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Abstract

With the rapid development of modern instruments, chemical data have become 
more complex in both volume and structure, which imposes more demanding 
requirements for advanced data analysis tools. As a highly interfacial subject, 
chemometrics plays an important role in the extraction of information from chemical data. 
One of the applications of chemometrics is in exploratory data analysis, which aims to 
reveal structures present in the data prior to or in place of the formal testing of a 
hypothesis. 

Among the different methods for exploratory data analysis, principal component 
analysis (PCA) may be the one most widely used in chemistry. When PCA is viewed as a 
subspace modeling technique from the perspective of maximum likelihood, it essentially 
assumes homoscedastic measurement errors. However, heteroscedastic errors are 
common in multivariate chemical data. Thus, PCA often fails to extract useful 
information in cases of significantly heteroscedastic errors. Maximum likelihood 
principal component analysis (MLPCA) has been developed to address heteroscedastic 
errors in multivariate data, but its application in exploratory data analysis has not been 
examined. Chapter 2 of this thesis describes strategies for exploratory data analysis in 
situations with highly heteroscedastic errors, including the application of MLPCA. A 
partial transparency projection (PTP) technique is also introduced to improve the 
visualization by using the measurement error information. Following from the work in 
Chapter 2, Chapter 3 proposes a new optimization algorithm for MLPCA model with 
non-zero intercepts. 

Projection pursuit (PP) is another important method for exploratory data analysis. 
PP is less widely used compared with PCA, but is more powerful than PCA in many 
cases. One major reason for the limited applications of PP is the difficulty in 
implementing PP efficiently. Chapter 4 describes new algorithms, referred to as 
quasi-power methods, for the optimization of kurtosis that is used as an objective 
function for projection pursuit. As an extension to the work in Chapter 4, regularized 
projection pursuit (RPP), designed to deal with data that have a small sample-to-variable 
ratio, is proposed in Chapter 5. This method is particularly relevant in chemical 
applications because chemical data typically have few samples but many variables.  
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Chapter 1: Introduction 

1.1 Multivariate Data 
The rapid development of analytical techniques in chemistry enables today’s 

analysts to obtain a larger volume of data in a much shorter time than the pioneers in the era 

of “wet chemistry”, who employed techniques based on weighting, titration, and single 

channel spectroscopic and electrochemical measurements. Modern techniques such as 

high performance liquid chromatography (HLPC), infrared (IR) spectroscopy, mass 

spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy can measure a 

single sample at multiple variables, such as retention time, wavelength, mass-to-charge 

ratio, and chemical shift, respectively. The data obtained by measuring multiple variables 

for a sample are referred to as multivariate data. Multivariate data obtained for multiple 

samples are often arranged in a matrix form where rows denote samples and columns 

represent variables, although in some situations they can be placed in a vector, cube, or 

hypercube. Multivariate data have become very common, not only in chemistry, but also 

in other areas such as physics, engineering, biology, and social science.  

Multivariate data, in contrast to univariate data that are obtained by measuring a 

single scalar variable for each sample, are more complex and generally contain more 

information due to the intricate relationships among different variables. As different 

properties of a sample are measured, useful information that is not contained in one 

property may be retained in other properties. It is common that the combinations of the 

different variables can reveal important information that cannot be obtained through 

individual variables. As the combinations of observable variables cannot be measured 

directly, they are often referred to as latent variables. In different methods of multivariate 

analysis, the latent variables may also be referred to as principal components or factors. 

The latent variables may be able to reveal useful information contained in multivariate 

data. However, due to the complexity of multivariate data, the relationship between the 

variables and the information sought are generally not obvious and difficult to obtain 

without using advanced data analysis methods. The body of methodology for extracting 

information from multivariate data is called multivariate analysis [1,2], which is the 

generalization of univariate statistics and relies on the principles of multivariate statistics. 
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1.2 Exploratory Data Analysis 
In multivariate data analysis, exploratory data analysis is often an important step 

used to discover useful information from data. The phrase “exploratory data analysis” was 

introduced by John W. Tukey, an American statistician with a Ph. D. degree in 

mathematics, a M. Sc. degree in chemistry, and a B. A. degree, in 1977 [3]. The primary 

objective of exploratory data analysis is to search for hypotheses worthy of testing without 

prior knowledge of the data structure. Tukey held that “it is important to understand what 

you can do before you learn to measure how well you seem to have done it” [3]. A simple 

example of exploratory data analysis is a two-dimensional plot of the relationship between 

two variables. Exploratory data analysis can be juxtaposed against confirmatory data 

analysis with the latter focusing on statistical hypothesis tests. Commonly used methods 

such as the t-test and F-test belong to confirmatory data analysis. Tukey also held that 

“neither exploratory nor confirmatory is sufficient alone” and “finding the question is often 

more important than finding the answer” [4], and both exploratory and confirmatory data 

analyses are important [4,5].  

Exploratory data analysis is often performed through unsupervised methods. 

Unsupervised methods (unsupervised leaning), are in contrast with supervised methods 

(supervised learning) [6]. Unsupervised methods extract useful information from data 

without using any sample class information. In other words, without knowing the 

characteristic of each sample (e.g. class) in advance, unsupervised methods explore how 

the data are naturally organized. For example, suppose there are a group of tests of blood 

samples collected from normal and diseased subjects. In an unsupervised method, the 

origin of the samples is “unknown”, but the results of the analysis may show the samples 

naturally separate into two clusters. In contrast, supervised methods use the sample class 

information to look for a mathematical function to separate samples of different classes in 

a low-dimensional space. For the current example, supervised methods search for 

variables in blood tests that can distinguish the normal and diseased subjects and establish 

a model that can be used for future prediction. Supervised methods generally need a set of 

samples called the training set to build the model, and another set of samples called the test 

set to validate the model. When the “supervisor” is discrete, the purpose of supervised 

methods is discrimination and classification [1,6] (discriminant analysis). When the 
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“supervisor” is a continuous variable, supervised methods largely become a problem in 

multivariate calibration and prediction (regression problem) [7] although plenty of other 

statistical approaches are also supervised methods. In exploratory data analysis, sample 

class information is often unavailable and useful information needs to be extracted by 

unsupervised methods. As unsupervised methods do not use class information in analyzing 

the data, the information obtained through unsupervised methods generally can be 

interpreted to be less biased than that from supervised methods, which are prone to 

overfitting.

In exploratory data analysis, data visualization is a commonly used technique for 

analysts to obtain useful information [3,6]. Unfortunately, human beings do not have the 

ability to visualize data in four or higher dimensions. Thus, it is necessary to map 

high-dimensional data to a low-dimensional space so that the useful information can be 

visualized. The mapping function may be non-linear or linear. Compared with non-linear 

mapping methods, linear mapping methods are generally simpler and widely used for 

dimensionality reduction. In chemistry, the most common method for dimensionality 

reduction is perhaps principal component analysis (PCA) [1,6,8,9,10]. Other methods 

such as factor analysis (FA) [1,6,11] and projection pursuit (PP) [12,13] are also used in 

different applications.  

1.3 Motivation 
Despite the versatility of the methods for exploratory data analysis, they do not 

address all the problems. Due to the so-called “curse of dimensionality” [ 14 ], 

dimensionality reduction of high-dimensional data to reveal salient data features in a 

low-dimensional space is far from trivial. It is acknowledged that every data analysis 

method has strengths and weaknesses, and no one method can be a panacea that works well 

for all situations. The complexity of data in different applications can easily make a 

method fail to extract useful information. Development of new methods and 

improvement of existing methods for exploratory data analysis are on-going areas of 

research activity that are further motivated by the emergence of new kinds of data. 

From the perspective of data complexity, there are many factors that can prevent 

currently available data analysis methods from extracting useful information. One cause 

is that data may be contaminated by errors with complicated error structures. Data in 
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chemistry are generally obtained through experiments that involve measurements and 

measurements always have errors. Measurement errors in multivariate data are often 

heteroscedastic [15,16]. Heteroscedastic errors refer to a group of measurements that 

have different measurement error variances, in contrast to homoscedastic errors, where all 

the measurements have the same error variance. In the literature, although many 

multivariate data analysis methods exist, most of the methods do not take account of 

heteroscedastic measurement error structure. In other words, they assume homoscedastic 

measurement errors. When the measurement errors are almost homoscedastic, such an 

assumption is reasonable. However, it is widely observed that in multivariate data, 

heteroscedastic measurement errors are the general rule rather than an exception [17]. 

Heteroscedastic measurement errors in multivariate data often lead to the failure of 

conventional multivariate data analysis tools to give useful information.  

From the perspective of data analysis methods, inefficiency of the current 

methods or lack of suitable data analysis methods can lead to the result that useful 

information is not extracted from data. A multivariate analysis method generally includes 

two major components: the objective function and the algorithm to optimize the objective 

function. On one hand, if the objective function is not well-defined, useful information 

may not be obtained. On the other hand, if the optimization algorithm is not efficient, the 

objective function may not be optimized, which impairs the utility of the method even if 

the objective function is well-defined. Thus, a good objective function and an efficient 

optimization algorithm are both important for a multivariate analysis method. 

This thesis reports work on the development of new approaches to solve the two 

problems mentioned above in exploratory data analysis. The work focuses on the 

theoretical aspects over applications in chemistry, though applications are provided for 

demonstration purposes. 

This thesis is divided into six chapters. Chapter 1 gives an introduction to 

multivariate data, exploratory data analysis, motivation of the work, and background 

information on error structures in multivariate data, as well as an overview of some 

projection methods for exploratory data analysis and some background information for 

numerical optimization in the literature. 
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Chapter 2 discusses maximum likelihood principal component analysis (MLPCA), 

a technique used to deal with data with heteroscedastic errors in multivariate data, for 

exploratory data analysis. The work of this chapter has been published in Journal of 

Chemometrics [ 18 ]. The limitations of principal component analysis (PCA) for 

exploratory data analysis in the presence of heteroscedastic errors are described and 

strategies to address these weaknesses that incorporate MLPCA are proposed. A new 

method to improve data visualization by incorporating measurement error information, 

referred to as the partial transparency projection (PTP), is developed. To illustrate the 

utility of these improvements, simulated data and DNA microarray experimental data are 

used.

Chapter 3 describes an efficient algorithm to optimize the objective function of 

MLPCA to deal with the case where data are not centered around the origin in 

multi-dimensional space; i.e., intercepts are present. The original MLPCA was developed 

under the assumption that the data were not offset from the origin. However, in practice, 

experimental data often have intercepts for different variables. Assuming zero intercepts 

for multivariate data is not in accordance with the real situation and may negatively affect 

the result of MLPCA. In the original work describing MLPCA, it was proposed that the 

intercepts be included in the maximum likelihood estimation. However, the lack of an 

efficient algorithm for the optimization of the objective function has limited its 

application. The work reported in this chapter proposes a quick and simple algorithm for 

the optimization of the objective function of MLPCA to deal with data that exhibit 

intercepts. The efficiency of the proposed algorithm is demonstrated by simulated data.  

Chapter 4 is based on a paper published as a featured article [19]. In this chapter, 

new algorithms, referred to as “quasi-power methods”, are proposed to optimize kurtosis 

as an objective function (called the projection index) for projection pursuit. Projection 

pursuit (PP) is a powerful method for exploratory data analysis, but its utility has been 

greatly impeded, largely due to the difficulty in the optimization of projection indices. The 

new algorithms proposed in this work are simple, fast, and stable, which are expected to 

lead to more widespread use of PP in chemistry and other areas to extract useful 

information from multivariate data. The performance of the algorithms is evaluated using 

simulated and experimental data sets. 
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In Chapter 5, a new projection pursuit method, referred to as “regularized 

projection pursuit” is proposed. This method is designed to deal with data that have a 

small sample-to-variable ratio. Today’s chemical data often have fewer samples but more 

variables, so the sample-to-variable ratio is small. When the normal projection pursuit 

method (using kurtosis as a projection index) is applied, samples may be still separated 

into clusters, but the separation is often meaningless. This is a limitation of PP. This 

limitation is mitigated by the proposed method. The principle of the proposed method and 

its optimization algorithms are described, and its utility is demonstrated with simulated 

and experimental data.  

The conclusions of the work presented in this thesis are given in Chapter 6. 

1.4 Measurement Error Structures in Multivariate Data 
A measurement error is defined as the difference between the measured value and 

the true value. Measurement errors can arise from many different sources such as the 

sample, the operator, the instrument, or the environment. For a specific measurement, the 

measurement error associated with it may not be predictable, but it is generally assumed 

to follow a normal distribution. The standard deviation of measurement error is normally 

used as a measure to evaluate the reliability of the measurement. Measurement error 

standard deviation (uncertainty) is an important concept for analysts because it describes 

the extent to which the experimental data can be trusted. Most chemists are familiar with 

the concepts of systematic and random errors, but in this thesis, measurement errors are 

viewed from another perspective, which focuses on the uniformity of measurement error 

variances. 

Multivariate data normally consist of multiple samples measured on different 

variables. The measurement errors for different measurements are generally 

heteroscedastic. This may arise from proportional error sources such as shot noise or 

source flicker noise [20] or from variations in noise characteristics across different 

channels of a detector, such as different wavelengths in spectroscopy. Measurement errors 

in multivariate data may be uncorrelated or correlated. Uncorrelated errors are independent 

of one another, while correlated errors are related. A good description of the error structure 

in multivariate data can be found in reference [16], in which the error structures are 



7

divided into six cases. The error structures in multivariate data based on the literature are 

briefly recounted here. 

The simplest case representing uncorrelated homoscedastic errors is pictorially 

shown in Figure 1.1 (a). For some multivariate data, this error structure is a good 

approximation to the real error structure. In multivariate analysis, many of the methods 

have assumed this type of error structure because of its simplicity. 

Figure 1.1 (b) shows uncorrelated heteroscedastic errors in a multivariate data 

matrix, but the errors are still homoscedastic within a row or a column. An example of 

this case is when variables are of fundamentally different types (e.g. pH, temperature) or 

magnitudes (e.g. concentrations of different elements). In this case, the different variables 

have different measurement error variances, but the measurement variances within each 

variable for different samples are the same. 

Uncorrelated 
errors

Correlated 
errors

Homoscedastic
errors.

Heteroscedastic errors, 
common row or column 

structure.

Heteroscedastic errors, 
with random structure.

Heteroscedastic errors, 
common row or column 

error structure.

Heteroscedastic errors, 
correlation within row 

or column only.

Heteroscedastic errors, 
fully correlated.

(a) (b) (c)

(d) (e) (f)

Figure 1.1 Pictorial representations of measurement error structures in multivariate data. 
Different colors indicate different error variances and the connectivity of the blocks 
indicates correlations of measurement errors (Adapted from reference [16]). 

The third type of error structure, in which errors are uncorrelated but 

heteroscedastic randomly across the measurements, is shown in Figure 1.1 (c). For some 

types of multivariate data (e.g. DNA microarrays), this type of error structure is a good 

estimate of real situation. Compared with the correlated error structure, this case is still 
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relatively simple. In the later chapters of this thesis, this type of measurement error 

structure is assumed in most cases of heteroscedasticity. 

Figure 1.1 (d) represents the error structure in which errors are correlated and 

heteroscedastic, but errors are correlated within rows or columns only and different rows 

or columns share the same error structure. 

The fifth case is similar to the fourth. Shown in Figure 1.1 (e), it describes the 

situation when heteroscedastic errors are correlated within rows or columns only, but 

different rows or columns do not share the same error structure.  

The fully correlated and heteroscedastic error structure is shown in Figure 1.1 (f). 

This denotes the most complicated situation and perhaps describes the most general error 

structure. All other cases can be viewed as special cases of this, but due to its complexity, it 

is less commonly assumed in multivariate data analysis. 

1.5 Measurement Error Covariance Matrix 
For univariate data, the standard deviation or variance is used to describe the 

measurement uncertainty. As a generalization, a covariance matrix is employed to 

describe the error structure for multivariate data. A covariance matrix, denoted by ,

can be written as  
2
1 12 1

2
21 2 2

2
1 2

p

p

p p p

.  (1.1) 

The meaning of this covariance matrix can be explained as follows. Suppose a chemical 

sample is measured at p different channels (variables) and a measurement vector is 

obtained. Each channel has a measurement error variance. The measurement error 

variances of different channels may be uniform or non-uniform, and errors across the 

channels may be uncorrelated or correlated. A covariance matrix can be used to describe 

the measurement error structure for this vector of measurements. The diagonal elements in 

this covariance matrix give the measurement error variances for different channels, which 

are denoted by 2
1 , 2

2 ,…, and 2
p  for channels 1 to p. If heteroscedastic errors are assumed, 

2
1 , 2

2 ,…, and 2
p  are not equal. The off-diagonal elements give measurement error 
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covariances between two different channels which are defined as, for example, 

12 1 2E , where 1  and 2  represent the errors for channel 1 and channel 2, 

respectively, and E denotes the expectation operator. Unlike variance, which is always 

non-negative, covariance can be negative. Covariance reflects the statistical correlation 

between different measurement errors. Independent errors have zero covariance, but 

correlated errors have non-zero covariance, either positive or negative. The error 

covariance matrix is an important concept in multivariate data analysis. 

As an example of heteroscedastic correlated errors, consider a fluorescence 

emission spectrum collected from a fluorescent sample. Errors can arise from sources like 

the thermal noise in the detector, as well as fundamental noise such as shot noise. 

Because the latter is proportional to the square root of the signal, this will lead to 

heteroscedastic noise, resulting in variation along the diagonal of . Additionally, 

correlations in measurement errors can be introduced by variations in the source intensity 

(flicker) during scanning (photomultiplier detection) or crosstalk in the channels (array 

detection). Baseline offset and signal processing (filtering, smoothing) can also lead to 

correlated errors, resulting in a complex structure for the off-diagonal elements of .

The error structures shown in Figures 1.1 (a)-(e) can be described by different 

error covariance matrices corresponding to the rows or columns of the original data 

matrix. However, for the last case, there must be a larger covariance matrix to describe 

the error structure for all of the measurements as a whole. This is a complicated situation 

and will not be discussed in detail. It is important to note that, for uncorrelated errors 

(Figures 1.1 (a)-(c)), the covariance matrix is diagonal in the sense that the off-diagonal 

elements are zeros, while for correlated errors they are not. 

1.6 Projection Methods for Exploratory Data Analysis 
In multivariate analysis, there are many methods that can be used for exploratory 

data analysis. This section does not aim to give a complete review of all of the methods, 

but focuses only on some projection methods commonly used in chemistry that are related 

to the work reported in this thesis. The methods reviewed in this section include factor 

analysis (FA), principal component analysis (PCA), maximum likelihood principal 

component analysis (MLPCA), and projection pursuit (PP). 
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The notations in this thesis follow a commonly used convention in mathematics. A 

lower case bold letter is used to denote a column vector. A row vector is always expressed 

as the transpose of a column vector with the superscript “T” denoting the transpose 

operator. An upper case bold letter is used to represent a matrix. A scalar or scalar 

function is designated by an italic non-bold letter. 

1.6.1 Factor Analysis (FA) 

Factor analysis, like many multivariate methods, can trace its origins to the early 

work in the social sciences, where the importance of multiple variables was recognized at 

an earlier stage than other sciences. The origin of FA is credited to the work of Spearman 

[ 21 , 22 ] in 1904 when he published his article “General intelligence, objectively 

determined and measured” in the field of psychology [11]. Later researchers extended his 

work and created many variants of FA, such as multiple factor analysis [23], alpha factor 

analysis [24], maximum likelihood factor analysis [25,26], canonical factor analysis [27], 

and image factor analysis [28]. A few books discussing factor analysis can be found in 

references [29,30,31]. The general model of FA can be written as 

x Wz ,  (1.2) 

where x is a p x 1 column vector denoting a group of observable random variables, z is a 

d x 1 column vector representing a group of latent (unobservable) random variables 

(called factors in FA), W denotes a p x d (p > d) matrix generally called the loading matrix, 

which linearly transforms the latent variables (z) to observable variables (x) ,  is a p x 1 

column vector denoting the means of observable random variables, and  is a p x 1 

column vector representing the random errors or residuals.  

In case of multiple samples (realizations), a data matrix is obtained. This model 

can then be expressed as 
T TX ZW 1 E , (1.3) 

where X is an n x p observed data matrix, with n denoting the number of samples and p

representing the number of variables. The two expressions (Equations (1.2) and (1.3)) 

may be confusing to chemists, but follow the convention in mathematics. Note that in 

Equation (1.2), rows in x denote variables, but in Equation (1.3), columns in X represent 

variables and rows denote samples. The unknown n x d matrix Z is generally called the 
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scores matrix. The quantities W and  retain the same definitions as in Equation (1.2). 

The boldface “1” is an n x 1 column vector with all its elements being 1’s, and E is an 

n x p matrix of errors. 

The model in Equation (1.2) or (1.3) itself is not enough to define FA since there 

are an infinite number of solutions, but with additional assumptions and constraints on the 

parameters, the FA model can be uniquely determined. Depending on the assumptions 

and constraints imposed, the model in Equation (1.2) or (1.3) can evolve into different 

decompositions, including PCA. For FA, the latent variables z (in Equation (1.2)) are 

assumed to follow a multivariate normal distribution,  

( , )Nz 0 I .  (1.4) 

The error term ( ) (in Equation (1.2)) is also assumed to be multivariate normal, with 

errors that are independent but not identically distributed, expressed mathematically as 

( , )N 0 , (1.5) 

where  is diagonal with unequal diagonal elements. It is also assumed that z and  are 

independent, so 

cov( , )z 0 . (1.6) 

With these assumptions and constraints, the observable variables (x) should follow a 

multivariate normal distribution as well, 
T( , )Nx WW .  (1.7) 

Based on the FA model, there are three parameters to be estimated: , W, and . The 

best estimate for  is the sample mean vector. There are several different estimation 

methods for W and  existing in the literature and three of these are the most important 

[32,33]. The first one is the unweighted least squares (ULS) method, which minimizes the 

sum of the squares of the differences between the observed sample covariance matrix and 

the underlying covariance matrix ( TWW ), mathematically expressed as 
2T1 tr

2
U S WW .  (1.8) 

S is the sample covariance matrix with  

T

1

1
1

n

i i
in

S x x x x ,  (1.9) 
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where ix  denotes the p x 1 measurement vector for a single sample, x  represents the 

sample mean, and n is the number of samples. Optimization of the objective function in 

Equation (1.8) gives the principal component (a.k.a. principal factor) solution [1] because 

the loadings of FA are essentially the same as those of PCA. This might be the reason why 

some people think that PCA is the same as FA. 

The second estimation method is based on the generalized least squares (GLS), 

which minimizes 
21 T1 tr

2
G I S WW ,  (1.10) 

where I is the identity matrix. Optimization of the objective function in Equation (1.10) 

gives the so-called Minres (minimum residuals) solution. 

The third estimation method is based on the principle of maximum likelihood. 

Colloquially, likelihood is a synonym for probability, but they are distinctly different in 

statistical usage. When the probability (or probability density) of an observed outcome is 

considered as a function of a set of underlying parameters of a statistical model, it is 

called likelihood. Estimating the unknown parameters by maximizing the likelihood 

function is called maximum likelihood estimation, and is widely used in statistical 

inference. The well-known least squares method in regression analysis (e.g. calibration in 

chemistry) can be regarded as an application of maximum likelihood estimation. For the 

FA model, the likelihood function of the observed data can be expressed as 

1T T
1

T1 22

1 1exp
22

n

i ip
i

L x WW x
WW

,  (1.11) 

where the notation  denotes the determinant operator. Maximizing the likelihood 

function is equivalent to minimizing 
1T Ttr logM pWW S WW ,  (1.12) 

where p is the number of observable variables. Optimization of the likelihood function in 

Equation (1.12) gives the maximum likelihood solution. As this estimation is based on the 

principle of maximum likelihood, FA with this estimation method is called maximum 

likelihood factor analysis, which might be the most important variant of FA. 
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The maximum likelihood FA result can be regarded as the solution for , W, and 

 that is most likely to give rise to the observed data in X given that the assumptions of 

the model are valid. These assumptions include the number of latent variables (or 

subspace dimensionality), d, as well as the multivariate normality and independence of 

the latent variables (z) and the measurement errors. The PCA solution (Equation (1.8)) 

can be considered as a special case of this providing the maximum likelihood solution, 

when it can also be assumed that the diagonal elements of  are equal (i.e.,

measurement uncertainties are the same, 2I ).

It is important to note that the underlying covariance matrix TWW  is not 

well-defined because this has inherent ambiguity. It can be mathematically shown that 
TT 1 T T TWW WRR W WRR W WR WR ,  (1.13) 

where R is an arbitrary rotation matrix with RT=R-1. In other words, the loading vectors 

in W define the d-dimensional subspace that contains the latent variables, but any d

different vectors within the subspace can do this equally well, so there is a rotational 

ambiguity that also must be addressed by the method. This rotational ambiguity provides 

the rationale for “factor rotation”. In practice, it is usual to rotate the loadings until some 

“simpler structure” is obtained. It is also worth noting that subspace spanned by W is 

generally not nested within higher dimensional solutions. In other words, the 

(d-1)-dimensional subspace is generally not included in the d-dimensional subspace. 

As for how to obtain the factor scores, different approaches have been proposed in 

the literature, but two methods are recounted here [1]. The first one is the weighted least 

squares methods, which minimizes 
T 1min i i i ix Wz x Wz ,  (1.14) 

where zi is the scores vector to be determined for the ith sample. The solution of this 

minimization gives 
1

T 1 T 1ˆ ˆˆ ˆ ˆ
i iz W W W x x ,  (1.15) 

where Ŵ  represents the estimate of W , ˆ  denotes the estimate of , and x

designates the sample mean vector which is an unbiased estimate of . The second 

approach is the regression method, which use the properties of multivariate normal 
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distribution. Based on the assumptions in Equations (1.2), (1.4), and (1.5), the conditional 

probability density function of the observed data, given the latent variables (factor scores), 

follows a normal distribution 

( | ) ( , )p Nx z Wz u .  (1.16) 

Based on Bayes’ theorem [6], the posterior distribution is also multivariate normal, 
1 1T T T T( | ) ,  p Nz x W WW x u I W WW W .  (1.17) 

Thus, the factor scores for ith sample can be estimated by 
1 1

T T T 1 T 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
i i iz W WW x x W W I W x x ,  (1.18) 

where Ŵ , ˆ , and x  follow the same definitions for Equation (1.15). The major 

difference between the two methods is that the former follows the principle of maximum 

likelihood, while the latter is in accordance with maximum a posteriori probability. In 

other words, the a priori probability for z  is incorporated in the latter method. 

1.6.2 Principal Component Analysis (PCA) 

PCA is probably the most widely used method in multivariate analysis because it is 

relatively simple to use and understand, and it provides useful results in many cases. 

Understanding the principles behind PCA is also helpful in appreciating other methods in 

multivariate analysis. PCA was originally developed independently of factor analysis and 

preceded it somewhat. General consensus holds that the method describing PCA was first 

used by Pearson in 1901 [8], but some claim that it was used even earlier in physics in 1829 

[34] and in chemistry in 1878 [34,35]. In 1933, Hotelling [9,10] independently developed a 

method which was proven to be essentially the same as Pearson’s method and proposed the 

name of “principal components”. Like many other methods, PCA also has many variants 

and extensions such as robust PCA [36,37,38], two different versions of Bayesian PCA 

[39,40], kernel PCA [41,42], and two different versions of MLPCA [15,16,43,44,45]. 

The general model in Equation (1.2) or (1.3) is also applicable to PCA. The 

definitions of the parameters remain the same, but different assumptions and constraints 

are imposed. In Pearson’s definition [8] the observable data (X) are orthogonally projected 

into a subspace spanned by W such that the mean squared distance between the original 

observed data and the projected data is minimized, 
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TT T T T T Tmin tr X 1x X 1x WW X 1x X 1x WW ,  (1.19) 

where W is assumed to be an orthonormal basis in the sense that W is composed of a set of 

orthogonal unit vectors, x  is the sample mean vector, and tr is the trace operator. In 

Hotelling’s definition [9,10], the observable data are orthogonally projected into a 

subspace such that the variance of the projected data is maximized, 
TT T Tmax tr W X 1x X 1x W , (1.20) 

where the notations W and x  remain the same as those in Equation (1.19). Pearson’s 

objective function minimizes the sum of squares of the residuals while Hotelling’s 

objective function maximizes the sum of squares of the projections. Since the sum of the 

two objective functions is the total variance of the data, it is not surprising that minimizing 

one is equivalent to maximizing the other, and thus the two definitions are 

mathematically equivalent. 

PCA can also be viewed from the perspective of maximum likelihood estimation. 

Unlike FA, PCA does not assume the latent variables (z) follow a multivariate normal 

distribution, but the matrix W is composed of a set of orthonormal column vectors and Z

consists of a set of orthogonal column vectors. If the errors are normal, independent, and 

identically distributed, 
2( , )N 0 I ,  (1.21) 

where 2  is the error variance, then the likelihood (L) of the observed data, based on the 

model in Equation (1.2) or (1.3), can be expressed as 

1T 2
1

21 22

1 1exp
22

n

i i i ip
i

L x Wz I x Wz
I

,  (1.22) 

where xi represents the p x 1 sample measurement vector and zi denotes the d x 1 scores 

vector (The transposed zi is a row of Z) for sample i. Maximizing this likelihood function 

with respect to W, Z, and  essentially gives the same solution as those of Pearson’s and 

Hotelling’s definitions. 

In PCA, the columns of W are loading vectors that are generally called principal 

components, and the estimated values for Z are generally called scores. In different 

situations, the scores matrix and loadings matrix may be denoted by different notations. It 
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is worth noting that solutions of PCA are nested, which means that the subspace estimated 

from a low-dimensional subspace model is contained within the solutions for 

higher-dimensional model. Thus, the loading vectors (principal components) 

hierarchically account for the variance of the data. It can be mathematically shown that the 

loading vectors of PCA are the eigenvectors of the sample covariance matrix. If all the 

loading vectors are used, PCA can be regarded as a rotation of the original coordinate 

system, which gives an interpretation of PCA from the geometrical perspective. 

PCA is very closely related to singular value decomposition (SVD), which was 

proposed by Eckart and Young in 1936 [46]. They showed that any matrix can be 

factorized as X = USVT, where U and V are orthonormal matrices and S is a diagonal 

matrix. It can be shown that if the data matrix X is column mean-centered, the PCA scores 

matrix can be obtained by Z = US and the loadings matrix is the same as V. A good review 

of PCA with related methods can be found in reference [47].

1.6.3 Maximum Likelihood Principal Component Analysis (MLPCA) 

In the literature, two different methods, both named as maximum likelihood 

principal component analysis (MLPCA), were developed independently. One was 

proposed by Wentzell et al. in 1997 [15], and the other was developed by Tipping and 

Bishop in the same year [43,44]. The latter was shown to be the same as Roweis’ work 

published in 1998 [45]. Both versions of MLPCA can fall into the general model 

framework defined in Equation (1.2) or (1.3) with different assumptions and constraints, 

and both are subspace modeling techniques as well (although a variant of Wentzell et 

al.’s MLPCA version includes both a column vector offset and a row vector offset, and 

does not fall into the general model framework). 

Wentzell et al.’s definition of MLPCA originated from the context of multivariate 

analysis in chemistry and has been applied to a variety of problems [48,49,50]. In 

contrast to FA but consistent with PCA, the latent variables (z) are not assumed to follow 

a multivariate normal distribution, but the scores matrix (Z) consists of a set of 

orthogonal column vectors, and the loading matrix (W) is composed of a set of 

orthonormal column vectors. Unlike PCA, the measurement errors may be 

hetersocedastic (correlated or uncorrelated), and the measurement error variances (or 

covariance matrices) are assumed to be known. With these assumptions and constraints, 
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maximizing the likelihood of the observed data defines this version of MLPCA. Strictly 

speaking, since the true population error variances are generally unknown and thus are 

estimated through experiments or a theoretical model, the result using estimated error 

variances (or covariance matrices) is not really maximum likelihood estimation. However, 

in practice, it is sufficient enough in many cases to improve the data analysis results. 

Wentzell et al. proposed different error structures (recounted in Section 1.4) for MLPCA. 

If the errors are not fully correlated over the measurements in X, the likelihood function 

can be written column-wise or row-wise. For example, if errors are only correlated within 

rows, the likelihood function for the observed data can be expressed as  

T 1
1

1 22

1 1exp
22

n

i i i i ip
i

i

L x Wz x Wz ,  (1.23) 

where i  is the error covariance matrix for row i, and is assumed to be known. 

