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ABSTRACT 

 

A theoretical treatment is presented of a plasmonic interaction at an interface between 
a semiconductor and a dielectric, as opposed to the more traditional configuration 
whereby a metal/dielectric interface is investigated. Our work is to show that 
structures using semiconductors instead of metal to excite surface plasmon can 
support not only terahertz frequencies plasmons but also optical frequency (around 
1015Hz) plasmons. 
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CHAPTER 1   

INTRODUCTION 
 

 

 

In this chapter, the overview of the thesis is presented. Also the motivation of the 

design and objective are included. 

1.1 Surface Plasmon Polaritons (SPPs) 
 

1.1.1 History of SPPs 

Surface Plasmon Polaritons (SPPs) are electromagnetic surface waves propagating 

between a dielectric and a conductor, evanescently confined in the perpendicular 

direction. They arise via the coupling of the electromagnetic fields to oscillations of 

the metal’s electron plasma. SPPs can propagate along the surface of a metal until 

energy is lost either via absorption in the metal or radiation into free-space.  

 

The history of the study of SPPs can be traced back to 1902, while Robert W. Wood 

first observed the abnormal intensity drops in spectra produced when visible light 

reflects at metallic gratings in the visible domain [1]. Thirty nine years later, 

U .J .Fano explained this phenomenon by connecting it with the excitation of 

electromagnetic field on the metal/air interface [2] in 1941. In 1957, Rufus Ritchie 

recorded loss phenomena associated with interactions taking place at metallic surfaces 

via the diffraction of electron beams at thin metallic foils [3] which is seen as the first 

theoretical description of surface Plasmon. And in 1968, it linked with the original 

work on diffraction gratings in the optical domain [4]. At the same time, two groups 

of researcher Kretschmann and Raether [5] and Otto [6] successfully excited SPPs on 
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metal surface with visible light using prism coupler and a unified description of all 

these phenomena in the form SPPs was established.  

 

Since then the research in this field has been so firmly grounded in the visible region 

of the spectrum, that several rediscoveries in the microwave and the terahertz domain 

took place at the turn of the 21st century, closing the circle with the original work from 

100 years earlier. [7] 

 

1.1.2 Applications 
Surface Plasmon Polariton (SPPs) propagate along the metal/dielectric interface, 

evanescently confined in the perpendicular direction. The wavelength of SPPs is very 

small which makes it possible to confine the energy in a nanometer scale. This 

character of SPPs is attracting increasing attention as a potential type of information 

carrier for a highly integrated photonic device to be developed in the futre. Also, this 

promising technology might close the size gap between electronic and optical devices. 

Current research has predicted and proved that SPPs has broad future prospects in 

many application areas include nanophotonics technology, data storage, microscopy, 

solar cell and biosensor etc. We are going to give several examples of SPPs 

application and their advantages in the following paragraphs. 

 

• SPPs Integrated Circuit 

The capacity of electrical devices is limited as an information carrier which 

can not fully content the explosive increasing requirement of speed and 

capacity in the information processing system. As we all know, optical devices 

have the characteristics of high speed and wide bandwidth compared to 

electronic devices and the photon computer is expected to be the next 

generation computer. Yet the size of the optical devices is around micro-meter 

which is close to the wavelength of light and the losses increases with the 

deduction of the size. This fact makes the interconnection between optical 
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devices (micrometer scale) and electronic devices (nanometer scale) 

impossible. SPPs give us a perfect solution which takes advantage of both 

high speed and compact size. Surface Plasmon Polaritons built a bridge 

between optical and electronic devices for us. 

 

• SPPs Biosensor 

SPPs are evanescently bound to the metal surface and they are sensitive to 

dielectric perturbations at the surface. Consequently, metals can be used to 

sense the binding of molecules to the surface in a technique called Surface 

Plasmon Polariton sensing. [8] Attenuated Total Reflection, also known as the 

Kretschmann geometry, is the most common method for SPP. The Figure 1.1 

shows the main idea of SPPs biosensor’s design. Majority of SPPs sensors are 

based on the interrogation of the plasmonic wave propagation at 

metal/dielectric interface.  

 
Figure 1.1 The main idea of SPPs biosensor’s design 

 

Fig 1.2 shows the structure of SPPs affinity biosensors which can incorporate 

biorecognition elements that are able to interact with a selected analyte. 
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Analyte molecules in solution bind to the molecular recognition elements 

increasing the refractive index (∆n) on the metal superstrate that changes a 

propagation constant of surface plasmons. And Fig 1.3 shows three SPP 

sensors implementation: (a) Prism couplers, (b) grating couplers and (c) 

waveguide couplers. The main idea is the same but the way of exciting SPPs is 

different. We will introduce the excitation of SPPs in the Chapter 2 later. 

 
      Figure 1.2 SPPs affinity biosensors[14] 

 

 
Figure 1.3 SPPs sensors implementation (a) Prism couplers, (b) grating couplers and 

(c) waveguide couplers[14] 
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• Nanolithography and Subwavelength Imaging 

Surface plasmons propagation can be controlled by metal nanostructures in 

nanometer scale. This achieves the function of the shrink of the optical 

wavelength and recaptures evanescent waves that are lost in conventional 

imaging, which is the origin of the diffraction limit. Therefore, it is natural to 

apply nanostructure metals to nanolithography and subwavelength imaging. 

There is great research potential for using metal nanostructures to achieve 

extreme subwavelength focusing [9]. 

 

1.1.3 Motivation and Objective  

Owing to the unique properties of Surface Plasmon Polaritons(SPPs) in diverse 

electronic and photonic applications, research on SPPs wave is promising and 

attracting vast numbers of researchers including both physicist and engineers. At the 

same time, semiconductors — especially Silicon — is widely used in electronic 

devices. As we mentioned, the use of SPPs is a potential solution to close the gap of 

the size between electronic and optical devices. Thus the SPPs excited at 

semiconductor/dielectric interface attracted our attention. Most of the effort has been 

concentrated on investigating SPPs in the visible domain on metal surfaces; however, 

not only metals support electron plasma oscillations, semiconductors can also support 

SPPs with a resulting plasma frequency typically in the terahertz domain. Our original 

objective is to find out the properties of SPPs based on semiconductor/dielectric 

structure when the semiconductor is heavily doped. 
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1.2 Contributions 
 

By re-deriving the dispersion relation of SPPs based on the classical method using 

Maxwell equations as the core, we find out a new solution which is only possible to 

exist in the semiconductor/dielectric structure while two other solutions of dispersion 

relation remain the same with the metal/dielectric structure. This is due to the fact the 

permittivity of semiconductor is larger than metal’s. We will explain this 

mathematically in the Chapter 3. The new solution is like standing waves with group 

velocity equal to zero in theory. The physical meaning of it is not clear until we do the 

experiment to observe but first the mathematical approach is needed. Thus we focused 

on the Silicon/Silicon Dioxide structure and fulfilled the requirement of exciting the 

SPPs in optical frequency by heavily doped Silicon. To calculate the frequency of the 

well know solution and the new solution of SPPs, the properties of Silicon under an 

extremely high free carrier density are studied including effective mass of electrons, 

permittivity and relaxation time. We proved that the wavelength of the new solution 

of SPPs can be excited by the commonly used optical communication wavelengths 

1.55 µm which may lead to an application in a communication system or data transfer. 
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1.3 Organization of the Thesis 
 

The Thesis is organized as follows. Chapter 2 describes some of the general theories 

underlying SPPs, including the physical and mathematical explanation to SPPs. The 

derivation of SPPs dispersion relation use Maxwell equations on metal/dielectric 

interface. After that, the excitation of SPPs using different structures is explained. 

Chapter 3 introduced the features of SPPs at semiconductor/dielectric interface and 

then the derivation of SPPs dispersion relation is given, which shows the process of 

finding the new solution. At the end of Chapter 3 the optical properties of heavily 

doped Silicon are discussed. In Chapter 4, the results calculated from the data taken 

from Chapter 3 will be shown and discussed. And an error analysis for the design will 

be given. Finally, Chapter 5 concludes the whole thesis and make some suggestions 

for future work. 
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CHAPTER 2  

BACKGROUND THEORY 
 

 

 

2.1 Definition of Surface Plasmon Polaritons 
 

At the beginning, we will introduce the meaning of Plasmon and Polariton separately 

for a better understanding of those terms. The Plasmon is a quasiparticle resulting 

from the quantization of plasma oscillations just as photons is quantization of light. 

