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Abstract

Citizen science, which uses volunteer observers in research, is fast becoming standard
practice in ecology. In this thesis, I begin with an essay reviewing the benefits and
limitations of citizen science, and then measure the influence of several forms of
observer error that might bias ornithological citizen science. Using an internet-
based survey, I first found that observer skill level can predict the nature of false-
positive detections, where self-identified experts tend to falsely detect more rare
species and moderately-skilled observers tend to falsely detect more common species.
I also found that overconfidence is widespread among all skill levels, and hence that
observer confidence is an unreliable indication of data quality. Using existing North
American databases, I then found that older observers tend to detect fewer birds
than younger observers – especially if the birds’ peak call frequencies exceed 6 kHz –
and that published long-term population trend estimates and high-pitched (≥ 6 kHz)
peak bird vocalization frequencies are negatively correlated. Taken together, these
data suggest that both hearing loss and other sensory changes might be negatively
biasing long-term trend estimates. In the next chapter, I measured how observer
experience can bias detection data. In solitary observers, I found that detections
tend to increase over the first 5 years of service (e.g. learning effects), after which
they decline consistently (e.g. observer senescence). Conversely, among survey groups
that may be motivated to exceed a previous year’s species count, I found that species
richness tends to increase consistently with consecutive survey years. In this case,
individual sensory deficits may be offset by group participation. Lastly, I re-evaluated
the established assumption that the quality of new volunteers on North American
Breeding Bird Survey routes is increasing over time. I showed that the existing
measure of “quality” ignores variable lengths of observer service, and that, after
accounting for this variable, “quality” is unchanging. Throughout this thesis, I also
show how generalized additive mixed models can address these biases statistically.
My findings offer new opportunities to improve the accuracy and relevance of citizen
science, and by extension, the effectiveness of wildlife conservation and management.
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Chapter 1

Introduction

The use of non-professional volunteers in scientific research (‘citizen science’) has

become an accepted practice for answering broad-scale ecological questions (Bonney

et al. 2009; Dickinson et al. 2010). For very little cost-per-datum, citizen science

combines recreational and educational opportunities with data collection over un-

precedented geographic and time-scales, and, when married with modern internet

systems, can rapidly characterize changing environmental systems to aid in periodic

assessments and adaptive management (Wiersma 2010). For some applications, for

instance monitoring populations of many bird species (Sauer and Link 2011), citizen

science projects (e.g. the North American Breeding Bird Survey; Peterjohn 1994)

provide the principal or even the only dataset that is useful to managers. With

ecosystems undergoing rapid, contemporary changes, often due to manageable an-

thropogenic influences (e.g. Child et al. 2009; Barnosky et al. 2011), it is thus critical

that citizen science, including the accompanying data analysis, be both accurate and

comprehensive in order to avoid inappropriate management decisions (e.g. Thomas

and Martin 1996; McKelvey et al. 2008; Lindenmayer and Likens 2010).

However, with a large and often less-supervised set of observers than conventional

studies, citizen science projects are subject to a poorly-understood set of observer

errors (Dickinson et al. 2010). Some notable, potential sources of observer error in

citizen science projects include flexible survey designs which promote recreational

objectives, potentially at the expense of methodological rigour (Dunn et al. 2005);

the use of a large pool of volunteer participants, often with inconsistent skill levels

that are not accounted for (Fitzpatrick et al. 2009); and the long-term participation

of individuals, who might not collect data consistently from year to year (Kendall

et al. 1996). The effect of these errors on data quality, and how they might be

mitigated, requires further study. Along these lines, because citizen science often

makes use of a wide and changing variety of statistical methods (e.g. Fewster et al.

1
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2000; Kéry and Royle 2010; Sauer and Link 2011), there are regular opportunities to

improve data collection and analysis methods to better account for such errors (e.g.

Kendall et al. 1996; Miller et al. 2011; Sauer and Link 2011).

The purpose of this thesis is to recognize, measure, and develop mitigation strate-

gies for observer errors in citizen science. Here, I analyzed data from citizen science

datasets including the North American Breeding Bird Survey (‘BBS’ Peterjohn 1994),

the Audubon Christmas Bird Count (‘CBC’ Dunn et al. 2005), and the Atlas of the

Breeding Birds of Ontario (‘OBBA’ Bird Studies Canada et al. 2008). I chose to

work with ornithological datasets because at present, avian science has a multi-

century history of citizen participation (Greenwood 2007) and the data available

are some of the most extensive among any form of citizen science (Dickinson et al.

2010). My focus on observer error in ornithological datasets is thus both convenient

and highly-relevant to current ecological management. While my results and conclu-

sions are most relevant to bird surveys, some concepts, for instance the effects of skill

level and of observer senescence on detection probability, easily apply to other fields

which involve multiple observers conducting field counts, including plant ecology

(Fitzpatrick et al. 2009) and herpetology (de Solla et al. 2005).

In Chapter 2, I review the definition and some examples of citizen science, and

present what I believe to be the most effective designs and analysis principles for

citizen science and similar monitoring projects. In doing so, I consider the problems

of imperfect detection, historical and recreational constraints to survey designs, and

variations (and perceived variations) in observer quality. Each of these sources of

error can affect the quality of collected data and any biological conclusions arising. I

then discuss how citizen science surveys can be designed to efficiently achieve specific

research goals, but further argue for the value of long-term monitoring in some cases

– which incorporates deliberate inefficiency – in order to achieve both broader public

participation in ecological science, and to give us future opportunities to make long-

term or serendipitous comparisons. This essay provides a useful context for the rest

of my research.

In Chapter 3, I focus on signal detection by observers identifying birds by ear. I

conduct an experiment designed to determine how observer skill, competitive incen-

tives to identify rare species, and observer confidence affect the likelihood of making
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correct and incorrect detections of various bird species’ songs. I also measured the

reliability of a birdwatcher’s subjective “confidence” when recording detections. This

experiment addresses potential weaknesses of citizen science projects, including in-

volving observers of different skills, promoting competition among participants to

detect rare species, and relying upon arbitrary measures of observer confidence in

order to estimate correct- and incorrect detection probabilities. In this experiment,

I found important skill-dependent differences in the detection of rare and common

species, as well as a widespread overconfidence among observers of all skill levels.

These results are important contributions to the design and analysis of auditory

surveys.

In Chapter 4, I consider the consequences of multi-year service histories among

volunteer observers, in particular, the potential for changes within observers over

time. This concept is a recurring theme for the remaining chapters. In this particular

chapter, I evaluate the colloquially-acknowledged, but nonetheless poorly-researched

notion that older observers are more prone to hearing loss, and hence detect fewer

birds than younger observers. Undetected hearing losses (or other sensory declines)

might indicate an apparent decline in birds over time that does not correspond to real

biological change. It is important to determine the extent of this potential source

of error in modern survey data, since it might erroneously mobilize conservation

resources for bird populations presumed to be declining or at risk of extinction, but

which in fact are healthy (sensu Thomas and Martin 1996).

Using two independent datasets and two novel analysis methods, I found evidence

that older observers detect fewer birds than younger observers, and I also show how

some detection declines occur with increasing frequency in species with increasingly

higher-pitched songs, which is suggestive of hearing loss effects. I then illustrate

how existing population trend estimates might be correlated with the corresponding

species’ call frequencies, suggesting that hearing losses may have already affected

some estimates of avian population trajectories. This research draws attention to a

source of observer error which is not routinely addressed in the published literature,

but which appears to be quite influential. It also uses a relatively new statistical

technique, generalized additive mixed modeling (GAMMs; Wood 2006), and demon-

strates how it can account for longitudinal changes in observer ability such as the
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sensory declines in question.

In Chapter 5, I consider how years-of-service on a given survey route, like observer

age, might be a source of error. Although observer age and years-of-service are

closely-correlated, some observers might serve on multiple survey routes sequentially

– for instance in the North American Breeding Bird Survey (‘BBS’; Peterjohn 1994)

– and so its relationship to detection ability is not necessarily identical. Furthermore,

previous research has shown ‘start-up’ effects occurring in the first years of observer

service (Kendall et al. 1996; Jiguet 2009; Eglington et al. 2010) which warrant future

investigation using GAMM techniques here. Lastly, years-of-service are much more-

easily calculated retrospectively than observer age, and so are a more useful focus

for statistical corrections in the future. Hence, alongside observer age effects, years-

of-service effects are an important, additional source of error worthy of investigation.

Here, I observe what are apparently both start-up learning effects, as well as the later-

term sensory declines already described in Chapter 4. I reveal a more complex picture

of years-of-service effects than what has been conventionally recognized, including a

more prolonged initial learning curve (i.e. 5 years vs. 1 year), and a steep, opposing

pattern of declining expected counts in later years. I also consider data from the

Audubon Christmas Bird Count (‘CBC’; Dunn et al. 2005) and highlight a source

of observer error that has not been previously recognized which may be unique to

surveys conducted by multiple (vs. single) observers – namely an inflation of species

richness with increasing continuous years of service. By enhancing our understanding

of existing correction factors and showing processes that have not previously been

measured in the CBC, this chapter provides useful ways to improve the accuracy of

model inferences.

In my final chapter (Chapter 6), I synthesize insights from Chapters 4 and 5

to provide a new and robust interpretation of a known relationship between an

observer’s year-of-first-service (‘start year’) and his or her expected counts. Previous

research (Sauer et al. 1994) has noted that coefficients accounting for differences

in expected counts among BBS observers tended to increase among observers with

more-recent start years. Some authors have interpreted this pattern to mean that

there has been a systematic increase in BBS birdwatcher quality over time (Sauer

et al. 1994; Dunn et al. 2005). I show how this pattern is more likely driven by
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these coefficients’ underlying relationship to observer years-of-service, where longer-

serving observers (with less-recent start years) tend to be older, and so have lower

expected counts for physiological reasons. Hence, the positive relationship between

expected counts and an observer’s start year does not necessarily reflect a systematic

increase in among-observer ‘quality’ in recent years, but rather a tendency for within-

observer detection ability to decrease over time. This research clarifies the origin of

an otherwise-unusual pattern, and further underscores the importance of accounting

for long-term years-of-service effects when making inferences from long-term, multi-

observer surveys.

This thesis reveals important new patterns of observer error affecting several

citizen-science surveys, including variations due to skill (Chapter 3), age (Chapter

4), and years of service (Chapters 5 and 6). Using case studies in many cases, it also

shows how these errors might bias inferences about real population trajectories, and

so prevent appropriate wildlife management from taking place. Working with some

relatively novel statistical techniques, including GAMMs, this research also provides

useful approaches to accounting for such errors, and has relevance to many other

ecological subdisciplines which also must manage the influences of observer error.

Collectively, this research thus provides important opportunities to realize the full

potential of citizen science.

1.1 Publications Arising from the Thesis and Copyrights

Chapters 3, 4, 5 and 6 are written as manuscripts, including coauthors as needed,

and using “we” pronouns throughout. Details of the author contributions are de-

scribed in the “Student Contribution to Manuscripts in Thesis” form accompanying

this thesis; however I was the principal designer, data collector, data analyst and

writer in each case.

Chapter 3 has already been published as:

Farmer, R. G.; Leonard, M. L. & Horn, A. G. (2012). Observer effects and

avian call count survey quality: rare-species biases and overconfidence.

Auk. 129(1):76-86. doi:10.1525/auk.2012.11129

The publication agreement between the Auk (journal) and me allows me to republish
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the article “as part of any book or anthology, of which [I am] the author or editor,

unless the anthology is drawn primarily from The Auk”, so long as I acknowledge

the original publication. Since I have just done so, I do not need to seek further

permissions to include it in this thesis.

Chapters 4, 5 and 6 will be submitted to other journals, but at present, have not

yet been published.



Chapter 2

Optimizing Citizen Science and Avian Monitoring

2.1 Overview

Citizen science, which can be generally defined as the involvement of volunteers

in research (Dickinson et al. 2010), has become an increasingly important component

of modern ecological research and ecosystem management, especially for the study

and conservation of birds. For example, more than 70% of the ornithological moni-

toring effort in Great Britain is conducted by volunteers numbering in the thousands

(Battersby and Greenwood 2004; Bell et al. 2008). North American volunteer-based

surveys such as the North American Breeding Bird Survey (‘BBS’; Peterjohn 1994)

and the Audubon Christmas Bird Count (‘CBC’; Dunn et al. 2005) enlist similarly

vast and growing numbers of volunteers annually (e.g. 60,000 to 80,000 volunteers

on the CBC; Cohn 2008). These surveys, as well as similar atlassing projects (re-

viewed in Donald and Fuller 1998; Gibbons et al. 2007) benefit enormously from

such massive, often continental-scale volunteer efforts, along with in-kind support

(e.g. transportation costs), survey fees and society membership dues (Battersby and

Greenwood 2004; Schmeller et al. 2009). Such benefits are reflected in the initiation

of a growing number of citizen science projects worldwide (reviewed in Greenwood

2007; Silvertown 2009), with designs that continue to evolve alongside advances in

communications technologies (e.g. internet-based data entry; Sullivan et al. 2009)

and in response to developments in methods research (e.g. Kéry and Schmid 2004).

Numerous, recent reviews of the history and use of citizen science already exist

(Donald and Fuller 1998; Greenwood 2007; Dickinson et al. 2010). To complement

this research, here I consider how such monitoring projects can best collect large

amounts of high-quality information. In this light, I consider the strengths and

weaknesses of (1) controlling for error using simple versus complex designs and mod-

els, and (2) using ‘amateurs’ as data collectors. I then consider (3) how to maximize

7
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a survey’s statistical power and efficiency, and whether the inherent inefficiencies of

long-term ‘surveillance’ monitoring project designs lacking specific hypotheses and

conceptual models (e.g. many citizen science projects) make them inferior to more

targeted study designs. I argue that (i) complexity in both survey design and mod-

eling is generally important for survey data quality, but that (ii) exclusive survey

designs which depend upon observer judgment and expertise are problematic. More

broadly, I also argue that (iii) surveillance monitoring surveys designed without spe-

cific, mechanistic hypotheses in mind can contribute high-quality scientific knowledge

under certain conditions. Below, I address each of these ideas in turn.

2.2 Controlling for Error Using Designs and Models

To appreciate how survey data quality might be optimized, one must first rec-

ognize important sources of error and how they can be minimized or removed. In

general, all long-term ecological surveys consist of observational data collected se-

quentially at known times and locations. Barker and Sauer (1992; cited in Thomas

[1996]) describe how such raw data are composed of four additive processes, namely

trend (prevailing tendency), interventions (e.g. weather events), autocorrelation and

sampling error. The goal of a survey designer is to minimize the amount of the latter

two nuisance effects (or the latter three, in the case of interventions [e.g. weather]

having only transient impacts). The goal of a modeler is to remove whatever error

remains. Ultimately, the aim is to reduce the amount of nuisance variability to be-

low that of the real trend’s variability, so that biological patterns can be recognized

(sensu Johnson 2008). In most cases, the goal is not (or should not be) to eliminate

all bias – at least because overfitted models tend to be less precise (e.g. James et al.

1996; Link and Sauer 1997a) – but rather to reduce that bias to a tolerable level

for the given research question at hand (Elphick 2008). However, the most effective

designs and modeling approaches in this regard tend to be complex, and this com-

plexity can limit their widespread use. Below, I discuss some features of effective

survey and modeling approaches, as well as some practical issues concerning their

adoption, including complexity.
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2.2.1 Design and Model Complexity: The Importance of Accounting for
Detectability

All else being equal, design-based approaches to minimizing error are always preferred

to model-based approaches in that the error is essentially prevented rather than cor-

rected for (Bart et al. 2003; Johnson 2008). This contributes to increased inferential

precision. In practise, however, useful inferences usually result from a combination

of these methods (e.g. Sauer et al. 2004). In increasing order of statistical rigour,

designs for sampling avian data include (1) anecdotal observations (one component

of the ‘eBird’ survey; Sullivan et al. 2009), (2) fixed-area surveys by one or several

observers incorporating some measure of effort (e.g. the CBC, some atlasses), (3)

unlimited-radius point counts by a single observer for a fixed effort (e.g. the BBS),

and (4) approaches that account for imperfect species detectability, including dis-

tance sampling (Newson et al. 2008), double-observer methods (Nichols et al. 2000)

and time-to-detection methods (‘removal models’; Farnsworth et al. 2002; Riddle

et al. 2010). Repeated sampling of a site by a single observer is another powerful op-

tion that can account for false-positive detections along with missed detections if the

data and models are appropriate (e.g. Royle and Link 2006; McClintock et al. 2010b;

Miller et al. 2011), for instance if the frequency of false positives is low (Campbell

and Francis 2011), and there is a known measure of uncertainty associated with each

data point (Miller et al. 2011). Finer details of most of these designs are reviewed in

Elphick (2008), Nichols et al. (2009) and Miller et al. (2011).

Controlling for detection probability is a key element of more-sophisticated de-

signs. In general, the terms ‘presence/absence’ and ‘population counts’ as applied

colloquially to survey data are misnomers; count records in fact represent a detec-

tion/nondetection process (usually) conditional on species presence (MacKenzie et

al. 2005; and see Diefenbach et al. 2007). Hence, in the absence of controls for detec-

tion error (e.g. most designs of styles 1–3, above), count data are an accurate index

of species populations only if the detection probability is roughly constant between

sampling events (Johnson 2008). Past research has shown that detectability can vary

with species (Diefenbach et al. 2003), time of year (Dennis et al. 2006), study habi-

tat (Hanowski and Niemi 1995; Gu and Swihart 2004), survey method (Dunn 1995;

Riffell and Riffell 2002), and effort (Link and Sauer 1999; Ferrer et al. 2006; Bonardi
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et al. 2011), among other factors, and so the assumptions of these simpler survey

designs are unlikely to be met in many field situations. In most cases, it is therefore

best to account for detection error using a more complex design (i.e. of style 4).

Model-based covariates can provide additional corrections which cannot (or did

not) occur by design. These covariates can take the form of fixed- or random-effects

coefficients, and can include fixed-effects covariates for background noise (Pacifici

et al. 2008; Griffith et al. 2010), effort (Link and Sauer 1999), and years of service

(e.g. Kendall et al. 1996, and see Chapter 5); and normally distributed random-

effects covariates for individual observers (e.g. Link and Sauer 2002). An even more-

sophisticated approach known as hierarchical occupancy modeling divides Y (i.e.

the observed data) into separate functions for occupancy and detection (conditional

on occupancy), each of which can contain relevant covariates (Royle et al. 2005).

Using this flexible format, one can measure and account for covariables affecting

detection, such as observer age (Chapter 4), or for covariables affecting occupancy,

such as predictors of local extinction within a broader metapopulation (Royle and

Kéry 2007). This approach can aid management planning, for instance by identifying

risk factors for nondetection (e.g. older observers; Chapter 4), or by identifying source

and sink populations in a broader landscape (e.g. at landscape edges; Royle and Kéry

2007).

While it is important to not overparameterize a model (i.e. to include too many

covariates; Burnham and Anderson 2002), an interesting argument between Bart

et al. (2003) and Sauer et al. (2004) highlights the importance of there being some

routine level of model complexity. In this case, Bart et al. (2003) suggested that it

might be possible to both improve and simplify the analysis of BBS data using a

modeling approach that relies more heavily on design controls and less on corrective

covariates. As a result of its using fewer parameters, this approach increased model

precision. However, in a subsequent rebuttal to criticisms provided by Sauer et al.

(2004), Bart et al. (2004b) qualified their earlier claim by recommending that stan-

dard (i.e. more-complex) models be routinely compared against these simpler models

to first evaluate whether important biases are missed. In other words, in their re-

sponse, Bart et al. (2004b) largely conceded that in spite of the loss of precision,

more complex approaches have greater value under typical conditions.
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Using a combination of design-based and appropriate modeling approaches, data

quality can be maximized by recognizing important variation in detectability either

implicitly (as detectability estimates made possible by appropriate survey designs),

or explicitly (as model-based covariates), provided that the designs and models used

are of sufficient complexity. Unfortunately, because the best statistical approaches

tend to be more difficult to use, require large sample sizes, and require supplementary

data (e.g. distance sampling detection curves; Johnson 2008), many are practically

unfeasible. Lower-quality biological estimates resulting from limited statistical ex-

pertise among project staff (e.g. ‘black-box’ use of statistical tools; Johnson 2008)

or small sample sizes can often be overcome with additional funding and sampling;

however ‘legacy’ issues resulting from historical design limitations (e.g. Dunn et al.

2005; Freeman et al. 2007), can be more intractable.

2.2.2 The Restrictive Legacy of Some Designs

‘Legacy’ limits on the quality of future inferences can arise when historical data

collected without a more complex (future) modeling method in mind are not suitable

for the modern approach. For example, because our knowledge of the importance of

imperfect detection probability has only been popularized for the past few decades

(e.g. Kéry and Schmid 2004), many older surveys (e.g. the BBS [1966 to present]

and the British Common Birds Census [ca. 1960–2000; Freeman et al. 2007]) did not

collect sample replicates and supplementary data which might be used to account

for such an error, and so their data cannot be modeled with imperfect detection in

mind. Growing concerns about other factors such as false-positive detections (e.g.

Royle and Link 2006; McClintock et al. 2010b; Miller et al. 2011, and see Chapter

4) suggest that even recently-implemented survey designs, for instance the French

Breeding Bird Survey (2001 to present; Jiguet 2009) and the Swiss Survey of Common

Breeding Birds (1999 to present; Royle et al. 2007), could be further improved, for

instance by collecting measures of observer certainty (Miller et al. 2011). Where such

design limits are present, how can survey data quality nonetheless be maximized?

First, some improved statistical approaches are still suitable for use on old datasets.

For instance, advances in desktop computing power have allowed hierarchical Bayes

designs to replace among-strata weighting schemes in models of (older) BBS data
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(Sauer and Link 2011). These techniques can provide some improved – if not ideal

– inferences from legacy information, making the best of a bad situation. Nonlin-

ear modeling techniques (e.g. James et al. 1996), and especially generalized additive

models (‘GAMs’; Fewster et al. 2000; Clarke et al. 2003; Flemming et al. 2010, and

see discussion in Kery and Royle [2010]) and their more-powerful complement, gen-

eralized additive mixed models (‘GAMMs’; Wood 2006; Zuur et al. 2009, and see

Chapters 4 and 5), are other developing statistical options that show tremendous

promise for improving our understanding of long-term biological patterns from both

‘legacy’ and current survey data.

Compared to the current fixed-parameter approaches, additive models can more

naturally illustrate simultaneous population and covariate ‘trajectories’ (i.e. nonlin-

ear patterns of change; Link and Sauer 1997b) alongside ‘trends’ (i.e. averaged log-

linear measures of change between two arbitrary endpoints; Link and Sauer 1997b).

The ability to visualize such trajectories is important for appreciating whether a

variable’s significantly increasing or declining patterns are sensitive to the choice

of baseline (which itself could have been exceptional; e.g. a harsh winter; Thomas

1996) and timeframe (Dunn 2002; Magurran et al. 2010), and these approaches are

generally applicable to both older and newer datasets.

However, in what might be a limitation of having too many complex statistical

tools at present, there is sometimes no clear consensus on what is the ‘appropriate’

modeling technique for the same legacy dataset. In the case of the BBS, Thomas

and Martin (1996) showed how the separate, similarly-complex approaches taken

by the Canadian Wildlife Service and the United States National Biological Service

(now administered in title by the United States Geological Service) can lead to

different biological conclusions, notably the value and significance of population trend

estimates. Choosing and justifying a particular ‘optimal’ modeling method is thus a

very important exercise; sensitivity analyses with several different methods can help

to qualify their robustness (e.g. Sauer and Link 2011).

Unfortunately, once the optimal methods are decided-upon, making the corre-

sponding improvements to the designs and analysis techniques of legacy surveys can

still be quite challenging, since major changes can limit the future use of the older

data by essentially introducing a discontinuity into the overall dataset. Illustrating
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one successful approach to this problem, in the United Kingdom, the older Common

Birds Census, which began in the early 1960s, suffered from geographic biases, where

effort was more concentrated in southern England and census sites were distributed

nonrandomly over space (Freeman et al. 2007; Magurran et al. 2010). This led to

unreliable overall and regional trend estimates, and motivated the eventual abandon-

ment of this survey in favour of a new, better-designed survey (the UK Breeding Bird

Survey) in the 1990s. To accommodate this major change from one survey design to

another, both surveys were conducted in parallel for seven years. Afterwards, trend

estimates for each approach showed good consistency, which, fortunately, recognized

that decades of the earlier, albeit problematic, work still had much value (Freeman

et al. 2007). With the support of funders, managers and volunteers, the transition to

an improved monitoring scheme in this case proceeded smoothly, legacy issues were

removed, and the survey dataset could maintain its ecological relevance.

Depending on a survey’s history and user base, some design improvements can be

slow to implement. The Audubon Christmas Bird Count (‘CBC’) provides an inter-

esting case study of difficulties associated with changing an originally non-scientific

survey into a more-scientific one. Like the UK Common Birds Census, managers have

been aware for many years of problems with its data collection approaches (Francis

et al. 2004; Dunn et al. 2005), but many critical changes, for instance stratifying

observed counts by different methods used (such as walking or feeder-watching), are

still pending. Major changes to this legacy design may come into conflict with the

strong social component of CBC participation, and could lead to a significant and

undesirable drop in participation (Dunn et al. 2005). The CBC was originally formed

in 1900 as a recreational alternative to hunting, not a formal biological census, and

many of its participants value the annual traditions associated with it (e.g. Bonta

2010). While some problems can presently be accounted for using model-based ap-

proaches and no changes to the field protocols (e.g. modeling nonlinear effects of

effort; Link and Sauer 1999; Lepage and Francis 2002), others, especially the CBC’s

limited documentation of different data collection methods used, will continue to con-

strain the usefulness of survey data for scientific purposes (Francis et al. 2004, Figure

2.1). The present challenge is to implement the outstanding, necessary changes to

the survey without undermining its traditional and recreational values.
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In sum, increasing design and model complexity is generally important for rec-

ognizing the real complexity of the detection process, including the effects of imper-

fect detection and among-observer differences, both of which are common to citizen

science projects (e.g. Sauer et al. 1994; Kéry and Schmid 2004). Design- and model-

based approaches play equally valuable roles in removing these sources of error from

the underlying biological trend, but sometimes, ideal modeling methods may not be

feasible because of the methodological and cultural legacies of older survey designs.

While statistical and technological developments have provided new options for im-

proving the quality of inferences from older datasets, the best-quality information

often arises from patterns observed using multiple analysis methods.

Now that I have established some advantages of more complex survey protocols, I

next address whether surveyors need to be similarly ‘advanced’ in order to contribute

meaningful monitoring data.

2.3 The “Amateur”: an Asset, or a Liability?

While citizen science projects tend to involve enviably large sample sizes, there

is a lingering concern about the quality of the data they can produce. This concern

largely arises from the perception that the skill level of observers is less consistent

– or else lower – among citizen science projects than among smaller, professionally-

staffed studies (Greenwood 2007). Even if automated quality-control mechanisms

are effective, for instance in identifying bird records that are unusual for a particular

time and/or location (Sullivan et al. 2009), for certain protocols, subtler errors such

as missed detections can still occur among novice participants that will not be noted

(e.g. McLaren and Cadman 1999). To successfully involve large numbers of par-

ticipants also requires less-controlled protocols that accommodate the more erratic

availability of volunteers (Magurran et al. 2010), and which can consequently limit

modeling options.

Are the more-numerous data produced by ‘amateur volunteers’ therefore of a

lower quality than what is collected by professional scientists (see Ellis and Waterton

2005; Greenwood 2007; Cohn 2008)? Similarly, is citizen science a lesser cousin to

‘professional’ science (e.g. Cohn 2008)? Here, I argue how ‘amateur’ status can be

irrelevant to data quality, and how skill level should also be largely unimportant to
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a well-designed protocol, with few exceptions. On the other hand, I briefly highlight

an unfortunate tradeoff between volunteer surveyor participation and data quality.