Depending on the application, the mean vector  may or may not be included. Maximizing 

the likelihood function (or, in practice, minimizing the negative of the log-likelihood) 

gives the maximum likelihood estimates for W, Z, and .

Tipping and Bishop’s definition of MLPCA [6,43,44] is different from that of 

Wentzell et al., but is very close to FA. Like FA, this version of MLPCA also assumes 

the latent variables (z) follow a multivariate normal distribution, 

( , )Nz 0 I ,  (1.24) 

but the errors are assumed to be normal, independent, and identically distributed (i.i.d. 

normal), 
2( , )N 0 I .  (1.25) 

In factor analysis, the errors are assumed independent but different variables may have 

different error uncertainties. In other words,  is diagonal but the diagonal elements are 

not equal. In Tipping and Bishop’s MLPCA, it is assumed that 2I . Thus, this 

version of MLPCA could be regarded as a special case of FA. The likelihood function of 

the observed data can be expressed as 

1T T 2
1

T 21 22

1 1exp
22

n

i ip
i

L x WW I x
WW I

. (1.26) 
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Maximization of the likelihood function gives the solutions for W, , and . The scores 

can be obtained by Equation (1.18). It is shown that the maximum likelihood estimate of 

 is equal to the sample mean, and the subspace spanned by W is the same as that of 

PCA. The scores of this version of MLPCA are the same as those of standard PCA except 

for a multiplicative factor. Thus, the results are essentially equivalent to those of PCA, 

but this MLPCA version is theoretically important. 

1.6.4 Projection Pursuit (PP) 

Compared with PCA or FA, projection pursuit (PP) is a relatively new technique. 

The term “projection pursuit” was first proposed by Friedman and Tukey in 1974 [12]. 

The primary purpose of PP is to linearly map high-dimensional data into a 

low-dimensional space so that some salient data features can be revealed, which is 

generally interpreted as looking for “interesting” projections in a low-dimensional 

subspace. Certainly, the notion of “interestingness” may have different interpretations in 

different applications, but it is often construed as clusters or outliers. PP does not have an 

unambiguous objective function (referred to as projection index), and there are many 

different projection indices in the literature [13,51,52,53,54,55]. In a broad sense, many 

other methods such as PCA can be regarded as special cases of PP. 

PP is a dimensionality reduction technique, but the residuals cannot be interpreted 

as random errors. Unlike other methods mentioned earlier, PP generally cannot be viewed 

from the perspective of maximum likelihood estimation. Most of the projection indices 

are designed to measure the non-normality of the low-dimensional data. This is actually 

in accordance with the central limit theorem [56]. The central limit theorem states that a 

linear combination of a group of random variables tends to be normal. Thus, 

low-dimensional data with salient features should be far from a normal distribution and a 

normal distribution is interpreted to be “uninteresting”. PP is closely related to another 

independently developed technique called independent component analysis (ICA) 

[57,58,59]. ICA searches for independent components that are conceptually “stronger” 

than uncorrelated components, in the sense that the requirement for independent 

components is higher than that for uncorrelated components. To many, 

“uncorrelatedness” is synonymous with “independence”, but actually this is not true. 

Statistical independence for two random variables requires that the joint probability 
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density function (PDF) (or probability function for discrete distributions) is equal to the 

product of individual PDF’s of the two variables, while “uncorrelatedness” means the 

covariance between the two variables is zero. Independent variables are always 

uncorrelated, but the converse is not true. More discussion about projection pursuit is 

given in Chapter 4.  

1.7 Optimization Methods 
As mentioned earlier, the optimization algorithm of a multivariate data analysis 

method is another important component. Probably because the optimization steps in most 

of the software packages are hidden and users only need to click menus and buttons to get 

results, one might have thought that optimization of an objective function is trivial, but it 

is not. Optimization of an objective function plays an important role and the efficiency of 

an optimization algorithm can determine if a method is successful. Optimization aims to 

find the solutions for the estimated parameters when an objective function defined in a 

data analysis method is optimized and it involves a variety of issues such as the convexity 

of the objective function and the convergence speed of the algorithm. Optimization is an 

old topic that can be dated back to the times of Isaac Newton (1643-1727) [60], but it 

became an independent subject in the mid-20th century due to the contributions of many 

researchers, such as Dantzig who coined the term “linear programming” for optimization 

in 1947 and Neumann who proposed the duality theory in the same year [61,62]. Now, a 

number of methods and their variants have been developed, from the simplex algorithm 

[61] to the genetic algorithm [63]. Mathematical optimization has become an important 

subject in different areas, from mathematics and computer science to chemometrics. 

An optimization problem may be constrained or unconstrained. As the names 

imply, a constrained optimization problem has some constraints imposed on the objective 

function. For a constrained optimization problem, a Lagrange multiplier [64] is often 

introduced to avoid explicitly solving the constraints imposed on the objective function.  

An objective function may be convex or non-convex. Simply speaking, a 

real-valued convex function is a continuous function for which the value at the mid-point 

in any interval in its domain is not larger (or smaller) than the arithmetic mean of values 

at the two interval ends. A non-convex function is just the opposite of a convex function. 
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A convex objective function has only one maximum (and/or one minimum), while a 

non-convex function has multiple maxima (and/or minima).  

For the objective functions of multivariate data analysis methods, it is usual that 

there are no closed-form solutions and the solutions need to be found through iterative 

means. Among the various optimization methods, Newton’s method and the gradient 

descent/ascent method may be the most familiar to data analysts. Newton’s method 

generally converges quickly, but it involves the computation of the second-order 

derivatives, which is often difficult to implement for complicated functions, especially in 

high-dimensional spaces. The gradient descent/ascent method is conceptually simple, but 

it often converges slowly and is less stable. It is important to note that, when an objective 

function is convex, the commonly used methods such as Newton’s method and the 

gradient descent/ascent method can guarantee the global solution, but when an objective 

function is non-convex, these optimization methods may hit a local optimum, since it has 

multiple local optima. In other words, the global optimum is not guaranteed. Thus, there 

is generally a requirement to start from many different initial guesses to increase the 

probability of finding the global solution. This imposes a high demand on the speed of an 

optimization algorithm.  

For the multivariate data analysis methods used in chemometrics, the objective 

functions are generally complicated and optimization of the objective functions is a big 

challenge. Simple and efficient optimization algorithms for some current methods and 

new methods are in great demand. Thus, chemometricians often need to develop new 

optimization algorithms. Much of the work presented in this thesis focuses on such 

algorithms.  
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Chapter 2: Exploratory Data Analysis with Noisy 
Measurements: An Application of Maximum Likelihood 

Principal Component Analysis* 

2.1 Introduction 
As introduced in Chapter 1, exploratory data analysis [1] is a widely used method 

in chemistry and many other areas. The term “exploratory data analysis” is a rather vague 

description of a variety of procedures that can be used to gain some understanding of the 

general characteristics of a data set and guide further investigation through more refined 

techniques. These characteristics can include features like the range of measurements in 

each variable, the nature of the noise, the relationships among samples or variables, and 

the presence of outliers. A variety of data analysis methods can be employed at this stage, 

from basic statistical and visualization techniques, to correlation maps and hierarchical 

clustering methods. However, there is perhaps no technique as widely applied to 

multivariate data analysis as principal component analysis (PCA) [2,3,4]. This is 

particularly true in chemistry, where PCA plays many different roles. These include 

dimensionality reduction, rank estimation, data visualization, and modeling, to name but 

a few. One of the most common applications often takes place during the early stages of 

data analysis, where PCA is used as a tool for exploratory data analysis.  

To many, exploratory data analysis is nearly synonymous with PCA because it is 

such a powerful tool to accomplish multiple objectives. By performing an efficient 

dimensionality reduction that preserves the maximum amount of meaningful variance, 

PCA readily allows the visualization of the relationships among samples and variables 

through the use of scores and loadings plots. The use of eigenvalues and other metrics 

can also give an indication of the so-called pseudo-rank of the data, which is useful in 

assessing the inherent information content of the data or the number of components 

present in mixture analysis problems. Another important outcome of this type of analysis 

is often the visual recognition of clusters within the data. It is often the case that samples 

                                                                 
* This chapter is based on the published article: P. D. Wentzell, and S. Hou, Exploratory 

Data Analysis with Noisy Measurements, Journal of Chemometrics, 26 (2012) 264-281. 
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or variables form clusters, and such separation suggests some internal relationships in 

multivariate data. The coupling of data compression with human perception is a powerful 

combination to look for information from data. Unlike supervised methods, such as 

discriminant analysis in its various forms [5,6,7,8,9,10], PCA does not use class 

information, so the appearance of clusters at this stage of analysis is more likely to reflect 

a true partitioning of the data. It should be pointed out that PCA is not the only method 

used to find clusters; many other methods such as clustering analysis [11,12,13] and 

projection pursuit (PP) [14,15,16] may also be employed. 

Despite the versatility and power of PCA, it is not without problems and is by no 

means a panacea. Practitioners quickly learn that PCA is sensitive to outliers and robust 

PCA methods have been proposed in the literature [17,18]. PCA is also affected by 

preprocessing methods such as mean centering and scaling, and the failure to implement 

these when needed, or their application when unnecessary, leads to meaningless results. 

Mean centering is almost always used in exploratory data analysis, since it removes the 

mean effects of all of the variables and allows their interactions to be more efficiently 

visualized, but it may be undesirable in some cases. Scaling is a particularly sensitive 

issue. As PCA attempts to model the total variance of the data hierarchically as 

orthogonal principal components and scaling changes the variance in some directions, 

scaling can greatly affect the PCA results. 

PCA can be viewed from the perspective of maximum likelihood estimation. For 

an n x p data matrix, PCA models measurements in a d-dimensional subspace (d < n and 

d < p). When d is chosen to be the pseudo-rank of the data and all of the measurement 

errors are independently and identically distributed with a normal distribution (referred to 

as i.i.d. normal), then PCA estimation of the subspace will be optimal in a maximum 

likelihood sense [ 19 , 20 ]. However, when measurement error variances become 

non-uniform (heteroscedastic), the PCA estimation of the subspace becomes sub-optimal. 

Heteroscedastic errors may be roughly proportional to signals, such as shot noise or 

source flicker noise [21] or measurement-specific noise variance, such as noise in DNA 

microarrays [22,23,24]. When errors are heteroscedastic, but have fixed variance within a 

variable, scaling may make the errors more homogeneous (i.e. uniform measurement 

uncertainties) across all measurements, but it has long been known that optimal scaling is 
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only possible under certain conditions, namely when the matrix of measurement standard 

deviations is a rank one matrix [25]. Additionally, the assumption of independence in the 

measurement errors is often violated. In fact, as demonstrated in the literature, 

heteroscedastic and correlated measurement errors are the general case in multivariate 

data [26]. Small deviations from these conditions are not likely to cause serious problems 

and many routine analytical measurements are not problematic. Increasingly, however, 

analytical chemistry is stepping outside of traditional boundaries into areas such as 

proteomics, metabolomics, image analysis, surface science and environmental monitoring, 

where the data are not always as well-behaved. Finally, the topic of missing 

measurements in multivariate data sets is also related, since these can be considered as 

measurements with very large degree of uncertainties. 

Maximum likelihood principal component analysis (MLPCA)* is one technique 

that has been used for several years to address the issue of heteroscedastic measurement 

errors in multivariate analysis [20,27] and has been applied to different problems 

[22,28,29,30,31,32,33,34,35,36]. This technique is related to similar approaches such as 

total least squares [37,38,39,40,41] and positive matrix factorization [42,43], and is a 

generalization of PCA to non-ideal error structures that range from simple 

heteroscedascity and within-sample correlation, to more complex structures that can 

affect multiple orders. However, to date its application in exploratory data analysis has 

not been examined. This has not been due to a limitation of MLPCA itself, which is 

readily applied, but rather as a consequence of the data, which impairs the visualization 

of scores plots. In this work, the limitations of conventional PCA for exploratory data 

analysis when applied to data exhibiting a high degree of heteroscedascity are described. 

This is followed by an examination of strategies designed to address these weaknesses 

using MLPCA. To illustrate the effects of both methods, simulated data with controlled 

error structures are used. An application of MLPCA to noisy DNA microarray data is 

provided. 

                                                                 
* MLPCA in this thesis refers to the method developed in this group (see reference [27]) 

unless specified otherwise. 
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2.2 Theoretical Aspects 
It is necessary to make it clear that the type of data sets being discussed in this 

chapter are those in which there is a high degree of heteroscedasticity, both in terms of 

magnitude and proportion. In other words, while the methods described are applicable to 

any data sets where measurement errors are not i.i.d. normal, they will have the most 

impact when the range of measurement error variances is large and a significant percentage 

of the measurements have high uncertainties. Also, it is assumed that the principal 

objective is to identify clusters, as this will make it easier to visually assess the 

effectiveness of various methods. Although such clustering is typically done on samples in 

the scores space, it might also be done on variables in the loadings space. Further, in the 

context of this work, it is assumed that the measurement error variances are known or can 

be estimated. Finally, while measurement errors are assumed to be independent, the 

extension of these ideas to correlated measurement errors should be relatively 

straightforward. 

As introduced in Chapter 1, MLPCA is a subspace modeling technique and 

follows the general model shown in Equation (1.3). In this chapter, by following the 

convention of MLPCA, the notations Z and W shown in the general model in Equation 

(1.3) are replaced by T and V, respectively and thus this model can be re-written as 
T TX TV 1 E . (2.1) 

In this chapter, the discussion will focuses on MLPCA for data without intercept term, 

which means that 0  or the hyperplane in which the error-free data are located passes 

through the origin. Thus, this general model for MLPCA can be written as 
TX TV E . (2.2) 

In this model, one might notice that the vectors defining the subspaces T and V have a 

rotational ambiguity issue just as in the case of factor analysis. To make the scores and 

loadings unique, MLPCA actually imposes a restriction on T and V by applying 

traditional PCA or singular value decomposition (SVD) to TVT so that the components 

hierarchically account for the maximum of the estimated data variance.  

When MLPCA is used for exploratory data analysis to deal with data that have 

significant heteroscedastic errors, there are several issues that affect the discovery of 
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meaningful information from the data, especially the visualization of clusters within the 

scores plots:  

1. The number of principal components selected for MLPCA. 

2. Estimation of the optimal projections (scores) and subspace (loadings).  

3. Processing the estimated data by methods such as row normalization, column 

mean centering, and column scaling. 

4. Visualization of clusters in the scores plots at the presence of noisy measurements 

that may obscure the cluster separation.  

It should be noted that, for a given data set, not all of these issues will be equally prevalent, 

nor their solutions equally necessary, but each is a potentially complicating issue. In the 

rest of this chapter, each of the issues will be discussed and a general procedure for using 

MLPCA in exploratory data analysis is recommended. 

2.2.1 Number of Principal Components Selected for MLPCA 

Unlike PCA, MLPCA solutions are not nested; therefore, this raises the question 

of how many principal components should be extracted. In other words, what is the 

dimensionality of the subspace? As a subspace modeling technique, MLPCA assumes 

that the error-free data are located in a subspace of the observed variable space with a 

rank d (called pseudo-rank, chemical rank, or intrinsic rank). The observed data, which 

are contaminated by errors, have a rank p (called mathematical rank) higher than the 

pseudo-rank d. In the sense of maximum likelihood, it is only when the number of 

components is chosen to be the same as the pseudo-rank, that the estimated subspace and 

scores are maximum likelihood estimates. In conventional PCA, while certain techniques 

exist to estimate the pseudo-rank d, they are not entirely reliable and become even less so 

for MLPCA. 

Although it is agreed that the number of principal components should ideally be 

equal to the pseudo-rank, it has been observed that, as long as the number of principal 

components does not greatly deviate from the pseudo-rank, the utility of MLPCA in 

extracting useful information for exploratory data analysis will not be heavily affected. If 

the number of principal components is chosen to be smaller than the pseudo-rank, some 

chemical variation will be treated as measurement errors, and the direction of the 

subspace determined and the maximum likelihood projections can be unpredictable. On 
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the other hand, if the number of principal components is chosen to be larger than the 

pseudo-rank, some variation due to measurement errors in the observed data will be 

treated as underlying components. As the number of principal components increases 

beyond the pseudo-rank d, more noisy measurements will contaminate the projected data 

and begin to obscure relationships among the objects, but these changes generally occur 

gradually. The situation is analogous to multivariate calibration, where there is initially a 

rapid decrease in prediction error with model dimension, but a slower rise after the 

optimum dimension. The number of principal components may cover a range with which 

useful information can be obtained. In other words, the result of MLPCA is not very 

sensitive to the selection of the number of principal components when it is not smaller 

than the pseudo-rank. Certainly, the effect of selection of different numbers of principal 

components depends on the characteristics of the data set and error structure for real data, 

because real data often do not have a definite pseudo-rank. The choice of the number of 

principal components should represent a balance between the estimated proportion of 

“bad” measurements for a given sample and reasonable guess for the pseudo-rank of the 

data. In practice, different numbers of principal components can be tried for a specific 

data set.  

2.2.2 Estimation of Subspace and Scores 

As a subspace modeling technique, MLPCA estimates the error-free data in a 

subspace by using the information contained in the measurement uncertainties. In cases 

of measurements with very large error uncertainties, an alternative approach may be to 

simply exclude “bad” measurements from further analysis. While this should be done if all 

of the measurements for a given variable or sample are unreliable, there are a number of 

drawbacks to this approach when the quality of data varies within a row or column of a data 

matrix. First, most methods require the elimination of an entire row or column of data in 

order to reject a single measurement, so one risks decimation of what may already be a 

limited data set based on a relatively small number of unreliable measurements. Moreover, 

any useful information the censored sample or variable contributes to the interpretation of 

the results will be lost. Second, a binary classification of “good” and “bad” requires setting 

a somewhat arbitrary threshold for uncertainty and does not reflect the fact that the 

information content of measurements follows a continuum. Therefore, it would be better to 
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employ methods that reflect this characteristic of the data. Finally, multivariate data 

typically have a high degree of redundancy, and this can be exploited in the analysis. This 

means that large errors in one measurement will not necessarily propagate to lower 

dimensions, especially if appropriate strategies are used to minimize the effects of 

uncertain measurements. 

Compared with PCA, the estimates of error-free data by MLPCA may be greatly 

improved given reasonably accurate characterization of measurement noise. PCA 

intrinsically assumes homoscedastic errors and the result of applying PCA directly to the 

data with significant heteroscedastic errors will be suboptimal. MLPCA, however, gives a 

more accurate estimate of the error-free data than PCA by making optimal use of 

measurement uncertainty estimates. It does this by optimizing the subspace and using a 

maximum likelihood projection to obtain the scores. It is worth noting that estimations of 

the subspace and scores are simultaneous and not two separate steps. 

For a given p x 1 column vector xi representing a sample measured on p variables 

(i is the sample index), if a subspace is defined by a p x d (d < p) orthonormal basis V, the 

scores of this sample (ti) with respect to the subspace can be obtained by the maximum 

likelihood projection 
T 1 1 T 1( )

i ii ix xt V V V x , (2.3) 

where 
ix  is the measurement error covariance matrix for sample xi. Typically, when the 

measurement errors can be considered to be independent, 
ix is a diagonal matrix 

containing measurement error variances, but correlated measurement errors can also be 

represented. In theory, the same subspace can be described by an infinite number of 

orthornormal bases; therefore, PCA or SVD is applied to TVT so that V becomes unique, 

as mentioned in Equation (2.2). The estimation of ti is an oblique projection of the 

original data into the subspace, which is different from the orthogonal projection method 

used in PCA. The oblique projection used in MLPCA is a maximum likelihood projection, 

meaning that the observed data are the most possibly obtained if the underlying error-free 

data are the projected data, given the known error structure. Note that if homoscedastic 

errors are assumed, the orthogonal projection used in PCA is the maximum likelihood 

projection. However, in this context, the term “maximum likelihood projection” implies 

the oblique projection by MLPCA unless specified otherwise. 
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Figure 2.1 Schematic representations of orthogonal projection method in PCA and 
maximum likelihood projection method in MLPCA. 

To illustrate the concept of the maximum likelihood projection in MLPCA, a 

simple artificial data set is used. This data set consists of twelve samples (objects) evenly 

divided into two classes with the marker shapes (squares and dots) and colors (blue and 

pink) indicating classes, and the data have an intrinsic rank of unity (i.e. a  pseudo-rank of 

one), as shown in Figure 2.1. To make the illustration simple, it is assumed that data 

points A, B and C have heteroscedastic errors and all other points have homoscedastic 

errors. The ellipses of constant probability density for A, B, and C (and circles for other 

points) schematically illustrate the error covariance matrices. The orientations of the 

ellipses indicate if errors are correlated. The size of the ellipse or circle shows the 

magnitude of the measurement error variance in the corresponding direction. For A, B, 

and C, the dashed and solid lines indicate the orthogonal and maximum likelihood 

projections onto the subspace of rank one (the straight line labeled as principal 
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component), respectively. The results of the projection into one-dimensional space by the 

two methods are shown under the main figure. It can be seen that if the orthogonal 

projection method is used (dashed line), each class has one object (indicated in Figure 2.1 

as A and B) projected into a domain close to the other class, and the class separation is 

not distinct. On the other hand, if the maximum likelihood projection method is used 

(solid line), the points A and B are both projected into their own regions, respectively and 

the samples of the two classes are clearly separated. 

As mentioned earlier, the estimation of scores and subspace is not two separate 

steps. To estimate the scores, a random initial guess of the subspace, denoted by V, is 

typically provided and the scores are estimated by maximum likelihood projection. Once 

the scores are estimated based on the given subspace defined by V, the scores can be used 

to update the subspace in a maximum likelihood way. This is done by transposing the 

original data matrix and adjusting the error covariance matrices accordingly. Whereas the 

first step projected the measurements (as sample vectors) into the variable space, the 

second step projects the measurements (as variable vectors) into the sample space [20,27]. 

This procedure, known as alternating least squares (ALS) is repeated until convergence, 

at which point, T and V are determined by applying PCA or SVD to the projected data. 

Like other methods, this iterative method cannot guarantee to hit the global optimum of 

the MLPCA objective function and thus multiple initial guesses of the subspace are 

generally used to increase the chance to find the global optimum.  

Once the subspace and scores are estimated, it may be necessary to present the 

estimated data in the original space (observed variable space). The estimates of the 

error-free data in the original space ( ˆ ix ) can be expressed as 

T 1 1 T 1ˆ ( )
i ii ix xx V V V V x .  (2.4) 

This transformation does not affect the spatial relationship of the objects in scores space, 

but only uses a different coordinate system to express the projected data and no 

information is changed.  

An important aspect of the maximum likelihood projection is that the 

measurement error information in the original measurements can be propagated to the 

projected data. This measurement error information can be associated with the original 

variables or with the scores, but the error information associated with the scores is more 
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important in the present work. As heteroscedastic errors have been assumed for the data 

in the original variable space, the scores for each data point will have a different error 

covariance matrix. It has been shown that if an original data point has an error covariance 

matrix denoted by 
ix , the error covariance matrix for its scores (

it ) can be obtained 

by [20,27] 
1T 1

i it xV V ,  (2.5) 

where V is the basis for the estimated subspace. Because the estimation of the subspace 

and scores is not two separate processes, the error covariance matrix for the scores 

(obtained by Equation (2.5)) is an approximation for the true error covariance matrix and 

does not account for errors in the estimation of the model. Note that, even if the original 

measurement errors were independent (
ix  is diagonal), projection of the original data 

into the subspace generally produces correlated errors (
it  is not diagonal). For the 

estimated data in the original space, ˆ ix , the corresponding error covariance matrix can be 

expressed as 
1T T 1 T

ˆ i i ix t xV V V V V V .  (2.5) 

In general, ˆ ix  is also not diagonal. In addition, ˆ ix  becomes singular because it is 

essentially a matrix with a lower rank expressed in a higher-dimensional space. These 

equations are important in subsequent steps that make use of uncertainty estimates. 

2.2.3 Processing of the Estimated Data 

Once the error-free data are estimated based on the principle of maximum 

likelihood, a projection method such as PCA or PP is applied to the estimated data (either 

the scores with respect to the subspace or the estimated data in the original space) to look 

for useful information, especially clusters in a lower-dimensional space. Prior to this, 

however, some preprocessing methods such as row normalization, mean centering and/or 

column scaling, may be applied and can, dramatically affect the results.  

In the context of the discussion here, “row normalization” refers to the procedure 

where each row vector of the data for a particular object or sample is normalized to unit 

length or unit sum (area) prior to mean centering. The reason that such a pretreatment is 
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common is that the class membership of an object is often determined by the overall shape 

of the measurement profile (e.g. spectrum, chromatogram); that is, the relative rather than 

the absolute magnitude of the measurements. If an object is normalized to unit area (refer 

to Equation (2.9)), the estimated data in the original space should be used since the scores 

may have positive or negative values. In the original space, it is more typical for data to 

be positive. If normalization to unit length is performed (refer to Equation (2.7)), use of 

the scores in the subspace or the estimated data in the original space leads to equivalent 

results. Thus, it does not matter whether the scores or the estimated data in the original 

space are used. In the discussion here, the analysis is based on using the estimated data in 

the original space, but these steps may be applied to the scores as well. Row 

normalization changes the magnitude of an object’s measurements, but does not alter the 

profile. Depending on the purpose and requirement, row normalization can be performed 

before other projection methods are applied to the estimated data. 

Mean centering of the variables, also referred to as column mean centering, is 

generally recommended when using projection methods for exploratory data analysis, 

since removal of the mean vector will tend to increase the information content of the data 

when represented in low dimensions. The sample mean is an unbiased estimate of the 

population mean. If a normal distribution and homoscedastic errors are assumed, the 

sample mean is also the maximum likelihood estimate of the population mean. When 

measurement errors become increasingly heteroscedastic, however, the reliability of this 

estimate becomes worse, and a few measurements with large uncertainties could degrade 

the quality of the estimate of the population mean and adversely affect the estimation of 

the subspace and scores. 

One possible solution is to use the weighted mean with the measurement 

covariance matrices used to give the weights, which can be expressed as  
1

1 1

1 1
i i

n n

i
i i

x xx x , (2.6) 

where x  is a p x 1 vector representing the overall mean, ix  is the vector for object i, 

and 
ix  is its corresponding covariance matrix. It is worth noting that this equation 

shows a general formula and is not specific to the work here. The use of a weighted mean 

is not recommended, however, since the covariance estimates available are those of the 
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measurement errors and not of the overall distribution. As a consequence, the weighted 

calculation will likely over-emphasize a few measurements with small errors, leading to 

an unreliable estimate of the mean (high variance). 

One more possible solution is to estimate the mean, subspace, and scores 

simultaneously, as defined in Equation (2.1). However, the difficulty is that no algorithm 

is readily available. In Chapter 3, a new algorithm is proposed to estimate a point to 

remove the data intercepts and this point is chosen as the mean of the estimated data. In 

the absence of this here, however, it is recommended to use the mean of estimated data 

(based on Equation (2.4)) to perform mean centering.  

Column scaling is another preprocessing step that is commonly employed for 

projection methods for exploratory data analysis. This is especially important for PCA, 

because variance, which is used as the objective function of PCA, is sensitive to the 

variable scales. Column scaling makes different variables have compatible scales and 

thus reduces the possibility that the few largest principal components are dominated by 

the variables with extremely large scales. Since measurement error uncertainties are often 

roughly proportional to the magnitudes of the data, column scaling essentially makes the 

measurement errors more homoscedastic in all variables. Column scaling is an optional 

data preprocessing step, but if row normalization is performed, column scaling is not 

advisable since the row normalization has changed the magnitudes of the measurements 

and their uncertainties. 

Row normalization, column mean centering and/or column scaling change the 

data structure of the estimated data and the measurement error information. For an object, 

if row normalization to unit length is performed, the normalized data ( iy ) can be 

expressed as  

ˆ
ˆ

i
i

i

xy
x

,  (2.7) 

where ˆ ix  is the vector for estimated object i and the notation  denotes the operator 

of Euclidean norm (
1

T 2ˆ ˆ ˆi ix x x ). If the measurement error covariance matrix associated 

with ˆ ix  is represented by ˆ ix , the measurement error covariance matrix for iy  can be 

obtained by  
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ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆi i

i i i i

i ii i
y x

x x x xI I
x xx x

,  (2.8) 

where I is the identity matrix of the same size as ˆ ix . If the object is normalized to unit 

area, the normalized data ( iy ) can be obtained by 

ˆ i
i

iS
xy ,  (2.9) 

where Si is the sum of the elements in vector ˆ ix . The error covariance matrix for iy  can 

be calculated by  
TT T

ˆ2 2

ˆ ˆ
i i

i i

i i i iS S S Sy x
1x 1xI I ,  (2.10) 

where 1 is a column vector with all its elements being 1’s. Equations (2.8) and (2.10) can 

be derived based on the rule of error propagation [44] by using some calculus. Note that 

after normalization to unit length or unit area, the covariance matrix 
iy has a rank of 

one less than ˆ ix . 

When column mean centering is performed, the error covariance matrix of each 

object can be regarded to be unchanged. When column scaling is performed, the 

measurement error covariance matrix for each variable can be obtained by following the 

same principle, but this case will not be dealt with in this work. 

The matrix obtained from the previous steps will be designated as Y. When a 

projection method such as PCA is applied to Y, the scores of Y can be obtained by  

W YQ ,  (2.11) 

where W denotes the scores and Q represents the basis of the space. The first few 

columns in W can be examined in two- or three-dimensional plots to look for clusters. 

For object i, its scores can be expressed as 
T

i iw Q y .  (2.12) 

Note that this is an orthogonal projection of iy  into the space of Q in contrast with the 

oblique maximum likelihood projection in Equation (2.3). The measurement error 

covariance matrix for the scores of object i can be calculated as 
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T
i iw yQ Q . (2.13) 

This equation is important because the error information contained in 
iw  will be used 

in scores plots to improve the visualization of clusters.  

Although PCA is typically used to process the estimated error-free data with 

different preprocessing steps, it is not necessarily the best choice. When PCA is used to 

look for clusters for exploratory data analysis, it is implicitly assumed that the 

between-group variance is larger than the within-group variance and the first few 

principal components are dominated by the between-group variance. Thus, the clusters 

are more likely to be revealed in the first few principal components. As PCA 

hierarchically maximizes the variance of the data, it is sensitive to the scales of the data, 

and normalization is often important. Other methods such as PP may be applied to the 

estimated data as well. PP optimizes different objective functions (not variance) and is 

designed to look for salient features of the data, generally clusters or outliers. PP has not 

been widely used as PCA, largely because the algorithms of PP are more complicated. If 

PP or other projection methods are applied to the estimated error-free data, the error 

covariance matrices can be obtained in the same way as Equation (2.13). However, in the 

work presented in this chapter, PCA is applied to the estimated error-free data because it 

is the most widely used method and works well with the simulated and experimental data. 

2.2.4 Visualization of Clusters in Scores Plots 

At this point, the information contained in the data must be represented in a space 

of lower-dimensionality for visual analysis and interpretation. This is generally performed 

by plotting the first few columns in W to see if the objects can naturally form clusters. 

Given that there is no information about object classes included in exploratory analysis, 

clusters revealed in the scores plots are more likely to be a valid reflection of inherent 

data structures, which may guide analysts for further exploration by other refined 

methods. The clusters may also be used to confirm the relationship of the known classes. 

