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ABSTRACT 

This research develops an equipment failure prognostics model to predict the 

equipment’s chance of survival, using LAD. LAD benefits from not relying on any 

statistical theory, which enables it to overcome the problems concerning the statistical 

properties of the datasets. Its main advantage is its straightforward process and self-

explanatory results. 

Herein, our main objective is to develop models to calculate equipment’s survival 

probability at a certain future moment, using LAD. We employ the LAD’s pattern 

generation procedure. Then, we introduce a guideline to employ generated patterns to 

estimate the equipment’s survival probability. 

The models are applied on a condition monitoring dataset. Performance analysis reveals 

that they provide comprehensible results that are greatly beneficial to maintenance 

practitioners. Results are compared with PHM’s results. The comparison reveals that the 

LAD models compare favorably to the PHM. Since they are at their beginning phase, 

some future directions are presented to improve their performances.  
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 : INTRODUCTION CHAPTER 1

Widely applied in maintenance, Condition Based Maintenance (CBM) [Jardine et al. 

(2006)] is a maintenance program that engages the equipment’s health condition in 

optimizing or improving the maintenance activities. The equipment’s age and health 

condition indicators are the factors based on which CBM diagnoses a fault in equipment 

or predicts an imminent failure. CBM constructs a model, which represents the relation 

between the equipment’s age and health condition indicators with its failure, based on a 

given historical dataset, called the Train Set. Then, it examines the quality of the model 

by applying it on another part of the historical dataset, called the Test Set. The former 

process is Train Phase, while the latter one is Test Phase. 

1. DIAGNOSTICS AND PROGNOSTICS 

Applications of CBM can be divided into two categories: Diagnostics, which focus on the 

detection of a fault in equipment at the current moment, and Prognostics, which focus on 

the prediction of a fault in equipment before it happens. Diagnostics aim to detect age and 

health condition indicators in the measurement space representing a fault in the physical 

space (equipment). Prognostics aim to predict the probability of or the time left before a 

fault in the physical space (equipment) based on age and health condition indicators in 

the measurement space. The following sections describe different approaches in both 

diagnostics and prognostics, divided into three categories: Physical Model-Based 

approaches, Knowledge-Based approaches, and Data-Driven approaches. 

1.1. Physical Model-Based Approaches 

Physical model-based approaches construct mathematical models that directly illustrate 

the process of physical deterioration in the equipment health condition. These approaches 

usually employ expert knowledge to construct the model, and then, validate the model by 

applying it on some test data. They detect equipment failure indicators, called Residuals, 

by applying methods such as Kalman Filter [Kalman (1960)] on the train set. They 

decide whether a failure has occurred or not by comparing the equipment’s health 

condition indicators with their corresponding thresholds, detected as the equipment’s 

residuals. Several physical model-based approaches have been proposed in both 
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diagnostics and prognostics. [Y. Li et al. (1999)] proposed a Defect Propagation Model 

to estimate the Remaining Useful Life (RUL) of equipment. It employs a time-based 

defect growth propagation model. In order to estimate the parameters of the model, it 

employs a Recursive Least Square algorithm. [Luo et al. (2003)] introduced an integrated 

prognostic model that is constructed based on the data provided using the model-based 

simulations. However, the accuracy of model-based approaches greatly depends on 

whether an accurate mathematical model is achievable or not. In cases where an accurate 

mathematical model is achievable, model-based approaches outperform other approaches. 

Model-based approaches usually are not applicable for complex systems of equipment. 

1.2. Knowledge-Based Approaches 

As opposed to physical model-based approaches, knowledge-based approaches are not 

dependent on any mathematical interpretation of the physical process of deterioration in 

equipment health condition. Expert Systems (ESs) and Fuzzy Logic (FL) are two most 

widely used knowledge-based approaches [Peng et al. (2010)]. 

Expert Systems (ESs) are computer systems that interface an expert with a program in 

order to store the expert knowledge. The stored knowledge is used to train an ES, mostly 

in the form of Rules, based on which the program automatically simulates the expert 

inference procedure to solve the problem. Rules are generally demonstrated in the form 

of ‘IF fact, THEN result’. The result can also be employed as a fact to build a new rule, 

or be tied up with other rules to build a new rule. Many ES approaches have been 

proposed in both diagnostics and prognostics. [Wen et al. (2003)] employed an ES, based 

on Case-Based Reasoning, for diagnostics. It simulates the process of encoding and 

training the past observations. The ES is trained based on the experts’ judgments about 

the equipment health condition at different cases (different sets of observed health 

condition indicators) for the past observations. Then, for each newly observed equipment, 

a distance measure is calculated which represents how close the new case is to the 

previously judged cases. Eventually, the diagnosis is performed based on the distance 

measure. [Araiza et al. (2002)] presented the diagnostic and prognostic software, based 

on employing Model-Based Reasoning in an ES. It simulates the equipment health 

condition based on the current health condition indicators. It is based on constructing a 
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Fault/Symptom Matrix, which represents the connection between faults and observed 

health condition indicators. A diagnostic framework is constructed based solving a Set-

Covering Problem based on the data provided in the Fault/Symptom Matrix. [Stanek et 

al. (2001)] proposed an ES, based on the combination of Case-Based and Model-Based 

Reasoning, for diagnostics. Aided by a computer model of the equipment, it simulates all 

the possible failure cases based on different sets of health condition indicators (Model-

Based Reasoning phase). The simulation inputs (health condition indicators) along with 

the simulation output (equipment’s state) are collected as a new possible case in a 

database. The database is eventually used as a reference for diagnostic. For each newly 

observed equipment, the closest case is found by looking through the database (Case-

Based Reasoning phase). For this purpose, a Single Nearest Neighbor classifier is 

employed, which chooses the case with the minimum Euclidean distance from the current 

case. However, the ESs have the disadvantage of Combinatorial Explosion at the rule 

generation phase. Combinatorial explosion is referred to as a computational problem that 

is caused due to a severe increase in the number of variables. Another disadvantage of 

ESs is their limited perception of new situations. In other words, they can only solve the 

situations for which they are trained. A main limitation of ESs is that both the expert 

knowledge and the reasoning method are usually inaccurate and uncertain. As a result, 

uncertainty measures such as those in fuzzy logic are combined with ESs. 

Fuzzy Logic (FL) is a knowledge discovery method that detects the relation between a 

certain output and a set of inaccurate inputs. Since it utilizes linguistic variables, it 

benefits from resembling the human reasoning procedure, which enables the FL to handle 

the inaccurate inputs. Using the phrases such as ‘high’ and ‘low’ provides the ability to 

describe overlapping situations, and is superior to numerical description. FL is generally 

employed in other diagnostics and prognostics methodologies such as ESs and Artificial 

Neural Networks (ANNs). [Choi et al. (1995)] introduced an on-line fuzzy ES in order to 

diagnose the equipment’s health condition. In order to extract the equipment’s prognostic 

information from its diagnostic information at past observation moments, the Levinson 

algorithm is employed. The Levinson algorithm is a prediction tool that works based on 

the simple moving average of the historical data. This enables the model to predict the 

equipment’s future health condition based on its current health condition. 
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1.3. Data-Driven Approaches 

Data-driven approaches are mostly originated from the Pattern Recognition theory. They 

perceive diagnostics and prognostics knowledge by investigating the relation between the 

inputs (age or/and health condition indicators) and the outputs (equipment’s state) of 

monitored data. Data-driven approaches are categorized into Artificial Intelligent (AI) 

approaches, which employ the training methods, and Statistical approaches, which 

employ the statistical methods. 

1.3.1. Artificial Intelligent (AI) Approaches 

Among the AI approaches, Artificial Neural Networks (ANNs) is the most widely used. It 

imitates the human brain structure to construct a network structure. The network structure 

consists of three layers: input layer, hidden layer, and output layer. Each input is 

indirectly connected with an output. The network relates the inputs to the outputs by 

assigning adjustable weight to the hidden layer that connects the inputs and outputs. This 

structure helps perceive a complicated function of multi-input and multi-output. So, this 

enables ANN to solve the problems for which analytical and traditional approaches are 

difficult to apply, or do not exist. Due to the reduction in run-time and problem difficulty, 

ANN possesses many attractions for diagnostic and prognostic purposes. 

Many ANN approaches have been proposed in diagnostics. [Fan et al. (2002)] proposed a 

Feed-Forward NN for diagnostics. It divides an n-dimensional space of n measured 

health condition indicators into its sub-spaces. Each sub-space is called a Rule, for which 

the amount of its Support is calculated. The rule’s support shows the number of data with 

the failure state that agree with the rule. Then, constructed rules are reduced and 

simplified by removing the rules whose support is lower than a pre-defined value. 

Extracted rules are eventually used to diagnose the equipment, from which new 

observations are collected, based on the value of its health condition indicators. [Spoerre 

(1997)] proposed a Cascade Correlation NN for diagnostics. It starts with a network that 

is only composed of the input and output layers, and tries to relate these layers directly. If 

the Sum-Squared Error measure of the function that relates these layers exceeds a pre-

defined value, a hidden layer is added to the network. At each step, the candidate hidden 

layer with the maximum correlation with the output layer is added to the network. This 
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procedure is performed up to a point where the sum-squared error measure of the 

obtained network meets the user-defined acceptable level. The obtained network has the 

advantage of being the minimum-size network required for the diagnostics. [Baillie et al. 

(1996)] proposed a Radial Basis Function NN for diagnostics, and compared the 

performance of this approach with that of other autoregressive time series approach 

including Back Propagation NN and Linear Regressive. This approach is a Feed-Forward 

NN, in which the hidden layers are in the form of the radial basis functions such as 

Gaussian Kernel function. [C. J. Li et al. (1999)] proposed a Recurrent NN for 

diagnostics. The most important feature of this approach is that it starts with an existing 

network, trains a separate network, and then combines these two networks to form a new 

network. At each step, the new network’s parameters are adjusted using the quasi-Newton 

method. This procedure is performed up to a point where the sum-squared error measure 

of the obtained network meets the user-defined acceptable level, same as [Spoerre 

(1997)], or the network size exceeds a pre-defined value. This approach has the 

advantage of not requiring the initialization of number of hidden layers, and their 

corresponding weights. However, the network train procedure is more difficult in 

comparison with Feed-Forward NN and Back Propagation NN. 

Applications of ANN in equipment’s failure prognostics consider the prognosis as a time 

series prediction problem where the future state is predicted based on the sequence of the 

past states. Applying a Recurrent NN, [Yam (2001)] proposed a method to predict the 

equipment’s health condition indicators at the next observation moment. In this method, 

current and previous health conditions of the equipment represent the input nodes of the 

Recurrent NN, while the next health condition of the equipment represents the output 

node of the Recurrent NN. [Sheppard et al. (2005)] employed a Dynamic Bayesian 

Network in order to perform the one-step health condition prediction. Since the 

equipment’s state is unobservable, it employed a Hidden Markov Model (HMM) to 

estimate the state. [Przytula et al. (2007)] also employed a Bayesian network. An 

interesting contribution of its approach is the proposal of a method to convert the 

graphical probabilistic models into the conditional failure probabilities. [Byington et al. 

(2004)] employed a Feed-Forward NN to perform the one-step health condition indicator 

prediction. Then, the predicted health condition indicators are supplied to a FL system in 
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order to predict the equipment’s health condition. Finally, a Kalman filter is employed in 

order to minimize the prediction errors. [Tian (2012)] employed an ANN to estimate the 

equipment’s RUL. First, using the Levenberg-Marquardt algorithm, the ANN is trained 

by setting both the age and health condition indicators as the model inputs, and the 

survival probability as the model output. Next, each series of measured health condition 

indicators is fitted to a Weibull distribution failure rate function. Then, for each newly 

observed equipment, the failure rate function is updated based on the updated series of 

measured health condition indicators. Finally, the equipment’s survival probability is 

calculated using the trained ANN, and the current age and health condition indicators of 

the equipment. Equipment’s RUL is calculated based on its survival probability. 

However, the ANNs have several limitations: First, lack of simple procedure to take the 

expert knowledge into consideration for practical problems. Second, lack of simple 

procedure to train ANN for big-size problems. Third, lack of explanatory power of the 

trained ANN. 

Apart from ANNs, some other AI approaches have been proposed in both diagnostics and 

prognostics. Genetic Algorithm, as the most widely used approach in Evolutionary 

Algorithm, is employed for diagnostics in [Sampath et al. (2002)]. Evolutionary 

Algorithm imitates the mechanisms of biological evolution. The authors simulated all the 

possible failure cases based on different sets of health condition indicators. Then, an 

objective function is defined, which represents the difference between the simulated 

scenarios and the actual ones in an appropriate manner. Eventually, using the Genetic 

Algorithm technique, the objective function is minimized. This approach has the 

advantage of possessing highly accurate diagnostics, while the disadvantage of requiring 

a long run-time. Logical Analysis of Data (LAD) is another AI approach that has been 

recently applied in diagnostics. It extracts knowledge hidden in observations of the train 

set in order to detect the sets of health condition indicators that would lead to either 

failure or survival of the equipment. [Yacout (2010)] proposed application of LAD in 

equipment’s diagnostics. First, it transforms the health condition indicators from the 

numerical format into the binary format. Next, it looks through all the failure 

observations available in the historical data, and tries to find the sets of health condition 

indicators, called Pattern, that are appeared in some of the failure (survival) observations 
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but not in any of the survival (failure) observations. Then, it constructs a discriminant 

function by assigning positive weights to the patterns that represent the failure 

observations, and negative weights to the patterns that represent the survival 

observations. Eventually, for each newly observed equipment, its corresponding 

discriminant function value is used as a measure for diagnosis. As a function of failure 

probability, [Yan et al. (2004)] defined a Logistic Regression function. Then, it applied 

the logistic regression in order to estimate the parameters of the function. Estimation is 

performed using the Maximum Likelihood Estimation (MLE). Eventually, using the 

estimated parameters, it proposed a method to calculate the equipment’s RUL based on 

its current health condition indicators. 

1.3.2. Statistical Approaches 

Among the statistical approaches, Hidden Markov Model (HMM) and Hazard Rate (HR) 

are two most widely used methods. 

