstrated by Bohm, spherically symmetrical systems (as atoms) have a

constant phase factor S (r) which leads to a null value for the classical part of the

momentum operator, ∇S (r) = 0,43 which is consistent with the fact that in the

absence of an external �eld J (r) = 0.9 The local representation of the momentum

operator given by Eq. 3.6 is therefore reduced to its quantum spread. i.e,

P (r) ≡ P̃ (r) = −~

2

∇ρ (r)
ρ (r)

(3.9)

In Nelson's terminology,34 this imaginary part of the momentum operator is called

the osmotic (current) velocity, and can be expressed alternatively as

P̃ (r) = −~∇ln
(√

ρ (r)
)

(3.10)

This equation shows the conservative (irrotational) character of the local momentum

spread, i.e. its curl vanishes, ∇× P̃ (r) = 0.

Real-valued wave functions are commonly used in computational chemistry for

the study of electronic states,8 and therefore the de�nition of local momentum as

provided by the quantum spread, P̃ (r), can be studied by using numerically-solved

electron densities.

The next section deals with the kinetic energy operator as given by the local

quantum representation.

3.3.1 Local Kinetic Energy Theorem (LKET)

By using a similar approach to that used in the previous section for the momentum

operator, a local representation of the kinetic energy operator, K = − ~
2

2me
∇2, is

obtained

K (r) = K (r) + iK̃ (r) (3.11)

and the real part the Bohm's quantum potential (BQP)

K (r) = − ~
2

2me

∇2R (r)

R (r)
(3.12)
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and the imaginary term is given by the expression

K̃ (r) = − ~

2me

(∇R (r) +R (r)∇) · ∇S (r) (3.13)

with R (r) = ρ (r)1/2. As previously stated, the average value of the imaginary part is

null,
〈
K̃
〉
ψ
= 0, and therefore the average value is given only by the real part, which

in terms of the electron density is

K (r) = − ~
2

2me

(∇2ρ

2ρ
− ∇ρ · ∇ρ

4ρ2

)
(3.14)

Taking the expectation value of the kinetic energy 〈K (r)〉ψ, the integral of Eq.

3.14 is

〈K (r)〉ψ =
~
2

8me

ˆ ∇ρ (r) · ∇ρ (r)
ρ (r)

dr (3.15)

which is the well-known functional, τw [ρ]. It can be proved that τw [ρ] is also pro-

portional to the variance of the momentum operator in the local representation,

V arψ

(
P̃ (r)

)
(by using Eq. 3.4). These results can be stated as the local kinetic

energy theorem, and can be summarized by the double identity

τw [ρ] =
1

2me

V arψ
(
P − P

)
= 〈K (r)〉ψ (3.16)

Provided that the real part of the local representation of the kinetic energy is the

only one responsible for the average value, this local kinetic energy can be expressed

in terms of the local variables momentum P̃ (r) and current J̃ (r), as

K (r) =
1

2me

P̃ (r) · P̃ (r) +
~

2ρ
∇ · J̃ (r)

This equation states that the local value of the kinetic energy arises from the

square of the local �uctuation of the momentum operator plus the divergence of the

�uctuation of the local current density. This is an alternative way to express the BQP

in terms of local variables. It is evident from it that the integral of the second term

vanishes, because the net �ux of the current density is equal to zero,
´

∇· J̃ (r) dv = 0.

The study of the local representation of kinetic energy functionals in the context of

the density functional theory (DFT) has been recently discussed by Hamilton, Mosna

and Delle-Site.33
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A local kinetic energy functional in terms of the electron density is not uniquely

de�ned, but is an important issue in density functional theory. Nevertheless, the rele-

vance of the Weizsäcker term is beyond doubt,48 being even considered a leading term

in any kinetic energy density functional (see e.g. Jaramillo, Scuseria and Ernzerhof,49

or Kaupp, Bahmann and Arbuznikov, and references therein).50 For a detailed analy-

sis of the relevance of this kinetic energy term in DFT the reader can check the recent

papers from García-Aldea and Alvarellos who investigated kinetic density functionals

using Weizsäcker-like semilocal and nonlocal terms.51,52

3.4 Density Functionals

It must be noticed that the integral expression 3.4 can be interpreted as the ex-

pectation value of the term
(
Ã (r)

)2
. It can therefore be stated that the variance

V arψ
(
A− A

)
is the expectation value of the square of the local �uctuation , i.e.

V arψ
(
A− A

)
=

〈(
Ã (r)

)2〉

ψ

(3.17)

This statement better explains the relevance of the local representation of quantum

observables: the statistical variance of the di�erence between the observable A and

its classical estimate A is equivalent to the average of the square of the �uctuation,(
Ã (r)

)2
. This quantity can be adequately considered as the the density of the square

of the observable A2 (r) ≡
(
Ã (r)

)2
.

Additionally, by considering that the expression 3.17 always involves the proba-

bility distribution Pψ = |ψ|2, and a density A2 (r), the result is a functional of the

form:

fA [Pψ] =

〈(
Ã (r)

)2〉

ψ

(3.18)

Therefore, it is possible to obtain observable densities in a very straightforward

way.

3.5 Results

The single-particle density ρ (r) is the main property used in the present study. Hunter

studied the use of a single-particle model in atomic and molecular systems.25,53,54 The
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local momentum (Eq. 3.9) was computed for the �rst 54 elements of the periodic table

at the numerical Hartree-Fock level with the NUMOL package from Becke's group.55,56

The following results are based on those computations.

3.5.1 Bohr Atomic Model

In the hydrogen atom the radial distribution function g (r) = ρ (r) r2 exhibits a max-

imum at the atomic radius a0, which is the characteristic length for Bohr's atomic

model. After substituting the ground state electron density of the hydrogen atom,

ρ (r) = 1
πa30
e−2r/a0 , into Eq. 3.9 the atomic unit of momentum is obtained, po = ~

a0

which yields the atomic unit of velocity v0 = ~

a0me
= 2.1877 106m/s. This is exactly the

classical value of the velocity for the �rst orbit in Bohr's model of the hydrogen atom.

The derivation of this velocity unit in the context of local quantum mechanics is very

straightforward, while conventional derivations require additional assumptions. It

should be emphasized that the electron velocity mentioned here is purely a quantum-

statistical estimate, while in Bohr's model the electron remains in a classical circular

trajectory around the nucleus with certain dynamical velocity, clearly a very di�erent

picture.

The expectation value of the kinetic energy in the ground state, 〈K (r)〉ψ, can be

obtained from Eq. 3.15 giving 〈K (r)〉ψ1s
=

p20
2me

= mee4

2~2
, as expected.

The local velocity for the hydrogen atom is the constant v0, which means that

the single electron of the hydrogen atom is closer (physically speaking) to the free-

particle model than any other atom, in the sense that it has zero electron-electron

interaction e�ects, including correlation and therefore pair-density e�ects. The radial

distribution function and the local momentum for the hydrogen atom are shown in

Fig. 3.2 a) . The local velocity in the helium atom drops from 2 v0 to 1.4 v0, as

shown in Fig. 3.2 b). This is a change in momentum of ∼ 30% that shows the overall

e�ect of mutual repulsion between the two electrons located in the same electron shell.

Hence, electron-electron interactions are re�ected as an averaged e�ect in the local

momentum.

3.5.2 The Local Momentum at the Origin is Given by Kato'S Cusp Con-

dition

As derived from the theorem stated by Kato,29 the value of the electron density at

the nucleus, ρ (0), and the average of the derivative of ρ (r) are related according to57
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3.5.3 The Local Momentum for Valence Electrons Gives the Ionization

Potential

According to Kohout et al, it is also expected that the ratio ∇ρ(r)
ρ(r)

would be asymp-

totically convergent.60 The asymptotic behaviour of the ratio ∇ρ(r)
ρ(r)

was examined

in more detail by Nagy and March.61 Using the Ho�mann-Ostenhof results,30 they

showed that this ratio at large r exhibits the limit value of (in SI units)

lim
|r|→∞

∣∣∣∣
∇ρ (r)
ρ (r)

∣∣∣∣ =
2

a0

(
2IZ

e2/(4πǫ0a0)

)1/2

(3.22)

where IZ is the �rst ionization potential of the atom with atomic number Z. Using

this result the local momentum corresponding to valence electrons, P̃ v
Z , is obtained as

P̃ v
Z ≡ lim

|r|→∞

∣∣∣P̃(r)
∣∣∣ (3.23)

which can be simpli�ed to

P̃ v
Z = p0

√
2IZ
E0

(3.24)

where E0 = ~
2/mea

2
0 = 4.35974 10−18J is the Hartree unit of energy. Therefore Eq.

3.24 in atomic units can be reduced to

P̃ v
Z =

√
2IZ (3.25)

This equation shows the relevance of the asymptotic behaviour of the local momen-

tum: according to Eq. 3.25 the external electrons or valence electrons have a �nite

momentum P̃ v
Z given exclusively in terms of the square root of two times the ioniza-

tion energy. It is also easy to see that the ionization potential is equivalent to the

kinetic energy of the valence electrons, from Eq. 3.24

Kv
Z =

(
P̃ v
Z

)2

2me

= IZ (3.26)

Alternatively, this equation can be veri�ed directly from the local expression of the

kinetic energy, Eq. 3.14, giving as a resulti

iFrom the results in ref.61 the expressions for the second derivative limit can also be obtained,
which are required for the use of Eq. 3.14.
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lim
|r|→0

|KZ(r)| = IZ (3.27)

In summary, from the local theory it is deduced that in order to remove an electron

from the outermost atomic shell, the energy transferred to the atom must be at least

equal to the local kinetic energy of the valence electron, Kv
Z , which is exactly the

ionization potential IZ .

Table 3.1 shows the numerical values for the valence electron kinetic energies as

derived from Eq. 3.24 and the ionization potential values from both, theory (from

Koopmans' theorem) and experiments for the �rst 54 elements.62 In Hartree-Fock

theory, Koopmans' theorem states that the atomic ionization energies are equal to

the negatives of the eigenvalues of the Fock operator associated with the occupied

molecular orbitals (if orbital relaxation is neglected).

The local kinetic energies derived from the local theory are in good agreement

with the ionization values shown in Fig. 3.1, as provided by equation 3.27. The

values included in the table are the local kinetic energies as obtained at a distance

from the nucleus of ∼ 10a.u..

From these kinetic energies it follows that all the valence electron velocities lies

within the ∼ 1�3 106m/s range for the �rst three rows and within ∼ 1�2 106m/s for

the fourth and �fth rows. This narrow range of velocities for the valence electrons

has been suggested to be responsible for the persistent presence of a maximum in

the stopping cross section for protons of ∼ 100 keV/amu for most targets.63 The

values reported by Cabrera et al for the valence electron velocities contributing to

the stopping section span a wider range of ∼ 1�6 106m/s. This wider range can be

explained by interactions with electrons having higher kinetic energies, i.e. located

inside inner shells.

3.5.4 The Local Momentum in the Middle Range Describes the Shell

Structure of Atoms

In the traditional atomic model proposed by Bohr, electrons are located in concentric

orbits around the nucleus, labelled K, L, M, etc. The shell structure in atoms is

a consequence of the Pauli exclusion principle, and the number of allowed electrons

inside each shell is given by the formula 2n2 (n = 1, 2, 3 ...).67 Nevertheless, the
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Table 3.2: Shell radii and electron populations at the HF level as given by the
in�ection points of the local momentum as given by Eq. 3.9 (�rst row),
from the local minima in electron localization function (second row),64

and Kohn-Sham kinetic energy density by Navarrete-Lopez et al. (third
row),65 and by Schmider and Becke (fourth row).66 Q10

o is the electron
density enclosed at a distance of 10a.u.

Atom rK qK
ii

rL qL rM qM rN qN rO qO Q10
o

4Be 0.94 1.99 6.91 2.01 4.00

1.02 2.00 � 2.00

0.93 2.00 � 2.00

0.92 1.97 � 2.03
10Ne 0.26 1.96 1.59 7.25 10.00

0.30 2.20 � 7.80

0.24 1.80 � 8.20

0.26 1.98 � 8.02
12Mg 0.20 1.94 1.56 8.03 7.71 2.02 12.00

0.24 2.20 1.69 7.90 � 1.90

0.18 1.80 1.54 8.10 � 2.10

0.21 1.97 1.55 7.96 � 2.07
18Ar 0.12 1.88 0.69 8.04 3.14 7.90 18.00

0.14 2.20 0.74 7.90 � 7.90

0.11 1.70 0.66 8.00 � 8.30

0.13 1.96 0.69 7.88 � 8.17
20Ca 0.11 1.89 0.58 8.02 2.34 8.07 9.83 2.02 20.00

0.13 2.20 0.62 7.90 2.55 8.00 � 1.90

0.10 1.70 0.56 8.00 2.33 8.20 � 2.10

0.11 1.95 0.58 7.86 2.37 8.11 � 2.07
36Kr 0.05 1.85 0.25 8.38 0.96 17.35 8.08 8.44 36.00

0.07 2.20 0.27 8.50 1.02 17.10 � 8.10

0.05 1.60 0.22 7.60 0.91 17.80 � 9.00

0.06 1.95 0.25 8.30 0.95 17.15 � 8.60
38Sr 0.05 1.89 0.23 8.39 0.84 17.37 2.72 8.43 8.55 1.92 38.00

0.06 2.20 0.25 8.60 0.89 17.10 2.95 8.30 � 1.80

0.05 1.60 0.20 7.60 0.81 17.80 2.70 8.90 � 2.10

0.06 1.95 0.23 8.33 0.84 17.08 2.76 8.57 � 2.07
54Xe 0.03 1.81 0.14 8.60 0.45 17.37 1.28 17.70 4.67 8.47 54.00

� � � � � � � � � �

0.03 1.60 0.13 7.50 0.42 17.80 1.25 18.00 � 9.10

0.04 1.94 0.15 8.6 0.44 17.02 1.29 17.69 � 8.75
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electron shells are not uniquely de�ned. The radial distribution function g (r) =

ρ (r) r2, for example, is usually employed for the study of the electron shells. However

this de�nition fails to reproduce the expected number of shells for atoms in the fourth

and �fth periods.68

In Fig. 3.3 the local momentum and the radial distribution function for Rb and Xe

are shown. The radial distribution of Rb in Fig. 3.3a shows only three peaks, while the

local momentum exhibits �ve local maxima, corresponding to the �ve electronic shells.

A similar situation is shown for the Xe atom in Fig. 3.3b, where only four peaks are

visible for the radial distribution function, whereas the electron momentum exhibits

�ve maxima. The local momentum provides a complete description of the electron

shells as anticipated by Kohout et al. in their step-function analysis of the ratio ∇ρ(r)
ρ(r)

.60

They used relativistic wave functions to compare the shell structures predicted by∇2ρ,

∇2
√
ρ√
ρ
and the ratio ∇ρ(r)

ρ(r)
.60 They found no di�erence between relativistic and non-

relativistic results in the de�nition of shell structures. The Laplacian of the electron

density, ∇2ρ, depicts the shell structure in atoms, but is limited to s-block and most

p-block atoms.69,70,71 Hunter also studied the one-electron BQP (Eq. 3.14), in atoms

and molecules, and mentioned a possible connection between the local momentum

and QTAIM.54

The following de�nition for shell structure is introduced: the shells are character-

ized by the local maxima in the momentum (Eq. 3.9), and their boundaries are the

in�ection points located after each local maximum. The in�ection points are zeros

in the second derivative of the momentum �eld. This de�nition uniquely identi�es

critical points of the local momentum and assigns de�nite electron populations with

spatial regions.

As an illustration, the local momentum for the calcium atom is shown in Fig. 3.4.

The electronic populations for the four atomic shells correspond to what is expected

from the Aufbau principle.

The local momentum correctly provides the atomic shell structure for the atoms

studied, i.e. for the closed shell atoms and noble gases. As shown in Table 3.2

the number of electrons per shell and the corresponding shell radius agrees with the

expected shell occupancy.

In order to compare present results with other approaches, the table includes shell-

structure values reported by Kohout and Savin,64 who used the electron localization

function (ELF) from Becke and Edgecombe, which is based on the kinetic energy

functional τσ = 1
2

∑nσ

i=1 |∇ψσi |
2 − τW .4 In the same table are included the recent
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Figure 3.2: Radial distribution function (red) and local momentum (blue) for H
and He at numerical Hartree-Fock level.

(a) Hydrogen atom
(b) Helium atom. I is the �rst ionization

energy.

results by Navarrete-Lopez et al., who used the Kohn-Sham kinetic energy density

(KSKE) τKS = 1
2

∑nσ

i=1 ∇ψ∗σ
i

(
−1

2
∇2
)
ψσi .

65 This approach is very similar to the shell

structures reported by Schmider and Becke, also included in the table.66 In these

studies the quantities used are Lorentzian forms of the normalized kinetic energies,

using as normalization factor the Thomas-Fermi kinetic energy density functional.

ELF and KSKE require a knowledge of orbital-based kinetic energy densities,

whereas the present approach does not require the explicit use of orbitals because it

is based exclusively on the spherically-averaged electron density and its gradient (Eq.

3.9). This fact makes it possible to compute this quantity at di�erent levels of theory

and even from experimentally-obtained electron densities.

The results in Table 3.2 show that the atomic shells' radii (rK , rL,rM ,...) are

virtually the same among the three di�erent approaches. In most cases, the shell radii
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Figure 3.3: Local electron momentum (logarithmic scale, blue) versus the radial
distribution function (linear scale, red) for the initial and �nal elements
of the �fth row of the periodic table.

(a) Rubidium atom. (b) Xenon atom.

obtained from the local momentum are closer to those from the KSKE by Schmider

and Becke than to the ELF ones.

The core shell given by rK clearly shows the contraction e�ect with the increasing

atomic number. The corresponding populations given by ELF computations overesti-

mate the number of electrons closer to the nucleus, predicting an increment on the 1s

electron population (2.2e for Xe), while by other hand, KSKE predicts a decrement in

the electron population of 1.6e for Xe. The local momentum predicts a value between

these two of 1.8e.

The outer shells' radius de�ned as the in�ection point, encloses ∼ 99% of the total

electron population for most of the cases. In the other studies it is assumed that these
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Figure 3.5: Local electron momentum for closed shells.
(a) Noble gases. (b) Elements of the IIA group.

using ELF or KSKE adds as much information as the local momentum for describing

the shell structure of atoms.

3.6 Conclusions

The local momentum de�nition given by equation 3.9 yields information about the

local kinetic energy of the electrons in atoms. The limits of this property are deter-

mined by two paramount theorems in quantum chemistry: the electron density at the

origin is given by Kato's cusp condition,29 and at long distances the electron density

decays exponentially according to the theorem by Ho�mann-Ostenhof and Ho�mann-

Ostenhof.30 The �rst limit yields information about relativistic e�ects in atoms, while

the second is related to the �rst ionization energy.

The integral of the local kinetic energy (Eq. 3.14) is the Weizsäcker kinetic energy

functional τw [ρ]. This functional is non-negative and yields a lower bound to the

true kinetic energy.72 First introduced as a correction to the Thomas-Fermi kinetic
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energy functional (KEF), it has been recognized as being an essential component of

any KEF proposal. The local theory makes τw [ρ] to be interpreted as the variance

of the momentum operator P , minus its classical estimate P as given by Eq. 7.1. In

that sense, τw [ρ] is a statistical estimate of the kinetic energy, depending exclusively

on the inherent quantum �uctuations of the momentum operator, as given by P̃ (r).

The local momentum depicts atomic shells better than the radial distribution

function or the Laplacian of the electron density. The shell structure of closed shell

systems as given by the corresponding radii are in agreement with previous works

based on the ELF,64 and the Kohn-Sham kinetic energy density.65,66 The local mo-

mentum has the potential advantage that it doesn't depend on orbital computations,

but exclusively on the electron density.

In conclusion, Weizsäcker electron kinetic energy, the ionization potential of an

atom, Kato's cusp condition and the shell structure of atoms have been uni�ed in this

discussion by means of the local quantum theory. Thus, a single plot of the electron

momentum (in atomic units) yields the atomic number of the element, the atomic

shell structure and the �rst ionization energy of that atom (see e.g. Fig. 3.4). Such

simpli�cation is only possible thanks to the power of the representation exerted by

the local quantum theory.



Chapter 4

Lower Estimate to Relativistic Electron-Mass Corrections

4.1 Introduction

Accurate electronic energy calculations for molecules involving heavy elements re-

quire the inclusion of relativistic corrections.58 In noble gas chemistry, for instance,

compounds containing heavy noble gas atoms should, in principle, be treated by rel-

ativistic methods. Recent results show that in order to obtain the correct pattern

of the ionization spectrum in XeF2 relativistic corrections must be included in the

calculations.73

The increasing interest in the evaluation of relativistic e�ects in molecules, moti-

vated by, for example, organometallic chemistry, faces several practical challenges. For

instance, the di�culty associated with solving the Dirac equation for large systems

dictates the use of approximate models. The idea that only the valence electrons of

an atom determine its chemical behaviour is the basis for the e�ective core potential

(ECP) approach. This approach uses a valence-only Hamiltonian and attempts to

model the valence properties of atoms and molecules as accurately as the correspond-

ing all-electron results. The main advantage of e�ective core potentials is the ease

with which relativistic e�ects can be included in the calculations. While this approach

is in line with the chemist's view that the valence electrons of an element determine

its chemical behaviour, from a quantum mechanical point of view the partitioning

of a many-electron system into electronic subsystems is forbidden, since electrons as

elementary particles are indistinguishable. However, in the framework of e�ective

one-particle states approximations like Hartree-Fock or Dirac-Hartree-Fock theory,

a de�nition of core and valence orbitals/shells is possible on the basis of either en-

ergetic or spatial arguments. If the core shells of a system are determined for the

free atoms, and then transferred to the molecule, this is the frozen-core or frozen-

orbital approximation. This approach underlies all valence-only schemes. However,

the chemist's qualitative view of partitioning core and valence shells is usually not

32
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suitable for quantitative calculations. In fact, the treatment of Ti ([Ar] 3d2 4s2) or

Ce ([Xe] 4f1 5d1 6s2) as four-valence electron systems leads to poor results, whereas it

works very well for C ([He] 2s2 2p2). The reason is the presence of partially occupied

valence shells which have the same or even lower main quantum number as the fully

occupied core shells. An orbital-based separation between core and valence shells

may seem reasonable, but it may be incorrect from a spatial point of view: the Ti 3d

shell has its maximum density close to the one of the 3s and 3p shells, and the Ce 4f

shell has its maximum density even closer to the nucleus than the 5s and 5p shells.74

An electron density determination of the the relevant valence electrons required for a

given electronic computation might lead to an improvement of the study of relativistic

molecules, in particular if their e�ective core shells can be systematically assessed.

In the present work a new method for the theoretical identi�cation of relativistic

spatial extent in atoms is introduced. The single-particle local momentum expression

leads to a simple local form of the Lorentz factor that provides the spatial extent of

relativistic electronic e�ects.

4.2 A Local Expression for the Relativistic Corrections

This single-particle local momentum provides the correct limiting values for the elec-

tronic velocity within the valence and core regions, as was discussed in the previous

chapter.