Polariton refers to a wave of polarizations, positive and negative charges in a row. 

Plasmons couple with photons to create another quasiparticle called plasma Polariton. 

Thus Surface Plasmons are those Plasmons that are confined to surfaces and that 

interact strongly with light resulting in a Polariton. It can be roughly defined as the 

combination of a particle and its influence on the local environment. 
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2.2 SPPs at Metal/Dielectric Interface 
 

2.2.1 Maxwell’s Equations 

As mentioned above, Surface Plasmon Polaritons are electromagnetic surface waves 

that arise via the coupling of the electromagnetic fields (optical wave) to oscillations 

of the conductor’s electron plasma. And a neutral gas of charged particles is called 

plasma. Metals and doped semiconductors can be treated as plasmas because they 

contain equal numbers of fixed positive ions and free electrons. The free electrons 

experience no restoring forces when they interact with electromagnetic waves. [10]  

    

As a starting point, the following which comes from the well-known Maxwell’s 

equations of macroscopic electromagnetism,  

∇ ∙ 𝑫 =  𝜌𝑒𝑥𝑡                          (2.1 a) 

∇ ∙ 𝑩 =  0                            (2.1 b) 

∇ × 𝑬 =  −𝜕𝑩
𝜕𝑡

                         (2.1 c) 

∇ × 𝑯 =  𝐽𝑒𝑥𝑡 + 𝜕𝑫
𝜕𝑡

.                    (2.1 a) 

The relationship among D (the dielectric displacement), E (the electric field), H (the 

magnetic field), B (the magnetic induction or magnetic flux density) and the external 

charge and current densities 𝜌𝑒𝑥𝑡 and 𝐽𝑒𝑥𝑡 is thus presented. Furthermore, they can 

be written in the form: 

𝑫 = 𝜀0𝑬 + 𝑷                         (2.2 a) 

𝑯 =  1
𝜇0
𝑩 −𝑴,                       (2.2 b) 

where 𝜀0 and 𝜇0are the electric permittivity and Magnetic permeability of vacuum 

respectively. P describes the electric dipole moment. The process uses the Maxwell 

equation for the derivations of dielectric function and SPPs dispersion relation will be 

discussed in section 2.2.3. 
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2.2.2 Drude Model 

We consider only the effects of the free electrons and apply the Drude model for the 

free-electron gas. As a starting point, one can apply the Drude model for the 

free-electron gas and write a simple equation of motion for an electron of the plasma 

sea in metal subjected to an external electric field E:  

                         𝒙̈ + 𝑚𝛾𝒙̇ = −𝑒𝑬.                        (2.3) 

Here x is the displacement of plasma caused by the electric field while 𝑚 and 𝑒 are 

the charge and effective mass of the free electrons. Assuming harmonic time 

dependence 𝑬(𝑡)  =  𝐸0𝑒−𝑖𝜔𝑡 of the driving electric field, we can find a particular 

solution of this equation describing the oscillation of the electron as 𝒙(𝑡) = 𝑥0𝑒−𝑖𝜔𝑡. 

The complex amplitude 𝑥0 incorporates any phase shifts between driving field and 

response via: 

𝒙(𝑡) = 𝑒
𝑚0(𝜔2+𝑖𝛾𝜔)

𝑬(𝑡).                    (2.4) 

The displaced electrons contribute to the macroscopic polarization𝑷 = −𝑁𝑒𝒙, where 

N is the free carrier density. Thus insert 𝑷 = −𝑁𝑒𝒙 into equation 2.2: 

𝑷 = − 𝑁𝑒2

𝑚0(𝜔2+𝑖𝛾𝜔)
𝑬.                       (2.5) 

Insertion of this expression for P into equation (2.2a) yields: 

𝑫 = 𝜀0 �1 − 𝜔𝑝
2

𝜔2+𝑖𝛾𝜔
�𝑬,                    (2.6) 

where 𝜔𝑝 = �𝑁𝑒2

𝜀0𝑚∗  is the plasma frequency of the free electron gas where N is 

the electron density, e is the charge of the electron, m* is the effective mass of the 

electron and ε0 is the permittivity of free-space. Therefore we get the dielectric 

function for an ideal free-electron metal: 

              𝜀(𝜔) = 1 − 𝜔𝑝
2

𝜔2+𝑖𝛾𝜔
.                         (2.7) 

For a more general case, residual polarization due to the positive background of the 

ion cores can be described by adding the term 𝑃∞ =  𝜀0(𝜀∞ − 1)𝑬 to equation (2.2 a). 

And we can rewrite the dielectric function of free electron gas: 
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              𝜀(𝜔) = 𝜀∞ − 𝜔𝑝
2

𝜔2+𝑖𝛾𝜔
,                        (2.8) 

where 𝜀∞ is the dielectric constant at infinite frequency that usually equals to 1 for 

metal. 

2.2.3 Derivation of the Dispersion Relation of SPPs 

Dispersion relation describes the relation between wave vector and frequency which 

is used to study the physical properties of electromagnetic waves. To get the 

dispersion relation of SPPs, Maxwell’s equations (2.1) is solved. 

 

Apply Maxwell’s equations (2.1) to the flat interface between a conductor and a 

dielectric with the condition that there be no no external charge and current densities. 

The curl equations (2.1c, 2.1d) can be combined to yield: 

∇ × ∇ × 𝑬 = −𝜇0
𝜕2𝐷
𝜕𝑡2

.                      (2.9) 

Using the mathematical identities ∇ × ∇ × 𝑬 ≡ ∇(∇ ∙ 𝑬) − ∇2𝑬  and∇ ∙ (𝜀𝑬) ≡ 𝑬 ∙

∇ε + ε∇ ∙ 𝐄, (2.9) can be rewritten as  

∇ �− 1
𝜀
𝑬 ∙ ∇𝜀� − ∇2𝑬 = −𝜇0𝜀0𝜀

𝜕2𝑬
𝜕𝑡2

.          (2.10) 

For negligible variation of the dielectric constant 𝜀 = 𝜀(𝑟) over distances on the 

order of one optical wavelength, (2.10) simplifies to the central equation of 

electromagnetic wave theory 

∇2𝑬 − 𝜀
𝑐2

𝜕2𝑬
𝜕𝑡2

= 0.                        (2.11) 

To cast (2.11) in a form suitable for the description of confined propagating waves, 

we proceed in two steps. First, we assume in all generality a harmonic time 

dependence 𝑬(𝒓, 𝑡)  =  𝑬(𝒓)𝑒−𝑖𝜔𝑡  of the electric field. Inserted into (2.11), this 

yields 

∇2𝑬 +  𝑘02𝜀𝑬 = 0,                       (2.12) 

where 𝑘0 = 𝜔
𝑐
 is the wave vector of the propagating wave in vacuum. Equation (2.12) 

is known as the Helmholtz equation. [11] 
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Next, we are going to define the propagation geometry. We consider a 

one-dimensional problem for simplicity, thus 𝜀  depends only on one spatial 

coordinate. Assume the waves propagate along the x-direction of a Cartesian 

coordinate system, and show no spatial variation in the perpendicular, in-plane 

y-direction (see Fig. 2.1); therefore 𝜀 =  𝜀(𝑧). Applied to electromagnetic surface 

problems, the plane z = 0 coincides with the interface sustaining the propagating 

waves, which can now be described as 𝑬(𝑥,𝑦, 𝑧) = 𝑬(𝑧)𝑒𝑖𝛽𝑥. The complex parameter 

𝛽 = 𝑘𝑥 is called the propagation constant of the traveling waves and corresponds to 

the component of the wave vector in the direction of propagation. Inserting this 

expression into (2.12) yields the desired form of the wave equation 

𝜕2𝑬(𝑧)
𝜕𝑧2

+ (𝑘02𝜀 − 𝛽2)𝑬 = 0.                 (2.13) 

For an electromagnetic wave, a similar equation exists for the magnetic field H. 

 

 
Figure 2.1 Definition of a planar waveguide geometry. The waves propagate along 
the x-direction in a Cartesian coordinate system. [7] 

 

Equation (2.13) is the starting point for the general analysis of guided electromagnetic 

modes in waveguides, and an extended discussion of its properties and applications 

can be found in [12] and similar treatments of photonics and optoelectronics. In order 

to use the wave equation for determining the spatial field profile and dispersion of 

propagating waves, we now need to find explicit expressions for the different field 
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components of E and H. This can be achieved in a straightforward way using the curl 

equations (2.1c, 2.1d). 