Equipment’s failure development procedure takes a series of deteriorative steps. This 

procedure can be formulated in the form of a HMM; a stochastic process model with a 

normal state, several deteriorative states, and a failure state. HMM is a parametric model, 

for which many statistical parameter estimation techniques can be employed. [Bunks et 

al. (2000)] first showed that HMM is a potent tool to be applied in equipment’s 

diagnostics and prognostics. After estimating the parameters of HMM, the authors 

proposed an approach to model the probability of staying at the normal state (state 

probability), along with the probability of transition from normal to failure state (state 

transition probability). [Ying et al. (1999)] proposed an on-line failure diagnostic 

approach in HMM framework, which is able to deal with the states that are not directly 

observable, but are imperfectly investigated based on the observed outcomes. Using the 

MLE method, it proposed a procedure to estimate the parameters of observed outcomes 

probabilities, along with that of transition probabilities. [Baruah et al. (2005)] introduced 

a methodology to employ HMM in equipment’s failure prognostics. Parameters of HMM 

are estimated based on the measured historical data. MLE is applied to carry out the 

parameter estimation. Based on HMM’s parameters, the matrix of state transition 

probability is constructed. Next, the conditional probabilities of transition from any given 
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state to all the states are estimated. Then, for each health condition indicator associated 

with the currently observed equipment, HMM estimates the conditional probability of 

reaching the failure state knowing the current state. Finally, HMM calculates the 

equipment’s RUL. [Zhang et al. (2005)] employed HMM coupled with an adaptive 

stochastic failure prognostic model. HMM supplies the estimated conditional 

probabilities to the prognostic model. An adaptive algorithm continuously updates the 

parameters of the prognostic model with respect to the latest changes in the equipment’s 

conditions. The updated model is employed to calculate the equipment’s RUL knowing 

its current health condition indicators. [Dong et al. (2007)] proposed application of 

Hidden Semi-Markov Model (HSMM) for equipment’s failure prognostics. HMM and 

HSMM differ over definition of the state. A state in HMM is defined as a single 

observation while in HSMM is defined as a sequence of observations. The HSMM’s state 

transition probability matrix is estimated via a forward-backward parameter estimation 

algorithm. In order to simplify the parameter estimation procedure, the state duration 

density is assumed to distribute in Gaussian form. The equipment’s current state is 

determined using a diagnostic framework. Knowing the equipment’s current state, its 

RUL is calculated using a backward recursive algorithm. [Lin et al. (2004)] investigated 

the partially observable Markov process, a process in which the states, except for the 

failure state, are not visible. A recursive formula is proposed in order to estimate the 

state. Using the Expectation-Maximization algorithm, another formula is presented in 

order to estimate the model parameters. A major limitation of HMM is that it assumes the 

state probability at each observation moment only depends on the state probability at the 

prior observation moment. A major limitation of HSMM is that it is a complex model 

although it modifies the HMM’s weakness in definition of state probability. 

Hazard Rate (HR) represents the ratio of failure probability in a period to the period 

length, where failure probability represents the proportion of number of failed 

components during the period to the number of components at the beginning of period 

[Banjevic et al. (2006)]. HR is a helpful tool in calculation of RUL, which has been 

employed in many applications in prognostics. [Banjevic et al. (2006)] investigated a 

Markov process coupled with a HR function. It proposed theoretical and numerical 

methods in order to calculate the conditional Reliability Function. Using the conditional 



9 

Reliability Function, it presented a method to estimate the RUL and its expected value, 

Mean Residual Life (MRL), based on the current health condition indicators of the 

equipment. [Cox (1972)] introduced a novel definition for the HR, called Proportional 

Hazard Rate (PHR). As opposed to the conventional definition, PHR depends not only on 

the equipment’s age, but also on its health condition. The proposed approach, called 

Proportional Hazards Model (PHM), is able to model the relation between the 

equipment’s age and health condition with its failure probability. [Wang (2002)] 

introduced the concept of Conditional Residual Delay Time, which diverges from the 

traditional concept of Conditional Residual Time. The proposed model predicts the 

equipment’s residual life not only based on the equipment’s age, but also based on its 

health condition indicators. The model is fitted to a Weibull distribution, for which a 

MLE approach is presented for parameter estimation. 

Apart from HMM and HR, some other statistical approaches have been proposed in both 

diagnostics and prognostics. Statistical Process Control (SPC) is a traditional statistical 

approach in diagnostics. It was first introduced in the field of quality control, but has 

been widely applied in equipment’s failure diagnostics as well. It decides whether the 

equipment’s health condition indicator is within the control limit or not by comparing the 

health condition indicators of the equipment with that of the reference normal equipment. 

[Fugate et al. (2001)] built the control charts based on the health condition indicators of 

the normal equipment. This approach has the advantage of being executable in an 

unsupervised train process. Then, it used the control charts to track the changes in the 

health condition indicators of any equipment from which new observations are collected. 

[Goode et al. (2000)] applied SPC in equipment’s failure prognostics. It divides the 

equipment’s lifetime into two intervals: the Installation-Potential failure (I-P), called 

stable zone, and the Potential failure-Functional failure (P-F), called failure zone. While 

the equipment is in its stable (failure) zone, the probability of arriving at its potential 

(functional) failure moment is calculated based on the HR of the Weibull distribution 

associated to the I-P (P-F) interval. Cluster Analysis is another conventional statistical 

approach in diagnostics. It groups the health condition indicators based on their 

similarities, and tries to minimize the difference in a group, meanwhile, maximize the 

difference between the groups. [Skormin et al. (1999)] divided a n-dimensional space of 
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n measured health condition indicators into all of its possible sub-spaces, and for each 

sub-space, calculated the Informativity criterion, which is a function of number of 

discrimination within and between the normal and failure states. This approach has the 

disadvantage of performing highly computational efforts. Then, it proposed an approach 

to select the most informative sub-spaces based on which Separating Rules were defined. 

Separating rules were used to diagnose any equipment, from which new observations 

were collected, based on the value of its health condition indicators. 

2. LOGICAL ANALYSIS OF DATA (LAD) 

Logical Analysis of Data (LAD), first introduced in [Crama et al. (1988)], is a 

combinatorics, optimization and Boolean logic based methodology for the analysis of 

datasets. The typical aim of LAD is to extract knowledge hidden in observations of a 

dataset in order to detect the sets of causes that would lead to certain effects. In 

maintenance, a cause can be the monitored equipment’s age or any health condition 

indicator value, while an effect can be the equipment’s survival or failure. Each cause is 

called an Attribute. A literal is either an attribute or its Negation. Negation of an attribute 

contradicts the attribute. Based on certain effects, observations are classified into two 

classes: observations of failure during the coming period, referred to as the Positive 

Class, and observations of survival at least until the end of the coming period, referred to 

as the Negative Class. A Positive (Negative) Pattern is a set of literals that is reflected in 

one or more of the observations of the positive (negative) class while not reflected in any 

(many) of the observations of the negative (positive) class. The number of literals 

forming the pattern is called the degree of pattern. A pattern cannot be formed of an 

attribute and its negation. 

The main application of LAD is the pattern-based classification of new observations, 

which are not classified in the dataset, into either the positive or negative class. Like 

other recently developed knowledge discovery methodologies, such as AI, Machine 

Learning and Data Mining, LAD constructs a classification model based on a given 

historical dataset, called Train Set. Then, by using the classification model, it tests the 

quality of this model by classifying another part of the historical dataset, called Test Set. 
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Since its introduction, LAD has been widely applied for the analysis of datasets from 

different fields such as medicine, biotechnology, economics, finance, politics, properties, 

oil exploration, manufacturing and maintenance. 

[Abramson et al. (2005), G. Alexe et al. (2006-1), S. Alexe et al. (2003), and Lauer et al. 

(2002)] applied LAD in medical fields such as cell growth, breast cancer, coronary risk, 

and electrocardiography in order to predict behavior of medical models. [G. Alexe et al. 

(2005), and G. Alexe et al. (2004)] used LAD in medical fields such as B-cell lymphoma, 

and ovarian cancer in order to diagnose medical diseases. [Yacout (2010), Bennane et al. 

(2012), Mortada et al. (2012), and Mortada et al. (2011)] applied LAD on industrial 

equipment such as power transformer, oil transformer, aircraft, and rotor bearing in order 

to diagnose equipment failure. [G. Alexe et al. (2008), Boros et al. (2000), A. B. Hammer 

et al. (1999), P. L. Hammer et al. (2006-2), P. L. Hammer et al. (2004-2), and Kim et al. 

(2008)] applied LAD in various fields such as voting, credit card scoring, housing, labor 

productivity, country risk, composition of soil in the oil, genotyping, and psychometric in 

order to discover knowledge from the data and estimate the behavior of the models. 

The LAD is composed of five fundamental stages: Data Binarization, Support Set 

Selection, Pattern Generation, Pattern Selection, and Theory Formation [Boros et al. 

(2000)]. The following sections describe basic concepts and different theoretical 

developments in each stage. 

2.1. Data Binarization and Support Set Selection 

The original LAD approach was proposed for Boolean attribute values. A Boolean 

represents an expression that takes only the values TRUE and FALSE. However, in many 

real life problems, the attribute values may appear in numerical form (e.g. temperature), 

nominal form (e.g. color), or ordered form (e.g. color describing a traffic light). The need 

of being applicable to any form of attribute values resulted in proposal of many 

developments for adapting LAD to non-Boolean values or for binarizing data with non-

Boolean values to be used with the original LAD. For example, [P. L. Hammer et al. 

(2004-2)] introduced Logical Analysis of Numerical Data (LAND) with respect to LAD 

general concepts, which can deal with numerical values. Aside from the latter example, 

all the other developments are proposed in the field of data binarization. The binarization 
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procedure transforms each non-binary attribute into several binary ones, by comparing 

attribute values to certain thresholds called Cut-Points. [Boros et al. (1997)] for the first 

time developed a method for binarizing numerical data in LAD. According to [Boros et 

al. (2000)], with each numerical attribute, two types of binary attributes can be 

associated. The first type associates to every cut-point a binary attribute, called Level 

Attribute, and defines it as following: 

 (1)

Where a is the numerical value of attribute, c is the cut-point value, and ba,c is the binary 

value, associated with a and c. As a result, each numerical attribute is converted to n 

binary attributes, where n is equal to the number of cut-points. 

The second type associates to every pair of cut-points a binary attribute, called Interval 

Attribute, and defines it as following: 

(2)

Where c’ and c’’ are the cut-point values, and ba,c’,c’’ is the binary value, associated with a 

and pair of cut-points c’ and c’’. As a result, each numerical attribute is converted to n 

binary attributes, where n is equal to the number of pairs of cut-points. 

The most crucial task, in binarization process, is to find appropriate cut-points. In the 

literature, earlier discretization techniques applied simple ideas such as Equal-width and 

Equal-frequency, which might lead to information loss if the width or frequency is 

improperly defined. Discretization is the mathematical process of converting continuous 

values to their equivalent discrete values. Binarization, as a branch of discretization, is 

aimed at finding a set of cut-points, which divides the range into several intervals in a 

way that preserves most of the relevant information and keeps the attributes consistent 

with classes. According to [Kotsiantis et al. (2006)], the objective of any discretization 

method is to minimize the number of cut-points and the number of inconsistencies. The 

lower the number of cut-points, the lower the number of binary attributes into which the 

numerical attribute is transformed. This results in simpler binarized attribute, but might 

result in loss of the discriminating ability of the binarized attribute too, which is known as 

the loss of the Interdependency between attributes and classes. The optimal binarization 

method with respect to the number of cut-points and the number of inconsistencies are 
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called Simplicity Preferred and Consistency Preferred, respectively. Consistency measure 

is calculated according to different evaluation functions. 

Both goals are achieved at the support set selection stage. Support Set is a concept, which 

was first introduced by [Crama et al. (1988)]. It is defined as a set of binary attributes, 

which preserves the classification consistency if all the other attributes are removed. The 

authors introduced a Set-Covering Problem to find the minimal support set. A set-

covering problem is defined to minimize the number of attributes in the support set while 

the support set is subject to be composed of at least one of the attributes whose removal 

leads to identical observations in different classes. [Boros et al. (2000)] modified the set-

covering problem in three directions: First, to guarantee that observations of different 

classes are distinguishable by more than one attribute. Second, to assign weights to 

objective function based on Discriminating Power of an individual binary attribute. 

Discriminating power shows how well a binary attribute distinguishes observations of 

different classes. The discriminating power can be defined based on different measures. 

Third, to assure that cut-points well separate the observations. [Boros et al. (1997)] 

showed that finding the minimal support set is a NP hard problem. [Chvatal (1979)] 

proposed a Greedy Recursive procedure to find a near optimal support set. The procedure 

starts with the set of all attributes and tries to remove from the set as many attributes as 

possible up to the point where removal of the remaining attributes results in identical 

observations in different classes. In each step, the attribute, whose removal leads to the 

maximum decrease in the objective function, is removed from the set. [Boros et al. 

(2000)] introduced a Greedy Iterative procedure to construct a near optimal support set. 

The procedure starts with an empty support set. At each iteration, it adds to the support 

set an attribute, which leads to the maximum reduction in the objective function. [Boros 

et al. (2003)] proposed similar greedy algorithms to find a near optimal support set where 

the optimality is defined with respect to the maximum discriminating power of the set 

rather than the minimum number of attributes in the set. 

As previously mentioned, LAD is mainly applied to construct a classifier based on which 

new observations, that are not classified in the dataset, are classified into either the 

positive or negative class. Performance of a classifier is measured based on its Accuracy 

measure, which represents the proportion of number of correctly classified observations 
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to all classified observations. The better the discretization method, the higher 

discriminating power of the set of attributes, which is supplied to the classifier. This 

results in a classifier with the better ability to discriminate observations of different 

classes, and consequently, a classifier with the more accurate classification. According to 

[Liu et al. (2002)], in the case that discretization is used to construct a classifier, the 

accuracy measure, which represents how well the discretization method assists the 

classifier, is also required to be considered besides the simplicity and consistency 

measures. In general, some other factors such as discretization time and train time 

represent the quality of discretization method. Hence, another goal is to find a tradeoff 

between accuracy and speed. [Liu et al. (2002)] declared that the more discretization time 

results in the more accurate classifier. The authors also concluded that using discretized 

data, in comparison with continuous data, leads to 50% reductions in training. 

Discretization methods are generally categorized based on different needs: Supervised vs. 

Unsupervised depending on whether discretization takes the class information into 

consideration or not, Dynamic vs. Static depending on whether discretization is done 

before or during the classification, Global vs. Local depending on whether discretization 

is applied on the entire range or on its sub-partitions, Splitting vs. Merging depending on 

whether discretization starts with an empty set of attributes or the set of all attributes, 

Direct vs. Incremental depending on whether user defines the number of cut-points or the 

terminating condition [Liu et al. (2002)]. Another categorization classifies the methods as 

Chi-square based methods, which perform a significance test on the relationship between 

an attribute and the class, Entropy based methods, which decide based on the amount of 

information that each candidate set of attributes provides about the class, Wrapper based 

methods, which decide based on the number of False Positive and False Negative errors 

that each candidate set of attributes causes, and Evolutionary based methods, which 

delegate to evolution the decision about the best set of attributes [Kotsiantis et al. (2006)]. 