P̃ (r) = −~

2

∇ρ (r)
ρ (r)

It depends exclusively on the electron density, and hence it can provide information

about the spatial extent of electronic relativistic e�ects in atoms. The local momen-

tum expression provides a lower estimate of the relativistic corrections by de�ning

β = p̃/mec, that leads to a local expression for the Lorentz factor

γ =
1√

1− p̃2 (r) /(m2
ec

2)
(4.1)

In turn, a local expression for the relativistic mass correction is obtained

m∗
e (r) =

me√
1−

(
~

2cme

)2 (∇ρ(r)
ρ(r)

)2 (4.2)
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An electron in the valence shell typically exhibits velocities around 106m/s, which

carries little relativistic e�ects, as the ratio β = v/c is below 0.01. At the origin the

electron reaches a velocity peak, given by Kato's cusp condition as p̃(0)/me = voZ,

where the atomic unit of velocity v0 = 2.187691×106m/s is used, and Z is the atomic

number.

Hence, after replacing the limiting value of p̃(0)/me into 4.2 a theoretical limit to

the relativistic corrections for the electron mass is obtained,

mZ∗
e = meγZ =

me√
1− v20Z

2/c2
(4.3)

Fig. 4.1 shows the electron-mass correction as given by the latter expression

(continuous line) up to Z = 104, and the numerical values obtained for the �rst 54

elements (dots).

Table 4.1: Relativistic correction to the electron mass for the fourth and �fth rows
of the periodic table.

mZ
e ∗(a) mZ

e ∗(b)

K 1.0097 1.0098
Ca 1.0108 1.0108
Sc 1.0119 1.0120
Ti 1.0131 1.0131
V 1.0144 1.0144
Cr 1.0157 1.0157
Mn 1.0171 1.0171
Fe 1.0185 1.0185
Co 1.0200 1.0200
Ni 1.0215 1.0216
Cu 1.0232 1.0232
Zn 1.0249 1.0249
Ga 1.0266 1.0266
Ge 1.0284 1.0284
As 1.0303 1.0303
Se 1.0323 1.0323
Br 1.0343 1.0343
Kr 1.0364 1.0364

mZ
e ∗(a) mZ

e ∗(b)

Rb 1.0386 1.0386
Sr 1.0408 1.0408
Y 1.0431 1.0431
Zr 1.0455 1.0455
Nb 1.0480 1.0480
Mo 1.0505 1.0506
Tc 1.0532 1.0532
Ru 1.0559 1.0559
Rh 1.0587 1.0587
Pd 1.0616 1.0616
Ag 1.0646 1.0646
Cd 1.0676 1.0676
In 1.0708 1.0708
Sn 1.0740 1.0740
Sb 1.0774 1.0774
Te 1.0808 1.0808
I 1.0844 1.0844
Xe 1.0880 1.0880

aValues obtained from the equation 4.3.
bValues obtained from the local velocity at the nucleus vZ (0).

In Table 4.1 the numerical values of the relativistic mass correction for the �rst









Chapter 5

Is The Size of an Atom Determined by its Ionization Energy?

Reprinted with kind permission from Elsevier Science Ltd.

H. J. Bohórquez and R. J. Boyd, Chem. Phys. Lett., 480, 127-131 (2009)

5.1 Introduction

In the absence of an external �eld, the time-averaged electron density of a neutral

atom exhibits spherical symmetry. The vast majority of the electron cloud is con�ned

to a region within a few angstroms of the nucleus, which suggests that there should

be an e�ective radius r associated with the atomic size. This radius characterizes the

extensive properties of the electron distribution.

Many properties, including atomic polarizability,75 electronegativity,76 chemical

hardness,77 diamagnetic susceptibility78 and atomic capacitance,79 among others, are

associated with the atomic size. Whereas the mass of an atom is clearly de�ned

and readily measured, the volume of an atom is not uniquely de�ned. There is no

consensus about how to estimate atomic sizes. Several quantum-based sets of atomic

radii, based mainly on wave-function averages rather than in terms of experimentally-

accessible observables, have been reported.80,81,82,83,84,85,86,87

This chapter considers whether or not the atomic radius can be determined in

terms of the physically-observable variables of the system. Is derived a theoretical

relationship between the atomic radius and the �rst ionization energy using results

from a local quantum theory. An absolute scale for atomic radii emerges that is

de�ned in terms of the intrinsic properties of the isolated atoms. A strong correlation

between the resultant set of atomic radii and several other de�nitions is observed.

5.2 Methodology

The size of an atom is related to the probability of �nding an electron at a given dis-

tance from the nucleus as measured, e.g., by the radial distribution function, D(r).88
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The radial distribution function of the ground state of the hydrogen atom provides a

standard de�nition of the atomic length unit, a0. A generalization of this approach

for obtaining an atomic radius de�nition valid for any neutral atom is considered

in this chapter. The maximum value in the radial distribution function measures

the statistical spread in the radial distances from the nucleus. Assuming that the

spherically-symmetrical electron distribution for the ground state ρ(r) is known, the

radial distribution is D(r) = 4πr2ρ(r), and its extreme value is given by the condition

D′(r) = 0, which leads to the equation

1

r
+
ρ′(r)

2ρ(r)
= 0 (5.1)

The ratio of the density derivative to the electron density that appears in equation

5.1 was studied by Nagy and March as a local wave-number that characterizes the

ground state of atoms and molecules.61 Kohout, Savin and Preuss also studied this

quantity, showing that it provides the shell structure of atoms.60 It also appeared

as a local velocity term in the hydrodynamical approach to local quantum chemistry

proposed by Ghosh.35,36 Within the context of the statistics of local values proposed

by Cohen41 and later developed by Luo,28,89 this quantity is the imaginary part of a

local representation of the momentum operator,90 as independently proposed recently

by Hamilton, Mosna and Delle Site.33 It has been shown previously that the in�exion

points of this quantity provides the boundaries for the electron shells, whose electronic

populations correctly obey the Aufbau principle, as computed at the Hartree-Fock

level.90

On the basis of these previous works, the second term in equation 5.1 can be

identi�ed as a component of the local representation of the momentum operator,

p̃(r) = −~

2

ρ′(r)

ρ(r)
(5.2)

whose limiting values are precisely known. In fact, at the origin the local momentum

is given by Kato's cusp condition,29 which leads to p̃core = Z p0, where Z is the

atomic number and p0 = ~/a0 is the atomic unit of momentum. This local value of

the momentum at the nucleus is used for the estimation of relativistic e�ects in core

electrons.58 The kinetic energy associated with p̃(r) is the Weizsäcker local kinetic

energy term KW (r), which is a very well-known lower limit for the electronic local

kinetic energy functional, K(r). These two local kinetic energy functionals coincide at

the limiting distances from the nucleus: K(r)|r=0,∞ = KW (r)|r=0,∞. Hence, equation
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5.2 provides a correct estimate of the momentum for core (r ∼ 0) and valence electrons

(r ≫ 0).

As previously shown (Table I in ref.90), within the valence region, the local mo-

mentum approaches asymptotically to a constant limit, p̃val, according to which

p̃val =
√

2meI (5.3)

where I is the ionization energy and me is the electron mass. This equation is sup-

ported by the exponential decay of the electron density as established by a theorem

due to Ho�mann-Ostenho� and Ho�mann-Ostenho�30 and therefore is generally valid

for any neutral atom. Substitution of this expression into equation 5.2 yields

rp̃val = ~ (5.4)

This equation assigns to every value p̃val a corresponding characteristic length r.

Hence, the characteristic lengths associated with p̃val, via equation 5.4, de�ne a set

of atomic radii, hereafter noted ro, given exclusively in terms of the �rst ionization

energies, I, by

ro = a0

√
E0

2I
(5.5)

Considering that the atomic unit of energy, E0, is twice the absolute value of the ion-

ization energy of the electron in the ground state of the hydrogen atom, IH , equation

5.5 can be reduced to the simpler expression

ro = a0

√
IH
I

(5.6)

Consequently, the radius of the hydrogen atom is the Bohr radius, a0, as expected.

Alternatively, equation 5.5 can be derived by using the quantization of angular mo-

mentum postulated by Bohr in conjunction with the local momentum of the valence

electron p̃val (equation 5.3).

As an example, the local momentum term given by equation 5.2 is shown in Fig.

5.1a for the strontium atom (Z = 38). The colours show the �ve electron shells

of this atom, as provided by the in�ection points in p̃, i.e. those points where the

second derivative changes sign, p̃′′ = 0. For the core electrons, it is found that

p̃core = 37.995p0, in accordance with Kato's cusp condition. Fig. 5.1b shows the
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radial distribution function D(r), the cumulative electronic population N(r) and the

location of the experimental atomic radius ro (equation 5.6) for the same atom. The

computations were done at the numerical Hartree Fock level with the NUMOL package

from Becke and Dickson.56

Table 5.1: Linear �t (rtheor = αro + rb) between �ve sets of theoretical radii and
the experimentally-based atomic radius, ro = a0

√
E0/2I . The radii

are given in angstroms (Å) and R denotes the correlation coe�cient.

Method α rb(Å) R

Froese81 2.2173 -1.4182 0.958
Clementi et al.83 2.0445 -1.4007 0.902

Waber and Cramer82 1.7134 - 1.1543 0.948a

Zhang et al.85 2.4354 - 1.1854 0.963
Boyd84 2.2528 0.1542 0.924

aFor this linear �t the value corresponding to Pd was excluded.

5.3 Results and Discussion

In order to compare the atomic radii given by equation 5.6 with other sets of atomic

radii, two categories of non-covalent quantum-based radii were selected: a) those

based on the maximum electron density in the outermost orbital (Froese,81 Clementi

et al.83 and Waber & Cramer82), and b) those based on the total electron density

(Zhang et al.85 and Boyd84). The experimental ionization energies I for computing

the atomic radii ro where taken from the NIST database.91

It is apparent from Fig. 5.3 that all data sets show similar periodic trends. In

order to facilitate a comparison of the data sets, all sets were scaled to map the range

[0, 1]. Thus, the respective radii were transformed according to the linear relation

rstd = (r− rHe)/(rRb− rHe), where rHe and rRb are the minimum and maximum radii,

respectively, for Z ≤ 54. Interestingly, the radii provided by equation 5.6 are closer to

the values of Zhang et al. (open circles), which involve indirectly the ionization energy

in its computation. This similarity is con�rmed by the higher correlation coe�cient

listed in Table 5.1. All sets of atomic radii exhibit a correlation R > 0.9 with respect

to ro. This means that these atomic radii can be approximated by the linear �ts

shown in Table 5.1.
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5.4 Conclusions

Early reports of the relationship between the ionization energy I and the atomic ra-

dius r are based on Bohr's model of the hydrogen atom,92,93 which is often invoked to

explain experimental observations. In these pre-quantum approaches the ionization

energy is considered to be proportional to the electron-nucleus point charge interac-

tion and therefore I ∝ 1/r. The validity of this model is limited to single-electron

systems, and its theoretical extension to other neutral atoms is not clearly justi�ed.

Nevertheless, this classical approach underlies subsequent atomic radius-ionization

energy studies.94,95,96 Application of the local quantum theory to atomic systems,

however, supports the concise relationship I/IH = a20/r
2
o, as given by equation 5.5.

The present results support the utility of local quantum theory for the study of

atomic systems because the momentum of the valence electrons given by equation

5.3 is derived from the statistics of local values41,28 applied to atomic systems.90 For

the derivation of the atomic radius introduced here, no explicit assumptions about

trajectories or orbital-like behaviour of the valence electrons are required. In this

sense, the radius ro provided by equation 5.5 is a characteristic length associated

with the ground-state electron density of an atom. Given that it was derived from

a maximal condition on the radial distribution, it is an optimal statistical estimate

of the atomic extensive properties, and hence a universally valid de�nition of atomic

radius.
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Chapter 6

A Localized-Electrons Detector for Atomic and Molecular

Systems

Reprinted with kind permission from Springer Science and Business Media.

H. J. Bohórquez and R. J. Boyd, Theor. Chem. Acc., 127 (4) 393-400

(2010)

6.1 Introduction

"Sometimes it seems to me that a bond between two atoms has become so

real, so tangible, so friendly, that I can almost see it. Then I awake with

a little shock, for a chemical bond is not a real thing. It does not exist.

No one has ever seen one. No one ever can. It is a �gment of our own

imagination." Charles A. Coulson

Electronic bonding interactions are not directly observable, as Coulson asserts, but our

intuitive perception of molecular phenomena in the three-dimensional space demands

such a representation. With a similar mind Lewis conceived the idea of electron

pairs.97 It is reasonable to think that an adequate representation of chemical bonding

should be given by a physical observable de�ned in coordinate space. The electron

density is the best choice because it is a local function de�ned within the exact many-

body theory, and it is also an experimentally-accessible scalar �eld. Its paramount

role in the description of many-body problems is supported by the Hohenberg-Kohn

theorem.1

Although the Hohenberg-Kohn theorem guarantees that all the molecular infor-

mation is encoded in the electron density, the physical description of chemical sys-

tems requires additional postulates for extracting observable information in terms of

atomic contributions. This is achieved by the quantum theory of atoms in molecules

(QTAIM) introduced by Bader.9 The proper open system concept provides a quantum

47
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topological partitioning of the molecular space into chemically-transferable molecular

fragments for which the energy and all other measurable properties can be precisely

de�ned.10

The localization of electron pairs is elusive within the electron density topology

analysis, because a direct link between the local maxima in the electron density and

the electron pairs of the Lewis model has not been established, despite the fact that

the Laplacian of the electron density provides some information about electron local-

ization.24 Several attempts to depict electron localization from di�erent perspectives

have been proposed in recent years. The variety of proposals for assessing that sin-

gle task leads to the logical question of why the conventional analysis appears to be

insu�cient to fully explain electron localization in molecules.

Two main causes are identi�ed in this chapter: one is interpretation, and the other

is of a practical nature. The conventional analyses consist mainly of the study of the

Laplacian of the electron density,70 and the electron localization function (ELF).4

Both approaches entail conceptual and practical limitations. The Laplacian provides

information about local concentration or depletion of electron density, but its values

are not bounded, and it fails to correctly produce atomic shells for atoms beyond

the third row.69 A direct link between ELF and QTAIM is still missing, whereas an

homotopic relationshipi with the Laplacian has been suggested.70

ELF, by construction, provides values within the [0, 1] range, and its topological

analysis by Savin and Silvi made ELF a preferred tool for the study of electronic

bonding interactions.98 In spite of its formally-sound derivation from the electronic

pair probability, ELF interpretation is not straightforward and the respective plots

are far from intuitively evident, a feature to be expected of an ideal representation

of chemical bonding interactions. Additionally, ELF fails to provide insight for non-

covalent bonding interactions, limiting even more its application for the study of

unconventional bonding situations and weak intermolecular interactions.

In the present chapter a variable is introduced that has the ability to detect electron

pairs inside an electron density distribution, and overcomes the limitations of the

other analyses. The localized-electrons detector (LED) depends exclusively on the

electron density and its gradient. Here it is shown how this variable consistently

�ts within the conventional atoms in molecules analysis, by providing complementary

information about the physics of bonding interactions and their local symmetries.

iTwo mathematical objects are said to be homotopic if one can be continuously deformed into
the other.
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The present work extends to molecular systems a previous investigation of this local

variable in atomic systems. It has been shown that LED correctly provides atomic

shell structures,90 and an atomic radius scale that can be experimentally derived,99

among other interesting results. Herein, the application of LED to molecular systems

is illustrated.

In the following section we examine the variables involved in ELF are examined

in order to show that its key ingredient is the single-particle kinetic energy density,

which is connected to theLED by a quantum theorem (see Sect. III A in Ref.90).

Several important features of this variable, including its bounded character, and its

direct connection to QTAIM are discussed in the second part of section II. Section III

presents the results of the proposed analysis with several examples, showing how LED

identi�es the presence of electron shells, and the di�erent bonding interactions ade-

quately. This graphical representation of bonding regions in coordinate space provides

distinctive graphical representations for covalent and hydrogen bonding interactions

as well.

In summary, LED provides an orbital-free and intuitively interpretable three-

dimensional electron-pair localization scalar function that is easy to compute from

either theoretically-computed or experimentally-derived electron densities.

6.2 Theoretical Considerations

In this section it is shown that the single-particle kinetic energy local momentum P̃ is

linked to one of ELF's key components, as an alternative to its derivation introduced

in Ref.90 from the local quantum theory.28

The electron localization function was introduced by Becke and Edgecombe as

a "simple measure of electron localization in atomic and molecular systems".4 Two

terms of a Taylor series expansion of the spherically-averaged conditional same-spin

pair probability density provide the main ELF equation, i.e. the kinetic energy density

variable

D(r) = τ(r)− τw (r) (6.1)

where the �rst term is the orbital or positive-de�nite kinetic energy density

τ(r) =
~
2

2me

∑

i

|∇ψi(r)|2 (6.2)
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Figure 6.1: Variables involved in ELF for the ground state of F2. Top: local
values τ/ρ and τw/ρ in coordinate space. Bottom: ELF η and LED
in coordinate space. The �gures are centred at the BCP position.

and the second term is the single particle or Weizsäcker kinetic energy density

τw (r) =
~
2

8me

∇ρ (r) · ∇ρ (r)
ρ (r)

(6.3)

D in Eq. 6.1 is proportional to the Fermi hole mobility function of Luken and Culber-

son100 and is related to the curvature of the Fermi hole as shown by Dobson.101 Becke

and Edgecombe identify the localization of an electron with the probability density to

�nd an electron in the vicinity of a second same-spin reference electron. The smaller

the probability density D, the higher the localization of the electrons. In order to get

values in the range from 0 to 1, ELF is de�ned as the Lorentzian mapping (L) of the
core variable χ, i.e.
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η(r)
.
= L (χ(r)) =

1

[1 + χ2(r)]
(6.4)

with χ(r) = D(r)/Dh(r), where

Dh(r) =
3~2

5me

(6π²)2/3ρ(r)5/3 (6.5)

is the kinetic energy density of the free electron gas associated with the electron

density ρ.

Becke and Edgecombe interpreted the ratio χ as a convenient dimensionless lo-

calization index calibrated with respect to the uniform electron gas.ii In this sense,

ELF is a local measure of the e�ect of the Pauli exclusion principle as re�ected by

the kinetic energy density: in the regions of space where this e�ect is smaller than

the kinetic energy density of a uniform electron gas of identical density, ELF is close

to 1, whereas where the local parallel spin pairing is higher, ELF is low.

But the only measure of the electron localization present in ELF is the expression

D, as was recently pointed out by Gatti.102 However, he adds, ELF cannot yield the

value of D because its dependence on the electron density via the free electron gas

term Dh. In this sense, ELF is a relative measure of the electron localization. It is, in

fact, a relative measure of the bosonic character of the electron density, because D is

the excess kinetic energy electrons have compared to a system of bosons of the same

density. This interpretation of ELF was introduced by Savin and Silvi,103 who also

introduced a generalized kinetic density version of ELF and its topological analysis.98

In order to illustrate these observations, the variables involved in ELF are plotted

in Fig. 6.1 for the bonding (r ∈ [rBCP ,RF ]) and non bonding regions (r > RF ) of

�uorine molecule, where rBCP = 0 is the position of the bond critical point, and the

�uorine nuclei are located at a distance |RF − rBCP | = 1.35 a.u. from the BCP. In

Fig. 6.1 these two points are indicated at the top. Fig. 6.1 a) shows the local values iii

of the variables involved in D, τ/ρ (in blue) and τw/ρ (in purple). Fig. 6.1 b) shows

iiThis is an arbitrarily-chosen reference variable, found also in the Fermi hole mobility function
by Luken and Culberson,100 but instead of a division they made a subtraction, also arbitrarily
choosing the uniform electron gas as a reference. While this choice seems physically sound, valence
electrons behave as a non-interacting electron gas in crystals mainly and therefore its inclusion in
other molecular systems is not entirely justi�ed.

iiiThese are bounded variables unlike their respective kinetic densities, τ and τw, and have units
of energy, not energy per volume. For more details on the local values in quantum chemistry, see
Ref.90 and references therein.



52

the LED variable (in green), P̃ = −~ |∇ρ| /2ρ (normalized by Z), and the ELF, η (in

red).

While the two electron shells of �uorine are clearly visible with any of these vari-

ables, P̃ (and hence τw/ρ) also shows the location of the bond critical points, which

are relevant for the study of the topological properties in molecules; P̃ reveals the po-

larization of non bonding regions, which are relevant for intermolecular interactions

studies.

Electron pairs are stable groups of electrons that unlike free electrons, have in-

teger spin and therefore can display bosonic behaviour. Atomic shells and covalent

bonding interactions �t within that description. Recently, the bosonic character of

electron pairs was experimentally con�rmed.104 A localized pair behaves as a single

particle, and therefore its kinetic energy is given by the Weizsäcker kinetic energy,

τw. Therefore, its local value (τw/ρ) detects those regions of space where the molecule

exhibits a marked single-particle character, providing in this way a direct measure of

electron pairing. Consequently, this functional is able to identify electron shells and

covalent bonding interactions. Hence, this chapter considers the bosonic character of

atomic and molecular electron densities as a direct measure of their localized pairs is

proposed.

A closer examination of τw/ρ depicted in Fig. 6.1 for di�uorine reveals the existence

of four di�erent regions that can be identi�ed going from the BCP to a long distance

from the nucleus (∼10 a.u.), along the molecular axis:

� The interatomic bonding region, characterized by a continuous approach of

τw/ρ → 0 as r → rbcp, and τ ≫ τw. A local maximum value in τw/ρ is lo-

cated between the bond critical point and the core region.

� The core electron region is characterized by a continuous approach of τw/ρ to

its absolute maximum, τw/ρ→ Z2/2 (in a.u.) as r → RA (r 6= RA).iv

� A non-bonding region, characterized by a local maximum in τw/ρ for which the

outer zone of the valence shell is polarized and where τ ≈ τw.

� A molecular boundary region that is characterized by the asymptotic limit

τw → τ , i.e. τw/ρ has a limiting value that depends on the molecular ionization

ivNotice that at the nucleus there is a critical point of the electron density and hence κ (RA) = 0,
but the neighbour points obey the limit.
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energy.v

These four distinct regions can be identi�ed in any pair of atoms connected by a

gradient path within a molecule. The present discussion is focused mainly on the

�rst three, because their direct relation with the presence of bonding interactions.

Although reference is made to the kinetic energy τ , no explicit knowledge of this

property is necessary for the bonding analysis provided by the single particle local

value τw/ρ.

6.2.1 The Single Particle Kinetic Energy Density and QTAIM

In a previous study of the single particle operators in atomic systems,90 it was shown

that the expectation value of the single particle kinetic energy density, 〈τw〉, is equiv-
alent to the variance of the momentum operator, P = −i~∇, minus its classical

estimate P, i.e.