 

For harmonic time dependence ( 𝜕
𝜕𝑡

= −𝑖𝜔), we arrive at the following set of coupled 

equations 
𝜕𝐸𝑧
𝜕𝑦

− 𝜕𝐸𝑦
𝜕𝑧

= 𝑖𝜔𝜇0𝐻𝑥               (2.14a) 

𝜕𝐸𝑥
𝜕𝑧

− 𝜕𝐸𝑧
𝜕𝑥

= 𝑖𝜔𝜇0𝐻𝑦               (2.14b) 

𝜕𝐸𝑦
𝜕𝑥

− 𝜕𝐸𝑥
𝜕𝑦

= 𝑖𝜔𝜇0𝐻𝑧               (2.14c) 

𝜕𝐻𝑧
𝜕𝑦

− 𝜕𝐻𝑦
𝜕𝑧

= −𝑖𝜔𝜀0𝜀𝐸𝑥             (2.14d) 

𝜕𝐻𝑥
𝜕𝑧

− 𝜕𝐻𝑧
𝜕𝑥

= −𝑖𝜔𝜀0𝜀𝐸𝑦             (2.14e) 

𝜕𝐻𝑦
𝜕𝑥

− 𝜕𝐻𝑦
𝜕𝑧

= −𝑖𝜔𝜀0𝜀𝐸𝑧.            (2.14f) 

For propagation along the x-direction ( 𝜕
𝜕𝑥

= 𝑖𝛽) and homogeneity in the y-direction 

( 𝜕
𝜕𝑦

= 0), this system of equation simplifies to 

𝜕𝐸𝑦
𝜕𝑧

= −𝑖𝜔𝜇0𝐻𝑥                    (2.15a) 

 𝜕𝐸𝑥
𝜕𝑧

− 𝑖𝛽𝐸𝑧 = 𝑖𝜔𝜇0𝐻𝑦                 (2.15b) 

𝑖𝛽𝐸𝑦 = 𝑖𝜔𝜇0𝐻𝑧                 (2.15c) 

𝜕𝐻𝑦
𝜕𝑧

= 𝑖𝜔𝜀0𝜀𝐸𝑥                  (2.15d) 

𝜕𝐻𝑥
𝜕𝑧

− 𝑖𝛽𝐻𝑧 = −𝑖𝜔𝜀0𝜀𝐸𝑦               (2.15e) 

𝑖𝛽𝐻𝑦 = −𝑖𝜔𝜀0𝜀𝐸𝑧.              (2.15f) 

This system allows two sets of self-consistent solutions with different polarization 

properties of the propagating waves. They are the transverse magnetic (TM or p) 

modes, where only the field components Ex, Ez and Hy are nonzero and transverse 

electric (TE or s) modes, with only Hx, Hz and Ey being nonzero. 
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For TM modes, the system of governing equations (2.15) reduces to  

𝐸𝑥 = −𝑖 1
𝜔𝜀0𝜀

𝜕𝐻𝑦
𝜕𝑧

                       (2.16a) 

𝐸𝑧 = −𝑖 1
𝜔𝜀0𝜀

𝜕𝐻𝑦
𝜕𝑧

                       (2.16b) 

and the wave equation for TM modes is 

𝜕2𝐻𝑦
𝜕𝑧2

+ (𝑘02𝜀 − 𝛽2)𝐻𝑦 = 0.               (2.16c) 

For TE modes the corresponding equation set is 

𝐻𝑥 = 𝑖 1
𝜔𝜇0

𝜕𝐸𝑦
𝜕𝑧

                        (2.17a) 

𝐻𝑧 = 𝛽
𝜔𝜇0

𝐸𝑦                          (2.17b) 

with the TE wave equation 

𝜕2𝐸𝑦
𝜕𝑧2

+ (𝑘02𝜀 − 𝛽2)𝐸𝑦 = 0.               (2.17c) 

Now with equations above, we can derive the description of surface plasmon 

polaritons on a single, flat interface (Fig. 2.2) between a dielectric, non-absorbing half 

space (z > 0) with positive real dielectric constant ε2 and an adjacent conducting half 

space (z < 0) described via a dielectric function Re[ε1] < 0. As shown by the Drude 

model for metals before, this condition is fulfilled at frequencies below the bulk 

plasmon frequency ωp. We are looking for propagating wave solutions has its 

maximum at the surface z =0, with evanescent decay in the perpendicular  

z-direction. Fig 2.3 shows the surface wave of TM mode.  

 

 
Figure 2.2 Geometry for SPP propagation at a single interface between a metal and a 
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dielectric. [7] 

 
 

 
Figure 2.3 The charges and the electromagnetic field of SPPs propagating on a surface 
in the x direction are shown schematically. The exponential dependence of the field Ez 
is seen on the right. Hy shows the magnetic field in the y direction of this p-polarized 
wave. [13] 

 
First, we derive the SPPs dispersion relation for TM mode. Using the equations (2.15) 

in both half spaces yields 

𝐻𝑦(𝑧) = 𝐴2𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧                    (2.18a) 

𝐸𝑥(𝑧) = 𝑖𝐴2
1

𝜔𝜀0𝜀2
𝑘2𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧             (2.18b) 

𝐸𝑧(𝑧) = −𝐴2
𝛽

𝜔𝜀0𝜀2
𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧              (2.18c) 

for z > 0 and  

𝐻𝑦(𝑧) = 𝐴1𝑒𝑖𝛽𝑥𝑒𝑘1𝑧                    (2.19a) 

𝐸𝑥(𝑧) = −𝑖𝐴1
1

𝜔𝜀0𝜀1
𝑘1𝑒𝑖𝛽𝑥𝑒𝑘1𝑧            (2.19b) 

𝐸𝑧(𝑧) = −𝐴1
𝛽

𝜔𝜀0𝜀1
𝑒𝑖𝛽𝑥𝑒𝑘1𝑧               (2.19c) 

for z < 0. ki = kz,i (i=1,2) is the component of the wave vector perpendicular to the 

interface in the two media. Its reciprocal value, 1/|kz| defines the evanescent decay 

length of the fields perpendicular to the interface, which quantifies the confinement of 

the wave. Continuity of Hy and εiEz at the interface requires that A1=A2 and 
𝑘2
𝑘1

= − 𝜀2
𝜀1

.                            (2.20) 

Since the wavevector parallel to the interface is conserved the following relations hold 

for the wavevector components 

𝛽2 + 𝑘12 = 𝜀1𝑘02                        (2.21a) 
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𝛽2 + 𝑘22 = 𝜀2𝑘02.                       (2.21b) 

Here k0 = ω/c where ω is the frequency of SPPs and c is the speed of light in vacuum. 

From equation (2.20), confinement to the surface demands Re[ε1] < 0 if ε2 > 0 - the 

surface waves exist only at interfaces between materials with opposite signs of the 

real part of their dielectric permittivities, i.e. between a conductor and an insulator.  

 

Combining equation (2.20) and (2.21) we arrive at the central result of this section, 

the dispersion relation of SPPs propagating at the interface between the two half 

spaces 

𝛽 = 𝑘0�
𝜀1𝜀2
𝜀1+𝜀2

.                        (2.22) 

This expression is valid for both real and complex ε1.  

 

Now we briefly analyze the possibility of TE surface modes. Using equations (2.17), 

the respective expressions for the field components are 

𝐸𝑦(𝑧) = 𝐴2𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧                    (2.23a) 

𝐻𝑥(𝑧) = −𝑖𝐴2
1

𝜔𝜇0
𝑘2𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧            (2.23b) 

𝐻𝑧(𝑧) = 𝐴2
𝛽

𝜔𝜇0
𝑒𝑖𝛽𝑥𝑒−𝑘2𝑧                 (2.23c) 

for z > 0 and  

𝐸𝑦(𝑧) = 𝐴1𝑒𝑖𝛽𝑥𝑒𝑘1𝑧                     (2.24a) 

𝐻𝑥(𝑧) = 𝑖𝐴1
1

𝜔𝜇0
𝑘1𝑒𝑖𝛽𝑥𝑒𝑘1𝑧              (2.24b) 

𝐻𝑧(𝑧) = 𝐴1
𝛽

𝜔𝜇0
𝑒𝑖𝛽𝑥𝑒𝑘1𝑧                 (2.24c) 

for z < 0. Continuity of Ey and Hx at the interface leads to the condition 

𝐴1(𝑘1 + 𝑘2) = 0.                       (2.25) 

Since confinement to the surface requires Re[k1] > 0 and Re[k2] > 0, this condition is 

only fulfilled when A1 = 0, so that also A2 = A1 = 0. Thus, no surface modes exist for 

TE polarization. Surface plasmon polaritons only exist for TM polarization. 
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Now we examine the properties of SPPs from the dispersion relation. Fig. 2.4 shows 

plot of equation (2.22) - dispersion relation of SPP for an air (ε2 =1) /metal interface .  