As [Liu et al. (2002)] suggested, entropy based methods are the best choices if the goal is 

only to discretize the data, chi-square based methods are suggested if the goal is to clean 

off the data from irrelevant attributes, and dynamic methods are suggested for the cases 

that discretization is followed by a train phase. 
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An appropriate discretization method should consider the interdependency between the 

class and the set of attributes [Kotsiantis et al. (2006), and Liu et al. (2002)]. However, 

most of the mentioned methods consider the interdependency between the class and only 

an independent attribute in order to avoid the additional complexity, which results in an 

increase in discretization time [Liu et al. (2002)]. 

Recently, some methods focusing on data binarization as a preparing phase specifically 

for LAD classification approach have been proposed [G. Alexe et al. (2006-2), G. Alexe 

et al. (2006-3), Bruni (2007), and Mayoraz et al. (1999)]. [Almuallim et al. (1991)], and 

later followed by [Almuallim et al. (1994)], proposed some algorithms to find the 

minimal subset of attributes with respect to the consistency preference. The presented 

algorithms include two optimal algorithms, which result in minimal subset of attributes in 

quasi-polynomial time, and three greedy heuristic algorithms, which prefer less 

computational effort to optimality. The mentioned greedy heuristics are iterative 

algorithms. In each iteration, the cut-point, which has the maximum interdependency 

with the class, is added to the set. [Almuallim et al. (1994)] showed that the greedy 

heuristics provide an excellent approximation to the optimal algorithms. [Mayoraz et al. 

(1999)] proposed an approach similar to the simple-greedy heuristic, introduced by 

[Almuallim et al. (1994)]. The only difference is that the latter approach iteratively 

removes the cut-point, which has the minimum interdependency with the class, from the 

set. 

All the global algorithms begin by sorting the attribute values in increasing order. 

Adequate number of cut-points is obtained by only considering those thresholds that are 

on the boundary of different classes [P. L. Hammer et al. (2006-1)]. Thus, a cut-point is 

defined as average of two consecutive attribute values, each belonging to different 

classes. This way, the outcome cut-point represents a boundary, which is able to 

differentiate between positive and negative classes. This satisfies the consistency goal. 

The next task is to remove all the redundant cut-points in order to address the simplicity 

goal. [Mayoraz et al. (1999)] proposed an Iterative Discriminant Elimination algorithm, 

which is based on checking the effect of removing different cut-points on the 

discriminating power of the cut-points set. [Bruni (2007)] based its decision criterion on 

the discriminating power of each individual cut-point. This criterion represents how well 
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an individual cut-point assists the discriminating power of the set of cut-points based on 

the accuracy of its outcome classifier. In order to measure the accuracy of a classifier, the 

actual class of each observation is required to be determined so that it can be compared 

with the classification provided by the classifier. So, accuracy of the classifier cannot be 

measured until the actual class is available. 

[Bruni (2007)] proposed a weighted extension to the original set-covering problem, 

introduced by [Crama et al. (1988)]. It showed that the proposed extension results in a 

much shorter solving time in comparison with the original one. Besides, it applied a 

Lagrangean Subgradient heuristic to find a feasible sub-optimal solution for the proposed 

weighted model, and showed that the heuristic method provides as good classification 

accuracy as that achieved by the optimal solution. [G. Alexe et al. (2006-3)] based its 

attribute selection procedure on the generated patterns. It introduced a Two-step Attribute 

Selection procedure, which starts by filtering the attributes based on several criteria. In 

the second step, the number of times that each attribute is included in the patterns set is 

considered as a measure of its relevancy. The attributes are ranked based on their 

relevancy measures, and half of the top-ranked attributes are selected to construct a new 

model. This procedure is iteratively performed up to the point where the accuracy of the 

outcome classifier does not progress anymore. The most significant advantage of this 

procedure is that it considers the interdependency not only between the class and an 

individual attribute, but also between the class and a set of attributes. [G. Alexe et al. 

(2006-2)] applied a similar pattern-based attribute selection procedure to that proposed in 

[G. Alexe et al. (2006-3)]. It showed that the relevancy measure based on Spanned 

patterns is preferred to that based on Prime patterns. We shall describe spanned and 

prime patterns in detail in the following section. 

2.2. Pattern Generation and Pattern Selection 

A pattern is a set of literals that is reflected in one or more of the observations of its class 

while not reflected in any (many) of the observations of the opposite class. An 

observation will be considered Covered only if all the literals forming the pattern are 

reflected in the observation. Two most significant measures affecting performance of 

LAD are Homogeneity and Prevalence of the patterns [Boros et al. (2000)]. Associated 
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with each pattern, homogeneity is defined as the proportion of number of correctly 

covered observations to all covered observations by the pattern, and prevalence is defined 

as the proportion of number of covered observations by the pattern to all observations 

[Chvatal (1979)]. The former measure demonstrates how precisely a pattern can 

distinguish observations of its class from the opposite class, while the latter measure 

demonstrates the pattern’s ability to detect observations of both classes. 

Given the binarized attributes of observations, the most crucial phase of the LAD method 

is to develop patterns that reflect the characteristics of corresponding class well. 

Concurrently to LAD introduction, [Crama et al. (1988)] introduced two methods to 

generate prime patterns. A pattern is called prime if any shortened set of its literals, 

which is obtained by eliminating one of the literals, is not a pattern anymore. The first 

method is based on solving a set-covering problem whose minimal solutions are all the 

possible prime patterns. The second method is based on enumerating all combinations of 

literals of limited degree and examining whether each of the combinations can be 

considered as a pattern. The second method is performed in a polynomial time only if the 

number of literals forming a combination is given. However, it requires a huge 

computational effort.  

[Boros et al. (2000)] introduced two techniques for the enumeration of all prime patterns, 

which are called Top-Down and Bottom-Up. The top-down approach associates the 

literals that form the observation to a pattern, and eliminates the Redundant literals. The 

redundant literal is an expression that is used for a literal, which if removed from the 

pattern the result is still a pattern. The bottom-up approach favors shorter patterns. It 

starts by finding patterns that are only composed of one literal. If such a literal exists in 

some of the positive (negative) observations while does not exist in any of the negative 

(positive) ones, it is considered as a prime pattern. Otherwise, it looks through all 

possible combinations of two literals, and attempts to find a combination that forms a 

pattern. It keeps adding literals one by one, up to the point that all observations are 

covered.  

[Boros et al. (2000)] proposed a hybrid bottom-up top-down approach, which favors the 

bottom-up strategy up to a pre-defined maximum degree, and after that, applies the top-

down strategy for all the observations that are not covered using the bottom-up strategy. 
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Finally, at the pattern selection stage, any pattern, whose set of covered observations is a 

subset of that of any other patterns, is considered as a redundant pattern and is removed 

from the patterns set. [S. Alexe et al. (2006)] also proposed a polynomial time algorithm 

for the enumeration of all prime patterns of limited degree. The algorithm eliminates the 

binarization stage, and deals with all possible intervals in the range of numerical 

attributes. Each interval is considered as a potential pattern, and its corresponding 

prevalence is calculated. The algorithm defines prevalence matrix, whose elements are 

the prevalence corresponding to all possible intervals. Then, prime patterns are detected 

based on iterative calculation of prevalence matrices. The authors showed that the 

proposed method results in the generation of the set of low degree patterns in a very short 

time. 

Since LAD introduction, several studies have focused on generation of various types of 

patterns such as prime, spanned, Strong, and Maximum, all of which will be described in 

detail in the following. For this purpose, [G. Alexe et al. (2008), Boros et al. (2000), S. 

Alexe et al. (2006), G. Alexe et al. (2006-4), Bonates et al. (2008), P. L. Hammer et al. 

(2004-1), and Ryoo (2009)] developed different algorithms and examined the accuracy of 

generated patterns. 

[P. L. Hammer et al. (2004-1)] defined three preferences of Simplicity, Selectivity, and 

Evidence in order to compare suitability of different types of patterns. A pattern P1 is 

simplicity-wise preferred to a pattern P2 if the set of literals in P1 is a subset of that in P2. 

Thus, the prime pattern, introduced in [Crama et al. (1988)], is the optimal pattern 

regarding the simplicity preference. The simplicity preference leads to reduction in 

number of false negative errors (incorrectly cover observations from the opposite class), 

but it does not guarantee the reduction in the number of false positive errors (fail to cover 

observations of its class). As opposed to a widespread belief in machine learning, [P. L. 

Hammer et al. (2004-1)] concluded that the simplicity preference would not result in a 

good performance. A pattern P1 is selectivity-wise preferred to a pattern P2 if the set of 

observations incorrectly covered by P1 is a subset of that by P2. The selectivity preference 

is exactly contrary to the simplicity preference. Hence, it guarantees the reduction in 

number of false positives errors (fail to cover observations of its class), while it may 

result in increase in number of false negative errors (incorrectly cover observations from 
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the opposite class) too. A pattern P1 is evidentially preferred to a pattern P2 if the set of 

observations covered by P2 is a subset of that by P1. The optimal pattern with respect to 

the evidential preference is called strong pattern. [P. L. Hammer et al. (2004-1)] 

concluded that the evidential preference would result in a good performance. 

Interestingly, if a pattern P1 is simplicity-wise preferred to a pattern P2, it would also be 

evidentially preferred to the pattern P2. Aside from three mentioned preferences, the 

authors also defined a new type of preference based on the combination of selectivity and 

evidential preferences, and defined the optimal pattern regarding the combination of these 

two preferences as spanned pattern. Strong patterns that are modified with respect to 

simplicity preference are called strong prime patterns, while those that are modified with 

respect to selectivity preference are called strong spanned patterns. Moreover, [P. L. 

Hammer et al. (2004-1)] proposed three different polynomial time algorithms to 

transform any pattern to a prime, or strong, or spanned pattern. The strong spanned 

patterns benefit from the property that restricts their number from reaching that of other 

type of patterns, and this makes them the most attractive in comparison to the other type 

of patterns. The classifiers based on the strong spanned patterns possess a lower number 

of classification errors, while those based on the strong prime patterns possess a lower 

number of unclassified observations. 

Patterns with lower degree have advantage of covering more observations of its class but 

have the disadvantage of covering more observations of the opposite class too. This type 

of patterns is called Comprehensible patterns. Patterns with higher degree have 

disadvantage of covering less observations of its class but have the advantage of covering 

less observations of the opposite class too. This type of patterns is called Comprehensive 

patterns. Prime patterns have lower degree, and are comprehensible patterns while 

spanned patterns have higher degree, and are comprehensive patterns [G. Alexe et al. 

(2008)]. Due to their inherent characteristics, [G. Alexe et al. (2006-2)] suggested prime 

patterns for the purpose of classification, while it suggested spanned patterns for the 

purpose of attribute ranking. The authors also proposed a polynomial time algorithm for 

the generation of all spanned patterns. According to [G. Alexe et al. (2006-4)], the 

significant advantage of the proposed algorithm is that an increase in the number of cut-

points does not affect the algorithm complexity while, as reported by [Ryoo (2009)], it 
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affects the algorithm complexity in the case of generating prime patterns. [G. Alexe et al. 

(2006-4)] also concluded that spanned patterns are preferred to prime patterns in the case 

of classifying low-quality datasets.  

[G. Alexe et al. (2008)] proposed two different polynomial time algorithms for the 

generation of all strong prime patterns and strong spanned patterns. It focused on 

comparing large and comprehensive sets of patterns with small and comprehensible sets 

of patterns provided by both strong prime and strong spanned strategy. Performance of 

classifiers with small and comprehensible sets of patterns is almost as good as that of 

those with larger and comprehensive sets of patterns. It also concluded that finding the 

best choice, between strong prime patterns and strong spanned patterns, greatly depends 

on the datasets. Choosing optimal parameter values with respect to homogeneity and 

prevalence is also dataset dependent. 

A maximum pattern is a pattern whose coverage is the maximum [Bonates et al. (2008)]. 

Patterns that possess higher coverage can better cover new observations in comparison 

with those whose coverage is lower [Boros et al. (2000)]. [P. L. Hammer et al. (2006-1)] 

formulated the problem of generation of the maximum patterns as an Integer Linear 

Programming (ILP) set-covering problem. [Bonates et al. (2008)] proposed four heuristic 

algorithms for approximation of the ILP problem along with the exact solution of the 

polynomial set-covering problem to generate maximum patterns. It concluded that the 

classifiers, based on the heuristically generated patterns, provide as good performance as 

those based on the ILP generated patterns. [P. L. Hammer et al. (2004-2)] applied 

Branch-and-Bound algorithm in order to construct a maximum pattern. It reported an 

outstanding performance of the classifier with respect to both homogeneity and 

prevalence measures. It also showed that the number of observations in the test set, which 

are classified as both positive and negative class, is almost zero. 

[Ryoo (2009)] introduced a Mixed Integer Linear Programming (MILP) approach to 

generate different types of optimal patterns including strong, strong prime, strong 

spanned, maximum, maximum prime, maximum spanned, and optimal patterns with 

specified degree. It showed that the MILP approach results in an improvement in the 

efficiency of LAD classifier. A major advantage of MILP approach is that it finds the 

minimum number of patterns required to construct a classifier [Ryoo (2009)]. [Mortada 
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(2010)] modified the strong pattern generation approach, introduced by [Ryoo (2009)], in 

order to increase the discriminating ability of the patterns set. To do so, the value of 

Discriminating Factor is pre-defined to show the minimum number of patterns required 

to cover each observation. Then, the iterative MILP approach terminates only if all the 

observations are covered by at least the pre-defined number of patterns. 

2.3. Theory Formation 

At the train phase, all patterns are generated based on the observations in the train set. At 

the test phase, each of the patterns individually indicates the characteristics of 

observations in the test set. Hence, a sufficient number of patterns collected in the 

patterns set can provide a good indicator of characteristics of new observations in a way 

consistent with the historical observations. The patterns set is consequently used to 

construct a classification rule which is called a Theory. As the original version of LAD 

defined [Crama et al. (1988)], a new observation is classified as positive (negative) only 

if it is covered by some of positive (negative) patterns and not covered by any of negative 

(positive) patterns. As a result of this definition, none of the new observations, which are 

covered by some positive (negative) patterns and some negative (positive) patterns, can 

be classified.  