Regardless of the subspace projection method used in the preceding step, there remains the 

possibility that a significant number of relatively noisy measurements in the scores plot 

can obscure the underlying structure of the data. This is because measurements with large 

errors will be projected in a random fashion throughout the subspace, thereby making the 
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identification or confirmation of clusters difficult. This is illustrated in Figure 2.2 which 

shows the projection of hypothetical measurements into a two-dimensional space. The 

measurements are characterized by two classes that separate along the first dimension, with 

the separation characterized by between, as indicated in Figure 2.2 (a). The within-class 

variation follows a Gaussian distribution characterized by within, which is substantially 

smaller than the separation between classes. In addition, there are three groups of objects in 
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Figure 2.2 Simulated samples showing the effects of heteroscedastic errors and the 
resulting mixture model. The variance contributions shown in (a) represent the within and 
between class variance, as well as three different levels of measurement errors applied to 
three equal-sized subgroups, each with two classes of objects. Measurement realizations 
are shown in (b)-(d), where class distinction is increasingly obscured as the measurement 
error increases. The combined measurements are shown in (e), along with the combined 
distribution in (f). Class distinction is difficult until object transparency is related to 
uncertainty, as shown in (g). 

each class characterized by different levels of measurement noise: low ( err1), moderate 

( err2), and high ( err3). (Errors for each object are the same in both directions, but the axes 

scales are different). Figures 2.2 (b-d) show the projections of each group of objects. When 

errors are small (Figure. 2.2 (b)), the class separation is evident, but is obscured as the 

measurement uncertainty approaches the magnitude of the class separation. When all of the 

objects are pooled, the result is shown in Figure 2.2 (e), where it is clear that the presence 

of measurements with large errors obscures the underlying class structure because all 

measurements are given equal visual weight. A mixture model applies here, where each 

object can follow a different distribution that results from a convolution of all of the 
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underlying distributions. The overall distribution, calculated from the simulation 

parameters, is shown in Figure 2.2 (f). While this suggests the presence of two classes, 

such distributions are difficult to determine based on the data alone, especially if the 

number of samples is limited, and most rely on the visual interpretation. 

A guiding principle through the preceding steps of this procedure has been the 

preservation of the measurement error information through each stage in the form of the 

error covariance matrix, . This information can be used at the current step to improve the 

visualization of clusters. The most obvious approach would be to simply exclude those 

objects with large measurement errors from display. As already stated, however, this 

involves setting a threshold for good/bad measurements and potential loss of information. 

A better approach would be to apply a procedure that exploits the continuous nature of 

measurement quality. One possibility would be to display the error information along with 

the objects in the form of error bars or error ellipses. Although this would make the 

uncertainty information available, it would quickly add clutter to the projections and not 

improve the visualization of relationships. As an alternative, summary metrics based on  

(e.g. the volume of the ellipsoid or its maximum dimension) could be used to obtain a 

quantitative measure of the quality of each object. This could in turn be used to modify the 

appearance of those objects in the scores plot. This is the approach recommended in this 

work. 

The method described here is referred to as the partial transparency projection (PTP) 

method and exploits the enhanced capabilities of modern graphical display units. These 

units allow attributes such as the color and size of displayed objects to be readily modified. 

One attribute that has not been fully exploited is the object transparency. In a typical 

mapping, an object with a transparency of zero will be opaque, while one with a 

transparency of unity will be completely transparent, effectively making it invisible. By 

mapping measurement quality to the gradation of transparency values between zero and 

unity, the appearance of objects with low quality measurements can be modified in an 

interactive fashion so that the underlying structure of the data is more clearly revealed. This 

effect is illustrated in Figure 2.2 (g), where objects with greater uncertainty are assigned a 

higher level of transparency. This has the advantage of retaining all of the objects in the 
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data set, while still allowing data analysts to determine the influence of low quality 

measurements on the visual interpretation of the projection. 

Mathematically, the PTP is performed by first choosing some quality measure, Q, 

for each object displayed in the space. This could be, for example, the volume of the error 

covariance ellipsoid (described by the covariance matrix 
iw ), or the trace, maximum 

eigenvalue, or maximum diagonal element of the covariance matrix. A transformation 

function, f(Q), such as a logarithm, square, square root, or simple ordering, may then be 

applied to Q to modify the distributional characteristics of the quality measure if necessary. 

A mapping function, g, is then used to map the transformed quality measure into a 

corresponding transparency value, . This function could typically be represented by a 

linear or sigmoidal-type response, or, in the limiting case, a simple step function that 

distinguishes between “good” and “bad” measurements. The overall relationship is given 

by: 

( )i ig f Q . (2.14) 

This concept is illustrated with a simple example in Figure 2.3, which consists of two 

clusters of data in a two-dimensional space. The measurements in the first dimension (x1)  

(a) Distribution of quality
Measure, Q

Transformation

(b) Transformed distribution
and transparency mapping

f ( )

g (f ( ))

ln(
(c) Original data

x1

x 2

x1

x 2

(d) Data with transparency applied

 
Figure 2.3 Principles of the partial transparency projection (PTP) showing the 
transformation and mapping steps and the effects on data visualization. 
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are corrupted with heteroscedastic noise such that the distribution of measurement standard 

deviations follows a log-normal distribution as shown in Figure 2.3 (a). The presence of 

measurements with large errors obscures the presence of the two clusters, as shown in 

Figure 2.3 (c). In this example, the quality measure, Q, is simply taken as the standard 

deviation of each measurement in the first dimension, . A logarithmic transformation 

function, f(Q), is applied along with a simple truncated linear transparency mapping, 

g[f(Q)], as shown in Figure 2.3 (b). The result, shown in Figure 2.3 (d), more clearly 

reveals the underlying cluster structure of the data by diluting the appearance of low 

quality measurements. 

Display results using partial transparency projection method.

Start with an n x p data matrix X containing n objects xi (p x 1) and
their measurement error covariances (p x p).

Apply MLPCA to X with estimated pseudo-rank d.
Calculate rank-reduced data and corresponding error 

covariances:       and        , or T and       .X̂ x̂i

ix

it

Preprocess data ( or T ) as required:
row normalization, column centering, scaling

to give Y and . 
iy

X̂

Apply PCA, PP or other methods to Y. Obtain the scores W
and the error covariance matrix for each object       .

iw

Display results using partial transparency projection method.

Start with an n x p data matrix X containing n objects xi (p x 1) and
their measurement error covariances (p x p).

Apply MLPCA to X with estimated pseudo-rank d.
Calculate rank-reduced data and corresponding error 

covariances:       and        , or T and       .X̂ x̂i

ix

it

Preprocess data ( or T ) as required:
row normalization, column centering, scaling

to give Y and . 
iy

X̂

Apply PCA, PP or other methods to Y. Obtain the scores W
and the error covariance matrix for each object       .

iw

 
Figure 2.4 Summary of recommended procedure for visualization of multivariate data 
with a high degree of known heteroscedasticity in the measurement errors. 

It should be noted that the application of the PTP does not depend on following the 

other steps recommended in this procedure and it can be used independently with any 

projection method. All that is required is some quantitative measure of quality associated 

with the objects in the projected space. Moreover, it is best applied in an interactive fashion 

where the quality measure, transformation and mapping can be modified to obtain the best 
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visual representation of the data. Software has been developed in this work to allow such 

manipulations to be readily carried out. 

The overall procedure recommended for exploratory analysis of data with a high 

degree of measurement error heteroscedasticity is shown in Figure 2.4. 

2.3 Experimental 

2.3.1 Simulation Studies 

To validate the methods described above, a variety of studies were carried out using 

simulated data under various conditions of heteroscedastic noise. All simulations were 

carried out in MatLab® v.7.4.0 (MathWorks, Natick, MA) and are described in Section 2.4. 

2.3.2 DNA Microarray Data* 

To illustrate the methods described for experimental data, a DNA microarray 

transcriptomics data set from a time course study in yeast was chosen because it exhibited a 

highly heteroscedastic error structure that had been previously characterized [22,23,45,46]. 

The experimental details of this data set have been reported in the literature [47] and will 

be only briefly summarized here. Spotted two-color microarrays were used to study gene 

expression levels of yeast cells (S. cerevisiae) exiting stationary phase as a function of time. 

The DNA microarray experiments were conducted as follows. Wild-type MATa S288C 

yeast cells were cultured in yeast peptone dextrose adenine (YPDA) for 7 days. Due to the 

lack of nutrition after 7 days, the yeast cells went into the stationary phase. The yeast cells 

were then transferred into fresh YPDA medium. As the cells came into an environment 

with nutrients, they exited out of the quiescent state and started to grow. The cells were 

then harvested at the starting time point and subsequent time points. In the work presented 

here, 18 microarray experiments were used with the time points as: 0, 0, 0, 1, 5, 10, 10, 15, 

20, 20, 25, 30, 35, 35, 40, 45, 50, and 55 min (note triplicates at time zero and duplicates at 

10, 20, and 35 min). The reference mRNA was provided by MATa S288C cells grown in 

YPDA medium and harvested when the optical density at 600 nm was equal to unity. The 

RNA from the test and reference cells was extracted and converted to cDNA with 

differential labelling for the test (Cy3) and reference cells (Cy5). The cDNA was 

                                                                 
* Preprocessing of the raw DNA microarray data was performed by Dr. Robert M. Flight. 
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hybridized with the DNA microarrays and scanned at two different wavelength channels. 

Ratios (test/reference) were calculated for about 6300 genes using the regression method, 

and uncertainty estimates were obtained using methods previously described [23]. Spots 

(genes) with a comparatively large proportion of measurements with high uncertainty 

relative to the mean signal intensity were removed prior to more comprehensive analysis. 

These were typically genes where the reference channel was close to background, where 

the test channel did not vary significantly from background across the time course, or 

where the quality of spot images was generally poor. This resulted in the retention of 3695 

genes across 18 time points, as well as a corresponding 3695 x 18 matrix of measurement 

uncertainties. Measurements (ratios) that were classified as missing or recorded as negative 

were assigned a value of zero and the associated standard deviation was set to a large value 

(100 in this case) to reduce their influence on the analysis. 

2.4 Results and Discussion 

2.4.1 Simulation Studies 

To illustrate the principles and advantages of applying MLPCA to exploratory data 

analysis, a simple data set was generated and subsequently modified in terms of its error 

structure. The original data set consisted of 300 objects equally divided into three classes of 

100 objects each. The centers of these classes were initially located at the vertices of an 

equilateral triangle (centered at the origin, sides of unit length) in a two-dimensional space. 

Individual objects were randomly clustered around each of these centers according to a 

symmetric bivariate normal distribution with  = 0.15. A scatter plot for this initial data set 

is shown in Figure 2.5 (a). To create a multivariate data set, this original data set was 

rotated into a 20-dimensional space using a randomly generated rotation matrix. The 

resulting 300 x 20 data matrix represented the error-free measurements. The 

two-dimensional scores plot generated by applying PCA to these data is shown in Figure 

2.5 (b) and, as expected, shows a separation of the clusters equivalent to that in the original 

two-dimensional space since no measurement errors were present in the data. 

Homoscedastic measurement errors were then added to the data by adding normally 

distributed random numbers (N(0, 2
noise)). Figures 2.5 (c) and 2.5 (d) show the scores 

plots obtained for the data set with noise = 0.2 and 0.8, respectively. As anticipated, 
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increased noise levels degrade the separation of the clusters because of an increase in total 

within-class variance and suboptimal estimation of the PCA subspace. 
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Figure 2.5 Effect of measurement errors on the visualization of PCA scores for simulated 
data: (a) scatter plot of the two-dimensional error-free data, (b) PCA scores plot of the 
two-dimensional error-free data following rotation into 20-dimensional space, (c) PCA 
scores plot of noisy 20-dimensional data (  = 0.2), (d) PCA scores plot of noisy 
20-dimensional data (  = 0.8). 

2.4.1.1 Measurement of Class Separation 

To provide a more quantitative measure of class separation following projection of 

objects from a p-dimensional space into a d-dimensional subspace, a commonly used 

quantity is given by Equation (2.15) 
1tr within betweenF S S . (2.15) 

This is a generalization of the Fisher’s discriminant value [48], which measures the ratio 

of between-class variance to within-class variance. In this equation, Swithin and Sbetween are 

the within-class and between-class covariance matrices for the projected objects, 

respectively (note that the within-class covariance matrix is assumed to be the same for 

all classes). In general, this applies to any projection, but in the current context, it is used 
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for the orthogonal projections described earlier. Of course, this equation is not normally 

used in exploratory data analysis where class information is not available, but is 

employed here to assess the quality of class separation. Assuming that there are Nc classes 

and Ni objects in class i, and n objects in total, the two matrices can be calculated by. 

T

1 1

1 ( )( )
c iN N

within ij i ij i
i jn

S w w w w , and (2.16) 

T

1

1 ( )( )
cN

between i i i
i

N
n

S w w w w , (2.17) 

respectively. In these equations, all of the w’s are the scores or mean scores in the final 

projection space. The vector ijw  represents the scores for object j in class i, iw  is the 

vector of mean scores for objects in class i, and w  is the overall mean score vector for 

all classes. The application of Equation (2.16) makes some simplifying assumptions such 

as the homogeneity of within-class variance, but for the simple example here, it is 

applicable. 
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Figure 2.6 Plot of generalized Fisher’s value (F) for simulated data (following PCA) as a 
function of the measurement error standard deviation. The points indicated by (b), (c), 
and (d) correspond to Figures 2.5 (b), (c), and (d), respectively. 

To illustrate how Equation (2.15) relates to the visual separation of objects in a 

two-dimensional space, it was applied to the example described above with increasing 

values of noise. Since the errors are homoscedastic and the clusters define a 
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two-dimensional space, PCA represents the optimum projection method and was used to 

generate the two-dimensional projections after simple mean centering. The value of F is 

plotted as a function of the noise level in Figure 2.6. For comparison, points (b)-(d) on this 

figure show the F values associated with the visual projections shown in Figures 2.5 (b)-(d). 

It is clear that the value of F decreases as the separation of classes becomes worse, 

indicating that this is a useful quantitative measure of class separation. 

2.4.1.2 Heteroscedastic Noise Simulation 

To compare the results of PCA and MLPCA for exploratory data analysis using 

simulated data with heteroscedastic noise, it is of course necessary to simulate the noise. 

Because heteroscedastic noise may exhibit a wide range of characteristics for different 

systems, there is no single universal model that can be applied. For these simulations, 

however, the principal objective was to demonstrate that MLPCA can be advantageous in 

certain situations without implying that it will necessarily yield improved results in all 

situations that might be encountered. To this end, a noise model that exhibited a log-normal 

distribution of measurement error standard deviations was chosen for simplicity. 

Log-normal distributions can produce the wide range of measurement uncertainties likely 

to accentuate the differences between PCA and MLPCA and are commonly observed in 

various systems. For example, this distribution is a good approximation to the 

measurement errors observed for the ratios in DNA microarray experiments, as discussed 

later. Based on this distribution, individual measurements in the simulated data could be 

randomly assigned a standard deviation. Individual measurement errors were then applied 

by generating a random number from a normal distribution with the corresponding 

standard deviation. For the purpose of the simulation, the population standard deviation for 

each measurement was exactly known. While this would not be the case for real data, this 

limitation was not explored in this study. For a more realistic simulation, the log-normal 

distribution was truncated at the low end such that no measurement was allowed to have a 

standard deviation less than 0.001 (values below this were set to the limit). This was 

considered to be more accurate, since few practical measurements can be infinitely precise. 

The strategy for the simulations was to compare how MLPCA and PCA perform 

under different noise scenarios. The log-normal distribution has two adjustable parameters, 

its mean and standard deviation, which will be designated here as log and log, not to be 
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confused with the parameters for the measurements. For the purposes of the simulations, 

however, it is more useful to replace log with another parameter, , which is defined as 

follows. In the case of homoscedastic noise, a certain noise threshold ( noise = thresh) can 

be chosen, where the separation of the classes begins to become blurred. In this case, this 

was arbitrarily chosen as noise = 0.2, which corresponds to the case illustrated in Figure 

2.5 (c). If this is considered as an arbitrary dividing line between “good” and “bad” 

measurements, then  represents the fraction of measurements in the data that can be 

considered “bad”. Although there is a constrained relationship between , log and log,  

was considered to be a more intuitive metric than using log directly. These relationships 

are illustrated in Figure 2.7. 
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Figure 2.7 Illustration of the relationship among the parameters of the log-normal 
distribution used to generate the measurement error standard deviations for 
heteroscedastic errors in simulations. The values of log (the degree of heteroscedasticity) 
and  (fraction of “bad” measurements) were independently varied, with thresh fixed and 

log varying as a function of the other two variables.  

Figure 2.8 shows representative scores plots obtained under various conditions of 

noise heteroscedasticity by applying PCA directly and PCA following preprocessing by 

MLPCA, designated as MLPCA/PCA. To make the application of the latter approach more 

consistent with real implementations, the rank selected for MLPCA was five, in excess of 

the actual pseudo-rank of two. Four cases were selected, representing two degrees of 
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heteroscedasticity (i.e. ranges of measurement uncertainty, as expressed by log) and two 

levels of percentage “bad” measurements (as expressed by ). 
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Figure 2.8 PCA (left column) and MLPCA/PCA (right column) scores plots for data with 
different patterns of heteroscedastic noise, as indicated by  and log to the right of each 
row. See text for further discussion. Note that some of the points in (c), (e), and (g) are 
outside of the displayed region. 
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2.4.1.3 Subspace Estimation 

As noted earlier, the first difficulty encountered in using PCA for exploratory data 

analysis is that subspace estimated will be suboptimal due to the influence of noisy 

measurements. These problems should be mitigated with MLPCA since it will weight the 

more precise measurements more highly in estimating the subspace. To demonstrate this, it 

is necessary to compare the subspaces estimated by the two methods. One way to compare 

two subspaces is to measure the angle between them. This angle can be calculated as 

follows. First imagine that the first subspace is described by an orthonormal basis AU  and 

the second subspace is denoted by an orthonormal basis BU . If the two bases are of the 

same size, the angle ( ) between the subspaces can be calculated by [49,50,51] 
1 Tcos ( det( ) )A BU U , (2.18) 

where the notation det is the determinant operator and  denotes the absolute value. To 

compare the ability of PCA and MLPCA/PCA to estimate the true subspace under 

different conditions of heteroscedasticity, the angle between the estimated subspace and 

the true subspace was calculated as a function of  and log. The true subspace in this 

context is taken to be the two-dimensional subspace represented by the error-free data. 

The results are shown in Figure 2.9. Note that these contour plots are the result of 300 

individual realizations of the random noise structure at each grid point used (noise-free 

data remained constant). Since it is most desirable to have the smallest angles, it is 

immediately clear from the two figures that MLPCA is able to extract a more accurate 

subspace over a much wider range of conditions. Superimposed on the plot are the letters 

A-D, corresponding to the conditions shown in Figure 2.8. PCA is most effective at 

estimating the correct subspace when the degree of heteroscedasticity, log, is relatively 

low, or in other words, when the measurement errors approach homoscedastic conditions. 

This is not surprising, since these are the conditions under which PCA is designed to 

perform optimally. As the degree of heteroscedasticity increases, measurements with 

large errors begin to dominate the overall variance structure and influence the direction of 

the subspace. The performance of PCA is influenced to a lesser extent by , the fraction 

of bad measurements. This is anticipated, since the number of measurements with large 

errors is less critical than the magnitude of those errors with PCA. With MLPCA, the 
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estimation of the subspace is much more stable, since it weights the measurements by 

their uncertainties and is able to obtain a good estimate of the subspace based on high 

quality measurements. 
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Figure 2.9 Contour plots of the angle (in degrees) between the true subspace and 
subspace estimated by PCA (left) and PCA following MLPCA preprocessing (right) as a 
function of heteroscedastic error parameters. The superimposed letters correspond to the 
four cases in Figure 2.8: A = (a), (b); B = (c), (d); C = (e), (f); D = (g), (h). 

Two comments can be made concerning these results. First, known error variances 

were used in these simulations to represent a best case scenario. Obviously, performance 

will diminish with the quality of the measurement uncertainty estimates for experimental 

data. Second, the heteroscedastic error structure in this case was distributed across 

measurements rather than samples; that is, each object could have both “good” and “bad” 

measurements in its measurement vector. This scenario may be a good approximation in 

some circumstances, such as DNA microarrays, but it is perhaps more likely that there are 

“good” and “bad” objects; that is, cases where the heteroscedasticity is distributed across 

the samples. MLPCA actually performs better over a wider range under these conditions, 

since a minimum number of good objects is guaranteed, but the projections of the “bad” 

objects is worse. 

2.4.1.4 Class Separation 

Exploration of the estimated subspace is one way to evaluate the utility of 

MLPCA, examination of the scores obtained by maximum likelihood projection is 

another aspect compared with the orthogonal projection used by PCA. The cluster 
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separation in the scores plots is characterized by the discriminant parameter, F, given in 

Equation 2.15. Figure 2.10 shows the value of the discriminant parameter as a function of   

and log as before. Also as before, the locations of the examples shown in Figure 2.8 are 

overlaid on the plot area. In contrast to the angle in Figure 2.9, the value of F should be 

large to reflect a good class separation. As with the subspace estimation, it is seen that 

MLPCA offers a better class separation over a much wider range than PCA. To a large 

extent, this is a consequence of the subspace estimation, but is also related to the quality of 

the projection. Interestingly, for  values less than about 0.5, the separation for MLPCA 

improves as the degree of heteroscedasticity ( log) increases. Although this might seem 

counter-intuitive, it is an effect of having more measurements with better precision since, 

for a fixed value of  in this region, the mean of the log-normal distribution is pushed to 

lower values. This effect is also observed to a small extent in the PCA plot, where a ridge is 

observed for low  values. 
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Figure 2.10 Contour plots of the generalized Fisher’s discriminant value (Equation 2.15) 
as a measure of the class separation resulting from PCA (left) and PCA following 
MLPCA preprocessing (right) as a function of heteroscedastic error parameters. 
Superimposed letters are as indicated in Figure 2.9. 

2.4.1.5 Effect of the Number of Principal Components 

As discussed in Section 2.2.1, the number of principal components used in 

MLPCA is a factor that affects the result, but the effect of the number of principal 

components should change gradually and useful information can be still extracted if the 

number of principal components is not very different from the pseudo-rank of a data set. 
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To verify this hypothesis, the data set corresponding to Figure 2.8 (h) was processed by 

MLPCA with the number of principal components chosen as 4, 6, 8, and 10 (larger than 

the pseudo-rank two), respectively. The scores plots are shown in Figure 2.11. When the 

number of principal components is chosen as 4, 5 (Figure 2.8 (h)), or 6, clear separations 

of the three clusters are observed. This shows that the number of principal components 

does not necessarily have to be the same as the pseudo-rank. When the number of 

principal components is increased to 8 or 10, the separation of the clusters becomes 

blurred because the number of principal components becomes too far from the 

pseudo-rank two and noise contaminates the projection. This validates the anticipated 

effect of the number of principal components. For real experimental data that often do not 
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Figure 2.11 MLPCA/PCA scores plots with different numbers of principal components. 
(a) 4 principal components, (b) 6 principal components, (c) 8 principal components, and 
(d) 10 principal components. 

have a well-defined pseudo-rank, trying different numbers of principal components can 

be helpful. Theoretically, if the underlying error-free data contain clearly separated 
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clusters, a good separation of clusters in the obtained scores plot could be an indication of 

a suitable choice for the number of principal components. However, a poor separation or 

no separation does not necessarily mean a bad choice for the number of principal 

components because the underlying error-free data may not contain well-separated 

clusters at all.  

2.4.1.6 Partial Transparency Projection 

In the simulations described so far, the heteroscedastic error structure has been 

applied equitably across all measurements, which means that most objects will have at 

least a few good measurements to obtain a reliable projection into the scores space except 

when  is large. Alternatively, if the heteroscedasticity is applied to objects such that each 

object has uniformly good or bad precision in the measurements, then nothing can be done 

to improve the projection of objects with poor quality measurements. As the proportion of 

noisy objects increases, their projection will obscure the true class relationships among 

objects since they will be projected more or less randomly in the subspace. Although such 

objects could be removed, this raises the issue of what exclusion threshold should be used. 

In fact, the question is one of the quantity of information contained in each object, and 

whether this enhances or degrades the visualization of the underlying relationships. Given 

the continuum of information content and its complex relationship with the visualization 

space, it would seem more logical to provide an interactive environment in which the value 

of objects for establishing class relationships could be visually assessed. This is the reason 

for the development of the PTP. At one extreme, this projection method can be used to 

simply exclude the measurements whose uncertainty exceeds some predefined threshold, 

while at the other it can provide a mapping of an object’s relative information content to the 

transparency of its symbolic representation on the display. 

There are many factors that can influence the visualization of dimensionally 

compressed data with the PTP, including the size and color of symbols used to represent the 

objects, the parameter (Q) used to represent the measurement uncertainty from the error 

covariance matrix (largest eigenvector, volume, etc.), the transformation (f) applied to this 

parameter (logarithm, square root, etc.), and the mapping function (g) for the symbol’s 

transparency (linear, sigmoidal, etc.). For this reason, these parameters are best adjusted in 

an interactive graphical user interface (GUI). An example of a simple GUI generated for 
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the purposes of this work is shown in Figure 2.12. In addition to allowing adjustment of the 

above-mentioned parameters, this interface also has provisions to display object profiles 

and other features, but its details will not be described here. 

 
Figure 2.12 A screen shot of the graphical user interface developed to interactively adjust 
the settings for the partial transparency projection. 

To illustrate the effect of the PTP, data were generated in a manner similar to the 

earlier simulations, with  = 0.5 and log = 0.5. In this case, however, a common error 

standard deviation was applied across all measurements for a given object (i.e. the 
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measurement errors were homoscedastic within a measurement vector). This ensured a 

range of quality in the objects generated. Figure 2.13 shows the effects of various settings 

of the PTP, which incrementally reveal the underlying structure of the data. Note that the 

classes have not been differentiated by color in this case, as generally that information 

would not be available to evaluate the class structure. For this simulation, a pseudo-rank of 

five was assumed for the MLPCA preprocessing (overestimating the true value of two), the 

quality measure was taken as the largest eigenvalue of the projected error covariance 

matrix, and a logarithmic transformation was applied to the quality measures. The mapping 

function is shown in the upper left corner of each subfigure. 
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Figure 2.13 Illustration of partial transparency technique to reveal clusters in simulated 
data: (a) no transparency adjustment, (b) transparency adjusted linearly across the full 
range, (c) about one-third of the low quality objects rendered transparent, (d) about 
one-half of low quality objects rendered transparent. The transparency mapping function 
is shown in the upper left corner in each case. 

2.4.2 DNA Microarray Data 

The DNA microarray data set was chosen to demonstrate the method here because 

it has been widely observed that heteroscedastic errors are common in this type of 



 57

experimental technique. By following the proposed procedure in Figure 2.4, the DNA 

microarray data were processed. MLPCA was first applied to the data set, with 8 principal 

components chosen. After the estimation of the subspace and the scores, the estimates of 

the gene expression levels in the original space were performed by rotating the scores back 

to the original space. From the biological perspective, the absolute gene expression levels 

are less important, and thus the estimated gene expression profile of each gene is 

normalized to unit length. The normalized estimated gene expression data were then 

column mean-centered and normal PCA was applied. The scores obtained from PCA are 

used for visualization. It is worth noting that in each step of the process, the measurement 

uncertainties were propagated by following Equations (2.5), (2.8) and (2.13). 

The scores plots with adjusted transparencies are shown in Figure 2.14. Figure 

2.14 (a) shows the scores plots of the first two principal components without applying 

transparency. It can be seen that the points spread across the plot area and no clusters can be 

seen clearly. In Figure 2.14 (b), the 2 x 2 measurement error covariance matrix of each 

gene for the first two components was first transformed to a scalar by taking the largest 

eigenvalue of the covariance matrix. The transformed scalar was further transformed by 

taking the natural logarithm. The degree of transparency of each gene was adjusted based 

on the transformed value. If the value is large, the point will be more transparent. The 

transparency function is schematically shown in the lower right corner of the subfigures of 

Figure 2.14. In this figure, although some points are partially transparent, no clear clusters 

can be seen. In Figure 2.14 (c), the same transformation of the measurement uncertainties 

as that in Figure 2.14 (b) was followed, but some points were set to be totally transparent, 

which is indicated in the lower right corner of this figure. It can be seen that clusters 

emerge even though the clusters are not very clear. Figure 2.14 (d) follows that same 

transformation of error uncertainties, but transparency was further adjusted, indicated in 

the lower right corner. In this figure, three large clusters and one small cluster can be 

clearly seen, showing that the transparency technique has helped to reveal clusters. 

Depending on applications, the boundaries of the clusters may or may not be clear, but if 

clusters are seen, it might indicate some important information and further study is 

desired.  
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Figure 2.14 Scores plots of experimental DNA microarray data with transparency 
adjusted to reveal clusters: (a) no transparency adjustment, (b) linear transparency 
mapping, (c) linear transparency mapping with a transparency cutoff (plateau), (d) linear 
transparency mapping with transparency and opacity cutoffs (pseudo-sigmoid). The 
transparency mapping function is shown in the lower right corner. 

In Figure 2.14, although clusters can be revealed by the adjustment of transparency 

of the data points, it is useful to examine the degree of correlation of genes in the same 

clusters. To do this, the original gene expression profiles were normalized to unit length. 

The genes in each cluster shown in Figure 2.14 (d) were extracted and their normalized 

profiles are shown in Figure 2.15. Figure 2.15 (a) shows the normalized profiles of 100 

genes extracted in cluster A shown in Figure 2.15 (d). It can be seen that the genes present 

consistent profiles, although a few genes have high values at time point 8 (15 min). These 

high values are likely caused by large measurement errors, as suggested by large 

uncertainties associated with these points. It is encouraging that these objects are included 

in the cluster even though some measurements have large errors, and this is likely a 

consequence of MLPCA preprocessing, which mitigates those effects. When the yeast cells 
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exit from stationary phase, these genes are up-regulated after a short initial lag period. In 

contrast, Figure 2.15 (b) shows the normalized gene expression profiles of 100 genes 

extracted in cluster B in Figure 2.14 (d) that are rapidly down-regulated within a period of 

about five minutes upon exit from stationary phase. It can be seen that these genes are also 

highly correlated and contain some measurements with large errors. The normalized 

expression profiles of 100 genes extracted from cluster C of Figure 2.14 (d) are shown in 

Figure 2.15 (c) and are characterized by a transient up-regulation of these genes between 1 

min and 15 min after exit from the quiescent state. While the pattern is clear, these gene 

profiles are not as highly correlated as the first two sets, probably because the cluster is 

small and 100 genes encompasses a wider region than the other two. Finally, Figure 2.15 (d) 

shows 20 normalized gene expression profiles from the small cluster D indicated in Figure 

2.14 (d). These gene profiles most closely resemble those in cluster B, as anticipated from 
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Figure 2.15 Normalized gene expression profiles for genes associated with the clusters 
shown in Figure 2.14 (d) (A = (a), etc.). Profiles for the 100 genes nearest the points 
indicated by arrows in scores plot are shown, except for (d), which includes only 20 
profiles. The x-axis indicates the order of the experiment in the time course study, but is 
not linear in time. 
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their spatial location, and are very highly correlated. This high correlation is anticipated 

because these profiles represent a complete set of measurements from 20 

cross-hybridization replicates on the microarray; i.e., the same DNA 70-mer sequence 

replicated at 20 different spots on the array. As such, the appearance of this cluster is 

artificial and a consequence of oversampling of the measurement, but it serves as a 

validation of the methodology which allowed the identification of a cluster that otherwise 

would have been difficult to distinguish with other methods. These observations are 

consistent with profiles previously identified for this experiment using other methods [47]. 

2.5 Conclusions 
Exploratory data analysis involving visualization in a lower-dimensional space is 

unique among applications of multivariate data analysis in that there is no identifiable 

model assumed for the data, and therefore no optimal solution that is clearly defined. The 

best solution is the one that is interesting to analysts and unbiased. Methods such as PCA 

and PP have been applied successfully because they optimize parameters (variance, 

non-normality) that often correlate to interesting projections, but when observations show 

significant heteroscedasticity in their measurement errors, both in magnitude and extent, 

the statistical underpinnings of these methods are eroded and they are less effective. When 

measurement error variance can be estimated, however, some of the methods described 

here may help to separate the information from the noise. The three principles guiding the 

procedures described in this work have been: (1) a reduction in the magnitude of 

measurement errors by maximum likelihood modeling and projection in a 

lower-dimensional space, (2) propagation of measurement uncertainties throughout the 

process, and (3) visualization in a manner that allows the propagated uncertainties to be 

incorporated into the low-dimensional projection through transparency mapping to place 

emphasis on higher quality data. These principles can be applied individually or in tandem 

and have been shown to improve the quality of information displayed for simulated and 

experimental data sets. In many cases, such measures may not be necessary, but as data sets 

become more complex and uncertainty information becomes integrated into the 

measurements, the application of such strategies is likely to become more important. 
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Chapter 3: Development of an Optimization Algorithm 
for Maximum Likelihood Principal Component 

Analysis Model with Intercepts 

3.1 Introduction 
Data preprocessing is a crucial part of multivariate analysis and often can be a 

critical factor in determining the success or failure of a procedure. Many data treatment 

methods fall into this category, from the simple (e.g. baseline subtraction) to the complex 

(e.g. wavelet transformation). Perhaps the most widely applied methods, and the most 

fundamental, are mean centering and scaling. Despite their simplicity, these adjustments 

can have a profound impact on the quality of results. Scaling is generally defined here as 

the multiplication of rows or columns of data by a scalar quantity associated with, for 

example, the inverse of the range of data. The role of scaling, particularly in the case of 

variable or column scaling, is often to normalize the range of variables prior to treatment 

by principal component analysis (PCA), but it can have detrimental effects when variables 

consist only of measurement noise. It has been pointed out that a more fundamental 

motivation for scaling is to normalize the measurement error variance so that the subspace 

modeled by PCA is optimal in the maximum likelihood sense [1,2]. An alternative way to 

treat non-uniform measurement noise variances (i.e. heteroscedastic errors), and one that is 

essential for unstructured or correlated noise, is maximum likelihood principal component 

analysis (MLPCA). MLPCA uses measurement error information to select the optimal 

subspace for a given set of data and has been employed in a wide variety of applications 

where scaling is insufficient to provide optimal subspace estimation [3,4,5,6,7,8,9,10]. 