First, I address the concept of the ‘amateur’ in scientific research as it relates

to ability and data quality. In the context of “citizen science”, the word ‘citizen’ is

synonymous with ‘volunteer amateur’ (sensu Bell et al. 2008; Cohn 2008). Hence,

citizen science data are collected largely by amateurs. The colloquial distinction

between an ‘amateur’ and a ’professional’ is one of skill; that is, amateurs are less-

skilled than their paid, ‘professional’ colleagues (sensu Greenwood 2007). If this

distinction is correct, because skill is an important determinant of the error rates in

species identification data (e.g. McLaren and Cadman 1999; Fitzpatrick et al. 2009,

and see Chapter 3), the implication is that citizen science data derived from species

identifications must by definition be of a lower quality than what are professionally

collected (e.g. Fitzpatrick et al. 2009).

However, if an ‘amateur’ designation is technically a function of professional af-

filiation, it can be largely independent of skill (e.g. Lotz and Allen 2007). This is

especially likely for many types of field ecology – in particular field ornithology –

that are easily practised recreationally by the general public (Mayfield 1979; Sil-

vertown 2009). In many cases, local ‘amateur’ experts are often as equally-skilled

as professionals, and may also be more knowledgeable about their particular study

sites (Greenwood 2007). Similarly, many ‘professional’ scientists may also conduct

‘amateur’ surveys in their spare time (Ziolkowski Jr. and Pardieck 2006). In this

way, ‘amateur’ ‘citizen science’ data can be equivalent or superior in quality to ‘pro-

fessional’ data. Thus, the risk of lower data quality need only apply to cases when

non-experts (and not non-professionals) are predominantly involved in citizen science

projects.

Can non-expert amateurs also contribute high-quality data to scientific monitor-

ing projects? Under the best project designs, the answer is yes. This is because

much of the difficulty of doing ‘science’ per se should be associated with its design,

analysis and interpretation, and not its data collection. In contrast, study meth-

ods must be understandable and repeatable by all outside researchers in order for

important findings to be reproduced. In this regard, non-experts should be able to

make valuable data-collection contributions to broad-scale monitoring projects if the
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Figure 2.1. Number of records, 1990-2010 returned by the ISI Web of Science
database for the corresponding blocked search terms, arranged by publication year,
and scaled by the number of articles containing the keyword “ecology” for each year
( x
xecology

·5000). The North American Breeding Bird Survey (‘BBS’) is a more tightly-

controlled survey design, whereas the Christmas Bird Count (‘CBC’) and eBird have
fewer effort controls.

project methods are properly explained and specific, and if no special equipment is

needed (Mayfield 1979; Greenwood 2007). The recent explosion of citizen science

data accepted in peer-reviewed scientific literature undoubtedly involves many non-

expert participants (Figure 2.1), and so attests to this idea holding true (e.g. Cohn

2008; Silvertown 2009; Ryder et al. 2010).

However, in some exceptional cases – frequently in ‘omnibus’ multi-species surveys

– study methods can demand a high degree of expertise from data collectors. For

example, rather than requiring participants to observe common bird feeder visitors

(e.g. Project FeederWatch; Lepage and Francis 2002), report anecdotal observations

of common birds (e.g. eBird; Sullivan et al. 2009), or count chicks in nests (e.g.

Neighborhood NestWatch; Evans et al. 2005) – each of which are tasks requiring

little expertise – surveyors of the BBS must in most cases be able to exhaustively

distinguish from among more than 50 bird species that are likely to be heard or seen

on a given survey route, a skill which tends to develop only with years of practice.
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Unfortunately, even with the greater expertise of their volunteers, omnibus sur-

veys are still problematic in that the subjective judgement of their expert observers

plays a major role in determining the data (i.e. particular species identifications and

counts made by ear); this can make results difficult to reproduce precisely (e.g. Rob-

bins and Stallcup 1981; Hull et al. 2010), which runs contrary to the general notion

that scientific results should be independently verifiable. Other known errors with

omnibus survey data, also associated with differences among and within observers

(Link and Sauer 1998, and see Chapters 3 to 6), add to the problems associated with

this subjectivity. At present, however, there are few alternatives for collecting such

specialized information. Accordingly, I consider omnibus surveying to be a flawed,

if inevitable methodological approach at present.

Fortunately, omnibus survey designs that rely too heavily on subjective expertise

might soon be made obsolete by technological improvements. Recent experiments

using off-site expert- or computer-assisted determination of species density (Dawson

and Efford 2009) and species composition (Haselmayer and Quinn 2000; Rempel et al.

2005; Campbell and Francis 2011) from audio recordings promise a greater amount

of objectivity and increased, useful participation by non-experts (i.e. as recorders)

in future omnibus monitoring, and by extension, in citizen science as a whole.

Nonetheless, while all ‘amateurs’ should ideally be able to provide high-quality

scientific data, experimental conditions in citizen science (e.g. time of day, observa-

tion period, number of replications) tend to be somewhat less-controlled in order to

accommodate the different schedules and spatial availability of volunteers compared

to paid staff. This means that in spite of the equivalent data-collection potential

among volunteer amateurs, the more participants a survey accommodates, the less-

useful its data can become. For instance, while data are easily collected anecdotally

by many volunteers during their spare time, this information is not well-controlled

for effort effects and spatial biases, and so cannot be used for most statistical anal-

yses (Dunn et al. 1996, 2001; McKelvey et al. 2008). In contrast, the longer blocks

of dedicated survey time that are usually required by a monitoring project’s more

restrictive – but more statistically defensible – design cannot be accommodated by

as many otherwise willing participants.

Intermediate time commitments such as annual surveys are evidently manageable
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by many volunteers, but as discussed in the first section of this review, there is a

major statistical advantage to having replicated data collected by the same observer

within the same year (e.g. Royle and Dorazio 2009). Unfortunately, the correspond-

ing increase in required time commitments for replicated sample designs will tend to

thin the pool of willing volunteers (sensu Dunn et al. 2005). Whether such a reduc-

tion in available participants seriously affects the viability of a project is therefore

an important, design consideration, and a major limitation of citizen science data.

The advantages of broader-scale data collection may or may not outweigh the dis-

advantages of simpler data collection protocols (e.g. Peterjohn 2001; Schmeller et al.

2009), but there is no one ‘best’ approach: this ideal level of volunteer participation

(and protocol rigour) is specific to a given project (e.g. Snall et al. 2010).

In general, well-designed citizen science projects are insensitive to the amateur

or professional status of their participants, and with a few exceptions (e.g. omnibus

surveys) should also be insensitive to their skill levels. The only important reasons

to consider citizen science to be generally inferior to professional science are if its

protocols are simplified to the point of compromising the desired level of detail (e.g.

using the BBS for a species-habitat association study, for which its lower resolution

is unsuited; Peterjohn 2001), or if it cannot recruit sufficient volunteers to survey a

particular (often remote) area (Francis et al. 2009).

2.4 Designing Surveys for Power and Efficiency

So far, I have argued that the quality of citizen science data benefits from design

and model complexity, that it is generally insensitive to whether its participants are

amateurs, and that it can suffer from oversimplified protocols that enhance volunteer

participation. I now take a final and broader perspective and consider the statistical

power and efficiency of surveys, including how they might be maximized by design.

I also consider a special case where efficiency might be deliberately ignored as a

design priority, asking whether monitoring projects should always include targeted

research interests with mechanistic hypotheses in mind, or whether some less-focused

‘surveillance’ project designs of lower efficiency might also be justified.
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2.4.1 Survey Design, Statistical Power and Efficiency

Two important endpoints of survey quality are its statistical power and its efficiency.

First, in population-monitoring surveys, statistical power is the ability of a design

to detect a certain amount of significant change a certain percentage of the time. A

high-powered survey, for example, might detect a 25% change in a population over 20

years, 80% of the time (sensu Bart et al. 2004a), whereas a more modestly-powered

survey might only detect such a change 60% of the time. Power to detect change

increases with monitoring intensity (Purcell et al. 2005; Thogmartin et al. 2007),

which means that multi-species (‘omnibus’) ‘monitoring’-type studies, that survey

tens of species at a time using a generic protocol, can be less powerful per species

than more specialized programmes targeting specific species or specific species groups

(e.g. Sauer et al. 2008, 2010).

For a given survey design, how can statistical power be maximized? In general,

the simplest approach is to increase sampling intensity as funding and logistics al-

low (all else being equal; e.g. Bart et al. 2004a; Francis et al. 2005). However, for

existing surveys, this approach can be expensive and thus inefficient compared to

design changes (e.g. field protocol changes; Sauer et al. 2005). Field et al. (2007)

recommend reducing the desired value of alpha for the statistical tests that are used;

in other words, to require a lower burden of proof for demonstrating ‘significant’

change. This approach, which can be quite useful for conservation-based monitor-

ing, simultaneously decreases the number of missed, real changes (i.e. increases the

power), and can lead to cost savings if the cost of reacting to false alarms is low

compared to the cost of failing to respond to real population changes (Field et al.

2004).

Survey efficiency, which is analogous to the relative amount of useful data col-

lected for a given effort, is another important factor to be maximized once a mini-

mum level of statistical power has been met (e.g. Pierce and Gutzwiller 2004). One

important trade-off in this case exists among different designs for omnibus monitor-

ing surveys, which should ideally detect changes in indicator variables for as many

species as possible, for as little effort as possible. Here, the most efficient monitoring

approach is different for rare species than for common species. Specifically, because
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rare species tend to have low abundances at any given survey site, year-to-year fluc-

tuations in observed counts as a proportion of original count values tend to be quite

high and non-significant. Consequently, for broad-scale studies of rare species, detec-

tion/nondetection surveys tend to be more efficient than count surveys (MacKenzie

2005; Joseph et al. 2006; Pollock 2006). On the other hand, for more common species

(i.e. with higher mean counts), count data are more likely to show short-term de-

clines. With greater statistical power compared to detection/nondetection data,

count data can also describe metapopulation dynamics (Donald and Fuller 1998), or

widespread, moderate declines (Joseph and Possingham 2008) that might otherwise

be missed. Consequently, in spite of the reduced efficiency for rare species, the more

useful single design for omnibus studies concerned with population changes is usually

to collect count data.

Conversely, when a project’s goal is to determine ‘snapshot’ species distribu-

tions over complete geographic areas (e.g. provinces) – and hence, when population

trajectories are not of interest – designers should generally choose the more spatially-

efficient detection/nondetection atlassing approach, which can survey more land area

for less effort. To capitalize on the information-gathering potential of atlas volunteers,

recent Canadian atlasses now also collect optional point-count information alongside

the principal detection data (e.g. Maritimes Breeding Bird Atlas 2006–2010). To

my knowledge, whether such an optional contribution is sufficiently controlled and

replicated to be useful has not yet been demonstrated in peer-reviewed publications.

The choice of design from a power and an efficiency standpoint must be carefully

made with the study’s ultimate goals and resources in mind (Elphick 2008; Francis

et al. 2009); this includes recognizing what designs are likely able to achieve a useful

level of statistical power (e.g. Bart et al. 2004a; Purcell et al. 2005; Sauer et al.

2005), defining precisely what is a ‘useful’ level of power in a particular case (Field

et al. 2004), and determining if there is sufficient funding to follow through (Field

et al. 2007). However, there can also be nontarget benefits to even poorly-powered or

inefficient citizen science surveys such as education (e.g. Evans et al. 2005; Braschler

et al. 2010) and breadth of knowledge (e.g. Peters 2010) which might make the

goals of power and efficiency less-important in the overall context of maximizing our

ecological knowledge. In the next section, I present an example of such alternative
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priorities in long-term ecological monitoring.

2.4.2 ‘Targeted’ vs. ‘Surveillance’ Monitoring – is Deliberate Inefficiency
Always Bad?

An ongoing debate in the literature concerns whether ecological monitoring projects

should generally be designed around specific hypotheses, conceptual models, and

management objectives – for instance, determining whether a population decline in

a given game species exists, and whether it is consistent with one of several conceptual

models of how that species’ reproduction might respond to hunting pressures – or

whether less-directed monitoring – for instance an omnibus bird abundance survey

without a particular target species and population change mechanism in mind – can

be a similarly-useful option. Whereas the former, ‘targeted’ monitoring strategy

(sensu Nichols and Williams 2006) is a more efficient approach for a specific research

goal, ‘surveillance’ monitoring may have other advantages.

On the one hand, the traditional ‘surveillance’ approach found in older studies

(e.g. the BBS) has been to record a variety of data that can be detected consistently

from year to year, without necessarily having detailed mechanistic hypotheses under

evaluation. Proponents of this approach argue that the resulting baseline datasets

are a necessary precursor to finer-scaled, more efficient studies in that they draw

attention to unusual patterns which might otherwise go unnoticed (Duarte et al. 1992;

Nisbet 2007; Dickinson et al. 2010; Magurran et al. 2010; Peters 2010). Long term

population indices collected in this way can also qualify steep, short-term population

declines as being within a normal range for a particular species (Dunn 2002), and so

can prevent unnecessary management responses. However, critics of this approach

(e.g. Yoccoz et al. 2001; Nichols and Williams 2006; Field et al. 2007) point out that

its less-directed nature can make some data records irrelevant (e.g. unused anecdotal

records), while other broadly- or sparsely-collected data may lack sufficient statistical

power to detect all but the most dramatic changes.

Recognizing that surveillance monitoring can never be as efficient as more-targeted

strategies for a given research objective, should we thus consider them to be generally

inferior substitutes? In making a case for the superiority of targeted studies, Nichols

and Williams (2006) frame the issue philosophically, arguing that, in addition to the
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lower cost-efficiency, monitoring without mechanistic hypotheses is inconsistent with

the conduct of traditional science (e.g. Platt 1964), and that the ‘rate-of-learning’

arising from such an approach is low. Yoccoz et al. (2001) share similar views,

pointing out that these studies’ unavoidable lack of experimental design elements,

for instance the lack of randomly-allocated manipulations, limit the ability of such

programmes to make strong inferences about more detailed scientific questions, in

other words, to suggest causation underlying observed trends (see also Peters 2010).

However, these arguments ignore the value of having a reliable, long-term base-

line from which to form mechanistic hypotheses and to design experiments in the

first place. For example, our realization that global atmospheric carbon dioxide

levels were consistently increasing occurred thanks to decades of background mon-

itoring. Without this dataset that stretched back to 1957, the beginnings of our

scientific investigations into the human role in climate change, along with corre-

sponding hypothesis-driven discoveries and conservation initiatives, might have been

delayed by decades (Nisbet 2007). Lindenmayer et al. (2010) similarly promote

long-term monitoring for its ability to detect ecological ‘surprises’ – unexpected, but

important ecological findings that change our understanding of ecosystem function.

Such ‘surprises’ are important precursors to more thorough investigations and corre-

sponding high-quality ‘discoveries’ that can logically follow. In this sense, ‘baseline’

surveillance monitoring has a valuable place in long-term, broad-scale ecology as

part of a broader group of monitoring programmes, which include both baseline and

subsequent, targeted studies.

Unfortunately, public support and appreciation for this kind of science can be low.

Nichols and Williams (2006) argue that, for wildlife conservation, in spite of there

being some initial value in baseline monitoring, there is too little funding available

to justify most ongoing surveillance. Accordingly, Nisbet (2007) called long-term

monitoring ‘Cinderella science’ in that it is largely unloved, with a dormant public

profile. Duarte et al. (1992) suggest that disdain for such long-term monitoring

programmes may also occur at the governmental level because they do not typically

provide benefits consistent with the timeframe of political appointments. However,

the simple and consistent approach of surveillance monitoring is well-suited for citizen

science applications in that it can also provide important educational and recreational
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opportunities in parallel (e.g. Trumbull et al. 2000; Evans et al. 2005; Sullivan et al.

2009; Braschler et al. 2010). In this way, the scientific inefficiencies of long-term

surveillance monitoring can be offset by non-scientific spinoff benefits.

2.4.3 The Ideal Long-Term Monitoring Programme

The best long-term monitoring programmes are probably composed of multiple com-

plementary baseline surveillance monitoring studies and targeted, hypothesis-driven

studies arising that reflect a conceptual model of the system of interest (Lindenmayer

and Likens 2010; Peters 2010). Although such complementarity might be inefficient

in terms of data collection costs, these study programmes leave a manager far better

equipped to understand ecological processes (Lindenmayer et al. 2010), and hence

may also save money in the long term as new management questions present them-

selves.

Broad, complementary research of this kind has led to a variety of high-quality

inferences in practise. For instance, through a combination of baseline and targeted

studies of several physical and biological variables, the Hubbard Brook Ecosystem

Study thoroughly demonstrated the mechanism and effects of acid precipitation (Lin-

denmayer et al. 2010). Monitoring related ecological variables across multiple, com-

plementary baseline surveys can also assist our recognizing real patterns in noisy

biological systems (Lepage and Francis 2002; Francis et al. 2005). For instance,

Cooper et al. (2007) used three separate monitoring datasets to study House Spar-

row (Passer domesticus) population declines. Each dataset independently implicated

interspecific competition as an important contributing factor, allowing the authors

to confidently conclude that interspecific competition was the principal culprit. In

sum, the initial inefficiencies of using baseline surveillance monitoring might often

be justified by the greater confidence of subsequent ecological insights.

To maintain the relevance of baseline surveillance programmes, Lindenmayer and

Likens (2010) further argue that we should adopt an ‘adaptive monitoring’ philosophy

which supports design and protocol changes as they are justified by incoming results,

new interests, and by emerging technologies, so long as the long-term ‘monitoring’

results are not compromised. Managers of the CBC and BBS demonstrate this hybrid

philosophy in their efforts to continuously improve data collection and modeling (e.g.
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Francis et al. 2004; Sauer et al. 2005), and in their support of corresponding research

(see examples in Dickinson et al. 2010). Regular reviews of survey methods and

objectives are important for maintaining the relevance and scientific credibility of

any long-term effort (e.g. Nichols and Williams 2006; Lindenmayer and Likens 2010;

Magurran et al. 2010).

Compared to targeted monitoring studies, which have clearer objectives and ex-

pected outcomes, a less-focused baseline surveillance project’s chances of success (in

terms of it providing important biological inferences) increases with its geographic

and taxonomic scope. Among other reasons, this is because the results of larger

surveillance programmes can be more easily paired with other, separately-funded

datasets (e.g. weather station time series, geospatial data, fisheries landings) as part

of a comprehensive analysis. This in turn supports a greater diversity of specialized

research questions. However, such an advantage comes at an important financial

cost. Even with volunteer monitors, who are less expensive per datum than dedi-

cated professional scientists, monitoring projects are still costly given their typical

scale (Braschler et al. 2010). Once initially funded, managers thus need to be highly

responsive to perceived problems in their design and analysis in order to provide

meaningful, desirable data within their funding limits and timeframe (e.g. Field et al.

2007). Providing data of such usefulness is not an easy task: Duarte et al. (1992)

make the frustrating claim that, in marine science,“long-term [e.g. surveillance] mon-

itoring programmes are, paradoxically, among the shortest projects. . .many are ini-

tiated, but few survive a decade”. Field et al. (2007) also allude to numerous similar

failures with conservation monitoring in Australia.

In sum, opposition to baseline surveillance monitoring compared to more-targeted

studies should be directed at solitary projects which are too-narrow in scope, inflexi-

ble in management, and underfunded in their implementation. Recognizing the high

threshold for success of such projects, it follows that where surveillance is not likely

to be useful or possible, for instance because the management action is clear or the

funding is not available, it should not occur (McDonald-Madden et al. 2010), or if

monitoring is no longer necessary, that it stop (Field et al. 2004, 2007). When these

problems are avoided, surveillance monitoring can thus be an extremely high-quality

ecological reference point. To that end, carefully-managed surveillance and targeted
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monitoring, which share an important interconnectedness, each have their place in

ecology and in citizen science.

2.5 Citizen Science and the Future of Avian Monitoring

As we move increasingly to urban living as a global population (Montgomery

2008), and as our growing technological abilities create global-scale ecological im-

pacts, the need to preserve our appreciation for and understanding of natural land-

scapes is a worldwide concern. Citizen science projects are able to contribute to

both of these objectives, engaging a large population of citizens in recognizing their

local ecology while providing broad-scale, long-term information to contribute to our

knowledge and management of global ecology.

With a long tradition of interest from amateurs, and as an important component

of global ecosystems, birds are a relevant focal point for citizen science. Many bird

species have already benefited from citizen science projects, the data from which have

helped to optimize their population management (e.g. Greenwood 2007). Current

educational and scientific successes seen are likely to continue, as long as studies

are carefully designed and modeled to incorporate uncertainty, with a willingness

among managers to modify and expand protocols as new information suggests and

permits. Furthermore, the active tradition of expert and non-expert ‘amateurs’ in

field ornithology promises continued support for citizen science projects, especially

if project protocols are able to accommodate a variety of volunteer lifestyles. As

the number and size of our long-term datasets continues to grow, we may find both

depressing and unexpected patterns in bird population and other ecological systems.

However, armed with this reliable and increasingly extensive knowledge, we will also

find ourselves in possession of increasingly powerful and less-deniable evidence for

the nature and sometimes, the mechanisms underlying these changes. If collected

and used responsibly, citizen science can thus benefit ecosystems worldwide.



Chapter 3

Observer Effects and Avian Call Count Survey Quality:

Rare-Species Biases and Overconfidence

3.1 Abstract

Wildlife monitoring surveys are prone to nondetection errors and false positives.

To determine factors that affect the incidence of these errors, we built an internet-

based survey that simulated avian point counts, and measured error rates among

volunteer observers. Using similar-sounding vocalizations from paired rare and com-

mon bird species, we measured the effects of species rarity and observer skill, and the

influence of a reward system that explicitly encouraged the detection of rare species.

Higher self-reported skill levels and common species independently predicted fewer

nondetections (probability range: 0.11 [experts, common species] to 0.54 [moderates,

rare species]). Overall proportions of detections that were false positives increased

significantly as skill level declined (range: 0.06 [experts, common species] to 0.22

[moderates, rare species]). Moderately-skilled observers were significantly more likely

to report false-positive records of common species than of rare species, whereas ex-

perts were significantly more likely to report false-positives of rare species than of

common species. The reward for correctly detecting rare species did not significantly

affect these patterns. Because false positives can also result from observers overes-

timating their own abilities (‘overconfidence’), we lastly tested whether observers’

beliefs that they had recorded error-free data (‘confidence’) tended to be incorrect

(‘overconfident’), and whether this pattern varied with skill. Observer confidence in-

creased significantly with observer skill, whereas overconfidence was uniformly high

(overall mean proportion = 0.73). Our results emphasize the value of controlling for

observer skill in data collection and modeling and do not support the use of opinion-

based (i.e. subjective) indications of observer confidence.

26
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3.2 Introduction

Broad-scale and long-term ecological datasets collected by volunteers form an

increasingly important component of contemporary wildlife management (Silvertown

2009). Among their many uses, these datasets monitor populations of birds (Link

and Sauer 1998; Kéry and Schmid 2006; Julliard et al. 2006; Hewson et al. 2007),

anurans (North American Amphibian Monitoring Program 2011; de Solla et al. 2005;

Lotz and Allen 2007), invertebrates (Kremen et al. 2011; Maritimes Butterfly Atlas

2011), and many marine organisms (e.g.Goffredo et al. 2010; Ward-Paige et al. 2010).

Each survey typically records point count and/or detection/nondetection data from

a given location over a known time interval, providing broad spatial and temporal

data coverage at a minimal cost.

Among surveys of birds and anurans, a substantial proportion of detections are

made by ear, without visual confirmation of a species’ identity (Dawson and Efford

2009). Unfortunately, accurate auditory identifications can be difficult because many

species sound alike (e.g. Robbins and Stallcup 1981; McClintock et al. 2010a). In field

settings, different habitats and background noises also affect detection probability

(Pacifici et al. 2008). Consequently, data collected by auditory surveys generally

incorporate some amount of unavoidable observation error.

In spite of such error, volunteer surveys can be scientifically valuable if analyzed

appropriately (i.e. if uncontrolled variability in detectability can be reduced to less

than that of population variability; Johnson 2008). The need among managers for

good-quality, broad-scale, long-term ecological data is increasing because of recent

and ongoing challenges to global ecosystem stability (e.g. U.S. North American Bird

Conservation Initiative Committee 2010). Hence, developing methods to extract

such information from these surveys is a highly topical and active research concern

(Elphick 2008). Reducing the influence of observer error is an important component

of this research.

Observer-level errors on detection/nondetection surveys can be divided into two

main types: nondetections and false positives (Royle and Link 2006). Nondetections

occur when a species is present but not recorded, whereas false positives occur when

a species is absent but is nonetheless recorded. False positives are more serious errors

because they usually result from the misidentification of a species that is actually
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present; thus, they are often accompanied by concurrent nondetections (Bart 1985).

Under most wildlife survey designs (including our own), the absence of a species is

not explicitly recorded, hence, we refer to ‘nondetections’ instead of ‘false negatives’,

because the latter term implies a declaration-of-absence.

The problem of incomplete detection (i.e. nondetection) in animal surveys has

been studied for decades, particularly in the avian literature (e.g. Bart 1985; Marsden

1999) and direct estimation of corresponding probabilities is becoming routine (e.g.

Diefenbach et al. 2003; Pellet and Schmidt 2005; Etterson et al. 2009, but see Rosen-

stock et al. 2002; Johnson 2008). False positive probabilities, on the other hand, are

typically assumed to be negligible (e.g. MacKenzie et al. 2009) and, therefore have

received less attention. There is growing evidence from studies of anurans and birds,

however, that the frequency of false positives in auditory surveys can be appreciable.

For instance, a controlled experiment measuring frog and toad call recognition errors

found that 5% of all detection records were incorrect (McClintock et al. 2010a). Sim-

ilarly, a study that modeled the occupancy of five bird species using repeated field

visits along a North American Breeding Bird Survey (BBS) route estimated false-

positive probabilities per detection event of up to 0.165 (Royle and Link 2006). Four

other sets of controlled birdsong simulations showed that false-positives comprised

1–14% of the total number of detections (mean = 5.8%; Bart 1985; Simons et al.

2007; Alldredge et al. 2008; Campbell and Francis 2011). Mathematical simulations

have shown that failing to account for false positives of these magnitudes can lead

to substantially biased estimates of species occupancy parameters (Royle and Link

2006; McClintock et al. 2010b; Miller et al. 2011).

At present, there are limited practical opportunities to correct for both false

positives and nondetections simultaneously. Current published approaches that make

such corrections (‘misclassification models’) require data from replicated surveys (e.g.

multiple visits made during the same season; Royle and Link 2006; McClintock et al.

2010b; Miller et al. 2011). Unfortunately, without some indication of the reliability

of the observation (Miller et al. 2011), misclassification modeling may yield biased

occupancy estimators in the presence of varying levels of observer skill (Fitzpatrick

et al. 2009) and when error rates are not consistent among sites (McClintock et al.

2010b). By design, they are also not suitable for surveys that lack replicated data
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(e.g. most BBS routes, which are surveyed once annually). Collectively, most current

study designs and modeling approaches therefore have a limited ability to address

important detection errors.

One approach to reduce the influence of detection errors is to address factors

contributing to their occurrence (Raitt 1981; Johnson 2008; McClintock et al. 2010a).