[Boros et al. (2000)] modified the original LAD definition to adapt LAD to deal with the 

observations with the mentioned condition. It defined the following Discriminant 

Function, based on the relative weight of generated patterns, as a tool to classify new 

observations. 

(3)

Where PP1,…,PPr and NP1,…,NPs represent respectively the positive and the negative 

patterns. And Hk
+ and Hl

- represent respectively non-negative weights for the positive and 

non-positive weights for the negative patterns. For any new observation, a positive 

(negative) value of the discriminant function value indicates that it is classified as a 

positive (negative) observation. This way, new observations covered by both positive and 

negative patterns can also be classified unless the value of their discriminant function 

equals to zero. As [S. Alexe et al. (2007)] reported, 99% of the observations, which were 

not classified by the original LAD classifier, are classified by the modified LAD 
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classifier, among which, 80% are classified correctly. Hence, the modification resulted in 

an increase in both number of classified observations and classification accuracy. 

The weights can be determined in several ways. [Boros et al. (2000)] suggested three 

approaches to determine the value of weights: First, consider the number of observations 

covered by each pattern to define the pattern’s relative weight. Second, consider the 

normalized inverse of the degree of each pattern as the pattern’s relative weight. Third, 

solve a linear program to decide on the value of weights regarding the maximization of 

the discriminating power. [P. L. Hammer et al. (2006-1)] proposed a quadratic program 

to decide on the value of weights minimizing the overlap between positive and negative 

patterns. 

2.4. Developments 

One of the aspects of LAD developments is the introduction of concept of Boxes [P. L. 

Hammer et al. (2004-2), and Eckstein et al. (2002)]. The box concept is used in LAND: a 

development in LAD that can directly deal with numerical values. The box concept in 

LAND is equivalent to the pattern concept in LAD. The box concept was first introduced 

by [P. L. Hammer et al. (2004-2)] in an approach, which was purposed on adapting LAD 

to the numerical attributes. According to their approach, an individual box is analyzed 

with respect to two performance measures: homogeneity, which is the same definition as 

it is in LAD, and Domain, which is the equivalent to prevalence definition in LAD. A 

family of boxes is analyzed with respect to another performance measure: accuracy of a 

family of boxes, which is the equivalent to homogeneity of an individual box. The 

homogeneity is the most significant performance measure of a box, while the accuracy is 

the most significant performance measure of a Saturated family of homogeneous boxes. 

A family of boxes is called saturated if the merger of any two of its members covers an 

observation from the opposite class. [P. L. Hammer et al. (2004-2)] applied their 

approach on two types of datasets: Clean Datasets, referred to datasets for which 

favorable results have been provided by other methods, and Blurred Datasets, referred to 

datasets for which unfavorable results have been provided by other methods. [Boros et al. 

(1997)] concluded that the accuracy of the boxes families is outstanding for clean 

datasets, while it is still promising for blurred datasets. It also concluded that the Overlap 
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of the boxes families, which represents the proportion of boxes families that appear in 

both positive and negative classes, is insignificant for clean datasets, while it is 

significant for blurred datasets. [Eckstein et al. (2002)] also applied the box concept in 

order to solve heuristically the Maximum Box (pattern) Problem. A maximum box 

problem is defined to maximize the number of observations in the pattern’s class that are 

covered by the box while the box is subject to not cover observations from the opposite 

class. 

One other aspect of LAD developments is the relaxation of the homogeneity or 

prevalence requirements [G. Alexe et al. (2008), Bonates et al. (2008), and Ryoo (2009)]. 

In the original LAD, the homogeneity of patterns over the train set is restricted to 1, 

which means that patterns are not allowed to cover observations from the opposite class. 

By its relaxation, observations from the opposite class are allowed to cover by patterns 

[G. Alexe et al. (2008)]. Associated with each pattern, Fuzziness is defined as the 

proportion of number of observations covered from the opposite class to all covered 

observations by the pattern [Bonates et al. (2008)]. [Ryoo (2009)] also proposed several 

MILP approaches with respect to the relaxation of the homogeneity or prevalence. 

Another aspect of LAD developments is the consideration of imperfect input data 

[Bennane et al. (2012), Boros et al. (2000), Boros et al. (1999)]. [Boros et al. (2000)] 

categorized imperfections of datasets into three groups: Classification Errors, 

Measurement Errors, and Missing Data. It also introduced some solutions to address 

each of these imperfections. In the case of classification errors, it suggested that a pattern 

is considered as positive (negative) only if the proportion of negative (positive) 

observations to positive (negative) observations does not exceed a pre-defined threshold. 

In the case of measurement errors, it suggested that a non-binary value to be considered 

as missing value if it is in the neighborhood of a cut-point. To deal with missing data, the 

attributes, whose values are unknown, are suggested to not take part in the constraints. 

This corresponds to both positive and negative observations. 

[Bennane et al. (2012)] also proposed several methods for estimating the missing data. It 

concluded that the selection of the best method for estimating the missing data is case-

dependent. [Boros et al. (1999)] also proposed several polynomial-time algorithms to 

deal with the missing data in various classes of Boolean functions.  
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Another concept related to the missing data is the Outliers [Bennane et al. (2012), and 

Han et al. (2011-2)]. [Bennane et al. (2012)] defined outliers as observations which are in 

contrast to most of the other observations. The outliers should be removed from the 

dataset and be treated as missing data. [Boros et al. (1997)] proposed a pattern selection 

problem, which takes the concept of outliers into consideration. After solving the 

problem, all of the patterns, whose coverage is lower than a pre-defined threshold, are 

removed from the pattern set, and the corresponding observations are treated as outliers. 

Some researchers [S. Alexe et al. (2003), Lauer et al. (2002), and Kronek et al. (2008)] 

used information hidden in patterns to estimate survival function. [Lauer et al. (2002)] 

first applied LAD to estimate the survival function based on Kaplan-Meier (KM) method 

[Kaplan et al. (1958)]. Using the survival function, the authors calculated the proportion 

of the actual death rate to the predicted one, and compared it with that based on Cox 

Regression Model [Cox (1972)]. It concluded that LAD moderately outperforms Cox 

regression model, while LAD also benefits from the advantage that it is not based on any 

assumption regarding the input data. [S. Alexe et al. (2003)] also applied the same 

procedure, and concluded that LAD prognostic score provides as accurate prediction as 

that provided by Cox score, while LAD also benefits from the advantage that its score is 

more informative. [Kronek et al. (2008)] called the mentioned approach Logical Analysis 

of Survival Data (LASD), and applied it for the case of right-censored data. For this 

purpose, the authors introduced a heuristic algorithm for the generation of maximum 

survival patterns with the relaxation of homogeneity. The authors also proposed two 

survival function estimators with respect to both time-based survival, and condition-

based survival. By comparing to some other estimators, the authors concluded that LAD 

moderately outperforms Survival Trees and KM Estimators. 

Some researchers have extended LAD with respect to the number of distinguishable 

classes [Yacout (2010), and Moreira (2000)]. The original LAD [Crama et al. (1988)] 

was designed for the purpose of classification of observations into either positive or 

negative class. However, [Moreira (2000)] introduced an approach to handle the 

discrimination of more than two classes based on the main concept of LAD. The 

approach generates a pattern based on a pair of classes, and evaluates the relation 

between the pattern and the remaining classes. Accordingly, it associates to the pattern 
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several values, each of them showing the relation between the pattern and one of the 

classes. Finally, an observation in the test set is classified based on the corresponding 

values of different classes associated to its covering patterns. 

2.5. Performance Comparisons 

LAD has been widely applied for the analysis of datasets from different fields such as 

medicine, biotechnology, economics, finance, politics, properties, oil exploration, 

manufacturing and maintenance. The accuracy of the results provided by LAD has been 

compared with that provided by other classification methods. According to [S. Alexe et 

al. (2007)], LAD classifier provides more accurate and less deviated classification in 

comparison with the Fisher Discriminant Classifier. The authors also compared accuracy 

of LAD with that of several data mining classifiers such as Neural Networks and 

Classification Trees, and showed that it outperforms the best of other methods in 75% 

cases. [Bonates et al. (2008)] compared the accuracy of LAD with that of five widely 

used machine learning algorithms including Support Vector Machines, Decision Trees, 

Random Forests, Multilayer Perceptron, and Simple Logistic Regression. It concluded 

that, with respect to accuracy, it is difficult to tell apart LAD from Support Vector 

Machines and Random Forests algorithms, but it outperforms the Decision Trees, 

Multilayer Perceptron and Simple Logistic Regression algorithms. Applying LAD on 

different datasets, [Boros et al. (2000)] compared the prediction rate of LAD in each 

dataset with that of the best found in the literature for each dataset. It is worth mentioning 

that each of the best methods in the literature is only successful in a specific dataset, 

which means that their success is case dependent. LAD’s result compares approvingly 

with the best-reported results in the literature. [Han et al. (2011-1)] used LAD’s 

generated patterns as the input to other classification methods such as Decision Trees, 

and K Nearest Neighborhood. It claimed that if LAD, with accuracy of more than 70%, is 

supplied to these classification methods, it leads to an increase in the accuracy of their 

outcomes. 
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3. OBJECTIVE OF RESEARCH 

The main objective of this research is to develop an equipment failure prognostics model 

based on LAD. We will also analyze the performance of the proposed LAD prognostic 

model by applying it on a real dataset, and will investigate its advantages and 

disadvantages. We will analyze the effect of using different methods, in the context of 

LAD, and their corresponding parameters on the quality of prognostic results obtained by 

these methods. Performance of the prognostic model will also be compared with that of a 

widely used prognostic model, called Proportional Hazards Model (PH Model).  
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 : METHODOLOGY CHAPTER 2

In this chapter, we will illustrate LAD’s basic steps in the context of CBM by applying 

different techniques on a sample condition monitoring dataset. Patterns, LAD’s modeling 

outcomes that characterize the failure and survival characteristics of equipment in the 

dataset, will be generated. Then, we will present a guideline to use the generated patterns 

for equipment’s failure prognostics. 

Table 1 shows a sample set of monitored data. The set is composed of the monitored data, 

including different observation moments, associated with different pieces of equipment, 

and their corresponding attributes. 

Table 1. Sample Set of Monitored Data 
Observations Attributes 

Equipment ID. Observation Time Class Age Condition Indicator 
1 0 - 0 14 
1 1 - 1 16 
1 2 - 2 20 
1 3 - 3 18 
1 4 + 4 20 
2 0 - 0 12 
2 1 - 1 18 
2 2 + 2 22 
3 0 - 0 16 
3 1 - 1 18 
3 2 - 2 20 
3 3 + 3 22 

Each row corresponds to an observation moment, for which the equipment identification 

and the observation time are respectively shown in the first and the second columns. The 

third column shows the class of each observation. The last observation moment of each 

piece of equipment, referred to as the observation that will fail during the current period, 

is shown with the dark background. The forth and the fifth columns respectively show the 

measurements of age and condition of equipment. Unlike the earlier introduced LAD 

methodology [Yacout (2010), Mortada et al. (2012), and Mortada et al. (2011)], we 

consider both age and condition of equipment as the equipment’s attributes, and use both 

of them as LAD attributes. This approach provides the ability to calculate the Survival 

Function. Herein, our focus is not on the detection of the failure, which is the diagnostics 

objective of CBM, but on calculation of the probability of failure at certain moment in 

future, which is the prognostics objective of CBM, and has been comparatively untested. 

In this chapter, we will improve the LAD methodology to predict equipment’s chance of 
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survival at each observation moment when new data on attributes of the equipment is 

available. 

This chapter is structured as follows: Section 1 will describe two data binarization 

methods. Section 2 will describe two pattern generation methods. A measure for 

evaluating the quality of generated patterns will be described in section 3. Section 4 will 

describe a method to diagnose the new observations, and introduce two methods to 

prognosticate the new observations. 

1. DATA BINARIZATION 

As mentioned in the previous chapter, there are several approaches to define cut-points in 

the literature. In the following sections, we will describe how Sensitive Discriminating 

method and Equipartitioning method define the cut-points. 

1.1. Sensitive Discriminating Method 

The sensitive discriminating method begins by sorting the attribute values in increasing 

order. This method favors reinforcement of discrimination ability of cut-points. 

Therefore, a cut-point is defined as average of two consecutive attribute values, each 

belonging to different classes. The outcome cut-point represents a threshold, which is 

able to differentiate between positive and negative classes. 

For the sample set of monitored data shown in the Table 1, sorted age attribute and sorted 

condition attribute are respectively shown in Table 2 and 3, along with their 

corresponding classes. The cells with the dark background are attribute values that 

correspond to a change in the class of observations. As it can be inferred from the Table 2 

cut-points with respect to the age attribute, are defined between 1 and 2, 2 and 3, and 3 

and 4, which results in 1.5, 2.5, and 3.5, respectively. 

Table 2. Sorted Age Attribute and Its Corresponding Classes 
Sorted Attribute 

Age Class 
0 - 
1 - 
2 - , + 
3 - , + 
4 + 
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Similarly, the Table 3 shows that cut-points with respect to the condition attribute, should 

be defined between 18 and 20, and 20 and 22, which results in 19, and 21, respectively. 

Table 3. Sorted Condition Attribute and Its Corresponding Classes 
Sorted Attribute 

Condition Indicator Class 
12 - 
14 - 
16 - 
18 - 
20 - , + 
22 + 

Table 4 shows the sample set of monitored data in the Table 1 transformed into binary 

format, using eq. (1) and the cut-points defined by sensitive discriminating binarization 

method. As it is shown in the Table 4, the age attribute is transformed into three binary 

attributes with respect to its cut-points (i.e.: 1.5, 2.5, and 3.5). Similarly, the condition 

attribute is converted into two binary attributes with respect to its proper cut-points (i.e.: 

19, and 21). 

Table 4. Binary Transformation of Sample Set of Monitored Data 
Observations Attributes 

Equipment 
ID. 