While the effects of mean centering are generally not as dramatic or complex as 

scaling, this step can still influence the quality of results. Here, mean centering is defined 

as the subtraction of column means and/or row means from a data matrix. Where both are 

used, one is employed following the application of the other. The rationale behind mean 

centering is that the chemical information is carried in the variance of the data, so that the 

mean is of little value. In the application of PCA, for example, it is well known that the first 

eigenvector (loading) is simply the scaled column averages. In removing the mean, more 

information may, in certain cases, be compressed into fewer latent variables. Some of the 
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implications of mean centering have been examined in the literature 

[11,12,13,14,15,16,17]. In multivariate calibration, mean centering is widely used, but may 

also suffer from disadvantages in certain cases [12,14,15,17]. In other applications, such as 

multivariate curve resolution (MCR), mean centering is generally not applied because it 

excludes the use of a non-negativity constraint. For exploratory data analysis, specifically 

in data visualization after projection by PCA or other methods, mean centering is 

particularly useful. This is because the removal of the mean often reduces the 

dimensionality (i.e. pseudo-rank) of a data set by one. While this is not of major 

importance in applications such as multivariate calibration where the addition of one more 

factor is usually inconsequential, visualization methods require projection of the data into 

one to three dimensions and therefore require efficient retention of information. 

While PCA can be regarded as a variance modeling method and mean centering as 

a way to examine variance around the mean as opposed to variance around the origin, it can 

also be regarded as a way to optimally estimate a subspace of the original space that 

contains the measurements. The latter definition is more consistent with MLPCA, which 

assumes the error-free data define a hyperplane of dimensionality lower than the 

mathematical rank of the observed data matrix. In this interpretation, mean centering can 

be regarded as one way to remove the intercepts of the hyperplane in the row or column 

space, thereby reducing the number of vectors in a basis for the subspace. This is 

illustrated in Figure 1, which shows a data set in a one-dimensional hyperplane located in 

an observed two-dimensional space. The presence of the intercept in Figure 1 (a) means 

that the data could only be accurately represented using two principal components. Mean 

centering, as illustrated in Figure 1 (b), forces the model to pass through the origin, 

permitting the subspace to be estimated with a single principal component. It is important 

to note, however, that there are an infinite number of other transformations, such as those 

shown in Figures 1 (c) and (d), that will also reduce the intercepts of the hyperplane. Mean 

centering is simply a convenient way of forcing a zero intercept and its application in the 

case of homoscedastic errors is consistent with PCA as a maximum likelihood method for 

subspace estimation. Thus, mean centering for PCA can be interpreted from two 

perspectives: (1) it can remove the intercepts of a data set, and (2) the subspace estimated 

by PCA always passes through the mean point.  
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Figure 3.1 Representation of the effect of mean centering and other transformations on 
the removal of intercepts. (a) Original data. (b) Mean centering. (c)-(d) Other 
transformations. 

When measurement errors in a data set are sufficiently heteroscedastic as to justify 

the application of MLPCA for subspace estimation, mean centering is problematic because 

it does not ensure the removal of intercepts that would be consistent with a maximum 

likelihood estimation of the subspace. In other words, the conventional column mean 

vector is not necessarily located in the subspace estimated from maximum likelihood 

because of the presence of heteroscedastic errors. This problem was noted in the original 

development of MLPCA [1], but at that time no efficient iterative algorithm was available 

to treat this situation. The present work reports the development of a variant of the MLPCA 

alternating least squares (ALS) algorithm to treat the case where the subspace of the data 

does not exhibit zero intercepts, thereby creating an analogue to mean centering in PCA 

that will be useful in treating data where row and/or column offsets are important. The 

proposed optimization algorithm is assessed by simulated data. 
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3.2 Background 
Consider a data matrix, X (n x p), where the error-free measurements occupy a 

d-dimensional subspace in the n-dimensional row space (sample space) and the 

p-dimensional column space (variable space). A general mathematical model can be 

written in the form: 
T T T

n pX TV 1 c r1 E .  (3.1) 

Here T represents the n x d matrix of factor scores, V is the p x d matrix of factor loadings, 

c is a p x 1 vector of column offsets, r is a n x 1 vector of row offsets, 1’s represents a 

vector of ones of appropriate length (n or p) and E is an n x p matrix of residuals consistent 

with a defined error variance/covariance structure. It should be noted that there exist 

ambiguities in rotation, translation, and scale for the terms T, V, c and r in this model such 

that different constraints will produce equivalent solutions satisfying maximum likelihood 

conditions, but this is not important in considering the general case. Four subsets of this 

general model can be considered. The simplest of these is when the row and column offsets 

are zero. The second case is where the row offsets are zero, but the column offsets are not, 

generally leading to a d-dimensional hyperplane with non-zero intercepts in the column 

space, and a (d+1)-dimensional hyperplane with zero intercepts in the row space. In PCA, 

this case is handled by column mean centering, which makes the intercepts zero and 

restores the dimensionality to d in the row space. The opposite is true for the third case, 

where the column offsets are zero and the row offsets are not, and this case is handled by 

row mean centering. The fourth and most general case, where both column and row offsets 

are non-zero, leads to (d+1)-dimensional hyperplanes with non-zero intercepts in both 

column and row spaces, with an overall pseudo-rank of (d+2). This case can be reduced to 

a simple bilinear model by successive subtraction of row and column means.  

The origin of row and column offsets varies with the type of data set under 

investigation. In the context of spectroscopy, for example, where spectra of individual 

samples are represented as rows, column offsets can be thought of as a fixed background 

spectrum present in all samples. A row offset could be considered to arise from a 

background signal that was fixed at all wavelength channels, but which varied from sample 

to sample, such as a baseline shift or cell positioning error. Whatever the source, the 

elimination of these effects is a desirable outcome. While the offsets can be accommodated 
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by increasing the dimensionality of the model, this is generally undesirable because of 

increased complexity and the loss of degrees of freedom. 

In the following sections, an optimization algorithm is developed to include row or 

column offsets in MLPCA decomposition. Because only one of these treatments is usually 

applied, and because the problem of rows and columns is symmetric through a transpose, 

the work presented here will emphasize column offsets in the results and discussion, but 

this may be extended to other cases. For completeness, the derivation of the optimization 

algorithm for the MLPCA model with both column and row offsets is presented in 

Appendix (Section 3.7). The two terms intercept and offset are used interchangeably in 

this chapter. 

3.3 Theory 
When the MLPCA model consisting only of column intercepts is considered, the 

general model in Equation (3.1) can be simplified as 
T TX TV 1c , (3.2) 

where the subscript n for 1 is dropped to simplify the notation. For the convenience of the 

derivation in the next steps, it is good to clearly delineate the notations as follow: 
T

1
1 1 1 1

n
1 , (3.3) 

T

1 2 31 pp
c c c cc , (3.4) 

T
11 1 1
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p

pn p

n np n
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T
11 1 1

( )
T

1

d

p d

p pd p

v v

v v

v
V

v
.  (3.7) 
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It is worth noting that ix  denotes a single sample measured on a group of variables, the 

underlined notation jx  represents a group of samples measured on a single variable, it

is the score vector for a single sample, and T
jv  designates a row in V. The subscript i is 

reserved for the index of samples (i=1, ..., n), and the subscript j is used for the index of 

variables (j=1, …, p). In ordinary expression of singular value decomposition (SVD) [18] 

or PCA, the columns of V are the basis vectors of the subspace, but here they are not 

assigned notations. Instead, each row in V is assigned an underlined notation T
jv .

One might have realized that this MLPCA model is very similar to that used for 

maximum likelihood factor analysis [19,20], but substantial differences exist. In maximum 

likelihood factor analysis, it is assumed that the scores (or called factors or latent variables) 

follow a multivariate normal distribution [21,22]. In this MLPCA model, there is no such 

assumption. Also, in this MLPCA model, the measurement error variances are assumed to 

be known while in the maximum likelihood factor analysis, the error variances are not.  

In this development, the measurement errors are assumed to be independent 

across the measurements in a data matrix. Based on the principle of maximum likelihood, 

the objective is to estimate T, V and c  such that the likelihood function is maximized. 

The likelihood function (L) for the observed data X can be written, with respect to the rows 

of X, as 

T 1
1

1 22

1 1exp
22

n

i i i i in
i

i

L x c Vt x c Vt ,  (3.8) 

where i  is the measurement error covariance matrix for sample i (each row in X) and 

other notations are defined in Equations (3.4) to (3.7). Since independent errors are 

assumed, it is a diagonal matrix. The likelihood function (L) can also be written, with 

respect to the columns of X, as  

T 1
1

1 22

1 1exp
22

p

j j j j j j jp
j

j

L c cx 1 Tv x 1 Tv , (3.9) 

where j  is the error covariance matrix (a diagonal matrix as well) for variable j (each 

column in X), cj is the jth element of vector c defined in Equation (3.4), and other 

notations are defined in Equations (3.3) to (3.7). 
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As it is generally easier to work on the natural logarithm of the likelihood function,

the log-likelihood function ( ln L ) is employed and written as 

T 1

1

1ln constant
2

n

i i i i i
i

L x c Vt x c Vt , or  (3.10) 

T 1

1

1ln constant
2

p

j j j j j j j
j

L c cx 1 Tv x 1 Tv . (3.11) 

Note the constant terms in Equation (3.10) and (3.11) are not necessarily the same, but 

they do not affect the maximum likelihood estimation. Based on Equation (3.10), the 

partial derivatives of ln L  with respect to ti can be written as 

T 1 T 1ln
i i i i

i

L V x c V V t
t

,  (3.12) 

based on vector calculus [23,24,25]. Setting this to zero leads to 
1T 1 T 1

i i i it V V V x c .  (3.13) 

If c  is a zero vector, Equation (3.13) reduces to the equation in the original algorithms 

for MLPCA model without intercepts [1]. Based on Equation (3.10), the partial 

derivatives of ln L  with respect to c  can be written as  

1 1

1 1

ln n n

i i i i
i i

L x Vt c
c

.  (3.14) 

Note that 
1

n

i
 is the summation notation and 1

i  denotes the inverse of the error 

covariance matrix. Setting this to zero gives  
1

1 1

1 1

n n

i i i i
i i

c x Vt .  (3.15) 

Based on Equation (3.11), the partial derivatives of ln L  with respect to jv  can be 

written as 

T 1 T 1ln
j j j j j

j

L cT x 1 T T v
v

.  (3.16) 

Setting this to zero yields 
1T 1 T 1

j j j j jcv T T T x 1 .  (3.17) 
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Equations (3.13), (3.15), and (3.17) give an iterative method to calculate ti, c , and vj,

respectively. Iteratively applying the three equations until convergence will result in the 

maximum likelihood estimates of T, V and c .

Examination shows that T and V have rotational ambiguity in the sense that  
TT -1 TTV TR R V TR VR ,  (3.18) 

where R is an arbitrary rotation matrix with R-1=RT. To remove this ambiguity, SVD can 

be applied to TTV  to make the columns of T be mutually orthogonal and V be an 

orthonormal basis. Based on Equation (3.2), the estimated data can be expressed as 
T T

estX TV 1c . Referring to the vector form of the equation of a plane discussed in 

basic linear algebra, c  should be a point located in the hyperplane for estX , and any 

point in the hyperplane can be used. Thus, c  can be chosen as any point in the hyperplane. 

This indicates that the intercept term c  has ambiguity as well. To make it unique, c  can 

be forced to be orthogonal to V, but a better choice is to let c  be the mean vector of the 

estimated data estX . Then TTV  has a zero mean vector. In each iteration, when c  is 

forced to be the mean vector of the estimated data, the scores need to be adjusted 

accordingly so that TTV  has a zero mean vector. Since estX  is the maximum likelihood 

estimate of the error-free data, it is conceived that the mean vector of the estimated data is a 

good estimate of that of the error-free data, which should give a better estimate than the 

conventional sample mean vector. By adding these constraints to T, V, and c , the 

ambiguity problems are solved and they become unique*. However, the uniqueness of three 

terms does not mean the iterative search algorithm can guarantee the global optimum. Like 

many other algorithms, this algorithm may hit a local optimum. Thus, different initial 

guesses should be tried to increase the probability of finding the global optimum. 

Similar to the original MLPCA algorithms, the new algorithm also employs an 

iterative method derived by taking the partial derivatives of the objective function with 

respect to the parameters to be estimated, and setting them to zeros. The proposed 

algorithm estimates the three terms T, V, and c  simultaneously, and is a generalization 
                                                                
* Strictly speaking, applying SVD to TVT cannot make T and V unique because the signs 

can change, e.g. TVT= (-T)(-V)T. Here variants due to the sign change are treated to be 
the same. 
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of the optimization algorithm for MLPCA model without intercepts [1]. The proposed 

algorithm can be summarized as follows: 

1. Give a random guess each to V and c , respectively; 

2. Use Equation (3.13) to calculate it  and obtain T;

3. Update c  based on Equation (3.15); 

4. Adjust c  by replacing it with the mean vector of the estimated data ( T TTV 1c )

and adjust T accordingly; 

5. Apply SVD to TTV  and make the columns of T be mutually orthogonal and V

be an orthonormal basis; 

6. Calculate jv  based on Equation (3.17) and obtain V;

7. Repeat steps 2 to 6 until convergence; 

8. If different initial guesses are needed, repeat steps 1 to 7 and choose the best 

solution - the one that gives the smallest sum of squares of the weighted residuals, 

calculated by T 1

1

n

i i i i i
i

x c Vt x c Vt .

3.4 Experimental 

3.4.1 Computational Aspects 

All data processing was carried out using programs written by the author in 

MatLab® v.7.4.0 (MathWorks, Natick, MA). 

3.4.2 Data Simulation 

3.4.2.1 Data Set 1 

To evaluate the performance of the proposed algorithms, simulated data were used. 

Data set 1 consisted of 40 objects evenly divided into two classes in a two-dimensional 

space with the aim to plot them in a two-dimensional Cartesian coordinate system for 

visualization. The measurement error-free data have a pseudo-rank of one and are located 

on a straight line with an angle of 45o from the positive abscissa with an intercept of 5 on 

the y-axis. Twenty samples were drawn from each of the two classes. The first 

coordinates of the error-free data were randomly generated from two normal distributions 
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(5,  1)N  and (15,  1)N , respectively. The second coordinates were obtained by adding 5 

to the first coordinates. 

The measurement errors were assumed to be independent and heteroscedastic. 

The standard deviations of measurement errors were assumed to follow a log-normal 

distribution. A 40 x 2 matrix containing the measurement standard deviations was created 

by randomly drawing 40 x 2 numbers from a normal distribution 0,1N , followed by 

exponential transformation (base e). As the measurement error standard deviations for 

real experiments cannot be infinitely small, 0.1 was added to each of them to make them 

more realistic. Measurement errors were simulated by randomly drawing 40 x 2 numbers 

from a normal distribution 0,1N  and multiplying these numbers by the corresponding 

standard deviations obtained previously. This created the heteroscedastic measurement 

errors. The simulated errors were added to the error-free data to generate the measured 

data.

3.4.2.2 Group Data Set 1 

To further assess the algorithm for data in higher-dimensional spaces, a group 

consisting of 100 data sets, designated as group data set 1, was created. Each of the data 

sets contained 300 objects from three classes in a 12-dimensional space, with 100 from 

each class. The 100 data sets were created by using the same method and simulation 

parameters; therefore they were 100 different random realizations. The three class centers 

were first simulated in a six-dimensional space with the three mean vectors set as 
T

1 3 3 0 0 3 3 ,

T
2 0 3 3 3 0 3 , and 

T
3 3 0 3 3 3 0 ,

respectively. The three class centers were located at the vertices of an equilateral triangle 

in the six-dimensional space with the overall mean vector as a zero vector. The objects in 

each class were assumed to follow a multivariate normal distribution and the covariance 

matrix for the three classes was the same, which was set as a 6 x 6 identity matrix. For 

each class, 100 objects were generated based on the class center and the covariance 

matrix. This created a 300 x 6 matrix containing the error-free data. The overall mean 
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vector of the data in the six-dimensional space is expected to be a zero vector, but 

generally it is not, due to the sampling variation. Thus, the data were mean-centered. This 

matrix was transformed into a 12-dimensional space by a 12 x 6 matrix (containing an 

orthonormal basis) obtained by applying SVD to a randomly generated matrix. This gave 

a 300 x 12 data matrix containing the error-free data. Note that the overall mean vector of 

the data in the 12-dimensional space is still a zero vector and the dimensionality of the 

data (pseudo-rank) is still six. The subspace in the 12-dimensional space, where the 

error-free data were located, was used as the true subspace. 

To simulate the column intercepts for the 12 variables, the numbers of 1, 2, ...,12 

with an increment of one were added to the 12 variables, respectively. This intercept 

vector was treated as the true mean vector of the error-free data. 

Measurement errors were simulated by following the similar manner as for data 

set 1. The measurement errors were still assumed to be independent and heteroscedastic 

and measurement error standard deviations were assumed to follow a log-normal 

distribution. A 300 x 12 matrix was generated by drawing 300 x 12 numbers from a 

normal distribution 0,4N  followed by exponential transformation (base e). As before, 

0.1 was added to each of the elements to make them more realistic. This matrix contained 

the simulated measurement error standard deviations. Another 300 x 12 matrix was 

created by drawing 300 x 12 numbers from a normal distribution 0,1N . The 

element-by-element products of the two 300 x 12 matrices resulted in the simulated 

errors. Adding the simulated errors to the error-free data yielded the observed data. 

3.4.2.3 Group Data Set 2 

For the purpose of validation of the proposed algorithm from the statistical 

perspective, a second group consisting of 100 data sets, referred to as group data set 2, 

was simulated. For each of the 100 data sets, a 6 x 3 matrix and a 3 x 5 matrix were first 

generated with the elements of the matrices drawn randomly from the standard normal 

distribution 0,1N . The outer product of the two matrices gave a 6 x 5 matrix with the 

rank of 3. An 1 x 5 vector with its elements drawn randomly from the standard normal 

distribution 0,1N  was generated to simulate the column intercepts. Adding the 

intercept vector to the 6 x 5 matrix resulted in the measurement error-free data matrix. 
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The measurement errors were assumed to be heteroscedastic. A 6 x 5 matrix was 

generated by randomly drawing numbers from a normal distribution 0,0.04N . Taking 

the absolute values of the elements of this matrix and then adding 0.01 to each of them 

gave a 6 x 5 matrix consisting of the simulated measurement error standard deviations. 

Another 6 x 5 matrix was generated with its elements randomly drawn from the standard 

normal distribution 0,1N . The element-by-element products of the two matrices led to 

the heteroscedastic measurement errors. The observed data were simulated by adding the 

simulated measurement errors to the measurement error-free data. For the 100 data sets, 

the error-free data matrix was retained to be the same. The measurement errors were 

generated by following the same simulation parameters and procedure. For the 100 data 

sets, the measurement error variances were intentionally set to be relatively small because 

this reduces the number of local minima or even makes each data set have only one 

minimum (global minimum). Also, the degrees of freedom approximated by using the 

literature formula for the PCA and MLPCA residuals [1,26] are closer to the true ones in 

the cases of small measurement errors. 

3.5 Results and Discussion 

3.5.1 Data Set 1 

The proposed algorithm was applied to process this data set with the number of 

principal components chosen to be unity. Twenty different initial guesses were tried and 

the solution that gave the largest likelihood was chosen. The simulated data are plotted in 

Figure 3.2 with solid upward- and down-pointing triangles to distinguish the objects from 

the two classes. The dashed lines show the x-axis and y-axis of the coordinate system. 

The mean point of the error-free data (true mean point) is indicated by P0 (dot), the 

estimated mean point based on the proposed algorithm is represented by P1 (circle), and 

the conventional mean point of the error-contaminated data (measured data) is denoted by 

P2 (square). It can be seen that the estimated mean point is quite close to that of the 

error-free data, indicating the proposed algorithm has achieved its objective to estimate 

the mean vector of the error-free data. The conventional sample mean point is also close 

to that of the error-free data. This is not unanticipated because of relatively mild 
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heteroscedasticity, but it is expected that it may deviate much from the true mean vector 

in case of more significantly heteroscedastic errors.  

The estimated subspace by the proposed algorithm, denoted by v1, is shown in 

Figure 3.2. For this data set, the dimensionality of the true hyperplane is one and its 

direction is 45o from the positive x-axis, which is denoted by v0 (solid line). v1 makes an 

angle of 44.4o with respect to the positive x-axis and is basically parallel to v0, which is a 

good agreement with the true hyperplane. For comparison purpose, the original algorithm 

for MLPCA model without intercepts was applied to this data set as well, but the data set 

was mean-centered based on the conventional sample mean vector. The estimated 

subspace is indicated by v2, which holds an angle of 44.3o with respect to the positive 

x-axis and basically overlaps with v1. However, it is expected that the proposed algorithm

will give a better estimate when the error heteroscedasticity increases. The agreement of 

the estimated mean vector and direction of the subspace with the true values show that 

the proposed algorithm was successful in the optimization of the objective function of the 

MLPCA model with intercepts. 
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Figure 3.2 Plots of the two-dimensional simulated data and the results of the proposed 
algorithm and the original algorithm for MLPCA model without intercepts. 
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3.5.2 Group Data Set 1 

The proposed algorithm was applied to each of the 100 data sets with the number 

of principal components chosen as 6 and 50 different initial guesses to search for the best 

solution. As the numbers of objects and variables were increased compared with those of 

data set 1, the number of local optima might increase, so the number of initial guesses 

was increased. For experimental data, the pseudo-rank is generally unknown, but for this 

simulation study, the number of principal components was known and chosen as the 

pseudo-rank to focus only on the evaluation of the algorithm.  

One way to evaluate the proposed algorithm is to examine if it can effectively 

estimate the true mean vector of the measurement error-free data, which are the intercepts 

in this simulation study. For each data set, the estimated mean vector was compared with 

the intercepts added to the error-free data (true mean vector) and the sum of squares of 

the differences between the two vectors’ elements was used as a measure for their 

matching status. Mathematically, this can be expressed as 
T

mean true trueSS c c c c ,  (3.19) 

where meanSS  denotes the sum of squares of the differences, truec  represents the true 

mean vector, and c  is the estimated mean vector. This is an analogue of the sum of the 

squares of the residuals in regression analysis [27]. meanSS  is dependent on the data 

structure and error structure and thus its value only is not a good measure. Therefore, the 

conventional mean vector of the error-contaminated data was calculated as well and was 

compared with the true mean vector. The sum of squares of the differences between the 

two vectors’ elements was also obtained by using Equation (3.19) except that c  is 

replaced by the conventional sample mean vector. If the proposed algorithm performs 

well, the estimated mean vector based on it should give a smaller meanSS  value than the 

conventional mean vector. 

Figure 3.3 show the logarithms (base 10) of the sums of squares of the differences 

between the estimated mean vectors by the proposed algorithm and the true mean vectors 

for the 100 data sets, indicated as solid triangles. The sums of squares of the differences 

between the conventional mean vectors and true mean vectors are indicated by dots. It 

can be seen that the estimated mean vectors by the proposed algorithm give smaller 
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values than the conventional mean vectors. The results show that the proposed algorithm 

is effective in estimating the true mean vectors of error-free data in high-dimensional 

space.
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Figure 3.3 Plots of the logarithms of the sums of squares of the differences between the 
true and estimated mean vectors by two different algorithms. Solid triangles: the 
proposed algorithm. Dots: the original algorithm for MLPCA model without intercepts. 

Another perspective to evaluate the proposed algorithm may be to explore the 

subspaces estimated by the proposed algorithm. To do that, the angles between the 

estimated subspaces and the subspaces for the error-free data (true subspaces) were used 

to evaluate the quality of the estimated subspaces obtained by the proposed algorithm. A 

small angle implies a good estimate of the true subspace. The method to calculate the 

angle between two subspaces is available in the literature [28,29,30] and has been 

employed in Chapter 2 (Equation (2.18)). Again, the angles are dependent on the 

structures of the data and errors. Thus, the angles between the true subspaces and the 

subspaces estimated by the original algorithm for MLPCA model without intercepts were 

calculated as well. For the original algorithm that assumes zero intercepts, the data were 

mean-centered based on the conventional sample mean vector. 

Figure 3.4 shows the subspace angles calculated as above. As expected, the 

proposed algorithm gives smaller subspace angles for most of the data sets, 

demonstrating its utility in extracting more accurate subspaces. It is not surprising that in 



80

some cases, good estimates of the subspaces were obtained by performing mean 

centering using the conventional mean vectors; however, the overall better estimation 

based on the proposed algorithm indicates it has performed successfully. 
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Figure 3.4 Plots of the angles (in degrees) between the true subspaces and the subspaces 
estimated by two different algorithms. Solid triangles: the proposed algorithm. Dots: the 
original algorithm for MLPCA model without intercepts.  

The performance of the proposed algorithm can also be evaluated by viewing the 

separation of clusters from different classes in the scores plots. As it is not practical to 

show all the scores plots for the 100 data sets, the cluster separation in a two-dimensional 

plane based on the first two scores was measured by the generalized Fisher’s discriminant 

value. A larger generalized Fisher’s discriminant value means a better separation of the 

clusters. The method to calculate this value is described in the literature [31], and has 

been used in Chapter 2 (Equations (2.15) to (2.17)). The generalized Fisher’s 

discriminant values were calculated for the scores obtained by the proposed algorithm 

and the original algorithm for MLPCA without intercepts. For the latter, the data were 

mean-centered based on the conventional mean vector, which has been mentioned in the 

calculation of subspace angles.  

Figure 3.5 shows the generalized Fisher’s discriminant values for the 100 data 

sets. It can be seen that the generalized Fisher’s discriminant values obtained by the 
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proposed algorithm are overall larger. The improved separation of clusters indicates that 

the proposed algorithm has optimized the objective function effectively. 
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Figure 3.5 Plots of the generalized Fisher’s discriminant values as a measure of the 
cluster separation resulting from two different algorithms. Solid triangles: the proposed 
algorithm. Dots: the original algorithm for MLPCA model without intercepts. 

As an example, the scores plots for the first data set in group data set 1 obtained 

by the two methods as above are shown in Figures 3.6 (a) and (b), respectively. In Figure 

3.6 (a), the three clusters are roughly located at the vertices of an equilateral triangle, 

which is in accordance with the three simulated class centers. In Figure 3.6 (b), however, 

the relative location of the three clusters is changed. Two clusters (red dots and blue solid 

triangles) are closer and they are far from the third cluster. This might be because the 

conventional mean vector is not a good estimate of the mean vector of the error-free data. 

Subtracting the conventional mean vector does not effectively remove the intercepts and 

thus the subspace is not optimally estimated. The mean value for the first principal 

component is far from zero, but this is not found in the scores plot obtained by using the 

proposed algorithm. These results give further support that the proposed optimization 

algorithm for MLPCA model with intercepts has performed successfully.  
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Figure 3.6 Scores plots of MLPCA obtained from two methods. (a) The proposed 
algorithm. (b) The original algorithm for MLPCA model without intercepts, for which the 
data were mean-centered by the conventional mean vector. Some points for (a) and (b) 
are outside the display region.  

3.5.3 Group Data Set 2 

To further test if the proposed optimization algorithm achieves its objective, a 

validation from statistical perspective was performed using group data set 2. It is known 

that the sum of squares of weighted residuals of MLPCA should follow a 
2 - distribution with the appropriate degrees of freedom if the error-free data have been 

estimated by correctly maximizing the likelihood function. The sum of squares of the 

weighted residuals (S2) can be calculated by 

T2 1

1

n

i i i i i
i

S x c Vt x c Vt ,  (3.20) 

where ix  denotes the observed measurement vector for each sample i, c  is the 

estimated mean vector, it  represents the estimated scores, and V  designates the 

estimated loadings matrix. The measurement error covariance matrix i  for each 

sample is known in this case.  

When the measurement errors are small, the degrees of freedom for PCA with 

mean centering and MLPCA with column intercepts can be approximated by 

( 1)( )n d p d [1,26], where n is the number of samples, p denotes the number of 

observed variables, and d represents the dimension of the subspace. If the measurement 

errors are large, the degrees of freedom calculated using this formula will not be accurate 

enough and thus affects the choice of an appropriate 2 - distribution.
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For each of the 100 data sets in group data set 2, the proposed MLPCA 

optimization algorithm was employed with 10 random initial guesses and with the 

dimensionality of the subspace chosen as 3. Based on different initial guesses, the 

solution giving the lowest S2 value for each data set was selected. Examination of the S2

values from different initial guesses for several data sets did not show multiple local 

minima, indicating 10 random initial guesses should be sufficient to find the global 

solution. To examine if the obtained S2 values follow a 2 - distribution, the 

probability-probability plot (P-P plot) was used. The obtained S2 values were sorted and 

then the cumulative probability was calculated based on the S2 values and 4 degrees of 

freedom ( = (6-3-1) x (5-3) ). The theoretical cumulative probability of the 
2 - distribution with 4 degrees of freedom was also calculated. For comparison purpose, 

the S2 values for the scores and loadings obtained by applying PCA to the 100 data sets 

(mean-centered by the conventional mean vectors) were calculated as well. Equation 

(3.20) was still used, but c  was replaced by the conventional mean vector, and it  and 

V  were estimated by PCA instead of MLPCA. 

The P-P plots for MLPCA and PCA results are shown in Figure 3.7. It can be seen 

that, for MLPCA, the plot largely falls on the straight line with a slope of unity, indicating 

the calculated S2 values have no deviation from a 2 - distribution. Theoretically, if the 

proposed algorithm fails to find the solution corresponding to the maximum likelihood, 

the S2 value will be larger than it should be and the calculated cumulative probability will 

be larger. When the cumulative probability calculated based on the observed data is 

plotted against the theoretical cumulative probability, the P-P plot will lie above the 

straight line with a slope of unity. The P-P plot for the PCA result in Figure 3.7 shows this 

phenomenon. It deviates heavily from the straight line, showing the S2 values calculated 

using the PCA scores and loadings do not follow a 2 - distribution with the appropriate 

degrees of freedom. Although the P-P plot for the result from the proposed MLPCA 

optimization algorithm is not a direct mathematical proof, it is an indication that the 

proposed algorithm has given maximum likelihood estimates of the error-free data and 

achieved its objective. 
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Figure 3.7 P-P plots of S2 values for group data set 2, obtained by the proposed MLPCA 
optimization algorithm and PCA.  

3.5.4 Convergence Speed Issue 

Convergence speed is another important aspect for an optimization algorithm. The 

utility of an optimization algorithm is highly dependent on how quickly it can give a 

solution. The gradient descent method, for example, is not very useful in practice because 

of its slow convergence speed, although it is theoretically important. When an objective 

function is not convex and an algorithm cannot guarantee the global optimum of the 

objective function, many different initial guesses are required to increase the probability 

of finding the global optimum. Thus, an optimization algorithm with fast convergence 

speed is desired. 