We propose that an observer’s ‘state-of-mind’, which we define here as being the

sum of conscious and unconscious biases that can affect decision-making behaviour

(e.g. Croskerry 2002; Lane et al. 2007), might constitute such a factor. Although

previous authors have speculated that an observer’s “attitude” (Faanes and Bystrak

1981), “carelessness” (Robbins and Stallcup 1981), and preferences and expectations

(Balph and Balph 1983) might lead to identification errors on call count surveys,

to our knowledge, there has been little quantitative research addressing this overall

theme in ecology.

Nonetheless, such sources of error could be quite important. For instance, bird-

watchers – and possibly surveyors of other taxa – are often motivated to detect and

report the presence of rare species (Sullivan et al. 2009), and we hypothesize that

such a preference might bias an observer to both detect more rare species under

ambiguous circumstances (‘observer expectancy effects’; Miller and Turnbull 1986;

Lane et al. 2007) and similarly, to be more attentive to the sounds of rare species

(‘search-image’ detection biases; Callahan et al. 2003). These biases might lead to

correspondingly fewer nondetections and more false positives for rare species than

for common species. On the other hand, rarer species could instead be prone to more

nondetections than common species if an observer arbitrarily rules out the possibility

of a given rare species being present at all, on the basis of its rarity (the ‘playing the

odds’ bias; Croskerry 2002).

Exploring this theme, Bart (1985) re-analyzed an experimental call-count survey

dataset, in part to determine whether observers tend to detect particular species more

often than others. He indeed found that detection error rates varied among species;

however his focus was not on the detection of rare versus common species specifically.

Two recent studies have shown that detection error rates do vary among rare and

common species: species that call less often on field recordings of bird choruses tend

to be associated with greater numbers of detection errors than frequently calling
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species (Rempel et al. 2005; Campbell and Francis 2011). However, those studies did

not test for mechanisms underlying this pattern, for instance whether these errors

tend to arise from a lack of observer knowledge, and/or confusion with common

species. Further research is thus needed that specifically controls for the effects of

observer skill and the potential for rare and common species to sound alike.

Along with biases for or against the detection of rare species, unfounded observer

confidence (‘overconfidence’; Moore and Healy 2008) in a particular species identi-

fication might also be an important source of detection errors. An overconfident

observer tends to overestimate his or her performance on a given task, and thus

is more prone to making detection errors than less overconfident observers, all else

being equal. Given that overconfidence tends to occur more commonly among self-

assessed experts than among novices (Larrick et al. 2007), and that many call count

surveys involve expert volunteers (e.g. Sauer et al. 1994; Genet and Sargent 2003),

overconfidence might explain a number of false-positive errors in survey datasets.

However, we are not aware of research that has quantified its prevalence in this

ecological context.

We used an internet-based survey that mimicked an avian field point count to

address these knowledge gaps. We determined rates of nondetections, false positives

and overconfidence among a set of volunteer observers to determine (i) whether

observers of varying skill levels are more or less prone to detect rare species more or

less often than similar-sounding common species; (ii) whether an explicit incentive to

correctly detect rare species affects error rates; and lastly, (iii) whether overconfidence

is common among observers of different skill levels.

3.3 Methods

We created an internet-based survey designed to mimic what observers might

hear during an avian point count. The survey was composed of 16 simulated bird

choruses (‘scenarios’) of known species, each lasting 30 s. We recruited volunteer

observers to participate in the survey using e-mails sent to rare-bird and natural-

history e-mail listservers in the Maritimes provinces, Canada (n = 3 listservers)

and the northeastern United States (hereafter “New England”; n = 3 listservers;

USA; see Acknowledgments), and by word-of-mouth. Upon visiting the survey web
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site, observers were first presented with an introductory page asking that they have

a basic familiarity with the vocalizations of 38 candidate bird species, which we

indicated might be presented in the survey. Only 12 species were actually used. We

provided hyperlinks to examples of each candidate species’ vocalizations. Observers

were told that the featured choruses typified birds found in mixed or predominantly

coniferous forest habitats (including wet brush) of eastern North America, but they

were otherwise given no further information about the structure or contents of the

testing scenarios.

Following this initial screening, observers were asked to declare their skill level

from a list of five options (No Experience, Beginner, Moderate, Advanced, Expert)

that were not defined further. They were then asked to listen to each of the 16

scenarios once, manually beginning playback of each new scenario when ready, and

then to indicate which birds were heard in each scenario using only the checklist of 38

candidate species. Re-playing the scenario was possible, but explicitly discouraged.

Observers were not asked to count the number of individuals calling. Finally, to

gauge their confidence and test for overconfidence, the survey asked observers to

indicate at the end of each scenario whether they believed that they had correctly

identified all species that were present.

We created all scenarios using audio samples of vocalizations (i.e. calls and songs)

collected with permission from the Macaulay Library of the Cornell Laboratory of

Ornithology (http://macaulaylibrary.org) and modified to remove background noises

and normalize volume levels using the free audio manipulation software Audac-

ity (http://audacity.sourceforge.net). Each scenario featured the vocalizations of 6

species, sampled with replacement from a pool of 12 species (consisting of 6 similar-

sounding species pairs of opposing rarities; Table 3.1). With the exception of the

Black-capped and Boreal chickadees (for which we used chick-a-dee-type calls), all

vocalizations used in the scenarios were songs. Vocalizations ranged in length from

0.8 s (Alder Flycatcher) to 2.5 s (Song Sparrow) and were repeated three times per

species, arranged arbitrarily within the scenarios.

We overlapped the transitions between ∼90% of successive vocalizations to make

scenarios comparable to a natural field situation. The maximum length of time be-

tween the remaining nonoverlapping vocalizations was ∼1 s. To add standardized
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Table 3.1. Species used in the survey scenario recordings, grouped by species pairs
(A-F) and rarity classes (Common or Rare), assigned according to the number of
Maritimes Breeding Bird Atlas squares in which each species was present (percentage
of 1499 possible squares in parentheses).

Species Pair Common Name Scientific Name Rarity (Percent
MBBA squares)

A Alder Flycatcher Empidonax alnorum Common (65.7)
A Olive-sided Flycatcher Contopus cooperi Rare (30.2)

B American Robin Turdus migratorius Common (84.5)
B Rose-breasted Grosbeak Pheucticus ludovicianus Rare (26.6)

C Black-capped Chickadee Poecile atricapillus Common (77.6)
C Boreal Chickadee P. hudsonicus Rare (38.8)

D Dark-eyed Junco Junco hyemalis Common (70.2)
D Palm Warbler Setophaga palmarum Rare (37.6)

E Swainson’s Thrush Catharus ustulatus Common (60.4)
E Veery C. fuscescens Rare (37.0; M only)a

F Song Sparrow Melospiza melodia Common (73.2)
F Lincoln’s Sparrow M. lincolnii Rare (27.0)

a“M only” indicates species that are relatively rare in the Maritimes but common in New England,

and thus were scored as “Common” for New England survey results
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natural background noise to each scenario, we also superimposed a sequence of am-

bient cricket noises taken from a Macaulay audio sample on the sequence of bird

vocalizations (maximum cricket amplitude [dB] was <1% of peak birdsong ampli-

tude). The loudness of each vocalization was consistent among all species.

Our pool of 12 potential species was composed of 6 species pairs, each of which

shared qualitatively similar vocalizations (e.g. American Robin and Rose-breasted

Grosbeak; Robbins and Stallcup 1981, Table 3.1). Each member of a species pair

was classified as a ‘rare’ or ‘common’ variant according to the extent of its range in

the Maritimes Breeding Bird Atlas (2006–2010). Specifically, we used the number of

10 km × 10 km ‘atlas squares’ in which a species was present to determine relative

rarity, with the rare variant of the pair occurring in fewer squares than the common

variant (Table 3.1). We changed one rarity classification from “rare” to “common”

for Veerys detected by New England observers (n = 30/52 observers). This change

reflected its increased density in this more southern region (Bevier et al. 2005).

Thus, in these cases, one of the six species pairs contained only common variants.

Because detection events were not modeled as explicit choices between rare and

common variant pairs, but instead among ‘rare’ and ‘common’ species collectively

(see below), we did not expect this change to affect the quality of our inferences. In

addition, there was no significant difference between the distribution of skill levels

among Maritimes and New England observers which might otherwise bias detection

data (χ2
3 = 0.275, P = 0.965)

One member of each species pair was randomly assigned to half of the scenarios;

the second half of the scenarios featured the other member. In this way, no two

members of a species pair appeared together simultaneously. Hence, false positives

involving the species pairs could largely be interpreted as mistakes for the rarer or for

the common variant. All scenarios had six distinct vocalizations (representing one

member of each of the six species pairs), repeated three times each (Table 3.2). We

duplicated each scenario and alternated the duplicates randomly alongside the origi-

nals, for a total of 16 scenarios presented to each observer (Table 3.2). We informed

observers that every second scenario would be ‘scored’, and that correctly detecting

rarer species was worth more points than correctly detecting common species. We

then posted and regularly updated the top five high scores alongside user ID codes
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Table 3.2. Summary of experimental design of our internet-based survey. “Scenarios”
are the separate audio tracks played sequentially to the observers.

Item n

Scenarios 16 (8 unique × 2 for incentive treat-
ment)

Total Species 12 (6 vocalization group pairs × 2)
Number of scenarios in which a given species is
present

8 (4 × 2 for incentive treatment)

Species vocalizing per scenario 6
Discrete vocalizations per species, per scenario 3
Discrete vocalizations per scenario (all species) 18

on the survey website. Our intent was to create and measure the effect of an explicit

incentive to detect rare species on detection error rates. Observers were not told that

the scenarios were duplicated, and we assumed that the scenarios were too similar-

sounding and complex to be recognized as such. We did not expect this randomized,

alternating design to show any important learning-effects biases; nonetheless, we

controlled for any such systematic differences between earlier and later scenarios (see

below).

We traded off the statistical need to present a large number of scenario replicates

to our observers against the need to present realistic (longer) survey lengths. Our

survey length of 30 s was substantially shorter than that of typical roadside point

counts, which tend to last for 3 to 5 minutes, but roadside anuran survey research has

shown that most species detections occur within the first 60 s (Shirose et al. 1997).

Also, the species richness we presented was small per scenario (n = 6), and thus

arguably manageable under these constraints. Hence, we assume that the challenge

posed to our volunteer observers was appreciable, but not unreasonable.

Modeling details. — We defined a correct detection as occurring when a species

that was present in a scenario was reported as such, and false-positive detection as

occurring when a species that was not present in a scenario was similarly reported

as being present. The probability of making a correct detection for a given species

is equivalent to 1 minus the probability of making a nondetection error; here, we
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modeled correct detections in place of nondetections because the conceptual inter-

pretation is more intuitive. Rates of correct (and non-) detections vary independently

of false positives.

To determine the effect of species rarity on the incidence of false positives, we

first recognized that many ‘phantom’ species (sensu Bart and Schoultz 1984; Mc-

Clintock et al. 2010b) that did not appear in any scenario were nonetheless identified

repeatedly from the survey’s list of 38 candidate species (Table 3.3). As with the

‘playback’ (i.e. not-phantom) species pairs, we defined each phantom species as being

either rare or common so that their data records could be modeled. Here, we deter-

mined the relative rarity values for each phantom species again using the Maritimes

Breeding Bird Atlas detection records (2006–2010), but using the percentage of atlas

squares occupied by the most abundant of the ‘rare’ playback species (38.8%) as

the threshold value distinguishing ‘rare’ phantom species from ‘common’ phantom

species (Table 3.3). The maximum percentage of atlas squares occupied by ‘rare’

phantom species was 18.3%; the minimum percentage of atlas squares occupied by a

‘common’ phantom species was 61.4% (Table 3.3).

One phantom species (Eastern Phoebe) was common in the northeastern United

States compared to most Maritimes regions (Weeks Jr. 1994). Hence, we scored its

detection records as ‘rare’ if observations came from Maritimes survey participants

and ‘common’ if they came from New England survey participants. To simplify sta-

tistical analyses, we also arbitrarily discarded detection records for phantom species

detected < 7 times out of 4025 total detection records (Table 3.3). We also dis-

carded records from the single “Beginner”, because there was no replication of this

skill level.

We used generalized linear mixed models (‘GLMMs’) to determine expected prob-

abilities of correct detections and expected proportions of all detections that were

false positives. Generalized linear mixed models incorporate random effects struc-

tures that recognize group-level deviations from overall patterns (Venables and Rip-

ley 2002). We modeled correct detections and false-positive proportions as binomial

responses, and incorporated random effects structures that accounted for differences

in error rates among observers (both models) and species pairs (correct detection

model only). Our choice to model false positives as proportions of all detections
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Table 3.3. Species that were candidates for detection but not included in the scenario
recordings (‘phantom’ species). Rarity classes (Common or Rare) were assigned
to those species that were reported at least 7 times among 4025 species records
(n = 19 records or < 0.5% of the total). Rarity classes were assigned according
to the number of Maritimes Breeding Bird Atlas squares in which each species was
present (percentage of 1499 possible squares in parentheses); here, ‘rare’ species were
found in < 38.8% of atlas squares.

Common Name Scientific Name Rarity (Percent
MBBA squares)a

American Woodcock Scolopax minor
Barred Owl Strix varia
Belted Kingfisher Ceryle alcyon
Black-and-white Warbler Mniotilta varia Common (61.4)
Black-throated Green Warbler Setophaga virens
Common Grackle Quiscalus quiscula
Common Nighthawk Chordeiles minor
Common Yellowthroat Geothlypis trichas
Eastern Phoebe Sayornis phoebe Rare (18.3; M only)b

Eastern Towhee Pipilo erythrophthalmus
European Starling Sturnus vulgaris
Fox Sparrow Passerella iliaca Rare (11.1)
Great Horned Owl Bubo virginianus
Hairy Woodpecker Picoides villosus
Hermit Thrush Catharus guttatus Common (72.4)
Ovenbird Seiurus aurocapilla
Pine Warbler S. pinus Rare (4.8)
Red-eyed Vireo Vireo olivaceus Common (74.6)
Red-tailed Hawk Buteo jamaicensis
Rock Pigeon Columba livia
Scarlet Tanager Piranga olivacea Rare (6.2)
Eastern Whip-poor-will Caprimulgus vociferus
Willow Flycatcher Empidonax traillii Rare (1.9)
Wilson’s Warbler Cardellina pusilla Rare (14.3)
Yellow Warbler S. petechia
Yellow-rumped Warbler S. coronata Common (73.4)

aRarity and percent MBBA square values were calculated only for those phantom species detected

7 times or more among all observers and scenarios, because only data from these phantom species

were included in the predictive models.
b“M only” indicates species which are relatively rare in the Maritimes but common in New England

and thus scored as “Common” for New England survey results
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is consistent with previous studies (e.g. Simons et al. 2007; Alldredge et al. 2008;

McClintock et al. 2010a).

Each of the models of correct detections and false positives allowed us to estimate

error rates while measuring the influence of several predictors. We used the GLMMs

to model (1) how the rates of each type of error varied among rare and common

species; (2) the effect of the incentive treatment rewarding the correct detection of

rare species over common ones; (3) how observer skill was related to error rates;

and (4) any skill- and incentive-dependent differences (interactions) in the detection

of species of each rarity class. To correct for skill-dependent changes in observer

ability over the course of the survey (e.g. learning, changes in interest level), we also

included (5) the chronological scenario number and its interaction with observer skill

as additional covariates.

To estimate the probability of making a correct detection for a given species rarity

class and scenario, we built a dataset consisting of a record for each correct detection

(1 = the species was present and detected) and each nondetection (0 = the species

was present but not detected), and excluding all false positives. We used a total of

4416 records of correct detections (n = 2864) and nondetections (n = 1552).

We modeled the expected probability of making a correct detection for a given

species on a given scenario as a mixed-effects Bernoulli process using the package lme4

in R version 2.13.0 (Bates and Maechler 2010; R Development Core Team 2011). In

this model, in addition to recognizing differences in correct detection probability

among observers as random intercepts, we also recognized variation in mean correct

detection probability between species pair-groups, given that some species’ calls are

more easily detected than others (Alldredge et al. 2007a):

logit(P (Yijkl = 1)) = β0 + β1 ·Rarityi + β2 · Skillj + β3 · Scenariok
+ β4 · Skillj : Scenariok + β5 · Skillj : Rarityi + β6 · Incentivek

+ β7 ·Rarityi : Incentivek + b1j + b2l (3.1)

where Yijkl = 1 when a species is correctly scored as being present; i = 1 of 2 rarity

classes; j = 1 . . . , 52 observers; k = 1, . . . , nj scenarios completed per observer; and

l = 1, . . . , 6 species pairs. Random effects b1j and b2l are independently and normally
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distributed intercepts for observers and for species pairs, respectively, with means

zero and with standard deviations estimated from the data.

We then calculated the proportion of all detections for each observer-within-

scenario that were false positives for each of the rare and common species groups.

For instance, if observer A, listening to scenario 1 incorrectly reported the presence

of two rare species and one common species, and correctly reported four common

species and three rare species, his false-positive proportions would be 0.2 and 0.1

for rare and common species, respectively. In total, we modeled 1429 false positive

proportions. We estimated the proportion of false positives per rarity class per

scenario as a mixed-effects binomial process with the same predictors as equation

3.1, but here with a simpler random-effects structure, as follows:

logit(P (Yijk = 1)) = β0 + β1 ·Rarityi + β2 · Skillj + β3 · Scenariok
+ β4 · Skillj : Scenariok + β5 · Skillj : Rarityi + β6 · Incentivek

+ β7 ·Rarityi : Incentivek + b1j (3.2)

where Yijk is the proportion of all detections that were incorrect (false-positive) for a

given observer, scenario and species rarity class; i = 1 of 2 rarity classes; j = 1 . . . , 52

observers; k = 1, . . . , nj scenarios completed per observer; and b1j is a normally

distributed random intercept for observers with mean zero and standard deviation

estimated from the data.

To measure and model confidence levels among survey participants, we first asked

observers at the end of each scenario if they believed that they had correctly ac-

counted for all species present. If they answered ‘yes’, we considered that scenario

and its responses to be ‘confident’. We then calculated the proportion of scenarios

completed by each observer that were confident.

We also calculated the proportion of overconfident scenarios. We defined an

overconfident scenario as one in which an observer made at least one detection error

while also declaring confidence. This measure thus indicated the probability that a

given observer’s declaration of confidence was incorrect.

Using generalized linear models (GLMs), we modeled both the incidence of de-

clared confidence, and the incidence of overconfidence as functions of observer skill.
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Our confidence data were collected at a different resolution than our detection data;

here, each observer contributed one confidence record per scenario. Accordingly, we

built the following models:

logit(P (Y1·ij = 1)) = β0 + β1 · Skilli (3.3)

logit(P (Y2·ik = 1)) = β0 + β1 · Skilli (3.4)

where Y1·ij = 1 occurs when a participant declares that a particular survey scenario

was scored entirely correctly (‘declared confidence’) and Y2·ik = 1 occurs when a

declaration of confidence is incorrect (‘overconfidence’); i = 1 . . . , 52 observers; j =

1, . . . , ni scenarios completed per observer; and k = 1, . . . ,mi confident scenarios per

observer.

All models were checked for fit quality by examining conventional or binned

residual plots (Gelman and Hill 2007), and results were compared visually with

plotted raw data to check for consistency. Unless otherwise specified, results are

presented as means ± SD.

3.4 Results

We modeled data from observers representing three self-reported skill levels:

“Moderate” (n = 17), “Advanced” (n = 26) and “Expert” (n = 9), from the Cana-

dian provinces of New Brunswick, Nova Scotia and Prince Edward Island and the

New England states of Maine, New Hampshire and Vermont.

Most observers (80.8%) completed all 16 scenarios (mean number of scenarios

completed = 14.15 ± 3.31). We suspect that those who failed to complete all 16

scenarios largely did so in error, rather than out of fatigue or disinterest. This is

because the survey was composed of four webpages containing four scenarios each,

and most of the missed scenarios were in groups of four sequential scenarios located

on the same web page.

Observers with higher skill levels were significantly more likely to correctly detect

any given species than observers of lower skill levels (Figure 3.1A and Table 3.4).

Across all skill levels, all observers were also equally and significantly less likely to
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Table 3.4. Factors that affected the probability of correctly detecting a species on a
given scenario (Equation 3.1; n = 4416 correct and nondetections distributed among
52 observers). In this binomial model, σb1 , the standard deviation about the observer
random effects, is 0.72 and σb2 , the standard deviation about the species-pair random
effects, is 1.02. All values are on the logit scale.

Factor Estimate SE z value P

(Intercept) -0.516 0.547 -0.943 0.345
Rarity -0.576 0.228 -2.531 0.011

Skill 0.820 0.198 4.143 <0.001
Scenario 0.017 0.023 0.727 0.467
Incentive -0.046 0.102 -0.454 0.650

Skill:scenario 0.001 0.012 0.115 0.908
Rarity:skill -0.039 0.115 -0.337 0.736

Rarity:incentive -0.045 0.147 -0.307 0.759

correctly detect rare species than common ones (Figure 3.1A and Table 3.4). Neither

the incentive nor the scenario number was significantly related to correct detection

rates among and within observers and skill levels (Table 3.4).

The expected proportion of species correctly detected per scenario for each skill

level ranged from 0.61 (95% CI: 0.40-0.79; Moderate) to 0.89 (95% CI: 0.77-0.95;

Expert) for common species, and from 0.46 (95% CI: 0.27-0.67; Moderate) to 0.81

(95% CI: 0.63-0.91; Expert) for rare species (Figure 3.1A). Subtracting these values

from 1.0 gives a set of nondetection probabilities that range from 0.11 (Expert skill,

common species) to 0.54 (Moderate skill, rare species).

Summed across both species rarity groups, the proportion of false positives de-

clined significantly with increasing skill level (Table 3.5). However, skill level also

interacted significantly with species rarity. Here, moderately-skilled observers falsely

detected common species more often than rare species, whereas experts falsely de-

tected rare species more often than common ones (Figure 3.1B and Table 3.5). Again,

neither the incentive nor the scenario number was significantly related to the occur-

rence of false positives across or within skill levels (Table 3.5).

The expected proportion of false positives per scenario for each skill level ranged

from 0.061 (95% CI: 0.043-0.085; Expert) to 0.218 (95% CI: 0.170-0.280; Moderate)

for common species, and from 0.119 (95% CI: 0.087-0.164; Expert) to 0.120 (95%
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Table 3.5. Factors that affected the number of false positives for a given scenario
and species rarity group (Equation 3.2, n = 1424 counts of false positives distributed
among 52 observers). In this binomial model, σb1 , the standard deviation about the
observer random effects, is 0.41. All values are on the logit scale.

Factor Estimate SE t value P

(Intercept) -0.893 0.287 -3.114 0.002
Rarity -1.228 0.224 -5.473 <0.001

Skill -0.598 0.149 -3.997 <0.001
Scenario 0.0003 0.022 0.016 0.987
Incentive 0.065 0.101 0.651 0.515

Skill:scenario -0.004 0.012 -0.370 0.711
Rarity:skill 0.632 0.112 5.649 <0.001

Rarity:incentive -0.044 0.147 -0.302 0.762

CI: 0.091-0.157; Moderate) for rare species (Figure 3.1B).

A tabular summary of the correct detection and false-positive frequencies, indexed

by species and observer skill level, can be found in Table 3.6.
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Table 3.6. Summary of correct detection and false-positive data, grouped by species and observer skill level. ‘Correct’ count
data are the total number of correct detections for a given species among all observers and scenarios (‘observer-scenarios’).
The proportion correct (in parentheses) is the number of correct detections divided by the total number of times that species
was played among all observer-scenarios. ‘False positive’ count data are the total number of false positives for a given species
among all observer-scenarios. The proportion of false positives per scenario (in parentheses) is the number of false positives
divided by the total number of observer-scenarios. This value is different from the modeled proportion of false positives per
scenario (results here are summarized across multiple observers and scenarios).

Moderate

(248 observer-scenarios)

Advanced

(372 observer-scenarios)

Expert

(116 observer-scenarios)

Group Speciesa Rarity Correct

(Proportion

Correct)

False Positive

(per Scenario)

Correct

(Proportion

Correct)

False Positive

(per Scenario)

Correct

(Proportion

Correct)

False-positive

(per scenario)

A ALFL C 89 (0.7) 17 (0.07) 167 (0.86) 3 (0.01) 53 (0.95) 0 (0)

A OSFL R 96 (0.8) 8 (0.03) 171 (0.97) 7 (0.02) 60 (1) 4 (0.03)

B AMRO C 87 (0.69) 48 (0.19) 134 (0.71) 55 (0.15) 57 (0.92) 12 (0.1)

B RBGR R 55 (0.45) 8 (0.03) 88 (0.48) 9 (0.02) 41 (0.76) 2 (0.02)

C BCCH C 116 (0.92) 34 (0.14) 179 (0.95) 35 (0.09) 56 (0.9) 1 (0.01)

C BOCH R 52 (0.43) 6 (0.02) 100 (0.55) 2 (0.01) 39 (0.72) 3 (0.03)

a See last page of table for abbreviations

b Rare only in the Maritimes provinces

Continued on next page
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Table 3.6, continued

Moderate

(248 observer-scenarios)

Advanced

(372 observer-scenarios)

Expert

(116 observer-scenarios)

Group Speciesa Rarity Correct

(Proportion

Correct)

False Positive

(per Scenario)

Correct

(Proportion

Correct)

False Positive

(per Scenario)

Correct

(Proportion

Correct)

False-positive

(per scenario)

D DEJU C 32 (0.25) 28 (0.11) 70 (0.37) 39 (0.1) 26 (0.42) 21 (0.18)

D PAWA R 25 (0.2) 14 (0.06) 62 (0.34) 25 (0.07) 21 (0.39) 13 (0.11)

F LISP R 50 (0.39) 16 (0.06) 101 (0.53) 36 (0.1) 54 (0.84) 15 (0.13)

F SOSP C 53 (0.44) 5 (0.02) 118 (0.65) 6 (0.02) 48 (0.92) 3 (0.03)

E SWTH C 63 (0.5) 8 (0.03) 146 (0.76) 20 (0.05) 54 (0.95) 0 (0)

E VEER Rb 89 (0.73) 19 (0.08) 153 (0.85) 16 (0.04) 59 (1) 1 (0.01)

Phantom BAWW C 2 (0.01) 1 (0) 0

Phantom EAPH Rb 22 (0.09) 5 (0.01) 0

Phantom FOSP R 3 (0.01) 32 (0.09) 1 (0.01)

Phantom HETH C 34 (0.14) 12 (0.03) 0

Phantom PIWA R 23 (0.09) 34 (0.09) 10 (0.09)

Phantom REVI C 4 (0.02) 14 (0.04) 0

Phantom SCTA R 14 (0.06) 26 (0.07) 7 (0.06)

a See last page of table for abbreviations

b Rare only in the Maritimes provinces

Continued on next page
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Table 3.6, continued

Moderate

(248 observer-scenarios)

Advanced

(372 observer-scenarios)

Expert

(116 observer-scenarios)

Group Speciesa Rarity Correct

(Proportion

Correct)

False Positive

(per Scenario)

Correct

(Proportion

Correct)

False Positive

(per Scenario)

Correct

(Proportion

Correct)

False-positive

(per scenario)

Phantom WIFL R 11 (0.04) 14 (0.04) 1 (0.01)

Phantom WIWA R 5 (0.02) 23 (0.06) 12 (0.1)

Phantom YRWA C 7 (0.03) 13 (0.03) 5 (0.04)

a Abbreviations: ALFL = Alder Flycatcher (Empidonax alnorum); OSFL= Olive-sided Flycatcher (Contopus cooperi); AMRO = American

Robin (Turdus migratorius); RBGR = Rose-breasted Grosbeak (Pheucticus ludovicianus); BCCH = Black-capped Chickadee (Poecile atricapillus);

BOCH = Boreal Chickadee (P. hudsonicus); DEJU = Dark-eyed Junco (Junco hyemalis); PAWA = Palm Warbler (Setophaga palmarum); SWTH =

Swainsons Thrush (Catharus ustulatus); VEER = Veery (C. fuscescens); SOSP = Song Sparrow (Melospiza melodia); LISP = Lincolns Sparrow (M.

lincolnii), BAWW = Black-and-white Warbler (Mniotilta varia); EAPH = Eastern Phoebe (Sayornia phoebe); FOSP = Fox Sparrow (Passerella

iliaca); HETH = Hermit Thrush (C. guttatus); PIWA = Pine Warbler (S. pinus); REVI = Red-eyed Vireo (Vireo olivaceus); SCTA = Scarlet

Tanager (Piranga olivacea); WIFL = Willow Flycatcher (E. traillii); YRWA = Yellow-rumped Warbler (S. coronata)

b Rare only in the Maritimes provinces
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The proportion of scenarios for which an observer declared confidence increased

significantly with self-assessed observer skill (β1 = 1.376 ± 0.148, P < 0.001; Equa-

tion 3.3 and Figure 3.2A), with model-estimated values increasing from 0.079 (Mod-

erate; 95%CI: 0.06-0.11) to 0.575 (Expert; 95%CI: 0.50-0.65). Among those sur-

veyors who declared confidence on at least one survey scenario (n = 28), there

was no significant difference in the amount of overconfidence among skill levels

(β1 = −0.366 ± 0.288, P = 0.204; Equation 3.4 and Figure 3.2B). Model-estimated

proportions of overconfident scenarios (overall mean 0.73) ranged from 0.80 (Mod-

erate; 95%CI: 0.64-0.90) to 0.66 (Expert; 95%CI: 0.54-0.76); this difference was not

statistically significant.