Observation 
Time 

Age Condition Indicator 
1.5 2.5 3.5 19 21 

1 0 0 0 0 0 0 
1 1 0 0 0 0 0 
1 2 1 0 0 1 0 
1 3 1 1 0 0 0 
1 4 1 1 1 1 0 
2 0 0 0 0 0 0 
2 1 0 0 0 0 0 
2 2 1 0 0 1 1 
3 0 0 0 0 0 0 
3 1 0 0 0 0 0 
3 2 1 0 0 1 0 
3 3 1 1 0 1 1 

1.2. Equipartitioning Method 

Like the former method, equipartitioning method also begins by sorting the attribute 

values in increasing order. But, this method follows an equal-frequency strategy. The cut-

points are defined in such a way that all the attribute values are approximately equally 

divided into a pre-defined number of intervals. Appropriate number of intervals is 

selected by comparing the quality of results associated with different values. In this work, 

we set the interval number close to that provided by the sensitive discriminating method 

so that the effect of different binarization methods on the quality of results is comparable. 
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In our experiments, which will be discussed later in chapter 3, the interval number 

provided by the sensitive discriminating method varies between 30 and 40, according to 

different train sets. Therefore, for the equipartitioning method, the interval numbers are 

set equal to 20, 30, 40, and 50, as will be shown later in chapter 6 section 3. 

For the sample set of monitored data shown in the Table 1, sorted age attribute and sorted 

condition attribute are respectively shown in Table 5 and 6. In this example, the number 

of intervals is set to three. So, the original twelve observations have to be placed in three 

groups, each consisting of four observations. Different groups are indicated by light and 

dark backgrounds. Borders of the groups, which are shown by arrow signs, specify the 

proper place of cut-points. As it is shown in the Table 5, cut-points with respect to the 

age attribute, are defined between 1 and 1, and 2 and 2, which results in 1, and 2, 

respectively. Similarly, the Table 6 shows that cut-points with respect to the condition 

attribute should be defined between 16 and 18, and 20 and 20, which results in 17, and 

20, respectively. 

Table 5. Sorted Age Attribute    Table 6. Sorted Condition Attribute    
  

Sorted Attribute 
Age 

0 
0 
0 
1 
1 
1 
2 
2 
2 
3 
3 
4 

 
Table 7 shows the sample set of monitored data in the Table 1 transformed into the binary 

format, using eq. (1) and the cut-points defined by equipartitionting binarization method. 

The age attribute is transformed into two binary attributes with respect to cut-points 1, 

and 2. Similarly, the condition attribute is converted to two binary attributes with respect 

to cut-points 17, and 20. 

Table 7. Binary Transformation of Sample Set of Monitored Data 
Observations Attributes 

Equipment 
ID. 

Observation 
Time 

Age Condition Indicator 
1 2 17 20 

1 0 0 0 0 0 

Sorted Attribute 
Condition Indicator 

12 
14 
16 
16 
18 
18 
18 
20 
20 
20 
22 
22 
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1 1 1 0 0 0 
1 2 1 1 1 1 
1 3 1 1 1 0 
1 4 1 1 1 1 
2 0 0 0 0 0 
2 1 1 0 1 0 
2 2 1 1 1 1 
3 0 0 0 0 0 
3 1 1 0 1 0 
3 2 1 1 1 1 
3 3 1 1 1 1 

 

2. PATTERN GENERATION 

A pattern discriminates one or more of the observations of its class from all or most of 

the observations of the opposite class. The basic pattern generation algorithms are mainly 

based on generating all combinations of literals, and examining whether each of the 

combinations can be considered as a pattern. This results in a huge computational effort. 

Recently, some heuristic methods have been introduced that require less computational 

effort while providing equivalent performance. In these methods, instead of generating all 

combinations of literals, only the most preferred combinations are generated at the initial 

step. If any of the combinations is considered as a pattern, the method stops. Otherwise, 

the less preferred combinations are generated, and this series of steps is performed up to a 

point that a pattern is detected. As mentioned in the previous chapter, preference might be 

given to different types of combinations based on the usage of generated patterns. Among 

all the proposed pattern generation algorithms, we will use Mixed Integer Linear 

Programming (MILP) method and Hybrid Greedy method. 

2.1. Mixed Integer Linear Programming (MILP) Method 

MILP-based pattern generation method, first introduced by [Ryoo (2009)], develops a 

Mixed Integer Linear Programming and formulates a linear set-covering problem to 

generate different types of patterns. He describes an algorithm for obtain optimal Strong 

Pure patterns. A pattern is strong if the set of observations covered by the pattern is not a 

subset of that covered by other patterns. A pattern is pure if it does not cover any 

observation from the opposite class.  

According to [Ryoo (2009)], the binary variable vector wpattern(w1,w2,…,w2q), 

corresponding to each binarized pattern, is defined such that wj =1 if attribute j is included 
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in the pattern and wj =0, otherwise. Where q is the number of binarized attributes. The set 

of (wq+1,wq+2,…,w2q) is defined such that wq+j =1 if negation of attribute j is included in 

pattern, and wq+j =0, otherwise. This way, the characteristics of a class can be represented 

not only by values that are greater than a certain cut-point, but also by values that are 

lower than that too. 

The MILP pattern generation model is formulated as a set-covering problem. The 

objective of the model is to generate a pattern that leads to the minimum number of 

observations in certain class, which are not covered by the generated pattern. Then, by 

modifying the previous model, different patterns are generated one by one, up to a point 

that all the observations are covered by at least one pattern. 

Variable yi is defined such that yi =1 if observation i is not covered by the pattern, and yi 

=0, otherwise. Since the optimality of a strong pattern is measured with respect to its 

coverage, the objective is to generate a pattern with the maximum number of covered 

observations, or in other words, with the minimum number of uncovered observations. 

So, the objective function is defined to minimize , while satisfying the following 

conditions: 

• An observation will be considered covered, only if all the attributes forming the 

pattern are reflected in the observation. Thus, constraint  

should hold for all observations in the pattern’s class (S*), where  is 

known as the degree of a pattern. By defining bij =1 if attribute j exists in 

observation i, and bij =0 otherwise,  counts the number of attributes 

common to both the observation and the pattern. If an observation is covered by 

the pattern, then . Otherwise, the model will satisfy the constraint 

by setting yi =1. This is due to the fact that q ≥ d. 

• An observation will be considered not covered, if there is at least an attribute 

forming the pattern that is not reflected in the observation. Consequently, the 

constraint  should hold for all observations in the opposite 

class (S*-). This constraint guarantees the pattern is pure. 

• A pattern should not be formed of an attribute and its negation, which means 

that wj + wq+j ≤1 should hold for all attributes. 
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Considering the above-mentioned conditions, the following MILP model is introduced to 

find a strong pure pattern [Ryoo (2009)], where N* is the number of observations in the 

pattern’s class. 

Min  

subject to. 

(4)

(5)

(6)

(7)

(8)

w ∈ {0,1}2q 

y ∈ {0,1}N* 

For instance, the binarized dataset provided in the Table 4 is formulated as the following 

MILP model in order to generate a positive strong pure pattern. 

Min y1 + y2 + y3 

subject to. 

w1 + w2 + w3 + w4                                          + w10 + 5y1              – d ≥ 0 1 

w1                 + w4 + w5          + w7 + w8                          + 5y2      – d ≥ 0 2 

w1 + w2         + w4 + w5                  + w8                               + 5y3 – d ≥ 0 3 

                                         w6 + w7 + w8 + w9 + w10                       – d ≤ -1 4 

                                         w6 + w7 + w8 + w9 + w10                       – d ≤ -1 5 

w1                 + w4                  + w7 + w8         + w10                       – d ≤ -1 6 

w1 + w2                                          + w8 + w9 + w10                       – d ≤ -1 7 

                                         w6 + w7 + w8 + w9 + w10                       – d ≤ -1 8 

                                         w6 + w7 + w8 + w9 + w10                       – d ≤ -1 9 

                                         w6 + w7 + w8 + w9 + w10                       – d ≤ -1 10 

                                         w6 + w7 + w8 + w9 + w10                       – d ≤ -1 11 

w1                 + w4                  + w7 + w8         + w10                       – d ≤ -1 12 

w1                                  + w6                                                                          ≤ 1 13 
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        w2                                  + w7                                                       ≤ 1 14 

                w3                                  + w8                                                                      ≤ 1 15 

                        w4                                  + w9                                       ≤ 1 16 

                                 w5                                  + w10                                           ≤ 1 17 

w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10                       – d = 0 18 

1 ≤ d ≤ 5 

w1,…, w10 ∈ {0,1} 

y1,…, y3     ∈ {0,1} 

The constraints (1-3) and (4-12) respectively correspond to positive and negative 

observations. The constraints (13-17) display relation between attributes and their 

negations in the pattern formation. The constraint 18 shows the degree of the pattern. 

For instance, as it is shown in Table 4, the positive observation 2 is formed of the literals 

(w1, w4, w5) and negations of the literals (w2, w3). So this observation is shown in the 

form (w1,w4,w5,w7,w8). The following inequality shows the constraint 2 corresponding to 

the positive observation 2. 

w1 + w4 + w5 + w7 + w8 + 5y2 – d ≥ 0 

If the set of literals forming the pattern is a subset of this observation, the equality w1 + 

w4 + w5 + w7 + w8 = d is held. Therefore, the constraint is simplified to 5y2 ≥ 0, which 

means that y2 can take both the values 0 and 1. Since the objective is to minimize 

, the model sets y2 equal to 0, and consequently, the observation 2 is considered 

as covered. Otherwise, the inequality w1 + w4 + w5 + w7 + w8 – d = x < 0 is held. 

Therefore, the constraint is simplified to 5y2 + x ≥ 0, where x < 0. This means that y2 can 

take only the value 1, and consequently, the observation 2 is considered as uncovered. 

By solving the above-mentioned model, the following results are obtained. 

Objective Function =1 

w4 =1     w5 =1     y1 =1     d =2     all others =0 

The results show that a pattern of degree two has been generated which is composed of 

literals w4 and w5. This means that satisfaction of both condition indicator value ≥ 19 and 

condition indicator value ≥ 21 represents the characteristic of the positive observations in 

the example. The results also show that the positive observation 1 has not been covered 
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by the generated pattern (y1 =1). Thus, the model should be reconstructed so that positive 

observation 1 gets covered by at least one pattern. 

Reconstructing the Linear Programing is performed to generate more patterns, up to a 

point that all the observations are covered by at least one of the patterns. It is worth 

mentioning that, although each generated pattern differs from previously generated ones, 

yet it might cover the some or all of the previously covered observations while some 

remaining observations are still uncovered. This will result in generating redundant 

pattern while no more uncovered observation gets covered. In order to avoid generating 

redundant patterns, all the observations that were previously covered by generated 

patterns will be removed before reconstructing the model. 

In order to prevent the model from generating the same pattern twice, a new constraint is 

required to be added to the model, after a pattern is generated. To do so, [Mortada 

(2010)] suggested to save the solution vector wi (wi,1, wi,2,… wi,2q), associated with 

generated pattern i, in such a way that: 

(9)  

Assume that attribute j ∈{1,2,…,2q} was already included in previously generated 

pattern i, (ri,j =1). If it is included in currently being generated pattern c too, (wc,j =1), 

then ri,j × wc,j =1 represents that attribute j is common to both pattern i and c. Otherwise if 

wc,j =0, then ri,j × wc,j =0, which represents that attribute j is not common between the 

patterns i and c. Then,  counts the number of attributes common to both 

pattern i and c. For each generated pattern i ∈{1,2,…,N}, where N is the number of 

previously generated patterns, the constraint  [Mortada (2010)] 

prohibits the number of common attributes from being equal to the number of attributes 

included in pattern i, which means pattern i and c will not be identical. 

The following constraint will be added to the model to constrain the model from 

generating the same pattern. 

- w1 – w2 – w3 + w4 + w5 – w6 – w7 – w8 – w9 – w10 – d ≤ -1  

As mentioned previously, constraints 2 and 3, correspond to the positive observations 2 

and 3. Because these two observations were covered by the generated pattern during first 

run of the model, they will be removed from the next model.  
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By solving the reconstructed model, the following results are obtained. 

Objective Function =0 

w3 =1     d =1     all others =0 

The results show that a pattern of degree one has been generated which is composed of 

the literal w3 only. This means age ≥ 3.5 represents positive observations uniquely. The 

results also show that there is no positive observation left uncovered. 

Table 8 shows all the positive and negative patterns generated for the binarized dataset 

provided in Table 4. The cells with the dark background represent the required literals in 

an observation in order to be considered a covered observation. 

Table 8. Positive and Negative Patterns - MILP Method 
 
 

Attributes 

 
Age Condition Indicator Age* Condition Indicator* 

 
>= 1.5 >= 2.5 >= 3.5 >= 19 >= 21 < 1.5 < 2.5 < 3.5 < 19 < 21 

+P1 0 0 0 1 1 0 0 0 0 0 
+P2 0 0 1 0 0 0 0 0 0 0 
-N1 0 0 0 0 0 0 0 1 0 1 

After this phase of the algorithm, all the observations are covered by at least one pattern. 

The algorithm has to be redone as many times as needed, so that all the observations get 

covered by a pre-defined number of patterns, known as Discriminating Power [Mortada 

(2010)]. 

2.2. Hybrid Greedy Method 

[Boros et al. (2000)] introduced two heuristic algorithms, called Bottom-Up and Top-

Down, to obtain optimal Prime pure patterns. A pattern is prime if removal of any of its 

literals results in coverage of observations from the opposite class. The restriction on the 

generation of pure patterns can be relaxed by allowing the algorithm to cover 

observations from the opposite class. In this case, a pattern will be defined as a 

combination of literals covering at least a minimum number of observations of the 

pattern’s class, and at most a maximum number of observations of the opposite class. The 

numbers are called Coverage and Fuzziness parameters, respectively. 

Both algorithms aim to generate the shortest pattern while differing in the path that leads 

to this goal. The bottom-up algorithm starts with only one literal. Then it tries to add as 

many literals as required up to a point that the combination of literals forms a pattern. 
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The top-down algorithm starts with a combination of literals that certainly is a pattern. 

Then it tries to remove as many literals as possible from the pattern up to a point where 

the removal of the remaining literals will result in coverage of observations from the 

opposite class more than specified fuzziness parameter. 

The hybrid greedy method is composed of two phases: the first and also the favored 

phase is the bottom-up phase. If any observation is left uncovered by the end of the first 

phase, the second phase, which is the top-down phase, is performed. 

The bottom-up phase is a d step iterative procedure, where d is a pre-defined value 

showing the maximum degree of the patterns. At the nth step, where n ∈{1,2,…, d}, any 

combination of n literals is examined to find out whether they form a pattern. When a 

pattern of a combination of n literals is generated, it is removed from the list that is used 

to generate the patterns with n+1 literals. This prevents the method from generating a 

pattern whose subset has already been detected as a pattern. Therefore, it guarantees the 

fewest possible numbers of literals in generated patterns. 