τw (r) =
1

2me

V arψ
(
P−P

)
(6.6)

where P̃ ≡ P−P is the �uctuation of the electronic momentum

P̃ (r) = −~

2

∇ρ (r)
ρ (r)

(6.7)

which leads to

〈τw (r)〉 =
ˆ

P̃ (r) · P̃ (r)

2me

ρ (r) dr (6.8)

This equation implies that τw/ρ can be expressed in terms of the local momentum

component P̃ by τw/ρ = P̃ · P̃/2me. This means that P̃ provides at least the same

information as τw/ρ. Additional information arises from the fact that P̃ is a vector

variable. For instance, the interatomic surfaces de�ning the atomic partinioning in

QTAIM.9

The vector �eld (Eq. 6.7) P̃ points in the direction of maximum decrease in the

electron density, and its magnitude P̃ is sensitive to local charge depletion. It has been

found that atomic shells are limited by the radial distances from the nucleus where a

change in the concavity of P̃ occurs, i.e. distances for which the condition ∂2P̃ /∂r2 = 0

vGaussian functions exhibit di�culties for reproducing the exponential decay, and therefore this
limiting behaviour is very sensitive to basis set selection.60
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is satis�ed.90 The electronic-shell populations are in excellent agreement with those

obtained with ELF64 and τ ,65,66 con�rming the robustness of P̃ for depicting electron

pairs in atoms.

For graphical analysis purposes, it is also convenient that P̃ is totally bounded

by physically meaningful values. The lowest limit occurs at those points where the

critical points of the electron density are located, i.e. for all those points that obey

P̃ = 0. Kato's cusp condition imposes a limit to electron velocities near the nucleus

of an atom A,29 RA, making P̃ �nite and numerically equal to the atomic number

ZA, when atomic units are usedvi.

lim
r→RA

P̃ (r) = p0ZA (6.9)

This velocity is used in the estimation of relativistic corrections for atomic systems.58

Valence electron speeds in atoms are limited by the ionization energy IA90

lim
|r|→∞

P̃ (r) =
√

2meIA (6.10)

This equation determines a natural boundary for an atom that leads to an experimentally-

based atomic radii scale.99 Given the general validity of the exponential decay, it is

expected that molecular regions depicted by P̃ (r) are similarly bounded.

P̃ exhibits some additional practical advantages for topological analysis. In par-

ticular, it has a direct connection with the local variables studied in QTAIM, as

anticipated.90 This vector �eld runs anti-parallel to the gradient of the electron den-

sity ∇ρ, hence depicting the same electron density gradient paths, but with opposite

direction, i.e. they have opposite direction tangent vectors at every given point of the

3D space: ∇ρ/ |∇ρ| = −P̃/
∣∣∣P̃
∣∣∣. The gradient paths of the electron density connect

the nuclei with BCPs, giving rise to an operative de�nition of molecular structure.11

The electron density gradient �eld ∇ρ can be interpreted as the �uctuation of the

current density vector �eld J̃ = 1
me

P̃ρ, or equivalently

J̃(r) = − ~

2me

∇ρ (r) (6.11)

The local �ux of the current density �uctuation J̃(r) is given by the divergence oper-

ator,

vip0 = ~/a0 is the atomic unit of momentum.
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∇ · J̃(r) = − ~

2me

∇2ρ (r) =
2

~
L(r) (6.12)

This equation indicates that the Laplacian of the electron density, L, e�ectively identi-

�es local concentrations or depletion of electron density, just as QTAIM prescribes.9,18

There are two forces governing chemical structures, the Feynman force exerted

on the nuclei and the Ehrenfest force exerted on the electrons. The virial theorem

relates the virial of the Ehrenfest force to the kinetic energy of the electrons, the virial

including a contribution from the virial of the Feynman forces acting on the nuclei.

The local virial theorem is given in terms of the Laplacian of the electron density by9

L(r) = −2G(r)− V(r) (6.13)

or equivalently in terms of the current �uctuation (Eq. 6.11),

~

2
∇ · J̃(r) = −2G(r)− V(r) (6.14)

where G(r) is the positively-de�ned kinetic energy density, and V(r) is the virial

density.

The integral form of the virial, −2G = V , requires that the net �ux of the current

density vanish, which is granted by the divergence theorem applied to the current

density
ˆ

∇ · J̃(r)dr =
˛

J̃(r) · nds = 0 (6.15)

In order to make this condition valid for any given atomic basin region, Ω, the

local �ux of the current density J̃ over the surface of this region (∂Ω) must vanish,

which leads to the local zero-�ux condition at the interatomic surfacevii

J̃(r∂Ω) ·n(r∂Ω) = 0 (6.16)

that �nally gives, after using Eq. 6.11,

∇ρ(r∂Ω) ·n(r∂Ω) = 0 (6.17)

which de�nes those points r∂Ω located on the basin surface ∂Ω. The molecular space

can be exhaustively partitioned into the atomic basins de�ned by equation 6.17, as

viiA similar derivation is discussed by Delle Site in Ref.47
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stated by QTAIM.

Equations 6.11 to 6.17 show that P̃ is consistent with QTAIM de�nitions of struc-

ture in terms of bond paths and that of proper open system. Additionally, and this

is the main claim made here, P̃ also reveals the single-particle character of localized

electrons within the electron density by depicting the atomic shell structures and the

symmetry of bonding interactions, as illustrated in the following section.

6.3 Localized-Electrons in Molecules

Figure 6.2: LED for the ground state (a) and the anti-bonding state (b) of H2

at MP2/aug-cc-pVDZ level of theory. The isocontours correspond to
P̃ = 0.98 a. u.. Cross sections are coloured as indicated.

The study of P̃ can be made for ground and excited states equally,viii as no partic-

ular assumptions about the state of the molecule are required for its derivation.90 Fig.

6.2 shows the LED graphics for the ground and �rst excited states of the diatomic

hydrogen molecule.ix The isocontour P̃ = 0.98 a.u. for the bonding state of H2 de�nes

viiiAll the examples discussed in the present paper where computed at MP2/pVDZ level of theory
using Gaussian 09 program,105 unless otherwise stated.

ixMolecular graphics images were produced using the UCSF Chimera package from the Resource
for Biocomputing, Visualization, and Informatics at the University of California, San Francisco
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a valence region that encloses both nuclei. In the middle, in red, is located the bond

critical point, inside a covalent region (orange) given by P̃ . 0.3 a.u. The symmetry

of this region indicates that this is a shared bonding interaction, that is characterized

topologically by a negative Laplacian (∇2ρbcp = −0.7563, ρbcp = 0.248 a.u).

On the other hand, the same valence region for the ungerade state reveals three

disconnected surfaces: the two spherical cores centred at the nuclei, and a �at-shaped

surface enclosing the BCP. This covalent region (orange) has the shape of a disc

located perpendicularly to the gradient path, which is characteristic of a closed-shell

interaction. Topologically, it corresponds to a positive Laplacian (∇2ρbcp = 1.7246),

and a drop in the electron density to ρ = 0.124 a.u, which is characteristic of a

non-bonded interaction.x

It is important to state clearly once again that the presence of a BCP is not a

su�cient condition to declare that there is a chemical bond between two nuclei, as

recently revisited by Bader.107 In both, the gerade and ungerade states of H2, there

is a BCP in the the middle of the two nuclei, di�ering by the local symmetries of

the electron density which determines the nature of the interaction, i.e. bonded or

not bonded, respectively. In the former case, the LED isocontours show that the

paired electrons are being shared between the two atoms. For the ungerade state the

same isocontour values appear as a set of unconnected spherical shells centred around

each nucleus, indicating that the electrons are con�ned within their respective atomic

regions, with a marginal sharing of electronic presence at the BCP that is about twice

the electron density at the same distance for the isolated atom.

6.3.1 Single, Double and Triple Bonded Atoms

The 3D plots of P̃ for the carbon series C2Hn permit a comparative study of the single

(n=6), double (n=4) and triple bonding interactions (n=2). Isocontours at P̃ = 1.30

a.u. (yellow) and P̃ = 0.40 a.u. (orange) are shown in Fig. 6.3 for the three molecules.

(supported by NIH P41 RR-01081).106 QTAIM computations were done using AIMAll (Version
09.11.08), by Todd A. Keith, 2009 (aim.tkgristmill.com).

xELF does not provide information about this simple case due to the fact that τ = τw for the H2

molecule, and hence η = 1 everywhere.
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Figure 6.3: P̃ isocontours for C2H2 (a), C2H4 (b), and C2H6 (c). Isocontours at
P̃ = 1.30 a.u. (yellow) and P̃ = 0.40 a.u. (orange) are shown for the
three molecules. Cross sections are coloured as indicated.
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The bond critical points are located at P̃ = 0, and therefore the covalent regions

around these points depict the bonding interactions. The covalent regions located be-

tween the carbon nuclei (in orange) reveal that the single-bonded carbons in ethane

and triple-bonded carbons in acetylene exhibit cylindrical symmetry, while the double

bond of ethylene shows elliptic cylindrical symmetry, with the major axis being per-

pendicular to the molecular plane (Fig. 6.3 c). The volume enclosed by these covalent

regions suggests a progression from single to triple bonded carbons.

A bell-shaped form (in orange) with the top of the bell towards the hydrogen

nucleus characterizes the C-H covalent regions. These isocontours are very similar

along the series, as an indication of the transferable character of the C-H bonding

interactions.

The cyan, green and blue regions enclosed by the yellow spherical isocontours

represent the core electrons of carbon atoms. These values have a maximum at P̃ =

6 a.u., which corresponds to the highest value for the electron momentum in the

neighbourhood of a carbon atom, as given by Kato's cusp condition (Eq. 6.9).

The yellow isocontours located outside the hydrogen bonding regions in Fig. 6.3

show the electron polarization in the valence region around the hydrogen atoms. Their

size decreases from a big semisphere in acetylene to a tiny spheroid for the aliphatic

two-carbon alkane, following an inverse order with respect to the C-C bond order of

the three molecules.

6.3.2 Hydrogen Bonded Systems

The increasing interest in hydrogen-bonded systems has created a need for theoretical

tools that can visualize these important types of chemical interactions. ELF fails to

provide such information, while the single-particle local momentum correctly detects

the presence of hydrogen bonding and provides graphical insight into these systems,

as illustrated here .

Extreme hydrogen bonding interactions can be adequately studied by the isoelec-

tronic series (FHF)-, HF· · ·HF, and Ne· · ·HF, as suggested by Legon for IUPAC.108

In (FHF)-, the binding energy borders a covalent bonding interaction with an energy

of ∼ 167 kJ/mol,109 while HF· · ·HF is a typical hydrogen bond with a dissociation

energy ∼ 19 kJ/mol dominated by electrostatic forces,110 and in Ne· · ·HF there is a

weak interaction with a very low binding energy 3 kJ/mol,111 dominated by disper-

sive and inductive forces. The LED plots for these three molecules correctly depict
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the nature of their respective bonding interactions, as shown in Fig. 6.4.

Figure 6.4: LED isocontours for the 20-electron hydrogen-bonded isolectronic se-
ries: (FHF)- (a), FH· · ·FH (b), and Ne· · ·FH (c). The covalent regions

are in red-orange (P̃ = 0.6 a.u.) and the valence regions (P̃ = 1.6
a.u.) are in dark yellow, according to the LED color key.

The valence regions, as given by the isocontours P̃ = 1.6 a.u. (dark yellow),

reveal signi�cant similarities, in spite of their chemical di�erences. These contours

are disjoint regions, each enclosing a ten-electron subsystem, with greater open sides

toward the place where the bonding interactions take place. The symmetrical shapes

of these valence regions suggest an agreement with the premise of VSEPR model,

according to which the valence electron pairs surrounding an atom mutually repel

each other, and therefore adopt an arrangement that minimizes this repulsion. In

Fig. 6.4 this seems to be true for the inner valence regions located around the atoms

in each HF subsystem, as well for the whole complexes. In other words, these results

indicate that LED displays the expected behaviour of the valence electron pairs.
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The covalent regions corresponding to the isocontour P̃ = 0.6 a.u. are shown in

Fig. 6.4 in red-orange. The covalent region of (FHF)- (Fig. 6.4 a)) reveals a di�erent

character to the other two molecules. In this molecule, each H-F covalent region

resembles more a covalent bond, which can explain its high binding energy, and it is

con�rmed by the Laplacian value of ∇2ρbcp = −1.7208 (ρbcp = 0.150), characteristic

of a shared interaction.

On the other hand, the hydrogen bonds in the other two molecules show closed-

shell interaction symmetries, with ∇2ρbcp = 0.1234, ρbcp = 0.022 for HF· · ·HF, and
∇2ρbcp = 0.0179, ρbcp = 0.002 for Ne· · ·HF. This large decrease in the electron density

at the BCP (one order of magnitude in each case) is consistent with the hydrogen

bond energy strengths.

The cross sections show a conserved character of the HF bonding interaction in

these molecules, while the valence shells of those atoms directly involved in the bond-

ing interactions are visibly distorted. The neon atom seems to be only partially

polarized in the same direction of the dipole moment of the hydrogen �uoride (Fig.

6.4 c), an indication of the electrostatic nature of this hydrogen bonding interaction.xi

6.4 Conclusions

The variable P̃ depicts the molecular regions of electronic overlap, as in the case

of bonding regions and atomic shells. Unlike D in ELF, the values of the vector

�eld P̃ are bounded, have direct (not relative) physical interpretation, and are easily

obtainable without knowing the orbital expansion of the electron density. It has been

found that P̃ depicts the same kind of symmetries around the BCPs that are given

by the Laplacian of the electron density. It means that P̃ is able to show three-

dimensionally the di�erent kinds of bonding interactions identi�ed by the topological

analyses: the closed shell and the shared interactions. By studying the single-particle

local momentum P̃ , it has been shown that this variable provides a direct analysis of

intra and extra molecular bonding interactions. This analysis agrees with the intuitive

notion of the location of bonding interactions in molecules.

xiIn fact this e�ect is also very small as the dipole moment of Ne· · ·HF is µ = 1.963 D, while the
value for HF alone is µ = 1.946 D.



Chapter 7

The Localized Electrons Detector as an Ab Initio

Representation of Molecular Structures

Reprinted with kind permission from Wiley-VCH Verlag GmbH & Co.

H. J. Bohórquez, C. F. Matta and R. J. Boyd, Int. J. Quantum Chem.,

110 2418-2425 (2010)

7.1 Introduction

Many chemical observations are summarized succinctly in a molecular structure whereby

a molecule is composed of atoms linked by a �network of bonds�.9 Bader introduced

the quantum mechanical molecular structure in terms of the topology of the elec-

tron density in real space within the framework of the quantum theory of atoms

in molecules (QTAIM). It is de�ned as the set of gradient paths connecting critical

points.9,11 This molecular structure gives a graphical representation of the interaction

lines inside a molecule or complex, and therefore facilitates the exploration of bonding

interactions in all kinds of molecular systems.18

Recently, a measure of the bosonic character of the electron density that identi-

�es the presence of paired electrons in atoms,90 and molecules was proposed.112 This

property is given in terms of the electron density and its gradient only, by −~∇ρ/2ρ,
which is referred to as the localized-electrons detector (LED). A molecular represen-

tation emerges from this electron density property, where core shells, bonding and

valence regions are clearly identi�able by separate isocontours. In this chapter it is

shown that LED isocontours adequately represent the local symmetry of the electron

density around the critical points of the electron density. This proposal is consistent

with the tenets of the quantum theory of atoms in molecules.

In this chapter an additional classi�cation of the critical points of the electron den-

sity based on the magnitude of the Hessian eigenvalues is introduced. LED isocontours

62
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enclosing the critical points obey that classi�cation, and therefore it is proposed that

LED isocontours provide a topologically-correct spatial ab initio representation of

the molecular structure. LED is orbital free and dependent on the electron density

�rst derivative only, which opens its application to bonding studies for example in

experimentally-determined electron densities.

This chapter reviews the main concepts leading to the LED de�nition, and provides

several illustrative examples. This chapter is organized as follows: in the following

section the main theoretical aspects of the proposal are discussed and then some

textbook examples of bonding interactions are described. The chapter concludes with

an outline of the future scope and applications of the present work.

7.2 Theory

The idea of a localized electron pair has been central in bonding theories since Lewis

�rst postulated that the chemical bond is a consequence of electron pair sharing.97

It is particularly remarkable that Lewis reached this important conclusion nine years

before Uhlenbek and Goudsmit advanced their idea of electron spin113 and Pauli

formulated his antisymmetry principle to the extent that he was forced to question

the validity of Coulomb's law at small distances.114

According to Pauli's principle, the electronic wave function of a system of fermions

must be antisymmetric with respect to the interchange of the space and spin coordi-

nates of any two particles in the system. A region with a high probability density of

an electron of a given spin excludes a same spin electron from this region but not elec-

trons of the opposite spin due to Pauli's principle. But then the increased probability

of the opposite spin electron also excludes other electrons with the same spin. The

result is a region of space where there is an increased probability of �nding a single

pair of electrons. Recently, Samuelsson and Büttiker proved that a measure of corre-

lation of pairs of electrons obeys Bose-Einstein statistics through the Hanbury-Brown

and Twiss e�ect,104 which supports experimentally that collective pairs of electrons

behave as bosons, even though single electrons are fermions.

Electron pairs can be studied via the electron pair density distribution or some

of its directly related functionals, such as the Fermi hole distribution. Bader and

Heard found that local charge concentrations given by the Laplacian of the electron

density L(r) mirrors the Laplacian of the conditional pair density for same-spin elec-

trons, L(e∗, r), when computed at positions of maximum localization of the Fermi
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hole.115 This mapping suggests that local concentrations of charge given by L(r) cor-

respond to regions in space where a partial condensation of the pair density towards

individually localized electron pairs occurs. They also compared L(e∗, r) with the

electron localization function (ELF),4 �nding no direct relationship between them,

whereas an homeomorphic relationshipi between ELF and the Laplacian was further

suggested.24 Bader and coworkers also studied the outer shell of charge concentration,

called the valence shell charge concentration (VSCC) concluding that the Laplacian

of the charge density also provides the physical basis for the VSEPR model.9

While the electron pairs are given explicitly by the pair density, its six-dimensional

character limits to certain reference points its study in the coordinates space, as in

the case of the the Laplacian of the conditional pair density for same-spin electrons,

L(e∗, r). Other approaches involve approximate expressions for the pair density, as

in the case of ELF. In this paper, localized electrons are investigated in the three-

dimensional space via the single particle kinetic energy, which depends on the electron

density and its �rst spatial derivative only.

Within the single-particle approximation, the Weizsäcker kinetic energy density

τw is the variance of the momentum �uctuation P̃, at a given state ψ,90

〈τw (r)〉ψ =
1

2me

V arψ
(
P−P

)
(7.1)

where P is the electron momentum operator and P is its average real value. These

two quantities are related by90,28,32

P (r) = P (r) + iP̃ (r) (7.2)

Equation 7.2 is the local representation of the single particle momentum operator,

where P̃ is the single-particle component of the momentum operator associated with

the electron density ρ,

P̃ (r) = −~

2

∇ρ (r)
ρ (r)

(7.3)

A kinetic energy local value per electron, K can be de�ned by

K(r) =
1

2me

∣∣∣P̃ (r)
∣∣∣
2

(7.4)

iTwo functions are said to be homeomorphic if one can be continuously transformed into the
other.
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which has the same form as the kinetic energy of a classical particle. Hence, the

expectation value of the Weizsäcker kinetic energy density τw in terms of P̃ (r) from

Eq. 7.3 is

〈τw (r)〉 =
1

2me

ˆ

P̃ (r) · P̃ (r) ρ (r) dr (7.5)

The Weizsäcker kinetic energy density is a lower boundary for the total kinetic

energy density τ , i.e. τw ≤ τ . By taking the volume derivative of both sides of Eq. 7.5,

we get the relationship between the local value K (r) and its corresponding density,

τw (r)

d 〈τw (r)〉
dV

= τw (r) = K (r) ρ (r) (7.6)

Similarly, if τ is the exact kinetic energy density of a multielectronic system, its

local value is τ/ρ. These local kinetic energy variables are discussed in more detail

elsewhere,112 in connection with the electron localization function (ELF) and the

Laplacian. The main points are summarized in the following subsection.

7.2.1 The Single Particle Kinetic Energy and the Electron Localization

The kinetic energyii can be written in terms of the local representation of the momen-

tum (Eq. 7.2) by

τ(r) ≡ |P|2
2me

ρ(r) (7.7)

which, after replacing Eq. 7.2, leads to

τ(r) =
ρ(r)

2me

P (r)2 + τw (r) (7.8)

Therefore, the di�erence between the total kinetic energy density τ and the single-

particle contribution κ is the kinetic energy density associated with the average mo-

mentum component P

D (r)
.
=
ρ(r)

2me

P (r)2 = τ(r)− τw (r) (7.9)

iiThe kinetic energy density has no unique representation in terms of the electron density, but it
can be computed exactly by orbital dependent terms, such as τ .
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D is the Pauli energy functional, which is proportional to the Fermi hole mobility

function of Luken and Culberson,100 and is related to the curvature of the Fermi

hole as shown by Dobson.101 Becke and Edgecombe derived equation 7.9 from the

spherically-averaged conditional same-spin pair probability density, and proposedD as

the main variable for de�ning the electron localization function (ELF).4 They identify

the localization of an electron with the probability density to �nd an electron in the

vicinity of a second same-spin reference electron. The smaller the probability density

D, the higher the electron localization. Gatti pointed out that the only measure of the

electron localization present in ELF is the expression D,102 which is a relative measure

of the bosonic character of the electron density, because D is the excess kinetic energy

electrons have compared to a system of bosons of the same density,103 as discussed in

more detail elsewhere.112

7.2.2 A Localized Electrons Detector (LED)

As an alternative to conventional electron localization functions, it is instructive to

consider what Gatti refers to as the �real electron localization function� (D in Eq.

7.9). In this equation, the Weizsäcker kinetic energy density κ accounts for the bosonic

character of the system, and therefore it has been proposed that the study of its asso-

ciated local momentum P̃ (Eq. 7.1), may be useful for the determination of localized

electrons in atoms and molecules. It has been shown that P̃ is an orbital-free direct

three-dimensional representation of localized pairs in atoms90,99 and molecules.112 P̃

is a vector �eld that runs anti-parallel to the gradient of the electron density ∇ρ,
and therefore depicts the same electron density gradient paths studied in QTAIM, as

discussed in detail elsewhere.112 The magnitude of the vector P̃ (P̃ ), is bounded by

theoretical limiting values:

� At the critical points of the electron density where ∇ρ = 0 and hence P̃ = 0,

therefore providing all the critical points of QTAIM.

� Amaximum value of P̃ occurs in the neighborhood of the heaviest nucleus within

the molecule (RA), for which limr→RA
P̃ (r) = p0ZA, according to Kato's cusp

conditioniii. This speed value is used in the estimation of relativistic corrections

for atomic systems.58

iiip0 = ~/a0 is the atomic unit of momentum.
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� At long distances valence electron kinetic energies are limited by the ionization

energy IA, and hence lim|r|→∞ P̃ (r) =
√
2meIA for atomic systems, which leads

to a experimentally-based atomic radii scale.99 The exponential decay of the

electron density imposes a similar behaviour to molecular systems.

These three limiting values de�ne three di�erent spatial regions of interest in any

molecular system: covalent (P̃ ≃ 0), located around a BCP, core (P̃ ≃ ZApo), located

around the nuclear attractors, and valence regions (
√
2meI < P̃ << Zpo).