 

 
Figure 2.4 Dispersion relation of SPP at metal/air interface. 

 

In this plot, the frequency ω is normalized to the plasma frequency ωp. Due to the 

bound nature, the SPP excitations correspond to the part of the dispersion curves lying 

to the right of the respective light lines of air. Thus, special phase-matching 

techniques such as grating or prism coupling are required[7] for their excitation via 

three-dimensional beams, which will be discussed later. 

 

From Fig 2.4, for small wave vectors corresponding to low (mid-infrared or lower) 

frequencies, the SPP propagation constant is close to k0 at the light line, and the 

waves extend over many wavelengths into the dielectric space. While in the regime of 

large wave vector β, the frequency of the SPPs approaches the characteristic surface 

plasmon frequency 

𝜔𝑠𝑝 = 𝜔𝑝

�1+𝜀2
 .                        (2.26) 
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This result can be shown by inserting the free-electron dielectric function (2.7) into 

dispersion relation (2.22), β approaches infinity need ε1 = - ε2. Assume an ideal 

conductor without damping and ignore γ and we will get the equation (2.26). For the 

case of air (ε2 = 1)/metal structure 𝜔𝑠𝑝 = 𝜔𝑝

√2
. When wave vector β goes to infinity as 

the frequency approaches ωsp, the group velocity 𝑣𝑔 = 𝜕𝜔
𝜕𝑘

 approaches 0. The mode 

thus acquires electrostatic character, and is known as the surface plasmon. 
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2.3 Excitation of SPPs 
 

As we mentioned, the application of photons to excite SPPs meets the difficulty that 

the dispersion relation always lies right from the light line (β > ω/c). At a given 

photon energy hω the wave vector hω/c has to be increased by a ∆𝑘𝑥 value in order 

to "transform" the photons into SPPs. [13] We are going to introduce two methods 

which are the most common techniques for SPPs excitation.  

 

2.3.1 Prism Coupling 

Surface plasmon polaritons on a flat metal/dielectric interface cannot be excited 

directly by light beams since β > k, where k is the wave vector of light on the 

dielectric side of the interface. Therefore, the projection along the interface of the 

momentum kx = ksinθ of photons impinging under an angle θ to the surface normal is 

always smaller than the SPPs propagation constant β, even at grazing incidence, 

prohibiting phase-matching.  

 

However, phase-matching to SPPs can be achieved in a three-layer system consisting 

of a thin metal film sandwiched between two insulators of different dielectric 

constants. Light is reflected at a metal surface covered with a dielectric medium (ε0>1) 

usually in the form of a prism (Fig 2.5). Its momentum becomes ((ℎ𝜔/𝑐)�𝜀0) instead 

of ℎ𝜔/𝑐 and its projection on the surface (see Fig 2.6) becomes 

𝑘𝑥 = �𝜀0
𝜔
𝑐
𝑠𝑖𝑛𝜃0.                       (2.27) 
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Figure 2.5 Experimental arrangements Left: Otto configuration. Right: Kretschmann 
configuration. L: laser, D: detector, M: metal layer.[14] 

 
 

 
Figure 2.6 The Prism coupling method: Dispersion relation of SPPS for a 

prism/metal/air system 𝛆𝟐 = 𝟏, c: light line in vacuum, 𝐜/�𝛆𝟎: light line in the 

medium ε0. Since the light line 𝐜/�𝛆𝟎 lies to the right of the dispersion relation up to 

a certain kx, light can excite SPPs of frequencies ω below the crossing point P on the 
metal/air side. The SPPs on the interface metal/prism cannot be excited, since their 

dispersion relation lies to the right of 𝐜/�𝛆𝟎 because ε0>1. [13] 
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The dispersion relation (2.22) for SPPs propagating on the interface 𝜀2/𝜀1 (air/metal) 

can thus be satisfied between the lines c and 𝑐/�𝜀0. Fig 2.6. 

 

In Fig 2.5, two structures are shown: in the Otto[6] configuration, the metal surface is 

separated by a thin air gap. Total internal reflection takes place at the prism/air 

interface, exciting SPPs via tunneling to the air/metal interface; Another geometry is 

the Kretschmann method[5], a thin metal film is evaporated on top of a glass prism. 

Photons from a beam impinging from the glass side at an angle greater than the 

critical angle of total internal reflection tunnel through the metal film and excite SPPs 

at the metal/air interface. 

 

2.3.2 Grating Coupling 

An alternative way to excite SPPs is the use of a grating coupler. Here, the increase of 

the wavevector necessary to match the SPPs momentum is achieved by adding a 

reciprocal lattice vector of the grating to the free-space wavevector. This requires in 

principle that the metal surface is structured with the right periodicity ‘a’ over and 

extended spatial region. For the simple one-dimensional grating of grooves shown in 

Fig 2.7, phase matching takes place whenever the condition 

𝛽 = 𝑘𝑠𝑖𝑛𝜃 ± 𝑣 2𝜋
𝑎

                       (2.28) 

is fulfilled, where 𝑣 = (1,2,3 … ). 
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Figure 2.7 Phase-matching of light to SPPs using a grating.[7] 

 

The reverse process can also take place: SPPs propagating along a surface modulated 

with a grating can couple to light and thus radiate. As an example of SPPs excitation 

and their decoupling via gratings, Fig 2.8 shows a scanning electron microscopy 

(SEM) image of a flat metal film patterned with two arrays of sub-wavelength holes 

[15]. In this study, the small array on the right was used for the excitation of SPPs via 

a normally-incident beam, while the larger array on the left decoupled the propagating 

SPPs to light radiation. Fig 2.9 is the near-field optical images of the excitation and 

detection region as well as of the propagating SPPs. 

 

 
Figure 2.8 SEM image of two microhole arrays with period 760 nm and hole diameter 
250 nm separated by 30 µm used for sourcing (right array) and probing (left array) of 
SPPs. The inset shows a close-up of individual holes. [15] 

 



23 
 

 
Figure 2.9 (a) Near-field optical image of the pattern presented in Fig. 2.8 when the 
illuminating laser is focused on the small array on the right with the electric field 
polarised in the x-direction. (b) Detail of image (a) shows propagating SPPs and the 
edge of the left decoupling array. A wavelength λ = 800 nm was chosen so as to 
coincide with the airside transmission peak in Fig. 3.7.[15]  
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2.4 Summary 
In this Chapter, the definition of Surface plasmons polaritons is given. We started 

from the Maxwell wave equations to describe the fundamentals of surface plasmon 

polaritons at flat interfaces between metal and dielectric. Also, the excitation of SPPs 

using prism coupler and grating coupler are introduced.  
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CHAPTER 3   

SEMICONDUCTOR SPPs 
 

 

 

Surface plasmon polaritons have attracted huge attention from researchers and is a 

subject of intense research in recent years. Most of the effort has been concentrated on 

investigating SPPs in the visible and near-IR domain on metal surfaces. However, not 

only metals support electron plasma oscillations; semiconductors can also support 

SPPs, free carriers being excited either thermally or by doping, with a resulting 

plasma frequency typically in the terahertz(THz) domain.[16] The main idea is to treat 

semiconductors as metals in the conductor/dielectric structure (Fig. 3.1), SPPs excited 

on the semiconductor/dielectric interface have been proved possible by many 

researchers in THz domain based on the theory discussed before in Chapter 2.  