Each step will be terminated if all the combinations are examined or all the observations 

are covered. The bottom-up phase will be terminated if it exceeds the dth step or all the 

observations get covered. Figure 1 illustrates how the bottom-up phase proceeds. 

Figure 1. Bottom-Up Phase 
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If the bottom-up phase ends with any observation left uncovered, the method moves to 

the top-down phase. The top-down phase is a u step iterative procedure, where u is the 

number of uncovered observations at the previous phase. At the nth step, where 

n∈{1,2,…, d}, a pattern is formed from the literals that appear in the nth uncovered 

observation. Then it tries to remove as many literals as possible from the pattern. Among 

all the candidate literals, the one whose removal leads to the maximum Separability 

Power of the pattern will be removed [Kronek et al. (2008)]. The authors defined 

separability power as the proportion of Disagreement between the pattern and 

observations of the opposite class to disagreement between the pattern and observations 

of the class. Disagreement between a pattern and an observation is defined as the number 

of literals in the pattern that do not appear in the observation. Associated with each 

pattern, the separability power is defined as following [Kronek et al. (2008)]. 

(10)

Where n and m respectively correspond to the number of observations of the pattern’s 

class and that of the opposite class and d corresponds to the degree of the pattern. bx,l is 

defined such that bx,l =1 if literal l appears in observation x, and bx,l = 0 otherwise. 

Each step will be terminated if removal of the remaining literals results in destruction of 

the pattern, which means the number of covered observations from the opposite class 

exceeds the fuzziness parameter. The top-down phase will be terminated if it exceeds the 

uth step or all the observations get covered. Figure 2 illustrates the top-down phase. 

For instance, by assuming degree ≤3, coverage ≥50% and fuzziness ≤1, we generate 

optimal positive prime patterns for the dataset in the Table 4. Starting with the bottom-up 

phase, at the first step, all the literals are examined to find out whether they can solely be 

considered as a pattern with degree one. The first literal to examine is the literal w1, 

which appears in all the positive observations but in 3 out of 9 negative observations too. 

Since the fuzziness parameter is set to 1, this literal is rejected. The second literal to 

examine is the literal w2, which appears in 2 out of 3 positive observations while 1 out of 

9 negative observations. Since this literal passes both coverage and fuzziness conditions, 

it is accepted as a pattern. So, a pattern of degree one is generated which is composed of 

the literal w2. Then, positive observations 1 and 3, which are covered by the pattern, are 
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removed from the set of positive observations. Similarly, all the other literals, w3,…,w10, 

are examined. Another pattern of degree one is detected when the literal w5 is examined. 

This literal appears in the remaining positive observation while in none of the negative 

observations. Similarly, the positive observation 2, which is covered by the pattern, is 

removed from the set of positive observations. Since all the positive observations are 

covered by these two patterns, the pattern generation method terminates successfully.  

As another instance, by assuming degree 

≤3, coverage ≥70% and fuzziness ≤1, the 

method is unable to find any pattern in 

either of the three steps of the bottom-up 

phase. Therefore, it moves to the top-

down phase. In this phase, the positive 

observation 1, which is formed of the 

literals (w1,w2,w3,w4,w10), is considered 

as a pattern. Then, the method tries to 

shorten the pattern by removing as many 

literals as possible from the pattern. By 

examining all the literals, the best 

candidate literal w10, whose removal 

leads to the maximum separability 

power of 10, is detected and removed 

from the pattern. So, the pattern is 

shortened to the form of (w1,w2,w3,w4). 

Similarly, by examining all the 

remaining literals, the best candidate 

literal w3, whose removal leads to the 

maximum separability power of 21, is 

detected and removed from the pattern, 

and the pattern is shortened to the form 

of (w1,w2,w4). Similarly, all the remaining literals are examined, and the best candidate 

literals w1 and w4, whose removals lead to the maximum separability power of 15 and 8, 

Figure 2 .Top-Down Phase 
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are removed one by one from the pattern. The final generated pattern is only composed of 

the literal w2. It is worth mentioning that the separability power of each literal varies over 

different steps, based on the other literals that remain to be examined at each step. One 

might ask why this pattern was not generated while the method tried to find patterns of 

degree one at the bottom-up phase. The answer is that the method, at the bottom-up 

phase, takes coverage parameter into consideration, but not at the top-down phase. In the 

same way, in the previous example, positive observations 1 and 3, which are covered by 

the pattern, are removed from the set of positive observations. Since the only positive 

observation that is left uncovered is the positive observation 2, the same procedure is 

performed to shorten its corresponding pattern. 

Table 9 shows all the positive and negative patterns generated with parameters degree ≤3, 

coverage ≥70% and fuzziness ≤1, for the binarized dataset provided in the Table 4. The 

cells with the dark background represent the literals that are required to be in a covered 

observation. 

Table 9. Positive and Negative Patterns - Hybrid Greedy Method 
 
 

Attributes 

 
Age Condition Indicator Age* Condition Indicator* 

 
>= 1.5 >= 2.5 >= 3.5 >= 19 >= 21 < 1.5 < 2.5 < 3.5 < 19 < 21 

+P1 0 1 0 0 0 0 0 0 0 0 
+P2 0 0 0 0 1 0 0 0 0 0 
-N1 0 0 0 0 0 0 1 0 0 0 
-N2 0 0 0 0 0 0 0 0 1 0 

3. PATTERN’S QUALITY EVALUATION  

Two most significant measures affecting performance of LAD are Homogeneity and 

Prevalence of the patterns [Boros et al. (2000)]. The homogeneity measure demonstrates 

how precisely a pattern can distinguish observations of the pattern’s class from that of the 

opposite class. Associated with pattern p, homogeneity is defined as the proportion of 

number of correctly covered observations to all covered observations by the pattern  

[Boros et al. (2000)]. 

(11)

Let X be defined as a set of observations. The expression P∩X symbolizes the set of 

observations in the set X that are covered by pattern P. Function #(O) counts the number 
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of observations in the set O. And S, S*, and S*- represent the set of all observations, 

observations of the pattern’s class, and observations of the opposite class, respectively. 

The prevalence measure demonstrates the pattern’s ability to detect observations. 

Associated with pattern P, prevalence is defined as the proportion of number of covered 

observations by pattern P to all observations [Boros et al. (2000)]. 

(12)

The prevalence measure can be considered from two different viewpoints. The first point 

of view demonstrates the pattern’s ability to detect observations of the pattern’s class. 

Proper Prevalence is defined as the proportion of number of correctly covered 

observations by pattern P in a class to all observations of the class [Boros et al. (2000)]. 

(13)

The second point of view demonstrates the pattern’s weakness resulting in the wrong 

detection of observations of the opposite class. Improper Prevalence is defined as the 

proportion of number of incorrectly covered observations by pattern P from opposite 

class to all observations of the opposite class [Boros et al. (2000)]. 

(14) 

Table 10 and 11 show the quality measures of the patterns that were previously generated 

applying the MILP method. As previously mentioned, the MILP method guarantees the 

pattern is pure. So none of the generated patterns cover any observation from the opposite 

class. As a result, the homogeneity corresponding to all the patterns is equal to 1, which 

means that all the covered observations are from the pattern’s class Similarly, the 

improper prevalence corresponding to all the patterns is equal to 0, which means that no 

observation from the opposite class is covered in the patterns. 

Table 10. Quality Measures of Positive Patterns - MILP Method 
Positive Patterns 

Patterns Homogeneity Prevalence Proper Prevalence Improper Prevalence 

+P1 1 0.1666667 0.6666667 0 
+P2 1 0.0833333 0.3333333 0 

Table 11. Quality Measures of Negative Patterns - MILP Method 
Negative Patterns 

Patterns Homogeneity Prevalence Proper Prevalence Improper Prevalence 

-N1 1 0.75 1 0 

 



42 

Table 12 and 13 shows the quality measures of the patterns that were previously 

generated applying the hybrid greedy method with degree ≤3, coverage ≥70% and 

fuzziness ≤1. Since the hybrid greedy method allows the coverage of observations from 

the opposite class, the homogeneity of the patterns may take values lower than 1. 

Similarly, the improper prevalence of the patterns may take values greater than 0. 

Table 12. Quality Measures of Positive Patterns - Hybrid Greedy Method 
Positive Patterns 

Patterns Homogeneity Prevalence Proper Prevalence Improper Prevalence 

+P1 0.6666667 0.25 0.6666667 0.1111111 
+P2 1 0.1666667 0.6666667 0 

 

Table 13. Quality Measures of Negative Patterns - Hybrid Greedy Method 
Negative Patterns 

Patterns Homogeneity Prevalence Proper Prevalence Improper Prevalence 

-N1 0.8888889 0.75 0.8888889 0.3333333 
-N2 1 0.5833333 0.7777778 0 

It is worth mentioning that the quality of negative patterns is generally better than that of 

positive patterns. The main reason is that the number of negative observations in the 

dataset is relatively higher, and as a result, discovering their characteristics is relatively 

more precise. 

Interestingly, by comparing proper prevalence of negative patterns generated by different 

methods, it can be inferred that the MILP method generates patterns with relatively 

higher level of the correct coverage. Obviously, this is due to the fact that the MILP 

method is aimed at generation of strong patterns, which inherently possess the maximum 

coverage level. 

4. MODEL FORMATION 

As previously mentioned, LAD always takes two phases: at the Train Phase, it constructs 

a model based on a given historical dataset. Then, at the Test Phase, the model is used to 

diagnose or prognosticate a part of the historical dataset. So based on what is demanded 

at the test phase, the model may be constructed either from a Diagnostic or from a 

Prognostic point of view. In the following sections, we will discuss some methods using 

LAD to construct diagnostic models in the literature, and then will introduce methods to 

prognosticate failure in equipment. 
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4.1. Failure Diagnostic 

A diagnostic model functions as a classifier to detect failures. A LAD pattern-based 

classification tool is built to categorize any new observation either as failed or survived 

observation. A sufficient number of patterns can provide a good indicator of 

characteristics of new observations in a way that is consistent with the historical 

observations. In the original definition of LAD [Crama et al. (1988)], a new observation 

is classified as positive (negative) only if it is covered by some of the positive (negative) 

patterns while not covered by any of the negative (positive) patterns. This way, none of 

the new observations, which are covered by some of the positive (negative) patterns as 

well as some of the negative (positive) patterns, can be classified. As a modification to 

the original definition, a Discriminant Function is built based on the relative significance 

of generated patterns (see eq. (3)) [Boros et al. (2000)]. 

The discriminant function is to classify a new observation covered by some positive and 

negative patterns. The value of PP1,…,PPr and NP1,…,NPs will be equal to 1 if the new 

observation is covered by the corresponding pattern, and 0, otherwise. A positive 

(negative) value of the discriminant function indicates that it is a positive (negative) 

observation. This way, any new observation can be classified unless the value of its 

discriminant function equals to zero. 

(15)

Assuming equally normalized weights for both positive and negative patterns that were 

previously generated using the MILP method in the Table 8, the weights H1
+ = 0.5, H2

+ = 

0.5, and H1
- = -1 are respectively assigned to the patterns PP1, PP2, and NP1. So the 

discriminant function is formulated as the following. 

Discriminant Function = 0.5 PP1 + 0.5 PP2 – NP1 

Table 14 shows a sample set of monitored data used for the diagnostic. It presents the 

monitored data of the equipment at four consecutive observation moments. The last 

observation moment of the equipment, referred to as the observation that will fail during 

the current period, is shown with the dark background. 
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Table 14. Sample Set of Monitored Data for Diagnostic or Prognostic 
Observations Attributes 

Equipment ID. Observation Time Age Condition Indicator 
1 0 0 14 
1 1 1 16 
1 2 2 20 
1 3 3 22 

Using binirization methods explained earlier, the dataset is transformed into the binary 

format, as shown in Table 15. 

Table 15. Binary Transformation of Sample Set of Monitored Data for Diagnostic or Prognostic 
Observations Attributes 

Equipment 
ID. 

Observation 
Time 

Age Condition Indicator 
1.5 2.5 3.5 19 21 

1 0 0 0 0 0 0 
1 1 0 0 0 0 0 
1 2 1 0 0 1 0 
1 3 1 1 0 1 1 

Each observation is tested with all the MILP patterns in the Table 8. The list of patterns 

covering each observation is shown in Table 16.  The discriminant function is calculated 

based on the list of patterns covering each observation and the observations are classified 

based on the value of their discriminant function. 

Table 16. Classification of Sample Set of Monitored Data based on MILP Patterns 
Observations 

Covering Patterns 
Discriminant 

Function 
Classification 

Equipment ID. Observation Time 
1 0 NP1 -1 - 
1 1 NP1 -1 - 
1 2 NP1 -1 - 
1 3 PP1 0.5 + 

As it is shown in the Table 16, the discriminant function correctly classified both positive 

and negative observations. If the discriminant function value is close to zero, there is a 

lack of certainty in the classification. On the other hand, if it is close to either 1 or -1, the 

classification is true with more certainty. Contrary to this example, a few patterns might 

not always classify all the observations accurately. The more generated patterns, the more 

characteristics of the classes are possessed by the pattern set, and consequently, the more 

accurate classification. In this example, only one negative pattern is generated which 

causes the discriminant function takes only the value -1 in the negative interval. If more 

negative patterns were generated, the discriminant function might take other values in the 

interval [-1,0). This way, the observations that are classified with less certainty would 

also be taken into consideration. If so, the gradual changes in the discriminant function, 
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from the negative (positive) values to the positive (negative) values, enable us to predict a 

change in the class of observations from a few observation moments before it occurs. 

Similarly, applying generated patterns using the hybrid greedy in the Table 9, the 

discriminant function is formulated as following. 

Discriminant Function = 0.5 PP1 + 0.5 PP2 – 0.5 NP1 – 0.5 NP2 

This calculation is based on H1
+ = 0.5, H2

+ = 0.5, H1
- = -0.5 and H2

- = -0.5 respectively 

for patterns PP1, PP2, NP1, and NP2. The classification of data, based on the hybrid 

greedy patterns in the Table 9, is shown in Table 17. In this example, two negative 

patterns are generated which enables the discriminant function to take different values in 

the interval [-1,0). As it is shown in the Table 17, both the negative patterns are reflected 

in the first two observations, which can be interpreted that the first two observations with 

absolute certainty are negative. But, the third observation only reflects one of the 

negative patterns, which means that the observation is classified with less certainty. This 

can be considered as an indication of an imminent failure. As it could be expected, the 

forth observation only reflects the positive patterns, and is classified as positive 

observation with absolute certainty. As it was previously mentioned, the gradual change 

in the discriminant function, from -1 to -0.5, enables us to predict an imminent failure 

before it occurs. 