There are several practical advantages for studying the localized-electrons detec-

tor (LED), P̃ . It depends exclusively on the electron density and its gradient. Hence

this variable consistently �ts within the conventional atoms in molecules analysis,

by providing complementary information about localized electrons. P̃ provides the

correct electron shells and its population in atomic systems.90,60,61,116 Several fun-

damental theoretical relationships between QTAIM and LED have been discussed

elsewhere.112 Here it should be emphasized that LED correctly portrays the symme-

try of the electron density at the bond critical points (BCP), and it is shown that the

LED isocontours provide an ab initio molecular structure representation consistent

with the topology of the electron density.

7.2.3 Electron Density Symmetry Around the Critical Points

Table 7.1: Rank three critical points classi�cation according to the sign of the
Hessian eigenvalues, λ1 ≤ λ2 ≤ λ3.

label curvatures type character
(3,−3) λi < 0, i = 1, 2, 3 local maximum attractor
(3,−1) λi < 0, i = 1, 2,λ3 > 0 saddle bond critical point
(3,+1) λi > 0, i = 1, 2,λ3 < 0 saddle ring critical point
(3,+3) λi > 0, i = 1, 2, 3 local minimum cage critical point

At the critical points the gradient of the density vanishes, and hence the local

curvatures are given by the Hessian matrix. The sign of the eigenvalues of the Hessian

at the critical points provide the typical classi�cation used in QTAIM,9 which is

summarized in Table 7.1. The Laplacian is the trace of the Hessian matrix, which is

one of the topological invariants of the electron density. Additional information about

the local symmetry of the electron density at the critical points can be extracted from

the magnitudes of the eigenvalues.
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The Hessian matrix encodes important shape information, which is often used for

three-dimensional data extraction from scalar �elds.117 It can di�erentiate between

line-like, plane-like and sphere-like structures, for example. In Table 7.5 a classi�ca-

tion of the eigenvalues according to the respective local three dimensional shapes of

the electron density at the critical points, as adapted from a shape classi�cation by

Westin et al. is introduced.117

A direct inspection of the eigenvalues of the Hessian can be made in order to iden-

tify the type of symmetry involved, but is particularly interesting from the molecular

structure perspective to be focused on the bond critical point symmetries. The Lapla-

cian of the electron density,∇2ρ = λ1+λ2+λ3, identi�es the nature of the bond critical

point type as shared or closed-shell interaction. The local virial theorem connects the

Laplacian with the positive-de�ned kinetic energy density G = ~
2/2me∇ψ∗ ·∇ψ∗ and

the potential energy density V by

~
2

4me

∇2ρ(r) = 2G(r) + V(r) (7.10)

Since G is always positive and V is always negative, the sign of the Laplacian

determines the relative magnitudes of the potential and kinetic energy densities. In

regions where ∇2ρ < 0, the potential energy density is dominant. This leads to a local

concentration of negative charge, and it is termed a shared interaction. In contrast,

in regions where ∇2ρ > 0 the kinetic energy dominates and causes a depletion of

negative charge, mainly on the interatomic surface, as can be inferred from Table 7.5.

The local symmetries of the electron density, as provided by the curvatures are also

re�ected onto LED isocontours located around critical points, i.e. for values P̃ ≃ 0.

Therefore, depending on the type of critical point, there are di�erent characteristic

shapes to be found, as illustrated in the next section.

7.3 Results

In order to illustrate the observations discussed in the previous section, Fig. 7.1 shows

LED for benzene. The isocontour ρ = 0.001 au in Fig. 7.1a indicates the spatial extent

of the electron density. Fig. 7.1a shows LED contour-plot values projected onto the

molecular plane. The lowest values appear in red, ( P̃ ≃ 0 au), which include C-C

and C-H bond critical points and the ring critical point in the middle of the benzene

ring.
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Figure 7.1: LED (Eq. 7.3) for benzene.
(a) LED values projected onto the

molecular plane. The gray line
corresponds to ρ = 0.001 au iso-
contour. The side of the square is
14 au.

(b) Molecular structure given by
LED = 0.33 au (red-orange),
and LED = 1.40 au. (yellow)

The covalent bonding regions follows the particular bonding symmetries around

the BCPs, which is consistent with the local shape of the the electron density at the

BCPs given in Table 7.5, according to which the shape of the electron density at the

CH and CC bonds exhibit cylindrical symmetries, and at the RCP . The curvatures

at the critical points for benzene appear in Table 7.3 as obtained at the MP2/6-

311++G(2d,2p) level of theory (Gaussian 03118). QTAIM computations were done

using AIMAll (Version 09.11.08), by Todd A. Keith, 2009 (aim.tkgristmill.com).

Electronic shells are given by the concentric isocontours around the LED highest

value (in blue) of P̃ = 6 au for present case, which agrees with the fact that the

heaviest nucleus is carbon, which by Kato's cusp condition imposes P̃max = Zp0. Fig.

7.1b shows the almost spherical isocontour P̃ = 1.40 au (in yellow) that encloses the

inner shell electrons of carbon atoms, while the isocontour P̃ = 0.33 au (in orange)

depicts the bonding interactions. Notice the cylindrical shape of C-C bonds, and the

peaked cylinder of H-C bonds, with the peak pointing to the H nucleus. At the RCP

there is a thin cylinder perpendicular to the molecular plane with peaked ends.

Thus, the molecular structure representation of benzene in Fig. 7.1b agrees with

the local curvatures of Table 7.5. There is a striking resemblance of these plots with
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Table 7.3: Curvatures of benzene. All quantities in atomic units.
CP Subsys. λ1 λ2 λ3 ∇2ρ Shape

BCP-S C-C -0.7192 -0.5984 0.3118 -1.0058 cylindroid
BCP-S C-H -0.8179 -0.8047 0.4372 -1.1854 cylindroid
RCP C6 -0.0144 0.0886 0.0886 0.1629 cylinder
NACP C -1.81×105 -1.81×105 -1.81×105 -5.44×105 sphere
NACP H -8.6177 -8.60757 -7.7727 -24.9979 spheroid

the curl of the �rst-order current density J(1)(r) plots for the same molecule reported

by Keith and Bader.119

Intermolecular interactions are also depicted by LED, as shown in Fig. 7.2 for the

hydrogen bonded water dimer. The computations where done at the MP2/cc-pVDZ

level of theory. The LED isocontour (P̃ = 0.62 au ) located around the BCP corre-

sponding to the hydrogen bond appears as a planar region oriented perpendicularly

to the gradient path in Fig. 7.2a. The planarity of the isocontours is directly related

with the character of the interaction, and a planar symmetry indicates the presence of

a closed shell type, according to the local shape classi�cation (Table 7.5). This planar

region encloses the O�H interatomic surface, which is shown in Fig. 7.2b. The local

symmetries around each critical point for the water dimer are summarized in Table

7.4.

According to the present results and previous ones,112 LED provides informa-

tion about localized electrons in molecules that closely resembles the ones obtained

by studying the Laplacian of the conditional pair density for same-spin electrons,

L(e∗, r) proposed by Bader et al.115 While these conditional pair density plots depend

on a reference point to be computed, LED is a single-particle, orbital-free property

that depends on the electron density and its �rst derivative only, which facilitates

its computation from experimentally-derived electron densities, or from conventional

computational tools, such as the Gaussian suite of programsiv.

Table 7.4: Curvatures of water dimer.
CP Subsys. λ1 λ2 λ3 ∇2ρ Shape
BCP-S O-H -1.8945 -1.8565 1.4126 -2.3385 spheroid
BCP-CS O�H -0.0287 -0.0281 0.1513 0.09457 planar
NACP H -4.2828 -4.2630 -2.7210 -11.2669 spheroid
NACP O -9.67×105 -9.67×105 -9.67×105 -2.90×106 sphere

ivVia the CUBE option for example or using the routine CUBEGEN, which provides the gradient
and the density that can be processed to get the values of Eq. 7.3.
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Figure 7.2: Interatomic surfaces and LED isocontours for the water dimer. The
molecular structure (CPK style) is included to facilitate the compari-
son.

(a) Molecular structure given by
LED = 0.62 au (orange) and LED
= 1.60 au (yellow). Perpendicu-
lar geodesics are plotted in black.

(b) IAS for the hydrogen bond (or-
ange) and IAS paths (purple). A
cut-o� value of ρ = 0.01 au was
used.

7.4 Conclusions

In this chapter it has been shown that the graphical representation of bonding inter-

actions given by LED is consistent with the local curvatures of the electron density

charge as given by the eigenvalues of the Hessian matrix.

The obtained plots for isocontours near the critical points, i.e. P̃ ≃ 0, depict

three dimensional shapes that agree with the eigenvalues of the Hessian symmetries

at the critical points, which is summarized in Table 7.5. As a result, these plots are

distinctive for BCPs with shared interactions from those with closed shell interactions,

which might be of interest for the study of large molecular systems mainly, where

keeping track of topological properties through tables becomes unpractical.

Table 7.5: Critical points classi�cation according to the magnitude of eigenvalues,
|λ1|≤|λ2|≤|λ3|.

curvature relations shape critical point type
λ1 ≈ λ2 << λ3 planar BCP closed-shell interaction
λ1 << λ2 ≈ λ3 cylindrical RCP
λ1 ≈ λ2 ≈ λ3 spheroidal BCP shared interaction; nuclear attractor
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The molecular structure LED representation resembles the conditional pair density

projections introduced by Bader and Heard,115 and the curl of the �rst-order current

density J(1)(r) plots by Keith and Bader.119 These two properties are related to the

Laplacian of the electron density, and therefore all together provide information about

localized electrons in molecules. The present proposal is mathematically simpler, and

hence it has the potential to be a more accessible graphical tool than, for example,

J(1)(r) or L(e∗, r).
Due to the theoretical connection of LED with QTAIM, including the location

of bond critical points and the interatomic surface de�nition,112 it is unnecessary to

explore a partitioning scheme based on P̃ . The main partition scheme of the molecule

into atomic regions is guided by the virial theorem,120 which yields the conventional

QTAIM analysis of atomic properties.9 Nevertheless, P̃ provides information about

the electronic structure inside an atomic basin, so an intra-basin population analysis

based on P̃ isocontours may be of interest.



Chapter 8

Taxonomy of Chemical Bonds

8.1 Introduction

The stability of molecular systems depends on a variety of interatomic interactions

that are always mediated by the local behavior of the electron density. While covalent

bonding is the strongest and most stable, several other interactions do not �t within

the Langmuir-Lewis electron pair description. This is the case of van der Waals and

noncovalent interactions, which are central to physicochemical processes such as the

biomolecular recognition in proteins, nucleobase stacking in DNA, crystal packing,

vapor=liquid condensation, polymer aggregation or �uid viscosity. Enzymatic and

other important chemical processes also involve breaking and forming of various classes

of hydrogen bonds and weaker interactions, and in certain cases their physical nature

is not entirely understood. In fact, Pauling's model can account for enzymatic reaction

acceleration up to 11 orders of magnitude, but most enzymes exceed that pro�ciency,

which leads to the hypothesis that nearly all enzymes speed reactions via covalent

interactions.121 With these new �ndings a detailed quantum mechanical description

of all sorts of stabilizing interatomic interactions is required.

Unfortunately, the conventional electron-density-based methods for the study of

interatomic interactions have certain limitations. For instance, the electron localiza-

tion function (ELF) does not describe hydrogen bonds or weaker interactions, mainly

because it only captures the presence of spin-paired electrons,4 i.e. strong covalent

bonds. On the other hand, the quantum theory of atoms in molecules (QTAIM) iden-

ti�es every atomic interconectivity as a bond critical point (BCP) disregarding the

nature of the interaction involved.9 As Ciowlowski pointed out almost two decades

ago: �the topological approach does not provide a fundamental distinction between

the normal strong bonds and bonds resulting from weak interactions�.122 These ob-

servations initiated a controversy that has not been solved yet.123

In the present chapter new advances in the topological analysis of electron density

are introduced. From the single-particle local momentum an accurate representation

of the local symmetry of the electron density, around the critical points and within the

73
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Figure 8.1: Electronic regions for propane. Top: LED isocontours (0.40, 1.13
and 4.00). Bottom: LED values distribution within the range [0,6]
with the respective electronic zones: critical points (CPs), interatomic
surfaces (IAS), steric regions, van der Waals (vdW) zone and nuclear
electronic shells.

polarization regions, is obtained. The proposed analysis provides a three-dimensional

visual insight of the stabilizing interatomic interactions in molecular systems. The

new topological criteria clearly di�erentiates covalent from noncovalent interatomic

interactions, and provides a universal classi�cation of the stabilizing interactions that

may occur between atoms, ranging from van der Waals to metallic ones, in an uni�ed

way. The proposed theoretical tool complements conventional analyses of the electron

density such as QTAIM, while it is independently derived.

8.2 Theory

The main variable of study is the local momentum p̃ = −~∇ρ/2ρ that captures the

single-particle or bosonic character of the electron density, and it is termed localized

electrons detector (LED) because it distinctively localizes the stable electronic regions

in atoms,90,99 molecules,112 and complexes.124

The vector �eld p̃ can be naturally incorporated into the conventional quantum

chemical topology analysis, as shown elsewhere.90 The classical kinetic energy expres-

sion associated to this local momentum, k̃ = p̃2/2me, is essentially the Weizsäcker
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kinetic energy density, τw = k̃ρ, which is a common gradient correction in DFT mod-

els. Recently, Vydrov has proven that if k̃ is used as a local polarizability term in a

DFT model, it accurately accounts for the dispersion contribution to the molecular

energy.125 In addition, Liu interprets τw as a quantitative measure of steric e�ects

within conceptual DFT.5 These works indicate that the bosonic local momentum p̃

may establish a theoretical link between QTAIM and DFT, as proposed at the 5th Eu-

ropean Charge Density Meeting in 2008, where the �rst results in molecular systems

using LED were made public.

LED has certain advantages for the graphical analysis of electronic regions, as has

been shown in a series of papers.90,99,112,124 In general, LED has an absolute scale

(i.e. transferable) whose limits are theoretically known for any given molecule, and

it is given by p̃ ∈ [0, Zmax] (in atomic units), with Zmax the highest atomic number

in the system. Thus LED is a totally bounded variable, i.e. it has �nite boundaries,

unlike the family of gradient functions ∇ρ/ρm that diverges for m > 1. This is an

important practical advantage of LED over other graphical analyses whose variables

are unbounded.

LED is obtainable from standard numerical wavefunctions or from experimental

electron densities; for the computations reported in this chapter a modi�ed version of

the FORTRAN code CheckDen developed by Pacios was used.126 The cube �les were

visualized with the program Chimera,106 which is capable of coloring LED isocontours

according to the range values, i.e. [0, Zmax]. The color code used here is the same

of previous works: red → yellow→ green→ blue, as shown at the bottom of 8.1.

The color code spans LED values in a consistent and transferable way, as can be

veri�ed by comparing the plot in 8.1 with previously reported results for molecules

and complexes.112,124 In all the results discussed here a �xed range [0, 6] was used

(unless otherwise stated).i

The 3D inspection of LED reveals three main electronic regions with theoretically

known limiting values: core (p̃ ∼ ZA), saddle critical points (including bond critical

points and ring critical points) (p̃ ∼ 0) and polarizable regions (p̃ ∼
√
2I), with I

the �rst ion, as shown in 8.1 for propane. The �rst two regions depict an ab initio

molecular structure that is very similar to the ball-and-stick ones: covalent bonds

are represented by isocontours (orange) with axial symmetry connecting the bonded

nuclei, and core regions appear as spherical isocontours enclosing closed-shell electrons

iFor molecules including nuclei with Z > 6 the only information that is missing from the graphics
are the inner core shells, which are not relevant for the present discussion.
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(green). The transparent-yellow isocontour in 8.1 is a van der Waals (vdW) envelopeii,

inside of which several internal isosurfaces appear, such as the semi-spheres around

hydrogens, which indicate the polarization of the electron density in that region. More

details on these observations can be found elsewhere.90,112,124

For noncovalent interactions, the isocontours p̃ ∼ 0 usually run parallel to the in-

teratomic surface (IAS) separating both atoms, and therefore these isocontours appear

as local patches of the respective IAS. This observation has been recently reported for

the water dimer and other weakly bonded systems,124 and here its general validity is

demonstrated.

The main focus of the present paper is the derivation of a new topological classi-

�cation of the critical points induced by LED that leads to quantitative and graph-

ical representations of the di�erent interatomic interactions, ranging from covalent

to noncovalent ones. The optimized geometries were obtained at the MP2/aug-cc-

pVDZ level of theory with Gaussian09.105 QTAIM properties were computed with

AIMALL.127

8.2.1 Symmetry of the Electron Density at the Stationary Points

Around the stationary points of the electron density, (i.e. the critical points ∇ρ = 0),

LED isocontours are simple-connected shapes that follow the local curvature of the

electron density. Within the neighborhood of any critical point, p̃ goes to zero and

the topology of the isocontours p̃ ∼ 0 is dominated by |∇ρ| ∼ 0.iii From the analytical

expansion of the electron density, the approximate expression of the gradient around

a critical point r0 = (x0, y0, z0) is given in terms of the second derivatives by

∇ρ ≈ (x− x0)λ1u1 + (y − y0)λ2u2 + (z − z0)λ3u3 (8.1)

where {λ1 ≤ λ2 ≤ λ3} are the eigenvalues (or principal curvatures) of the Hessian,

and {ui} their respective eigenvectors (or principal directions); where r = (x, y, z) is

the position vector near the critical point r0 and |r− r0| → 0. It is assumed that both

position vectors are given in terms of the orthonormal basis set {ui}. After taking

the square of the gradient vector (Eq. 8.1) and dividing by |∇ρ|2, the equation of an

iiThis isocontour is nearly identical in shape and volume to the the isocontour n = 0.0002 au.
iiiThis is true in general for every function of the form ∇n/nm as can be obtained by applying

L'Hopital's theorem to the ratio, and using the fact that the electron density is a continuous function
with continuous derivatives.
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ellipsoid centered at r0 is obtained

(x− x0)
2

a2
+

(y − y0)
2

b2
+

(z − z0)
2

c2
≈ 1 (8.2)

whose principal axis are given by a = |∇ρ| / |λ1|, b = |∇ρ| / |λ2| and c = |∇ρ| / |λ3|.iv

Equation 8.2 demonstrates that the isocontours p̃ ∼ 0 are essentially ellipsoids

centered at the critical points that are aligned with the local principal directions. In

other words, at the critical points, the eigenvalues of the Hessian can be translated

into a graphical representation of the local symmetry of the electron density via the

isocontours p̃ ∼ 0. The main result emanated from this assertion is that the topologi-

cal properties of the electron density can be studied by the shapes of the scalar �eld p̃,

thanks to the correspondence between the isocontours and the curvatures established

by Eq. 8.2. Therefore, the spherical symmetry of core electrons around the nuclei

plotted by LED is explained by Eq. 8.2 because the three curvatures are identical in

most of the cases (a ≈ b ≈ c), i.e. for atoms with at least the �rst shell �lled (or

Z ≥ 2), as shown for carbon atoms by the green isocontours in 8.1. It is important

to note that the scalar �eld p̃ has removable discontinuities exactly at the nuclei, i.e.

at every nuclear position RA, p̃ (RA) = 0 and p̃ (RA + δr) = ZA with δr a vector

with in�nitesimally small magnitude |δr| > 0. It means that all the points in the

neighborhood of the nucleus behave according to Kato's cusp condition.29

The ellipsoid given by Eq. 8.2 also explains the spike-shaped ellipsoids found at the

ring critical point (RCP) of benzene and similar structures, for which the curvatures

on the plane are smaller than the perpendicular one, i.e. a ≈ b≪ c .

The size and shape of LED isocontours at the BCP indicates its character, i.e.

the relative values of the axes a, b and c. All the observations on the symmetry of

the electron density at the BCPs as induced by LED are summarized in 8.2, where

it is shown how the relative values of the ellipsoid axes yields to the characteristic

shapes depicted by LED for the di�erent bonding interactions. In these diagrams

the shaded region represents the local patch of the IAS separating the atomic basins

of the hypothetical interacting atoms, A and B. The eigenvectors of the Hessian are

also indicated (in blue), in the usual order imposed by the eigenvalues. Hence, three

main shapes are found, each corresponding to a di�erent type of bonding interaction.

This succinct classi�cation complements previous topological classi�cations achieved

ivAssuming that all the critical points are rank-three, i.e. λi 6= 0 for i = 1, 2, 3.
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Figure 8.2: BCPs classi�cation according to the local symmetry. Ellipsoids main
axes are indicated in red and the respective eigenvectors in blue. The
hatched plane represents the IAS local patch.

Tpe of bond Ellipsoid relations Graphical representation

Covalent c > a

Closed shell c < a

Noncovalent c≪ a ≈ b

by QTAIM that are discussed in detail elsewhere.128

In the following paragraphs a set of selected molecular systems exemplify certain

types of bonding interactions. Their respective electronic regions are discussed in

detail from the perspective of the analysis here introduced.

Figure 8.3: LED for ethene (top) and benzene (bottom). The isocontours corre-
spond to p̃ = 0.25 au (red) and p̃ = 5 au (blue). The color code used
is the same as in Fig. 8.1.
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8.3 Covalent Bonds

Two interacting nuclei are connected by a BCP disregarding the type of bonding

interaction occurring between them.9 The location of the BCP is always closer to

the less electronegative atom, as a consequence of the electronic pressure of the more

electronegative one.107 Hence, the type of chemical interaction between two atoms

interconnected by a BCP re�ects the covalent regions involved. If there is an electron-

pair formation, as in a typical covalent bond, the measure of local concentrations of

charge provided by the Laplacian (∇2ρ = λ1 + λ2 + λ3) su�ces as an indicator of

covalency. Consistently, ∇2ρ < 0 for most covalent interactions, which in terms

of the curvatures is |λ3| < |λ1| + |λ2|. For single-bonds λ1 ≈ λ2 and therefore a

simple relationship between the ellipsoid axes emerges, c > 2a, meaning that for a

single covalent bond the axis of the ellipsoid along the bond path is at least twice

the perpendicular one. In consequence, single bonds are represented by elongated

ellipsoids linking both atoms, as shown in Figs. 8.1 and 8.3 for CH and CC bonds

(red). LED represents the BCPs symmetries by ellipsoid isocontours with a �at side

facing the closest valence shell, as the CH bonds in hydrocarbons (Fig. 8.3) or the

CO bond in formaldehyde (Fig. 8.5). In the case of CH, the hydrogen atom lacks

inner closed shells, and therefore the �at side faces the carbon atom only. In the CO

bond of formaldehyde the �at side faces the valence shell of the carbon, which is closer

than the more populated oxygen. In the case of the CC bonds in propane (Fig. 8.1),

ethene and benzene (Fig. 8.3) both carbons are equidistant from the BCP, and hence

there are two �at side ends for the respective ellipsoids.