The proposed optimization algorithm converges quickly overall, but since 

multiple initial guesses are needed to increase the likelihood of finding the global 

optimum, it is good to gain some insight into its speed. Certainly, the convergence speed 

is dependent on the numbers of objects and variables of the data sets, and the structures 

of the data and errors, but the computation time for the data sets used in work can give an 

indication of the speed of the proposed algorithm. For a typical data set in group data set 

1, the time to perform 50 random initial guesses was about 20 min, which was carried out 

in MatLab® v.7.4.0 by a computer with 1.8 GHz of CPU speed and 3 Gb of memory. This 
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gives an average time of 24 seconds for a single initial guess. This time may sound a little 

long, but for the purpose of processing of most experimental data in chemistry, it should 

not be a big problem because it is not critical for chemists to wait for one or two hours to 

get the results in contrast with the time spent to carry out the experiments that may take 

several weeks or months.  

3.6 Conclusions 
A data analysis method generally consists of two major components: the objective 

function and the optimization algorithm. Both components are important for a method to 

be successfully used to extract useful information from data. MLPCA is a technique that 

has been developed to deal with bilinear data that have significant heteroscedastic and/or 

correlated errors and has been applied to different scenarios. It has a well-defined 

objective function and several refined variants to deal with different data and error 

structures. One situation that can arise is that the underlying data have non-zero intercepts 

for different variables and the conventional sample mean vector is a poor estimate of the 

mean vector for the error-free data due to significant measurement errors. In the original 

MLPCA work, it was proposed that the intercept term be included and estimated together 

with the subspace and scores, but this was not accomplished because of the lack of 

efficient optimization algorithms. 

The new optimization algorithm presented in this chapter has been developed to 

overcome the difficulty in optimizing the objective function of MLPCA model with 

intercepts. The algorithm is theoretically simple and is essentially a generalization of the 

original optimization algorithm for MLPCA model without intercepts. The simulation 

study shows the proposed optimization algorithm performs well. Although the simulation 

study was centered on the application of MLPCA for exploratory data analysis, this is not 

a requirement for the proposed optimization algorithm. If MLPCA is used for other 

purposes such as multivariate calibration, the proposed algorithm is still applicable. Like 

many other optimization algorithms, it cannot guarantee that the global optimum will be 

found and therefore there is a requirement to start from multiple initial guesses to 

increase the probability of finding the global optimum, but the relatively fast convergence 

speed makes this possible. The performance of this optimization algorithm in processing 

the simulated data sets has demonstrated it is effective and efficient. It is hoped that the 
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development of this algorithm can make the MLPCA method more useful in multivariate 

data analysis. 

3.7 Appendix 

3.7.1 Optimization Algorithm for MLPCA Model with Column and Row Intercepts 

Starting with the general MLPCA model in Equation (3.1) 
T T T

n pX TV 1 c r1 E ,  (3.21) 

and following the notations in Section 3.3 (assume measurement errors are independent 

across measurements in the matrix), the likelihood function for the observed data can be 

expressed as  

T 1
1

1 22

1 1exp
22

n

i i p i i i i p in
i

i

L r rx c 1 Vt x c 1 Vt , or  (3.22) 

T 1
1

1 22

1 1exp
22

p

j j n j j j j n jp
j

j

L c cx 1 r Tv x 1 r Tv . (3.23) 

Note that i  and j  are diagonal. The log-likelihood function (lnL) can be written as  

T 1

1

1ln constant
2

n

i i p i i i i p i
i

L r rx c 1 Vt x c 1 Vt , or (3.24) 

T 1

1

1ln constant
2

p

j j n j j j j n j
j

L c cx 1 r Tv x 1 r Tv . (3.25) 

Based on Equation (3.24), the partial derivatives of ln L  with respect to ti can be 

expressed as 

T 1 T 1ln
i i i p i i

i

L rV x c 1 V V t
t

. (3.26) 

Setting this to zero followed by rearrangement leads to 
1T 1 T 1

i i i i i prt V V V x c 1 . (3.27) 

Also, based on Equation (3.24), the partial derivatives of ln L  with respect to c can be 

written as 

1 1

1 1

ln n n

i i i p i i
i i

L rx 1 Vt c
c

. (3.28) 

Setting this to zero yields 
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1
1 1

1 1

n n

i i i i p i
i i

rc x 1 Vt . (3.29) 

Similarly, based on Equation (3.25), the partial derivatives of ln L  with respect to jv  

can be obtained as 

T 1 T 1ln
j j j n j j

j

L cT x 1 r T T v
v

. (3.30) 

Setting this to zero gives 
1T 1 T 1

j j j j j ncv T T T x 1 r . (3.31) 

The partial derivatives of ln L  with respect to r, based on Equation (3.25), is 

1 1

1 1

ln p p

j j j n j j
j j

L cx 1 Tv r
r

. (3.32) 

Setting this to zero gives results in 
1

1 1

1 1

p p

j j j j n j
j j

cr x 1 Tv . (3.33) 

Equations (3.27), (3.29), (3.31), and (3.33) give an iterative method to optimize the 

likelihood function of MLPCA model with both column and row intercepts.  

It has been found in this study that when both intercept terms are included in the 

MLPCA model, the likelihood function seems to become a convex function. This means 

that there is no need for the optimization algorithm to start from multiple different initial 

guesses and the global minimum can be guaranteed from any initial guess. This is 

interesting, but has not been examined thoroughly. As mentioned earlier, the ambiguities 

in rotation, translation and scale for the terms T, V, c and r still exist, although the 

estimated error-free data expressed in the original space T T T
est n pX TV 1 c r1

remains the same. Depending on the purposes of different applications, the estimated data 

estX  can be decomposed in different manners, but this will not be discussed here. 
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Chapter 4: Development of Quasi-Power Methods for 
the Optimization of Kurtosis Used as a Projection 

Pursuit Index* 
4.1 Introduction 

Exploratory data analysis and classification methods have always been important 

tools of multivariate data analysis in chemistry. The application of these methods has 

expanded in recent years due to, among other things, an increased emphasis on high 

throughput biological analysis, where researchers are often interested in differentiating 

among different biological states of organisms. PCA has dominated as a method to 

visualize high-dimensional data in lower-dimensional spaces, but suffers from the 

drawback that it is based on maximizing the variance along the projection vectors, which is 

not always the best way to separate classes. This problem can be circumvented through the 

use of projection pursuit (PP) analysis, which uses different criteria to identify projection 

vectors. While there are examples of the application of this technique to chemistry [1,2,3], 

it is not nearly as widely applied as PCA, probably because the algorithms are fairly 

complex and not readily accessible in many standard packages.  

The term “projection pursuit” was firstly coined by Friedman and Tukey [4], but 

the concept of PP can be tracked back to the work of Kruskal [5,6] who proposed the term 

“index of condensation”. PP generally refers to an unsupervised technique for exploratory 

data analysis, but some researchers have used this term for discriminant analysis [7]. The 

primary purpose of PP is to look for “interesting” projections in a low-dimensional 

subspace that can reveal the natural structure of the data. The notion of “interestingness” 

may have different interpretations in different applications, but in the present context, 

interesting projections are those where the data projected in the low-dimensional space can 

reveal clusters or outliers.  

Because the description of PP does not unambiguously define how to determine 

what is interesting, any linear projection method, including PCA, could be regarded as a 

special case of PP. An objective function that characterizes the “interestingness” is called a 
                                                                 
* This chapter is based on the published article: S. Hou, and P. D. Wentzell, Fast and 

Simple Methods for the Optimization of Kurtosis Used as a Projection Pursuit Index, 
Analytica Chimica Acta, 704 (2011) 1-15. 



 91

“projection index”. In the literature, various projection indices have been developed, 

leading to many PP variants. The original projection index was proposed by Friedman and 

Tukey [4], but this was followed by proposals for other projection indices in the literature 

[8,9,10,11,12,13,14,15]. Most of the projection indices are designed to measure the 

non-normality of a distribution. Deviations from normality in the projected data are 

considered interesting because, for multivariate data, the observed variables are often the 

linear combinations of a small number of latent variables. By the central limit theorem, 

even if the latent variables reveal important elements of data structure, such as clusters or 

outliers, the observed variables often cannot directly disclose meaningful information 

because they tend towards normality. The latent variables that reveal useful information 

deviate from a normal distribution, so projections that deviate strongly from normality may 

uncover this structure. 

In theory, any function that relates directly to the normality of a distribution can be 

used as a projection index, but a good index should be a simple measure and easy to 

optimize. Several functions have been used, with entropy and kurtosis being the most 

familiar. Kurtosis was one of the early functions proposed [8] and has the advantage of 

conceptual simplicity. Peña and Prieto showed that maximization of the kurtosis can be 

used to detect outliers [16], although this is not always effective and other methods may be 

preferred [17]. On the other hand, projections with bimodality tend to have a small kurtosis, 

and minimization of kurtosis can therefore be used as a criterion to search for clusters [15]. 

Kurtosis is also used to measure the non-normality in independent component analysis 

(ICA) [18,19], which is a technique closely related to PP. In univariate statistics, a normal 

distribution has a kurtosis of 3. A super-gaussian (peaked, or leptokurtic) distribution has a 

larger kurtosis, while a sub-gausssian (flat, or platykurtic) distribution has a smaller 

kurtosis. Either maximization or minimization of kurtosis can give useful information. 

Kurtosis satisfies the condition of the Class III objective functions set by Huber [8] for 

good projection indices; that is, scaling and translation do not change the values of the 

functions. One more appealing property of kurtosis is that the univariate case can be easily 

generalized to multivariate kurtosis, which not only has the useful properties of univariate 

kurtosis, but is independent of the choice of the basis for a subspace. Therefore, kurtosis 

appears to be an ideal statistic for the projection index.  
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The projection index acts as the heart of PP, but its utility is mostly dependent on 

computational aspects. Optimization of the projection index, which greatly determines 

whether a projection index is successful, plays a crucial role in PP. Because of the quartic 

nature of kurtosis, optimization is a difficult problem. Kurtosis can have multiple local 

maxima and minima, and commonly used optimization algorithms cannot guarantee the 

global extrema. Therefore, it is generally necessary to start from different initial guesses to 

search for the global optimum, or better local optima, and so the speed of an optimization 

algorithm is critical. Gradient descent or ascent methods are ubiquitous in optimization 

problems, but gradient methods have the well-known shortcoming of slow convergence 

rates and the choice of optimal step size is difficult. Gradient methods have been used for 

the optimization of kurtosis [20,21], but other algorithms have also been developed in the 

literature. Peña and Prieto [15] proposed iterative methods for optimization of kurtosis by 

applying a modified Newton’s method, which is complicated, or by solving first-order 

optimality conditions, similar to one method proposed in this work (relationship to the 

algorithms proposed in this work is noted in Section 4.8.4). Croux’s algorithm [22] has 

also been used for the optimization of kurtosis as a projection index [3]. This algorithm 

calculates the objective function for many projections based on the sample space and 

works well when the number of variables is relatively small, but will perform poorly if the 

dimensionality of the data becomes too high. Hyvärinen and Oja proposed a fast 

fixed-point algorithm to optimize the kurtosis [19,23] based on sphered data (relationship 

to the algorithms proposed in this work is noted in Section 4.8.5). Sphering, which differs 

from autoscaling, is a transformation that ensures the data have unit variance when 

projected in any direction [24]. This algorithm is one of the most widely used because of its 

fast convergence. It has several variants [25,26,27,28,29] and can be viewed to be a 

continuum between gradient methods and Newton’s method. As with other such methods, 

the determination of the optimal step size for the fixed-point algorithm is computationally 

involved, but this has been described [27,28]. 

In the present work, new algorithms, referred to as “quasi-power methods”, to 

optimize kurtosis are proposed. The algorithms use the well-known conclusion in calculus 

that if all the partial derivatives are zeros at a point, the point may be a maximum or a 

minimum. By setting all the derivatives of kurtosis to be zeros followed by rearrangements, 
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equations emerge that allow the principle of the power method and its variants (used to 

solve eigenvalue problems) to be employed. Because the algorithms are developed from 

the perspective of the power method instead of gradient methods, they are simple, fast, and 

stable. Commonly required preprocessing steps, such as sphering or whitening of the data, 

are not necessary. The algorithms can search for maxima or minima according to user’s 

requirements, without the need to optimize step size, and they can be used for both 

univariate and multivariate kurtosis with little modification. 

4.2 Theory 

4.2.1 Univariate Kurtosis 

For univariate data, the sample kurtosis (K) is defined as 

4

1
2

2

1

1 ( )

1 ( )

n

i
i

n

i
i

z z
nK

z z
n

, (4.1) 

where n is the number of samples, zi is the individual sample value, and z  is the sample 

mean. The numerator is the fourth central moment and denominator is the square of the 

second central moment or the biased sample variance (as opposed to the unbiased variance 

which has n-1 degree of freedom). For the purpose of optimization, the offset of “-3” that is 

included in some definitions of kurtosis to give the normal distribution a kurtosis of zero is 

not included. The current definition ensures that the kurtosis is always positive. 

For multivariate data, if there are n samples measured on p variables, the entire data 

can be arranged in an n p  matrix: 

T
11 12 1 1

T
21 22 2 2

( )

T
1 2

p

p

n p

n n np n

x x x
x x x

x x x

x
x

X

x

. (4.2) 

Each column of X represents a set of samples measured on a single variable and each row 

contains the measurements on different variables for a single sample, denoted by the 

notation T
ix , where the subscript “ i ” is the sample index. In the following, the data matrix 

X is assumed to have been column mean-centered to simplify the derivation. PP tries to 
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search for a unit length projection vector 
T

1 2 pv v vv  such that, when the 

p-dimensional data X are projected onto this projection vector, the kurtosis of the projected 

data reaches a maximum or a minimum. If a projected data point is denoted by zi with 
T

i iz x v  and 0z , the kurtosis defined in Equation (4.1) of the projected data can be 

written as 

4T

1
2

2T

1

1

1

i

i

n

i

n

i

nK

n

x v

x v
. (4.3) 

Rearrangement of this equation yields 

2T T

1
2T T

i

n

i
i

n
K

v x x v

v X Xv
. (4.4) 

To find a projection vector v that maximizes or minimizes the kurtosis, a simple method 

from calculus is to set all the first-order partial derivatives of kurtosis with respect to the 

variables in v to be zeros. The application of standard vector calculus [30,31,32] leads to 

the following equations (see Section 4.8.1 in Appendix for detailed derivation): 

1T T T T

1

n

i i i i
i

X X v x x v x x v v , and (4.5) 

1
T T T T

1

1n

i i i i
i

v x x v x x X X v v ,  (4.6) 

where 

2T T

1
T T

n

i i
i

v x x v

v X Xv
. (4.7) 

The expressions in Equations (4.5) and (4.6) are similar in form to an eigenvalue problem 

given by Av = v, although an important difference in this case is that multipliers on the 

left and right sides are both functions of v. Nevertheless, this suggests that the solution may 

be obtained through an iterative procedure, or learning algorithm, that is embodied in the 

following equations: 
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1T T T T
1

1

n

k k i i k i i k
i

v X X v x x v x x v , and (4.8) 

1
T T T T

1
1

n

k k i i k i i k
i

v v x x v x x X X v . (4.9) 

Here the symbol “ ” means that the right-hand terms are calculated and assigned to the 

left-hand side at each iteration, and k stands for the iteration number. In Equation (4.4), the 

projection vector v is not constrained to unit length. However, in the learning algorithms, 

the projection vector vk+1 is generally normalized to unit length in each iteration. The 

purpose of normalization is not to impose a constraint on the optimization problem, but to 

make the test for convergence more straightforward. Given an initial guess v1, the learning 

algorithm in Equation (4.8) converges to a kurtosis maximum, while Equation (4.9) leads 

to a kurtosis minimum. It can be seen that the matrix in Equation (4.8) is the inverse of the 

matrix in Equation (4.9), and the two iterative learning algorithms are analogues of the 

power method and the inverse power method that are discussed in many linear algebra 

textbooks [33]. It can be shown (see Section 4.8.2 in Appendix) that the iterative 

algorithms defined by Equations (4.8) and (4.9) are convergent on maxima and minima, 

respectively, of the kurtosis, but it is important to note that, as with any algorithm based on 

kurtosis, these are not guaranteed to be globally optimum values. 

4.2.2 Shifted Algorithms 

It is known that one of the variants of the power method is the shifted power 

method [33]. Similar variants for the proposed algorithms can be developed by the same 

principle. If there is a projection vector v that satisfies Equations (4.5) and (4.6), the 

following equations also hold for any scalar c: 

1T T T T

1

n

i i i i
i

c cX X v x x v x x I v v , and  (4.10) 

1
T T T T

1

1n

i i i i
i

c cv x x v x x X X I v v , (4.11) 

where I is the identity matrix. Introduction of scalar c does not change the solutions of v, 

i.e., the direction of the projection vector v does not change. The two equations indicate 
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that the learning algorithms defined by Equations (4.8) and (4.9) can have the following 

variants, respectively: 

1T T T T
1

1

n

k i k k i i i k
i

cv X X x v v x x x I v , and (4.12) 

1
T T T T

1
1

n

k i k k i i i k
i

cv x v v x x x X X I v . (4.13) 

In principle, the scalar c can be any number, but a positive number is recommended for the 

optimization (see Section 4.8.2 in Appendix for more details). As the matrices in both 

Equations (4.8) and (4.9) have only positive eigenvalues, introduction of a positive number 

c will not change the relative sequence of the magnitudes of the eigenvalues, but 

introduction of a negative number c may alter this order. As the learning algorithm tends to 

converge to the dominant eigenvector corresponding to the largest eigenvalue in magnitude, 

introduction of negative number c may disrupt the optimization, i.e., finding a maximum 

instead of minimum, or vice versa. In this work, c was set equal to the trace of the first term 

in the brace brackets divided by p, the number of variables, although the algorithm is not 

sensitive to this value. 

Based on simulated data, it has also been found that if the learning algorithm in 

Equation (4.9) is used to search for a minimum of kurtosis, the algorithm becomes less 

stable when the number of samples is only slightly larger than the number of variables. 

This problem can be solved by using the shifted algorithm in Equation (4.13). The reason 

may be that, when the number of samples is close to the number of variables, the first 

matrix in Equation (4.9) is not well-conditioned and the computational round-off errors 

cause the inverse of this matrix to be unstable. When the shifted algorithm in Equation 

(4.13) is used, a positive number is added to the diagonal elements of product of the two 

matrices. This actually changes the condition number of the matrix and makes the 

algorithm more stable. Optimization by the algorithm in Equation (4.8) is quite stable in 

this work but alternatively, the shifted algorithm in Equation (4.12) can be used. 

4.2.3 Stepwise Univariate Kurtosis 

In PP, it is often necessary to extract two or more projection vectors for 

visualization or other purposes. The projection vectors are generally chosen to be mutually 
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orthogonal. To find two or more mutually orthogonal projection vectors, the same 

algorithms described in Sections 4.2.1 and 4.2.2 can be applied in a stepwise fashion to the 

data after deflation. Deflation is a process that removes the projected structure from the 

original data set, leaving behind a residual matrix. The deflation method has been used in 

many other algorithms such as non-linear iterative partial least squares (NIPALS) [34] and 

is based on the Gram-Schmidt process that is discussed in many textbooks [33]. Expressed 

mathematically, the deflation process can be written as 
T

new old oldX X X vv , (4.14) 

where Xold denotes the matrix before deflation and Xnew is the matrix after deflation. After 

deflation, the residual matrix Xnew becomes rank deficient. To overcome this problem, PCA 

can be applied to reduce the dimensionality of the residual matrix Xnew and the same 

algorithms can be applied to the scores of PCA. Once a new projection vector is found by 

the same algorithms, it can be rotated back to the original space. Deflation in this way can 

guarantee the projection vectors are mutually orthogonal. The deflation can be applied 

until the required number of projection vectors is found. It should be mentioned that 

deflation of the matrix is not the only method to make the projection vectors mutually 

orthogonal and other methods can be used as well [19,23]. 

4.2.4 Multivariate Kurtosis 

In PP, the stepwise search for the projection vectors is widely used, but 

multidimensional approaches have been proposed as well [4,9,13,35,36,37]. Projection 

vectors extracted by multidimensional approaches are generally different from those 

obtained by stepwise univariate searches because multidimensional approaches search for 

the subspace (a plane or hyperplane, normally two or three dimensions) as a single entity 

and optimize different criteria. Projection vectors obtained by stepwise one-dimensional 

approaches are generally not nested in the solutions of multidimensional approaches. 

Huber [8] has conceived that “stepwise one-dimensional approaches may miss structure 

that a direct k-dimensional search would find easily”. The algorithms developed in the 

work presented here can be easily generalized, without substantial change, for the 

optimization of multivariate kurtosis. This is introduced as the projection index for 

multidimensional approaches. 
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For multivariate data, a definition of multivariate kurtosis [38] analogous to that for 

univariate kurtosis has been proposed as 
2T 1E ( ) ( )K z - z - , (4.15) 

where E  is the expectation operator, z is the vector of sample measurements,  is the 

population mean vector, and  is the covariance matrix which is defined as 
TE ( )( )z - z - . (4.16) 

Based on this, the sample multivariate kurtosis can be written as 

2T 1

1

1 ( ) ( )
n

i i
i

K
n

z - z S z - z , (4.17) 

where zi stands for the measurement vector for a single sample, z  is the sample mean 

vector, and S is the biased sample covariance matrix which can be written as 

T

1

1 ( )( )
n

i i
in

S z - z z - z . (4.18) 

Multivariate kurtosis has been applied to measure homogeneity of planar point-patterns 

[39]. In PP, when multivariate data are projected onto a subspace (a plane or a hyperplane), 

the projected data point, denoted by zi, can be expressed as  
T T
i iz x V , (4.19) 

where V is a p q  ( q p ) matrix whose columns form an orthonormal basis for the 

subspace (a plane or a hyperplane). For visualization purposes, q is generally chosen to be 

two or three. To simplify the derivation that follows, the matrix X is assumed to have been 

column mean-centered so that z 0  and the multivariate kurtosis for the projected data 

can be written as 
21T T T T

1
21T T T T

1
   tr ,

n

i i
i

n

i i
i

K n

n

x V V X XV V x

V X XV V x x V
 (4.20) 

where tr  is the trace operator and the relationship T Ttr( )u Mu Muu  for a symmetric 

matrix M and a vector u has been used. 

Multivariate kurtosis is independent of the choice of the basis for the subspace. 

This means that the value of multivariate kurtosis does not change if the basis vectors are 
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rotated within the subspace. In a two-dimensional projection, this is consistent with the fact 

that rotation of the coordinate axes within the plane does not give a different visual 

interpretation of the data. 

The optimization of multivariate kurtosis proceeds in a manner similar to that for 

univariate kurtosis, requiring that partial derivative be obtained with respect to the matrix 

V and then set to zero. The details of this derivation are presented in Appendix (see Section 

4.8.3) and lead to the following learning algorithms: 

1 1T T T T T T
1

1

n

k i k k k k i i i k
i

V X X x V V X XV V x x x V , and (4.21) 

1
1T T T T T T

1
1

n

k i k k k k i i i k
i

V x V V X XV V x x x X X V . (4.22) 

Similar to the learning algorithms in Equations (4.8) and (4.9), the learning algorithms in 

Equations (4.21) and (4.22) can be used to search for maxima and minima of multivariate 

kurtosis, respectively. At each iteration, Vk+1 is normally adjusted to an orthonormal basis 

to simplify the test for convergence. In this work, this is done by using singular value 

decomposition (SVD) to generate orthonormal vectors from Vk+1 prior to the next iteration, 

but other methods could also be used. The convergence criterion for V can be an 

element-by-element comparison between Vk and Vk+1. When the element differences are 

very small, convergence is reached. Alternatively, the convergence criterion could be the 

angle between the two subspaces spanned by Vk and Vk+1, respectively. Discussion about 

the angle between two subspaces can be found in [40,41]. Once the algorithm has 

converged, the data are projected into V and SVD is carried out on the projected data to 

give a new set of orthonormal projection vectors that are defined in terms of the directions 

of decreasing variance in the projected data. While this new (rotated) V does not change 

the spatial relationships among the objects, it provides a consistent and interpretable 

orientation of the PP subspace. 

Similar to the learning algorithms in Equations (4.12) and (4.13), shifted 

algorithms can be developed for the optimization of multivariate kurtosis by following the 

same principle as in the shifted power method: 

1 1T T T T T T
1

1

n

k i k k k k i i i k
i

cV X X x V V X XV V x x x I V , and (4.23) 



 100

1
1T T T T T T

1
1

n

k i k k k k i i i k
i

cV x V V X XV V x x x X X I V , (4.24) 

where c is a scalar and I is the identity matrix. The learning algorithms in Equations (4.23) 

and (4.24) are the generalizations of in Equations (4.12) and (4.13) and can be used to 

search for maxima and minima of multivariate kurtosis, respectively. For the same reason 

as before, c should be positive and can be assigned as a fraction of the trace of the matrices 

involved. 

The algorithms developed in this work, either for univariate or multivariate kurtosis, 

are in accordance with the nature of, and can be regarded as generalizations of, the power 

method and its variants. Because the matrices are updated at each iteration by the updated 

projection vectors, however, the algorithms are not real power methods and thus they are 

referred to here as “quasi-power methods”. 

4.3 Experimental 

4.3.1 Computational Aspects 

All calculations were carried out using programs in MatLab® v.7.4.0 (MathWorks, 

Natick, MA) under Windows XP® on a 1.8 GHz computer with 3 Gb of memory. The 

MatLab codes for the proposed algorithms along with the simulated and experimental data 

sets can be obtained in the supplementary materials associated with reference [42]. 

4.3.2 Simulated Data 

Three sets of simulated data were used to evaluate the algorithms developed in this 

work. Data set 1 was a simple two-dimensional data set consisting of 100 objects divided 

evenly into two classes and was intended to allow direct visualization of the results. Data 

set 2 included a total of 200 objects in two classes with 10 variables. This was used to 

examine the performance of the algorithm in higher dimensions. Data set 3 extended this 

case to three classes, with 100 objects in each class, to observe the effect of adding more 

classes. More details on the simulation parameters are included in Section 4.4. 

4.3.3 Experimental Data 

Three experimental data sets were employed in this work to demonstrate the 

algorithms. The first data set, which will be referred to as the yogurt data, was downloaded 
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from the website of the Department of Food Science, University of Copenhagen [43]. 

Details are included in the original reference [44] and are only briefly recounted here. The 

experiments studied the fluorescence of plain yogurt stored under different conditions for 

several weeks. Four factors were considered: batch number (1 or 2), container material 

(polylactate and polystyrene), light exposure (dark or light) and storage time (1, 2, 3, 4 and 

5 weeks). This resulted in 40 experiments with triplicate measurements, plus two samples 

(one from each batch) measured in triplicate at time zero, for a total of 126 experiments. 

For the purposes of this study, not all of the available measurements were used, only the 

fluoresce emission spectra at 15 wavelength channels between 310 and 590 nm (20 nm 

increments) excited at the 270 nm. One set of measurements in the second batch was 

excluded as an outlier by the original authors, leaving a total of 125 emission spectra at 15 

channels. 

The second data set, which will be referred to as the salmon data, was obtained 

from a metabolomics study of plasma from Atlantic salmon [45]. The original study used a 

nested design to examine sources of variance in 1H NMR spectra obtained on 500 MHz 

spectrometer, but only part of the data set was used, consisting of technical replicate 

spectra from each of five individual fish (replicate sample preparations). For each fish, 15 

replicates were obtained, except in one case where only 14 were measured. Binned data in 

the chemical shift range of 0.1725 to 5.7525 ppm in steps of 0.005 ppm were used in the 

analysis, resulting in a 74 x 1117 matrix. For the purposes of this study, each fish was 

assumed to represent a different class, even though they could be considered as biological 

replicates. 

The third data set consists of fatty acid profiles from 572 olive oil samples collected 

from nine regions of Italy [46,47] and will be designated as the olive oil data. The regions 

sampled and the number of samples collected were: Northern Apulia (NA-25), Calabria 

(CA-56), Southern Apulia (SA-206), Sicily (SI-36), Inland Sardinia (IS-65), Coastal 

Sardinia (CS-33), Eastern Liguria (EL-55), Western Liguria (WL-50), and Umbria 

(UM-51). The concentrations of eight fatty acids were determined (palmitic, palmitoleic, 

stearic, oleic, linoleic, arachidic, linolenic, and eicodenoic) and these were scaled in the 

range of 0 to 100 based on the highest and the lowest values for each fatty acid. The olive 

oil data has been used to demonstrate the performance of various clustering and 
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classification methods including projection pursuit [3,46,47,48,49,50] and thus can be 

regarded as kind of benchmark data set. It was obtained from reference [51]. 

4.4 Simulation Results 

4.4.1 Data Set 1 

The first data set contained two-dimensional data drawn from two populations 

following bivariate normal distributions. The covariance matrices were first set to be the 

same for the two populations: 

0.2 0
0 1.5

. 

The population means were set as T
1 1 0  and T

2 1 0 , respectively and 50 

samples were drawn randomly from each population. These distributions were chosen so 

that the direction of greatest variance did not correspond to the direction for optimal class 

separation, thereby intentionally impeding the ability of PCA to distinguish classes. The 

sample data were then rotated by 30o clockwise to introduce correlation in the 

measurements. The resulting data points are shown in Figure 4.1 (a). 

For two-dimensional data, the projection vector can be rotated to explore how the 

kurtosis of the projected data varies with the direction of the projection vector. The 

projection vector was rotated between 0o and 180o with respect to the positive abscissa and 

the result is shown in Figure 4.1 (b). It can be seen that there are two maxima, indicated by 

v1 and v3, and two minima, indicated by v2 and v4. Following the univariate mapping of 

kurtosis as a function of angle, the algorithms defined by Equations (4.8) and (4.9) were 

used to search for maxima and minima, respectively, in one-dimensional space with ten 

initial guesses. Vectors v1 and v3 were found by the maximum search and v2 and v4 resulted 

from the minimum search, and the corresponding projection vector directions are shown in 

Figure 4.1 (a). The global minimum was found at 152.9o (v4), in good agreement with the 

theoretical population value of 150o (or -30 o). 

The projection vector corresponding to the first principal component of PCA is 

indicated by PC 1 in Figure 4.1 (a). It can be seen that the two classes would not be 

separated if the data were projected onto this projection vector. However, projection on the 

global minimum of kurtosis obtained by PP (v4) will result in clustering of the two classes. 
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Figure 4.1 (c) represents the kurtosis of the projected data versus the direction of projection 

vector in the form of a radial plot, where the distance between a point on the curve to the 

origin corresponds to the magnitude of the kurtosis and the line connecting the two points 

indicates the direction of the projection vector. The two maxima and two minima are 

clearly visible on this plot. For comparison, Figure 4.1 (d) shows the locus of the variance 
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Figure 4.1 Plots of the two-dimensional simulated data and kurtosis and variance with 
respect to the projection vector. (a) Simulated data and projection vectors found by the 
proposed algorithms. (b) Kurtosis versus the angle of the projection vector. 
(c) Representation of kurtosis with respect to the projection vector in a two-dimensional 
plane, where the magnitude of kurtosis is represented by the distance from a point in the 
curve to the origin. (d) Representation of variance with respect to the projection vector in 
a two-dimensional plane, where the magnitude of variance is represented by the distance 
from a point in the curve to the origin. 

of the projected data with respect to the projection vector (i.e. the objective function for 

PCA). It can be seen the variance curve has only one maximum and one minimum, 

illustrating geometrically why the power method for PCA can find the global optimum, 

while the proposed quasi-power methods for PP cannot guarantee that the global optima 

are found. Although the quasi-power methods follow the same principles of the power 
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method and its variants, due to the nature of kurtosis, multiple initial guesses are needed to 

increase the chances of finding the global optimum and success cannot be guaranteed by 

any algorithm. In the present example, it is clear that vector v2, which is a local minimum in 

the PP search, would not be able to distinguish the clusters, but in other cases, some local 

minima may achieve this goal. 

4.4.2 Data Set 2 

The purpose of PP is to compress the information in higher dimensions into a 

lower-dimensional subspace, typically two dimensions when the relationship of the objects 

is to be visually assessed. The second data set was generated in a ten-dimensional space, 

with 200 samples evenly divided between two multivariate normal populations. As before, 

the initial covariance matrices for the two populations were set to be the same and the 

diagonal elements were 

( ) 0.2 1 1 1 1 1 1 1 1 1diag . 

The off-diagonal elements were set to zero. The two population means were set as: 
T

1 1 0 0 0 0 0 0 0 0 0 , and 

T
2   1 0 0 0 0 0 0 0 0 0 . 