Table 17. Classification of Sample Set of Monitored Data based on Hybrid Greedy Patterns 
Observations 

Covering Patterns 
Discriminant 

Function 
Classification 

Equipment ID. Observation Time 
1 0 NP1 , NP2 -1 - 
1 1 NP1 , NP2 -1 - 
1 2 NP1 -0.5 - 
1 3 PP1 , PP2 1 + 

4.2. Failure Prognostic 

Prognostic aims at the detection of the failure at certain moments in the future, which to 

the author’s knowledge has been relatively untested. In the following section, we will 

introduce two methods to calculate the conditional survival probability of the equipment, 

based on the estimated survival functions using Kaplan-Meier (KM) estimation [Kaplan 

et al. (1958)]. 

For each positive or negative pattern generated using the hybrid greedy method, shown in 

the Table 9, the list of its covered observations is presented in Table 18. 
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Table 18. List of Observations from Train Set, Covered by Hybrid Greedy Patterns 

We associated to each pattern p, Pattern Conditional Survival Probabilities SPp(i) for ∀i 

∈{1,2,…,T}, which represent the pattern’s survival estimation of a piece of equipment 

for at least i periods, when the equipment’s observation is covered by the pattern. T is the 

maximum available survival period within train set. Since LAD bases its pattern 

generation on the train set, its ability to prognosticate is limited to the attributes that it has 

observed in the train phase. In other words, T represents the LAD’s maximum perception. 

KM estimation of pattern conditional survival probability is defined as the proportion of 

the number of observations covered by pattern P whose corresponding pieces of 

equipment survived at least i periods after being covered by the pattern, to the total 

number of observations covered by pattern P. 

(16)

Where S is the set of observations in the train set, and P∩S represents the subset of 

observations in the train set S that are covered by the pattern P.  Function #(N) counts the 

number of members of the set N. τ is the actual failure time of the corresponding 

equipment, and τ0 is the current age of the corresponding equipment at the observation 

moment when it is covered by pattern P. Δ is the observation period length. 

Due to the fact that both age and condition of equipment are considered as the 

equipment’s attributes in our study, the above-mentioned survival probability contains 

the prognostic information based on both age and condition of the equipment. 

Table 19 shows KM estimation of conditional survival probability of the hybrid greedy 

patterns in the Table 9, based on their corresponding covered observations in the Table 

18. For example, SPPP1(1) is equal to 0.333 because PP1 covers observations 1-3 , 1-4 , 3-

3 in the Table 18, but only observation 1-3 has corresponding equipment (i.e. equipment 

1) that survives more than one period after being covered by PP1. Both corresponding 

equipment of observation 1-4 and 3-3 have failed during next period as soon as they are 

covered by PP1. 

 

 

+ Pattern Covered Observations - Pattern Covered Observations 
PP1 1-3 , 1-4 , 3-3 NP1 1-0 , 1-1 , 1-2 , 2-0 , 2-1 , 2-2 , 3-0 , 3-1 , 3-2 
PP2 2-2 , 3-3 NP2 1-0 , 1-1 , 1-3 , 2-0 , 2-1 , 3-0 , 3-1 
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Table 19. KM Estimation of Conditional Survival Probability of Hybrid Greedy Patterns 
 1 2 3 4 

PP1 0.333 0 0 0 
PP2 0 0 0 0 
NP1 0.889 0.667 0.333 0.111 
NP2 1 0.714 0.428 0.143 

We also defined the Baseline Conditional Survival Probability to indicate time-based 

survival function, regardless of the equipment’s condition.  This is taken into 

consideration for the probable case where no pattern covers an observation. This way, we 

will be able to calculate the conditional survival probability of the equipment at 

observation moments, which are not covered by any of the patterns. KM estimation of 

baseline conditional survival probability is calculated as the proportion of the number of 

pieces of equipment that survived at least i periods, to the number of all the pieces of 

equipment in train set. 

(17) 

Where E is the set of all pieces of equipment in the train set. 

Table 20 shows KM estimation of baseline conditional survival probability based on all 

the observations in the train set. SPb(3) equal to 0.667 means that two out of three pieces 

of equipment in the train set have survived more than 3 periods.

Table 20. KM Estimation of Baseline Conditional Survival Probability 
 1 2 3 4 

SPb(i) 1 1 0.667 0.333 

Considering the mentioned conditional survival probabilities, we introduce two methods 

to calculate the conditional survival probability of the equipment from which a new 

observation is collected. 

The first method favors the Pattern Conditional Survival Probability (SPp), while it takes 

into account the ones that were calculated for the equipment based on observations at 

previous observation moments (SPformer), less weightily. It also contains the Baseline 

Conditional Survival Probability (SPb). Defining n as the number of patterns that cover an 

observation, the conditional survival probability of the equipment for i periods is 

calculated as follows: 
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(18)

Four consecutive observation records shown in Table 15 are covered by the hybrid 

greedy patterns as shown in the Table 17. Using the 1st method, as introduced in eq. (18), 

the conditional survival probabilities of the equipment at different observation moments 

are shown in Table 21. As previously mentioned, since all the train data failed before the 

fifth period, the fourth period is considered as the LAD’s maximum perception, and as a 

result, the probability of survival more than four periods is equal to zero. 

SPobs(2) for 1-0 is equal to 0.794 because the observation 1-0 is covered by patterns NP1 

and NP2 for which SPNP1(2) and SPNP2(2) are equal to 0.667 and 0.714 respectively (see 

Table 19), and SPb(2) is equal to 1 (see Table 20). As a result SPobs(2) for 1-0 is equal to 

(0.667 + 0.714 + 1) / 3 = 0.794. SPformer(1) for 1-1 is also equal to 0.794 because its 

corresponding equipment was formerly predicted to survive for at least 2 periods with the 

probability of 0.794 (SPobs(2) for 1-0 is 0.794). As mentioned earlier, since all the train 

data failed before the fifth period, the fourth period is considered as the LAD’s maximum 

perception, and the probability of survival more than four periods is equal to zero. 

Table 21. Conditional Survival Probabilities of Equipment at Different Observation Moments–1st Calculation Method 

Obs 
Covering 

Patterns 

Σ SPp(t) SPb(t) SPformer(t) SPobs(t) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1-0 NP1,NP2 1.89 1.38 0.76 0.25 1 1 0.67 0.33 - - - - 0.96 0.79 0.48 0.19 

1-1 NP1,NP2 1.89 1.38 0.76 0.25 - - - - 0.79 0.48 0.19 0 0.89 0.62 0.32 0.08 

1-2 NP1 0.89 0.67 0.33 0.11 - - - - 0.62 0.32 0.08 0 0.76 0.5 0.21 0.06 

1-3 PP1,PP2 0.33 0 0 0 - - - - 0.5 0.21 0.06 0 0.28 0.07 0.02 0 

The second method also prefers the latest observation to older observation. But, it 

considers equal weight for Pattern and Baseline Conditional Survival Probabilities. The 

conditional survival probability of the equipment at current observation moment is 

calculated as follows: 
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(19)

Using the 2nd method, as introduced in eq. (19), the conditional survival probabilities of 

the equipment at different observation moments are shown in Table 22. SPb(1) for 1-3 is 

equal to 0.5 because one out of two pieces of equipment that have survived more than 3 

periods, has survived more than 4 periods. 

Table 22. Conditional Survival Probabilities of Equipment at Different Observation Moments–2nd Calculation Method 

Obs 
Covering 
Patterns 

Σ SPp(t) SPb(t) SPformer(t) SPobs(t) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1-0 NP1,NP2 1.89 1.38 0.76 0.25 1 1 0.67 0.33 - - - - 0.97 0.85 0.53 0.23 

1-1 NP1,NP2 1.89 1.38 0.76 0.25 1 0.67 0.33 0 0.85 0.53 0.23 0 0.96 0.65 0.33 0.04 

1-2 NP1 0.89 0.67 0.33 0.11 0.67 0.33 0 0 0.65 0.33 0.04 0 0.72 0.42 0.09 0.03 

1-3 PP1,PP2 0.33 0 0 0 0.5 0 0 0 0.42 0.09 0.03 0 0.38 0.02 0 0 

Figure 3 shows the conditional survival probability of the last observation using the 

patterns generated by both the hybrid greedy and MILP methods, based on both the 

survival probability calculation methods (eq. (18) and eq. (19)). As it can be inferred 

from the Figure 3, those provided by the first method gradually decrease over time while 

those provided by the second method severely decrease from the time 1 to 2, which 

emphasizes the probability of failure in the next coming period. 

 

Figure 3. Conditional Survival Probability of the Last Observation using Different Methods  
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 : EXPERIMENTS CHAPTER 3

We applied the LAD methodology on Prognostics and Health Management Challenge 

dataset, a condition monitoring dataset provided by NASA Ames Prognostics Data 

Repository. The dataset consists of approximately 46,000 observations associated with 

218 pieces of mechanical equipment. For each observation, 3 operational settings and 21 

measurements associated with the equipment’s attributes are provided. 

1. DATA PREPARATION 

In order to model the system in a reasonable time, we had to decrease the dataset size. To 

do so, we extracted every 10th observation and reduced the number of observations to 

about 4,600. 

Table 23 shows the correlation between attributes. Cells with the dark background show 

values greater than 0.9. As it can be inferred, most of the attributes are highly correlated. 

Involving correlated attributes in the model is not appropriate due to two main reasons: 

First and foremost, correlated attributes do not provide any additional information. 

Second, the more number of attributes involved, the more modeling time is required. Our 

tests show that the modeling time grows exponentially by increasing the number of 

attributes.  

Table 23. Correlation Matrix 
Att. F G H I J K L M N O P Q R S T U V W X Y Z 

F 1.00 0.94 0.87 0.90 0.99 0.99 0.97 0.57 0.86 0.83 0.70 0.97 0.16 0.34 -.54 0.80 0.87 0.57 0.16 0.98 0.98 

G 0.94 1.00 0.98 0.98 0.92 0.94 0.97 0.81 0.98 0.91 0.89 0.97 0.47 0.62 -.78 0.81 0.98 0.81 0.47 0.96 0.96 

H 0.87 0.98 1.00 0.99 0.84 0.88 0.93 0.89 1.00 0.93 0.96 0.93 0.62 0.75 -.87 0.81 1.00 0.89 0.62 0.92 0.92 

I 0.90 0.98 0.99 1.00 0.88 0.92 0.96 0.84 0.99 0.96 0.94 0.96 0.54 0.71 -.85 0.86 0.99 0.84 0.54 0.95 0.95 

J 0.99 0.92 0.84 0.88 1.00 1.00 0.98 0.52 0.83 0.84 0.67 0.98 0.11 0.32 -.52 0.83 0.84 0.52 0.11 0.99 0.99 

K 0.99 0.94 0.88 0.92 1.00 1.00 0.99 0.59 0.87 0.88 0.73 0.99 0.19 0.40 -.59 0.84 0.89 0.59 0.19 1.00 1.00 

L 0.97 0.97 0.93 0.96 0.98 0.99 1.00 0.68 0.92 0.92 0.80 1.00 0.30 0.50 -.68 0.86 0.93 0.68 0.30 1.00 1.00 

M 0.57 0.81 0.89 0.84 0.52 0.59 0.68 1.00 0.90 0.78 0.97 0.68 0.90 0.93 -.97 0.60 0.89 1.00 0.90 0.65 0.65 

N 0.86 0.98 1.00 0.99 0.83 0.87 0.92 0.90 1.00 0.93 0.96 0.92 0.63 0.77 -.88 0.80 1.00 0.90 0.63 0.91 0.91 

O 0.83 0.91 0.93 0.96 0.84 0.88 0.92 0.78 0.93 1.00 0.89 0.92 0.51 0.72 -.85 0.91 0.93 0.78 0.50 0.91 0.91 

P 0.70 0.89 0.96 0.94 0.67 0.73 0.80 0.97 0.96 0.89 1.00 0.80 0.80 0.89 -.97 0.73 0.96 0.97 0.80 0.78 0.78 

Q 0.97 0.97 0.93 0.96 0.98 0.99 1.00 0.68 0.92 0.92 0.80 1.00 0.30 0.50 -.68 0.86 0.93 0.68 0.30 1.00 1.00 

R 0.16 0.47 0.62 0.54 0.11 0.19 0.30 0.90 0.63 0.51 0.80 0.30 1.00 0.93 -.88 0.29 0.61 0.90 1.00 0.27 0.27 

S 0.34 0.62 0.75 0.71 0.32 0.40 0.50 0.93 0.77 0.72 0.89 0.50 0.93 1.00 -.96 0.53 0.75 0.93 0.93 0.47 0.47 

T -.54 -.78 -.87 -.85 -.52 -.59 -.68 -.97 -.88 -.85 -.97 -.68 -.88 -.96 1.00 -.66 -.87 -.97 -.88 -.66 -.66 

U 0.80 0.81 0.81 0.86 0.83 0.84 0.86 0.60 0.80 0.91 0.73 0.86 0.29 0.53 -.66 1.00 0.81 0.60 0.29 0.86 0.86 

V 0.87 0.98 1.00 0.99 0.84 0.89 0.93 0.89 1.00 0.93 0.96 0.93 0.61 0.75 -.87 0.81 1.00 0.89 0.61 0.92 0.92 

W 0.57 0.81 0.89 0.84 0.52 0.59 0.68 1.00 0.90 0.78 0.97 0.68 0.90 0.93 -.97 0.60 0.89 1.00 0.90 0.65 0.65 

X 0.16 0.47 0.62 0.54 0.11 0.19 0.30 0.90 0.63 0.50 0.80 0.30 1.00 0.93 -.88 0.29 0.61 0.90 1.00 0.27 0.27 

Y 0.98 0.96 0.92 0.95 0.99 1.00 1.00 0.65 0.91 0.91 0.78 1.00 0.27 0.47 -.66 0.86 0.92 0.65 0.27 1.00 1.00 

Z 0.98 0.96 0.92 0.95 0.99 1.00 1.00 0.65 0.91 0.91 0.78 1.00 0.27 0.47 -.66 0.86 0.92 0.65 0.27 1.00 1.00 

In order to remove the effect of involving trivial attributes, we applied the Principal 

Component Analysis (PCA). PCA [Pearson (1901)] is a mathematical method that 
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converts the attributes into a set of linearly uncorrelated attributes, using Orthogonal 

Transformation. The orthogonal transformation [Pearson (1901)] is performed in a way 

that the first principal component has the maximum variability in the available data, and 

the following principal components have decreasingly the next maximum variability 

while are uncorrelated with previous ones. One way to perform the orthogonal 

transformation is called Eigen Decomposition [Pearson (1901)]. In this procedure, the 

correlation matrix is factorized into a matrix represented in terms of the Eigenvalues and 

Eigenvectors [Pearson (1901)]. An eigenvector of a matrix is the vector that remains 

parallel if multiplied by the matrix. Corresponding to an eigenvector, an eigenvalue is the 

factor that scales the eigenvector during the multiplication. The more value of an 

eigenvalue, the more informative its corresponding eigenvector, and consequently, the 

better the eigenvector represents the variety in the dataset. As a result, a multi-attribute 

dataset can be reduced in the number of attributes by using only the most informative 

attributes (eigenvectors). 