Topologically, BCPs are characterized by the transverse an longitudinal ellipticity

measures ǫ = (λ1/λ2 − 1) and η = |λ1| /λ3, respectively. These parameters can be

expressed in terms of the ellipsoid axes at the BCPs by ǫ = (b/a− 1) and η = c/a,

that are represented directly by LED isocontours. An ellipticity ǫ 6= 0 (or a > b)

indicates the π character of bonding interactions, while the longitudinal ellipticity

provides an estimate of the covalency degree (of covalent bonds) at the BCP: η > 1

(c > a) indicates concentration of density toward the bond path through the BCP,

and is characteristic of shared or covalent interactions, while η < 1 (c < a) indicates a

polarization of the electron density along the bond path away from the BCP and de-

notes the existence of charge transfer between the bounded atoms, like in closed-shell

or electrostatic interactions. In Fig. 8.3 it is shown how LED graphically represents

the ellipticity ǫ in the carbon-carbon bonds of ethene and benzene. While η is very



80

similar for the C-C bonds in both molecules (1.86 and 1.85), the ellipticity of ethene

is ∼ 1.7 times of that in benzene (0.35 and 0.21, respectively), which is consistent

with the π character of these bonds. A value ǫ ≈ 0 is characteristic of single and

triple bonds which have cylindrical symmetry around the bond path, as the CH single

bonds shown in Fig. 8.3.

Figure 8.4: LED for �uorine molecule. LED isocontours plotted are 0.70, 1.50 and
4.00 au.

A negative Laplacian is not an universal indicator of covalency because certain

type of covalent bonds called closed shell (or charge shift, according to Shaik et al.)

(CS) bonds have a positive Laplacian and high electron density at the BCP.129 While

the topological characterization of the CS bond is rather new, its occurrence is quite

common. These are closed-shell interactions (in QTAIM terminology), for which

c < a, and they are characterized by the acceptor atom having orbital vacancies equal

to or greater than the number of valence electrons on the donor, like in the ionic bonds

of LiF, NaCl, LiH, LiO and BeO. Other examples of CS bonds are the single bond in

F2 and the CO double bond in formaldehyde (Fig. 8.5). These bonds are composed by

at least one element with high electronegativity that causes a signi�cant valence shell

repulsion that a�ects the covalent bond. Hence, while for F2 there is a signi�cant

charge concentration within the two nuclei forming the bond, the outermost �lled

shells are not involved in the bond, but instead they contribute to its weakening. In

Fig. 8.4 LED isocontours show exactly the situation for the �uorine molecule: the red

isocontour marks a small bonding region, while the yellow (transparent) ones depict

the outermost shells as disjoint regions centered around each nucleus. Similar analysis

can be made for the formaldehyde, for which the CO bond is being a�ected by the

oxygen excess of one electron that causes a great pressure on the bonding region. But,

on the other hand, the carbon atom is positively charged and therefore attracts local
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concentrations of charge from the coordinated atoms, resulting at the end in a very

stable covalent bond.

Figure 8.5: LED for the formaldehyde-water complex. LED isocontours are 0.45,
1.30 and 4.00 au. Electron density isocontours and atomic charges are
given in au.

It is important to recall that in an equilibrium geometry there are no net forces

on the nuclei, because all the possible intramolecular interactions are balanced. The

valence repulsion does not mean the contrary, but as illustrated in the �gures, the

otherwise spherical (i.e. isolated atom) valence shells are polarized. In the mentioned

�gures, the yellow regions represent the deformation of the valence shells that indicates

their polarization. It is inferred that the more stable the valence shells are, the weaker

the stabilizing interactions may occur. In this way, it can be deduced that the valence

repulsion may be stronger in bonding interactions involving two closed-shell systems,

like noble gases, for instance.

8.4 Weak Interactions

The mechanism of complexation via noncovalent interactions is di�erent from the co-

valent bonding formation in that there is no electron pair being formed. According to

Feynman,7 the proximity of the two species produces a polarization of the electrons

around each atom, which implies a displacement of the respective negative center of

charge, and, as a result, each nucleus is attracted by the distorted charge distribution

of its own electrons, giving rise to the attractive force between the monomers. This

mechanism explains the stabilization of molecular complexes via noncovalent interac-

tions, and somehow it contradicts the traditional intuition that states that once two

closed shells get in contact then an inevitable repulsion must occur. That may be true
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only if the involved atoms have a very low polarizability, i.e. if their electron densities

behave as point charges. Hence, closed-shells certainly exert valence repulsion (via

electron-pair pressure, mainly expressed by the kinetic energy density), but the po-

larizability makes possible that closed shells get deformed and in closer contact than

expected, as indeed is found in many chemical systems. The BCP found in the neon

dimer, for instance, reveals the presence of a noncovalent interaction and the stabil-

ity of the complex is accounted entirely by the energy of the system, including the

dispersion term that gives rise to an attractive mutually induced dipolar interaction.

The Laplacian at the BCP is always positive for noncovalent interactions, |λ3| >
|λ1|+ |λ2|, making the axis of the ellipsoid along the bond path (c) smaller than the

two transverse axes, i.e. c≪ a ≈ b. As a result, LED isocontours around noncovalent

BCPs are large disc-shaped regions. By considering the zero-�ux condition that locally

de�nes the IAS, ∇ρ · da = 0, it is easy to show that the isocontours p̃ ∼ 0 for

noncovalent interactions are discs parallel to the IAS originated at the BCP.v It must

be recalled that the IAS is a bundle of gradient lines, and hence ∇ρ is always parallel
to the IAS at the neighboring points. This observation is key to understand the

critical points located between noncovalently-bonded molecules. The isocontours p̃ ∼
0 in these regions follow the interatomic surfaces which pass through the adjacent

saddle critical points, including ring critical points. The benzene dimer shown in

Fig. 8.6 illustrates the situation described and reveals the similarity between LED

and the intermolecular surface. The respective QTAIM molecular structure is also

included with the BCPs represented as red spheres and the RCPs as cyan spheres. The

same representation of these critical points is included with the molecular structure

underneath the LED isocontours. It is clear the similarity between the intermolecular

isocontour p̃ ∼ 0 and the IAS dividing the two monomers. The noncovalent BCPs of

the benzene dimer have a very low electron density (ρBCP = 0.003 e) that is almost

the same for the central RCP (ρRCP = 0.002 e), besides they are separated by a

distance of 2.08 a0 that yields an estimate of ρ′ ∼ 0.0005 and hence p̃ ∼ ρ′/2ρ ∼ 0.08

au, which is almost a fourth of the plotted isocontour (0.35 au).

vBecause of the expansion of the gradient around the BCP in terms of the principal directions (
8.1), the local �ux condition implies

limr→r0
∇n (r) · da → limz→z0 (z − z0) = 0

for any x = x0 + δx and y = y0 + δy. This is, for a noncovalent bond, the isocontours around the
BCP are elliptic regions adhered to both sides of the IAS, because the ellipsoid equation 8.2 has
symmetrical solutions for ±z.
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Figure 8.6: QTAIM and LED for benzene dimer. LED isocontours are 0.35 (red)
and 5 (blue) au.

Hence, the intermolecular regions are characterized by a very low and almost

constant electron density, implying that p̃ ∼ 0 are �at isocontours parallel to the IAS

containing adjacent saddle points (RCPs and BCPs). These interface regions of almost

constant density separates the two monomers, and hence they may have physical

implications for their dissociation. Further research is required to fully understand

how the molecular counterparts use these constant-density interfaces as a mechanism

for complexation and decomplexation.

In some cases, the presence of intermolecular regions of locally-constant density

indicates an incipient formation of an additional BCP, or the proximity to a of catastro-

phe structural conformation. The formation and breaking of BCPs have been studied

extensively by Bader with the use of dynamical systems theory, where these catastro-

phe conformations are de�ned.9 Some con�gurations, not necessary at the geometrical

equilibrium, give rise to new BCPs and other critical points. That is the case of the

formaldehyde-water complex, which only has one critical point between the oxygen

of the formaldehyde and one hydrogen of water, but another con�guration with two

hydrogen bonds can be found. At the equilibrium geometry, LED shows a portion

of the interatomic surface between the oxygen of water and one of the hydrogens of

formaldehyde (Fig. 8.5). Nevertheless, from the polarizable regions (transparent yel-

low) it is easy to tell which of the intermolecular regions involve the formation of a

hydrogen bond: the broken valence regions (in yellow) of the formaldehyde oxygen and

the adjacent hydrogen of water clearly indicates that their interaction includes charge

transfer, while the oxygen of the water molecule has an almost intact (symmetrical)
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valence region (yellow). Therefore, these interface regions (in red) are topologically

related to the stabilization of the molecule. In Fig. 8.5 the electron density iso-

contours complements these observations: the isocontour lines that pass through the

intermolecular BCP cross the LED point, while the nearest isocontour n ∼ 0.01 au is

almost parallel to the LED isocontour. The outermost isodensity ρ ∼ 0.005 is half of

the previous one, within a distance of ∼ 1 a0 meaning that LED is∼ 0.25 au, which

is close but smaller than the plotted isocontour value p̃ = 0.45 au.

The hydrogen-hydrogen BCP found at the bay region of phenanthrene is an exam-

ple of an unusual type of interaction.128 Some authors argue the stabilizing role of this

bonding interaction, because it contradicts chemical intuition. While the existence of

a bond path linking the two hydrogens is not questioned, the corresponding stabiliz-

ing energy is. In brief, the argument is that the system cannot be stabilized due to

�nonbonded steric repulsion between these hydrogen atoms�.130 Nevertheless, energy

terms accounting for the �steric repulsion� are not uniquely de�ned, which leads to

an endless discussion. The classical explanation for the enhanced stability of kinked

polycyclic benzenoids over their linear isomers is given by Clar's π−sextets rule, but
from the topological standpoint an additional argument can be drawn.

An inspection to the LED isocontours (Fig. 8.7) reveals that, once the two bay

hydrogens are forced to be close, they get polarized in response. The dark-yellow iso-

contours in Fig. 8.7 show the polarization regions of the hydrogens, with a noticeable

shrinking of the interconnected ones. Such polarization decreases an otherwise repul-

sive interaction, as it is re�ected in certain physical parameters. The bay hydrogens

have smaller basin volumes than the other hydrogens of the molecule, which increases

its average electron densityvi. By using the density at the H�H BCP as a reference

(ρb = 0.01305 au.), a relative scale for the average densities within the hydrogen

basins can be plotted, as shown in Fig. 8.8a. It is clear that the average density

within the bay hydrogen is signi�cantly greater than at the BCP (~125%), and higher

than at any other hydrogen. This result means that the probability of �nding an

electron at the basin of any bay hydrogen is about 25% greater than �nding it at the

BCP between the two hydrogens. The rise of the average density within the basin of

Hbay is the result of the compression of the electronic population, that in turn shields

the nuclear charge and therefore reduces the nuclear-nuclear repulsive e�ect between

hydrogens.

viThe average density is the ratio between the atomic population and the respective integration
volume, ρ̄ = NΩ/VΩ. The IAS where limited by the isocontour ρ = 0.0004 au.
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Figure 8.7: LED for phenanthrene. The isocontours are 0.35 au (red), 0.70 au
(orange) and 1.15 au (dark yellow). The gray isocontours correspond
to the electron density at the H�H BCP, and the outer limit of the
atomic basins, with their respective values as indicated.

Figure 8.8: Relative density and steric pressure at hydrogen atoms in phenan-
threne.

(a) Average density at hydrogens. (b) Steric pressure at hydrogens.

The steric pressure can be quantitatively estimated by the Weizsäcker kinetic

energy density, according to Liu.5 The expectation value of this term, Kw =
´

Ω
τwdv,

decreases signi�cantly for the bay hydrogen when compared with the others, as shown

in Fig. 8.8b. The HH interaction makes Kw for Hbay to be −7.75 kcal/mol lower than

the lowest Kw value of the remaining hydrogens (H4). The hydrogen atoms H3 and H4
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in Fig. 8.8a are the second pair at close proximity, and a near-constant-density region

appears between them, as indicated by the red zone in Fig. 8.7. The bonds CH3 and

CH4 are mutually parallel (1.37◦), which forces the hydrogens to have a decrease of

the steric pressure of −4.9 kcal/mol with respect to the values for H1 or H2, the most

benzene-like of the phenanthrene hydrogens (Fig. 8.8b).

Evidently, not all the stabilization of the molecule can be attributed to the Kw

term, but it directly accounts for the polarization of the electron density in the atomic

basins. The total energy di�erence between Hbay and H4 is −5.49 kcal/mol. If the

stability of phenanthrene over its linear isomer (anthracene) is accounted only by

their hydrogen atoms, an estimate based only on the atomic energies of the mentioned

atoms favor the phenanthrene with a lower energy of ∼ 11 kcal/molvii, which is close

to previous estimates of ∼ 12 kcal/mol, which were obtained at the RHF/6-31G(d,p)

level with a di�erent approach.128 The decreasing of the steric pressure at the bay

hydrogens and the slight increment of the electron density at the BCP of the HbayC

bond indicates an electron density polarization away from the BCP between the bay

hydrogens, in response to their close contact. This mechanism is consistent with the

cited mechanism for weak interactions introduced by Feynman.

A �nal example of noncovalent interactions that has been the source of certain

debate about the BCP concept in QTAIM is the He trapped inside adamantane

(He@Ada), an example of what Wang, Qiu and Schwarz called a �con�nement bond-

ing�.131 The helium in adamantane is unable to interact covalently with the electrons

of adjacent atoms, and hence it is trapped inside a noncovalent cage, whilst its elec-

trons get squeezed-in as a reaction to the pressure of the surrounding electrons, as it

is illustrated by LED in Fig. 8.9.

viiAn estimate of the energy can be done by assuming that there are three types of hydrogen atoms
in phenanthrene, namely two Hbay, four H‖ and four Hβ while anthracene has six H‖ and four Hβ .
Hence, the di�erence of hydrogen energies is given by ∆EH = 2EHbay

+ 4EH‖ + 4EHβ
− (6EH||

+
4EHβ

) = 2(EHbay
− EH‖

) = −10.98 kcal/mol.
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Figure 8.9: LED for He@adamantane. The plotted isocontours are 0.28 au (red),
1.21 au (transparent yellow) and 3.00 au (green).

The BCPs between the helium and the surrounding carbon atoms make a tetra-

hedral cage that also encloses the RCPs (in red). This region is characterized by a

near constant electron density, with ρb = 0.079 au for the BCP and ρr = 0.060 au

for the RCP. The red cage around the helium visualizes the con�nement bonding and

exempli�es a case for which the critical points are less informative than the continuous

representation provided by LED.

The trapped helium gets strongly polarized, as it is shown by the tetrahedral shape

of the surrounding yellow region, with a marginal increase in its electronic population

(0.075e). As in the case of the HH interaction in phenanthrene, the trapped helium

shrinks in response to the steric pressure made by the adjacent carbon atoms. The

free volume of helium is estimated as Vfree = 14.89Å
3
, which is about seven times

bigger than the volume at the adamantane V@Ada = 2.26Å
3
. The average density is

altered in a similar proportion, which for the free atom is ρ̄free = 0.0198 au and for the

trapped one ρ̄@Ada = 0.1372 au. Consequently, the electrostatic interaction made by

the helium nucleus is being strongly shielded by the polarization. The steric pressure

given by the expectation value of the Weizsäcker energy is lowered from the free atom

to the trapped one by ∆Kw = −333.71 kcal/mol. It is remarkable that the change in

steric pressure is very close in magnitude to the reported �Pauli� contribution to the

dissociation energy of 319.31 kcal/mol.131 The dissociation energy for the system is

−140.68 kcal/mol, which means that the steric pressure is ∼ 237% the magnitude of

the dissociation energy.

The counterintuive behavior of the steric pressure term Kw can be understood by
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considering the shell contraction in atoms: as the outermost shells get more popu-

lated, the inner shells get contracted in response, shielding the nuclear charge. The

bay hydrogens in phenanthrene and the con�ned helium within the adamantane re-

act similarly to the con�nement conditions imposed by their respective noncovalent

interactions. Simultaneously, by reducing the volume, the e�ective surface is reduced,

reducing therefore the contact area, and hence the steric e�ect. Notice that here Liu's

interpretation of the kinetic energy density term associated with the local momentum

p̃ is used, and no reference to any sort of �force� is necessary as the systems studied

are in equilibrium and no net forces on the nuclei might appear.

8.5 Metallic Bonding

The last kind of stable interatomic interaction to be discussed here is the metal-

lic bond, that is abundant in solid state matter and in several organic systems like

metalloenzymes.

Figure 8.10: LED for ferrocene. The plotted isocontours are 0.10 au and 0.20 au
(red), 1.38 au (transparent yellow) and 3.00 au (green).

Organometallic bonding is a class of stable interaction that has signi�cant dif-

ferences from covalent interactions, while keeping the same essential topological fea-

tures.132 The multiple-coordinated bond (i.e. involving several BCPs) in metal-ring

systems, for instance, form a kind of collective bonding interaction with the nuclei

involved in the π delocalization of the ring. Finding those topological features might

be challenging for certain systems, according to recent experimental and theoretical

works on transition metals and carbocyclic rings (MCring) by Farrugia et al.: �The
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interaction of a transition metal with a closed or open π-hydrocarbyl ligand gener-

ates a zone of very �at ρ and very low ∇ρ in which any MC bond critical points

must be located. This almost inevitably leads to a MCring topology that is close to a

catastrophe situation, and as a result, the number of bond paths cannot be predicted

with any certainty. In such circumstances, a localized description of the chemical

bonding in terms of the individual MCring bond paths is not completely satisfactory.

Continuous QTAIM indicators, which do not rely on the presence of a BCP, such as

the delocalization indexes and the source function, provide a picture of the chemical

interactions that is more in line with chemical experience.�133

LED can be considered as a continuous QTAIM indicator, because it locates the

critical points and their respective regions by the local symmetry of the electron

density, as it is illustrated in Fig. 8.10 for ferrocene. An inspection to the BCPs

involving the iron atom reveals that the BCPs and RCPs are located almost at the

same distance from the iron, and they have very low but similar electron densities of

0.1129 au and 0.1079 au, respectively. The fact that the electron density between the

metal and the carbon atoms is almost constant implies that p̃ ∼ 0 creates isosurfaces

around the iron that enclose all the adjacent BCPs and RCPs, creating a sort of

electronic shell that represents the collective metal-ring bond. The polarization region

(transparent-yellow) also shows the strong in�uence the π rings have on the iron atom.

The iron core shell (green) is visibly smaller compared to those of the carbon atom:

a contraction of the inner shell that is expected for a heavy nucleus.

With the advent of nanotechnology a renewed interest in cluster chemistry has

emerged in recent years. One interesting question is the appearance of bulk versus

surface properties such as the metallicity. Topologically, the metallic bonding is not

di�erent than other covalent interactions, except for the ability of metals to form

multiple-coordinated stable bonds. In Fig. 8.11 plots for Na16Cl16 and of Al14 clus-

ters are shown, both computed at the LSDA/cc-pVDZ level of theory. In the ionic

crystal, the sodium atoms are positively charged (0.88 e), and hence they attract the

surrounding electron density, forming characteristic square red zones around the big

green-yellow zones in Fig. 8.11a. The negatively charged chlorine have a octagonally-

shaped red region that connects di�erent critical points, since the electron density

in those regions is almost constant: 0.0056 au for ClCl BCPs and 0.0052 au for the

RCPs. These regions are joined to the interatomic surfaces between Na and Cl, by

BCPs with an electron density just twice bigger than the other BCPs of 0.0116 au.

The red regions are therefore zones where electrons are likely to be found, regions
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Figure 8.11: LED for clusters involving metals. The color code is the same as in
8.1.

(a) NaCl cluster.

(b) Aluminum cluster.

where delocalization takes place, but they are mainly restricted to the boundaries of

the interatomic surfaces, as shown in Fig. 8.11a.

The aluminum cluster shown in Fig. 8.11b, on the other hand, shows a practically

total delocalization of the valence electrons. In fact, the electron density at BCPs is

0.029 au while for RCPs is 0.028 au and for CCPs is 0.026 au. In other words, for most

of the interatomic regions the electron density is very low and practically constant,

a particular feature of conduction electrons which are located within an "electron

sea", clearly visible by LED red regions. The nuclei are attracted to this delocalized

electronic presence by electrostatic interactions. Hence, LED illustrates consistently

the electronic regions of metallic clusters, and further research is required to address

the di�erences between bulk and crystal electronic regions with more detail. Here it
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is shown that LED is able to detect these di�erences, but quantitative estimates and

the comparison with conventional solid state procedures is matter of future work.

8.6 Discussion and Conclusions

In the present chapter a variety of bonding interactions ranging from noncovalent to

metallic has been discussed. It has been illustrated how LED provides a consistent

and intuitively evident description of the di�erent electronic regions that can be found

in molecules, complexes and crystals. The study of the critical points as given by

LED provides new criteria for their classi�cation that complements the conventional

QTAIM approach. The new criteria makes emphasis on the symmetry of the electron

density at the critical points, as accounted by the local curvatures. Such analysis

is generally valid for continuous �elds of the form ∇ρ/ρm for whose numerator goes

to zero faster than the denominator at the critical points. The studied variable, i.e.

the local momentum p̃ = −~∇ρ/2ρ, has convenient physical boundary limits, which

simpli�es its graphical and conceptual analysis.

LED can be conceptually de�ned independently from DFT or QTAIM, as has

been shown before,90 and, interestingly, the local momentum p̃ (i.e. LED) is directly

connected with the Weizsäcker kinetic energy, which links both theories in a simple

way. With the present work, a theoretical bridge between DFT an QTAIM can be

formally established. Indeed, the use of expressions like LED or its explicit kinetic

energy form have been increasingly included in di�erent DFT models. A remarkable

e�ort to rationalize the role of this variable, and the Laplacian in DFT, has been

addressed by Liu in his interpretation of the local quantum potential as a measure of

the molecular stericity.5 The results reported here support such a view by explaining

the counter-intuitive nature of HH interactions in phenanthrene and the con�nement

bonding of He@Ada. In addition, Vydrof uses the local kinetic energy term associ-

ated with p̃ as an explicit local polarizability that is responsible for the long-range

dispersion interactions in molecules, which he successfully tested recently on a DFT

model.125 LED assumes identical interpretation and this, in fact, is the central argu-

ment for the de�nition of the experimental atomic radii table that have been recently

proposed.99 In the present work the polarizable regions found in di�erent bonding

contexts complements QTAIM critical point analysis by providing information about

the deformation of the atomic electron shells after the bonding interaction is being

formed.
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This renewed interest in kinetic energy terms that depend on the ratio of the gra-

dient over the density (p̃ = −∇ρ/2ρ) indicates that this apparently simple variable

unveils a wealth of chemical information that is useful to model all sorts of interatomic

interactions, as it is shown here. Recently Yang et al. reported an analysis of the

the unit-less gradient, s,134 that is de�ned as the ratio between the local momentum

p̃ and the Fermi momentum pF = ~ (3π2) ρ1/3, or s = p̃/pF . Relative variables have

certain relevance in DFT, but for graphical analysis they represent both conceptual

and, sometimes, practical challenges. For instance, the core variable in ELF is a rel-

ative quantity: it is the di�erence between the total kinetic energy density and the

Weizsäcker kinetic energy density, divided by the Thomas-Fermi kinetic energy den-

sity. In order to be plotted, it is mapped onto the [0, 1] range via a sigmoid function.4

In the study proposed by Yang et al., the unit-less gradient is used because it is one of

the pervasive variables in DFT formulae. While the divergent behavior of this variable

for the tail region is not discussed (i.e. s → ∞ for r >>), in their implementation

of the numerical approach they have to trim the values of the function in order to

get useful visualizations. They focus on the representation of weak interactions for

s → 0, but the obvious connection of these regions with the critical points analysis

in QTAIM is missing. As a result, they color the interatomic regions according to

the sign of the second eigenvalue of the Hessian, which plays by itself a minor role

in distinguishing noncovalent interactions. They claim that sign(λ2) di�erentiates

attractive from nonbonded interactions. In fact, the only di�erence that can be seen

by this choice is between BCPs (λ2 < 0) and RCPs (λ2 > 0). As was observed in re-

cent publications (prior to Yang's paper),112,124 and as it is discussed here extensively,

these two types of saddle points are simply connected by ∇ρ ∼ 0 isocontours, which

are parallel to the interatomic surface that separates the complexed monomers (e.g.

as shown in Fig. 8.6 for the benzene dimer). In summary, the claims by Yang et al.

are better understood in terms of the properties of the critical points here exposed,

which are induced by the study of LED carried out by the authors during the past

�ve years.