3.5 Discussion

We found significant relationships between detection error rates and each of ob-

server skill and species rarity. In our models, the probability of making a nondetection

error decreased with observer skill and among common species, as did the propor-

tion of responses that were false positives. A significant interaction between skill

and species rarity for false positives also indicated that among moderately-skilled

observers, the majority of false positives were of common species, and among ex-

perts, the majority of false positives were of rare species. We also found no evidence

that an incentive to detect rare species affected error rates. Finally, observers of

all skill levels were overconfident, with 73% of scenarios completed by confident ob-

servers of any skill level having at least one error. Below, we address each of these

findings in turn.

The range of observed nondetection error probabilities (0.11–0.54) is consistent

with the results from similar experiments. For instance, Alldredge et al. (2007a) cal-

culated values ranging from 0.17 to 0.59, depending on the species and singing rate.

Similarly, Simons et al. (2007) found probabilities ranging from 0.26 to 0.68 overall,

and Bart (1985) reported a probability of 0.30 on average. Using unretouched field

recordings, Campbell and Francis (2011) also reported a value of 0.23. Contributing

to these errors were slower singing rates (Alldredge et al. 2007a), louder background

noise (Simons et al. 2007), and increased local species rarity (Campbell and Francis
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2011). Our research shows that, controlling for similarity in vocalizations, increas-

ing rarity at the population scale and decreasing observer skill are also important

predictors of species detection.

The observed frequency of false positives (0.06–0.22) was also consistent with

past research. For instance, Lotz and Allen (2007) found similar proportions of

scenarios that had at least one incorrectly detected anuran (in the absence of similar-

sounding equivalents; 0.19 and 0.238, two regions), and Campbell and Francis (2011)

found that ∼14% of bird detection records could not be confirmed from simultaneous

field recordings, which suggests that they were false positives. Our results were,

however, higher than some previously-published rates – Simons et al. 2007 (0.01–

0.04), Alldredge et al. 2008 (0–0.01), and McClintock et al. 2010a (0.05) – possibly

because we had ambiguous candidate species broadcast over a relatively short period

(i.e. higher difficulty), and likely a lower average observer skill level. Although Royle

and Link (2006) also found the probabilities of detecting a bird species, given its

absence (‘p10’) to range from 0.007 to 0.165, this statistic differs from what has been

calculated from most studies, including ours (i.e. proportion of all detections that

are incorrect), and so is not directly comparable. Nonetheless, both our results and

this related observation suggest that false-positive rates in avian field detection data

are nontrivial.

Several previous studies have shown significant differences among individual ob-

servers in their ability to detect and identify animal sounds (e.g. Shirose et al. 1997;

Link and Sauer 1998; McLaren and Cadman 1999; Alldredge et al. 2007a). However,

few have found relationships specifically tied to observer skill, probably because most

used a homogeneous group of expert participants who are all highly competent in

spite of differences in their amateur or professional status, or in their high absolute

levels of experience (e.g. Genet and Sargent 2003; Lotz and Allen 2007; McClintock

et al. 2010a). Conversely, our more heterogeneous group demonstrated expected de-

creases in detection errors with increasing observer skill. Our use of self-assessment

of observer skill therefore appeared to successfully capture real differences in ability;

this suggests that self-assessment can be an efficient alternative to quizzes or other

more elaborate testing approaches (e.g. Genet and Sargent 2003; McClintock et al.

2010a).
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Not surprisingly, we found that rare species were correctly identified less often

than their common variants among all skill levels (Figure 3.1A and Table 3.4). Inter-

estingly, more skilled observers tended to submit false-positive records of rare species

more often than common ones, whereas the reverse was the case for moderately-

skilled observers, who incorrectly detected common species more often than rare

species (Figure 3.1B and Table 3.5). One explanation for this interaction might be

that more experienced observers have a greater familiarity with rarer species than

novices and therefore may be aware of a greater number of alternatives for a given

vocalization (e.g. Faanes and Bystrak 1981).

These results further suggest that naively-modeled data collected mostly from ex-

perts may overestimate the occupancy or abundance of rare species. Where similar-

sounding rare and common species are not present simultaneously, the nondetec-

tion errors associated with these false positives would also underestimate occupancy

or abundance of common species. Conversely, surveys using less-skilled volunteers

would overestimate common species occupancy and underestimate occupancy for

similar-sounding rare species. Hence, our data support existing evidence that hetero-

geneous mixtures of surveyor skill levels can lead to biased detection and occupancy

estimates (e.g. Fitzpatrick et al. 2009).

In light of these detection biases, survey designers must control for skill level

among participants (e.g. Kepler and Scott 1981; Genet and Sargent 2003), incorpo-

rating rare-species interaction effects as appropriate. This is important when work-

ing with both single-visit and single-observer designs (present study), and repeated-

sampling designs (the preferred approach; e.g. Fitzpatrick et al. 2009). Independent

of any skill effects, the nontrivial nondetection and false-positive rates we observed

also emphasize that neither form of error can be ignored.

Contrary to our expectations, we found no evidence that an incentive to cor-

rectly detect rare species contributed to differences in detection error rates across

or within skill levels (Tables 3.4 and 3.5). We therefore have no evidence that the

intrinsically competitive designs of surveys such as eBird (Sullivan et al. 2009) –

which publishes observers’ names alongside their detection records and encourages

the detection of rarities – or surveys with informally competitive cultures such as

the Audubon Christmas Bird Count (Preston 1958; Butcher et al. 1990; Dunn et al.
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2005; Bonta 2010) – which encourages the detection of large numbers of species –

could introduce bias and affect error rates. However, our survey design offered only a

weak incentive – in particular, no guarantee of publicity among one’s peers – hence,

we suggest that these results be regarded as preliminary.

Finally, we found that observers of higher self-assessed skill levels tended to be

more confident about the correctness of their identifications than less-skilled ob-

servers (Figure 3.2A). These more-skilled observers also tended to have fewer false-

positive and more correct responses (Figure 3.1). Thus, the higher confidence of

experts was justified in principle. However, our specific measurement of observer

confidence was whether observers believed that they had made zero detection errors

on a given survey scenario, and this specific outcome was actually quite rare. We

found a consistent overconfidence among observers of all skill levels (Figure 3.2B).

Thus, an apparent increase in the level of observer confidence with increasing self-

assessed skill seems to have outpaced the proportionately smaller increase in actual

ability, causing the level of overconfidence to remain consistent across observers of

different skill levels.

A promising model-based approach to account for the nontrivial instances of

both nondetection errors and false positives in detection survey data requires that

observers provide a measure of the reliability of each species detection (Miller et al.

2011). Because we found widespread levels of overconfidence in our dataset, we

believe that a subjective declaration of certainty (e.g. a rating of observer confidence

from 1 to 10; Larrick et al. 2007) for use as such a reliability measure may not be

appropriate, and more objective measures such as the anuran chorus-intensity values

used by Miller et al. (2011) are preferable. For bird surveys, observers could also

note the call type (e.g. the chick-burr call for a Scarlet Tanager [a highly-confident

identification] vs. its less-distinctive, Robin-like song, a less-confident identification),

or more generally, the type of detection method used (e.g. heard vs. seen; Miller et al.

2011). Recording such detailed detection evidence is not an impractical option, as

it has already been successfully implemented on broad scales in several Canadian

breeding bird atlases (e.g. the Maritimes Breeding Bird Atlas 2006-2010), which

require observers to classify detections using a range of breeding evidence codes.

Another important complementary strategy is to emphasize to volunteers the value
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of being conservative with one’s species identifications, for instance recording no

observations when in doubt (sensu McClintock et al. 2010a), which can reduce the

incidence of false positives arising from overconfidence.

In sum, our results show that an observer’s state of mind has important impli-

cations for detection errors. Rates of nondetections and false positives vary with

species rarity and with observer skill, indicating skill-dependent biases regarding the

detection of rare species. Furthermore, overconfidence may be an important factor

contributing to these errors. Therefore, approaches to managing these differences

that focus on controlling for differences in observer skill and encouraging observer

objectivity should improve survey data quality. We hope that this research leads

to increasingly fruitful use of the valuable, ongoing contributions of thousands of

volunteers.
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Chapter 4

Aging Observers and Long-Term Avian Monitoring:

Declining Detection Abilities and Population Trajectory

Estimates

4.1 Abstract

Long-term wildlife monitoring often involves volunteer observers conducting an-

nual roadside call counts. However, when a volunteer participates for many years,

age-related changes to his or her physiology – in particular declines in hearing ability

– might add negative biases to apparent population trajectories. Here, we used in-

dependent bird survey data from each of the Atlas of the Breeding Birds of Ontario

(‘OBBA’) and the North American Breeding Bird Survey (‘BBS’) to show system-

atic declines in detection probabilities (OBBA) and expected counts (BBS) with

increasing observer age. In a case study, we then showed how a failure to account

for the continuous effects observer age in a model of Golden-crowned Kinglet (Reg-

ulus satrapa) BBS count data led to more-negative population trajectory estimates.

We also tested for the importance of age-related hearing loss, which tends to affect

higher frequencies at earlier ages, by asking if our observed detection declines were

greater for species with higher call frequencies. We found some evidence of this ef-

fect for species with peak vocalization frequencies above 6 kHz. Among these same

species, we also found that previously-published, long-term Canadian bird population

trend estimates became increasingly negative as vocalization frequencies increased

above 6 kHz. Taken together, our results suggest that observer senescence effects

are important influences on long-term survey data quality, and that the mechanisms

underlying this process include both age-related hearing loss and other physiological

changes. Where possible, we recommend that survey designers and modelers account

for observer age in future work.

52
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4.2 Introduction

With support from thousands of volunteer observers, a variety of ongoing, long-

term ecological monitoring projects have dramatically improved our ability to address

important scientific questions (Silvertown 2009; Peters 2010). With data that can

span decades and continents (Silvertown 2009), these projects have become impor-

tant components of wildlife population assessment and management. For instance,

data from the annual North American Breeding Bird Survey (‘BBS’ [1966-present];

Peterjohn 1994) are used as part of avian species-at-risk assessments (Greenberg and

Droege 1999; Dunn 2002) and have also helped to characterize the broad-scale effects

of introduced species (Cooper et al. 2007), diseases (LaDeau et al. 2007) and climatic

variation (Link and Sauer 2007; Link et al. 2008; Wilson et al. 2011). Similar projects

have also helped to describe the distributions of anurans (Blaustein et al. 1994; Lotz

and Allen 2007), invertebrates (Kremen et al. 2011), and marine life (Goffredo et al.

2010), among others. As with any scientific study, however, the quality of the result-

ing inferences depends on the project’s ability to control for errors that mask true

biological patterns.

Missed detections, which occur when an animal is present but not detected, are

one such class of error affecting monitoring projects (MacKenzie et al. 2005; Royle

and Link 2006) and can be caused by many environmental (e.g. Griffith et al. 2010)

and observer-specific (e.g. Sauer et al. 1994; McLaren and Cadman 1999; Alldredge

et al. 2007b, and see Chapter 3) factors. With present statistical techniques, survey

designs that involve repeated sampling, and supplementary data collection, mod-

elers can estimate and correct for missed detection rates directly (Royle and Link

2006; Nichols et al. 2009; Miller et al. 2011, but see Campbell and Francis 2011).

Unfortunately, many point count surveys – including most BBS routes – lack this

ideal design, and so model-based covariates are often used to account for important

sources of variation in missed detection rates (e.g. Link and Sauer 2002). With this

approach, if all sources of error are recognized as covariates, the ‘corrected’ counts

can then be used as unbiased indices of overall population size (Johnson 2008).

In practise, however, some of these important covariates might be missed. For

instance, the current approach to analyzing BBS data taken by the United States

Geological Service (e.g. Link and Sauer 2002; Sauer and Link 2011) does not explicitly
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account for changes in detection ability within particular observers over time (except

for a first-year ‘start-up’ effect; Kendall et al. 1996; Link and Sauer 2002). Hearing

loss is one important physiological reality that changes an observer’s ability to detect

sounds over time (Gates and Mills 2005), and BBS data consist predominantly of

aural detections (Cyr 1981; Faanes and Bystrak 1981). Therefore, if declines in

hearing ability as participants age are an important source of missed detection errors,

BBS models in their present form could in fact be biased.

Several studies have already argued that changes in observer hearing ability might

bias current models of bird species counts (e.g. Faanes and Bystrak 1981; Ramsey and

Scott 1981; Emlen and DeJong 1992; Simons et al. 2007). However, few have tested

for such a pattern using field data, and to our knowledge, only Link and Sauer (1998)

considered data from multiple observers. In this case, the authors predicted a “43%

diminution of counts” for Blue-gray Gnatcatchers (Polioptila caerulea) among BBS

observers who have conducted surveys for more than 20 years. To our knowledge, this

“observer senescence effect” has not been further explored in the published literature.

Hence, our understanding of the biases resulting from hearing loss and other such

observer senescence phenomena in models of long-term bird survey data is still quite

poor.

Age-related hearing loss normally begins after age 30 for both men and women,

and includes a broadening range of frequencies beginning above 8 kHz, and progress-

ing to frequencies as low as 1 kHz by age 70 (Figure 4.1; Mayfield 1966; Pearson

et al. 1995; International Organization for Standardization 2000; Gates and Mills

2005; Van Eyken et al. 2007). A second, less-common form of hearing loss involves

frequencies in a ‘notched’ range from 3 to 6 kHz (Nondahl et al. 2009; Osei-Lah and

Yeoh 2010), which tends to appear more frequently with age (Toppila et al. 2001).

This ‘notched’ hearing loss is often associated with noise exposure, and its increased

prevalence among older people is likely a function of the cumulative effects of noise

and other stressors. Both forms of hearing loss are permanent (Gates et al. 2000;

Wiley et al. 2008; Cruickshanks et al. 2010), and they encompass the frequencies

produced in many bird vocalizations (Mayfield 1966; Emlen and DeJong 1992), in-

cluding a group of warblers, nuthatches and flycatchers which we studied here (Table

4.1).
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Figure 4.1. International standard for normal changes in hearing thresholds (median
values) at standard pure-tone test frequencies (1, 4, 6, and 8 kHz) among (A) men
and (B) women of increasing age. Shaded areas are 95% quantiles. Curves are derived
from models specified in International Organization for Standardization (2000).
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Table 4.1. Table of species used in the various hearing-loss analyses. Standard abbreviations are taken from Klimkiewicz and
Robbins (1978). Data source is indicated by an asterisk in the corresponding column. Vocalization frequency information,
including peak vocalization frequency (Hz) and power spectrum standard deviation (‘SD’, as an index of call heterogeneity)
are also provided. Frequency range and heterogeneity classifications are also provided, where low frequencies are less than
3 kHz, ‘notch’ frequencies (corresponding to the audiometric notch related to noise-induced hearing loss) are between 3
kHz and less than 6 kHz, medium frequencies are between 6 and less than 7 kHz, and high frequency calls exceed 7 kHz.
Heterogeneous vocalizations are in the upper 50% quantile of standard deviation values for a broader set that includes 19
additional, unmodeled species (not shown).

Species Abbrev. OBBA BBS

(raw)

USGS

(BBS)

trend

CWS

(BBS)

trend

Peak Fre-

quency (Hz)

SD Class

Red-breasted Nuthatch RBNU * * * * 2670 514.22 Low Monotone

White-breasted Nuthatch WBNU * * * * 2756 329.45 Low Monotone

Brown-crested Flycatcher BCFL * 2412 717.27 Low Heterogeneous

Great Crested Flycatcher GCFL * * * 2584 821.43 Low Heterogeneous

Alder Flycatcher ALFL * * * 4307 646.83 Notch Monotone

Ash-throated Flycatcher ATFL * * 3101 319.57 Notch Monotone

Black-throated Gray Warbler BTGW * 5082 618.78 Notch Monotone

Brown-headed Nuthatch BHNU * * 4393 576.00 Notch Monotone

Cassin’s Kingbird CAKI * 3273 606.45 Notch Monotone

Common Yellowthroat COYE * * * * 4565 593.58 Notch Monotone

Continued on next page



57

Table 4.1, continued

Species Abbrev. OBBA BBS

(raw)

USGS

(BBS)

trend

CWS

(BBS)

trend

Peak Fre-

quency (Hz)

SD Class

Eastern Phoebe EAPH * * * * 4823 432.01 Notch Monotone

Eastern Wood-Pewee EAWP * * * * 4048 475.55 Notch Monotone

Grace’s Warbler GRWA * 3876 489.64 Notch Monotone

Gray Flycatcher GRFL * 3790 678.03 Notch Monotone

Kentucky Warbler KEWA * * 4910 684.07 Notch Monotone

Lucy’s Warbler LUWA * * 5512 630.58 Notch Monotone

Olive-sided Flycatcher OSFL * * * * 3273 523.34 Notch Monotone

Orange-crowned Warbler OCWA * * * * 5082 562.35 Notch Monotone

Pine Warbler PIWA * * * * 4221 532.83 Notch Monotone

Pygmy Nuthatch PYNU * * * 3790 317.78 Notch Monotone

Say’s Phoebe SAPH * * * 3531 453.42 Notch Monotone

Scissor-tailed Flycatcher STFL * 3704 623.82 Notch Monotone

Swainson’s Warbler SWWA * * 4996 660.03 Notch Monotone

Vermilion Flycatcher VEFL * * 4048 620.00 Notch Monotone

Western Wood-Pewee WWPE * * * 3445 405.60 Notch Monotone

Yellow-bellied Flycatcher YBFL * * * 4134 646.14 Notch Monotone

Acadian Flycatcher ACFL * * 4823 755.32 Notch Heterogeneous

Continued on next page
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Table 4.1, continued

Species Abbrev. OBBA BBS

(raw)

USGS

(BBS)

trend

CWS

(BBS)

trend

Peak Fre-

quency (Hz)

SD Class

American Redstart AMRE * * * * 5943 915.55 Notch Heterogeneous

Black-throated Blue Warbler BTBW * * * 4221 713.75 Notch Heterogeneous

Black-throated Green Warbler BTGW * * 4393 905.87 Notch Heterogeneous

Black Phoebe BLPH * * 5082 951.26 Notch Heterogeneous

Canada Warbler CAWA * * * * 5857 830.75 Notch Heterogeneous

Cerulean Warbler CRWA * * * 4221 879.96 Notch Heterogeneous

Chestnut-sided Warbler CSWA * * * * 5340 1101.86 Notch Heterogeneous

Connecticut Warbler COWA * * 4996 1100.18 Notch Heterogeneous

Dusky Flycatcher DUFL * * * 4910 763.74 Notch Heterogeneous

Hammond’s Flycatcher HAFL * * * 5857 973.81 Notch Heterogeneous

Hermit Warbler HEWA * * 5168 919.93 Notch Heterogeneous

Hooded Warbler HOWA * * * 4048 761.85 Notch Heterogeneous

Louisiana Waterthrush LOWA * * 4565 796.63 Notch Heterogeneous

MacGillivray’s Warbler MGWA * * * 4996 708.54 Notch Heterogeneous

Magnolia Warbler MAWA * * * * 4910 1283.08 Notch Heterogeneous

Mourning Warbler MOWA * * * * 3962 891.97 Notch Heterogeneous

Northern Waterthrush NOWA * * * * 4565 1111.92 Notch Heterogeneous

Continued on next page
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Table 4.1, continued

Species Abbrev. OBBA BBS

(raw)

USGS

(BBS)

trend

CWS

(BBS)

trend

Peak Fre-

quency (Hz)

SD Class

Palm Warbler PAWA * * * * 3618 840.98 Notch Heterogeneous

Prairie Warbler PRWA * * 5340 855.07 Notch Heterogeneous

Ruby-crowned Kinglet RCKI * * * * 3790 1144.54 Notch Heterogeneous

Townsend’s Warbler TOWA * * * 5512 860.07 Notch Heterogeneous

Virginia’s Warbler VJWA * * 5082 696.80 Notch Heterogeneous

Western Kingbird WEKI * * * 3618 1004.12 Notch Heterogeneous

Willow Flycatcher WIFL * * * 3618 693.10 Notch Heterogeneous

Wilson’s Warbler WIWA * * * 5771 1122.54 Notch Heterogeneous

Yellow-breasted Chat YBCH * * * 3876 1212.40 Notch Heterogeneous

Yellow-rumped Warbler YRWA * * * 4307 832.30 Notch Heterogeneous

Yellow-throated Warbler YTWA * * 5857 732.75 Notch Heterogeneous

Yellow Warbler YEWA * * * * 5340 889.48 Notch Heterogeneous

Black-and-white Warbler BAWW * * * * 6718 663.48 Medium Monotone

Blue-winged Warbler BWWA * * * * 6632 591.23 Medium Monotone

Brown Creeper BRCR * * * * 6977 679.02 Medium Monotone

Cedar Waxwing CEWA * * * * 6891 314.65 Medium Monotone

Golden-winged Warbler GWWA * * * * 6029 424.40 Medium Monotone

Continued on next page
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Table 4.1, continued

Species Abbrev. OBBA BBS

(raw)

USGS

(BBS)

trend

CWS

(BBS)

trend

Peak Fre-

quency (Hz)

SD Class

Worm-eating Warbler WEWA * * 6546 514.35 Medium Monotone

Cordilleran Flycatcher COFL * 6460 973.74 Medium Heterogeneous

Eastern Kingbird EAKI * * * * 6202 1171.83 Medium Heterogeneous

Least Flycatcher LEFL * * * * 6718 1276.71 Medium Heterogeneous

Nashville Warbler NAWA * * * * 6202 961.56 Medium Heterogeneous

Northern Parula NOPA * * * * 6891 786.68 Medium Heterogeneous

Ovenbird OVEN * * * * 6202 991.24 Medium Heterogeneous

Bay-breasted Warbler BBWA * * * * 7321 490.08 High Monotone

Blackpoll Warbler BPWA * * * 8269 257.59 High Monotone

Cape May Warbler CMWA * * * * 7580 375.51 High Monotone

Golden-crowned Kinglet GCKI * * * * 7235 680.00 High Monotone

Blackburnian Warbler BLWA * * * 7666 828.64 High Heterogeneous

Prothonotary Warbler POWA * * 7494 1213.31 High Heterogeneous

Tennessee Warbler TEWA * * * * 8958 1216.47 High Heterogeneous
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In the BBS, which is a large and influential source of North American bird popu-

lation data (Sauer and Link 2011), the majority of observers are over 45 years of age

(Figure 4.9; and see Wiedner and Kerlinger 1990; La Rouche 2001; Downes 2004;

Carver 2009), and they tend to survey routes repeatedly for many years. There

has also been an increase in the average number of years served on the BBS since

data collection began in 1966, which may indicate that average observer age has

also increased (Figure 4.2). Given the age-associated changes in human hearing, we

hypothesize that this modern, aging population of BBS volunteers may be detecting

fewer birds because of an inability to hear them, independent of real ecological pat-

terns. If so, observed population declines derived from these data may in fact reflect

reduced detection abilities, independent of any real biological change. With thou-

sands of volunteers playing important roles in population monitoring in the BBS and

similar studies (e.g. the Audubon Christmas Bird Count; La Sorte and McKinney

2007), this is a potentially serious issue.

Our goals for this study were to test for the existence and consequences of age-

related declines in the detection abilities of long-term bird survey observers, with

a focus on hearing loss as a potential mechanism. We used data from two inde-

pendent volunteer bird survey datasets: the Atlas of the Breeding Birds of Ontario

(‘OBBA’; Bird Studies Canada et al. 2008) and the North American Breeding Bird

Survey (Peterjohn 1994) to establish how bird detection probabilities and expected

species counts, respectively, tend to change as observers age. We considered the role

of hearing loss by simultaneously testing for patterns between age-related changes

in detection ability and species vocalization frequencies. We expected to see the

strongest effects for species with vocalization frequencies corresponding to common

age-associated hearing impairments.

We then asked how age-related changes in observer ability might bias long-term

estimates of population change. We first conducted a case study using BBS counts

of the Golden-crowned Kinglet (‘GCKI’; Regulus satrapa), a small songbird cho-

sen because of its high-frequency vocalization (Table 4.1) and relatively high mean

abundance. Here, we used data from this species to illustrate how using uncorrected

data from aging observers might bias population trajectory estimates. We then
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Figure 4.2. Change in mean minimum observer age of Canadian participants in the
North American Breeding Bird Survey. ‘Minimum observer age’ is a relative measure
based upon the number of years an observer has participated in the survey (‘Number
of Years Active’). Shaded area denotes the second and third quartiles of the data.

considered whether hearing loss in particular might be adding error to existing long-

term population trend estimates. In this case, we tested for a relationship between

previously-published, long-term population trends and the vocalization frequencies

of each corresponding species. Similar to our analyses of detection probabilities, we

expected that population trend estimates would be more negative in species with

vocalization frequencies corresponding to common forms of hearing loss.

4.3 Methods

4.3.1 Calculating and Classifying Vocalization Frequencies

In all analyses, we focused on a group of North American songbirds (warblers,

nuthatches, flycatchers) for which we could obtain high-quality vocalization data

(Table 4.1). These species form a major proportion of North American breeding

bird species (e.g. http://www.mbr-pwrc.usgs.gov/bbs/specl09.html), they represent a

broad range of vocalization frequencies (Brand 1938), and they are frequently of
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conservation interest (e.g. Faaborg et al. 2010).

To test for the influence of hearing loss phenomena (e.g. age-related [high fre-

quency] and noise-associated [‘notch’] hearing losses) in each analysis, we first de-

termined the peak (i.e. dominant) frequencies for the vocalizations of each species

following Emlen and DeJong (1992). For each species, we obtained an audio record-

ing of its typical vocalizations (calls and songs) from the Macaulay Library at the

Cornell Laboratory of Ornithology (http://macaulaylibrary.org accessed on 08 March

2011) and generated power spectra from each recording using the free software Au-

dacity (Beta 1.3; http://audacity.sourceforge.net/ accessed 08 March 2011). Power

spectra display the total energy expended during an audio sample (dB) for each of

a contiguous range of narrow frequency bins (i.e. 2.00–2.08 kHz, 2.081–2.160 kHz;

Figure 4.10). To reduce the effects of any background noise, we converted the log-

scale power (dB) values to a linear equivalent (details in Appendix 1). We then

noted the peak frequency, defined as the upper bound of the frequency bin with the

highest power (Table 4.1). With this approach, the length of the recordings and the

number of vocalizations featured in each recording were unimportant, as the power

spectra considered the power and frequencies of all sounds present on each recording

collectively.