Based on this, the separation of the classes occurred only along the first dimension, but the 

variance is approximately the same in all directions. Correlation was introduced by 

post-multiplying this 200 x 10 matrix by a 10 x 10 rotation matrix, randomly generated by 

carrying out SVD on a random 10 x 10 matrix. In the final step, the rotated data were 

mean-centered (although the population means are zero, the sample means are not). PCA 

and PP analyses using the proposed algorithms were applied to these data to generate 

two-dimensional projections of the samples. For PP, searches for both the maximum and 

minimum kurtosis were employed, with two different approaches: the stepwise univariate 

approach (Equations (4.8) and (4.9), with deflation as defined by Equation (4.14)) and the 

multivariate approach (Equations (4.21) and (4.22)). In all cases, 100 random initial 

guesses were used. 

Figure 4.2 (a) shows the profiles of the mean-centered data and Figure 4.2 (b) 

shows the PCA scores plot for the first two principal components. It is clear that PCA fails 

to provide a clean separation of the two classes, as anticipated. On the other hand, Figures 
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4.2 (c) and 4.2 (d) show the PP results for minimization of kurtosis in two dimensions 

using the stepwise univariate and multivariate approaches, respectively. Several points are 
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Figure 4.2 Projection results for data set 2. Samples from the two populations are 
distinguished by the shapes and colors of the symbols. (a) Sample data profiles. 
(b)-(f) Scores plots on first two projection vectors for: (b) PCA, (c) PP, minimized 
stepwise univariate kurtosis, (d) PP, minimized bivariate kurtosis, (e) PP, maximized 
stepwise univariate kurtosis, and (f) PP, maximized bivariate kurtosis. 

worth noting for the PP minimizations. First, Figures 4.2 (c) and (d) both show a good 

separation of the two classes, indicating that PP has achieved its objective. Second, the 

subspaces identified by the two algorithms are clearly different, even though each 

separates the classes along one direction. For Figure 4.2 (c), the two basis functions were 

found in successive steps to identify projection vectors forming the plane, so it is not 
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surprising that class separation occurs primarily along the x-axis. For Figure 4.2 (d), the 

projection plane is found in a single step using one objective function which is rotationally 

invariant, so in principle there are an infinite number of equivalent solutions corresponding 

to different rotations of the vectors in the solution plane. In practice, the method used to 

orthogonalize the basis vectors constrains the result to a single solution. In this case, 

because SVD was used for the orthogonalization, the first basis vector will be in the 

direction of the greatest variance within the projection plane. Therefore, cluster separation 

may occur along any direction in the plane. The results in Figures 4.2 (c) and (d) show both 

algorithms give good separations of clusters, indicating that both algorithms work well to 

find good subspaces for this data set.  

Minimization of kurtosis, as described above searches for distributions that are 

broad and flat (platykurtic), or even multimodal, and as such tend to force objects into 

clusters. Maximization of kurtosis, on the other hand, is usually able to locate projected 

distributions that are peaked with long tails (leptokurtic), and this will be more likely to 

isolate outliers in the data and produce less information about clusters, except when classes 

are disproportionately populated. Figures 4.2 (e) and (f) show the PP scores plots from the 

maximization of kurtosis using the stepwise univariate and multivariate algorithms, 

respectively. As before, the subspaces identified by the two algorithms are different, but 

both tend to compress the majority of samples into the center and highlight a few samples 

that are more distant from the rest. Since no outliers were included in this simulation, there 

is nothing of particular note in the maximization results. 

4.4.3 Data Set 3 

The third simulated data set, intended to examine the case of more than two classes, 

contained samples drawn randomly from three populations in a ten-dimensional space. The 

three populations are assumed to follow multivariate normal distributions and the 

covariance matrices were the same for the three populations, with diagonal elements given 

by 

( ) 0.1 0.2 1 1 1 1 1 1 1 1diag , 

and off-diagonal elements equal to zero. The three population means were set at the 

vertices of an equilateral triangle centered at the origin, given by  
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T
1 1 0.58 0 0 0 0 0 0 0 0 , 

T
2 1 0.58 0 0 0 0 0 0 0 0 , and 

T
3 0 1.15 0 0 0 0 0 0 0 0 . 

From each population, 100 samples were drawn randomly. The samples were transformed 

by a randomly generated 10 x 10 rotation matrix and then column mean-centered. PCA and 

the proposed algorithms were applied, with 100 random initial guesses used for all PP 

searches. 
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Figure 4.3 Projection results for data set 3. Samples from the three populations are 
distinguished by the shapes and colors of the symbols. (a) Sample data profiles. (b)-(f) 
Scores plots on first two projection vectors for: (b) PCA, (c) PP, minimized stepwise 
univariate kurtosis, (d) PP, minimized bivariate kurtosis, (e) PP, maximized stepwise 
univariate kurtosis, and (f) PP, maximized bivariate kurtosis. 
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Figure 4.3 (a) shows the profiles of the mean-centered data and Figure 4.3 (b) 

shows the PCA scores plot for the first two principal components. As expected, PCA is 

unable to provide any separation of the clusters because of the high variance in directions 

other than those separating the classes. Figures 4.3 (c) and (d) show the scores plots for the 

first two components of PP found by minimum searches with the stepwise univariate and 

multivariate algorithms, respectively. Although the spaces found by the two algorithms are 

clearly not identical, both minimizations clearly produce a good separation of the three 

populations in two dimensions with no prior knowledge of the class structure. 

Figures 4.3 (e) and (f) show the results of maximization with the same two algorithms. As 

expected, they produce no class separation and only serve to isolate points that are 

numerically distant from the majority of the data as potential outliers. 

4.5 Experimental Results 
The simulation results in Section 4.4 serve to illustrate the efficacy of the proposed 

algorithms for providing interesting and meaningful projections of multivariate data under 

carefully controlled conditions for which PCA failed to give informative results. In all 

cases, reproducible results were obtained quickly and reliably. However, the simulations 

do not guarantee the utility of the algorithms in the case of real experimental data with 

more complex class structures, high dimensionality, and possible outliers. Ideally, PP 

should give results that are no worse than PCA, and in certain circumstances, it may give 

superior performance. In this section, three different studies found in the literature are used 

to demonstrate the utility of the proposed algorithms. The first is a data set with relatively 

low dimensionality but an intricately nested class structure. The second data set has a 

simpler structure, but a large number of variables that require dimensionality reduction 

through PCA. The third data set has been widely used as a benchmark for exploratory data 

analysis and classification studies. 

4.5.1 Yogurt Data 

The yogurt data were chosen to illustrate the algorithms presented here because it 

consisted of a high sample-to-variable ratio and several factors upon which separation of 

the samples might be based. The fluorescence measurements from the yogurt samples 

under different conditions were placed in a 125 x 15 matrix. The original 125 spectra are 
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shown in Figure 4.4 (a). For analyses by PCA and PP, the data were column mean-centered, 

but no scaling or sphering was performed. In all applications of the PP algorithms, 100 

random initial guesses were used and the solutions were taken as the ones with the lowest 

(minimization) and highest (maximization) kurtoses. To minimize convergence time in the 

presence of a high degree of multicollinearity, the shifted algorithms (Equations (4.12), 

(4.13), (4.23) and (4.24)) were used in this study. 
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Figure 4.4 (a) Fluorescence emission spectra for yogurt data set. (b)-(f) Scores plots for 
PCA and PP: (b) PCA, (c) PP, minimized stepwise univariate kurtosis, (d) PP, minimized 
bivariate kurtosis, (e) PP, maximized stepwise univariate kurtosis, and (f) PP, maximized 
bivariate kurtosis. The color of the symbols indicates the batch number (red=B1, 
blue=B2); the shape indicates the packing material (circles=P1, triangles=P2, 
asterisks=before packaging); the fill indicates the light exposure during storage 
(solid=dark, open=light). 
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The PCA scores plot for the first two eigenvectors is shown in Figure 4.4 (b), and 

some groupings of the samples are immediately obvious. The most apparent separation is 

between the samples stored in the dark (solid symbols) and samples stored in the light 

(open symbols). This separation occurs mainly along the second principal component and 

is well-defined. The first PC correlates primarily with differences in the two batches (red 

and blue symbols), although this separation is not complete. All of the samples from batch 

two (blue), with the exception of those taken at time zero (asterisks) are on the right hand 

side of Figure 4.4 (b), but these are mixed with a significant number of samples from batch 

one. There is some separation based on packing material (circles vs triangles) for samples 

stored in the light, but this is not apparent for samples stored in the dark. 

Figure 4.4 (c) shows the scores plot of the first two components obtained by the 

minimum search using the stepwise univariate algorithm (shifted form, Equation (4.13)). 

The first distinctive feature apparent in Figure 4.4 (c) is that the samples divide into four 

distinct quadrants, with the batches (red/blue) separated on the first projection vector and 

the light exposure (open/solid) separated on the second projection vector. This is consistent 

with the results obtained by PCA, but the spatial relationships are quite different and the 

groups more uniformly defined. Unlike PCA, the batches are completely separated in this 

case, with the exception of one of the time zero samples (asterisk) from batch two. The 

separation by light exposure is also largely complete, with the exception of perhaps four 

borderline samples. As with PCA, there is some marginal separation by packing material 

for the light-exposed samples along the y-axis, but none for the samples stored in the dark. 

Figure 4.4 (d) shows the scores resulting from the application of the shifted 

multivariate algorithm for minimum kurtosis (Equation (4.24)) in two dimensions. The 

result is similar to that for the stepwise univariate algorithm in Figure 4.4 (c), with the 

samples separating into four quadrants based on batch and storage conditions, but in this 

case the quadrants are not aligned with the projection axes. This is not surprising because 

multivariate kurtosis is independent of rotation within the subspace and the final axes are 

arbitrarily selected on the basis of maximized variance by SVD. Although the spatial 

relationships resulting from the two algorithms are similar, the subspaces are not identical. 

Figures 4.4 (e) and (f) show scores plots resulting from maximum kurtosis searches 

by the stepwise univariate and multivariate approaches, respectively. As previously noted, 
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maximum searches will tend to isolate outlying data points. These may be individual 

samples that are true statistical outliers arising from erroneous measurements or 

non-representative sampling, or they may represent a collection of samples belonging to a 

class whose membership is small relative to the other classes in the data. In this case, both 

maximum searches isolate the three time zero samples associated with batch one. This is 

not surprising, since the samples measured at time zero might be expected to differ 

substantially from others in the data set. 

4.5.2 Salmon Data 

The salmon data set was chosen as a second example because it is perhaps more 

typical for chemical data sets in that there are many more variables than samples. Because 

the algorithms here involve inversion of XTX, which will be singular under these 

conditions, it is necessary to carry out some kind of variable compression prior to PP. Even 

in cases where the matrix is not singular but the ratio of samples to variables is relatively 

low, PP can be problematic because the space is sparsely populated by objects and 

solutions are likely to result in opportunistic clustering of the samples that are not 

consistent with meaningful classes. In both of these cases, SVD is perhaps the simplest and 

most reliable means to achieve variable compression, since it should retain the maximum 

amount of information in the scores. In this case, the original data matrix was first column 

autoscaled and then decomposed by SVD, retaining the scores on the first seven 

eigenvectors for analysis by PP. The end result of the analysis is somewhat dependent on 

the number of factors retained, but this is discussed in more detail in Section 4.6.1 and will 

not be dealt with here. As before, the shifted algorithms were used for the results reported. 

Figure 4.5 (a) shows the 74 NMR spectra used in this study after binning and 

truncation of the range to remove the reference peak. Figure 4.5 (b) shows the scores plots 

for the first two principal components resulting from PCA on the centered data, with 

replicates from each fish shown with different colors and symbols. Some grouping of 

replicates for each fish is evident, but only Fish 1 (red triangles) separates cleanly from the 

others. The results of kurtosis minimization by stepwise univariate and multivariate 

searches are shown in Figures 4.5 (c) and (d), respectively. In contrast to the PCA result, 

both of these figures show a clear separation of the replicates for each fish, even though no 

class information is provided to the algorithm. In this case, the stepwise univariate method 
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provides somewhat better separation. Figures 4.5 (e) and (f) show the results of the 

maximization search for the two methods. The univariate search isolates a few samples as 

potential outliers, while the multivariate approach distinguishes the replicates for Fish 1 as 

distinct from the others. 
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Figure 4.5 (a) 1H NMR spectra for salmon data set. (b)-(f) Scores plots for PCA and PP: 
(b) PCA, (c) PP, minimized stepwise univariate kurtosis, (d) PP, minimized bivariate 
kurtosis, (e) PP, maximized stepwise univariate kurtosis, and (f) PP, maximized bivariate 
kurtosis. The colors and shapes of the symbols indicate five different fish as indicated in 
the legend. 

4.5.3 Olive Oil Data 

The olive oil data set, like the yogurt data, represents another situation where the 

ratio of samples to variables is high, so no variable compression was necessary. This data 
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set was included in the study because it has been widely used as a benchmark in the 

literature [3,46,47,48,49,50]. As before, the data were column autoscaled and the normal 

algorithms (Equations (4.8), (4.9), (4.21), and (4.22)) were employed. 

Figure 4.6 (a) indicates generally on the map of Italy where the samples were 

collected, with boundaries shown in red and blue that will be used below to reference the 

locations of samples. The scores plot from PCA is shown in Figure 4.6 (b), where, for 

convenience, the symbols used are the same as those employed in reference [50] and colors 

have been employed to differentiate samples associated with more northerly regions (blue) 

from those in the southern locales (red). It is apparent from Figure 4.6 (b) that the samples 

exhibit a clear geographical correlation, both in terms of their location and their 

characteristic dispersion in the scores space. The figure does not show well-separated 

clusters, but some classes (e.g. S. Apulia and W. Liguria) segregate into fairly pure groups, 

while mixing is apparent among other classes. Some classes (e.g. Coastal Sardinia) are 

tightly grouped, while others (e.g. Sicily) are more dispersed. While this information is 

useful and higher PCs will augment this picture, it has been demonstrated elsewhere 

[3,49,50] that other projection methods can provide a clearer distinction among the groups, 

so the proposed PP algorithm was applied to the data. 

Figure 4.6 (c) shows the first two scores resulting from the stepwise univariate 

minimization of kurtosis. Immediately obvious is a clean separation of the samples from 

region 1 (blue/north) from those in region 2 (red/south) (see Figure 4.6 (a)). However, there 

is little else that can be surmised from this plot and it is clear that the information contained 

on the two projection axes is redundant. This redundancy is an artifact that can sometimes 

occur with the stepwise approach. One would anticipate that the first projection axis should 

be the one running diagonally through the figure, but it is suspected that the orthogonal 

projections of the samples leads to a marginally smaller kurtosis in the direction of this axis. 

As a consequence, the two major classes are partitioned along two directions in the 

stepwise procedure and no new information is generated. However, new information does 

appear along the third projection vector, as is evidenced in Figure 4.6 (d), which shows the 

scores on projection vectors 1 and 3 from the stepwise procedure. Here, projection vector 1 

retains the separation of north/south (blue/red) samples, while projection vector 3 

generates additional separation in the classes. In particular, among the northern samples, 
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the two groups of samples from Sardinia (Inland and Coastal), separate from the other three 

samples, as indicated by the inner boundaries in Figure 4.6 (a). The separation of classes 

within the southern samples is less distinct, but the samples from S. Apulia are clearly 

different from the other three regions in this group, also indicated by the inner boundaries 

in Figure 4.6 (a). 
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Figure 4.6 (a) Map of Italy showing approximate locations where olive oil samples were 
collected. (b)-(f) Scores plots for PCA and PP: (b) PCA, (c) PP, minimized stepwise 
univariate kurtosis (2 vs 1), (d) PP, minimized stepwise univariate kurtosis (3 vs 1), (e) PP, 
minimized bivariate kurtosis, and (f) PP, maximized bivariate kurtosis. The legend in (b) 
applies to (c)-(f). 

The minimization of multivariate kurtosis in two dimensions, as shown in Figure 

4.6 (e), produces results similar to Figure 4.6 (d). The problems of the stepwise algorithm 
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do not occur in this case as kurtosis is minimized across both dimensions simultaneously. 

While the separation of samples for Figure 4.6 (e) shows similarities to Figure 4.6 (d), the 

two are certainly not identical. One first notices that the general arrangement of samples 

appears rotated in one with respect to the other, but this is not surprising because the 

multivariate kurtosis is independent to rotation in the plane and the axes are arbitrarily 

aligned along directions of decreasing variance. The most noticeable change in the 

grouping of the samples occurs in the northern (blue) classes, where the samples from W. 

Liguria are now more closely associated with the samples from Sardinia. 

The results of kurtosis maximization using the multivariate algorithm are shown in 

Figure 4.6 (f) for completeness. As noted previously, maximization will attempt to isolate 

outlying samples, but the results in this case do not show any features that are particularly 

noteworthy. Similar results were generated by univariate maximization, but are not shown 

here. 

Generally speaking, the groupings of samples obtained by the methods presented 

here are qualitatively similar to other approaches in the literature [3,49,50], especially 

those obtained using a bottleneck neural network approach [50]. An important difference, 

however, is that the projection pursuit approach produces a linear mapping, which is not 

generally the case with neural network techniques. 

4.6 Discussion 
The results above show that the proposed PP algorithms can be applied quite 

successfully to experimental data sets to yield useful information. However, some aspects 

of their implementation, including variable compression, speed and reliability warrant 

further comment. These aspects will be considered here. 

4.6.1 Variable Compression 

It is common in chemistry for data sets to be obtained where the number of 

variables is greater than the number of samples, sometimes by a wide margin. When this is 

the case, inversion of matrices in the algorithms presented here becomes problematic 

because of singularity. This necessitates a reduction in the number of variables to a level 

where they not greater than the number of samples. Although several approaches can be 

used for this, SVD is probably the most straightforward, with the subsequent PP analysis 
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being carried out on a truncated scores matrix rather than the original variables. This was 

the method used here for the salmon data. However, even when the singularity is 

eliminated, results from PP may be unsatisfactory unless the number of variables is further 

reduced to the point where the ratio of samples to variables is substantially greater than 

unity. If this condition is not met, clustering of the samples may be observed that is not 

meaningful. 

The initial objective in the analysis of experimental data sets such as those 

described in this study is most often to determine if there is a meaningful separation of the 

samples according to a known or unknown class structure. This is a preliminary step 

towards other objectives that could include classification of new samples or developing a 

fundamental understanding of the underlying physical reasons for the separation. In the 

initial exploration of the data, PCA is widely used because it is unsupervised. Because it 

makes no use of class information, any separation observed that correlates to class 

structure can be interpreted as meaningful. However, the converse is not true, so failure of 

PCA to support the class structure does not mean it is not embedded in the data. At the 

other extreme, supervised methods such as linear discriminant methods use the class 

information directly to optimize projection axes and are virtually guaranteed to provide a 

separation of classes when the ratio of variables to samples is large. Therefore, careful 

validation of the results is necessary to ensure that they are meaningful. PP falls 

somewhere between these two approaches. It can be considered unsupervised because it 

does not make use of class information, but it does search the projection space to find the 

one that forces the samples into clusters, so unlike PCA, it imposes a criterion based on the 

separation of the data. When the dimensionality of the space is large and the number of 

samples is relatively small, undersampling is a problem and PP is more likely to find 

opportunistic clusters that are not correlated with any real class structure. 

Because PP can exhibit this kind of artificial clustering of the data, the selection of 

the appropriate number of variables is important. Selection of an insufficient number of 

variables will not provide PP with enough information to separate the data in a meaningful 

way, while the use of too many variables can lead to the generation of spurious groupings. 

These concepts are illustrated in Figure 4.7, which shows the results of the analysis of the 

salmon data with stepwise univariate minimization of kurtosis. Figures 4.7 (a) and (b) 
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show the results of where four and five scores, respectively, have been retained from SVD 

of the original data. Although some segregation of objects in different classes is apparent, it 

is clear that there is insufficient information to completely separate the data. However, 

when six and eight variables are retained, the separation is quite clear, as shown in Figures 

4.7 (c) and (d) (the case of seven variables was shown in Figure 4.5 (c)). As the 

dimensionality of the space increases, the separation is less reliable, and for nine and 

fifteen retained variables there is some mixing of the samples from different classes, as 

shown in Figures 4.7 (e) and 4.7 (f). Finally, in the extreme case when the ratio of samples 

to variables is much too small, undersampling will lead to random clustering of the data 

that minimizes the kurtosis. This is illustrated in Figures 4.7 (g) and 4.7 (h), where fifty 

latent variables have been used for stepwise univariate and multivariate minimizations, 

respectively. For the stepwise univariate approach, clustering approaches the limiting case 

where objects will be placed symmetrically at the corners of a square, with little or no 

retention of class information. The limiting case in the multivariate minimization is to 

place the objects evenly around the edges of a circle, again with little correlation to the real 

data structure. 

This raises the question as to what is the optimum sample-to-variable ratio to 

employ in projection pursuit. Of course, the answer to this will depend on the 

characteristics of the data set, but the author’s experience with a number of simulated and 

experimental data sets suggests that a minimum value for this ratio is around ten. It is likely 

that there is a window within which acceptable results can be obtained, as in the case of the 

salmon data, but this window may not exist in cases where the number of samples requires 

a level of variable compression that is insufficient to retain the information necessary for 

class separation. 

If class information is known for the original data, the clustering exhibited through 

PP can be immediately validated against the known class structure. It is unlikely in most 

cases that clustering based on overfitting of objects to minimize kurtosis will correlate with 

the known class structure of the data. This is a distinct advantage of PP over supervised 

methods, where validation through permutation methods or external samples is generally 

necessary to ensure the validity of the results. It is also possible in the case of PP to carry 

out Monte Carlo simulations to test the null hypothesis that, for a given number of samples 
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and variables, the measurements are drawn from a multivariate normal distribution. This 

can be done by evaluating the p-value of the optimized kurtosis as a function of the number 

of variables used. Note, however, that such a test cannot verify how a distribution differs 

from multivariate normality or be used to select the optimum number of variables to retain. 
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Figure 4.7 Scores plots for PP applied to different numbers of principal components 
extracted from the salmon data set. (a)-(g) Univariate minimizations of kurtosis: (a) four 
PCs, (b) five PCs, (c) six PCs, (d) eight PCs, (e) nine PCs, (f) fifteen PCs, and (g) fifty 
PCs. (h) Bivariate minimization of kurtosis, fifty PCs. (See legend in Figure 4.5.) 
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4.6.2 Speed and Convergence Reliability 

The algorithms presented in this work are simple and converge relatively quickly, 

but because kurtosis can exhibit multiple maxima and minima for a given data set, this 

raises the question of how confident one can be that global optima have been located and 

how many initial guesses should be used to increase this confidence to a reasonable level. 

Again, this will depend on the characteristics of the data set, but some insight can be 

obtained based on the data sets examined in this work. Figure 4.8 shows histograms of 

kurtosis values resulting from 1000 bivariate minimizations for the three experimental data 
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Figure 4.8 Distribution of solutions from minimization of bivariate kurtosis with 1000 
random initial guesses: (a) yogurt data, (b) salmon data, and (c) olive oil data. 

sets presented in this work, with the original variables used for the yogurt and olive oil data 

(Figures 4.8 (a) and (c), respectively) and seven latent variables used for the salmon data 

(Figure 4.8 (b)). Assuming that the smallest kurtosis value represents the global minimum 

(a reasonable assumption, but never guaranteed), the frequency at which this solution was 

located ranged from about 30% to about 80%. For the stepwise univariate method, the 

probability for the global minimum was taken to be the combined probabilities of finding 

the global minimum on the first step and the second step, and values were 5% (yogurt), 

23% (salmon) and 4% (olive oil). Note that lowest value, that for the olive oil, was 
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computed based on three steps, since successful separation required the first and third 

projection vectors. Results for maximizations were in similar ranges. If these results are 

taken as typical, and the probability of finding the global solution is pushed even lower to 

1%, the probability of not finding the global minimum is less than 37% with 100 initial 

guesses and less than 0.005% with 1000 initial guesses. A complete analysis of the 

convergence characteristics as they depend on the dimensionality of the space and the 

sample-to-variable ratio is beyond the scope of this work, but it is expected that as long as 

the latter is kept reasonably high, similar results should be obtained. 

Since multiple initial guesses are required with these algorithms, the convergence 

time for each guess is an important consideration. A comprehensive analysis of this would 

need to consider the dimensionality of the space, the number of points, the nature of the 

data, and the type of optimization. In lieu of this, representative times are given in Table 4.1 

for the three experimental data sets examined here, using the number of variables in the 

results presented. The times given are the total time for 1000 initial guesses, exclusive of 

loading and preprocessing of the data. The shifted algorithms were used for yogurt and 

salmon data and the ordinary algorithm was used for the olive oil data. 

Table 4.1 Comparison of computation times for 1000 initial guesses. 

Data set Optimization Algorithm Time (s) 

Yogurt min univariate (2) 28.6 
(125x15)  bivariate 239.2 
 max univariate (2) 7.2 
  bivariate 62.8 

Salmon min univariate (2) 10.8 
(74x7)  bivariate 87.1 
 max univariate (2) 25.9 
  bivariate 52.4 

Olive oil min univariate (3) 82.4 
(572x8)  bivariate 65.7 
 max univariate (3) 27.1 
  bivariate 79.6 

Of course, these times will be reduced by a factor of ten for the 100 initial guesses 

used for the results presented in this work. The times reported are reasonable for routine 

applications that do not involve extensive repetitions for cross-validation or Monte-Carlo 

studies. Generally, the convergence time is shorter for the stepwise univariate approach 
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than that for the bivariate algorithm, an exception being the minimization for the olive oil 

data. In this case, however, three projection vectors were extracted by the univariate 

algorithm, requiring additional time. 

4.6.3 Other Considerations 

A limitation of the results reported here is that all of the examples contained 

roughly the same number of samples in each class. Because of this, minimization of 

kurtosis is more likely to partition the data by class. As was demonstrated, the limiting case 

for the stepwise univariate approach is to push samples into narrow equally populated 

groups at the corners of a square, while the bivariate approach ultimately tries to project the 

samples evenly around a narrow ring to minimize kurtosis. Thus, the optimum solutions 

have to balance the number of samples within each class with the distribution of those 

classes. In cases where the number of samples per class is substantially unbalanced, this 

may produce unsatisfactory results. In such cases, the application of the maximization 

algorithms may provide more useful results, since the goal of maximization is to isolate a 

small number of samples that are relatively distant from the distribution represented by a 

majority of samples. Alternatively, using the stepwise algorithm, it should be possible to 

alternate minimization and maximization in subsequent steps to more effectively partition 

the samples in unbalanced studies. Finally, the use of skewness instead of kurtosis as a 

projection index may fit these situations and the algorithms presented can be readily 

adapted to optimize this index. 

For most of the cases presented here, the stepwise univariate and bivariate 

minimizations produced similar, but not identical, results. In any given case, one method 

may provide a somewhat cleaner or more rational separation of the data than the other, so 

the application of both is probably useful. If only one method is applied, however, the 

bivariate approach is probably more reliable since it considers the two projection directions 

simultaneously and is therefore less likely to generate redundant information, as was the 

case with the olive oil data. 

4.7 Conclusions 
Unsupervised exploratory data analysis has been dominated by PCA and 

hierarchical clustering methods which, despite their utility, do not always partition objects 
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in a manner that is interesting in the context of the problem at hand. PP has existed for 

many years and has the advantage of using distributional parameters as the criterion for 

choosing optimal projections. However, it is much less widely applied in chemistry largely 

because of the difficulty in implementing algorithms to effectively search the projection 

space. In this work, simple and efficient PP algorithms, referred to as quasi-power methods, 

for the optimization of kurtosis as a projection index have been proposed. The algorithms 

consist of a simple iterative procedure that requires only a few lines of code and no 

optimization of search parameters. The speed of convergence allows multiple runs with 

different initial guesses to increase the confidence that global optima have been found in 

quartic search space. In addition to simplicity and speed, the algorithms offer other options 

to increase their utility. Both stepwise univariate and multivariate approaches can be 

employed for projections into multiple dimensions, permitting slightly different 

perspectives on the same data. Moreover, kurtosis can be maximized or minimized with 

only small changes to the algorithm. Minimization of kurtosis is most effective for 

separating uniformly populated classes of objects, while maximization can be used to 

identify possible outliers or separating classes with unbalanced populations. Finally, except 

for mean centering, no preprocessing of the data, such as sphering or whitening, is required, 

unlike some other methods. 

The results presented here have demonstrated that, for both simulated and 

experimental data, PP with the quasi-power methods is effective for separating classes 

within the data and providing information that may not be evident from the application of 

PCA alone. Because PP is an unsupervised method, there can be more confidence that the 

resulting class separation reflects the true underlying data structure and is not the result of 

overfitting some model. However, because PP optimizes a distributional parameter that 

favors the appearance of clusters, one must be careful not to over-interpret the organization 

of the data in the absence of known classes. In particular, it is important to ensure that the 

ratio of samples to variables be kept relatively high for results to be meaningful, and some 

compression of variables by SVD or other methods may be necessary. In this work, useful 

results were obtained when this ratio was about ten or more, but this has not been 

rigorously examined. It is hoped that the demonstrated utility of PP based on kurtosis, 
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coupled with the availability of the simple and efficient algorithms reported here, will lead 

to the more widespread use of this method in the analysis of multivariate chemical data. 

4.8 Appendix 

4.8.1 Derivation of Learning Algorithms for Univariate Kurtosis 

Starting with the definition of univariate kurtosis for the projections of 

measurement vectors, x, onto the projection vector defined by v, 

2T T

1
2T T

n

i i
i

n
K

v x x v

v X Xv
, (4.25) 

the objective is to minimize or maximize K with respect to v by setting the partial 

derivatives to zeros. In many optimization problems, projection vectors are constrained to 

unit length and Lagrange multipliers are often introduced [30]. In PP, the projection vector 

v is generally chosen to be unit length as well. However, examination of Equation (4.25) 

shows that the length of the projection vector v does not affect the value of kurtosis. 

Therefore, the optimization of kurtosis in Equation (4.25) can be treated as an 

unconstrained optimization problem. Although the expression in Equation (4.25) seems 

complex, it actually simplifies the optimization because a Lagrange multiplier is not 

needed. Applying the Quotient Rule and Chain Rule to Equation (4.25) yields 

T T1 T T
T T 2T T
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2 2 3T T T T
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n ni i

i i i ii i

p
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K
v

v x x v v X Xvv x x v v x x vv v
v v X Xv v X Xv

,  (4.26) 

where K
v

 is the shorthand for the partial derivatives arranged in the vector form, which 

in some calculus textbooks is called the gradient vector and is denoted by the symbol “ ”. 

It is also known from vector calculus [30,31,32] that 
T T

T( ) 2i i
i i

v x x v x x v
v

, and  (4.27) 
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T T
T2

v X Xv
X Xv

v
.  (4.28) 

Substitution of Equations (4.27) and (4.28) back into Equation (4.26) gives  
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44
nn

i ii i i i
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nn
K

v x x v X X vv x x v x x v

v v X Xv v X Xv
. (4.29) 

Setting this equal to zero leads to  
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T T T T1
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i in
i

i i i i
i

v x x v
v x x v x x v X X v

v X Xv
, (4.30) 

where it has been assumed that the scalar term T Tv X Xv  is not zero. Replacement of the 

ratio on the right of Equation (4.30) with the scalar variable  (a function of v) yields 

T T T T

1

n

i i i i
i

v x x v x x v X X v . (4.31) 

In this work, it is assumed that TX X  and T T T

1

n

i i i i
i

v x x v x x  are both invertible. The 

assumption requires that in the data matrix X, the number of samples cannot be less than 

the number of variables. In case that there are more variables than samples, PCA can be 

applied and a small number of principal components can be used in place of the original 

data matrix. If TX X  is invertible, the matrix T T T

1

n

i i i i
i

v x x v x x  is generally invertible 

because if each row in X is multiplied by a scalar, the scaled matrix X multiplied by its 

transpose from the left will give T T T

1

n

i i i i
i

v x x v x x  and such scaling in general does not 

reduce the rank of the matrix. The optimization of kurtosis is the result of solving Equation 

(4.31) to find the solutions for v. 