 

 
Figure 3.1 Semiconductor/Dielectric Structure to excite SPP 
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3.1 Features of SPPs at Semiconductor/Dielectric 

Interface 
 

3.1.1 Lower Frequency of SPPs 

As we mentioned, the frequency of SPPs excited on the metal/dielectric structure is in 

the optical and near infrared regime. Current research of SPPs excited at the 

semiconductor/dielectric interface is in the terahertz(THz) domain. Since 

semiconductor contains equal numbers of fixed positive ions and free electrons just 

like metal, thus the basic theories used include Maxwell's equations, Drude model, 

boundary and confinement conditions in deriving the wave function. Dispersion 

relation of SPPs at metal/dielectric interface is also available for 

semiconductor/dielectric structure.  

 

Recall the SPPs frequency equation (2.26) 

𝜔𝑠𝑝 = 𝜔𝑝

�1+𝜀2
, 

where plasma frequency 𝜔𝑝 = � 𝑁𝑒2

𝜀0𝜀𝑠𝑚∗ , 𝜀𝑠  is the permittivity of undoped 

semiconductor. The free electron density N in metal is in the scale of 1028 m-3 while 

for doped semiconductor is around 1021 m-3. Thus the plasma frequency of metal and 

semiconductor can be calculated from the two equations above. For metal the plasma 

frequency and SPPs frequency is around 1015Hz which is in the 1012Hz(THz) regime 

at the same time for semiconductors. This explained why the frequency 

semiconductor/dielectric SPPs is in the THz domain. 

 

3.1.2 Active Control of Semiconductor based SPPs   

A decisive advantage of semiconductors over metals is that their surface charge 

density can be modified by, for example chemical doping, and optical, thermal or 

electrical injection of free carriers. And thus plasma frequencies and SPPs properties 
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can be modulated within the THz frequency range. Also other properties of 

semiconductor (e.g. permittivity and effective mass) will change with the free carrier 

density and affect the SPPs frequency which we will be discussed later. Various 

research conducted based on the controllable feature of semiconductor has been 

published and is attracting intense attention.[16]-[18] 
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3.2 Theoretical Treatment and the New Unique 
Solution 
 

In this section, we will present the theoretical treatment of SPPs excited on 

semiconductor/dielectric interface, as opposed to the more traditional metal/dielectric 

structure. We will also present a new solution, which is only possible to exist at the 

semiconductor/dielectric interface.[19]  

 

At the beginning, revise the definition of plasma which is a neutral gas of charged 

particles. Metals and doped semiconductors can be treated as plasmas because they 

contain equal numbers of fixed positive ions and free electrons. [10] Our objective is 

to obtain dispersion characteristics of a general structure (conductor with 

plasma/dielectric) and study possible new effects that may exist there.  

 

The original idea coming from Dr.Cada's previous work.[19] He's approach, which is 

more of an electromagnetic-field treatment type, makes it thus possible to include in 

the analysis other than metallic media. From the derivation for a wave at an interface 

between two media, one dielectric and one with a concentration of free electrons(do 

not has to be metal), he got the following equation: 

(𝜀𝑠−𝜀𝑑)𝜔6 + ��𝜀𝑑
𝜀𝑠
− 2�𝜔𝑝2 + �𝜀𝑑

𝜀𝑠
− 𝜀𝑠

𝜀𝑑
� 𝛽2𝑐2�𝜔4 +

                        1
𝜀𝑠
�𝜔𝑝2 + 2 𝜀𝑠

𝜀𝑑
𝛽2𝑐2�𝜔𝑝2𝜔2 − 1

𝜀𝑠𝜀𝑑
𝜔𝑝4𝛽2𝑐2 = 0 .         (3.1) 

𝜀𝑠 is the permittivity of the layer with concentration of electrons(semiconductor). 𝜀𝑑  

is the permittivity of dielectric. Equation (3.1) will lead us to three solutions of 

Surface Plasmons including two typical solutions and one novel solution exist only in 

semiconductor Surface Plasmons. 

 

In this thesis, I do the derivation from classical method. The same process as shown 
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before was used to derive the SPPs at the metal/dielectric interface. Starting from the 

Maxwell's equation, we can get equations (2.20) and (2.21)  

                           
𝑘2
𝑘1

= − 𝜀2
𝜀1

               

                           𝛽2 + 𝑘12 = 𝜀1𝑘02   

                           𝛽2 + 𝑘22 = 𝜀2𝑘02. 

From the boundary condition k1 = k2 and 𝑘0 = 𝜔
𝑐
, yield the following equation  

(𝜀1 − 𝜀2)[(𝜀1 + 𝜀2)𝛽2 − 𝜀1𝜀2(𝜔
𝑐

)2]=0.           (3.2) 

We can see that there are two parts of equation (3.2): (𝜀1 − 𝜀2) and [(𝜀1 + 𝜀2)𝛽2 −

𝜀1𝜀2(𝜔
𝑐

)2]. Solve equation (3.2), let the second part equals zero 

(𝜀1 + 𝜀2)𝛽2 − 𝜀1𝜀2(𝜔
𝑐

)2 = 0.                  (3.3) 

Equation (3.3) yields the SPPs dispersion relation (2.22). In our case, ε1 and ε2 are the 

permittivity of semiconductor and dielectric.  

 

Now we look into the Drude model and plasma frequency 𝜔𝑝  

  𝜔𝑝 = � 𝑁𝑒2

𝜀0𝜀𝑠𝑚∗.                            (3.4) 

εs represents the undoped permittivity of semiconductor which is equal to 1 for metal. 

Recall the Drude model 𝜀(𝜔) = 𝜀∞(1 − 𝜔𝑝
2

𝜔2) without damping γ. Here for doped 

semiconductors, the infinite frequency permittivity 𝜀∞ becomes 𝜀𝑠. The value of εs 

is known from the refractive index n of the undoped semiconductor: εs = n2. Thus 

permittivity of semiconductor ε1 now represented by Drude model for doped 

semiconductor 

𝜀1(𝜔) = 𝜀𝑠(1 − 𝜔𝑝
2

𝜔2 ).                      (3.5) 

Represent permittivity of dielectric by 𝜀𝑑 and taking equation (3.5) into (3.3) yields 

𝜀𝑠𝜀𝑑𝜔4 − �(𝜀𝑠+𝜀𝑑)𝛽2𝑐2 + 𝜀𝑠𝜀𝑑𝜔𝑝2�𝜔2 + 𝛽2𝑐2𝜀𝑠𝜔𝑝2 = 0.         (3.6)                

Solving equation (3.7), yields two solutions ω1 and ω2 
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𝜔1,2
2 = 𝜔𝑝

2

2
+ 𝜀𝑠+𝜀𝑑

2𝜀𝑠𝜀𝑑
𝛽2𝑐2 ± 1

𝜀𝑠
�𝜀𝑠2𝜔𝑝

4

4
+ 𝜀𝑑−𝜀𝑠

2𝜀𝑑
𝜀𝑠𝜔𝑝2𝛽2𝑐2 + (𝜀𝑠+𝜀𝑑)2

4𝜀𝑑
2 𝛽4𝑐4. (3.7) 

In the classical derivation, (𝜀1 − 𝜀2)  is ignored from equation (3.2) since the 

permittivity of metal is always smaller than the permittivity of dielectric. Take the 

Drude model (3.5) into (𝜀1 − 𝜀2) = 0. Giving us 

𝜀𝑠(1 − 𝜔𝑝
2

𝜔2) − 𝜀𝑑 = 0.                 (3.8)                

Finally yields                           

𝜔3
2 =  𝜀𝑠𝜔𝑝

2

𝜀𝑠−𝜀𝑑
.                             (3.9) 

We can see that the new solution ω3 for SPPs requires εs> εd, which explains why it 

cannot appear in the metal.  

 

If we combine equation (3.7) and (3.9) by multiplying them to get the general 

equation for SPPs excited at a solid-state material plasma/dielectric interface we are 

looking for. It will give us equation (3.1) thus my result agreed well with Dr.Cada's 

work from the classical derivation. But the derivation in classical method is more 

easier and clearer to see the process and why the new solution is ignored. 

 

Fig 3.2 below shows the two classical solutions ω1 and ω2 for the plasma frequency 

ωp = 15eV. As it's supposed to, the plasmon's curve asymptotically approaches the 

value 𝜔𝑝/√2 when wavevector in x direction β approaches infinity. The straight line 

represents light in the air, and the upper branch when ω > ωp indicate the range that 

metal is transparent. We can see that Fig 3.2 is exactly the same with Fig 2.4 and 

indicate that equation (3.7) is applicable for the SPPs at metal/dielectric interface, 

obviously. 
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Figure 3.2  Classical dispersion curve for a surface plasmon at metal/air interface 
draws from equation (3.7). The straight line which is the light line also shown for 
reference. 