The present chapter highlights the relevance that the atomic polarization has on

the equilibrium geometries and bonding interactions. The polarizability regions are

distinctively plotted by LED, a feature not available with other continuous analyses.

For certain systems, such as phenanthrene, the polarization on hydrogens is the key

to understand the HH counter-intuitive stabilizing role. Consistently, a quantitative

estimate of the atomic �steric e�ect� is given by the average value of the single-particle
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kinetic energy density,
´

Ω
τwdv. The results described here explain how LED consti-

tutes an insightful and easy-to-interpret tool for the exploration of new stabilizing

interactions for all kind of molecular systems. Because LED is given in terms of the

electron density alone it is independent of the level of theory used and can be applied

to experimentally-obtained electron densities as well.



Chapter 9

Quantum Molecular Similarity in Terms of Physical

Observables

9.1 Introduction

Recent advances in quantum similarity measures have paved the way for the quantum

quantitative structure-activity relationship (QQ-SAR). Molecular similarity is a the-

oretical tool for the virtual screening of molecules by the approximate estimation of

their relative properties such as absorption, distribution, metabolism, excretion, and

toxicity, among others. It is also useful for the prediction of several physicochemical

properties: solubility, water-octanol partitioning coe�cient, etc.135 Given the cur-

rent status of computational quantum mechanics, drug designers may be increasingly

interested in these methods.

According to Carbo, themaximum overlap of the electron densities of two molecules

gives their quantum similarity (QS) measure.136 The central computational task in-

volved in this quantum similarity measure, i.e., the mutual alignment of the two

compared molecules is CPU expensive. This maximization procedure consumes most

of the overall CPU cost involved in a QSAR study based on this de�nition of quantum

similarity.

The similarity measure can be transformed into an equivalent equation that does

not require the molecular alignment step. This is a promising procedure as the ob-

tained expressions are directly connected to the quantum theory of atoms in molecules

(QTAIM) and, therefore, the molecular similarity theory can bene�t from its formal-

ism. The formal aspects of the quantum similarity de�nition are the subject of this

chapter, and how the derived expressions might reduce the actual CPU cost involved

in QSAR studies. The molecular similarity can be reduced to the comparison of ob-

servable variables computed at the critical points of the electron density and to their

averaged values. Hence this work connects the electron density topology with the

molecular similarity concepts.

94
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9.2 Quantum Molecular Similarity

The molecular similarity principle states that structurally similar molecules exhibit

similar physicochemical and biological properties. The similarity IAB between two

molecular systems characterized by their respective electron densities ρA and ρB was

�rst proposed by Carbó as the quantity136

IAB = max

{
SA,B√
SA,ASB,B

}
(9.1)

where the overlapping integrals SAB and SAA are de�ned as

SAB =

ˆ ˆ

ρA(r)G(r, r
′)ρB(r

′)drdr′ (9.2)

SAA =

ˆ ˆ

ρA(r)G(r, r
′)ρA(r

′)drdr′ (9.3)

Here, G(r, r′) is a weight function such as the Coulomb operator, or other density

function. By using the Kronecker delta

G(r, r′) = δ(r− r′) (9.4)

the original equations proposed by Carbó-Dorca are obtained, i.e.

SAB =

ˆ

ρA(r)ρB(r)dr (9.5)

SAA =

ˆ

ρ2A(r)dr (9.6)

Clearly, IAB ∈ [0, 1]. The molecular similarity measure (Eq. 9.1) requires an

optimal alignment between molecules A and B. But such requirement is hard to

guarantee. From the classical mechanics of rigid bodies it is clear that the general so-

lution for the alignment requires exactly two group transformations,137 a rotation R̂r,r′

and a translation T̂r,r′ that transforms the vectors de�ned in the system of coordinates

o onto the coordinates o′. This computational task has no obvious theoretical proce-

dures and numerical solutions are usually required. The alignment can be included
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within the operator G(r, r′)

G(r, r′) = R̂r,r′T̂r,r′F (r, r
′)

where the general weight function F (r, r′) is transformed by the rotation and trans-

lation operators that aligns the two molecules. An exhaustive search of an optimal

alignment determines the success on evaluating Eq. 9.1. Due to the lack of analyt-

ical procedures for solving the transformation R̂r,r′T̂r,r′ , the implemented numerical

methods entail two main approximations: a) a �nite-grid exhaustive overlap maxi-

mization search, which requires that b) the electron densities are approximated by

promolecular ones. Hence, in practice, the method dictates the use of approximate

electron densities in order to be e�cient. The validity of promolecular approxima-

tions is beyond the present work's boundaries, but it is su�cient to mention that a

promolecular density mimics the ab initio one but will lose its topological features

which are critical in QTAIM.

9.3 On the CPU Cost of Molecular Similarity

The overlap of the two densities as a measure of quantum similarity is a de�nition that

entails several practical shortcomings. An estimate of the computational demands of

this similarity measure when implemented in QQ-SARs studies is provided.

In order to compare N molecules, a total of N − 1 alignments are required to

maximize their mutual overlaps (Eq. 9.1). It can be assumed that the molecules are

all equally centred and it only remains to perform the rotation of the two densities to

complete the alignment. In addition, it can be assumed that all the computations have

the same grid resolution, given by m3, with m being the number of points considered

in each direction of the cube �le containing the density. An unsupervised numerical

alignment between two densities implies a number of steps that is at least of the order

of the combinatorial number of possible orientations the two grids can have, which is

practically in�nite, as the required trial rotations are not restricted a priori.

The minimal number of unsupervised rotations required can be obtained by as-

suming the simplest case of all the di�erent 90 degree rotations. Hence a minimum of

6(N − 1) overlap integrals are required to get an approximate estimate of the correct

alignments. The similarity matrix for this set requires a total of N2/2 similarities

(the diagonal elements do not require an alignment), hence a total of 3N2(N − 1)
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integrals must be done. Numerical integrals are reduced to sums when cube grids are

used, and therefore the number of simple arithmetic operations involved on building

the matrix is �nally 3N2(N − 1)m3. Thus, the CPU cost grows cubically with the

size of the grid and the number of molecules simultaneously. Small grid sizes typically

involve m ∼ 50, and a small set is N ∼ 20, which translates into a total of ∼ 2.85 109

arithmetic operations.

Therefore around 3 billion arithmetic operations are required in order to build

the similarity matrix for a set of 20 molecules. Any practical computation requires

at least two orders of magnitude more computations to �nd the correct alignment

between the molecules. Accordingly, it is safe to say that on average the quantum

similarity requires around ∼ 1012 of these basic arithmetic operations. Obviously this

is merely an estimate in order to illustrate the CPU cost involved, and not the usual

practice which involves more e�cient methods.

If, on the other hand, the similarity matrix is built by using the averaged proper-

ties computed separately for each molecule, this task requires approximately Nm3 +

gN(N + 1)/2 operations, where g is the number of scalar properties used for charac-

terizing the moleculesi. An estimate of 2, 501, 900 arithmetic operations is expected if

ten properties are computed, (i.e. assuming g = 10) and using the same parameters

than previously. Therefore, a total of ∼ 2.5 million of simple arithmetic operations

are required in order to build the similarity matrix. This is a di�erence of at least

six orders of magnitude in CPU cost between the similarity measure and a direct

comparison of the averaged properties independently computed for each property.

What motivates the use of such a CPU-demanding QQ-SAR? Equation 9.1 has

a quantum form that seems to be very compelling over other formulations. As it is

shown in the following section, Eq. 9.1 can be mathematically transformed into an

equivalent expression that does not requires the alignment and hence its CPU cost is

reduced consequently.

9.4 From Quantum Similarity to Observable Comparison

The quantum similarity index IAB (Eq. 9.1) depends on the term ρA(r)ρB(r
′) which

can be equivalently written as

ρA(r)ρB(r
′) =

ρ2A(r)

2
+
ρ2B(r

′)

2
− (ρA(r)− ρB(r

′))2

2
(9.7)

iHere it is assumed that the averaged properties are obtained from grid integrals.
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After replacing previous equation into the overlapping expression, Eq. 9.2, it becomes

SAB =

ˆ ˆ

R(r, r′)T (r, r′)

{
F (r, r′)δ(r, r′)

(
ρ2A(r)

2
+
ρ2B(r

′)

2
− (ρA(r)− ρB(r

′))2

2

)
drdr′

}

which leads to

SAB =
SAA
2

+
SBB
2

−
ˆ ˆ

R̂r,r′T̂r,r′

{
F (r, r′)

(ρA(r)− ρB(r
′))2

2
drdr′

}
(9.8)

if∆ρ(r; r′) = ρA(r)−ρB(r′) then the third term is the self-overlapping of the di�erence

density ∆ρ(r; r′), S∆∆, and hence

IAB =
1

2

1√
SAASBB

{SAA + SBB − S∆∆}

Clearly, the similarity IAB is a relative measure of the self-overlapping of the

densities di�erence with respect to the sum of the two separate self-overlapping SA
and SB. If ∆ρ(r; r′) = 0 and r = r′, then S∆∆ = 0, SAA = SBB and IAB = 1. If

∆ρ(r; r′) 6= 0 and S∆∆ ' 0, then IAB ≈ 1
2

1√
SAASBB

{SAA + SBB}, i.e. IAB is some kind

of geometric mean of the two self-overlapping values. It appears that S∆∆ has a more

direct interpretation than IAB, and therefore it is more convenient to work with S∆∆

as a measure of similarity.

The computation of the integral S∆∆ also requires the alignment between ρA(r)

and ρB(r
′), but can be transformed into a linear operation. By de�ning a general

weight function as M(r, r′) = (ρA(r)− ρB(r
′))F (r, r′), the third term of Eq. 9.8

becomes

S∆∆ =

ˆ ˆ

R̂r,r′T̂r,r′ {M(r, r′) (ρA(r)− ρB(r
′)) drdr′} (9.9)

The integral can be now split into two separate integrals whose values should be

aligned if the properties are tensors,

S∆∆ = R̂r,r′T̂r,r′

{
ˆ

M(r)ρA(r)dr−
ˆ

M(r′)ρB(r
′)dr′

}
(9.10)

It is more practical to work with the two separated integrals of Eq. 9.10, each in

its own coordinate system, than with the original overlap proposed by Carbo. In fact,
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S∆∆ = 0 if both molecules exhibit identical values for the integrand. If the result

of the integral is a tensor variable, the averaged values may be aligned a posteriori,

which simpli�es substantially the similarity measure. It is important to notice that

the weight function M(r) is a property density and hence the integral value is just its

expectation value with respect to the density coordinate system

〈MA〉Ω =

ˆ

Ω

M(r)ρA(r)dr (9.11)

where Ω represents the integration region, in general it is the whole molecular volume.

Equation 9.11 also suggests that M(r) may be an observable property density, with

its obvious conveniences. This observation leads to the important result that the

similarity measure can be reduced formally to a di�erence between the expectation

values of a given molecular property M computed independently for each molecule

S∆∆ = R̂r,r′T̂r,r′ {〈MA〉Ω − 〈MB〉Ω′} (9.12)

In summary, the quantum similarity index can be reduced to a direct comparison

of average physical properties computed independently for each of the two molecules.

If they are scalar properties, such as the ionization energy or the net charge, there is no

need for a mutual alignment at all. In general, physical properties are either scalars

or vectors, which are always much easier to align than solving the transformation

R̂r,r′T̂r,r′ for the two electron densities.

Bader has shown that the properties de�ned by the zero-�ux condition optimizes

atomic (and fragment) chemical transferability.138 This observation guarantees that

when a property is assigned to an atom or fragment, these values are found to be very

similar whenever the atom or molecule is placed in a similar molecular bonding con-

text. It makes possible the creation of theoretical databases for atomic and fragment

properties, which is of prime importance in molecular screening in drug design.

9.5 A Maximum Overlapping Implies Molecular Structure Similarity

The quantum similarity measure depends on the mutual alignment as stated in Eq.

9.1, which guarantees the maximal overlap; in this section, some topological conse-

quences derived from the maximal overlap are outlined.

The overlap maximization of Eq. 9.1 can be transformed into an equivalent local
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condition according to which the product ρA(r)ρB(r) is locally maximal, a condition

that translates into ∇ (ρA(r)ρB(r)) = 0 and ∇2 (ρA(r)ρB(r)) < 0 which leads to

∇ρA(r)
ρA(r)

+
∇ρB(r)
ρB(r)

= 0

and
∇2ρA(r)

ρA(r)
+

∇2ρB(r)

ρB(r)
+ 2

∇ρA(r)
ρA(r)

· ∇ρB(r)
ρB(r)

< 0

respectively. These equations admit a set of solutions at the critical points given by

∇ρA(r) = ∇ρB(r) = 0

that exhibits local accumulation of charge, i.e.,

∇2ρA(r) +∇2ρB(r) < 0

Hence, the critical points of both molecules must be located at exactly the same local

maxima positions. In QTAIM language, this means that both molecules must exhibit

the same molecular structure. This result is directly derived from the similarity mea-

sure, which, interestingly, was introduced as an ad hoc de�nition and independently

from the quantum topology theory. When this local condition is applied to the case

ρB(r) = ρA(r), the second condition implies ∇2ρA(r) < 0, which holds for the regions

in space where the negative charges are locally concentrated, e.g. around the nuclei

and bond critical points.

Therefore, if the density overlap is taken as a local condition, it implies the coin-

cidence in the molecular structures. In QTAIM the molecular structure is quantized,

i.e., for every molecular system in an equilibrium geometry there is a �nite number of

topological elements linked by gradient paths, as accounted for by the Hopfman-Kopp

theorem.11 It is expected that in a comparative study involving a set of molecules,

those having more critical points in common are more similar. In other words, similar

structures are closer to each other according to Carbo's similarity. But structural

changes may occur between a molecule and one of its conformers after a simple ge-

ometry optimization, for instance. In order to avoid a spatial dependence in the

comparison, the molecular structure can be accounted for the critical points of the

electron density. Popelier partially exploits this idea in his QSAR proposal,139,140
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which is focused on the bond critical points only, i.e. a subset of the critical points.

The results shown here suggest that nuclear attractors and ring critical points also

must be included.

In summary, the quantum similarity implies that two molecules may be compared

by the properties of their critical points, which is equivalent to comparing their molec-

ular structures.

9.6 Discussion and Conclusions

Chemical design rests on the idea that atoms and groups of atoms exhibit similar

local properties within similar bonding environments. It means that functional groups

exhibit transferable properties. Clearly, molecular similarity and group transferability

are interconnected concepts.

Present analysis of the quantum-based similarity de�nition leads to a topological

ab initio molecular similarity that is expressed by two complementary analysis: a) a

direct comparison of the molecular critical points properties (the molecular structures)

and b) the similarity of averaged physical properties, either for the whole molecule or

one of its fragments.

The extensive search of molecular alignment required by the quantum similarity

measure is unnecessary. Consequently, the computational cost involved in Carbo's

similarity measure can be reduced by at least three orders of magnitude. In the

present approach the main computational cost is focused on the determination of

the molecular wave function, its physical variables and the respective topological

properties. In this way, the molecular properties are obtained ab initio, not at the

promolecular level as in several quantum-similarity-based QSARs.

The equations introduced here provide theoretical support to several QTAIM

molecular similarity studies. For example, QSARs using topological properties at

the bond critical points have been shown to be useful.141,139,140

The author previously explored the quantum similarity of molecular fragments by

using physical properties, as derived in previous sections. A direct comparison of the

side chains of the amino acids by their electronic polarization and energies as given by

QTAIM yields a theoretical classi�cation identical to the experimentally-determined

biochemical classi�cation.142 The results discussed in this chapter indicate that a

complementary analysis based on the critical points can be of practical interest as

well.
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In summary, in the present chapter a crucial step involved in the quantum molecu-

lar similarity measure is questioned. As an alternative, a direct comparison of averaged

molecular properties is shown to be more cost e�ective because it does not require

the iterative search for an optimal alignment. A practical advantage is the fact that

all standard quantum mechanical software packages provide a set of average phys-

ical properties, and hence its comparison is just part of a post-processing analysis.

In the next two chapters are discussed several methods for post-processing ab initio

computations in amino amino acids and small peptides.
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Methods in Biocomputational Chemistry: a Lesson From the

Amino Acids
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H. J. Bohórquez, C. Cárdenas, C. F. Matta, R. J. Boyd and M. E. Patar-

royo, in Quantum Biochemistry, 403-421, Ch. 13, ed. C. F. Matta (2010)

Computer-aided drug design (CADD) requires accurate and fast methods to identify

and characterize molecules with potential therapeutic use. While quantum mechanics

(QM) provides the best available theoretical framework to predict molecular prop-

erties, it is computationally expensive for biologically-relevant molecules, molecules

that are usually composed of hundreds of atoms such as proteins and nucleic acids.

This practical limitation dictates the use of approximate methods that are fast enough

to screen large sets of biochemical compounds. Ideally, these methods are designed

to identify molecules with a speci�c biological activity in silico. Predictive methods

employed in drug design such as statistical analysis (SA) and molecular mechanics

(MM), address di�erent levels of detail of the molecular problem. Statistical meth-

ods, based mainly on database records, are designed to provide averaged molecular

properties such as secondary-structure propensities or the hydrophobic character of

a polypeptide chain. Molecular mechanics (MM) methods provide information about

speci�c functional groups and their interactions in terms of Newtonian (classical)

mechanics through force �elds parametrized for a given class of biomolecules. This

parametrization is based on the results of quantum mechanical computations. Hence,

QM plays an indirect but crucial role in approximate MM biocomputational methods.

In more recent years, and when a speci�c reactive centre is known, one can combine

QM and MM in a single calculation in what has become known as QM/MM (and its

variants).

Here are explained three strategies developed for studying peptides that include

statistical analysis over quantum mechanical data to characterize amino acids func-

tional similarities and activity in proteins. These strategies were developed in stages,

103
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each one focusing on a di�erent aspect of the problem. The �rst stage addresses

the question: which theoretical variables describe the conformational trends of the

amino acids best? This question underlies the structure-activity relationship (SAR)

paradigm, according to which similar structures yield similar bioactivity.143 Hence,

from this standpoint, it would be advantageous to select the parameters that optimally

describe similarity in the construction of quantitative structure-activity relationship

(QSAR) models. A principal result from this research is that electrostatic variables

su�ciently discriminate structural and chemical trends.144 This work is summarized

in the �rst section of the present chapter. The second stage of the study examines a

smaller set of capped amino acids (AA) model [(HC=O)-AA-NH2], in two conforma-

tions, i.e., 40 molecules in total. The quantum theory of atoms in molecules (QTAIM)

was the used to analyze the resulting electron densities. The variables studied are

the electronic energy and the multipole moments (polarizations) of the amino acid

side chains. This set of variables de�nes a 10-dimensional space. The similarities in

this 40-molecule/10-variable system are determined in two ways. The �rst method

is graphical, based on a multidimensional projection known as the Andrews plot.145

The second is an unbiased pairing method (neighbour joining) that determines simi-

larities on the basis of the distance between the vectors representing each side chain.

Remarkably, this procedure is able to replicate the standard biochemical classi�cation

of the genetically-encoded amino acids, providing an ab initio classi�cation of amino

acids, perhaps the �rst reported so far.142 The second section provides details about

this work and its future extensions.

The third stage of this research illustrates the practical application of the previ-

ously mentioned �ndings through a method that incorporates the electrostatic vari-

ables for the study of peptide-host interactions.146 In the last part of the present

chapter the advantages of using a Mulliken multipole-based approach to the study

of MHC�antigenic peptide complexes are illustrated. Comments about the strengths

and future directions of this approach conclude this chapter.

10.1 Conformers, Rotamers and Physicochemical Variables

The number of possible molecules formed from a given set of atoms is determined by

the combinatorial number of allowed stable bonding interactions between these atoms.

If only amino-acid based penta-peptides are counted, for example, the number of pos-

sible molecular structures is about 205, i.e., 3.2×106 molecules. This number is based
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on the 20 genetically-encoded amino acids only, a subset of the approx. 300 amino

acids found in living systems, excluding unnatural amino acids. Not surprisingly, the

idea of drug design appears to be a hopeless quest. How can this number be e�ectively

reduced to a manageable set that, eventually, will display the desired drug properties?

A �rst step consists of selecting a set of variables that can be obtained consistently

for every molecule. Each molecule is then represented by a vector whose compo-

nents are the selected variables. Each variable should be well-de�ned and, at least in

principle, be also a measurable property. Each molecule is represented by its respec-

tive set of properties in the multidimensional space, i.e., by a vector V ∈ RN . The

representation of every molecule in this multidimensional vector space, RN , enables

one to de�ne an Euclidean distance, dAB, between two molecules A and B. Ideally,

two molecules separated by the shortest distance in this vector space are also the

most chemically-similar among the set. This hypothesis is based on the realization

that similar molecules must exhibit similar molecular physicochemical properties. In

this approach, molecular design implies the identi�cation of similarities in this vector

space.

Figure 10.1: Capped amino acid residues used in this study. Each molecule is
represented by the variables listed in Table 10.1. The total number
of molecules studied using each model is indicated.

The biochemical behaviour of a protein is encoded in its primary structure, i.e., the

amino acid sequence which determines its functionality via the secondary and tertiary

structures. In the study of the genetically-encoded amino acids it is important to

determine which variables account for their idiosyncratic biochemical features. Within

the context of protein-based drug design, the following question is addressed: What

theoretical variables better represent the highly-speci�c yet overlapping biochemical
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Figure 10.2: Amino acids structure. (a) A stick model of an amino acid residue
with the standard dihedral angles de�ning the main chain (φ,ψ) and
the side chain (χ) conformations. (b) Ramachandran plot with the
studied α-helical and β-sheet conformation regions highlighted (red
dots).

functions displayed by each of the genetically-encoded amino acids? In order to answer

this question, two models were built that mimic the electronic environment of an

amino acid residue inside a peptide chain. The two models di�er in the capping groups

for the N- and the C-terminuses as shown in Fig.10.1. The non-zwitterionic amino

acid models studied are: H(C=O)|AA|NH2 and Ala|AA|Ala. With the second model

reveals the e�ect of neighbouring amino acids on the properties of the central amino

acid. Each side chain has preferred side chain torsion angles.147,148 Three of these side

chain conformers or rotamers were selected: gauche(+) = −66.7◦, gauche(−) = 64.1◦

and trans = 183.68◦. The main chain conformers were set at �ve α-helical and �ve

β-sheet conformations (de�ned by φ and ψ angles as shown in Fig.10.2). The �ve

backbone torsion angles corresponding to an α-helical conformation are −65º ± b4◦

and−39º±b4◦, and those corresponding to the β-strand conformations are−130◦±b5◦
and 120◦ ± b5◦, with b ∈ (0, 1). These conformations are indicated by the red dots in

the Fig.10.2(b).