For one of our analyses, we then used these peak frequency values to assign species

into one of four vocalization frequency groups corresponding to known hearing-loss

thresholds of 3 kHz, 6 kHz and 7 kHz (International Organization for Standardization

2000). Accordingly, species were considered to have ‘low’ (< 3 kHz), ‘notch’ (≥ 3

and < 6 kHz), ‘medium’ (≥ 6 and < 7 kHz) and ‘high’ (≥ 7 kHz) vocalizations

(Table 4.1). We hypothesized that the detection of ‘high’ vocalizations (≥ 7 kHz) is

most likely to change with age (a result of age-related hearing loss; e.g. Figure 4.1;

International Organization for Standardization 2000; Gates and Mills 2005); whereas

‘notch’ vocalizations (3 to 6 kHz) may also show age-associated detection declines

(cumulative noise-induced and other idiopathic hearing losses; Nondahl et al. 2009;

Osei-Lah and Yeoh 2010). ‘Medium’ and ‘low’ vocalizations lie between the ‘high’

and ‘notch’ categories.

‘Peak frequency’ is most representative of a particular vocalization if the vocal-

ization broadcasts a very narrow range of frequencies overall (Figure 4.10; Ramsey
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and Scott 1981). By comparison, this single statistic is much less relevant to vo-

calizations incorporating several high-energy sounds at many disparate frequencies.

To account for this difference and focus on the former type, we thus classified vo-

calizations as being either ‘monotone’ or ‘heterogeneous’ according to the range of

frequencies found in each power spectrum (standard deviation of power values; Table

4.1). We defined ‘monotone’ vocalizations as those vocalizations with power spectra

having a standard deviation less than or equal to the median value among a group

of 94 species initially considered; all other vocalizations having more variable power

spectra were defined as being acoustically ‘heterogeneous’. Using these heterogeneity

classes, we thus expanded the existing four vocalization groups discussed above into

eight (i.e. ‘High Monotone’, ‘High Heterogeneous’, ‘Medium Monotone’, ‘Medium

Heterogeneous’, ‘Notch Monotone’, ‘Notch Heterogeneous, ‘Low Monotone’, ‘Low

Heterogeneous’; Table 4.1). We expected that any relationships between species de-

tections and vocalization frequencies resulting from frequency-specific hearing loss

phenomena would be stronger among monotone species.

This simple classification method did not recognize cases where bird vocalizations

featured a wide range of frequencies broadcast over a very short time interval (e.g.

Least Flycatcher [Empidonax minimus ]) – and so which appear subjectively mono-

tone to the human ear in spite of their having a heterogeneous power spectrum.

However, this error did not risk the inclusion of subjectively heterogeneous species

in the monotone groups – a more serious error because we were largely concerned

with patterns among monotone species only – and so this error was a conservative

one.

4.3.2 Determining Observer-Age-Related Changes in Species Detections

Changes in OBBA Detection Probabilities

To estimate the change in detection probability between older and younger observers

(defined below), we used data from 43 species surveyed as part of the OBBA which

had at least 100 detection records in total (Table 4.1), and for which we were able to

determine peak vocalization frequencies (see above). The OBBA is a volunteer survey

that divides the entire land area of the Canadian province of Ontario into a grid of
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3,324 10 km × 10 km squares, and during two 5-year periods (‘first atlas’: 1981–

1985; ‘second atlas’: 2001–2005), one to several volunteers per square conducted area

searches for breeding evidence of bird species during the spring and summer months,

with a minimum effort of 20 party-hours per square.

Working with atlas squares sampled during at least two separate years by one or

more observers, we inferred species detections as occurring when an atlasser reported

any evidence of a given species in a given atlas square. Conversely, we inferred

nondetection for a given atlasser and species by determining all squares visited by an

atlasser, and assigning zeroes (‘no detection’) to all species that were not reported

there (sensu Kéry et al. 2010).

We used publicly-available data sources, including OBBA results web pages and

field naturalist groups’ newsletter reports, to determine the approximate ages (under-

40, 40–50, or over-50) during the midpoint of the second atlas (2003) for 350 of 1,230

atlassers (demographic data were not available for most observers). Although our

primary interest was in measuring age-related patterns of detection ability, we also

recognized that gender could have an influence, because men tend to lose their high-

frequency hearing sooner than women (Figure 4.1), and so we recorded gender as well.

We also corrected for observer effort, both by excluding records with zero-values and

by modeling species detectability with effort as a covariable.

We could not explicitly distinguish between casual, “backyard” observations and

more-distant field searches within a given atlas square, the former of which might be

more often associated with older, less-mobile birdwatchers. Any such relationship,

if widespread in the data, could confound age-related differences in observer sensory

abilities (of interest here, and relevant to fixed-protocol surveys like the BBS) with

age-related differences in observer mobility. However, we were unlikely to success-

fully determine an observer’s age and hence, include that observer’s data, unless

he or she had a substantial field naturalist group presence (for instance, sufficient to

warrant publishing his or her name and photograph in a newsletter), and in our expe-

rience, active field naturalist group participation implies an ability and a preference

to visit sites further afield than a backyard. Hence, we suspect that this potential

confounding influence is not widespread in the data used here.
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To model the effects of observer age on detection probability, we constructed hier-

archical occupancy models of the resulting dataset (Royle and Kéry 2007; Royle and

Dorazio 2009) in WinBUGS 1.4.3 (Lunn et al. 2009) and R 2.13.0 (R Development

Core Team 2011) using the R package arm (Gelman et al. 2010) on a PC running

Windows 7. Hierarchical occupancy models simultaneously estimate species pres-

ence (‘occupancy’) and detection probability (conditional on occupancy), along with

the effects of specified covariates, from detection/nondetection datasets that have

been repeatedly sampled at a set of locations (i.e. atlas squares). Consistent with

the assumptions of OBBA design, we assumed that occupancy did not change for a

given atlas square during each of the 5 years of an atlassing period, and so treated

each atlas square as a sampling unit and each sampling year as a within-observer

replicate.

In the models, we used observers from two age groups, observers under 40 (18

women, 65 men) and observers over 50 (64 women, 203 men), and expected that

the older cohort would have functionally reduced hearing compared to the younger

one, on average (Figure 4.1). We avoided using records for atlassers we believed to

be aged between 40 and 50 years (n = 60) in order to preserve such an expected

functional distinction (sensitivity analyses later validated this concern; see below),

and to account for any errors in age-determination. Each hierarchical occupancy

model consisted of an occupancy component, which predicted true occupancy in the

second atlas as a function of detection in the first atlas, and a detection compo-

nent, which predicted detection (conditional upon occupancy) as a function of effort

(survey hours), observer gender, observer age (over 50 vs. under 40), and random ob-

server variation. Specific formulations of the occupancy models and Bayesian priors

used are discussed in Appendix 2.

In each converged occupancy model, the ‘β2’ ‘observer age’ parameter (see equa-

tion 4.5 in Appendix 2) corresponded to the difference in detection probability on

the logistic scale between observers younger than 40 and older than 50 for a given

species. The mean of all β2 estimates describes how observer detection ability is

expected to change with age among all species considered.

We then described the role of hearing loss in driving age-related changes in this

detection probability statistic, if any, by constructing an additive model (‘GAM’;
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Wood 2006) using the R package mgcv (Wood 2006) to predict the 43 estimates

of β2 as a function of the peak vocalization frequencies of each corresponding bird

species. Compared to parametric approaches, which require polynomial curve orders

to be defined a priori, GAMs can fit nonparametric smooth functions predicting the

most likely nonlinear relationships between x (i.e. vocalization frequency) and y (i.e.

β2), with optimized amounts of ‘wiggliness’ (Wood 2006). These smooth functions

are intended to be viewed by the modeler; summary statistics alone are inadequate

to describe their findings (here, p-values correspond to the probability that a smooth

function exists by random chance alone).

We considered relationships between β2 and vocalization frequency for the mono-

tone and heterogeneous vocalizations separately, and weighted the datapoints ac-

cording to the inverse of the variance of their posterior distributions (i.e. their un-

certainty; estimated earlier by WinBUGS). If age-related hearing loss is an important

mechanism leading to age-related detection declines, we expected the magnitude of

the β2 values to decline with increasing vocalization frequency, mirroring the hear-

ing threshold curves in Figure 4.1. Declines in the ‘notched’ region would similarly

correspond to an influence of noise-induced hearing loss. We also expected to see

more-pronounced patterns for the ‘monotone’ species groups, because in this case,

the peak vocalization frequency more-closely corresponds to the principal frequency

heard by the observer.

To justify our exclusion of observers from the 40–50 age group, and furthermore

to validate whether observer age influences detection ability, we also tested for the

sensitivity of the values of β2 to the inclusion of observers of borderline age (i.e. ages

40–50). We re-fit the occupancy models as described above, except here using data

from observers of all ages (while retaining the age-50 cutoff), and then compared

matched pairs of these new β2 estimates to their earlier estimates. If there are

important differences in detection ability that develop progressively by age 50, we

would expect to see a smaller overall change in detection ability between the under-

50 and over-50 cohorts, compared to the changes previously measured between the

under-40 and over-50 cohorts.
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Expected BBS Counts Derived From BBS Data

Next, to compare the patterns observed above with an independent dataset, we

determined how bird counts changed with increasing observer age on the BBS. Like

the OBBA, the BBS is a multi-year, omnibus bird survey. Here, it is conducted by

skilled volunteers annually during the breeding season. In contrast to the OBBA,

most BBS survey stops are not replicated within survey cycles or among multiple

observers. The BBS uses a set of permanent, 39.4 km road transects (‘routes’) which

are divided into 50 stops placed at regular (∼ 800 m) intervals. Most BBS routes

are sited randomly within North American physiographic subregions (‘strata’; e.g.

‘Sierra Nevada’; ‘St. Lawrence River Plain’) and within degree blocks of latitude and

longitude (Sauer et al. 2003), and so have a nested random structure. Survey routes

continue to be added to the BBS as a whole; the oldest routes have been monitored

annually since 1966.

In the raw BBS count dataset, observers are assigned a unique identification

number which persists throughout their years of service. We used these identification

numbers to determine a measure of “minimum observer age”, defined as the number

of years since the first year an observer served on any BBS route (sensu Faanes and

Bystrak 1981). Within observers, minimum observer age is correlated with actual

observer age – our latent variable-of-interest – by definition. We recognize that this

measure is less-precise than true age, however for simplicity, we refer to ‘minimum’

observer ages, which range from 1 to 39 in the data, as ‘observer ages’.

We omitted data from the early years of the BBS, and instead used data collected

in Canada and the USA between 1970 and 2007 by single observers under suitable

weather conditions. These omissions avoided potential problems with low observer

quality in the early years of the survey (e.g. Sauer et al. 1994), as well as prob-

lems with ‘anomalous results’ with early data from Canadian survey routes (http://

ec.gc.ca/reom-mbs/default.asp?lang=En&n=E8974122-1 accessed on 25 March 2011).

Observer ages were calculated using the original, complete dataset, which began in

1966.

To account for changes in each species’ population abundance occurring along-

side changes in observers’ detection ability, we needed replicated time series for each
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location. To achieve this effect with the unreplicated BBS data, we estimated pop-

ulation trajectories at the level of the physiographic stratum, using count data from

the individual survey routes as replicates. We required that at least 3 separate ob-

servers be associated with a given stratum before that stratum was included in the

analysis. Similarly, to ensure that the age and population effects under study were

not confounded, we required that for each species and stratum analyzed, observer

age and calendar year were correlated by no more than 0.7 (Pearson correlation).

We also worked exclusively with contiguous observer-route time series of 10 years or

longer, both to minimize biases that could result from any gaps in temporal coverage

(e.g. Sauer et al. 1994), and to capture age-related changes in detection ability.

Because raw BBS data do not include zero-counts for any species, we added

relevant zeroes in the same manner as was done with the OBBA dataset (sensu Kéry

et al. 2010). The presence of zero values on a route-year time series did not affect

whether it was considered contiguous or not. To avoid problems with estimating

zero-values on the (logarithmic) scale of the linear predictor in these models, we also

added a value of 0.5 to all counts (Sauer et al. 1996).

Volunteer BBS observers often perform relatively poorly during their first year

on a survey route compared to later years; this phenomenon can inflate population

trend estimates if the first year of data is included (Kendall et al. 1996). To avoid

confounding this pattern with hearing loss phenomena, we excluded the first years’

datapoints (mean 6.1% of records per species) for each observer-route combination.

Final datasets for each of 65 species meeting these requirements (and for which we

had vocalization frequency data; Table 4.1) ranged in size from 37 (Lucy’s Warbler

[Oreothlypis luciae]) to 6692 (Common Yellowthroat [Geothlypis trichas ]) route-years

of data, with a median 1077 records (mean 1608 ± 1689 [SD]).

We used overdispersed Poisson generalized additive mixed models (‘GAMMs’;

Wood 2006) in R package gamm4 (Wood 2011) to model the nonlinear change in

BBS counts with observer age, while controlling for both among-observer effects and

continuous changes in species counts with calendar year within physiographic strata

(i.e. ‘population’ changes). GAMMs are extensions of GAMs which incorporate addi-

tional random-effects structures to the model to account for group-specific deviations

from overall means (‘random intercepts’) and from overall trends (‘random slopes’).
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These models are suitable for the hierarchical structure of BBS data. As with GAMs,

the ‘significance’ of a smooth function alone can only establish whether there is a

nonzero pattern to the data – ‘significant’ GAMMs are not necessarily unidirectional

(i.e. exclusively increasing or decreasing). Hence, GAM and GAMM smooths are

visual instruments, and their shapes must always be examined in order to obtain a

complete result.

We aggregated the species-specific GAMMs produced here by building a second

uncertainty-weighted GAMM describing the overall proportional change in modeled

BBS counts (relative to each species’ values at age-1) for groups of species of the

same vocalization frequency and heterogeneity groups defined earlier. Finer details

of this modeling process are outlined in Appendix 3.

4.3.3 Species Detection Probabilities and Long-Term Population Trend
Estimates

Golden-crowned Kinglet Case Study

We used BBS counts of the Golden-crowned Kinglet (‘GCKI’) as the subject of a

case study to examine how failing to control for observer age could affect estimated

population trajectories. Our goal was to model population trajectories in a man-

ner consistent with established techniques (Link and Sauer 2002; Sauer and Link

2011), and then to compare the resulting estimates made both with and without a

continuous correction for minimum observer age.

Here, we excluded continuous observer age effects from the GCKI GAMM pro-

duced in the earlier BBS count analysis (see above) to produce a model which ap-

proximated the hierarchical Bayesian modeling methods presently used by the US

Geological Service (‘USGS’; Link and Sauer 2002). The only major difference be-

tween this second GAMM approach and the hierarchical Bayesian models is the

GAMMs’ use of a smooth function for calendar year in place of parametric terms

to describe annual changes. The numerous parametric terms in the USGS approach

should serve roughly the same purpose as a continuous GAMM function, and so both

our GAMMs (modeled without observer age corrections) and the USGS hierarchical

Bayesian models should produce largely equivalent population inferences from the

same initial dataset.
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Accordingly, we compared the shapes of the resulting smooth functions for ‘popu-

lation’ trajectories (f2(l)j in Equation 4.8 in Appendix 3) between GAMMs built with

and without age corrections for three physiographic strata that represent both appar-

ently stable and apparently declining ‘uncorrected’ population trajectories (Northern

Spruce-Hardwoods [stable], Sierra Nevada [declining], South Pacific Rainforests [de-

clining]). Because we used the BBS data subset discussed earlier, our population

estimates do not necessarily reflect true biological patterns (e.g. Sauer et al. 1996),

but rather they illustrate the directional effects of observer age corrections on pop-

ulation trajectory inferences under severe circumstances (i.e. where most modeled

observers experience long-term aging).

The Influence of Vocalization Frequencies on Population Trend

Estimates

Finally, we determined if species vocalization frequencies – and hence, hearing loss

– might have influenced broad-scale population trend estimates. If hearing loss is

an important predictive factor, we expected to see greater estimated population de-

clines among species with vocalization frequencies associated with hearing loss. Here,

we considered Canada-wide population trend statistics produced by both the USGS

(http://www.mbr-pwrc.usgs.gov/cgi-bin/atlasa09.pl?CAN&2&09 accessed on 08 March

2011), and by the Canadian Wildlife Service (‘CWS ’; http://www.cws-scf.ec.gc.ca/

mgbc/trends/index.cfm?lang=e&go=info.SpeciesListByProvince&provid=0 accessed on

08 March 2011). Both sets of trends are calculated by their respective agencies us-

ing area-weighted, Poisson-modeled BBS count data, where estimated ‘trend’ values

correspond to the estimated exponential rate of change of a population from the

beginning to the end of the survey period modeled. However, fine details of these

strategies are not equivalent. Thomas and Martin (1996) showed that agency-specific

differences in such analysis strategies (i.e. different geographic weighting schemes)

can lead to important differences in trend magnitude and significance. Current trend

estimation strategies have improved since 1996 among both agencies, but remain di-

vergent for other reasons (C. Francis, pers. comm.). Here, we wanted to determine

if there was an agency-independent (i.e. common) effect of vocalization frequency

among each set of trends, and so considered both sets.
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We built single-parameter GAMs relating each of USGS and CWS population

trends with species vocalization frequency, specifying separate thin-plate regression

spline smoothers for monotone and for heterogeneous vocalizations. The USGS

dataset supplied 95% credible intervals about the trend estimates; consequently, we

treated the width of these intervals as a measure of error and weighted datapoints

according to their inverses. Similarly, we used the supplied number of BBS routes

incorporated into each CWS trend prediction as a corresponding weight in the CWS

GAM. We used population trend estimates that spanned the longest available times-

pan in each case, which was from 1966 to 2009 for the USGS trends (n = 50 warbler,

flycatcher and nuthatch species for which we had vocalization frequency data), and

from between 1970 and 1973 to 2009 for the CWS trends (n = 52 species). We ex-

cluded one CWS trend (Bohemian Waxwing [Bombycilla garrulus ]) which was valid

only for 1986 to 2009.

4.4 Results

4.4.1 Determining Observer-Age-Related Changes in Species Detections

Changes in OBBA Detection Probabilities

The average of the β2 estimates among all 43 species was negative (mean -0.66 ± 0.81

[SD] on the logit scale; median -0.48; Figure 4.3). These values were not normally-

distributed, and only 4 of the 43 β2 values were greater than zero. Hence, the

broad standard deviation is driven by a negative skew to the data, which are almost-

entirely below zero. When modeled in the GAM, the intercept term was significantly

negative (p < 0.001), which indicated a significant overall decline in detection ability

among older observers, on average. On a species-specific basis, thirteen of the 43

species considered (30%; BAWW, BBWA, BTGW, COYE, CSWA, GCKI, NAWA,

OSFL, OVEN, RCKI, WIWA, YBFL, YRWA; see Table 4.1 for full names) showed

‘significant’ declines in detectability between younger and older OBBA observers (i.e.

95% Bayesian credible intervals of β2 coefficients did not contain zero). Gender had

a less-important influence on detection probability; in this case, the mean effect was

much closer to zero (mean 0.17± 0.59 [SD]), and seven of the 43 (16%) species showed

‘significant’ effects of being male on detectability. Contrary to our physiological
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expectations, most of the gender coefficients (effect of being male) were greater than

zero (34 of 43).

Among each of the monotone and heterogeneous species groups, and considering

all peak vocalization frequencies, age-related detectability change was not signifi-

cantly related to the vocalization frequencies (GAM ‘slope’ smooth terms: p = 0.297

[monotone], p = 0.597 [heterogeneous]). However, the shape of the curve for mono-

tone species suggested declines in detectability between 3 kHz and 6 kHz (‘notch’

frequencies), and beyond a threshold of approximately 6 kHz (‘medium’ and ‘high’

frequencies; Figure 4.3A). To test for age-related changes in detectability in the

higher (≥ 6 kHz) frequency range exclusively, we built a post hoc, similarly-weighted

linear model predicting age-related changes in detectability as a function of peak

vocalization frequency, using only those species with monotone vocalizations above

6 kHz. This model showed a significant linear decline (p = 0.034, n = 9).

The sensitivity analysis tested how including observers aged 40–50 in the ‘younger’

age group affected the relative change in detection ability between ‘younger’ observers

and those over 50 (‘older’ observers). Results showed that when observers between

ages 40 and 50 were included in the models as ‘younger’ participants, the the differ-

ences in detection ability between the ‘younger’ and the ‘older’ groups (i.e. the β2

values) tended to diminish in magnitude (Figure 4.4). This points to a robust effect

of observer age on the detection probability of bird species.

Expected Counts Derived from BBS Data

Model-estimated BBS counts declined significantly (GAMM smooth term p < 0.05)

over 39 years of increasing observer age for all vocalization frequency groups except

Low Monotone (p = 0.111) and High Heterogeneous (p = 0.085) species (Figure

4.5). Among the significant declines estimated, the greatest changes were among the

low-frequency, heterogeneous species (BCFL, GCFL, Table 4.1), which decreased

by 66.5%, and the medium-frequency, heterogeneous species (EAKI, LEFL, NAWA,

NOPA, OVEN; Table 4.1), which decreased by 59.2% over the 39 years sampled. The

smallest significant changes in counts were declines of 34.1% among high-frequency

monotone birds (BBWA, CMWA, GCKI, Table 4.1), and 34.3% among notch-frequency

monotone birds (n = 18 species; Table 4.1) over that same age range (Figure 4.5).
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Figure 4.4. Sensitivity of ‘β2’ age-related detectability change coefficients (hierarchi-
cal occupancy models) to the age structure of the old and young age groups in the
modeled data. Coefficients were generated from identical occupancy models using
data that either lacked the 40–50 age group as part of its ‘young’ category (principal
modeling approach; x-axis) or included these observers (y-axis). The reference line
(dotted) has a slope of 1. When the additional group of middle-aged observers are
included in the ‘under-50’ category (y-axis), the age-related detectability differences
are pushed closer to zero.



76

The increasing uncertainty at the upper range of observer ages (Figure 4.5) reflects

the smaller sample sizes in this area.

Golden-crowned Kinglet Case Study

Model-estimated BBS counts of the Golden-crowned Kinglet were expected to de-

cline by nearly 7 birds per observer-route time series after 30 years of aging, all else

being equal (Figure 4.6D). Without a correction for such an effect, population trends

as inferred visually from the smooth functions for calendar date appeared stable in

the Northern Spruce-Hardwoods stratum (Figure 4.6E), and declining in the South

Pacific Rainforests and Sierra Nevada strata (Figure 4.6G and I). After correcting for

observer age (essentially a vector subtraction of Figure 4.6D from each population

smoother), inferred population trajectories became more positive. Specifically, the

‘corrected’ Northern Spruce-Hardwoods stratum now showed a significant popula-

tion increase, the South Pacific Rainforests stratum now appeared stable, and the

apparent Sierra Nevada decline was less steep.

4.4.2 Species Detection Probabilities and Long-Term Population Trend
Estimates

The Influence of Vocalization Frequencies on Population Trend

Estimates

There were significant relationships between monotone vocalization frequencies and

long-term, Canada-wide population trends for each of the USGS (GAM p = 0.048;

Figure 4.7A), and CWS datasets (p = 0.008; Figure 4.7C), where population trends

declined among species with increasing ‘medium’ and ‘high’ (≥ 6 kHz) peak vocal-

ization frequencies, and at the midpoint of the ‘notched’ range (3 to 6 kHz). By

contrast, there were no significant relationships between heterogeneous vocalization

frequencies and population trends (USGS p = 0.928; CWS p = 0.568; Figure 4.7B

and D). As a whole, the monotone and heterogeneous patterns were also visually sim-

ilar to those we observed between detection probabilities and vocalization frequencies

(i.e. Figure 4.3), and they indicated a tendency for species having each of notched

and (especially) higher (≥ 6 kHz) monotone frequencies to have more negative long-

term population trends. Ignoring uncertainty in the estimated detection probability
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95% pointwise confidence bands.
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Figure 4.7. Additive model of Canada-wide population trends (1966 to 2009; calcu-
lated by the United States Geological Service; panels A and B), and by the Canadian
Wildlife Service (1970 to 2009; panels C and D), as a function of each species’ peak
vocalization frequency (pitch), modeled separately for species with largely single-
frequency vocalizations (‘Monotone’; panels A and C) and for species with highly-
variable vocalization frequencies (‘Heterogeneous’; panels B and D). Shaded areas
are 95% pointwise confidence bands about the model smooth term plus the model
intercept.

change variable, we measured this latter relationship explicitly using Pearson corre-

lations, and found significant patterns for both the USGS data (r = 0.79, p = 0.012;

n = 9; Figure 4.8A) and the CWS data (r = 0.89, p = 0.001; n = 9; Figure 4.8B).

4.5 Discussion

Using data from both detection-nondetection (OBBA) and point-count (BBS)

surveys; we found several lines of evidence for age-related declines in bird detection

abilities among volunteer observers. On average, OBBA observers over age 50 had

lower detection probabilities compared to observers under age 40, there were more

pronounced detection probability declines between more distant OBBA age groups

(i.e. Figure 4.4), and there were near-universal declines in expected BBS counts with
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Figure 4.8. Detection probabilities estimated by the occupancy models plotted
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or high frequencies. Solid lines correspond to linear regression fits which ignore un-
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(Mniotilta varia). This figure combines information from Figures 4.3 and 4.7.
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increasing observer age. Among monotone species with peak vocalization frequencies

exceeding 6 kHz, age-related detectability changes in the OBBA showed a significant

linear decline as peak frequency increased; detection declines may also be occurring

at ‘notched’ frequencies of 3 to 6 kHz. Collectively, these data suggest that ob-

server senescence is an important factor affecting the quality of data from volunteer

birdwatchers, and that common patterns of hearing loss play a role in this overall

process . However, the concurrent declines in detection ability we observed at other

frequencies (e.g. Figure 4.5) suggest that other mechanisms are also involved.

Using real data, we found that failing to account for changes in observer detec-

tion ability can underestimate population increases, and perhaps more importantly,

overestimate population declines. We lastly found indirect evidence of such a bias in

previously-published population trend estimates, which tended to be lower as mono-

tone vocalization frequencies above 6 kHz increased, and towards the midpoint of

the ‘notched’ frequency range (3 to 6 kHz), suggesting an uncontrolled confounding

effect of age-related hearing losses.

The estimated declines in BBS counts we observed were consistent with data from

similar, previous research (Link and Sauer 1998). Here, we showed declines ranging

from 34% to 67% of the original counts of more than 60 species considered collectively

over 39 years (Figure 4.5), whereas Link and Sauer (1998) estimated a 43% decline

in Blue-Gray Gnatcatcher counts among observers after 20 years (our dataset did

not include the Gnatcatcher). Using our approach to classifying vocalizations by

peak frequency, this gnatcatcher would fall into the Notch Heterogeneous category,

for which we estimated a 14.1% decline in counts over 20 years. The smaller value

predicted here may result from the large number of species incorporated into this

calculation (n = 25). In our opinion, either value is large enough to be concerning.