 

Now we add the new solution ω3 into the Fig 3.2. Fig 3.3 shows all the solutions 

including the new one for an Si/SiO2 interface assuming an operating wavelength of 

1.55µm (frequency, ω, is in eV, and the longitudinal propagation constant, β, is in 

1/m).  
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Figure 3.3 Dispersion characteristics of semiconductor/dielectric interface. New 
solution (solid line) and light (dash line) in dielectric are also shown. 

 
We can see from Fig 3.3 that the new solution represents a "wave" with a zero group 

velocity but with any possible phase velocity. It crosses the light line, which indicates 

an existence of a new plasmonic-type wave.[19] The physical interpretation is not 

fully understood but it can be described like a standing wave which has the same 

characteristic in group and phase velocity.   

 

Now we want to add damping and observe the effect of it on the new solution ω3. Add 

damping factor γ into equation (3.5), yielding 

𝜀1(𝜔) = 𝜀𝑠(1 − 𝜔𝑝
2

𝜔2+𝑖𝜔𝛾).                   (3.10) 

Taking equation (3.10) into (𝜀1 − 𝜀2) = 0, (3.9) becomes 

𝜔3 = − 𝑖𝛾
2

± �−𝛾2

4
+ 𝜀𝑠𝜔𝑝

2

𝜀𝑠−𝜀𝑑
.                (3.11) 
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Eliminate the imaginary and negative part of frequency. Equation (3.11) yields 

𝜔3
2 =  𝜀𝑠𝜔𝑝

2

𝜀𝑠−𝜀𝑑
− 𝛾2

4
.                        (3.12) 

From equation (3.12) we can see that the loss caused by damping reduces 𝜔3
2 by 𝛾

2

4
 

compared to equation (3.9). The damping frequency γ which is equal to 1/τ here τ is 

the relaxation time. Losses from damping  is ignored in most cases of metal because 

the condition ωτ >>1 is satisfied. While in a typical semiconductor, with τ ~ 10-13s at 

room temperature [10], it is safe to make the approximation ωτ >>1 at frequencies in 

the near-infrared. But we are looking into the heavily doped Silicon which has a free 

carrier concentration close to metal, and the relaxation time will be affected. We will 

discuss it in the following chapter. 
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3.3 Design and Data Selection  
 

In this section, we are going to study the new solution of SPPs at 

semiconductor/dielectric interface numerically. We are also going to design a system 

to fulfill certain requirements. As we mentioned, the use of SPPs is considered to be a 

very promising way to close the gap between optical and electronic devices which is 

caused by the different size. We want the system to be comparable with electronic 

devices and also to work in the optical communication frequency range. We choose 

1.55µm as the operating wavelength of the system because this is one of the three 

communication windows commonly used.  

 

Choosing a proper material is crucial for the desired functionalities. From the 

previous derivation result equation (3.9) and (3.12), we can see that the new solution 

is related to plasma frequency 𝜔𝑝 = � 𝑁𝑒2

𝜀0𝜀𝑠𝑚∗ and damping constant γ. As mentioned 

before, SPPs investigated at semiconductor/dielectric interface is in THz because it 

has a lower carrier density than metal. To excite SPPs in the optical frequency range, 

we have to use heavily doped semiconductors, and studies and data on the optical 

properties of this kind of material under heavily doped condition has to be mature. 

Also, the comparability between optical and electronic devices must be considered. 

Silicon come to mind. Silicon as a widely used material in current electronic and 

optical industry is less expensive than other material that could be used,  is 

electronically comparable with circuits and has optical compatibility with fiber. It also 

takes lower losses than other materials. Due to the fabrication process of a two thin 

layer system in nano-scale, SiO2 appears to be a good choice as the dielectric layer. 

Thus we are now investigating a heavily doped Silicon/SiO2 structure with an 

operating wavelength equal to 1.55µm.  
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3.3.1 Properties of Heavily Doped Silicon 

The doping technique for example ion implantation and laser annealing [26] makes it 

possible to dope Si with electrically active impurities to the level which significantly 

exceeds the thermal equilibrium solid solubility. The maximum peak carrier 

concentration is reported as 5*1021 cm-3, which is close to the carrier density in metals. 

To do the numerical investigation of the new solution, the effect of heavily doping on 

Silicon to the properties of Silicon includes the effective mass and relaxation time will 

be studied.  

 

3.3.2 Effective mass 

Optical properties of free electrons in doped semiconductors have been investigated 

by many researchers[20], because they provide information concerning the 

conduction band. The pioneering work of Spitzer and Fan [21] indicated that the 

electron effective mass(m*) can be determined by measuring the dielectric function. 

Since then, free electron absorption [22] and plasma reflectivity [23-25] experiments 

have been used to determine m* and also to evaluate the doping homogeneity of 

semiconductor crystals. 

 

The experimental data of free carrier effective mass for extremely heavily doped 

n-type silicon is measured in the infrared optical range (0.8 to 2.6µm) by Miyao et al. 

[27] and Howarth and Gilbert[28]. The theoretical approaches used by other  

researchers agreed to a large extent with the experiment data.  

 

The heavy doping of impurities ( ≥ 1021 cm-3) without macroscopically extended 

defects is realized by high dose ion implantation and laser annealing.[27][28] Miyao 

provided two methods to measure the effective mass. First the values of m* were 

determined from the relationship [21]  

( 1
𝜆𝑚𝑖𝑛

)2 = 𝑒2

𝜋𝑐2(𝜀𝑠−1)𝑚∗ 𝑁                   (3.13) 
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where 𝜀𝑠 is the dielectric constant of non-doped crystal, c is the light velocity and e 

is the electron charge. The same effective masses of 0.28m0(m0 is the electron rest 

mass) were obtained in the carrier concentration region below 1021 cm-3. When m* 

exceeds 1021 cm-3, for samples of different doping levels — i.e. 3*1021cm-3 and 

5*1021cm-3 — the effective mass is 0.45 m0 and 0.55m0. m* increases with the 

increase in carrier concentration and the values are the same for different dopants, 

such as P and As used by Miyao's experiment. The second method starts by analyzing 

the transmittance (T) by the two layer model. The free carrier absorption in the 

infrared region is measured and the Drude model is used for analysis. This analysis 

also measured the value of relaxation time, which will be discussed in the next section. 

Fig 3.4 shows the relation between the effective mass and relaxation time with carrier 

concentration. We can see the values of m* derived from two methods (dark and light 

circles) are shown and the same relation between m* and N was obtained by using 

different methods. 

 
Figure 3.4 Carrier concentration dependence of free electron effective mass (m*) and 
carrier relaxation time (τ).[27] 
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The other groups of researchers tried to provide the theoretical approach after a short 

period of time.[29][30] Slaoui and Siffert considered two models based on Durde's 

theory. The first model assumes an almost uniform doped layer, while in the second 

model, the active carrier concentration after implantation and annealing is considered 

to vary exponentially with depth. We chose the second model — the exponentially 

distributed (inhomogeneous doping) model — because there is more available data on 

it, which makes it easier to make comparisons with the approach and results of the 

other papers on the topic. 

In the case of inhomogeneous doping, the following equation describes the 

propagation of the light in the medium, 

𝑑2𝐸𝑦(𝑥)
𝑑𝑥2

+ �𝜔
𝑐
�
2
𝜀∗(𝜔, 𝑥)𝐸𝑦(𝑥) = 0             (3.14) 

where Ey is the intensity of the electric field. Use following expression to express the 

carrier concentration profile after implantation and laser annealing. 