A total of 40 theoretical variables were considered: (a) 19 graph descriptors, i.e.,

connectivity descriptors of the molecular structure;149,150 and (b) 21 physicochemical

variables obtained from quantum mechanical calculations. The variables represent-

ing the amino acids are listed in Table 10.1. A total of 1065 molecules representing

the twenty amino acids in di�erent conformations and capping models was studied.
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Table 10.1: Properties selected for the representation of the amino acids.
Graph theory indices Quantum variables

Wiener index Moment of inertia

Randic indices of order 0-3 Molecular weight of the amino acid residue

Kier and Hall connectivity indices of order 0-3 Electronic spatial extent

Kier and Hall shape indices of order 1 through 3 Nuclear repulsion energy

Shadow indices Total energy

Highest occupied molecular orbital energy, HOMO

Lowest unoccupied molecular orbital energy, LUMO

Mulliken partial charges

Sum of the Mulliken partial charges for the side chain atoms

Total dipole moment

Electric potential

Sum of the electric potential for the side chain atoms

Quadrupole norm

The graph-theory indices were calculated with Codessa,151 and the QM computations

were done at HF/6-31G(d) level, with polarization functions on heavy atoms capable

of forming hydrogen bonds (N, O and S). A hierarchical cluster analysis was done

with NTSYS program ,152 with the unweighted pair group method with arithmetic

mean (UPGMA) method. A schematic representation of the steps followed in this

strategy is depicted in Fig.10.3. Principal components analysis (PCA) was used to

determine the principal variables that specify the similarity between the amino acids.

An important result is that the amino acids are separated into statistically-disjoint

groups, and those groups are segregated mainly by their electrostatic properties alone.

Fig.10.4 shows the classi�cation obtained from the PCA. The group of amino acids

containing π electrons is clearly identi�able, which includes the aromatic amino acids,

such as Phe, Tyr and Trp as well as His and Arg. Two amino acids, Gly and Pro,

are clearly outliers in this classi�cation, which re�ects their particular biochemical

behaviour: the �rst have the smallest side chain (a hydrogen atom) and the second

is an imino acid, i.e., its side chain is cycled over the backbone. The analysis was

able to automatically distinguish between the two large groups di�ering only in the

conformation of the backbone, namely, the α and β-conformers of all of the amino

acids separate into two large statistically-distinguishable groups, as can bee seen in

Fig.10.4. In general, side chain rotamers are grouped closely to each other according

to their respective amino acid. Rotamers of isoelectronic side chains, such as the

Asn-Asp or Gln-Glu isoelectronic pairs are also located closely in the 40-dimensional
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vector space, which indicates that the method generates valid results according to

intrinsic (total) molecular properties, but misses details on the speci�c smaller func-

tional groups. The groups obtained for each amino acid conformer are conserved

Figure 10.3: Schematic diagram of the steps followed to determine the theoretical
variables responsible for the amino acids' main structural propensi-
ties. The key factor in this approach is the representation of every
molecule by a set of properties in a multidimensional (40D) vector
space for performing a PCA and a clustering analysis.

across the two capping groups, which indicates that the selected variables capture the

intrinsic nature of amino acid properties. These groups can be reproduced by eight

variables only (�ve quantum, three from graph theory), as indicated by the PCA

analysis. In conclusion, the classi�cation of the set of amino acids studied is driven

principally by electrostatic properties. It is clear from the clustering shown in Fig.10.4

that the main groups are those side chains containing electrons with symmetry, and

the two backbone conformations, α and β, whose multipole moments are oriented in

di�erent directions, and therefore they have di�erent electrostatic interactions. The

results reviewed here show that the structural features of amino acids are su�ciently

accounted for by electrostatic variables alone. Some quantum QSARs come to a sim-

ilar conclusion. For example, Brink et al. studied about 100 QM-based variables to
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Figure 10.4: Amino acids classi�cation based on 8 principal components.

predict the water-octanol partition coe�cient (Po/w) from the molecular wave func-

tions. These authors concluded that three electrostatic variables, surface area, the

surface electrostatic potential and the spatial minima of the electrostatic potential,

respectively, can give good correlations with log Po/w for a number of molecules with

biological and pharmacological interest.153 This is a remarkable result in the sense

that log Po/w is an experimentally-determined biochemical property usually mea-

sured at standard conditions yet the thermodynamic factors are not included in the

quantum computation. These results as well as those reviewed in this chapter suggest

that the electrostatic variables are good descriptors regardless of the thermodynamic

conditions, providing support to the validity of the isolated (�gas phase�) QM model.

10.2 Side Chain Polarizations and the Theoretical Classi�cation of Amino

Acids

From the results reviewed earlier, it is clear that the amino acids can be adequately

described in terms of the electrostatic variables. In this section the use of QTAIM for
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characterizing the genetically-encoded amino acids is described. QTAIM partitions

the molecular properties into additive atomic contributions, and, in doing so, charac-

terizes molecular transferable fragments such as the amino acids' side chains. Details

about the theory are omitted here as they can be found elsewhere.9,18 The focus of

this section will be placed on the similarity of the amino acids within the context of

this theory. The earlier work of Bader and coworkers on peptides and amino acids has

Figure 10.5: Energy magnitude versus mass, as provided by QTAIM, for the
genetically-encoded amino acid side chains. The linear �t excludes
the sulfur-containing side chains, Cys and Met.

been extended in greater detail by Matta and Bader more recently.154,155,156 The local

structural properties of each amino acid determine the overall tertiary structure of a

protein, and the side chains are responsible for its speci�c bioactivity. Therefore it is

vital to characterize the physicochemical properties of the amino acid side chains in

order to understand and predict the bioactivity of peptides and proteins. The amino

acid model studied is shown in Fig.10.1(a), which was initially studied by Bader.157,158

Two main backbone angles and a single rotamer per amino acid were studied, giving

a total of 40 molecules, including a total of 888 atoms at the HF/6-31G(d) level with

polarization functions on N, O and S. The atomic properties were computed with the

AIMPAC suite of routines from Bader's group.159 In order to compare tensor and
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vector properties (which are origin- and orientation-dependent), all the amino acids

were properly aligned by the common atoms of the backbone and the �rst atom in

the side chain. The origin of the coordinates was placed at the α carbon atom.

Figure 10.6: Andrews plots for the 10 QTAIM variables on 40 amino acid side
chains. Molecular similarities appear as similar colors and shapes.

Figure 10.7: Similar side chains as revealed by their corresponding Andrews plots
(color and shape).

(a) Gly, Ala, Val, Ile and Leu.

(b) Ans, Gln, Asp and Glu; the later
one exhibits a di�erent pattern
than the others.

Each amino acid was represented by the three �rst terms in the multipole moment
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expansion of the side chain charge density (side chain charges (monopoles), and side

chain dipolar and quadrupolar polarizations) and the side chain total electronic energy.

These electronic multipole moments (polarizations) should not be confused with the

total multipole moments of the amino acids. Multipole moments provide a basis

for a general procedure to systematically extract the symmetries of a continuous

distribution, such as the charge density, and hence they characterize its shape. They

depend on the origins and the relative orientations of the coordinate system and

therefore the molecules were pre-aligned as described above.

The energy of the side chains measures their size, as illustrated in Fig.10.5. This

�gure shows that the side chain energy magnitude can be linearly �tted to the side

chain mass with a correlation R2 = 0.95, for the non-sulfur side chains. The electronic

energy of the side chains involving only elements located in the �rst two rows of the

periodic table exhibit a linear correlation with mass, the same correlation does not

apply for the side chains involving a third row atom, such as sulfur. It is desirable to

visualize similarities between the molecules under study before performing any further

statistical survey, but any multi-dimensional molecular representation always entails

a graphical challenge. The Andrews plots (AP) are a useful tool for addressing this

task. As illustrated in Fig.10.6, each molecule can be represented by a single strand

that is easily obtainable from the following formula:

A = E Sin(t) +MxCos(t) +MySin(2t) + (10.1)

MzCos(2t) +QxxSin(3t) +QxyCos(3t) +

QxzSin(4t) +QyyCos(4t) + · · ·

where E is the side chain energy, Mi and Qij are the dipole and quadrupole polariza-

tion components, respectively, and t ∈ [−π, π]. The values used were standardized as

explained in detail in reference.142 Each strand represents a side chain as a smooth

function, with coe�cients equal to the corresponding physical properties. A color code

was also added to each strand by assigning each component of the color code to the

(standardized) magnitudes of the energy, dipole and quadrupole moment. The �nal

color is a combination of three basic tones: red, green and blue. Each tone is de�ned

as a number within the interval. For the present case, RGB = [1 −M,Q,E], where
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Figure 10.8: Quantum theoretical classi�cation of the genetically-encoded amino
acids. This classi�cation was obtained after applying a clustering
procedure to the side chain properties: energy, dipolar polarization
and quadrupolar polarization as provided by QTAIM computations
at HF 6-31G(d) level of theory. The table highlights the typical
physicochemical properties of the side chains. The main clusters
were colored according to these properties.
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M , Q, E are the normalized magnitudes of the dipolar polarization, quadrupolar po-

larization and energy, respectively (i.e. each of these variables lies within the interval

[0, 1]). Therefore, similar shapes and colors that correspond to similar molecules can

be identi�ed. Fig.10.7 shows the APs of the 40 side chains studied. The distinctive

shape in blue groups the aliphatic side chains {Gly, Ala, Pro, Val, Ile, Leu}, while the

group {Asn, Gln, Asp, Glu} exhibit a similar red color. This simple analysis reveals

the existence of underlying similarities within the set of amino acids.

The graphical analysis shows the existence of similarities between the side chains,

but in order to quantitatively determine these similarities a systematic classi�cation

procedure is required. Consequently, a multivariate classi�cation of the side chains

in the 10D vector space that is based on the distance between elements in this vec-

tor space was used. The neighbor joining method applied over a two-fold distance

measure provides the amino acids classi�cation shown in Fig. 10.8. It is clear that

the main biochemical features coincide with several of the groups obtained. This the-

oretical classi�cation of the amino acids (the �rst quantum theoretical classi�cation

that the author is aware of), provides a rich variety of clearly identi�able biochem-

ical groups on the sole basis of transferable properties provided by QTAIM. On the

other hand, experimentally-based classi�cations tend to emphasize certain molecular

features and downplay others, which explains why the classi�cation resulting from

their associated matrices coincides with the biochemical classi�cation only for major

groups such as �aliphatic AAs� or �charged AA�, while several amino acids appear as

outliers,160,161,162 as recently reported by Esteve and Falceto.163 The successful clas-

si�cation of the amino acids in silico can be attributed to the quality of the atomic

and group properties provided by the quantum theory of atoms in molecules. It has

been shown how one can use QTAIM group properties in conjunction with clustering

analysis to recover a well-known biochemical classi�cation of a set of functionally-

related molecules (the amino acids). Amino acid classi�cation based on the elec-

trostatic moments is superior to those obtained by scoring matrices widely used in

protein biostatistics. One key advantage of the theoretically-based classi�cation over

experimentally-based ones is the homogeneity of the quality of the input dataset.

Experimentally-based amino acid properties that serve as a basis for the replace-

ment matrices for example, involve a variety of data sources with di�erent precisions,

compromising the outcome of the analysis. As an extension of this work, a theoreti-

cal amino acid replacement matrix for bioinformatics can be readily developed, that

can potentially overcome several of the drawbacks faced by the empirical ones. The
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methodology outlined here can be replicated for any other set of molecules, and it

emerges as an alternative to QSAR methods in the sense that it provides unbiased

quantitative similarities among the studied set.

10.3 Quantum Mechanical Studies of Peptide-Host Interactions

In the previous section it was shown that calculated QM electrostatic properties

provide a biochemical classi�cation of the amino acids consistent with their known

chemical and physical properties. The main hypothesis for the study of peptide-host

interactions is that these interactions are, to a large extent, dominated by the elec-

trostatic properties of the AA residues constituting the interacting peptides. This

research program is motivated by the development of a synthetic anti-malarial vac-

cine at the Fundacion Instituto de Inmunologia de Colombia (FIDIC).164,165 A key

step for developing a speci�c immune response against a pathogen is the formation

of a stable complex between the major histocompatibility complex (MHC) molecule

and antigenic peptides, capable of bringing information to the T-cell receptor (TCR)

molecules necessary to trigger an immune response against the pathogen. The details

about this process are omitted, in order to focus on the QM/MM hybrid approach

used for the peptide-host interaction studies of the anti-malarial design of a synthetic

peptide-based vaccine. The MHC-peptides (MHC-P) interaction is a prototypical

ligand-receptor interaction, and hence the approach outlined here can be used to

study other similar biochemical complexes. The extended peptide (∼9 amino acids)

forms a non-covalent complex with the host MHC protein at the peptide binding re-

gion (PBR) through certain spots that act as anchoring sites, known as pockets. In

Fig.10.9 a MHC Class II PBR is shown, with the pockets in colour, as obtained from

the Protein Data Bank (PDB).

According to the present hypothesis, the MHC-P interaction can be described

by the quantum-based electrostatic potential,166,167 which in terms of the multipole

expansion has the form

V =
1

4πǫ0

[∑ qk
r
+
∑

pkδk
1

r2
+

1

2

∑ 1

3
Qijδiδi

1

r3
· · ·
]

(10.2)

where the index k runs over all the host atoms involved in the interaction. Therefore

a partitioning scheme is necessary to provide atomic contributions for each multipole

moment that appears in this expansion. Unfortunately, the number of atoms involved
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Figure 10.9: Peptide binding region (PBR) of the (MHCII-P). LA-DRβ1*1501
molecule with the α-chain as a pink ribbon and the β-chain as a light
blue ribbon. (A) Frontal view and (B) top view. Pocket amino acids
are represented as spheres with di�erent sizes and colours: Pocket
1 (magenta), Pocket 4 (dark blue), Pocket 7 (grey) and Pocket 9
(green). Molecular surface showing (C) a frontal view of the PBR
and (D) the top view showing the relative depth of the di�erent
pockets. P1 and P9 are deeper whereas Pocket 4, 6 and 7, are more
super�cial, lying towards the walls of the groove. (Graphic reprinted
from the Ref.[30] under the Creative Commons Attribution License
(CCAL)).
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in the screening of MHC-P interactions exceeds the practical application of QTAIM,

which would be an ideal partition schemei. Instead of QTAIM, point-charge multipoles

derived from the Mulliken population analysis were obtained from standard quantum

mechanical calculations (as provided by programs such as Gaussian). Accordingly,

the dipolar and quadrupolar moments and their respective norms are

p =
N∑

k=1

qkrk d =
√
p · p (10.3)

Qij =
N∑

k=1

qk
(
3xixj − r2kδij

)
C =

√√√√
3∑

i,j

Q2
ij (10.4)

with qk and rk the charge and position of the kth atom, respectively. Each amino acid

residue involved in the complex formation was systematically replaced by each of the

remaining 19 genetically-encoded amino acids in order to quantitatively determine its

relevance in the MHC-P complex stability. A detailed account of the steps followed

in this approach is shown in Fig.10.10. The changes observed after each replacement

were estimated by examining three aspects:

� Multipole moments (Fig.10.11); in order to estimate the e�ect that each speci�c

amino acid exerts in the pockets, the Mulliken-derived electrostatic multipoles

are evaluated over the pockets. The isolated complexing peptide is used as the

reference system for evaluating the changes in the multipoles.

� Electrostatic potential as projected over a molecular surface (Fig.10.12); a tra-

ditional study of the QM potential projected over an electron density surface

guides the analysis for the atoms directly involved in the complex.

� Identi�cation of those orbitals contributing directly to the complex formation;

the orbital expansion coe�cients are classi�ed according to pocket and peptide

contributions, by a statistical analysis, as schematically explained in Fig.10.13.

While a graphic study of the electrostatic �eld reveals some of the details of the

iQTAIM requires optimized geometries for each system under study at the same level of theory
of the energy computations. A failure to this request may lead to errors in the atomic energies and
forces, among other important properties. Hence, QTAIM is a method that is not suitable for being
used with MM geometries.
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Figure 10.10: Diagram of the quantum study of MHC-P complexes. Each speci�c
analysis is detailed in �gs. 11-13.

peptide-host complex formation, only the multipole and wavefunction analyses pro-

vide a hierarchy of relevance among the pocket sites, which is highly correlated with

the experimentally-observed one.168,169,170 For example, in a MHCII-peptide complex

study, the prevalence for aromatic amino acids in pocket #1 was unambiguously deter-

mined (see Table 2 in Ref.146). Such speci�c prevalence for aromatic side chains plays

a signi�cant role in the complex stability as this pocket works as an anchoring site for

the guest peptide. In this way, the traditional direct visual study of the electrostatic

potential of the MHC-P complexes provides merely a complementary analysis that

veri�es the quantitative classi�cation given by the other two methods. The success

obtained so far in the description of the essential amino acids that are responsible

for the complex stability and their respective synonymous replacements validates the

overall proposal reviewed in this section.
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Figure 10.11: Diagram of the quantum study of MHC-P complexes using the
Mulliken-based multipole method.

10.4 Conclusions

The work reviewed in this chapter supports the idea that much of the biochemi-

cal information carried by the amino acids is encoded in an electrostatic language.

Initially, a principal components analysis (PCA) over as set of amino acid conform-

ers identi�es those ab initio variables that best describe amino acids' features. As

revealed by the success in describing amino acid similarities144,142 and peptide-host

complexes,146,168,170,166,167 the multipole moments su�ciently account for the charac-

teristic features of the side chains and their interactions.

Here are explained several of the ideas proposed as an answer to the question

about the theoretical study of bioactivity in molecules. The methods and strategies

discussed are used to study small peptides but can also be applied to other sets of

molecules. The present discussion is an attempt to clarify the overall strategies and
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Figure 10.12: Diagram of the quantum study of MHC-P complexes using the elec-
trostatic potential.

methods involved in the FIDIC's QM approach to molecular design of a synthetic anti-

malarial vaccine, and hence is a complementary work to the original papers published

over the past ten years.

Here are illustrated the strengths of original analysis for identifying biochemical

propensities in peptides and proteins. These studies reveal that, in order to get

insightful information about the relative physicochemical properties in biomolecules,

there is no need to compute unphysical descriptors, as used in some QSAR studies.

Instead, physical variables su�ciently account for similarities and functionality of the

amino acids, as shown by a PCA survey of over 1065 amino acids models.

With the increasing computational power available to laboratories around the

world, QM methods are getting involved in more and more studies of biomolecular

systems. The main message outlined in this chapter is not focused on how to get

the wave function of a biomolecule, but rather how to extract relevant biochemical

information out of it.
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Figure 10.13: Diagram of the quantum study of MHC-P complexes using a wave-
function analysis.



Chapter 11

Ab Initio Study of the Structure, Energy and Polarizability of

Amino Acids

11.1 Introduction

The α-helix is a very common secondary structure pattern found in proteins. The

formation of α-helices (AHs) involves cooperative self-assembling between adjacent

amino acids in the sequence, and hence they have an important role in protein fold-

ing. In order to understand and predict protein structure formation, α-helices have

been the objective of numerous experimental and theoretical studies. In addition,

these naturally-structured patterns are of great interest not only for their biologi-

cal relevance, but also from the molecular design perspective. The mechanical and

optimal-packaging properties of AHs have made this a privileged structural pattern

for amino acids sequences.

One of the stabilizing factors in α-helices is the cooperative e�ect of the peptide

bonds thanks to the mutual alignment of the corresponding dipole moments that

are responsible for the total and relatively large dipole moment of the helices (about

20 times that of water for a pentapeptide). While other kinds of helices are also

found naturally, like the polyproline that produces a tighter structure, α-helices are

abundant patterns responsible for tertiary and quaternary structures of proteins.

It is ideal to study the secondary structure in proteins with time-dependent quan-

tum mechanics (TD-QM), but the size of a quantum system grows with the number

of electrons, which limits its use to short peptides of about a hundred atoms with con-

ventional tools. Static computations are possible for equilibrium geometries of small

peptides, and several of its observable properties can be calculated. While most of the

quantum-mechanical studies of peptides have been done in vacuum, the solvent plays a

signi�cant role in the formation and stability of secondary structures. For instance, in

CD and NMR studies the presence of tri�uoroethanol (TFE) as a cosolvent increases

the population of α−helix and β-sheet content in secondary-structure-forming pep-

tides.171 Hence, TFE-NMR studies are used to assess the potential structurability of a

sequence rather than to determine its native conformation under biological conditions.
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In a similar way, QM simulations of small peptides can provide the structurability of

a given sequence and, if the solvent is adequately modelled, QM even can provide

reliable information about denaturation i processes due to pH or temperature changes.

In the present work the structural stability of α-helices upon mutation of the

central amino acid is investigated at a state-of-the-art QM level, including solvent

e�ects and dispersion interactions. A comparative analysis of the relative stability of

a set of α-helices is reported. In addition, a model for the approximate computation

of amino acids polarizability is introduced.

A realistic account of the solvent e�ect on peptides requires the explicit inclusion

of solvent molecules in the simulation, but the number of explicit water molecules

required exceeds by a few orders of magnitude the number of electrons that can be

computed with conventional QM tools. A single hydration shell can demand more

computations than the peptide itself. Hybrid models such as ONIOM still carry some

limitations. For instance, modelling the solvent with MM and the solute with QM

does not provide a good representation of the hydrogen bonds between the solvent

and the peptide, limiting therefore the simulation capabilities.

One way to e�ciently model solvent e�ects in QM is by the use of e�ective mean

�eld models, where the solvent is replaced by a perturbation term in the Hamiltonian

that responds self-consistently to the electronic distribution of the molecule. These

methods are generically called cavity models or solvent reaction �elds, and with them

the solvent is regarded as a dielectric continuum. Hence the surrounding is character-

ized mainly by its dielectric constant and densityii. The calculation is performed by

placing the solute in a cavity within the solvent reaction �eld; the dielectric medium

is polarized by the solute, and this polarization creates a reaction �eld that causes

a perturbation of the solute itself. A very CPU-cost-e�ective model for the solvent

is the polarizable continuum model (PCM) that creates the solute cavity via a set

of overlapping spheres. It was initially proposed by Tomasi and coworkers172,173 and

Pascual-Ahuir and coworkers.174 One of the advantages in using PCM over the explicit

solvent is the very low cost added to standard computations, yet it is very responsive

for electrostatic interactions like dipole-dipole interactions, as those responsible for

iDenaturation is a process in which proteins or nucleic acids lose their tertiary structure and
secondary structure by application of some external stress or compound, such as a strong acid or
base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), or heat.

iiIt is important to recall that, unlike classical mechanics, in QM the dielectric constant does not
provide enough information for a solvent reaction �eld (SRF) model, and additional parameters are
required.
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the stability of α-helices.