Because the declines in species detections with observer age in both the OBBA

and the BBS datasets occurred across most frequencies and in both heterogeneity

groups – for instance, the greatest modeled declines in BBS counts were for the Low

and Medium Heterogeneous species – we believe that multiple senescence effects,

including high-frequency hearing losses, are at work, with hearing-loss effects being

most important for species with monotone vocalizations. Normal aging can involve

impairments in memory, cognitive speed and vision (Morris and McManus 1991).
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Alongside hearing impairments, these factors might each contribute to greater num-

bers of missed detections independent of bird vocalization frequencies, for instance

by limiting one’s abilities to (i) simultaneously detect and transcribe species calls,

(ii) to recognize multiple, overlapping species calls, and (iii) to identify non-vocal,

cryptic species by eye. Hence, while higher-frequency and notched monotone species

might be most prone to the effects of age-related hearing loss, all species are proba-

bly vulnerable to some form of age-related detection decline. Similarly, because be-

haviour and visual cues also play a role in bird detection, and can vary from species

to species (e.g. variable species ‘conspicuousness’; Stewart 1954), some species with

easily-audible vocalizations might be detected less-often than easily-heard, but cryp-

tic species who sing infrequently (Alldredge et al. 2007a), and this could explain

some of the unusual patterns in the detection curves generated here (Figure 4.5), for

instance the smaller-than-expected declines in the High Monotone and Notch Mono-

tone vocalization groups (i.e. Figure 4.5C and 4.5G). Future controlled experiments

using observers of known hearing thresholds and ages, with exposure to a variety

of bird vocalizations of known audiological characteristics, would help to elucidate

the relative importance of hearing and non-hearing senescence effects, as well as the

interaction between these processes and species-specific behaviours in the field.

To minimize the influence of hearing loss on the quality of bird surveys, Emlen and

DeJong (1992) suggest that administrators test hearing abilities ahead of time and

recommend the use of hearing aids where appropriate. Especially because hearing

aids might not be practical or equivalent to normal hearing, we argue that adminis-

trators should also collect observer ages and information about hearing ability (once

hearing aids are in place, if relevant) in order to make model-based corrections, for

instance using the GAMM approach described here.

In both analyses, we controlled for many suspected observer-effects confounders

by excluding data. For instance, we excluded observers aged 40–50 in the analysis

of OBBA data to ensure reliable separation between ‘young’ and ‘old’ groups. We

also required a minimum of 10 years of service on the BBS for an observer’s data

to be included, here to increase the likelihood that senescence effects occur for all

observers, so that we might measure them. While these conservative approaches were

appropriate for precisely determining the nature of observer senescence effects, they



83

limit the quality of the real (simultaneous) population trends that can be inferred

(Link and Sauer 1997b). Future analyses should also explore the sensitivity of the

observer- and population-specific patterns we observed here to increasingly relaxed

data subsetting rules. Similarly, having surveys collect observer age data in the

future would obviate any future need to exclude cohorts of uncertain age, and allow

models to make more-precise corrections than those we have built here.

GAM- and GAMM-based methods are relatively new to ecology (e.g. Fewster

et al. 2000; Clarke et al. 2003; Flemming et al. 2010), but we have shown their use-

fulness for making corrections for continuous, nonlinear covariates (i.e. the changes

in hearing ability with observer age). If these methods cannot be used, other, design-

based remedies to the problem of observer senescence include simultaneous, indepen-

dent sampling by multiple observers (Alldredge et al. 2006, but see Fitzpatrick et

al. 2009), or the use of field recordings and more thorough and/or computer-aided

post hoc interpretation (e.g. Campbell and Francis 2011). However any such protocol

changes should aim to be consistent throughout the survey as a whole, they must

be cost-effective, and ideally, they should not compromise the long-term integrity of

the overall time series (e.g. Freeman et al. 2007).

At a minimum, asking older or noise-exposed observers who are at risk for detec-

tion errors to consider the possibility of any age-related impairments is an important

step forward: as with any gradual physiological change, observers over age 50 may not

recognize a growing, but significant personal impairment (A. G. Horn, pers. comm.),

and awareness of this fact alone may lead to an increased degree of self-selection

in terms of opting out of surveys. For instance, 75% of a sample of 253 Audubon

Christmas Bird Count observers have indicated a desire to remove themselves from

survey duties if such an impairment was recognized (Downes 2004). On the other

hand, older birdwatchers are likely to be more experienced and consequently more

adept at detecting a wide range of rare and common species. For effectively sampling

entire species communities, this experience advantage may outweigh early deficien-

cies in the detection of certain species (Ramsey and Scott 1981), especially when

there are multiple observers per sampling unit (but see Fitzpatrick et al. 2009).

In general, our study adds to the growing body of literature demonstrating sys-

tematic, long-term changes in BBS survey conditions (e.g. Betts et al. 2007; Griffith
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et al. 2010) that must be controlled for when estimating measures of population

change. We have shown that observer age can be a significant handicap, and have

illustrated some ways that survey designs and models might control for its effects.

We hope that this research leads to improvements in long-term population trajectory

inferences, without discouraging the invaluable contributions made by volunteers to

worldwide ecological monitoring.
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4.7 Supplementary Material

4.7.1 Appendix 1: Vocalization Heterogeneity

By convention, sound intensities (power) are scored on the (logarithmic) decibel scale,

which recognizes that human ears most readily distinguish changes in intensity along

such an axis (Mayfield 1966). Converting a set of sound intensities to linear scales

would tend to de-emphasize softer notes and highlight differences only among sounds

of higher intensities. In our case, this approach was highly-appropriate for comparing

vocalization variability in that it tended to downplay any background noises present

on a given audio track and emphasize only the dominant singing and calling notes

of a given species. Accordingly, to classify vocalizations into ‘monotone’ and ‘het-

erogeneous’ groups according to the variability of frequencies they contain, we first

rescaled and linearized the log-scale decibel values within each power spectrum using

the formula:

RelPoweri = 10(Poweri−Powermax)·0.1 (4.1)

where (Poweri − Powermax) corresponds to the (negative) linear difference on the

decibel scale between a given power value and the spectrum’s maximum power value

for 1, . . . , i frequency bins. This function converts all decibel values to a scale from

0 to 1, where 1 equals the maximum power output, and it reflects linear-scale power

differences (i.e. non-decibel values) between any given value and the maximum value.

We then treated these power spectra as histograms and determined the standard

deviation of these ‘distributions’ as a measure of their acoustic variability.

4.7.2 Appendix 2: Hierarchical Occupancy Model Structure

The occupancy component of the models for each species was specified as:

zi ∼ Bernoulli(ψi) (4.2)

logit(ψi) = A0 + A1 · ζi (4.3)

for i = 1, . . . , 1212 atlas squares, and where zi corresponds to the unobserved true

occupancy state of a given (second-atlas) atlas square (i.e. 0 or 1), P (zi = 1) = ψi
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(the occupancy probability for atlas square i), and ζi is a dummy variable indicating

detection/nondetection (i.e. 0, 1) of a species by any observer in square i in the

first atlas (1981-1985). A0 and A1 are logit-scale intercept and first-year occupancy

parameters. Data used to determine ζi were derived from a set of 1,325 total observers

from the first atlas.

The detection component of the occupancy models for each species was specified

as:

logit(pij) = β1 · θij + bobsj (4.4)

bobsj = β0 + β2 ·Over50j + β3 ·Malej + εj (4.5)

for i = 1, . . . , 1212 atlas squares and j = 1, . . . , 296 observers, and where pij is the

detection probability at square i for observer j, θij is the natural log of effort, in

party-hours, at square i by observer j, β1 is the effort effect, and bobsj describes the

observer effects. Among these observer effects (equation 4.5), β0 is an intercept term,

β2 is the age (over-50 vs. under-40) effect, β3 is the effect of being male, and εj is

mean-zero, normally-distributed error about the observer effect, with the uniformly-

distributed variance of this error estimated from the data (see discussion of priors,

below). Over50j and Malej are dummy variables (0 or 1) indicating whether an

observer is over age 50 (vs. under age 40), and whether that observer is male (vs.

female).

The occupancy and detection models are combined in the overall hierarchy, which

incorporates observed detections Yij:

μij = zi · pij (4.6)

Yij ∼ Bin(Nij, μij) (4.7)

where Yij, the observed number of detections in square i for observer j is binomially

distributed with probability of success μij (the unconditional detection probability)

for Nij trials (i.e. the number of years during which an atlas square i was visited by

observer j, which ranged from 2 to 5 detection-years).

All parameters in the hierarchical model (A0, A1, β0, β1, β2, β3) were assigned

minimally-informative Bayesian priors suitable for logistic regression models, which
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in most cases need not estimate absolute values greater than 5 (Gelman et al. 2008).

We specifically used normally-distributed priors of standard deviation 3.16 (
√
10),

which, upon visual inspection of the density function, are distributed roughly simi-

larly to the Cauchy prior of scale 2.5 recommended by Gelman et al. (2008, and see

Figure 4.11) for this type of model – and which WinBUGS cannot directly simulate.

We also considered other priors based upon the t-distribution that are also suggested

by Gelman (2008); however, a sensitivity analysis showed that these priors (t7 with

scale parameters 2.5 and 10 for the predictors and intercept terms, respectively)

had slower convergence rates, a narrower range of absolute parameter estimates, and

lower effective sample sizes on average. This was a good indication that the normal

priors were superior for our purposes.

The εj were assigned a normal, mean-zero prior with variance estimated from the

data with a mean-zero, uniform prior (Gelman 2006) of standard deviation 10, which

was again consistent with the range of parameter values expected in most logistic

regressions (Gelman et al. 2008). We used enough iterations in WinBUGS to achieve

convergence of 3 Markov chains (with a burn-in of one half of the total), requiring

that Gelman-Rubin Rhat statistics for all parameters be less than or equal to 1.1

to infer convergence. We also verified the performance of this model structure using

simulated datasets.

4.7.3 Appendix 3: Detailed Methods for Modeling Changes in BBS
Count Data with Increasing Observer Age

To keep the more heavily-sampled species, observers or strata from having a dis-

proportionate influence in our aggregated analysis, we modeled our BBS dataset

over multiple stages using GAMMs. First, we modeled mean BBS counts for each

species separately as overdispersed Poisson functions of both observer age and calen-

dar year, correcting for differences among observers and survey routes as mean-zero,

normally-distributed random intercepts. We used a cubic regression spline smooth

term, chosen over thin-plate regression splines for computational efficiency reasons

(Wood 2006), for each of the observer age and calendar year (i.e. population) effects,

where the calendar year effects were smoothed separately for each stratum. The
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model structure for each species was as follows:

log(yi(j)kl) = f1(τkl) + f2(l)j + θk + λi(j)k + σi(j)kl (4.8)

for i = 1, . . . , I routes within stratum j = 1, . . . , J , k = 1, . . . , K observers, and

l = 1, . . . , L calendar years since 1969, and where yi(j)kl is the number of birds de-

tected on a route i in stratum j by observer k during year l, f1() and f2()j are

cubic spline smooth functions estimating age effects across the whole survey and

population-related effects for physiographic stratum j, respectively, τkl is the (min-

imum) age of observer k in year l, θk are mean-zero, normally-distributed random

intercepts for each observer, λi(j)k are mean-zero, normally-distributed random in-

tercepts for each observer at a route-within-stratum, σi(j)kl is mean-zero, normally-

distributed overdispersion error, and where datapoints collected by a given observer

were weighted according to the inverse of the number of routes conducted by that

observer for the modeled species.

To properly recognize the changes in BBS counts predicted by the smooth func-

tion f1() in these models (Equation 4.8), we did not simply extract its values for the

modeled range of observer ages, since this approach would ignore the uncertainty

among the separate population-related smooth terms (estimated for each stratum;

f2(l)j). Instead, working on the scale of the response variable, we defined species- and

observer age-specific count predictions as the average of predictions for each relevant

physiographic stratum. Calendar years were fixed at the midpoint of surveyed dates

during predictions. We inferred the standard error about these averaged predictions,

σ̄kl, as the square root of the mean of the variances of the initial predictions that

were averaged.

We then built an ‘aggregating’ GAMM which generalized the predicted changes

in BBS counts for each species with increasing observer age (i.e. the averages for each

stratum and species produced in Equation 4.8) among each of eight vocalization fre-

quency groups (e.g. ‘high monotone’, ‘notch heterogeneous’; discussed in Methods).

In addition to generalizing the patterns of age-related count changes among species,

this approach also ensured that each species contributed the same number of data-

points to the overall model. To convert the data to a common scale among all species,
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Figure 4.9. Age distributions among bird surveyor gender cohorts. Panel A shows
a beanplot (Kampstra 2008) of the distribution of age ranges among a small sample
of BBS observers, based upon demographic information collected by an unrelated
internet-based survey of birdwatcher observer effects (Chapter 3). Tick mark lengths
correspond to observer abundance at each age range; the dotted line is the overall
mean, solid lines are group means. Panel B shows a barplot of the genders and
estimated ages of those OBBA observers determined for the current study (not all
observers participated over multiple years, and hence not all observers were modeled).

we used proportions of each species’ maximum count as the (binomial) dependent

variable in this model.

Similar to the single-species models, the aggregating GAMM used thin-plate re-

gression spline smooth functions on observer age for each vocalization group, along

with mean-zero, normally-distributed random intercepts for species. Each datapoint

was weighted according to the inverse of its predicted coefficient of variation (i.e.
μ̂
σ̂
). To provide a more useful interpretation of the species-independent changes in

BBS counts with increasing observer age, final model predictions were then linearly

rescaled relative to the values at observer-age 1 for each vocalization group. As in the

detection probability analysis, we again validated the performance of our statistical

approach by modeling simulated datasets of known population trajectories.
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and SD values (as a measure of heterogeneity) are listed for each species.
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Chapter 5

Years-of-Service Effects in Long-Term Bird Survey Data

5.1 Abstract

Accurate population trend estimation from wildlife survey data must account

for observer biases. Here, we built generalized additive mixed models to measure

observer bias associated with long-term years of service in two volunteer bird surveys:

the North American Breeding Bird Survey (‘BBS’) and the Audubon Christmas Bird

Count (‘CBC’). Using BBS data, we showed that as a single observer’s years of service

on a given survey route increase, all else being equal, expected bird counts increase by

approximately 1.6± 1.39% over the initial 5 years, and then decline by 26.8± 0.07%

by year 35 (n = 33 species). Among species not showing count increases during the

initial 5 years (n = 67 species), the long-term effect is more pronounced, declining

by 43.1 ± 0.05% by year 35. Using CBC data, we also show that, all else being

equal, expected species richness on a given count circle increases by 14.4% (log-scale

difference: 13.5± 3.2 units) as count circles are continuously surveyed by a party for

30 years. These patterns may reflect combinations of (i) growing initial familiarity

with new survey sites; (ii) long-term sensory declines in individual BBS observers,

but not among CBC survey groups; and (iii) a preference among CBC survey party

members to meet or exceed a previous year’s species richness counts. Simulated case

studies highlight the value of accounting for these sources of error when estimating

broad-scale ecological trends.

5.2 Introduction

Accurate population trend estimates are essential for wildlife population assess-

ment and management. These estimates are typically derived for bird populations

using field records from long-term count surveys such as the North American Breed-

ing Bird Survey (‘BBS’; Peterjohn 1994) and, less often, the Audubon Christmas

92
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Bird Count (‘CBC’; Dunn et al. 2005), both of which collect annual bird counts at

predetermined sites. Part of the population trend estimation process involves ac-

counting for confounding observer effects, namely differences in counts among and

within unique observers. However, our knowledge of the processes driving these dif-

ferences, and how to best control for their influences, is limited. In particular, there

has been little focus on the influence of and correction for long-term changes within

single observers over time (‘years-of-service effects’).

Analyses using BBS data account for differences in mean counts among unique

observers by using random intercept terms (i.e. by assuming a normal distribution

of observer abilities; Link and Sauer 1998, 2002). To partially account for years-of-

service effects, these models also correct for lower-than-expected counts during an

observer’s first year of service on a given BBS route (“first-year effects”; Kendall et al.

1996). However, the models do not correct for additional within-observer changes

occurring in later years such as a gradually-increasing familiarity with a survey site

(e.g. Eglington et al. 2010), or declines in sensory ability due to age-related changes,

including hearing loss (see Chapter 4).

Unlike analyses using BBS data, analyses using CBC data do not explicitly con-

sider any years-of-service effects associated with individual observers, because counts

in this survey consist of pooled observations made by groups of individuals. However,

these survey parties have fairly consistent year-to-year membership (Butcher et al.

1990); hence, years-of-service effects may be present at the group level. For instance,

party members might aim to match or exceed a previous year’s recorded species rich-

ness (Bonta 2010, see also Jiguet 2009), and in doing so, spend more time at known

‘hot-spots’, or strategically distribute themselves according to past encounter his-

tories. This could systematically inflate apparent species richness on the CBC over

time, undermining our interpretation of the effects of broad-scale ecological processes

(e.g. climate change; La Sorte et al. 2009).

Few studies have measured the magnitude of long-term years-of-service effects in

surveys such as the BBS or CBC. Using BBS data, Link and Sauer (1998) modeled

a 43% “diminuition of counts” among observers surveying Blue-gray Gnatcatchers

(Polioptila caerulea) for more than 20 years, and in Chapter 4, we found that the

observed counts of 60 species declined between 34% and 67% as minimum observer
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age (a variable closely related to years-of-service) increased over 39 years. To our

knowledge, systematic changes in counts associated with years-of-service effects in

the CBC have not been previously considered in published literature.

Our goal in this study was to test for long-term years-of-service effects in both the

BBS and CBC. Compared to the previous research that used BBS data, we considered

aggregated patterns from a much larger group of species (n = 100 [this study] vs.

n = 65 [Chapter 4] and n = 1 [Link and Sauer 1998]). We also measured the

influence of years-of-service on a given survey route, rather than minimum observer

age (which, although closely-correlated, is not synonymous, because many observers

survey multiple routes sequentially over their entire service history). This allowed

us to better characterize the nature of the first-year effect (Kendall et al. 1996) in

the context of later years-of-service effects such as aging-related sensory declines (see

Chapter 4).

5.3 Methods

The relatively new technique of generalized additive mixed modeling (Wood

2006), available in package mgcv for the R statistical environment (R Development

Core Team 2011) is well-suited for determining whether years-of-service effects might

be important sources of error. Like locally-weighted scatterplot smoothing tech-

niques (‘loess’; James et al. 1996; Link and Sauer 1998), generalized additive models

(‘GAMs’) and generalized additive mixed models (‘GAMMs’) fit continuous, smooth

curves to predictor terms, displaying nonlinear patterns for any number of speci-

fied covariables. Using the mgcv package, the degree of smoothness of continuous

GAMM functions is optimized and automatically selected as part of the fitting pro-

cess (Flemming et al. 2010), which leads to increased objectivity and computational

efficiency over loess fits, for which the degree of smoothness must be manually chosen.

The ‘significance’ of a smooth function alone can only establish whether there is a

nonzero pattern to the data – ‘significant’ GAMMs are not necessarily unidirectional

(i.e. exclusively increasing or decreasing). Hence, GAM and GAMM smooths are

visual instruments, and their shapes must always be examined in order to obtain a

complete result.

GAMs and GAMMs also accommodate complex covariate structures because they
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can fit a simultaneous mixture of smooth curves alongside intercept terms and other

parameters. This ‘semiparametric’ approach allows modelers to efficiently visualize

the nonlinear influences of continuously-varying predictors such as an observer or

survey party’s years of service, while also accounting for other fixed covariables such

as survey location. Lastly, the random-effects components of GAMs and GAMMs

consume fewer degrees of freedom when accounting for known grouping structures in

the data than a fixed-effects strategy would, increasing the models’ predictive power.

We used GAMMs to test for changes in expected BBS counts with increasing

years-of-service on a given survey route, and for changes in expected CBC species

richness values over an increasing number of consecutive surveys, which we assumed

reflected increasing party years-of-service. We focused on single-species trends with

the BBS data, but on species richness trends for CBC data. Because of its dependence

on species detection or nondetection, rather than on raw counts, species richness is

a more appropriate dependent variable for the CBC’s less-controlled, variable-effort,

areal-survey design (Dunn et al. 2005). Modeling species richness in this case also

allowed us to measure the effect, if any, of the traditional goal for a CBC party

to record a high number of species during a given survey (Preston 1958; Butcher

et al. 1990; Bonta 2010). In each case (BBS and CBC), we then conducted a case

study to illustrate the consequences of correcting for years of service when estimating

long-term trends of species counts (BBS) or species richness (CBC), respectively.

5.3.1 Years-of-Service Effects (BBS)

The BBS is a North America-wide survey of avian abundance, conducted annually

by skilled volunteers who make 3-minute point counts at each of 50 roadside lo-

cations along a predetermined, consistent survey route, recording all species seen

and (or) heard at each location (Sauer and Link 2011). BBS data are available

from 1966, however we used a subset of data from North American BBS routes sur-

veyed between 1970 and 2007 in order to exclude known data quality problems with

some early surveys of Canadian routes (http://ec.gc.ca/reom-mbs/default.asp?lang=

En&n=E8974122-1, accessed on 25 March 2011). All data included unique observer

identification codes. For each of 100 randomly-selected species present on the BBS

(Appendix 1), we included single-species data sequences from single observers on
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routes featuring a minimum count of 5 birds per year, a minimum of 10 years of

survey effort, and no gaps in survey coverage that were longer than 3 years. In

our models, we corrected for the simultaneous effect of “real” population change

by considering population trends at relevant Bystrak physiographic strata (Bystrak

1981). Each Bystrak stratum contains several survey routes, and so count trajec-

tories shared among these routes (of the same stratum) indicate broader, regional

patterns of population change independent of single-observer (route) effects. To en-

sure adequate replication of these regional population trajectories, we included only

those strata with data from at least 3 survey routes.

We defined ‘years of service’ for each BBS data sequence for a given observer and

survey route as the number of years since the first year of that sequence, accounting

for the fact that some observers began participating in the BBS before 1970. To

avoid confounding years-of-service effects with year-to-year population changes, we

excluded data from Bystrak strata in which the pooled years-of-service among all

participating observers had a Pearson correlation with calendar year that was greater

than 0.7. An earlier study using simulated data showed that this approach adequately

removed similar population effects (see Appendix 2 in Chapter 4).

Overall, these subsetting rules probably limited the realism of true population

trajectories indicated by the analyses (sensu Link and Sauer 1997a). We nonetheless

chose this approach in order to minimize errors in the data that could affect the

shape of our covariate-of-interest (years of service).

Not all species are associated with significantly lower counts during the first year

of an observer’s service on the BBS (e.g. 35–48% of species; Kendall et al. 1996; Sauer

and Link 2011). To account for these exceptions, we estimated the overall patterns of

years-of-service effects separately among each of two species groups either showing

or lacking first-year effects. To first identify these groups, we built overdispersed

Poisson GAMMs similar to current modeling approaches (e.g. Link and Sauer 2002)

predicting counts as a function of calendar year, with a covariable for the first-year

effect, as well as random intercepts for observer and location (see Appendix 2 for

details). Models testing for (linear, fixed-effects) first-year effects showed significantly

(p < 0.05) lower counts during the first year for 32 of 100 species, and a significantly

higher count for 1 species (Chihuahua Raven [Corvus cryptoleucus ]; Appendix 1).
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We considered these 33 species as the group to have shown significant first-year

effects.

To next determine the continuous years-of-service effects for each first-year-effects

group (showing or lacking first-year effects), we used GAMMs similar to the models of

first-year effects (above), but here replaced the parameter corresponding to the first-

year effect (‘η’, Appendix 2) with a cubic regression smooth function, f2(l − τi(j)k),

where τi(j)k is the first year of service by observer k on route i within stratum j,

and l is the survey year. This function showed how expected counts changed along

a continuous range of years of observer service on a given survey route. Within each

species-specific model, for each year of service, we predicted expected counts and

errors (σ2) for separate physiographic strata (all other variables being equal) and

averaged these values among physiographic strata.

Using the species-specific (averaged) predicted counts, we then derived overdis-

persed binomial GAMM smooth functions describing the overall years-of-service ef-

fects separately for those species showing and lacking significant first-year-effects. In

both cases, we re-scaled the single-species expected values to be relative to the value

during the first year of service – thus re-expressing them as proportions – before

building the model. Each of the two binomial GAMMs predicted expected propor-

tional counts as a function of years of service, and included random intercepts for

species. To account for different levels of uncertainty among each of the component

species predictions used, these models also weighted individual datapoints according

to the inverse of their coefficient of variation (i.e. μ
σ
).

We conducted a case study to illustrate the effect of correcting for long-term ob-

server years of service in BBS population trajectory estimation, compared to older

methods. We considered two older methods here: (1) ‘no correction’, where no

years-of-service effects were modeled, and (2) ‘first-year correction’, where first-year

effects, as described above, were modeled. Using data for the Vesper Sparrow (Pooe-

cetes gramineus), a species with a large number of records and high mean counts, and

which had an existing first-year-effect (Appendix 1), we compared estimated popu-

lation trajectories (i.e. f1(l)j in Equation 5.1, Appendix 2) under three correction

scenarios (no correction, first-year correction, and “full” [continuous years-of-service]
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correction). For each of the three approaches, we used data from three selected ge-

ographic strata that showed uncorrected population trends that were apparently (i)

increasing (Dissected Till Plains; Figure 5.3A), (ii) stable-to-decreasing (Till Plains;

Figure 5.3B), or (iii) declining (Aspen Parklands; Figure 5.3C).

5.3.2 Years-of-Service Effects (CBC)

The CBC is an annual, area-based survey of winter birds conducted collectively by

groups of volunteer observers of variable group size and ability who tally bird species

abundances within a predetermined count circle 24.1 km in diameter (Francis et al.

2004; Dunn et al. 2005). We used a subset of data from all Canadian CBC count

circles surveyed between 1961 and 2009 that were available in an electronic format.

Before calculating annual species richness values, we removed records not identi-

fied to species (e.g. ‘Gull sp.’) and all records of hybrid species. We also aggregated

all subspecies, regional variants and ‘morphs’ or ‘forms’ (e.g. ‘Dark-eyed [Oregon]

Junco’ vs. ‘Dark-eyed Junco’) into their parent taxa (sensu La Sorte and McKinney

2007). This approach reduced the chance that year-to-year inconsistencies in the

data could artificially inflate or deflate species richness, for instance if one count

circle participant identified multiple hybrids or morphs, while another participant in

a previous year recorded only the parent category for members of the same resident

population.

Butcher et al. (1990) describe the CBC as “often consist[ing] of an experienced

core group of birders from year to year, with the same count compiler and the

same party leaders.” They add that “as a result, many CBC circles are covered in

essentially the same way from year to year.” We thus assumed that year-to-year

continuity of surveys in the data implied that the same local coordinators and core

participants were involved, and we only included count circles which were surveyed

continuously for at least 10 years. We used the number of years over which a count

circle had been continuously surveyed (its ‘age’) as a proxy for survey party years-

of-service.

To account for the effects of real changes in species richness over time (i.e. with

calendar year), we needed replicated time series for each survey location. To achieve
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this effect with the unreplicated CBC circles, we estimated species richness trajecto-

ries at a broader spatial scale, using count data from the individual count circles as

replicates. We used the overlap between Bird Conservation Regions (‘BCRs’; Sauer

et al. 2003) and provincial boundaries as our broad-scale sampling units. As in the

BBS analyses, to ensure adequate replication and separation of observer effects from

real changes over time, we only considered BCR-provincial overlap regions containing

at least 3 count circles and which had a Pearson correlation between pooled count

circle ‘ages’ and calendar years that was less than 0.7 (n = 6).