𝑁(𝑥) = 𝑁0 + 𝑁𝑚𝑎𝑥 exp[−𝛼(𝑥 − 𝑑)2]     𝑓𝑜𝑟   𝑥 ≥ 𝑑,      (3.15a) 

𝑁(𝑥) = 𝑁0 + 𝑁𝑚𝑎𝑥 exp[−𝛽(𝑥 − 𝑑)2]     𝑓𝑜𝑟   𝑥 < 𝑑,      (3.15b) 

where N0 is the doping of the substrate, Nmax is the maximum concentration of 

dopants and d the depth location of this maximum from the surface. α and β are 

adjustable parameters. The solution of equation (3.14) for this model yields the 

following value of the reflection coefficient[31]: 

𝑅(𝜔) =
[𝑉(0)−1]2+(𝑐𝑊(0)

𝜔 )2

[𝑉(0)+1]2+(𝑐𝑊(0)
𝜔 )2

.                (3.16) 

We can see that the two unknown quantities V and W at the surface (x=0) decide the 

coefficient R(ω). V and W determined from the differential equations 
𝑑𝑊
𝑑𝑥

+ 𝑊2 − (𝜔
𝑐

)2[𝑉2 − 𝜀𝑟(𝜔, 𝑥)] = 0         (3.17a) 

𝑑𝑉
𝑑𝑥

+ 2𝑊𝑉 − �𝜔
𝑐
�
2
𝜀𝑖(𝜔, 𝑥) = 0.              (3.17b) 

To use the certain numerical resolution method of these equations to calculate V and 

W along the doping profile: one starts from the substrate where the concentration N is 

constant and step by step one progresses towards the surface[31]. 
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Then first assumes a dopant profile characterized by the α, β, d, Nmax parameters and 

supposes a relaxation time τ0 (for N>1021 cm-3) and an effective mass 𝑚𝑒
∗ . Calculate 

the V(0) and W(0) quantities for each wavelength and infer R(ω). Finally revise the 

value of τ0 and 𝑚𝑒
∗  to get the lowest difference between the experimental and 

theoretical spectra for each free carrier density. After the steps above, Fig 3.5 is given 

which include the experimental data from [27] and [28] while the dashed line is the 

theoretical approach calculated from the band structure data [29]. And the light circle 

shows the inhomogeneous profile while the dark circle represents the homogeneous 

profile, here we only look into the inhomogeneous case as mentioned before. 

 

Now we come to another approach, which is considered more accurate and we chose 

as data source for our final numerical calculation. In Miyao's paper, the increase of 

effective mass with the increase of carrier density is explained as the result of 

entrance into a new valley of electrons which have over flown the conventional valley. 

Yet Driel[29] claimed that the filling of new band theory from Miyao is not the main 

factor in the increase of effective mass. He indicated that the electron mass behavior, 

which is observed experimentally, occurs primarily because of the increasing warping 

of the ellipsoidal constant energy surfaces with increasing Fermi energy.[29]  

 

Therefore, we made a theoretical calculation of the high density optical effective mass 

based on the known band structure and empirical pseudopotential method[32]. They 

give effective mass for electrons at both 300K and 3000K in Fig 3.6. We are now only 

interested in the electron mass at room temperature (Fig 3.6 solid curve). In Fig 3.6, 

the measurements of the mass of electrons from Miyao et al. [27] and Howarth and 

Gilbert [28] at room temperature is also shown for comparison. We can see that the 

approaching curve matches the experiment data well, thus we will take the values of 

heavily doped electron effective mass of silicon from the solid curve in Fig 3.6. 
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Figure 3.5 Effective mass of free carriers as a function of carrier concentration. The 
dashed line gives the effective mass of electrons calculated from the band structure 
data [29]; +[28],×[27], ● homogeneous profile, ○ inhomogeneous profile.[30] 

 
Figure 3.6 Density dependence of the electron effective mass of electrons for T = 
300K (solid curve) and T = 3000K (dash-dot curve). The data points indicated are 
those of Miyao et.al.[27] and Howarth and Gilbert[28].[29] 



40 
 

3.3.3 Relaxation Time 

In this section, the relaxation time of heavily doped Silicon will be discussed. As we 

mentioned, in a typical semiconductor, relaxation time τ is around 10-13s at room 

temperature [10]. In the former section, the process of deciding the relation between 

the free carrier density and effective mass also included the analysis of relaxation time 

τ based on the Drude model.[27][30] The relation between relaxation time τ  and free 

carrier density N is shown in Fig 3.7 and Fig 3.8 from Miyao and A.Slaoui. 

 

 
Figure 3.7 Carrier concentration dependence of carrier relaxation time (τ).[27] 
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Figure 3.8 Relaxation time of free carriers as a function of carrier concentration. ×[27], 
● homogeneous profile, ○ inhomogeneous profile.[30] 

 
We can see that the measured value from two groups of researchers agree well. The 

relaxation time decreases with higher carrier concentration and saturates at τ = 

3*10-15s, for Ne > 1021 cm-3. Here the main competing mechanisms are scattering by 

acoustic vibrations of the lattice and scattering by ionized impurity ions. The 

relaxation time is saturated when carrier density exceeds 1021cm-3 and while the first 

process is independent of carrier density N, the second depends on it. Hence, we can 

say that the scattering by acoustic vibration is the primary process in the heavily 

doped n-type Silicon and the value of damping constant γ is easily chosen as 

1/3*10-15. 
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CHAPTER 4  

RESULTS and DISCUSSIONS 
 

 

 

In this chapter, we are going to do the calculation of the value of ω3 excited together 

with the SPPs at Silicon/SiO2 (Fig. 4.1) interface based on section 3.4. We will also 

try to achieve the goal of exciting the new plasmon mode ω3 at operating wavelength 

1.55µm. At the end, an error analysis of the design will be made to deal with errors. 

 

 
Figure 4.1 Structure used to excite SPPs 

 

Recall the equation (3.9) 𝜔3
2 =  𝜀𝑠𝜔𝑝

2

𝜀𝑠−𝜀𝑑
 and (3.12) 𝜔3

2 =  𝜀𝑠𝜔𝑝
2

𝜀𝑠−𝜀𝑑
− 𝛾2

4
 which are the 

formulas to exclude and include the loss from damping correspondingly. First we will 

take a calculation for both equations (3.9) and (3.12) to compare the difference. Now 

we are going to list the values of the constant variables and variables introduced by 

the equations above in the following paragraph. 

 

At room temperature, the permittivity of undoped Silicon εs and Silicon Dioxide (SiO2) 

is equal to 12.094 [33] and 2.3339 [34] at 1.55µm. For plasma frequency 𝜔𝑝 =
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� 𝑁𝑒2

𝜀0𝜀𝑠𝑚∗, e is the charge of the electron equals to 1.62*10-19C, and ε0 = 8.85*10-12 

F·m-1 is the permittivity of free-space. The damping constant γ = 1/τ where τ = 3 * 

10-15s when the free carrier density is larger than 1027m-1 [27][30]. N is the electron 

density which is the first variable; the second variable m* is the value of electron 

effective mass in heavily doped Silicon which is taken from Fig 3.6. 

 

4.1 The Effect of Damping on ω3   
 

To observe how the damping affects ω3, we are going to take a sample value to 

calculate equation (3.9) and (3.12) to see the effect of damping to ω3. Fig 4.2 shows 

the plot of SPPs excited at heavily doped Silicon/SiO2 interface when the electron 

density of doped Silicon is equal to 2.5*1027 m-3, and the value of ω3 is given in the 

graph drawn by Matlab. The effective mass of electrons m* at this carrier density is 

interpolated from the value Fig 3.6, which is equal to 0.517m0. 

 

From Fig 4.2(a) and (b), we can see that the value of ω3 with and without damping is 

equal to 0.8187eV and 0.8260eV. ω3 is reduced 0.0073eV by loss from damping 

which is less than one per cent. Thus we can conclude that damping is not affecting 

the system a lot and can be ignored. This is because the semiconductor with such a 

high level carrier density will have a plasma frequency close to metal. Thus 

𝜔𝑝 ∗ 𝜏 ≫ 1 and damping can be ignored. In order to get a more precise value, we will 

include damping in the following calculations. 
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Figure 4.2 SPPs dispersion characteristics at Si/SiO2 interface with electron density of 
Si equal to 2.5*1027 m-3, (a) ω3 ignore loss from damping equation (3.9) and (b) ω3 
contain loss from damping equation (3.12) 
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4.2 System Design and Analysis of the Result 
 

Again, our goal is to excite ω3 by coupling a light source with 1.55µm wavelength (in 

air) with electron plasma in heavily doped Silicon. In the figures shown below, the 

y-axis which represents frequency is in the unit electron-Volt(eV), while 1.55µm 

wavelength in air corresponds to 0.8 eV. The SPPs dispersion relations and the value 

of ω3 for four sample carrier densities of 1*1027m-3, 1.5*1027m-3, 2*1027m-3 and 

3*10-3m-3 are shown in Fig 4.3 to 4.6.   