Another important factor determining structural stability in proteins is the non-

covalent interactions: hydrogen bonds and van der Waals interactions. The later have

been recently included in several QM methods, mainly as empirically-calibrated terms

added to conventional DFT models. These are weak but long-range interactions that

become relevant when cooperative e�ects emerge in the system, such as side-chain

to main-chain interactions, for instance. Hence these are determining terms to be

included in a QM study of an alpha-helix.

The recent addition of very e�cient PCM solvent models plus the dispersion cor-

rected DFT methods motivated the theoretical level of the present work. This ap-

proach improves substantially the level of theory of previous reports on alpha helices

by Dannenberg's group175 and recent QTAIM studies on α-helices by the author.142,176

11.2 Methods

A preliminary QTAIM analysis performed on an α-helix modeliii revealed details of

the intramolecular hydrogen bond network upon mutation of the central residue.176

In that work, a set of 19 peptide sequences were fully-optimized. The structures

correspond to the α-helix conformation of the polypeptide COH(Ala)6X(Ala)6NH2

were X is any of the amino acids (excluding proline). Polyalanine peptides form

stable α-helices and hence are important models for the study of secondary structure

stability. The e�ect of amino acid substitution at the central position of the peptide

on the hydrogen bond network of the α-helix was assessed, and the strength of the

hydrogen bond network was determined with QTAIM, as found elsewhere.176

These preliminary results lead to some important lessons about QM modelling of

α-helices. First, all the 13-amino acid peptides were a�ected by the selected capping

groups, which have partial charges that induce a bend in the helix axis. In addition,

the inability of the COH capping group to induce α-helical-like hydrogen bonds with

the �rst alanine originated the funnel-like structures that were obtained after the

geometry optimization. These optimized structures are somewhat distant from the

ideal helix initially intended to be studied. The use of these capping groups was

motivated by previous QTAIM results on shorter peptides by Bader and Popelier,158

iiiThe corresponding paper was a collaborative e�ort of di�erent members of the Boyd research
group, including the author. The particular results on the electron density analysis were performed
by S. Lapointe and are not part of the present thesis. The original idea of performing the α-helices
to study the mutations was proposed by the author.
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and Bohórquez et al.142 In order to prevent the bending of the helix axis and speed

up the computations, for the present study the helices include only seven amino acids

in total, and the initial capping group is the acetyl group (C=O)CH3, that mimics

an alanine residue and is able to make hydrogen bonds in a similar way to the rest of

amino acids in the chain. The helix backbone makes two complete turns. In addition,

the solvent e�ects were included via the PCM model with a dielectric constant of

ǫ = 78.3553. In order to include van der Waals e�ects, the fully optimized geometries

were computed using the B97D density functional developed by Grimme et al. that

includes dispersion interactions.177 A D95(d,p) Dunning/Huzinaga full double zeta

basis set was used for all the computations.

11.3 Optimized Structures

The optimized geometries and wave functions of nineteen α-helices of the form acetyl(Ala)3X(Ala)3NH

were obtained, were X represents the genetically-encoded amino acids except proline.

Proline was excluded from the study because it is an iminoacid that disrupts the sec-

ondary structure by forming a covalent bond between the side chain and the backbone.

X=Ala de�nes the reference structure because polyalanine is known to form stable

α-helices. The capping groups studied here have been used before by Dannenberg's

group.175

The optimized geometry of the polyalanine helix was used as the initial geom-

etry for the remaining helices. For all the cases an energy minimum was reached,

with zero imaginary vibrational frequencies. All the molecules keep identical helical

structures, showing minor deviations from the ideal α-helix, mainly at the terminal

residue of the sequence, as it is shown by the Ramachandran plot for the polyalanine

acetyl(Ala)7NH2 in Fig. 11.1a. One hydrogen of the NH2 capping group is not aligned

with the precedent NH in the chain, which puts the last dihedral angle outside the

helical region, while all the remaining dihedral angles are close enough to the ideal

α-helix torsion angles values.

11.4 Energetic Results

To study the e�ect of a single substitution on the stability of a secondary structure

(like the α-helix) a reference structure must be carefully de�ned. In the present

study the reference structure is the polyalanine peptide acetyl(Ala)7NH2. The energy
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Figure 11.1: Optimized geometry of acetyl(Ala)7NH2 at the PCM-
B97D/D95(d,p) level of theory. The red zone within the negative
quadrant indicates the region of observed α-helices.

(a) Ramachandran plot for the opti-
mized polyalanine α-helix.

(b) Molecular and sec-
ondary structures.

of mutation can be estimated from the component amino acids, which can be well

de�ned via an imaginary condensation polymerization involving the required amino

acids that yield the polypeptide plus one water molecule per peptide bond formed.175

The capping groups are also incorporated into the energetic calculation. Hence the

reaction for the formation of the acetyl(Ala)7NH2 would be

7Ala+NH3 + CH3COOH → acetyl(Ala)7NH2 + 8H2O

The relative energy of the peptide with respect to the components would be

Erel = Epeptide + 8Ewater − 7EAla − Eammonia − Eacetic acid (11.1)

The energy di�erences upon the mutation of the central Ala by another amino acid

in the reference peptide can be evaluated in many di�erent ways. This substitution

can be estimated by evaluating the hypothetical reaction

acetyl(Ala)7NH2 +X → acetyl(Ala)3X(Ala)3NH2 + Ala
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where X is another amino acid. This equation provides a measure of the energetic

e�ect of the amino acid mutation for each structure. The relative energy of the amino

acid mutation would be

Erel = EpolyAla + Ex − Epeptide − EAla (11.2)

Another method consists of the hypothetical condensation reactions for the for-

mation of the helices

6Ala+X +NH3 + CH3COOH → acetyl(Ala)3X(Ala)3NH2 + 8H2O

The corresponding relative energy is

Erel = Epeptide + 8Ewater − 6EAla − EX − Eammonia − Eacetic acid (11.3)

Both methods yield estimates of the formation energy and give an estimate of helix

destabilization by computing the di�erences in energy for helix formation by conden-

sation and substitution. The interest here is to use the polyalanine as a reference

system, and hence the reported data in Table 11.1 corresponds to the values obtained

with Eq. 11.2. The energies used here are the values with zero-point vibrational

corrections (ZPVCs).

The data clearly reveals the e�ect the substitution has on the stability of the refer-

ence polyalanine helix. Eight substitutions have higher energies than the polyalanine,

and ten have lower energies. Substitution by aspartic acid and glutamic acid desta-

bilizes the helix the most, in almost equal amounts (2.98 kcal/mol). On the other

hand, arginine (-7.51 kcal/mol) stabilizes the system by almost twice as much as as-

paragine (-3.87 kcal/mol), which has the second largest e�ect. The great �exibility

of arginine may explain its relative stability. These results are consistent with similar

computations reported by Wieczorek and Dannenberg for Gly, Leu, Val, Phe, and Ser

at ONIOM B3LYP/D95(d,p) /AM1 level.175

An almost perfect linear correlation between the residue energies and peptide ener-

gies is found, Epeptide = −1615.638059+Eresidue, with correlation of R2 = 1.0−1.11×
10−9. This correlation is intriguing due to the fact that the energies correspond to

independently optimized geometries, whose �nal geometries do not necessarily match.

This result might be used as a reference relationship for developing approximate pep-

tide models. At this point is unclear if it holds for larger peptide chains. But it clearly
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Table 11.1: Energy and dipole moment for the residues and peptides. ∆∆E is
the relative energy with respect to the polyalanine alpha helix. (Eq.
11.2).

Amino acid EX
a Epeptide

a ∆∆Ea ∆∆E b µX
c µpeptide

c

Ala -323.551093 -1939.187802 0.0000 0.00 3.06 37.74
Arg -606.122633 -2221.747371 -0.0120 -7.51 9.37 41.12
Asn -492.177634 -2107.808168 -0.0062 -3.87 7.75 39.52
Asp -512.044739 -2127.686191 0.0047 2.98 6.77 38.67
Cys -721.739240 -2337.372429 -0.0035 -2.21 8.73 39.52
Gln -531.438793 -2147.078457 0.0030 1.85 4.21 33.80
Glu -551.313268 -2166.954719 0.0047 2.98 5.31 38.05
Gly -284.284046 -1899.915116 -0.0056 -3.54 1.64 37.47
His -548.418423 -2164.052573 -0.0026 -1.61 8.58 37.50
Ile -441.350339 -2056.988030 0.0010 0.62 3.01 38.97
Leu -441.351431 -2056.987940 -0.0002 -0.13 2.82 38.51
Lys -496.660155 -2112.299642 0.0028 1.74 3.86 36.61
Met -800.268715 -2415.900935 -0.0045 -2.82 2.93 40.76
Phe -554.384064 -2170.021836 0.0011 0.67 2.29 37.60
Ser -398.742996 -2014.376595 -0.0031 -1.95 8.28 38.47
Thr -438.012535 -2053.644413 -0.0048 -3.03 5.34 40.36
Trp -685.859771 -2301.491789 -0.0047 -2.94 7.96 39.47
Tyr -629.586367 -2245.225782 0.0027 1.70 2.10 38.02
Val -402.084433 -2017.723980 0.0028 1.78 2.98 37.86

aau
bkcal/mol
cD

indicates that a partition of the energy into fragment contributions can be as accurate

as other methods.

One remarkable result from the optimized geometries is the resilient prevalence

of the dipole moment of the α-helix upon the central amino acid substitution. An

average value of 38.42 D (σ = 1.42 D) for the nineteen helices indicates the great

stability of aligned peptide bonds, with a minor perturbation done caused most of

side chains.

The overall e�ect of the central amino acid substitution seems more like a small

perturbation to the helix, rather than a real structural change. The speci�c �exibility

and polarizability of the side chain seem to be the main factors determining the rela-

tive stability of the �nal geometry. Because all the peptides can reach an equilibrium
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Figure 11.2: Comparison of the energetic e�ects of the mutation Ala→X for the
4th residue in acetyl(Ala)7NH2 (11.2).

energy in α-helical conformation, they are possible conformations that might be al-

tered due to intermolecular side chain interactions rather than due to intramolecular

ones.

11.5 Polarizability of the Amino Acids

In previous works by the author, it has been shown how the polarizability of the

amino acid side chains is responsible of several of their distinctive biochemical fea-

tures.142,144,179 The polarizability is an extensive property of the system, and several

works explore its explicit dependence with atomic volumes.77,87,180,181 The polariz-

ability depends on the electron density, particularly on the valence electrons. Certain

simple relationships for atoms, in terms of the atomic number, have been known for

a long time, as recently reviewed by Schwerdtfeger.182

In principle, the precise computation of polarizability requires a higher level of

theory than that employed here, (eg, a quantum dynamical approach). Nevertheless,

the static polarization can be written as

α =
~
2e2

me

∑

n 6=0

fn0
∆E2

n0

(11.4)

where the fn0 are the oscillator strengths which can be determined from the intensities

of the electronic transitions of the molecule and the energies∆En0 from the frequencies

where these transitions occur. This expression can be approximated by replacing the

numerator by the number of electrons Ne, according to the Kuhn-Thomas sum rule.
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Table 11.2: Polarizability of the amino acids in au.
Amino acid αa αb

Ala 58.98 52.78
Arg 119.02 117.11
Asn 68.32 75.41
Asp 71.96 70.05
Cys 67.46 76.88
Gln 87.06 88.94
Glu 84.83 85.08
Gly 44.41 39.93
His 98.98 101.61
Ile 99.10 92.08
Leu 98.57 93.06
Lys 101.06 102.62
Met 95.63 105.06
Phe 108.12 123.90
Ser 58.30 56.62
Thr 75.01 70.41
Trp 153.39 156.94
Tyr 125.60 130.60
Val 86.11 77.85

aFrom Eq. 11.5
bFrom Ref.178

By a convenient anzatz, the denominator can be approximated by ∆E2
n0 = ∆Egap∆Ē,

where ∆Egap = ELUMO − EHOMO and ∆Ē is an averaged value representing the

occupied eigenvalues ǫi, as obtained from the numerical wavefunction solutioniv.

Hence the following polarizability expression can be easily evaluated

α ∼= ~
2e2

me

Ne

∆Egap∆Ē
(11.5)

The computed values for the amino acids are listed in Table 11.2 together with

the recent computations by Swart et al., which were obtained at the time-dependent

DFT (TD-DFT) level with the LB94 XC-potential in the QZ4P basis, and hence are

among the most precise available.178 The respective values appear in Table 11.2 and

iv

Ēoccupied = 2

N−1∑

i=0

ǫi
N !− i!

where N is the number of occupied states.
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Figure 11.3: Theoretical polarizability of the amino acids.

are also plotted in Fig 11.3.

It must be noticed that Swart et al. used NH2CHRCOH as a model for the

amino acids, while the model used for the computations of the previous section is

NH2CHRCOOH. This discrepancy seems to have little e�ect on the polarizability,

because the linear relationship between the two set of values has a surprisingly high

correlation (R2 = 0.95), considering the simplicity of the method. The average dif-

ference between the two sets of values is 6% (σ = 4%). This result con�rms the

validity of the approximation here introduced with Eq. 11.5, which competes with

direct reaction �eld (DRF) approaches, i.e. approximate values of the polarizability

from atomic polarizabilities.

The key element in the equation for the polarization is the involvement of the

energy ground levels through the term ∆Ē. Since many response functions in QM

can be written in the form fn0/∆E
2
n0, it will be interesting to test the same approxi-

mation for other observables. Additional improvements may arise from more accurate

values of the term ∆E2
n0 and a benchmarking of the method might validate its wide

applicability.
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11.6 Conclusions

A variety of properties of the alpha helices can be computed ab initio, as has been

shown here. The structural results suggest that the level of theory selected for the

present work is adequate for the study of oligopeptides of about 100 atoms. The

optimized geometries were obtained in relatively short times (∼ 50 h CPU time).v The

e�ect of the polarizability in the stability of the α-helices has been addressed by using

the PCM method for the solvent and the dispersion terms in the Hamiltonian. The

great stability of the helix upon mutation of the central amino acid explains somehow

why this pattern is commonly found in proteins. A relative scale of stability centred

at the polyalanine structure was determined. These values can be used as input

parameters for statistically-assessed helical propensities of individual amino acids.

Due to the cost-e�ective approach, it can be used for the study and classi�cation of

de novo mutations in protein-related molecules.

In addition, a novel idea for the ab initio computation of the molecular polar-

izability of amino acids was tested. The agreement with higher levels of theory is

encouraging, especially considering that no �tting parameters were required. From

the equation11.5 and the Koopmans' theorem an inverse relationship between the

ionization energy and the polarizability is found

α ∼= ~
2e2

me

Ne

I∆Ē
(11.6)

This result questions the validity of approximate expressions according to which α ∝
1/I2.77

The small discrepancies between the computed results with Eq. 11.5 and the ones

reported in the literature may be attributed to structural di�erences. More research

is required to validate a wide applicability of Eq. 11.5. For the purposes of the amino

acids study, this method provide a unique and cost-e�ective approach to one of the

fundamental properties of molecules.

vBut still far from the CPU times required for being practical in routinely drug design.
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Final Remarks and Conclusions

In the present thesis a theoretical tool for the study of the electronic regions in

molecules has been explored. It is based on the single particle momentum which

is the momentum associated with the Weizsäcker kinetic energy density. A quan-

tum statistical theorem linking both quantities has been demonstrated (Chapter 3).

A more direct relationship can be established by assuming that the classical kinetic

energy expression is also valid for the local quantum momentum.

This variable condenses two of the important theorems about the electron density:

Kato's cusp condition and the tail exponential behaviour. Both theorems impose

physical limits to the speed an electron can achieve inside an atom. Kato's theorem

gives an upper limit for the electron speed, which is equal to Z in atomic units. This

limit is indeed used to estimate relativistic corrections in chemistry. Here such an idea

is further explored via the local momentum to determine the extent of the relativistic

e�ects beyond the core electrons by a lower estimate of relativistic electron-mass

corrections (Chapter 4). With this method, a non heuristic assessment of e�ective

core potentials can be addressed.

The second theorem indicates that the kinetic energy of an electron in the outer-

most shell of an atom is the �rst ionization energy. This fact suggests an alternative

way to approximate the ionization energies, as is shown in Chapter 3. The local mo-

mentum also describes the electronic shell structure of atoms, whose boundaries are

given by the topological criterion here introduced. The electronic population of each

shell agrees with the Aufbau principle and the results compete with other electron

localization methods. The behaviour of the local momentum in the tail region sug-

gests a con�nement region for the atom, which can be uniquely de�ned in terms of

a physical observable, the ionization energy (Chapter 5). A rather simple relation-

ship between the atomic radius and the ionization energy emerges that ful�ls all the

expected periodic trends, including the lanthanoid-actinoid contraction -a pure rela-

tivistic e�ect. The new atomic radius is well de�ned for every atom in the periodic

table, unlike most of the conventional atomic radii de�nitions. In addition, the new
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atomic radius holds linear correlations (R > 0.9) with �ve di�erent theoretical atomic

radii simultaneously, suggesting its universal validity. The experimentally-determined

atomic radius is perhaps a �rst step for the standardization of a variable that is non-

observable in the �rst place, but from whose de�nition depend important observable

quantities, like the atomic polarization.

For molecular systems, the single-particle momentum reveals its practical utility:

it depicts an ab initio 3D representation of core electrons and bonding interactions

(Chapters 6-7). The only input required is the electron density of the molecule, which

makes the method representation independent, in principle. The local momentum

is directly related to the topology of the electron density, as it is shown here in dif-

ferent instances. Through the current density operator, a general formulation of the

zero �ux condition is obtained which is central for the quantum theory of atoms in

molecules. In addition, a new set of topological properties of the electron density

at the stationary points is found. When the single-particle momentum is used as a

tool for the identi�cation of electronic regions in atoms and molecules it is called LED

(localized-electrons detector). LED has been explored for numerous molecules, reveal-

ing a complementary view that guides the chemical analysis in an objective way. For

instance, while aromaticity is not de�ned, several of the topological properties of the

aromatic systems are readily plotted by LED: aromatic bonds have large ellipticities

and usually form rings perpendicular to the ellipse main axis, as was discussed for

benzene and ethene in Chapters 6 to 8. Hence LED identi�es aromatic groups with

non obvious orientation, as in the case of organometallic compounds, for example.

In the present work conclusive evidence of the stabilizing role of hydrogen-hydrogen

interactions at the bay region of phenanthrene has been presented. The arguments

given in Chapter 8 add to the discussion a mechanism under which these two atoms

decrease their exposed areas, therefore lowering the steric e�ect, ultimately making

this molecule more stable than its extended isomer. The atomic contributions to

the Weizsäcker energy give an estimate of the stability due to the hydrogen atoms.

The value found coincides with other computations on the same system by di�erent

procedures. The mechanism that makes the bay hydrogens of phenanthrene to be

close together is described in terms of their electronic polarizations. The central part

of such a mechanism involves the polarizability as accounted for by the kinetic energy

associated with the single-particle momentum.

LED also works even where QTAIM is expected to experience di�culties. In

particular, metallic solids have almost constant electron density in the conduction
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region, and hence the concept of a critical points analysis becomes somehow less

relevant for those regions, while a continuous variable is more suitable for their study.

LED shows in a colourful way the presence of conduction regions in metallic and

semiconductor systems, while also revealing the atomic shells of the involved atoms.

Hence LED can be used to explore surface e�ects of bulk electrons, materials defects,

substitutions, etc, by providing a 3D picture of the systems that agrees with the

chemistry and the physics of the system.

The results discussed here indicate that the relevance of the Weizsäcker term in

multielectronic systems is well beyond a mere �gradient correction�, as has been histor-

ically considered in DFT. With the present results, the most signi�cant contribution

achieved here is that of revealing the polarization regions in molecules, given its rel-

evance for noncovalent and dispersion interactions. The electronic polarizability is

responsible for the similarity of amino acids, as reviewed in Chapter 9. Hence the

present work might be relevant for the study of macromolecules of biological interest,

like proteins. The study of similarity measures (Chapter 9) and the simulation of

alpha helices (Chapter 11) are steps in that direction. Along with the reexamination

of the quantum similarity measure emerges a notion that chemically-relevant infor-

mation can be derived from physical observables, without the necessity of ill de�ned

variables. The simulation of the alpha helices provides information about the stability

of these polypeptides via a substitution of the central amino acid. A state-of-the-art

quantum mechanical simulation allows the optimization of these geometries. The

solvent is simulated with a continuous-polarizable medium and the Hamiltonian in-

cludes dispersion interactions. One result that indicates the successful simulation is

the resilient persistence of the dipole moment held by all the helices, despite the size

or composition of the central residue. The results also indicate that the longer side

chains are able to further stabilize the helical structure, a fact attributable mainly

to electrostatic interactions between the side chain and the dipole of the main chain.

The obtained relative stability agrees with the experimentally observed trends. In ad-

dition, a new method for the ab initio computation of the polarizability in molecules

is introduced (Chapter 11). The results are comparable to those obtained with higher

levels of theory.

From the results discussed here, a general conclusion may be drawn: polarizability

is perhaps, after electron-pairing, the second most important mechanism involved in

bonding formation, and the local momentum is a useful theoretical tool for studying

both bonding mechanisms.
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12.1 Outlook

Some of the potential applications of the analysis introduced here have been already

explored but others still can be further developed. For instance, a combination of ap-

proximate theoretical models can use LED for the automatic assessment of bonding

interactions in de novo obtained experimentally-derived electron densities. Most of

the identi�cation of molecular groups in protein crystals is done by hand, and LED

o�ers a new possibility to assess that information automatically, because, thanks to

Kato's cusp condition, it locates in the 3D space the nuclear coordinates automati-

cally. In addition, strong covalent bonds can be detected with LED, which can reduce

substantially the e�ort to decipher X-ray electron densities. Another possibility is the

further exploration of the polarization regions in molecules, as a way to understand its

role in bonding formation. Polarization interactions are increasingly involved in di�er-

ent areas of theoretical chemistry like DFT, conceptual chemistry and newer classical

mechanics methods. LED o�ers a unique opportunity to explore and validate these

di�erent approaches. All of these discussions can be centrally addressed with the local

momentum formulation described in this thesis, mainly because, instead of compet-

ing with these other developments, the present work supports and complements them.

Perhaps where the applications of the present developments are less understood is in

the area of time-dependent quantum mechanics. The idea of involving a momentum

quantity that is directly related to the electron regions may suggest that the sim-

ulations of structural changes induced by photons may be formulated in a simpler

way than the conventional radiation-matter formalism. The implementation of LED

with time dependent variables may be useful for the study of chromophores and other

light harvesting systems. For now, the essential developments discussed in the present

thesis guarantee that any further exploration involving the local momentum variable

may start with solid theoretical grounds, which were scarce and dispersed before the

present research was initiated.
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