Survey parties on the CBC are allowed to vary their survey effort from year to

year, for instance by surveying for different lengths of time. Hence, effort is routinely

accounted for as a group-level source of observer error (Link et al. 2006). Consistent

with recent analyses of CBC data (e.g. Link and Sauer 1999; Link et al. 2006; Sauer

et al. 2008), and for consistency among all years of data considered, we corrected for

the effect of effort using overall party-hours as the indicator variable. We arbitrarily

assumed a maximum realistic value for effort of 200 party-hours, which translates to

an 11 h survey day with 18 people independently covering the circle – in our opinion,

the upper limit of potential survey effort for most count circles. Consequently, we

excluded data corresponding to effort values exceeding 200 h, which probably arise

in most cases from incorrect recording or transcribing (sensu Peterson 1995). We

also excluded data with missing or zero effort scores.

Using these data, we built a Poisson GAMM predicting annual species richness for

a given count circle as a smooth function of years of service, correcting for the effects

of calendar year and effort as additional smooth functions, and including a random

intercept which controlled for differences in mean counts among each count circle.

As a case study, we then graphically compared predicted species richness trajectories

from this GAMM to a similar model built from the same data, but which excluded

the correction for years of service (see Appendix 3 for details).
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5.4 Results

5.4.1 Years-of-Service Effects (BBS)

Models testing for continuous years-of-service effects on the BBS showed significant

(p < 0.05) nonlinear, long-term declines in expected counts for both those species

showing significant first-year effects (n = 33), and those species showing no significant

first-year effects (n = 67). Expected counts declined by more than 25% (26.8 ±
0.07%) in the group showing significant-first-year effects, and by more than 40%

(43.1± 0.05%) in the group with no significant first-year-effects, respectively, as the

observer reached 35 years of service (Figure 5.1). Among species showing first-year

effects (Figure 5.1A), there was also a slight increase in counts in the early years of

service (analogous to an ‘extended’ first-year effect) which peaked at 101.58± 1.39%

of the original count after 5 years. Pointwise error estimates from the BBS models

increased with years of service, reflecting the existence of increasingly fewer observers

approaching 35 years of experience.

In the Vesper Sparrow case study, the first-year effect (in the first-year-effects

model) corresponded to a 15.0% lower count compared to the average trajectory of

subsequent years (log-scale difference: −0.162 ± 0.029; p < 0.001; Figure 5.2A). In

the “full” model correcting for continuous years of service effects, estimated counts

peaked at 5 years of service and were 4.6% higher than first-year counts (Figure

5.2B; log-scale difference 0.045 ± 0.097; SD obtained by simulation). Estimated

counts steadily declined after that point, and at 35 years of service were 55.7% lower

than the first year’s value (Figure 5.2B; log-scale difference 0.783 ± 0.152 units; SD

obtained by simulation).

Estimated count trajectories that corrected for first-year effects (Figures 5.3B,

E, and H) were less-positive than uncorrected values (Figures 5.3A, D, and G).

In contrast, count trajectories correcting for the full range of years of service were

more positive than the uncorrected values, as well as than the values with first-

year corrections (Figures 5.3C, F, and I). This shows the greater importance of the

declining component of the years-of-service effect compared to the initial increasing

component in the first 5 years (Figure 5.2B).
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Figure 5.1. Overdispersed binomial GAMM smooth functions describing the propor-
tion of expected species counts on BBS routes, relative to the counts made on the
first year of service as a function of the number of years that an observer has surveyed
the route. Panel A shows a geographic-stratum-averaged and uncertainty-weighted
smooth function derived from count records of 33 species that showed significant
first-year effects under a separate modeling approach. Panel B shows the smooth
function of an identical model, but which was produced from count records of 67
species that did not show significant first-year effects. The peak in expected counts
in panel A occurs at 5 years of service. Shaded areas are 95% pointwise confidence
intervals.
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Figure 5.2. Years-of-service effects in the case study of Vesper Sparrow (Pooecetes
gramineus) abundance estimates from BBS data. Panel A shows shows the first-
year correction (log-scale) effect for each geographic stratum, modeled using a con-
ventional technique (i.e. analogous to Link and Sauer 2002). Panel B shows the
full service length correction for expected counts on the log scale, derived from the
GAMM-based modeling approach presented here. All error bars and shaded areas are
95% pointwise confidence intervals. See Figure 5.3 for the effects of these corrections
on the Vesper Sparrow abundance estimates.
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Figure 5.3. Case study of Vesper Sparrow (Pooecetes gramineus) years-of-service
effects on abundance estimates from BBS data under three overdispersed Poisson
GAMM modeling approaches that i) do not account for the effect of years of service
on estimated population trajectories (“no correction”; panels A, D, G), ii) account
for a years-of-service effect by considering first-year effects only (“first-year correc-
tion”; panels B, E, H), and iii) account for a years-of-service effect as a continuous
smooth function (“full service-length correction”; panels C, F, I). Panels show the
smoothed log-scale predictions of expected counts. All shaded areas are 95% point-
wise confidence intervals. See Figure 5.2B to visualize the underlying years-of-service
correction.



104

5.4.2 Years-of-Service Effects (CBC)

The model testing for continuous years-of-service effects on the CBC showed sig-

nificantly nonzero, monotonic increases in observed species richness with increasing

party years of service (count circle age; p < 0001; Figure 5.4G). All else being equal

and averaged among BCR-provincial overlap regions, expected species richness in-

creased by 14.4% (log-scale difference 13.5 ± 3.2 units; SD obtained by simulation)

over 30 years of party attendance.

After correcting for years of service, four of the six geographic regions showed

significantly nonzero, nonlinear patterns of change in species richness over time (Fig-

ures 5.4A through D: solid lines) and two showed no significant changes (Figures

5.4E and 5.4F: solid lines). In the (case-study) model that did not correct for years

of service, all six geographic regions showed significantly nonzero, nonlinear species

richness trajectories (Figures 5.4A through D: dashed lines).

Species richness trajectories tended to show shallower increases with calendar

year when corrected for years-of-service effects (Figures 5.4A through F; solid lines),

and richness values tended to be higher overall than uncorrected estimates (dashed

lines).

5.5 Discussion

This research revealed a complex picture of observer years-of-service biases that

could be affecting models of bird species richness and abundance. In the BBS mod-

els, among species showing first-year effects, we found a small increase in counts

(approximately 101.58% of the first year’s observations) developing between the first

and fifth years of service on a route, and then a much larger subsequent decline –

exceeding 25% – after 35 years (Figure 5.1A). This is consistent both with earlier re-

search demonstrating a first-year-of-service effect (Kendall et al. 1996; Jiguet 2009),

and with research showing observer senescence effects in both the BBS and an in-

dependent dataset (Link and Sauer 1998; and see Chapter 4). This pattern is also

precisely what Bart et al. (2004b) speculated might tend to occur, arguing that grow-

ing familiarity with a given survey site probably leads to initial increases in expected

counts, but that these gains are eventually superseded by normal, age-related losses
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Figure 5.4. Trends in estimated Christmas Bird Count (CBC) species richness values
for selected Bird Conservation Regions (Sauer et al. 2003) over time (panels A to
F), plus the simultaneous, date-independent effects of years of service (count circle
“age”; panel G) and survey effort (panel H). Points on panels A through F are raw
richness values. Solid lines on these panels are GAMM estimates which correct for
years of service; dashed lines are similar estimates which do not correct for years of
service. Solid-line trends are significantly nonlinear (GAMM smooth term p < 0.05)
in Panels A through D; all dashed-line trends are significantly nonlinear. Shaded
areas are 95% pointwise confidence intervals.
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of hearing and vision (i.e. sensory declines). Furthermore, the long-term decline in

counts with observer service we observed here parallels results from models of British

Breeding Bird Survey data (Eglington et al. 2010), in which the majority of models

that accounted for a continuous linear effect of observer service predicted declining

counts over time (i.e. a negative slope of the correction factor), which the authors –

who did not consider the influence of sensory declines – found puzzling.

Our results also suggest that early increases in expected BBS counts seem to de-

velop over periods longer than 1 year (i.e. 5 years), and that these increases are rela-

tively small compared to the longer-term declines. Earlier research which recognized

the existence of first-year-effects (Kendall et al. 1996) did not test for within-observer

changes beyond year 1, thus, our continuous years-of-service approach also provides

a more detailed picture of this process.

In the Vesper Sparrow case study (Figures 5.2 and 5.3), we showed how failing

to correct for longer-term years of service effects, as is standard practise at present,

led to more-negative BBS population trajectory estimates. This could lead to in-

appropriate management inferences and decisions (sensu Thomas and Martin 1996).

Taken together, our data indicate a need to reconsider the years-of-service covari-

ate structure of existing BBS population models, which we argue should correct for

long-term years-of-service effects, rather than simply a first-year effect. In light of

previous research showing the importance of more-direct measures of observer age

(Chapter 4), future studies might also consider how to effectively control for the

simultaneous influences of each of early and late years-of-service, and observer age.

For instance, studies could evaluate whether modeling years-of-service could be ad-

equate as a sole covariate, or whether a hybrid approach (e.g. by modeling early

years-of-service effects and late observer-age effects as step functions) might be more

appropriate.

We also identified significant years-of-service effects in CBC data. Here, we found

a significant increase in species richness with increasing years of service (Figure 5.4E),

independent of both calendar year (Figures 5.4A through F) and the effects of party

effort (Figure 5.4G). The model predicted average species richness due to observer

effects alone to increase 14.4% among count circles surveyed consistently for 30 years.

This pattern may be a result of CBC participants attempting to maximize or outdo
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their previous years’ species counts (Butcher et al. 1990), which is supported by

observations that participants will often pre-survey count circles in advance of the

formal CBC date (Preston 1958; Dunn et al. 2005). It is also qualitatively consis-

tent with botanical studies showing species richness counts to be closely-related to

surveyor experience and effort (Pautasso and McKinney 2007; Ahrends et al. 2011).

In the CBC case study, we demonstrated how, in practice, the trajectories of CBC

species richness curves that correct for years-of-service effects (Figures 5.4A through

F: solid lines) differ from those which do not (Figures 5.4A through F: dashed lines),

in that correcting for years-of-service effects removed otherwise significantly nonlinear

(p < 0.05) and positive trajectories of species richness in two of six geographic

regions (Figures 5.4E and F). Similarly, the models illustrated how species richness

values modeled with existing methods tend to be underestimates regardless of survey

year, because most survey parties by definition do not have the highest amount

of experience (Figures 5.4A through F; relative heights of solid vs. dashed lines).

Collectively, this illustrates how failing to account for count circle ‘age’ can influence

our determination of long-term patterns, in particular making long-term increases

in species richness appear artificially steeper, and mean species richness estimates

appear artificially lower.

The apparent increase of CBC species richness with increasing party years of

service indicates a need for greater methodological and data controls, if CBC data

collection is to serve scientific purposes beyond its primarily recreational intent. A

recent, major review of the CBC (Francis et al. 2004) recommended establishing

tightly-controlled sub-surveys within each count circle, with data recorded sepa-

rately as a baseline to complement the larger, less-controlled count circle survey as

a whole. We support this initiative; however, it has not yet been implemented. Sim-

ilarly, this review recommended better-educating participants about the limitations

of CBC data, especially when survey effort is not consistent. We also believe that ad-

ministrators should more-strongly emphasize the value of adopting consistent search

strategies from year to year, but we have not yet seen evidence that this is taking

place. Lastly, we believe that in order to strike a balance between recreational free-

dom and methodological rigour on the CBC, model-based corrections – which do not

necessarily require changes to survey protocols – are also useful. To facilitate making
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such model-based corrections, survey administrators should also begin collecting the

identities of all count circle participants in order to establish accurate measures of a

party’s years of service.

Compared to decreasing long-term patterns on the BBS, the tendency for rich-

ness counts to increase with a CBC survey party’s years of service, may reflect an

‘advantage’ of the group-based surveying approach over the solitary BBS surveying

approach: in the CBC, older party members can work directly with younger survey

participants, and this presumably compensates for any sensory changes that might

bias the older observers’ detection patterns over time (Stewart 1954; and see Chapter

4 and this paper).

Incidentally, our analysis of the CBC data indicated that Canadian winter species

richness, corrected for the effects of years of service and survey effort, is nonetheless

generally increasing over time in most ecoregions (Figures 5.4A through F). This

echoes findings by La Sorte et al. (2009) and arguments by La Sorte and McKinney

(2007) that Canadian circles, which tend to sit at the northern boundary of many

species’ ranges, might be particularly sensitive to the climatic and anthropogenic

changes that can promote species colonization and extinction. Our research also

suggests that correcting for years-of-service effects may lead to more precise estimates

of this phenomenon.

One limitation of this study is its focus on elucidating the years-of-service effect

outside the context of some other data quality issues affecting the BBS and CBC

(e.g. missing data, short-term observers). For this reason, we believe that future

methods research should consider the relative importance of these errors using larger,

noisier datasets that the data subsets chosen here. Further studies into how observed

species richness varies with observer experience in other competitive surveys such

as eBird (Sullivan et al. 2009) might also be valuable. If years-of-service effects

remain relatively important – which we expect to see, given the magnitude of the

observed declines in this study (i.e. greater than 25–40% of initial counts on the BBS;

Figure 5.1) – modelers should then determine how corrections for long-term years-of-

service effects might be made both retrospectively to existing population trajectory

estimates, and what modeling techniques might be most suitable for accounting for

such processes in the future. Our work here, combined with previous studies of
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GAMs (Link and Sauer 1997a; Fewster et al. 2000; Flemming et al. 2010) shows how

additive models can be useful in such a role.
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5.7 Supplementary Material

5.7.1 Appendix 1: List of 100 Species Randomly Selected from BBS Routes From Which First-Year Effects
Were Modeled as a Continuous (GAMM) Function. All significant first-year effects were negative (i.e.
a lower-than-expected count during the first year of service) except for in the model of Chihuahua
Raven (Corvus cryptoleucus) counts, where the first-year effect was positive.

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

FYa

Acorn Woodpecker Melanerpes formicivorus 503 3 32 30 25 ± 23

Alder Flycatcher Empidonax alnorum 2481 8 147 130 8.8 ± 9.1 *

American Crow Corvus brachyrhynchos 16114 40 963 767 34.5 ± 25.6 *

American White Pelican Pelecanus erythrorhynchos 64 1 4 4 23.6 ± 34.6

Anna’s Hummingbird Calypte anna 204 1 12 13 5.7 ± 4.5

Bachman’s Sparrow Peucaea aestivalis 245 2 16 13 8.3 ± 11.6

Baird’s Sparrow Ammodramus bairdii 203 2 11 9 7.5 ± 8.8

Band-tailed Pigeon Patagioenas fasciata 571 4 31 33 6.9 ± 14.6

Bay-breasted Warbler Dendroica castanea 90 1 5 5 2.5 ± 2.4

Black-billed Cuckoo Coccyzus erythropthalmus 89 1 5 5 1.9 ± 2.2

Continued on next page

a Significant first-year effect
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

FYa

Black-crowned Night-Heron Nycticorax nycticorax 78 1 4 3 1.9 ± 2.8

Black-headed Grosbeak Pheucticus melanocephalus 1534 9 91 76 14.4 ± 16.5 *

Black-throated Gray Warbler Dendroica nigrescens 439 2 24 25 12.8 ± 17.1

Blue-winged Warbler Vermivora cyanoptera 384 2 22 17 4 ± 3.4

Blue Jay Cyanocitta cristata 13506 31 806 627 13.7 ± 11.5 *

Boat-tailed Grackle Quiscalus major 269 2 15 11 28.1 ± 32

Boreal Chickadee Poecile hudsonicus 81 1 4 5 3.4 ± 2.7

Brown-crested Flycatcher Myiarchus tyrannulus 38 1 3 3 32.2 ± 18.9

Brown Thrasher Toxostoma rufum 7808 24 464 359 6.2 ± 5.3 *

Canada Goose Branta canadensis 995 8 51 42 30.3 ± 75.7

Canyon Towhee Melozone fusca 190 3 12 10 9.4 ± 8.5

Cassin’s Kingbird Tyrannus vociferans 187 2 13 11 17.3 ± 12.7

Cerulean Warbler Dendroica cerule 261 2 14 12 5.8 ± 5.9

Chihuahuan Raven Corvus cryptoleucus 108 1 7 4 15.2 ± 12.5 *

Cliff Swallow Petrochelidon pyrrhonota 4176 23 251 222 47.3 ± 102.1

Common Ground-Dove Columbina passerina 629 4 37 25 7.7 ± 10.6

Common Yellowthroat Geothlypis trichas 13217 33 789 634 15.3 ± 12.6 *

Continued on next page

a Significant first-year effect
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

FYa

Double-crested Cormorant Phalacrocorax auritus 229 3 11 12 29.8 ± 63.2

Eastern Kingbird Tyrannus tyrannus 9081 26 532 415 7 ± 7.4

Eastern Wood-Pewee Contopus virens 7816 21 454 353 6.8 ± 5.2 *

Fish Crow Corvus ossifragus 1514 4 92 66 9.7 ± 11 *

Forster’s Tern Sterna forsteri 59 1 4 4 5.2 ± 9.9

Fox Sparrow Passerella iliaca 320 4 19 18 17.3 ± 26.1

Gilded Flicker Colaptes chrysoides 60 1 4 3 8 ± 7.7

Glossy Ibis Plegadis falcinellus 40 1 3 3 52.3 ± 70.8

Golden-crowned Sparrow Zonotrichia atricapilla 52 1 4 3 40 ± 19 *

Golden-winged Warbler Vermivora chrysoptera 60 1 3 3 3.3 ± 4.6

Grace’s Warbler Dendroica graciae 86 1 6 5 9.7 ± 7.6

Great Black-backed Gull Larus marinus 165 1 8 9 8.8 ± 10.1

Great Blue Heron Ardea herodias 2248 12 131 108 3.9 ± 5.3

Hairy Woodpecker Picoides villosus 859 9 47 44 2.4 ± 2.1

Hammond’s Flycatcher Empidonax hammondii 580 4 37 33 10.8 ± 10.1 *

Hermit Thrush Catharus guttatus 3155 14 192 169 10 ± 11.7

Hooded Oriole Icterus cucullatus 46 1 3 3 5 ± 3.9

Continued on next page

a Significant first-year effect
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

FYa

Hooded Warbler Wilsonia citrina 1757 8 104 73 5.2 ± 4.7

Horned Grebe Podiceps grisegena 116 1 5 3 2.4 ± 2.3

House Finch Carpodacus mexicanus 5385 26 310 246 15.7 ± 23.8

House Wren Troglodytes aedon 8482 27 494 416 12.3 ± 10.6 *

Hutton’s Vireo Vireo huttoni 340 2 19 17 3.8 ± 3.3

Indigo Bunting Passerina cyanea 9751 20 578 451 24.8 ± 19.6 *

Killdeer Charadrius vociferus 12192 41 724 601 8.8 ± 8.7

King Rail Rallus elegans 41 1 3 3 5.4 ± 9.5 *

Ladder-backed Woodpecker Picoides scalaris 195 3 14 14 5 ± 3.4

Lark Bunting Calamospiza melanocorys 641 3 41 35 127.2 ± 125.7

Le Conte’s Sparrow Ammodramus leconteii 314 2 18 18 4.8 ± 5.3 *

Least Flycatcher Empidonax minimus 3950 12 230 203 7.4 ± 6.3 *

Lesser Scaup Aythya affinis 120 1 6 7 15.9 ± 33.4 *

Loggerhead Shrike Lanius ludovicianus 1989 15 120 102 4.7 ± 5.2

MacGillivray’s Warbler Oporornis tolmiei 880 5 53 47 7.1 ± 6.1

Mallard Anas platyrhynchos 4287 22 244 214 15 ± 34.4

Marbled Godwit Limosa fedoa 503 3 30 22 7.9 ± 11

Continued on next page

a Significant first-year effect
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

FYa

Mottled Duck Anas fulvigula 102 1 7 7 12.2 ± 14.8

Myrtle Warbler Dendroica coronata coronata 1992 5 116 102 7.3 ± 7.3 *

Nashville Warbler Vermivora ruficapilla 1936 6 113 101 12.1 ± 15.2 *

Northern Mockingbird Mimus polyglottos 8604 31 527 415 25 ± 25.7

Northern Pintail Anas acuta 317 2 17 13 9.2 ± 15.1

Northern Rough-winged

Swallow

Stelgidopteryx serripennis 2549 15 140 113 4.7 ± 7.7

Northern Waterthrush Parkesia noveboracensis 662 3 40 38 4.7 ± 4.1 *

Nuttall’s Woodpecker Picoides nuttallii 267 1 17 18 6.8 ± 4.9

Oregon Junco Junco hyemalis montanus 1961 10 122 107 16.7 ± 14.8

Palm Warbler Dendroica palmarum 107 1 5 6 3.6 ± 3.6

Phainopepla Phainopepla nitens 140 2 9 7 10.2 ± 16.7

Philadelphia Vireo Vireo philadelphicus 205 2 13 11 3 ± 2.5

Pileated Woodpecker Dryocopus pileatus 2360 9 132 95 4 ± 4

Pine Siskin Carduelis pinus 1215 8 74 67 18.8 ± 24.2

Pine Warbler Dendroica pinus 2867 7 179 132 10.8 ± 11 *

Prothonotary Warbler Protonotaria citrea 843 3 51 39 6.6 ± 10.1 *

Continued on next page

a Significant first-year effect
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

FYa

Purple Finch Carpodacus purpureus 2320 7 132 117 4.8 ± 5.2

Purple Martin Progne subis 4321 14 265 204 14.1 ± 20

Red-breasted Sapsucker Sphyrapicus ruber 64 1 4 3 8.7 ± 11.3

Red-headed Woodpecker Melanerpes erythrocephalus 2100 6 121 97 5.1 ± 5.6

Red-shouldered Hawk Buteo lineatus 420 2 24 15 3.3 ± 3.4

Ruby-throated Hummingbird Archilochus colubris 336 3 18 15 2.2 ± 2.3

Savannah Sparrow Passerculus sandwichensis 5926 23 355 304 18.5 ± 22.8 *

Say’s Phoebe Sayornis saya 477 5 31 25 4.8 ± 4.4 *

Scaled Quail Callipepla squamata 254 2 16 9 12.9 ± 17.3 *

Seaside Sparrow Ammodramus maritimus 81 1 5 4 10.9 ± 6.9 *

Slate-colored Junco Junco hyemalis hyemalis 1494 6 88 78 7 ± 7.2

Snowy Egret Egretta thula 250 3 15 12 12.9 ± 27

Song Sparrow Melospiza melodia 11828 31 691 572 25.7 ± 21.2

Sprague’s Pipit Anthus spragueii 168 2 8 9 6.6 ± 7.6

Swainson’s Thrush Catharus ustulatus 2352 9 146 132 21.6 ± 23.8 *

Swamp Sparrow Melospiza georgiana 1565 6 89 81 4.8 ± 4.5 *

Tree Swallow Tachycineta bicolor 6344 22 370 314 10.6 ± 12.3

Continued on next page

a Significant first-year effect
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

FYa

Verdin Auriparus flaviceps 232 3 15 12 15 ± 19.7

Vesper Sparrow Pooecetes gramineus 4147 17 240 202 21.5 ± 21.9 *

Western Meadowlark Sturnella neglecta 4993 22 312 256 76.1 ± 91.6 *

White-crowned Sparrow Zonotrichia leucophrys 397 2 25 24 15.9 ± 14.9 *

Yellow-bellied Sapsucker Sphyrapicus varius 1439 4 80 71 5.9 ± 6.5 *

Yellow-breasted Chat Icteria virens 4663 14 282 210 12.9 ± 11.4 *

a Significant first-year effect
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5.7.2 Appendix 2: Details of the First Set of BBS Models (First-Year
Effects Only)

GAMMs used to distinguish species with significant and non-significant first-year

effects in BBS data followed the formulation:

log(yi(j)kl) = f1(l)j + η · I(i(j)k, l) + θk + λi(j)k + σi(j)kl (5.1)

for i = 1, . . . , I routes within stratum j = 1, . . . , J , k = 1, . . . , K observers, and

l = 1, . . . , L calendar years since 1969, and where yi(j)kl is the number of birds

detected on a route i in stratum j by observer k during year l, plus a constant of

0.5 to better accommodate zero-counts (Sauer et al. 1996), f1(l)j is a cubic spline

smooth function estimating population-related effects (changes with calendar date)

for physiographic stratum j, η is the first-year effect, I(i(j)k, l) is a dummy variable

that equals 1 in an observer’s first year of service on a route and 0 otherwise, θk are

mean-zero, normally-distributed random intercepts for each observer, λi(j)k are mean-

zero, normally-distributed random intercepts for each observer at a route-within-

stratum, σi(j)kl is mean-zero, normally-distributed overdispersion error, and where

datapoints collected by a given observer were weighted according to the inverse of

the number of routes conducted by that observer for the modeled species within a

given stratum.

In addition to using smooth functions in place of a large pool of random effects

to account for nonlinear population trajectories, an important deviation from the

model formula described in Link and Sauer (2002) is the inclusion of an observer

effect (θk) alongside the nested observer-within-route effect (λi(j)k).

The case study of Vesper Sparrow (Pooecetes gramineus) population trends used

the model in Equation 5.1 for the second scenario (‘first-year correction’). For the

first scenario (‘no correction’), we modified this model by excluding the first-year

effect variable (η). For the third scenario (‘full correction’) we modified this same

model by replacing the first-year effect variable (η) with a cubic regression smooth

function for years of service, f2(l − τi(j)k), where τi(j)k is the first year of service by

observer k on route i within stratum j, and l is the survey year.
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5.7.3 Appendix 3: Details of the CBC Data and Models

The principal Poisson GAMM for CBC data was specified as:

log(yi(j)k) = f1(k − τi(j)) + f2(k)j + f3(ξi(j)k) + θi(j) (5.2)

for i = 1, . . . , I count circles within BCR-Province stratum j = 1, . . . , J , and k =

1, . . . , K calendar years since 1969, and where yi(j)k is the number of birds detected

on a route i in stratum j during year k, f1(), f2()j and f3() are tensor-plate, cubic

spline smooth functions estimating (i) years-of-service effects, (ii) population-related

effects for physiographic stratum j (here, with a ridge penalty allowing a zero-effect),

and (iii) effort effects, respectively. τi(j) is the first year that a count circle i was

surveyed, ξi(j)k is effort in party-hours for each count circle i during year k, and θi(j)

are mean-zero, normally-distributed random intercepts for each count circle.

We graphically compared species richness trajectory estimates predicted by this

model, and by a second, nearly-identical alternative model built from the same data,

but which did not include f1(), the correction for years of service (Figures 5.4A

through F).



Chapter 6

Re-evaluating the Interpretation of Apparent Longitudinal

Changes in Observer Quality on the North American

Breeding Bird Survey

6.1 Abstract

Past research measuring observer errors in the North American Breeding Bird

Survey (‘BBS’) has shown that, averaged across their entire service histories, ob-

servers who began surveying a BBS route more recently have higher expected counts

compared to observers whose ‘start years’ occurred earlier. Some studies have inter-

preted this result to mean that the overall ‘quality’ of new BBS participants must

be systematically increasing over time. An alternative explanation for this pattern

recognizes that observers with earlier start years tend to have been participating in

the BBS for longer, and are thus, on average, older. Based upon known declines in

observer detection ability with age, these older observers are therefore more likely to

have lower average expected counts. Here, we show that observer start years and to-

tal years of service are negatively correlated. Accordingly, we also show that relative

expected counts among observers increase with increasing start year and decrease

with increasing years of service. Finally, we show that relative expected counts do

not vary with start year in a group of observers with only short-term BBS service.