 

 
Figure 4.3 SPPs dispersion characteristics at Si/SiO2 interface with electron density of 
Si equal to 1*1027 m-3 and ω3 = 0.5631 eV. 
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Figure 4.4 SPPs dispersion characteristics at Si/SiO2 interface with electron density of 
Si equal to 1.5*1027 m-3 and ω3 = 0.6661 eV. 

 
Figure 4.5 SPPs dispersion characteristics at Si/SiO2 interface with electron density of 
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Si equal to 2*1027 m-3 and ω3 = 0.7476 eV. 

 
Figure 4.6 SPPs dispersion characteristics on Si/SiO2 interface with electron density 
of Si equal to 3*1027 m-3 and ω3 = 0.8803 eV. 

 
From Fig 4.3 to 4.6 and Fig 4.2(b), we can see that the value of ω3 increased with the 

increase of carrier density. ω3 at sample electron densities are shown in Table 1 with 

the corresponding wavelengths.  

 
Table 1 Value of ω3 for sample free electron densities and corresponding wavelength 

Electron density 

N (m-3) 

Effective mass 

m*/m0 

ω3 (eV) Wavelength of ω3 (µm) 

1*1027 0.4287 0.5631 2.202 

1.5*1027 0.4644 0.6661 1.861 

2*1027 0.4942 0.7476 1.658 

2.5*1027 0.5170 0.8187 1.514 

3*1027 0.5379 0.8803 1.408 
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By these sample values of ω3, we can predict that the 1.55µm (0.8 eV) will appear in 

the range between 2*1027m-3 to 3*1027m-3. Inputting the data of free electron densities 

and effective mass of free electrons of Silicon into Minitab yields the regression 

equation between N and m*. The plot of the equation and samples are shown in Fig 

4.7 as follow: 

 
Regression Analysis: m

*
 versus N  

 

The regression equation is 

m* = 0.380 + 0.0542 N 

 

 

8 cases used, 12 cases contain missing values 

 

 

Predictor      Coef   SE Coef      T      P 

Constant   0.380040  0.007662  49.60  0.000 

N          0.054200  0.003612  15.01  0.001 

 

 

S = 0.00571057   R-Sq = 98.7%   R-Sq(adj) = 98.2% 

 

 

Analysis of Variance 

 

Source          DF         SS         MS       F      P 

Regression       1  0.0073441  0.0073441  225.21  0.001 

Residual Error   3  0.0000978  0.0000326 

Total            4  0.0074419 
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Figure 4.7 Plot of the regression equation and sample points 

 

It yields the regression equation 

𝑚∗ = 0.380 + 0.0542 𝑁.                       (4.1) 

We can see that the correlation coefficient R-Sq = 98.7%. In a qualitative sense, R-Sq 

near 1 means a good fit of the data to the regression line and R-Sq near zero means a 

poor fit. Thus equation (4.1) describes the relation between N and m* well in this 

range. It needs to be recognized that the number of samples used to find the regression 

equation is fairly small; thus this approach still needs to be checked by interpolating 

from Fig 3.6.  

 

Taking the regression equation (4.1) into the Matlab program, by setting ω3 = 0.8eV, 

we can get the corresponding free electron density, which is 2.35*1027m-3. By 

interpolating from Fig 3.6, effective mass m* = 0.5080m0 at free carrier density 

2.35*1027m-3 while m* = 0.50737m0 from regression equation (4.1). Taking both 

values into calculation and drawing the dispersion curve, we can get Fig 4.8 below. 

We can see that the ω3 is very close in both cases, which are 0.8009 eV and 0.8004 eV. 
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It is close enough to our goal (0.8eV => 1.55µm) as a reference data for the future 

work. Hence we conclude that at the free electron density of Silicon equal to 

2.35*1027m-3, the ω3 of wavelength 1.55µm can be excited by an impinging light with 

0.8 eV. 

 

 
Figure 4.8 SPPs dispersion relation at free electron density 2.35*1027m-3, ω3 and ω3

' 
are calculated for m* = 0.5080m0 and m* = 0.50737m0 which are interpolated from 
Fig.3.6 and from regression equation (4.1). 
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4.3 Error Analysis 
 

By using a step-by-step approach to get to our final results, errors could have been  

introduced by taking the values of effective mass m* and relaxation time τ. Since the 

value of τ is a constant in the region we are interested in, while the value of m* is 

interpolated from theoretical approach Fig 3.6, we can predict that effective mass is 

the cause of errors.  

 

The errors of effective mass come from two parts, one is the experimental error in the 

published data, and the other one is from the interpolation. The first issue is 

unavoidable because although the error introduced by an experiment is not given in 

the paper, it could easily be 5-10%. For example, in Fig 3.6, the experimental data of 

effective mass from Miyao [27] at electron density  N = 1.03*1021m-3 is 0.316m0, 

while from the theoretical approach, effective mass is equal to 0.434m0. There is a 

difference equal to 0.118m0 between the experimental data and theoretical value, 

which will cause a 0.1023eV difference in ω3. But this is an unusual point even in the 

experimental data; most of the data are fitted well with the theoretical approach and 

within a 5 per cent difference between them.  

 

To test the tolerance of the system to error which may have been induced by effective 

mass, we vary the value of it by 5 per cent and observe the difference introduced by 

this change. The comparison between the original value of ω3 and the value after 

reducing effective mass by 5 per cent are shown in Table 2. 

 
Table 2 Values of original ω3 and ω3' which were calculated from reducing the 
effective mass by 5 per cent 

Electron Density 

N (1027m-3) 

ω3 (eV) ω3' (eV) Percentage of 

Change 

1 0.5631 0.5783 2.70% 
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Electron Density 

N (1027m-3) 

ω3 (eV) ω3' (eV) Percentage of 

Change 

1.5 0.6661 0.6839 2.67% 

2 0.7476 0.7675 1.99% 

2.5 0.8187 0.8403 2.64% 

3 0.8803 0.9035 2.64% 

2.35 0.8004 0.8216 2.65% 

 

 

From table 2 we can tell that the 5 per cent change in effective mass which represents 

the error may introduce 2.6 per cent change in the result of ω3. The system's tolerance 

of error introduced from effective mass is acceptable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

CHAPTER 5  

CONCLUSION and FUTURE WORK 
 

 

 

5.1 Conclusion and Contribution 
 

In the thesis, we investigated the Surface Plasmon Polaritons at heavily doped 

semiconductor/dielectric interface. Compared to the traditional metal/dielectric 

structure, SPPs excited at semiconductor/dielectric interface can be controlled by 

modifying the free carrier density of semiconductor. Current research on Surface 

Plasmons at semiconductors/dielectric interface are in millimeter wavelength 

(terahertz frequencies) and have been believed not to support plasmons at optical 

frequency.  

 

Theoretical and initial numerical studies were conducted on plasmonic interactions at 

a semiconductor/dielectric interface. A derivation was performed for a wave at an 

interface between two media, one dielectric and one with a concentration of free 

electrons. Based on the classical theoretical treatment, we describe the layer with free 

electrons by the Drude-model and found a new solution that does not exist at 

metal/dielectric interfaces.  

 

Silicon/SiO2 has been chosen as our prototype structure for several reasons. By 

investigating the optical properties of heavily doped Silicon, we proved through 

numerical calculations that ω3 can be excited under 1.55µm operating wavelength 

when the electron density equal to 2.35*1027m-3. Error analysis has been taken into 

account to deal with the errors introduced during the step by step approach 
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5.2 Future work 
 

As can be seen from Fig 3.3, the new solution ω3 represents a wave with a zero group 

velocity but with any possible phase velocity. The physical meaning of it is not fully 

understood and an experiment based on our numerical research needs to be conducted. 

Also, light source in visible and near infrared region can excite ω3 and the same step 

has to be taken to approach the certain result. Also, other kinds of semiconductors can 

be used to replace Silicon like AlGaAs etc., which have different optical properties 

and may provide us with other features. Finally, the imaginary part of the dielectric 

equation from the Drude-model needs to be included in the future to include the losses. 

Other models describing plasma may give us a better approach of the dielectric 

function of semiconductors. 
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