It can be seen that there are no closed-form solutions for v in Equation (4.31), and v 

must be sought through iterative methods. With the assumption of invertibility, Equation 

(4.31) can be re-written in two ways: 

1T T T T

1

n

i i i i
i

X X v x x v x x v v , and (4.32) 
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1
T T T T

1

1n

i i i i
i

v x x v x x X X v v .  (4.33) 

The above expressions are similar to the standard eigenvalue problem and indicate that v 

can be found by the following learning algorithms that are reported in Section 4.2.1. 

1T T T T
1
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i

v X X v x x v x x v , and (4.34) 

1
T T T T

1
1
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k k i i k i i k
i

v v x x v x x X X v . (4.35) 

4.8.2 Convergence Interpretation 

The convergence to a maximum or a minimum for Equations (4.34) and (4.35) can 

be interpreted by following the same principle as in the power method. It can be seen that if 
TX X  is invertible, TX X  is positive definite since for any vector v, 

TT T 0v X Xv Xv Xv . Similarly, if the term T T T

1

n

i i i i
i

v x x v x x  is invertible, it is 

positive definite. Since both TX X  and T T T

1

n

i i i i
i

v x x v x x  are positive definite, they 

both have only positive eigenvalues. Obviously, both 
1TX X  and 

1
T T T

1

n

i i i i
i

v x x v x x  are positive definite and have only positive eigenvalues as well. It 

is also known that the product of two positive definite matrices has only positive 

eigenvalues [52]. This means that the matrices in Equations (4.34) and (4.35) have only 

positive eigenvalues.  

If the learning algorithm in Equation (4.34) is used for optimization, it can be 

assumed that, for any kv  in the iteration, the matrix 
1T T T T

1

n

i i i i
i

X X v x x v x x  has 

p positive eigenvalues 1 2, , ,  p , with 1 2 p  and p linearly independent 

eigenvectors: 1 2, , , pu u u  corresponding to the eigenvalues. The projection vector kv  

can be expressed as 1 1 2 2k p pc c cv u u u  with 1 2, , , pc c c  being scalar constants. 

The iteration process can be written as 
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where the relationship 
1T T T T

1

n

k i i k i i j j j
i

X X v x x v x x u u ( 1,2,...,j p ) has been 

used. Since 1 2 p , it can be seen that the updated projection vector vk+1 (scaled 

to unit length) gets closer to the dominant eigenvector u1 than vk. This means that after the 

iteration, the updated projection vector vk+1 moves towards the dominant eigenvector of 

the matrix. This trend is the same as in the power method. The difference from power 

method is that the matrix in this method is updated by the updated projection vector in each 

iteration, while the matrix in the power method is not. Kurtosis is a continuous function 

and the algorithm will lead to convergence to the dominant eigenvector of a matrix in 

which the projection vector itself is included. When convergence is reached, the projection 

vector corresponds to the largest eigenvalue of 
1T T T T

1

n

i i i i
i

X X v x x v x x . This is 

verified by applying the algorithm to many data sets, but a rigorous mathematical proof is 

highly desired. As the matrix contains the projection vector and both are updated in each 

iteration, the iterative algorithm cannot guarantee convergence to the projection vector 

corresponding to the global maximum, but to a local maximum of kurtosis. Which 

maximum is reached depends on the initial guess of the projection vector. 

Examination of Equation (4.34) reveals that if a maximum is reached by this 

learning algorithm, a maximum of kurtosis is found since T T T

1

n

i i i i
i

v x x v x x  reflects the 

fourth moment and 
1TX X  reflects the reciprocal of the variance. A maximum means a 

combination of a small variance and a large fourth moment. 

If the learning algorithm in Equation (4.35) is used, a similar interpretation follows 

as above. However, a significant difference should be mentioned. One might expect that, 
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with the iterative process, the projection vector will finally converge on the eigenvector 

corresponding to the largest eigenvalue of 
1

T T T T

1

n

i i i i
i

v x x v x x X X . However, this 

is not true, which might be because the projection vector is also employed in the inverse of 

T T T

1

n

i i i i
i

v x x v x x , leading to an opposite effect different from that of the projection 

vector on the right of 
1

T T T T

1

n

i i i i
i

v x x v x x X X . The result is that when convergence 

is reached, the projection vector does not correspond to the largest, but the smallest 

(generally but not always), eigenvalue of 
1

T T T T

1

n

i i i i
i

v x x v x x X X . Thus, when the 

convergence is reached, the projection vector based on the algorithms in either Equation 

(4.34) or Equation (4.35) generally corresponds to the largest eigenvalue of 

1T T T T

1

n

i i i i
i

X X v x x v x x . However, the learning algorithm in Equation (4.35) can 

be used to search for a minimum rather than a maximum for the kurtosis value. Again, 

when convergence is reached, the global minimum of kurtosis cannot be guaranteed. In the 

eigenvalue problem, the power method can be used to search for the largest eigenvalue (in 

magnitude) and the inverse power method can be used to search for the smallest eigenvalue 

(in magnitude). The learning algorithms proposed in Equations (4.34) and (4.35) can be 

regarded as generalizations of these, respectively.  

4.8.3 Derivation of Learning Algorithms for Multivariate Kurtosis 

Starting with the definition of multivariate kurtosis for the projections of 

measurement vectors, x, into the subspace defined by V, 
221 1T T T T T T T T

1 1
tr ,

n n

i i i i
i i

K n nx V V X XV V x V X XV V x x V  (4.37) 

the objective is to optimize K with respect to the projection subspace V. It can be seen from 

Equation (4.37) that the lengths and angles among the vectors in V do not affect the value 

of multivariate kurtosis, so the optimization of multivariate kurtosis can be treated as an 

unconstrained problem. To simplify the expression, let 
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T TA V X XV .  (4.38) 

Applying the Chain Rule [32] yields  
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Matrix calculus results [32] lead to 
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Substitution of Equation (4.40) back to Equation (4.39) gives 
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Setting this to be equal to zeros gives the result 
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Post-multiplying by A on both sides of the equation and rearranging the scalars yield 

T 1 T T T 1 T 1 T T T
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It is apparent that Equation (4.43) reduces to Equation (4.31) if V is a vector, so the 

latter is actually a special case of the former, as anticipated. Although the deviation for 

univariate kurtosis in Section 4.8.1 is different, the derivatives of univariate kurtosis can be 

obtained in the same way as for multivariate kurtosis.  

Obviously, there are no closed-form solutions for V in Equation (4.43), and V 

needs to be found through iterative methods. With the assumption of invertibility of TX X , 

rearrangement of Equation (4.43) gives the following two formulas: 
1

1T T 1 T T T 1 T T T

1 1

n n

i i i i i i i i
i i

V X X x VA V x x x V x VA V x V x x V A ,  (4.44) 
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Examination of these two equations reveals that the term 
1

T 1 T T T

1

n

i i i i
i

x VA V x V x x V A  in Equation (4.44) and the term 

1 T 1 T T T

1

n

i i i i
i

A x VA V x V x x V  in Equation (4.45) only change the basis for the 

subspace (a plane or a hyperplane) and the subspace itself does not change. As multivariate 

kurtosis is independent of the choice of the basis for a subspace, these two terms in the two 

equations are not necessary. The learning algorithms can be simplified to  
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where k is the iteration number and A is substituted by T T
i kV X XV  by Equation (4.38). 

4.8.4 Relationship to Peña and Prieto’s Algorithm 

The shifted algorithm proposed in this work for univariate kurtosis optimization 

has some similarities to the algorithm proposed by Peña and Prieto [15]. The two methods 

share some common features, such as the use of the first-order derivative in the derivation 

and iterative search methods in the optimization. At the core of the algorithms, the 

equations to be solved are essentially the same (Equation (4.32) in this work and their 

unnumbered equation following Equation (12)). However there are some important 

differences, as described below. 

The derivation of Peña and Prieto starts with sphered data, leading to a constrained 

problem requiring the projection vector to have a unit length. This removes the 

denominator in Equation (4.25) in this work and simplifies the problem. The solution in 

this work is unconstrained and does not require the projection vector to have unit length. 

This makes the problem more complicated, but more general. Sphering of the data changes 

the projections. Sphering may be used for the algorithms in this work, but must be used for 

the algorithm of Peña and Prieto. 
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For maximization of univariate kurtosis, Peña and Prieto solve the problem using 

Lagrange multipliers, requiring an iterative decomposition of a weighted covariance 

matrix to find the eigenvector with the largest eigenvalue. The method in this work 

imposes a direct iterative solution of the unconstrained problem based on a generalization 

of the power method.  

Peña and Prieto do not explicitly describe methods for kurtosis minimization and 

the author of this thesis was not able to successfully implement their method for this 

purpose based on their description. Also, they do not extend their method to the 

optimization of multivariate kurtosis.  

Finally, the methods proposed in this work allow the use of shifted algorithms for 

numerical stabilization. 

4.8.5 Relationship to the Fixed-Point Algorithm 

The algorithms proposed in this work are also close to the fixed-point algorithm 

and its variants [19,23,25,26,27,28]. The fixed-point algorithm and its variants are also 

based on the derivatives and are iterative methods. However some important differences 

are worth noting.  

The fixed-point algorithm generally works on sphered data [19,23] although some 

of its variants for non-sphered data [25,26,28] have been proposed. Sphering seems to 

simplify the expression of kurtosis, but changes the unconstrained optimization problem 

to a constrained optimization problem, which actually makes the optimization more 

complicated. The algorithms proposed in this work do not require that the data are 

sphered and sphered data can be regarded as a simplified case in this work.  

The fixed-point algorithm includes the “-3” in the definition of univariate kurtosis, 

which is not included in the kurtosis definition in this work. The fixed-point algorithm 

proposed in the original work [23] can be written as 

3T
1

1

1 3
n

k i k i k
in

v x v x v ,  (4.48) 

which is similar to the shifted learning algorithm in Equation (4.12) in this work. In 

Equation (4.12), c is required to be a positive number, but in their algorithm (Equation 

(4.48)), “-3” is negative. Due to the introduction of the negative number “-3”, the search 

for a maximum or a minimum of kurtosis may be subject to complications. In other 
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words, if one wants to search for a maximum of kurtosis, a minimum may be found. This 

has led to the modifications to choose a step size for the fixed-point algorithm [27,28]. 

However, optimization of step size makes the problem more difficult.  

The third major difference between the fixed-point algorithm and the proposed 

algorithms in this work relates to the simultaneous extraction of more than one projection 

vector. In the iteration process, the fixed-point algorithm searches for individual 

projection vectors and then uses symmetric orthogonalization to make them mutually 

orthogonal [19,23,25,26]. If the data are sphered and there are two projection vectors, 

denoted by 1 2V v v , to be extracted, the fixed-point algorithm actually optimizes 
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x v v x x v v x

x v v x x v v x
 (4.49) 

For the algorithms proposed in this work, multivariate kurtosis is used as the 

objective function. If the data are sphered, the objective function (multivariate kurtosis) 

can be expressed as 

2T T

1
,

n

i i
i

K n x VV x   (4.50) 

which can be re-written as  
2T T T

1 1 2 2
1
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n

i i
i
n

i i i i
i

K n

n

x v v v v x

x v v x x v v x
  (4.51) 

Disregarding the constant n , it is obvious that the objective functions optimized by the 

fixed-point algorithm and multivariate kurtosis in this work are different. The two 

objective functions might give similar results in some cases, but differences are expected in 

general. It can be seen that the objective function optimized by the fixed-point algorithm is 

essentially the sum of two univariate kurtoses. The objective function is not rotationally 

invariant; that is, rotation of the coordinate axes will lead to a different value. Multivariate 

kurtosis is rotationally invariant and is expected to give a different result from the sum of 

two univariate kurtoses. 
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Chapter 5: Development of Regularized Projection 
Pursuit for Data with a Small Sample-to-Variable Ratio 

5.1 Introduction 
For multivariate data analysis in chemistry and many other areas, exploratory data 

analysis [1,2] is often the initial and important step to extract information from the data. As 

discussed in Chapter 4, projection pursuit (PP) is an important method for exploratory 

data analysis and often outperforms principal component analysis (PCA). PP has not been 

widely used in chemistry compared with PCA or other methods of clustering analysis. 

This is largely due to the complexity and optimization difficulty of the projection indices. 

Among the different projection indices, kurtosis is relatively simple and has the property of 

affine invariance in the sense that scaling and translation do not affect its value. Chapter 4 

of this thesis reported new methods to optimize kurtosis as a projection index that have 

been published in reference [3]. These methods improve the utility of PP and make one 

variant of the projection pursuit technique readily adaptable to different applications. It 

was demonstrated in that work that the results obtained by PP show significant 

improvement over PCA when the number of samples is large compared to the number of 

variables.  

When the sample-to-variable ratio is small, minimization of kurtosis can still 

separate the samples into different clusters, but the separation is often meaningless because 

it does not reflect real underlying factors but is the result of random associations of 

samples in a high-dimensional variable space. In other words, because the number of 

variables is relatively high, the samples can be clustered in the subspace spanned by the 

projection vectors (projection directions), but this subspace is not related to a meaningful 

data structure. This is similar to the over-fitting problem in regression analysis [4] and 

linear discriminant analysis [5,6], where the training data fit the model very well, but the 

model has poor predictive performance. One reason for the over-fitting problem in 

regression and linear discrminant analysis is the small sample-to-variable ratio, which also 

causes problems for kurtosis used as a projection index.  

The “over-fitting-like” problem for kurtosis as projection index requires many 

more samples than variables to give meaningful results. However, today’s experiments 
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often have fewer samples but more variables, so the sample-to-variable ratio is small. One 

possible solution to this problem is to choose fewer variables, but the selection of these 

variables is generally difficult and the variables that contain useful information may be 

excluded. Another possible solution is to apply PCA to reduce the dimensionality of the 

data and to use a small number of principal components of PCA for PP. This works for 

some situations [3], but is subject to potential loss of useful information that is not 

contained in the first few principal components. In general, the small sample-to-variable 

ratio limits the utility of PP and the advantage of PP over PCA is diminished. 

In this work, a new alternative projection pursuit method using regularized kurtosis 

as a projection index, referred to as regularized project pursuit (RPP), is proposed. It is 

designed to deal with data that have a small sample-to-variable ratio and to solve the 

“over-fitting-like” problem. Its optimization algorithms are based on slight modifications 

of the quasi-power methods [3]. The proposed RPP is applied to simulated and 

experimental data and the results show that the “over-fitting-like” problem can, to a great 

extent, be solved to discover meaningful information that cannot be obtained through PCA 

or ordinary PP.  

5.2 Background 
Regularization [7,8] is a technique that is widely used in many methods to solve the 

ill-posed problems. Typical applications include ridge regression (RR) [5,9,10,11,12] and 

regularized discriminant analysis [13,14]. For a multiple linear regression problem 

Xy ,

where y represents the response variable, X denotes the regressor variables,  designates

the regression coefficients, and  indicates the error term. The estimator ( ) for the 

regression coefficients through the least squares method is given as 

yXXX T1T .

This estimator is unbiased, but the estimated regression coefficients are very unstable if 

high multicollinearity exists in X. This is because XTX is ill-posed in the sense that (XTX)-1

is very sensitive to changes in X. In the extreme case, when the number of variables is 

greater than the number of samples, XTX will be singular and the inverse cannot be 

calculated. These problems can be mitigated by adding a positive number, kR, called 
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biasing or ridge parameter (normally small), to the diagonal elements of XTX and the 

regression coefficients can be estimated through the biased estimator ( R ) called ridge 

estimator 

yXIXX T1
R

T
R k ,

where I is the identity matrix. This regularized regression method is labeled “ridge 

regression”. The benefit of ridge regression is that the estimated regression coefficients 

become much more stable at a small expense that the estimator is biased. The ridge 

estimator has an important interpretation from the Bayesian point of view [5, 15 ]. 

Statistically, if it is assumed that there is a priori information for  and  follows a 

multivariate normal distribution with mean 0 and covariance matrix 2( )k I

( 2( , ( ) )N k0 I ), maximizing the a posteriori probability leads to the ridge regression 

solution. The ridge regression is in accordance with the maximum a posteriori

probability while the normal multiple linear regression follows the principle of maximum 

likelihood.

Another important application of regularization is for regularized discriminant 

analysis. For linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA) 

[16], when the sample size is small compared to the number of variables, the within-group 

covariance matrices estimated from samples will highly variable. If the number of samples 

is smaller than the number of variables, the within-group covariance matrices will be 

singular and LDA or QDA cannot be used directly. Either case represents an ill-posed 

problem. A key aspect of the solution to the problems is to regularize the within-group 

covariance matrices by adding a positive number to the diagonal elements of the matrices, 

which is similar to the method in ridge regression.  

Regularization is also used in other methods, such as support vector machine (SVM) 

[17], the least absolute shrinkage and selection operator (LASSO) [18], maximum 

likelihood principal component analysis (MLPCA) [19], and regularized independent 

component analysis (ICA) [20]. Application of regularization in supervised methods (e.g.

regression and discriminant analyses) also helps to mitigate the over-fitting problem [5] 

and improves the predictive performance of models.  
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In general, regularization can be regarded as introduction of a penalty term to the 

objective function. In many situations, the regularization term can also be interpreted as 

imposing a priori information on the model from Bayesian point of view and/or the 

addition of random noise [21].  

5.3 Theory 

5.3.1 Regularized Univariate Kurtosis 

For a multivariate data set X with n samples and p variables, PP looks for a unit 

length projection vector v such that the kurtosis (K) of projected data onto this projection 

vector is optimized, expressed mathematically as 

2T T

1
2T T

n

i i
i

n
K

v x x v

v X Xv
, (5.1) 

where it is assumed that the data have been mean-centered and a sample measured on p

variables is denoted by ix  [3]. The quasi-power methods show that maximization and 

minimization of kurtosis can be implemented through 

1T T T T
1

1

n

k k i i k i i k
i

v X X v x x v x x v , and  (5.2) 

1
T T T T

1
1

n

k k i i k i i k
i

v v x x v x x X X v ,  (5.3) 

respectively, where the symbol “ ” means that the right-hand terms are calculated and 

replace the left-hand terms at each iteration, and k stands for the iteration number. It can be 

seen that the algorithm in Equation (5.2) involves the inverse of the matrix XTX and the 

algorithm in Equation (5.3) involves the inverse of the matrix T T T

1

n

k i i k i i
i

v x x v x x . When 

the sample-to-variable ratio is small, both matrices tend to be ill-posed and their inverses 

may become very sensitive to the changes in X, which causes the obtained projection 

vector v to be highly uncertain and PP fails to reveal meaningful data structure. 

Mathematically, the ill-posed problems in PP are the same as those in ridge regression and 

regularized discriminant analysis. Following an idea similar to the regularization in ridge 

regression, the regularized kurtosis used as a projection index is proposed as 
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2T T

1
R 2T T

n

i i i
i

n
K

v x x I v

v X X I v
, (5.4) 

where I is the identity matrix with 
Ttr i i

i p
x x

, and (5.5) 

Ttr
p

X X
,  (5.6) 

respectively. The notation, , denote a non-negative quantity called the “regularization 

coefficient” in this work, and tr is the trace operator. Introduction of the regularization 

terms iI and I in Equation (5.4) sets lower bounds for the fourth moment (numerator) and 

the squared variance (denominator) terms and can be interpreted as additions of white 

noise to the measurements. For the data matrix X, if the sample size is small, it is very 

likely to find a direction such that the projected data onto this direction have very small 

values for the variance and the fourth moment. In theory, both the variance and the fourth 

moment have lower bounds and it is impossible for them to be very small. This is because 

there are always errors (e.g. sampling errors and measurement errors) associated with the 

observed data and these errors will be propagated into the projected data and set lower 

bounds for the variance and the fourth moment. When the sample size is large, it is less 

likely to get small values for them. When the sample size is small, it is more likely to get 

very small values for the fourth moment and the variance. Because the very small values 

are not good estimates of the true values, i.e., over-estimated values, the fourth moment 

and variance should be offset by regularization terms which are interpreted as random 

noise in this work. If the errors are assumed to be independent, the error variance will be 

positive and the error covariance will be zero. This is reflected in iI and I, with their 

off-diagonal elements being zeros in Equation (5.4). Introduction of the regularization 

terms prevents the variance and the fourth moment of the projected data onto any direction 

from being too small and thus reduces the possibility of the projection vectors to be 

unreasonably estimated. 

Optimization of the regularized kurtosis can be performed by adapting the 

quasi-power methods [3] with slight modifications. As iI and I in Equation (5.4) are not 
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functions of v, the derivative of the regularized kurtosis with respect to v can be expressed 

as  

2T T TT T T

11R
2 3T T T T

44
nn

i i ii i i i i i
ii

nn
K

v x x I v X X I vv x x I v x x I v

v v X X I v v X X I v
 (5.7) 

by following the same procedure as for the quasi-power methods and using the calculus 

results [22 ,23]. Setting this to zero followed by the similar rearrangement in the 

quasi-power methods gives the following learning algorithms 
1

T T T T
1

1

n

k i i i i i i k
i

v v x x I v x x I X X I v , and  (5.8) 

1T T T T
1

1

n

k i i i i i i k
i

v X X I v x x I v x x I v   (5.9) 

for minimization and maximization of kurtosis, respectively. The terms TX X I  in 

Equation (5.8) and T T T

1

n

i i i i i i
i

v x x I v x x I  in Equation (5.9) do not involve 

inversion and the solution of v is not very sensitive to them; therefore, regularization of the 

two terms is actually not very important and thus the algorithms can be simplified to 
1

T T T T
1

1

n

k i i i i i i k
i

v v x x I v x x I X X v , and  (5.10) 

1T T T T
1

1

n

k k i i k i i k
i

v X X I v x x v x x v .  (5.11) 

The simplified forms actually show that for the purpose of minimization of kurtosis, only 

the regularization term iI in the numerator of Equation (5.4) is needed, and for the 

purpose of maximization of kurtosis, only the regularization term I in the denominator 

of Equation (5.4) is required. The simplification reduces the computation steps in the 

iteration and speeds up the convergence of the algorithms. Ignorance of the term I for 

Equation (5.10) also gives a new interpretation of the algorithm. It can be seen that if iI is 

very large, the matrix T T T

1

n

i i i i i i
i

v x x I v x x I  will be close to the identity 

matrix multiplied by a large scalar, and the regularized kurtosis value is largely determined 
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by the variance term XTX. Thus, minimization of the regularized kurtosis essentially 

becomes maximization of the variance and RPP reduces to PCA. 

Regularization of the matrices in Equations (5.10) and (5.11), to some extent, 

changes the condition number and makes the algorithms more stable. However, because 

the matrices still may not be well-posed, the shifted learning algorithms which are 

analogues of those in the power methods or the quasi-power methods [3] are recommended 

for the optimization of the regularized kurtosis. These shifted algorithms can be expressed 

as
1

T T T T
1

1

n

k i i i i i i k
i

cv v x x I v x x I X X I v , and  (5.12) 

1T T T T
1

1

n

k k i i k i i k
i

cv X X I v x x v x x I v   (5.13) 

for minimization and maximization of kurtosis, respectively, where c can be chosen as a 

fraction of the traces of the first terms in the outmost brace brackets in Equations (5.12) and 

(5.13), respectively.  

To extract two or more orthonormal projection vectors, the deflation method used 

in the quasi-power methods can be applied. After deflation, singular value decomposition 

(SVD) [24] can be used to reduce the dimensionality of the deflated data matrix to its rank. 

This is also applicable to the original data. If the original data have more variables than 

samples, using SVD to reduce the dimensionality to the rank of the data matrix and 

working on the low-dimensional data are recommended. This is because dimensionality 

reduction to the rank of the data matrix does not lose any information but it is 

computationally more efficient when a lower-dimensional matrix is used. If some prior 

knowledge about the original data is known, reducing the dimensionality of the original 

data matrix to a dimension lower than its rank is also safe to retain the useful information.  

5.3.2 Regularized Multivariate Kurtosis 

Multivariate kurtosis can be regularized by following the same principle as for 

univariate kurtosis. The regularized multivariate kurtosis is defined as 
21T T T T

R
1

tr ,
n

i i i
i

K n V X X I V V x x I V   (5.14) 
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where V is an orthonormal basis for the subspace (a plane or a hyperplane) and i and  

follow the same definitions as in Equations (5.5) and (5.6). It is also assumed that the data 

have been mean-centered. Following the same derivation steps as in the quasi-power 

methods [3] and using the calculus results [23], the derivatives of regularized multivariate 

kurtosis with respect to V can be expressed as 
1T T T T

1 1R T T T T T T T

1
1T T T

tr  

4
   

i i i

n

i i i
i

i i i

K n

V X X I V V x x I V

X X I V V X X I V V x x I V V X X I VV

x x I V V X X I V

. (5.15) 

To simplify the expression, let 
1T T T T=tri i i ia V X X I V V x x I V .  (5.16) 

Note ai is a scalar. Setting RK
V

 to zero, followed by rearrangement yields 

1T T T T T T
i i

1 1

n n

i i i i i i
i i

a ax x I V X X I V V X X I V V x x I V . (5.17) 

To further simplify the expression, let 
1T T T T

i i i iB V X X I V V x x I V .  (5.18) 

Note Bi is a matrix. Then Equation (5.17) becomes 

T T
i i

1 1

n n

i i i i
i i

a ax x I V X X I V B .  (5.19) 

Following the same idea in the quasi-power methods, the following learning algorithms 

for minimization and maximization, respectively are obtained: 
1

T T
1

1 1

n n

k i i i i k i i
i i

a aV x x I X X I V B , and (5.20) 

1
1T T

1
1 1

n n

k i i i i k i i
i i

a aV X X I x x I V B .  (5.21) 

As
1

n

i i
i

a B  only changes the basis but does not affect the subspace, it can be dropped 

in the iteration. Following the same reason as for Equations (5.10) and (5.11), the terms 

I in Equation (5.20) and iI in Equation (5.21) do not involve matrix inversion and are 
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ignored. The term ai is replaced by Equation (5.16). Thus, the above algorithms in 

Equations (5.20) and (5.21) are simplified as 
1

1T T T T T T
1

1
tr

n

k i i i i i i k
i

V V X XV V x x I V x x I X X V , and (5.22) 

11T T T T T T
1

1

tr
n

k i i i i k
i

V X X I V X X I V V x x V x x V . (5.23) 

For the same reason that the matrices may not be well-posed, the shifted algorithms 

corresponding to those in the power methods or quasi-power methods [3] are proposed as 
1

1T T T T T T
1

1
tr

n

k i i i i i i k
i

cV V X XV V x x I V x x I X X I V , and (5.24) 

11T T T T T T
1

1
tr

n

k i i i i k
i

cV X X I V X X I V V x x V x x I V  (5.25) 

for minimization and maximization, respectively, where c can be chosen as a fraction of the 

traces of the first terms in the outmost brace brackets in Equations (5.24) and (5.25), 

respectively. 

The above optimization algorithms are the straightforward extensions of the 

quasi-power methods [3] that have been introduced in Chapter 4. In Section 5.3.1 and this 

section, although the algorithms for maximization are presented, minimization of kurtosis 

to reveal clusters is more important. Thus, the rest of this chapter will focus on 

minimization of kurtosis and ignores the results of maximization. 

5.3.3 Choice of the Regularization Coefficient  

Probably the most controversial issue related to regularization techniques is the 

choice of a suitable size for the regularization parameter. In this work, it relates to the 

determination of the regularization coefficient, , defined in Equations (5.5) and (5.6). For 

ridge regression, some methods to choose the biasing parameter involve the residual mean 

squares, but these cannot be used in this work because PP is an unsupervised technique. 

However, the ridge trace method that is used in ridge regression [9,10,12] can be adapted 

as an indicator to determine the suitable size of the regularization coefficient. 

A ridge trace is a plot of the regression coefficients versus the biasing parameter in 

ridge regression. When the biasing parameter increases, the regression coefficients will 
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change as well. It is recommended in ridge regression that the biasing parameter should be 

chosen to correspond to the region where the regression coefficients change slowly and 

become stable.  

By analogy, the coefficients of the projection vectors (or projection matrix for 

multivariate kurtosis hereinafter) versus the regularization coefficient  can be plotted to 

determine the suitable size of . As changing the orientation of the projection vector to its 

opposite direction does not affect the kurtosis value but the signs of the coefficients of the 

projection vector found will change, it is necessary to adjust the signs of projection vector 

coefficients to keep consistency so that the signs will not lead to discontinuities in the 

curves in the ridge trace plot. For the ridge trace plots in this work, the first non-zero 

element of each projection vector was forced to be positive and the signs of other elements 

were adjusted with respect to the sign of the first non-zero element accordingly.  

The introduction of the ridge trace plot to determine the regularization coefficient is 

based on the following interpretation for minimizing kurtosis. If samples are drawn from 

different populations that are separable, the direction that effectively separates different 

classes of samples is more likely to account for a large variance. In other words, if the data 

are projected onto this direction, the variance of the projected data is more likely to be large. 

This is actually the underlying principle explaining why PCA is often able to find 

directions to reveal clusters. If a direction is not effective for revealing class separation but 

gives a small kurtosis of the projected data, the variance accounted by it is more likely to be 

small. For regularized univariate kurtosis, the regularization term iI is introduced in the 

fourth moments. If the variance accounted by a direction is large, the regularization term 

iI will affect the kurtosis relatively less. With the increase of the regularization coefficient 

, the direction of the projection vector is more likely to vary smoothly and slowly. On the 

other hand, if the variance accounted by a direction is small, the regularization term iI will 

affect the kurtosis dramatically. A small increase of the regularization parameter  may 

quickly change the direction to a very different one. Reflected in the ridge trace plot, it is 

more likely that the coefficients of the projection vector with the small kurtosis will show a 

smooth pattern if the direction is a good one to reveal clusters and a disorderly pattern if the 

direction is not. The same interpretation can be used to understand the regularization 

coefficient for regularized multivariate kurtosis. 
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In practice, it is necessary to choose  large enough to solve the ill-posed problem 

and make the projection vector more stable, but choosing a value of  that is too large may 

reduce the sensitivity of the method and its ability to find good projection vectors. It is 

recommended that  be varied between 0 and 1 with an increment of 0.05 and the ridge 

trace plot examined as a function of . If the coefficients of the projection vector follow a 

smoothly changing pattern and change slowly at some value of , this value is 

recommended for . Depending on the data, different values for  may be tried to determine 

if an interesting data structure can be found. It is worth noting that, because kurtosis 

generally has multiple local optima and the algorithms cannot guarantee the global optima 

based on one search, it is necessary to have enough initial guesses to find the global 

optimum so that the ridge trace plot does not show a disorderly pattern caused by finding 

different local optima.  

5.4 Experimental 

5.4.1 Computational Aspects 

All calculations were implemented by using programs written in MatLab® v.7.4.0 

(MathWorks, Natick, MA) under Windows XP® on a 1.8 GHz computer with 3 Gb of 

memory.  

5.4.2 Simulated Data 

The simulation study in this work includes individual data sets and group data sets. 

The first individual data set, referred to as data set 1, is used to evaluate the proposed ridge 

trace method for determining the suitable size of the regularization coefficient, . This data 

set included a total of 30 samples evenly divided into two classes with 29 variables. The 

data of the two classes were assumed to follow a multivariate normal distribution. The 

population means for the first variable of the two classes were set to -1.5 and 1.5, 

respectively and the population means of all other variables for the two classes were set to 

0’s. The population covariance matrices for both classes were set to be the same and 

diagonal. The first diagonal element was set to 0.2. Other diagonal elements were 

simulated by generating 28 random numbers from the standard normal distribution N (0,1), 

taking the squares of them, and adding 0.1 to the squared values. Addition of 0.1 set a 

lower bound so that the variances were not too small. Based on the setting, class separation 
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occurred on the first variable. After the data were randomly drawn from the two 

populations, the measurement vectors were rotated using a 29 x 29 rotation matrix which 

was created by applying SVD to a randomly generated data set. The rotated data were 

mean-centered before analysis by PCA, PP, and RPP. 

To evaluate whether the improved performance of RPP over PP and PCA is the 

general case, 100 data sets, designated as group data set 1, were generated by following the 

same procedure as for data set 1. The sample size, dimensionality of data, population 

parameters, rotation matrix, and preprocessing steps were all unchanged, except that 

samples were randomly drawn for 100 times to simulate 100 different data sets.  