Thus, while new BBS observers tend to count more birds than observers with less-

recent start years, this pattern is not strong evidence that the year-to-year ‘quality’

of each successive cohort of observers has improved, but rather, it is more consistent

with a decrease in the detection abilities of longer-serving observers within a given

cohort over time.
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6.2 Introduction

The current approach to modeling population trend data from the North Amer-

ican Breeding Bird Survey (“BBS”; Peterjohn 1994; Link and Sauer 2002) accounts

for two types of observer effects. The first effect is a lower expected count during

an observer’s first year of service on a survey route relative to subsequent years (‘η’;

Kendall et al. 1996), while the second effect is a normally-distributed range of ex-

pected counts among unique observers visiting a particular survey route, relative to

the mean for that route (‘Δbj’ or ‘ωj’ Sauer et al. 1994; Link and Sauer 2002).

Sauer et al. (1994) found that, for a given analysis year, observers have higher

relative expected counts (i.e. higher Δbj) if their first year of service on that route

(‘start year’) is more recent than previous observers who they replaced. Subsequent

research has revealed a similar trend with ωj (Link et al. 2008). Authors have argued

that this is evidence for a “trend over time of improving observer quality” (Sauer

et al. 1994), an “increase in average birder skill over the past half-century” (Dunn

et al. 2005), and a “change in the pool of observers” (Link et al. 2008). Sauer et al.

(1994) attributed this pattern to a growing familiarity among volunteers with the

BBS protocols and an increasingly-effective administrative system for disqualifying

unskilled candidates.

We have previously shown that aging and long-serving BBS observers count fewer

birds, presumably due to normal sensory declines that occur with age (Chapters 4

and 5). This has implications for the interpretation of the above patterns of Δbj and

ωj. Here, we consider an alternative explanation for the increasing pattern of relative

expected counts among observer cohorts with more-recent start years that takes these

sensory declines into account. Because it recognizes that changes can occur within

observers over the course of their service histories, this explanation does not imply

that the ‘quality’ or ‘skill’ of new observers, defined in terms of expected counts,

is improving from year to year. Instead, it only recognizes that newer (younger)

observers tend to count more birds.

Under the proposed mechanism, we assume that the age at which any observer

starts surveying the BBS tends to be similar throughout the BBS’s history. Given

that observers who started surveying the BBS at earlier dates have longer service
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Figure 6.1. Relationship between years of service on a given BBS survey route (as
of 2007) for a given observer and the date of that observer’s first year of service on
that route (‘start year’). Years of service decline with more recent start years on any
given survey route. Solid line is a loess smooth curve; shaded areas are one standard
deviation of the mean. Data shown are identical to those used in later analyses.

histories on average (r = −0.71; Figure 6.1), we also assume that, on average, ob-

servers with earlier survey start years are older. Older (i.e. longer-serving) observers

are more likely to have experienced age-related declines in their expected counts (see

Chapters 4 and 5), and hence, their average expected counts should be lower. Taken

together, this implies that the apparently increasing trend in average expected counts

in more-recent start years occurs because, for a given point in time, observers with

more-recent start years have had, by virtue of their being younger, less opportunity

to experience age-related declines in their detection abilities.

We tested the above hypothesis by first calculating relative expected count scores,

analogous to Δbj, and measuring any covariation between these scores and an ob-

server’s years-of-service. We then used linear regression to show how the established,

positive relationship between observers’ relative expected count scores and their start

years disappears in a dataset containing only observers with an identical, short service

history, and hence, how this relationship depends upon there being older observers
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in the cohorts with earlier start years.

6.3 Methods

We derived relative expected count scores analogous to those used by Sauer et al.

(1994) and Link et al. (2008) using overdispersed, Poisson generalized additive mixed

models (‘GAMMs’; Wood 2006) of Canadian BBS count data (1970–2007) for 50

randomly-selected species (Appendix 1). These GAMMs were roughly equivalent to

the existing standard for estimating BBS population trends from count data (e.g.

Link and Sauer 2002), except they used continuous smooth functions in place of some

highly-parameterized random effects in order to account for long-term population

trends. Consistent with Link and Sauer (2002) but in contrast to Sauer et al. (1994),

we did not calculate separate regressions for each species and survey route; instead,

we used a single, hierarchical model for each species.

Each model incorporated normally-distributed random-effects intercepts corre-

sponding to unique combinations of observer and survey route to account for among-

observer variation in expected counts (λi(j)k; Appendix 2). To preserve the relative

differences in these variables among observers with different service lengths, and to

be consistent with models by Link and Sauer (2002), we did not account for the

continuous effects of observer years of service as in Chapters 4 and 5, and instead

only accounted for the known difference in counts between the first and second years

of observer service (‘η’; Link and Sauer 2002). For computational efficiency, we also

used BBS records collected exclusively by observers who surveyed Canadian routes

for at least three years (range: 3–28 y). Additional modeling details can be found in

Appendix 2.

As in the approach by Sauer et al. (1994), after deriving the models and their

corresponding relative expected-count scores for each species (here, λi(j)k) we then

calculated the deviation of each such term from the route-level means in each model.

We refer to this new term, Δλi(j)k, henceforth as κ, and use it to describe relative

differences in expected counts among observers for the rest of this study. To avoid

issues of within-route autocorrelation, we then randomly selected one κ datapoint

– representing a single observer’s relative expected count score – from each unique

combination of species and route that was surveyed by at least two observers (sensu
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Sauer et al. 1994).

We measured the correlation between an observer’s length of service and his or her

relative expected count score (κ) using simple linear regression. Based upon previous

research (e.g. Sauer et al. 1994), and the negative correlation between start years and

years-of-service (Figure 6.1), we expected that κ would decline with increasing years-

of-service.

We then created a second linear regression to describe how the relative expected

count scores (κ) varied with the observer’s first year of service on that same route

(‘start year’), as in Sauer et al. (1994). We compared the slope of this regression

to that of an identical linear regression built using only those observers showing five

years of BBS service or less (regardless of their start year). We chose five years

as a cut-off because previous research indicated that sensory declines might occur

after this point among BBS observers, assuming a consistent age of first service (see

Chapter 5).

If systematic differences in relative expected counts among observers with dif-

ferent start years are largely the result of years-of-service effects (i.e. aging), we

expected that whereas the κ scores would increase as start years became more recent

among observers with variable service history lengths (as in Sauer et al. [1994] and

Link and Sauer [2008]), in the regression which used exclusively short-term observers,

this trend would not differ significantly from zero. This is because no systematic,

age-related differences in detection ability should be present among the different

start-year cohorts if the corresponding observers’ service histories (and hence, ages)

are roughly equivalent.

6.4 Results

The linear regression predicting relative expected count scores (κ) as a function

of observer years of service was significantly negative (βService = −0.0033, p = 0.010,

df = 2629; Figure 6.2). This regression was not sensitive to the influence of outliers;

removing those individuals with more than 20 years of service post hoc (n = 58

of 2631 records) did not affect its directionality or significance (βService = −0.0038,

p = 0.010, df = 2571).
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Figure 6.2. Relative expected count scores among BBS observers (κ), derived using
an approach similar to that in Sauer et al. (1994) using BBS data from 50 randomly-
selected species, randomly sampling one such score per species-route combination (to
avoid autocorrelation within routes), and plotting these values as a function of the
observer’s number of years of service on a BBS route. Both lines are significantly
negative linear regressions: the solid line (p = 0.010) is a regression on all datapoints;
the dashed line (p = 0.010) illustrates that the significance is not dependent on
effects from outlying observers (i.e. with more than 20 years of service; n = 58 of
2631 records). Shaded areas are 95% confidence intervals.



125

The linear regression predicting relative expected count scores (κ) as a function of

observer start year indicated a small, but significant increase in expected counts with

increasing (i.e. more-recent) start year (βstartY ear = 0.0030, p < 0.001, df = 2629,

Figure 6.3A). Restricting the analysis to those observers with 5 years of service or less,

an identical regression was no longer significantly different from zero (βstartY ear =

0.0008, p = 0.407, df = 873; Figure 6.3B).

To test whether the slopes of the latter two regressions of κ on observer start

year were significantly different from each other, we next built an interaction model,

specified as

κij = (βstartY ear + βint · π(i)) · t+ βshort · π(i) + θ + εij (6.1)

where κij is the relative expected count score described above for observer i = 1, . . . , I

on BBS route j = 1, . . . , J ; π(i) is a dummy variable which equals 1 if observer i

served a total of 5 years or less during his or her entire service history on the BBS (any

routes), and 0 otherwise; t is the first year of service; θ is an intercept term; and εij

is residual error. In this model, consistent with earlier results, βint was significantly

negative (p = 0.033), indicating that the slopes were indeed significantly different

among observers with short (≤ 5 y) and long (> 5 y) BBS service histories.

6.5 Discussion

Sauer et al. (1994) described an apparent improvement in mean observer ‘quality’

for observers beginning service on a BBS route more recently. They attribute this

pattern of increasing average expected counts among newer observers to their being

more-familiar with the BBS survey protocol than earlier BBS participants, and to

BBS administrators using increasingly effective techniques for selecting observers.

Our results point to a different explanation. Specifically, the apparent increase in

relative expected counts among observers newer to a BBS route may result from their

having had fewer years of service, and so less opportunity to age and to experience

sensory declines (i.e. Chapter 4; Figures 6.2 and 6.3). This implicitly recognizes that

the expected counts of a given observer cohort are not constant over time, and if

recruitment demographics remain consistent, that newer cohorts will always tend to
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Figure 6.3. Relative expected count scores among BBS observers (κ), derived using
an approach similar to that in Sauer et al. (1994) using BBS data from 50 randomly-
selected species, randomly sampling one such score per species-route combination (to
avoid autocorrelation within routes), and plotting these values as a function of the
observer’s first year of service on the BBS. Panel A includes all potential start years,
whereas Panel B is restricted to observers having a maximum 5 years of service. Raw
data (points) otherwise included in the analysis are clipped at the 2.5% and 97.5%
quantiles in this graphic to avoid having overly-broad y-axis limits, and to better
illustrate differences in the slopes of the linear regressions (solid lines). P-values
for the significantly positive (Panel A) and non-significant (Panel B) regressions are
listed. Shaded areas are 95% confidence intervals.
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count more birds because of their youth. Their expected counts will in turn decline

relative to even-newer observers as time passes. Hence, the apparent “trend over

time of improving observer quality” (Sauer et al. 1994) is more likely a “tendency

for newer (younger) arrivals to the BBS on any given year to count more birds than

longer-serving (older) participants.”

Despite its non-significance, the regression of relative expected count scores with

increasing start year among observers with five or fewer years of service still has

a positive slope estimate (Figure 6.3B). While the sample of data used for this re-

gression (n = 875) is approximately one third of the data used in the full analysis

(n = 2361; Figure 6.3A), it is still substantial, suggesting that the pattern we ob-

served is robust. This is further supported by the interaction model which showed

a significant difference between the non-significant relationship in this dataset, and

the significantly increasing pattern found when observers of all service lengths are

modeled (the ‘full analysis’). Although we cannot say that processes such as better

selection techniques by BBS administrators (sensu Sauer et al. 1994) are not also

influencing long-term patterns of relative expected counts among observers, using

these data, we can confidently say that any such processes are much less-important

compared to years-of-service and observer age effects.

We assumed that the average age at which a BBS observer tends to start surveying

a route has been consistent through time. If this assumption is not correct, some

cohorts of observers with 5 years of experience or less might have already experienced

age-related declines. If this pattern differs systematically among cohorts (e.g. with

some cohorts being much older or much younger than adjacent ones), any long-term

trends in relative expected counts among observers – or the absence of such trends

– would not be consistent with our proposed mechanism. Unfortunately, we do not

have true ages of our sample of BBS observers, and instead can only consider indirect

information on demographics of birdwatchers in general. For instance, Wiedner

and Kerlinger (1990) found that the average age of birdwatchers participating in

the Audubon Christmas Bird Count in the United States in 1990 was 47, whereas

La Rouche (2001) reported that the average age of American “birders” (people who

had travelled more than a mile from home to see birds, or who had tried to identify

birds around their homes) in 2001 was 49, and Carver (2009) reported an average age
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of 50 in 2006. If these data are indirect indicators of demographic trends among new

BBS observers in particular, then they do not support our assumption of consistent

ages. However, our analysis is concerned with the ages of observers during their start

years, and not the average ages of birdwatchers of all levels of experience, as these

data show. Furthermore, BBS observers tend to be highly-experienced, and often are

professional ornithologists (Ziolkowski Jr. and Pardieck 2006), whereas these surveys

poll the birdwatching public in general. Hence, these results are not necessarily

relevant to our analysis.

Our new interpretation of systematic differences in relative expected counts among

observer cohorts of different start years is not immediately relevant to the success of

associated population modeling, so long as inter-observer variations are taken into

account. In other words, the explanation for differences in among-observer expected

count coefficients over time is less important than the fact that such coefficients

be used in predictive models. However, this research is a reminder that significant

within-observer changes can take place over time, and that these changes can affect

our interpretations of statistical patterns. The results also make an important philo-

sophical contribution which might be appreciated by more-senior BBS participants.

Here, we found no evidence supporting the notion that observers beginning their

service on the BBS during the 1970s and 1980s were any less-skilled at the time than

are observers beginning their service today.
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6.7 Supplementary Material

6.7.1 Appendix 1: List of 50 Species Randomly Selected from BBS Routes From Which Trends in Relative
Expected Count Scores Among Observers (sensu Sauer et al. 1994) Were Calculated.

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

Acadian Flycatcher Empidonax virescens 2664 12 200 178 8.5 ± 6.8

American Bittern Botaurus lentiginosus 631 7 55 55 5.3 ± 6.9

Ash-throated Flycatcher Myiarchus cinerascens 2773 17 251 252 16.3 ± 15.2

Bachman’s Sparrow Peucaea aestivalis 342 3 31 31 9.4 ± 11.2

Boat-tailed Grackle Quiscalus major 795 5 68 69 37.1 ± 72.2

Broad-tailed Hummingbird Selasphorus platycercus 612 2 67 62 12.8 ± 11.5

Bronzed Cowbird Molothrus aeneus 198 3 22 28 15.4 ± 29.2

Brown-crested Flycatcher Myiarchus tyrannulus 225 3 23 24 15.9 ± 17.2

California Quail Callipepla californica 2176 12 183 219 14.4 ± 15.6

Chestnut-sided Warbler Dendroica pensylvanica 4932 11 384 414 12.5 ± 10.3

Common Moorhen Gallinula chloropus 208 2 20 19 12.7 ± 19.4

Common Tern Sterna hirundo 166 5 15 23 7.9 ± 10.9

Double-crested Cormorant Phalacrocorax auritus 1237 17 101 106 14.3 ± 38.3

Continued on next page
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

Evening Grosbeak Coccothraustes vespertinus 2746 13 221 222 10.8 ± 35.8

Gilded Flicker Colaptes chrysoides 118 2 13 15 9.8 ± 8.4

Golden-crowned Sparrow Zonotrichia atricapilla 140 3 15 14 37.2 ± 22.4

Golden-winged Warbler Vermivora chrysoptera 121 2 10 9 6.4 ± 4

Gray-headed Junco Junco hyemalis caniceps 520 2 57 55 14.2 ± 14.8

Great Crested Flycatcher Myiarchus crinitus 10722 32 808 770 8.5 ± 7.5

Greater Roadrunner Geococcyx californianus 221 4 22 18 5.6 ± 5.3

Great-tailed Grackle Quiscalus mexicanus 1698 13 145 151 39 ± 162.3

Hermit Thrush Catharus guttatus 5804 24 547 535 12.6 ± 13.7

Least Tern Sternula antillarum 290 6 24 26 22.4 ± 43.6

MacGillivray’s Warbler Oporornis tolmiei 1856 11 171 177 9.9 ± 8.1

McCown’s Longspur Rhynchophanes mccownii 327 5 37 37 17.7 ± 48.1

Mexican Jay Aphelocoma wollweberi 79 1 7 8 30.9 ± 27.3

Northern Pintail Anas acuta 1493 11 128 126 8.8 ± 24.3

Northwestern Crow Corvus caurinus 383 3 32 35 37.2 ± 38.1

Orchard Oriole Icterus spurius 5766 23 454 376 8.3 ± 7.2

Oregon Junco Junco hyemalis montanus 3658 13 307 330 18.1 ± 16

Ovenbird Seiurus aurocapillus 9161 22 722 746 18.4 ± 14.2

Continued on next page



131

Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

Painted Bunting Passerina ciris 1870 12 163 180 15.3 ± 14.3

Pine Warbler Dendroica pinus 4795 14 392 375 12.3 ± 11.6

Red-eyed Vireo Vireo olivaceus 15935 31 1244 1250 23 ± 21.4

Ruby-crowned Kinglet Regulus calendula 3262 13 335 322 14 ± 13.5

Ruddy Duck Oxyura jamaicensis 778 8 65 70 7 ± 13

Rufous Hummingbird Selasphorus rufus 552 3 49 53 6.4 ± 5.2

Savannah Sparrow Passerculus sandwichensis 10284 34 874 932 21.5 ± 25.7

Say’s Phoebe Sayornis saya 756 9 86 77 7.1 ± 6.7

Sedge Wren Cistothorus platensis 1140 9 92 89 8.1 ± 8.3

Spotted Sandpiper Actitis macularia 392 5 34 40 7.6 ± 5.6

Tricolored Blackbird Agelaius tricolor 365 4 32 33 122.4 ± 375.9

Varied Thrush Ixoreus naevius 1306 9 136 137 19.9 ± 20.1

Virginia’s Warbler Oreothlypis virginiae 321 3 33 28 11.6 ± 17

Western Bluebird Sialia mexicana 1020 7 88 102 9.6 ± 9.2

Western Gull Larus occidentalis 164 2 13 15 29 ± 40.2

White-crowned Sparrow Zonotrichia leucophrys 2003 17 202 219 18.8 ± 21.3

White-faced Ibis Plegadis chihi 379 5 28 35 63.5 ± 141.3

White-throated Swift Aeronautes saxatalis 465 9 49 50 10.8 ± 22.7

Continued on next page
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Appendix 1, continued

Species Scientific Name Records Strata Routes Observers Mean Count

(± SD)

Wilson’s Warbler Wilsonia pusilla 1928 14 200 198 13.8 ± 16
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6.7.2 Appendix 2: BBS models

GAMMs used to determine relative among-observer expected count scores for each

species followed the formulation:

log(yi(j)kl) = f1(l)j + η · I(i(j)k, l) + λi(j)k + σi(j)kl (6.1)

for i = 1, . . . , I routes within Bystrak (geographic) stratum j = 1, . . . , J , k =

1, . . . , K observers, and l = 1, . . . , L calendar years since 1969, and where yi(j)kl is the

number of birds detected on a route i in stratum j by observer k during year l, plus a

constant of 0.5 to better accommodate zero-counts (Sauer et al. 1996), f1(l)j is a cubic

spline smooth function estimating population-related effects (changes with calendar

date) for physiographic stratum j, η is the first-year effect, I(i(j)k, l) is a dummy

variable that equals 1 in an observer’s first year of service on a route and 0 otherwise,

λi(j)k are mean-zero, normally-distributed random intercepts for each observer at a

route-within-stratum, σi(j)kl is mean-zero, normally-distributed overdispersion error,

and where datapoints collected by a given observer were weighted according to the

inverse of the number of routes conducted by that observer for the modeled species

within a given stratum.



Chapter 7

Discussion

Compared to conventional data collection strategies that use students, scientists and

paid technicians, citizen science is more cost-effective and can operate on broader

scales on an ongoing basis. This makes it well-suited for conducting “big-picture”

ecology and long-term monitoring. As the world becomes increasingly urbanized

(e.g. Montgomery 2008), the recreational activities promoted by citizen science are

also becoming increasingly important in that they promote natural awareness (Evans

et al. 2005), which lends itself to advocacy and wildlife protection.

To ensure the usefulness of citizen science – and to maintain its credibility (Fig-

ure 2.1) – we must aggressively pursue and mitigate its sources of error. In this

thesis, I identified several novel sources of error that could bias data collected from

ornithological citizen science projects such as the Atlas of the Breeding Birds of On-

tario (‘OBBA’; Bird Studies Canada et al. 2008), the North American Breeding Bird

Survey (‘BBS’; Peterjohn 1994) and the Audubon Christmas Bird Count (‘CBC’;

Dunn et al. 2005). In my data chapters, showed (i) how observer skill and over-

confidence might lead to false-positive errors of rare and common species (Chapter

3); (ii) how older observers might detect fewer birds than younger ones, and fur-

thermore, how this may have led to excessively-negative population trend estimates

in existing data (Chapter 4); (iii) how solitary observers beginning their volunteer

service increase their counts gradually over about 5 years, and then decrease their

counts substantially as they age (Chapter 5), (iv) how groups of observers might ar-

tificially inflate species richness over many consecutive, annual surveys (Chapter 5),

and finally, (v) how modern volunteer birdwatchers might be just as skilled as their

historical counterparts, contrary to the conclusions of previous research (Chapter 6).

Based on these findings, I make several recommendations and also consider future

research directions. In Chapter 3, I emphasize the importance of accounting for

observer skill when modeling survey data from multi-observer populations. This

134
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is especially critical in ‘omnibus’ surveys where multiple species are surveyed by a

single observer, because observers of different skill levels are differentially prone to

detect rare species, and so make false-positive detection errors for rare and common

species at different relative frequencies. I also show how self-assessments of observer

skill levels can function as accurate measures of ability in mixed models predicting

detection errors.

In Chapters 2 and 3, I also describe how survey designs requiring repeated ob-

server visits to a survey site can be a robust methodological approach to correct for

inter-observer differences such as variable skill levels. This approach has been used

successfully in several modern European surveys (e.g. the Swiss Survey of Common

Breeding Birds; Royle et al. 2007) and in several Canadian bird atlasses, and al-

lows modelers to explicitly calculate detection probabilities alongside the probability

that a species is actually present. I recommend adopting such repeat-observer sur-

vey design elements where feasible. Furthermore, I recommend that surveys collect

measures of detection uncertainty (sensu Miller et al. 2011) – which I also show in

Chapter 3 must not be based upon an observer’s subjective opinion – so that mod-

elers can simultaneously account for false-positive and false-negative detections (e.g.

Miller et al. 2011). These errors can be quite numerous in survey data (McClintock

et al. 2010a; Campbell and Francis 2011, Chapter 3), and can mislead conservation

and management efforts (McKelvey et al. 2008). Future studies should explore how

new designs and statistical methods can remove the influences of false-positive er-

rors and overconfidence in survey data – as well as their confounding factors such as

observer skill and species rarity – from real datasets.

In Chapter 4, I call for improvements in data collection and modeling that will

take into account the ages and detection abilities of participating observers and cor-

rect for changes in these variables over time. I show how generalized additive mixed

models (‘GAMMs’; Wood 2006) can be efficiently used to accomplish this goal, for

instance by incorporating correction factors similar to Figure 4.5 and the ISO stan-

dard hearing-loss curves (Figure 4.1; International Organization for Standardization

2000). Because not all species detections are strictly auditory, and accordingly, be-

cause species tend to differ in their conspicuousness (Stewart 1954), future studies

should test for the relative importance of hearing, sight, and other components of
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the detection process, and how they vary with the age of the observer and with the

behaviour of specific species.

Similar to the recommendations made in Chapter 4 that modelers account for the

age of observers, in Chapter 5, I recommend that modelers account for observer or

party years of service at a given survey site. This approach can help correct for the

count declines related to aging in later years of BBS service, and also to control for

learning effects on both the BBS and CBC. Future modeling research on BBS data

could determine whether modeling years of service as a sole covariate to account for

learning and aging effects is sufficiently comprehensive, or whether a hybrid approach

which also involves corrections for late-term aging might be superior.

There are many recommendations that have been made in the past that might

improve the suitability of CBC data for scientific analysis (Francis et al. 2004; Dunn

et al. 2005). Given my findings in Chapter 5 showing an increase in CBC richness

over time occurring as a function of party years-of-service, I advocate for two in

particular that were featured in a recent, formal review of the survey (Francis et al.

2004). First, I support the recommendation to establish standardized sub-surveys

with more-rigorous effort controls within a given count circle. The more objective,

consistent methods and transects in these sub-surveys would make them less-likely

to see artificially-increased species counts with increasing years of party service. Sec-

ond, I support the recommendation to better educate participants to appreciate the

consequences of poor effort controls, and so to motivate them to be more consistent

in their survey strategies outside of these controlled transects. However, because the

recreational goals of the CBC, including its competitive nature, are firmly-rooted

in its history (Bonta 2010), it will always be difficult to strike a balance between

survey consistency and surveyor enjoyment (see Chapter 2), which directly affects

participation levels (Dunn et al. 2005).

As a complement or an alternative to major design changes to the CBC, I also

argue that GAMMs should be used to estimate party years-of-service effects if the

number of consistent survey years is known. Future research could validate the years-

of-service effects I observed in the CBC by considering data from external surveys

that have similar methodological flexibility and competitiveness, for instance eBird

(Sullivan et al. 2009).
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In light of insights derived from Chapters 4 and 5 indicating that BBS observer

abilities tend to decline with observer age, in Chapter 6, I show how the expected

counts among newly-indoctrinated cohorts of BBS observers may be more-consistent

over time than previous research has suspected. This chapter serves as a teaching

point emphasizing the importance of recognizing that long-term patterns of within-

observer error are found in BBS data. With new statistical methods currently be-

ing adopted for the analysis of BBS counts (Sauer and Link 2011), this thesis is a

conveniently-timed resource that I hope will contribute to this process.

A major methodological focus of this thesis was on the use of GAMMs, a rela-

tively new statistical technique which I show to be a useful alternative to parametric

strategies, including hierarchical Bayesian approaches. GAMMs incorporate nonlin-

ear smooth functions within broader parent functions that can optimally represent

irregular patterns alongside other sources of variation. This ability makes them well-

suited to the noisy data structure of wildlife survey data, and I show here how they

can recognize and display nonlinear changes in observer behaviour that otherwise can

bias population trend estimates in significant ways. This research is thus important

not only for its demonstration of new and significant sources of observer error, but

also for showing how GAMMs can help account for these errors. I hope that the

merits of GAMMs will be considered by the modeling community as new statistical

strategies are developed.

In this thesis, I worked with large datasets collected, in most cases, over several

decades in hundreds of different survey locations. Consequently, the greatest vulner-

ability of this research is its reliance on consistent data collection conditions. Any

systematic biases that are not measured or accounted for during data screening and

analysis, for instance inconsistent noise levels over time (Griffith et al. 2010), long-

term habitat changes (Keller and Scallan 1999), and undetected protocol changes

(Gibbons et al. 2007) could have led to inaccuracies in the data. That said, all three

datasets used (BBS, CBC, OBBA) are subject to rigorous scientific oversight which

helps to identify and/or remove major intrinsic sources of error. However, as this

thesis and past research (e.g. Kendall et al. 1996) demonstrate, ensuring the quality

of citizen science data is an evolving and continuous process.

The results of my thesis on bird survey errors may also be applicable to citizen
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science projects surveying other taxa. For instance, anuran surveys are similar to

bird surveys in that they rely heavily on auditory identifications, and also often use

volunteers to achieve broad spatial coverage (e.g. de Solla et al. 2005). Some botanical

monitoring projects also use large numbers of volunteers with different skill levels

and motivations (Fitzpatrick et al. 2009), as do invertebrate studies (e.g. Dennis

et al. 2006), and reptile monitoring programmes (Kéry et al. 2009). My research

shows the importance of accounting for inter- and intra-observer variation in order

to make accurate estimates of ecological states, and it offers methods to achieve this.

It thus helps to make more-efficient use of research and/or monitoring funding, and

of the well-intentioned and selfless efforts of thousands of dedicated volunteers.
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Kéry, M., J. A. Royle, H. Schmid, M. Schaub, B. Volet, G. Hafliger and N. Zbinden.
2010. Site-occupancy distribution modeling to correct population-trend estimates
derived from opportunistic observations. Conservation Biology 24(5): 1388–1397.
doi:10.1111/j.1523-1739.2010.01479.x.
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