As an extension for two-class case, a second individual data set consisting of three 

classes, referred to as data set 2, was simulated. This data set also included 30 samples in 

a 29-dimensional space, with equal number of samples drawn from each of the three 

classes. The three class centers were set to  
T

1 2 1.16 0 0 0 0 0 0 0 0 ,

T
2 2 1.16 0 0 0 0 0 0 0 0 , and 

T
3 0 2.3 0 0 0 0 0 0 0 0 ,

respectively. The covariance matrices for the three classes were set to be the same and 

diagonal. The first two diagonal elements were set to 0.1 and the remaining 27 diagonal 

elements were randomly drawn from the standard normal distribution N (0,1) followed by 

taking the squares of them. To avoid too small values, 0.2 was added to each of the 27 

generated values. Samples were then randomly drawn based on these parameters (class 

means and covariance matrix). The simulated data were rotated by using a 29 x 29

rotation matrix created by applying SVD to a randomly generated data set. The rotated data 

were then mean-centered.  

A second group consisting of 100 data sets, designated as group data set 2, was 

simulated by using the same parameters and following the same procedure as for 

individual data set 2. The 100 data sets represent 100 realizations of the same population 

parameters and simulation steps. 
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5.4.3 Experimental Data 

Three experimental data sets were used in this work to demonstrate the 

performance of the proposed RPP. The first data set, referred to as the soybean data, was 

downloaded from the website of UCI Machine Learning Repository [25]. The original 

work [26] aimed to select descriptors (variables) that contained sufficient information to 

diagnose soybean diseases in terms of macrosymptoms without using sophisticated 

mechanical assistance. The original study included 35 plant and environmental descriptors 

(such as plant stand, precipitation, and occurrence of hail for environmental descriptors, 

and leaf spot size, stem cankers, and seed size for plant descriptors), and 19 classes 

(diseases). A detailed list of the descriptors can be found in reference [26]. Actually, only 

15 classes were used because the last four classes had too few samples. The website of UCI 

Machine Learning Repository also provided a small data set including four classes, which 

is a subset of the original data set [26]. The small data set contained 47 samples (10 

samples for diseases 1, 2, and 3, respectively and 17 samples for disease 4) and 35 

variables. The data included discrete variables. Some variables were not discriminatory. In 

other words, the values were the same for all the samples. In the work presented here, this 

small soybean data set was used because it had a small sample-to-variable ratio.  

The second data set, referred to as the glomerulonephritis data, consisted of 1H

NMR spectral data of urine samples from glomerulonephritis patients and healthy people. 

The original study investigated the correlation between histopathologically accessed 

tubulointerstitial lesions and the urinary metabolites profiles by 1H NMR [27]. The original 

data included 80 1H NMR spectra from patients with mild, moderate, and severe 

glomerulonephritis and 85 1H NMR spectra from healthy people. The data set used in this 

work was a subset of the original data which consisted of 25 spectra from patients with 

severe glomerulonephritis and 25 spectra from healthy people. This subset was selected in 

the course of a metabolomics study and was used as an example to demonstrate 

metabolomic data analysis [28]. The spectra were binned with equal bin width of 0.04 ppm 

in the chemical shift range of 0.2 to 10.0 ppm. The range between 4.38 and 6.30 ppm was 

excluded to remove the effects from suppression of water resonance or solvent exchanging 

protons, resulting in a 50 x 200 matrix. As this data set also had a small sample-to-variable 

ratio, it was chosen in this work to test the performance of RPP. 
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The third data set, designated as the cow diet data, was obtained from the 

metabolomics study of diary cows fed with increasing proportion of barley grains [29]. The 

diary cows were fed with increasing proportions of rolled barley grain (0%, 15%, 30%, and 

45% on the dry matter basis) for a period of 11 days to adapt to the experimental diets and 

in the next 10 days, rumen fluid samples were collected. The samples were analyzed by 1H

NMR and 46 metabolite compounds were identified and their concentrations were 

measured. One more compound, endotoxin, was measured by the pyrochrom limulus

amebocyte lysate assay [30]. The final data set included 47 variables and 39 samples for 

different proportions of barley grain (9 samples for 0% barley grain and 10 samples for 

15%, 30%, and 45% barley grain, respectively). 

For all the data sets, either simulated or experimental, if the number of variables 

was larger than the mathematical rank of the data matrix, SVD was applied and the scores 

were truncated to a dimensionality equal to the rank and used for analysis. For all the 

minimization searches by PP and RPP, the shifted algorithms were used with 200 random 

initial guesses. For the ridge trace plots of RPP, the regularization coefficient , either for 

univariate or multivariate kurtosis, varied from 0 to 1 with an equal increment of 0.05. 

Although SVD was applied if the dimensionality of the data was larger than the rank, the 

coefficients of projection vectors in the original spaces were used in the ridge trace plots. 

5.5 Simulation Results 

5.5.1 Data Set 1 

For the first set of the simulated data, Figure 5.1 (a) shows the profiles of the 

mean-centered data and Figure 5.1 (b) shows the PCA scores plot. It can be seen that PCA 

shows some separation of the two classes of samples but the separation is not clear. The 

scores plot of PP with stepwise univariate approach is shown in Figure 5.1 (c). Although 

the samples are clustered into four quadrants, the clustering does not match the class 

separation, showing PP fails to give meaningful results. This is typical for data with a low 

sample-to-variable ratio, which is similar to the over-fitting problem in supervised methods. 

It is worth noting that the ranges of scores for PP, either the first or the second, are quite 

small, indicating that projection vector direction is possibly over-estimated. For RPP with 

stepwise univariate approach, it is necessary to choose the suitable size for the 
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regularization coefficient . The ridge trace plot for the first projection vector is shown in 

Figure 5.1 (d). It can be seen that when  changes from 0 to 0.05, the projection coefficients 

change dramatically, indicating the projection vector changes from one direction to another. 

When  > 0.05, the coefficient changes become smoother, and thus  was chosen as 0.1 for 
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Figure 5.1 Results of data set 1 (PP methods: univariate approaches). (a) Sample data 
profiles, (b) PCA scores plot, (c) PP scores plot (stepwise univariate approach), (d) ridge 
trace plot for the 1st projection vector coefficients, (e) ridge trace plot for the 2nd 
projection vector coefficients, and (f) RPP scores plot (stepwise univariate approach). 

the first projection vector. The ridge trace for the second projection vector (based on  = 0.1 

for the first projection vector) is shown in Figure 5.1 (e). It can be seen there are several 

dramatic changes happening. This is probably because the first projection vector has 

accounted for the major separation of the classes, and the separation in the second direction 
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is due to chance of sampling. In theory, it may also be because the global minimum is not 

hit when the number of initial guesses is not large enough. The  value was chosen as 0.4 

because the change of the second projection vector is relatively smooth when  > 0.4. The 

scores plot from the stepwise univariate approach based on the above regularization 

coefficients is shown in Figure 5.1 (f). It can be seen that samples from the two classes are 

clearly separated along the first projection vector. Samples are also separated along the 

second projection vector, but this separation is artificial and forced by the algorithm. 

However, the clustering from RPP with the stepwise univariate approach does give more 

meaningful results than those from PCA and PP. 
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Figure 5.2 Results of data set 1 (PP methods: bivariate approaches). (a) PP scores plot 
(bivariate approach), (b) ridge trace plot for the 1st projection vector coefficients, 
(c) ridge trace plot for the 2nd projection vector coefficients, and (d) RPP scores plot 
(bivariate approach). 

The scores plot of data set 1 from PP with the bivariate approach is shown in Figure 

5.2 (a). It can be seen that samples are pushed to the edge of the circle and samples from the 

two classes are not well separated, as expected. For RPP of bivariate approach, the ridge 

trace plots for the two projection vectors are shown in Figures 5.2 (b) and (c), respectively. 

It can be seen that when the regularization coefficient, , is smaller than 0.3, the projection 
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vector coefficients change quickly, presenting a disorderly pattern. When the 

regularization coefficient is larger than 0.3, the projection vector coefficients still change, 

but the change shows a smooth pattern. Note that for the bivariate approach, the two 

projection vectors are determined simultaneously. Based on the ridge trace plots shown in 

Figures 5.2 (b) and (c), the regularization coefficient  was chosen as 0.3, and the scores 

plot is shown in Figure 5.2 (d). Although the data points are still located on the edge of a 

circle, the samples from the two classes have a good separation. The ranges of scores also 

become much larger than those in Figure 5.2 (a). Obviously, a different subspace has been 

found.

5.5.2 Group Data Set 1 

In Section 5.5.1, data set 1 is used to demonstrate the performance of RPP over 

PCA or PP. However, it is necessary to examine whether the better performance of RPP is a 

general case or an anomaly. Group data set 1, consisting of 100 data sets, has been used to 

explore the answer. For data set 1, it was found that when  > 0.05 for the first projection 

vector of the stepwise univariate approach, and  > 0.3 for the bivariate approach, the 

projection vector coefficients changed smoothly. For group data set 1, without choosing 

the regularization coefficients for the 100 data sets using the ridge trace plots individually, 

the regularization coefficients were arbitrarily chosen as 0.5 for the univariate and bivariate 

approaches for all the 100 data sets. Although this may not always be optimal, it allowed 

the calculation to be carried out efficiently by exploiting observed characteristics of  for 

these data. 

As it is not an efficient way to show hundreds of scores plots for the 100 data sets, 

the quality of class separation in the two-dimensional scores plot was evaluated by the 

generalized Fisher’s discriminant value (F) [31] which can be expressed as 

tr( )F -1
w bS S ,

where Sw and Sb are the within-class covariance matrix and between-class covariance 

matrix, respectively. This statistic has been used in Chapters 2 and 3. The larger the F

value is, the better the separation. The logarithms (base 10) of the F values obtained 

through stepwise univariate RPP (RPP-UNI), stepwise univariate PP (PP-UNI), 

multivariate RPP (RPP-MULTI), multivariate PP (PP-MULTI), and PCA are shown in 

Figure 5.3. It can be seen that for most of the data sets, RPP with stepwise univariate 
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approach gives higher F values than PP (univariate and multivariate) and PCA. The RPP 

with multivariate approach also gives larger F values than PP and PCA in general. The 

results showed that the better performance of RPP is a general but not a special case. 
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Figure 5.3 Plots of the logarithms of the generalized Fisher’s discriminant values based 
on different methods for group data set 1.  

5.5.3 Data Set 2 

The results in Sections 5.5.1 and 5.5.2 indicate that the proposed RPP method 

overall outperform the normal PP method for two-class cases. However, it is important to 

examine the utility of the proposed RPP method in the case of more complex data 

structures. For this purpose, data set 2 consisting of samples drawn from three classes 

was used to test the performance of the RPP method. Figure 5.4 (a) shows the profiles of 

the data, and the scores plots obtained from PCA, univariate normal PP, and univariate 

RPP are shown in Figures 5.4 (b), (c), and (f), respectively. As the data were simulated by 

making the discriminatory variables have small variances, it is not surprising to see that 

no clear separation of clusters is observed in the PCA scores plot. The univariate normal 

PP fails to reveal meaningful separation, as expected. However, unfortunately the 

univariate RPP also fails to reveal meaningful separation. The regularization coefficients 

for the first and second projection vectors were chosen as 0.4 and 0.2, respectively based 

on the ridge trace plots (Figures 5.4 (d) and (e) show the ridge trace plots for the first and 

second projection vectors, respectively). The data points are separated into four clusters, 

but the separation of the clusters does not match the expected class separation. This might 
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be because minimization of the univariate kurtosis always tries to equally dichotomize 

the data points into two clusters. This happens for any projection directions, so the data 

are forced into four quadrants when two projection vectors are found in a stepwise way. 

This implies that when the data contain an even number of well-balanced clusters, 

univariate kurtosis will work well, but when the data have an odd number of clusters or 

unbalanced clusters, minimization of the univariate kurtosis may fail to reveal meaningful 

clusters. For data set 2 that contains three clusters, the failure for the univariate RPP to 

reveal meaningful clusters is not due to an inappropriate choice of the regularization 

coefficients, but because of the nature of the univariate kurtosis.  
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Figure 5.4 Results of data set 2 (PP methods: univariate approaches). (a) Sample data 
profiles, (b) PCA scores plot, (c) PP scores plot (stepwise univariate approach), (d) ridge 
trace plot for the 1st projection vector coefficients, (e) ridge trace plot for the 2nd 
projection vector coefficients, and (f) RPP scores plot (stepwise univariate approach). 
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Although the univariate kurtosis can be regarded as a special case of the 

multivariate kurtosis, the projection vectors obtained by the stepwise minimization of 

univariate kurtosis are generally different from those through the multivariate kurtosis. 

Figure 5.5 (a) shows the scores plot obtained from the PP using the multivariate kurtosis. 

As expected, the samples are forced to the edge of a circle and no class separation is 

observed. For the RPP method using the regularized multivariate kurtosis, the 

regularization coefficient, , was chosen as 0.25 based on the ridge trace plots for the two 

projection vectors shown in Figures 5.5 (b) and (c), respectively. Figure 5.5 (d) shows the 

scores plot obtained from minimization of the regularized multivariate kurtosis. Unlike 

the result of the univariate approach, the bivariate approach shows a clear separation of 

the three clusters that match the known clusters. This indicates that the multivariate 

kurtosis is less sensitive to unbalanced clusters. For the purpose of exploratory data 

analysis where the number of clusters in the data and the data structure are often 

unknown in advance, it is recommended to try both the stepwise univariate and 

multivariate (generally bivariate) approaches. 
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Figure 5.5 Results of data set 2 (PP methods: bivariate approaches). (a) PP scores plot 
(bivariate approach), (b) ridge trace plot for the 1st projection vector coefficients, 
(c) ridge trace plot for the 2nd projection vector coefficients, and (d) RPP scores plot 
(bivariate approach). 



156

5.5.4 Group Data Set 2 

Similar to the study in Section 5.5.2, 100 data sets were used to further evaluate 

the performance of the proposed RPP method in the case of three clusters. The 

regularization coefficient, , was also chosen as 0.5 for all the data sets without using the 

individual ridge trace plots for each of the data set. The generalized Fisher’s discriminant 

value (F) [31] was also used to measure the quality of the cluster separation. Figure 5.6 

shows the logarithms (base 10) of the generalized Fisher’s discriminant values for the 

scores obtained by the five methods as described in Section 5.5.2. It can be seen that the 

RPP with bivariate (multivariate) approach gives higher F values for most of the data sets, 

indicating RPP using the regularized multivariate kurtosis has better performance than 

other methods. The RPP using the univariate kurtosis, however, does not give obviously 

better results than PCA or PP using the normal kurtosis. This is in accordance with the 

founding in data set 2 that univariate kurtosis does not work well in case of an odd 

number of clusters or unbalanced clusters.  
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Figure 5.6 Plots of the logarithms of the generalized Fisher’s discriminant values based 
on different methods for group data set 2. 

5.6 Experimental Results 
In Section 5.5, simulated data sets are used to demonstrate the performance of RPP 

over PP or PCA in the case of a small sample-to-variable ratio. However, this does not 

guarantee that RPP can give better results for experimental data because such data sets 
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often exhibit more complex structures. Therefore, three experimental data sets are used to 

evaluate the performance of RPP in this section. 

5.6.1 Soybean Data 

The soybean data were column mean-centered, but no scaling was performed. One 

reason for not performing scaling was that this data set included discrete ordered variables. 

The PCA scores plot is shown in Figure 5.7 (a) with the legend indicating the four types of  
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Figure 5.7 Results of soybean data (PP methods: univariate approaches). (a) PCA scores 
plot, (b) PP scores plot (stepwise univariate approach), (c) ridge trace plot for the 1st 
projection vector coefficients, (d) ridge trace plot for the 2nd projection vector 
coefficients, (e) RPP scores plot (stepwise univariate approach) with the 1st and 2nd 
regularization coefficients set to be 0.1 and 0.25, respectively, and (f) RPP scores plot 
(stepwise univariate approach) with the 1st and 2nd regularization coefficients both set to 
be 0.5. 
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soybean diseases. Three clusters can be clearly seen, but the samples from diseases 3 and 4 

overlap. The scores plot of PP with stepwise univariate approach is shown in Figure 5.7 (b). 

As expected, the samples are divided into four distinct quadrants but no meaningful 

separation is obtained. The ranges of the scores are quite small, indicating the projection 

vectors are over-estimated. For RPP, the ridge trace plots for the first and second projection 

vectors are shown in Figures 5.7 (c) and (d), respectively. It can be seen that the projection 

vector coefficients for the first projection vector become smooth when  > 0.05. Thus the 

regularization coefficient for the first projection vector was chosen as 0.1. Similarly, the 

regularization coefficient for the second projection vector was chosen as 0.25. The scores 

plot of RPP is shown in Figure 5.7 (e). It can be seen that the samples are clearly separated, 

which corresponds to the four types of soybean diseases. For comparison, Figure 5.7 (f) 

shows the scores plot when the two regularization coefficients were both arbitrarily set to 

0.5. The scores plot is slightly different from that in Figure 5.7 (e), but a good separation is 

still observed. This indicates that the regularization coefficient covers a range in which the 

meaningful result can be obtained.  
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Figure 5.8 Results of soybean data (PP methods: bivariate approaches). (a) PP scores plot 
(bivariate approach), (b) ridge trace plot for the 1st projection vector coefficients, 
(c) ridge trace plot for the 2nd projection vector coefficients, and (d) RPP scores plot 
(bivariate approach). 
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The scores plot of PP with bivariate approach is shown in Figure 5.8 (a). As 

expected, the samples are located on the edge of the circle and the samples from the four 

classes are not well separated. Figures 5.8 (b) and (c) show the ridge trace plots for the two 

projection vectors. It can be seen that the projection vector coefficients have dramatic 

changes at three regions. As introduction of a larger regularization coefficient will lead to a 

larger bias,  was chosen as 0.2, where the ridge trace plots show smooth patterns. The 

scores plot of RPP is shown in Figure 5.8 (d). It is clear that the samples with the four types 

of soybean diseases form four clusters that match the four classes very well. Compared 

with Figure 5.8 (a), it can be seen that the variances accounted by the first and second 

scores are much larger, indicating a different subspace has been found. 

5.6.2 Glomerulonephritis Data 

The original glomerulonephritis data were autoscaled in this work. Figure 5.9 (a) 

shows the PCA scores plot. The samples from the control group (healthy people) are 

clustered in a very small area but the samples from the diseased group spread more widely. 

There is a separation between the two classes of samples, but the separation is not very 

clear. The scores plot of PP with the stepwise univariate approach is shown in Figure 

5.9 (b). Again, the samples occupy four distinct quadrants and the separation does not 

show meaningful information that matches the classes. The ridge trace plots for the first 

and second projection vector coefficients are shown in Figures 5.9 (c) and (d), respectively. 

For the first projection vector, when  > 0.15, the coefficients become smooth. Thus  was 

set to 0.2 for the first projection vector. The  value for the second projection vector was set 

to 0.2 as well by observing the pattern of changes. The scores plot of RPP based on these 

settings is shown in Figure 5.9 (e). It can be seen that the samples from the control group 

and patient group are clearly separated along the first projection vector and match the class 

separation perfectly. The separation along the second projection vector is likely to be 

artificial, although the possibility that it corresponds to subclasses cannot be excluded. To 

examine how the regularization coefficients affect the results, the regularization 

coefficients were set to 0.5 for both projection vectors and the resulting scores plot is 

shown in Figure 5.9 (f). It can be seen that samples from the two classes are still 

well-separated except that one sample from the patient group falling into the control group. 
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This again indicates that the regularization coefficients can vary in a range and meaningful 

information can be revealed. 
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Figure 5.9 Results of glomerulonephritis data (PP methods: univariate approaches). 
(a) PCA scores plot, (b) PP scores plot (stepwise univariate approach), (c) ridge trace plot 
for the 1st projection vector coefficients, (d) ridge trace plot for the 2nd projection vector 
coefficients, (e) RPP scores plot (stepwise univariate approach) with the 1st and 2nd 
regularization coefficients both set to be 0.2, and (f) RPP scores plot (stepwise univariate 
approach) with the 1st and 2nd regularization coefficients both set to be 0.5. 

The results of glomerulonephritis data from PP and RPP with the bivariate 

approach are shown in Figure 5.10. As expected, PP fails to give meaningful information 

as is shown by the mixing of classes in Figure 5.10 (a). The samples again are distributed 

at the edge of the circle due to “over-fitting”. The ridge trace plots of the two projection 

vectors are shown in Figures 5.10 (b) and (c), respectively. The regularization coefficient 

was chosen as 0.25 since the plots in both figures become smooth when  > 0.2. The scores 
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plot of multivariate RPP is shown in Figure 5.10 (d). The samples from the control group 

and patient group occupy the left and right parts of the circle, respectively. The samples 

from the two groups are largely separated with minor overlap (one sample). Also, the 

variances accounted by the two vectors are larger compared with those in Figure 5.10 (a).  
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Figure 5.10 Results of glomerulonephritis data (PP methods: bivariate approaches). 
(a) PP scores plot (bivariate approach), (b) ridge trace plot for the 1st projection vector 
coefficients, (c) ridge trace plot for the 2nd projection vector coefficients, and (d) RPP 
scores plot (bivariate approach). 

5.6.3 Cow Diet Data 

The cow diet data were column mean-centered before PCA, PP and RPP were 

applied. The PCA scores plot is shown in Figure 5.11 (a) with the legend indicating the four 

different diet treatments. From the plot, the samples from different diet treatments exhibit 

some dispersion, but there is substantial overlap of the samples from different diet 

treatments. The scores plot for PP (stepwise univariate approach) is shown in Figure 

5.11 (b). Again, PP fails to reveal the underlying data structure that matches the four 

different diet treatments. The ridge trace plots for the first and second projection vector 

coefficients are shown in Figures 5.11 (c) and (d), respectively. By examining the plots, the 

first and second regularization coefficients were set to 0.2 and 0.25, respectively. The result 

is shown in Figure 5.11 (e). Along the first projection vector, the samples with 0% and 15% 
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barley grain treatments are separated from those with 30% and 45% barley grain 

treatments, except one sample from the 30% treatment. The 0% and 15% barley grain 

treatments overlap each other, but the samples from the 30% and 45% treatments are well 

separated. Overall, the separation from RPP is much improved compared with those from 

PCA or PP. When the regularization coefficients were set to be 0.5 for both projection 

vectors, the scores are shown in Figure 5.11 (f). The scores plot is similar to that in Figure 

5.11 (e), but obviously, a different subspace has been used. As expected, the variances 

accounted in Figures 5.11 (e) and (f) are much larger than those in Figure 5.11 (b).  

-4000 0 4000 8000
-1

-0.5

0

0.5

1x 104

Score 1

S
co

re
 2

(e)

-6000 -3000 0 3000 6000 9000
-1.5

-1

-0.5

0

0.5

1

1.5x 104

Score 1

S
co

re
 2

(f)

-6000 -3000 0 3000 6000 9000
-1.5

-1

-0.5

0

0.5

1

1.5x 104

Score 1

S
co

re
 2

(f)

-3 -1.5 0 1.5 3
x 104

-2

-1

0

1

2x 104

PC 1

P
C

 2

(a)

0%
15%
30%
45%

0%
15%
30%
45%

-40 -20 0 20 40
-30

-15

0

15

30

Score 1

S
co

re
 2

(b)

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

Regularization coefficient

P
ro

je
ct

io
n 

ve
ct

or
 c

oe
ffi

ci
en

t (c)

0 0.2 0.4 0.6 0.8 1
-0.8

-0.4

0

0.4

0.8
(d)

Regularization cofficient

P
ro

je
ct

io
n 

ve
ct

or
 c

oe
ffi

ci
en

t

Figure 5.11 Results of cow diet data (PP methods: univariate approaches). (a) PCA 
scores plot, (b) PP scores plot (stepwise univariate approach), (c) ridge trace plot for the 
1st projection vector coefficients, (d) ridge trace plot for the 2nd projection vector 
coefficients, (e) RPP scores plot (stepwise univariate approach) with the 1st and 2nd 
regularization coefficients set to 0.2 and 0.25, respectively, and (f) RPP scores plot 
(stepwise univariate approach) with the 1st and 2nd regularization coefficients both set to 
be 0.5. 
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The results from PP and RPP with bivariate approaches are shown in Figure 5.12. It 

can be seen in Figure 5.12 (a) that the samples again form a circle and PP fails to reveal 

class separation. Examination of the ridge trace plots in Figures 5.12 (b) and (c) suggests 

0.3 for the regularization coefficient. The scores plot of RPP (bivariate approach) is shown 

in Figure 5.12 (d). The result is similar to that in Figures 5.11 (e) and (f) but the orientation 

is different. This is not surprising because the projection vectors for the multivariate 

approach are arranged to account for the variance of the projected data in a decreasing way. 

The direction to reveal clusters often does not match the direction to account for maximum 

variance. This is actually the reason why PP outperforms PCA.  
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Figure 5.12 Results of cow diet data (PP methods: bivariate approaches). (a) PP scores 
plot (bivariate approach), (b) ridge trace plot for the 1st projection vector coefficients, (c) 
ridge trace plot for the 2nd projection vector coefficients, and (d) RPP scores plot 
(bivariate approach). 

5.7 Discussion 
The RPP proposed in this work aims to deal with data that have a small 

sample-to-variable ratio. It has been demonstrated by simulated and experimental data that 

RPP can give more meaningful information than PP. For minimization of kurtosis, if the 

regularization term I is ignored (Equations (5.10) and (5.22) for univariate kurtois and 
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multivariate kurtosis, respectively), the RPP objective function actually combines the 

effects of kurtosis and variance. Thus, sphering, which is mathematical transformation to 

make the projected data onto any direction have unit variance and has been a quite standard 

preprocessing step for most of the PP and ICA methods, is not recommended. This is 

because the information contained in the second order function (variance) disappears if the 

data are sphered. However, the commonly used method of scaling can be used to make the 

variables have compatible range. 

Although RPP can, to some extent, solve the “over-fitting-like” problem in the case 

of data with a small sample-to-variable ratio, this does not exclude the variable 

compression method discussed in reference [3], where SVD or PCA was applied to the data 

and PP was applied to the dimensionality reduced data. It is often that the useful 

information is retained in the first few principal components of PCA. If the dimensionality 

reduction can effectively remove some variables but still retains the useful information, 

dimensionality reduction is still a good method to deal with data with a small 

sample-to-variable ratio. In fact, for the experimental data sets used in this work, 

dimensionality reduction followed by PP can also give meaningful results. Thus, a 

combination of using PCA, PP, and RPP to extract information from the data may be 

useful.

In this work, the regularization coefficient  is determined by examining the ridge 

trace plots. The recommended range for  is between 0 and 1. However, this does not mean 

 can only be examined in this range. Depending on the data, a broader range can be 

explored. If some prior knowledge about the data is available, this may be helpful to 

determine the suitable size of . The scores plot may also help to determine a suitable . For 

the stepwise univariate approach, if  is too small, the data tends to form four very tiny 

clusters located in four quadrants in a two-dimensional scores plot with very small 

variance accounted by the scores. For the multivariate approach, if  is too small, the data 

in a two-dimensional scores plot tends to form a circle and account for very small variance 

as well. For some data sets, the scores plot may not be very sensitive to the choice of . If 

the ridge trace plots show several smooth patterns, different  values can be tried to see if 

different meaningful information can be obtained.  
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It is also found that, for data with a small sample-to-variable ratio, if no 

regularization is performed, then the number of local minima is generally large. With the 

increase of the regularization coefficient , the number of local minima decreases. This 

removes some local minima caused by chance and increases the likelihood of finding the 

global minimum. Thus, the number of local minima may be another hint to determine the 

suitable size of the regularization coefficient .

It is worth emphasizing that, although RPP proposed in this work aims to deal with 

data with a small sample-to-variable ratio, one must be careful not to over-interpret the 

results. The result from RPP is exploratory and often gives useful information, but it should 

not be interpreted as definitive conclusion without proper validation. The results from RPP 

can be used to guide, but never aim to replace, further validation. 

5.8 Conclusions 
In exploratory analysis of multivariate data, PP can often give better results than 

PCA. However, today’s chemical data often have many more variables than samples. This 

causes an “over-fitting-like” problem in the application of PP and meaningful information 

can not be extracted effectively. Dimensionality reduction by SVD before application of 

PP may be a solution to this problem, but it is subject to potential loss of useful 

information.  

In this work, RPP is proposed as an alternative solution to deal with data that have a 

small sample-to-variable ratio. Since it does not use other dimensionality reduction 

methods such as SVD to remove information, more useful information may be retained. 

The RPP uses regularized kurtosis as a projection index and adapts the quasi-power 

methods for optimization. Examination of the ridge trace plot is recommended as a method 

to determine the suitable regularization coefficient. It has been illustrated through the use 

of simulated and experimental data that RPP can extract meaningful information that PP 

fails to obtain. 
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Chapter 6: Conclusions 

The past two decades have witnessed the rapid development of advanced analytical 

measurement techniques in chemistry and many other areas. The data obtained with these 

new techniques have become more and more complicated, characterized by the large 

volume and the complexity of the multivariate data. These characteristics generally imply 

more information in the data, but also mean extracting useful information from the data 

becomes more challenging. 

As a highly interfacial discipline, chemometrics plays an important role in 

extracting useful information from chemical data. One of the primary applications of 

chemometrics to multivariate data is exploratory data analysis. When data are collected, 

the first step to examine the data is often exploratory, which generally involves 

dimensionality reduction and visualization of the extracted information in a 

low-dimensional space.  

Performing effective dimensionality reduction to extract the useful information is 

never trivial. Many problems can lead to the failure of a dimensionality reduction method, 

such as a poorly defined objective function, the lack of efficient optimization algorithms, 

and complicated error structures. In the visualization of the information in a 

low-dimensional space, noisy data points may mask the useful information. Depending on 

the data structure and the purpose, different methods are needed, and there is no one 

panacea. The work presented in this thesis has been motivated to improve data processing 

methods for exploratory data analysis. The improvements presented in Chapters 2 to 5 are 

related, but each of them can be regarded as an independent achievement. 

In chemistry, principal component analysis (PCA) is perhaps the mostly wide 

used method for exploratory data analysis. PCA can be regarded as a subspace modeling 

technique which is most effective when measurement errors are homoscedastic. However, 

heteroscedastic errors are common in multivariate data. In the case of significantly 

heteroscedastic noise, PCA becomes less effective in extracting information. Maximum 

likelihood principal component analysis (MLPCA), which has been developed to 

overcome the disadvantages of PCA in this case, has been applied successfully for other 

purposes, but its application in exploratory data analysis has previously not been explored. 
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This motivates the work reported in Chapter 2. Strategies for using MLPCA in exploratory 

data analysis to deal with data with significantly heteroscedastic errors were proposed. A 

new method to improve the visualization of the data in case of noisy measurements, 

referred to as partial transparency projection (PTP), was developed. These were 

demonstrated by successful applications in simulated and experimental data. 

MLPCA was proposed in 1990’s and has been used in different applications. 

However, this does not mean that further algorithmic improvements are not needed. One 

problem is that, in dealing with data where the underlying model has non-zero intercepts, 

MLPCA lacks an efficient optimization algorithm due to the complexity of the objective 

function, although the objective function has been well defined. This problem is addressed 

by the work presented in Chapter 3, where a new optimization algorithm was developed. 

The theory to develop the algorithm was provided and its performance was evaluated by 

simulated data. 

Projection pursuit (PP) is another important method for exploratory data analysis, 

and can extract more useful information than PCA in many cases. However, it has not been 

widely used in chemistry and other areas. One of the major reasons is that easy and simple 

algorithms to optimize the complicated objective functions are not readily available. The 

work described in Chapter 4 provided new optimization algorithms, referred to as 

“quasi-power methods”, to optimize kurtosis, which is used as a projection pursuit 

objective function. The algorithms have been successfully applied to simulated and real 

experimental data with obviously improved results in contrast to those obtained by PCA.  

PP requires that the number of samples is much larger than the number of variables 

to give reliable information. However, data in chemistry and other areas often have fewer 

samples than variables. This problem may be addressed by first applying PCA to reduce the 

dimensionality of the data, but this incurs the risk of losing useful information. As an 

alternative method, a new projection pursuit method, called as regularized project pursuit 

(RPP), was proposed in Chapter 5. The utility of the proposed method was demonstrated 

with simulated and experimental data.  

It is hoped that the achievements presented in the previous chapters can help 

chemists and other data analysts to extract useful information more effectively from 

multivariate data for exploratory data analysis. 
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