Eigenvalue, variability and cumulative variability percentage, associated with each newly 

defined attribute, are shown in Table 24.  

Table 24. Eigenvalue, Variability, and Cumulative Variability 

 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 

Eigenvalue 16.86 3.62 0.37 0.09 0.04 0.02 0.01 0.00 0.00 0.00 0.00 

Variability (%) 80.28 17.22 1.76 0.40 0.17 0.10 0.04 0.01 0.01 0.01 0.00 

Cumulative (%) 80.28 97.50 99.26 99.66 99.83 99.93 99.97 99.98 99.99 99.99 100 

As Table 24 shows, the first principal component has the maximum eigenvalue and 

variability percentage, 16.86 and 80.28% respectively. In the next level, the second 

component has the maximum eigenvalue and variability percentage, 3.62 and 17.22% 

respectively. The first two principal components convey more than 97% of characteristics 

of all the attributes before conversion. So, from this point on, we will construct the model 

based on these two attributes as a substitute for system’s 21 attributes. 

From the dataset of 218 pieces of equipment, a dataset of 15 pieces of equipment was 

extracted to test the performance of the model, and from the remaining pieces of 

equipment, 10 datasets of 70 randomly extracted pieces of equipment were generated to 

train the model. We constructed 10 models based on different train datasets, and for each 

model, we calculated the conditional survival probabilities based on the same test dataset. 
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This enables us to compare the conditional survival probability of each matched pair 

observation obtained by different models while eliminating the difference (error) due to 

randomness of different random test data. Finally, the prognostic results provided by all 

the 10 models are averaged over the models. The final analysis of the performances is 

performed using the averages. 

2. SAMPLE PROGNOSTIC RESULTS 

The proposed LAD prognostic model is entirely coded in the Python programming 

language, and all of the steps are carried out automatically. The inputs and outputs 

interface through the Excel spreadsheets. The MILP model is solved, using the CPLEX 

optimization software package module for Python. 

Table 25 shows a set of monitored data for a test piece of equipment at 21 consecutive 

observation moments. Each row corresponds to an observation moment, for which the 

age and two condition indicators, all considered as the observation’s attributes, are shown 

in the columns 3 to 5. The last observation moment of the equipment, referred to as the 

observation that will fail during the current period, is shown with the dark background. 

This is in fact the last period that record of data has been received for the equipment. 

Before getting to the next observation moment, the equipment has failed.  

Table 25. Set of Monitored Data for a Test Equipment 
Observations Attributes 

Equipment ID. Observation Time Age Condition Indicator 1 Condition Indicator 2 
1 0 0 0.059 0.011 
1 1 1 0.044 0.078 
1 2 2 0.004 0.000 
1 3 3 0.009 0.023 
1 4 4 0.005 0.012 
1 5 5 0.059 0.011 
1 6 6 0.008 0.024 
1 7 7 0.004 0.000 
1 8 8 0.016 0.000 
1 9 9 0.016 0.000 
1 10 10 0.009 0.024 
1 11 11 0.043 0.078 
1 12 12 0.008 0.024 
1 13 13 0.004 0.000 
1 14 14 0.060 0.011 
1 15 15 0.043 0.076 
1 16 16 0.004 0.013 
1 17 17 0.004 0.013 
1 18 18 0.007 0.000 
1 19 19 0.007 0.027 
1 20 20 0.063 0.008 
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Table 26 shows the prognostic results for the data in Table 25, based on the second 

conditional survival probability calculation method introduced in the chapter 2, section 

4.2. Each row corresponds to an observation moment, for which the conditional 

probabilities of survival up to 1 to 5 periods later, are respectively shown in the columns 

3 to 7. For instance, the 16th row shows the conditional probabilities of survival up to the 

period 17th to 21st, based on the equipment’s attributes at the 16th observation moment. 

The conditional probabilities of survival up to the period 17th to 21st are respectively 

equal to 0.923, 0.878, 0.799, 0.732, and 0.665. 

Table 26. Prognostic Results for the Test Equipment 
Observations Conditional Survival Probability Residual Life 

Equip. 
ID. 

Obs. 
Time 

X > 1 X > 2 X > 3 X > 4 X > 5 MRL 
Actual 

RL 
Diff. 

1 0 0.998 0.990 0.978 0.961 0.939 14.80 20 - 5.20 
1 1 0.996 0.986 0.973 0.953 0.933 13.87 19 - 5.13 
1 2 0.995 0.984 0.965 0.948 0.917 13.46 18 - 4.54 
1 3 0.996 0.983 0.970 0.948 0.924 13.43 17 - 3.57 
1 4 0.995 0.986 0.972 0.955 0.931 13.56 16 - 2.44 
1 5 0.996 0.986 0.971 0.951 0.924 13.49 15 - 1.51 
1 6 0.994 0.978 0.961 0.929 0.902 12.96 14 - 1.04 
1 7 0.994 0.982 0.960 0.942 0.909 13.27 13 0.27 
1 8 0.995 0.983 0.969 0.950 0.924 13.41 12 1.41 
1 9 0.995 0.984 0.970 0.953 0.926 13.43 11 2.43 
1 10 0.995 0.982 0.969 0.946 0.923 13.33 10 3.33 
1 11 0.995 0.983 0.968 0.947 0.924 13.45 9 4.45 
1 12 0.993 0.976 0.958 0.925 0.897 12.81 8 4.81 
1 13 0.991 0.975 0.946 0.923 0.884 12.65 7 5.65 
1 14 0.990 0.967 0.946 0.913 0.870 12.14 6 6.14 
1 15 0.981 0.950 0.913 0.862 0.815 10.91 5 5.91 
1 16 0.923 0.878 0.799 0.732 0.665 8.22 4 4.22 
1 17 0.962 0.890 0.793 0.702 0.609 7.37 3 4.37 
1 18 0.859 0.740 0.647 0.569 0.472 6.24 2 4.24 
1 19 0.823 0.656 0.540 0.429 0.367 4.82 1 3.82 
1 20 0.878 0.667 0.524 0.403 0.301 4.17 0 4.17 

For each observation moment, we calculate the set of conditional probabilities of survival 

for the future predictable periods (columns 3 to 7). However, this set is not meaningfully 

comparable to its matched pair set provided by other experiments. Therefore, we 

transform the information of the set into a single comparable value, Mean Residual Life 

(MRL), so that we can compare performance of different experiments. MRL represents 

the expected value of equipment residual life, and is formulated as following [Banjevic et 

al. (2006)]: 

 
(20) 
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Where Probability (τ > τ0 + iΔ|τ > τ0) shows the probability of survival for at least i 

periods, knowing that the equipment has not failed until τ0. This conditional probability is 

identical with conditional survival probability SPobs(i), introduced in this work. So the 

MRL is formulated in terms of SPobs(i) as following: 

 
(21) 

In Table 26, associated with each observation moment, the MRL and the actual Residual 

Life (RL) are calculated and shown in columns 8 and 9 respectively. The actual RL is not 

determined until the equipment failure moment. At this moment, the equipment lifetime 

is determined as the time difference between the failure moment and installation moment. 

In the above example, the equipment lifetime is equal to 20. Then, for each observation 

moment, the actual RL is calculated by subtracting the observation moment from the 

equipment lifetime. For instance, the actual RL associated with the 16th observation 

moment is equal to 4. At each observation moment, the difference between the MRL and 

the actual RL is calculated and shown in column 10. The lower the difference, the better 

the performance of the model. Figure 4 shows a comparison between the MRL and the 

actual RL of the equipment. 

Figure 4. A Comparison Between MRL and Actual RL 

Figure 4 shows that in early observation moments, the model underestimates the MRL. 

As time passes by, the MRL gets closer to the actual RL, and the model correctly 

estimates the MRL almost at the mid-age observation moment. Later, when getting closer 

to the actual failure moment, the model overestimates the MRL. 
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Conditional survival probabilities for the next 5 periods at each observation moment in 

the Table 26, are illustrated in Figure 5. The last five observations reveal severe decreases 

in the survival probability, which is consistent with the imminent failure in the next few 

periods. 

3. DESIGN OF EXPERIMENT (DOE) 

Our prognostics model formation generally has two phases: At the first phase, data 

binarization, using either the sensitive discriminating or the equipartitioning method, is 

performed. The performance of the equipartitioning method depends on a pre-defined 

number of cut-points. At the second phase, survival analysis is performed based on the 

patterns generated by either the MILP or the hybrid greedy method. The performance of 

the hybrid greedy method depends on the pre-defined degree, coverage and fuzziness 

parameters. Table 27 shows our Design of Experiments (DOE). We will examine 5 

parameter settings for the data binarization phase, and 13 parameter settings for the 

survival analysis phase. We have also included the Weibull PHM [Banjevic et al. (2006)] 

to calculate conditional survival probabilities to compare different LAD settings 

performances with that of PHM. As a result, (5×14=) 70 experiments are designed in 

order to compare the performance of the model based on different parameters and 

methods. Each experiment is performed 10 times based on different train sets and the 

results are averaged over all the 10 runs. 
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Table 27. Design Of Experiments (DOE) 
Data Binarization Parameters 

 

Survival Analysis Parameters 

Sensitive 
Discriminating 

- 

PHM - 
MILP - 

Hybrid Greedy 

d = 3  coverage > 10%   fuzziness <=0 
d = 3  coverage > 10%   fuzziness <=1 
d = 3  coverage > 10%   fuzziness <=2 
d = 3  coverage > 20%   fuzziness <=0 

Equipartitioning 

# cut-points = 20 
d = 3  coverage > 20%   fuzziness <=1 
d = 3  coverage > 20%   fuzziness <=2 

# cut-points = 30 
d = 3  coverage > 30%   fuzziness <=0 
d = 3  coverage > 30%   fuzziness <=1 

# cut-points = 40 
d = 3  coverage > 30%   fuzziness <=2 
d = 3  coverage > 40%   fuzziness <=0 

# cut-points = 50 
d = 3  coverage > 40%   fuzziness <=1 
d = 3  coverage > 40%   fuzziness <=2 

4. COMPARISONS 

The absolute value of differences between the MRL and the actual RL indicates the 

accuracy of the experiment. The lower the difference, the more accurate the experiment. 

So, the measurement under study in the DOE is the absolute value of differences between 

the MRL and the actual RL. 

Let X ={1,2,…,U} be defined as the test set, where U is the number of observations in the 

test set. In order to compare the performance of different experiments, first we associate 

the set Ze = (z1
e, z2

e,…, zU
e) with experiment e. The nth member of the set, zn

e is 

formulated as |MRLn
e-RLn|, where MRLn

e is the estimated MRL by experiment e for 

observation n, and RLn is the actual RL for observation n. Then, experiments 1,2,…,m are 

compared based on the sets Z1,Z2,…,Zm. To do so, members of the sets are compared pair 

by pair, using the Friedman Matched-pair Test (Dunn’s Multiple Comparison Test) 

[Friedman (1940)]. 

The comparison is structured as follows: First, we compare two conditional survival 

probability calculation methods introduced in the chapter 2, section 4.2 (eq. (18) and eq. 

(19)). Second, different hybrid greedy methods are compared. Third, the best hybrid 

greedy method is compared with the MILP and the PHM methods. 

4.1. Method # 1 vs. Method # 2 

Comparison of the two methods of conditional survival probability calculation reveals 

that the second method that equally prefers the baseline and pattern survival probability 
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(eq. (19)), statistically outperforms the first method that prefers the pattern survival 

probability (eq. (18)). 

Table 28 shows the comparison between the two methods for a sample experiment. The 

mean of the differences in the second method (3.811) is significantly lower than that in 

the first method (4.534). Both lower and upper 95% confidence intervals of the second 

method (3.542,4.080) are extremely lower than that of the first one (4.205,4.864). The 

median of the second method (3.425) is also lower than that of the first one (3.844). 

Table 28. Method #1 vs. Method #2 (sample experiment) 

Minimum 0.4398 0.3149 

25% Percentile 2.136 1.763 

Median 3.844 3.425 

75% Percentile 6.303 5.329 

Maximum 12.36 10.20 

Mean 4.534 3.811 

Std. Deviation 3.008 2.458 

Std. Error 0.1676 0.1370 

Lower 95% CI 4.205 3.542 

Upper 95% CI 4.864 4.080 

4.2. Hybrid Greedy # 1 vs. … vs. Hybrid Greedy # 12 

Comparison of the hybrid greedy methods reveals that the one with the parameters 

coverage ≥ 10% and fuzziness = 0 outperforms the other methods. Table 29 shows the 

comparison between the mean values of different hybrid greedy methods. The method 

with the parameters coverage ≥ 10% and fuzziness = 0 provides the lowest mean value 

although the differences are not statistically significant. 

Table 29. Hybrid Greedy #1 vs. … vs. Hybrid Greedy #12 

Par. 
C>0.1 
F <=0 

C>0.1 
F <=1 

C>0.1 
F <=2 

C>0.2 
F <=0 

C>0.2 
F <=1 

C>0.2 
F <=2 

C>0.3 
F <=0 

C>0.3 
F <=1 

C>0.3 
F <=2 

C>0.4 
F <=0 

C>0.4 
F <=1 

C>0.4 
F <=2 

S.D. 3.751
+
 3.774 3.78 3.783 3.789 3.758 3.788 3.775 3.783 3.796 3.775 3.787 

E.20 3.748
+
 3.762 3.826 3.778 3.816 3.835 3.812 3.839 3.822 3.833 3.842 3.857 

E.30 3.731
+
 3.753 3.754 3.77 3.792 3.835 3.778 3.778 3.829 3.786 3.795 3.785 

E.40 3.723
+
 3.727 3.751 3.738 3.749 3.753 3.758 3.731 3.732 3.779 3.738 3.775 

E.50 3.728
+
 3.739 3.788 3.75 3.734 3.818 3.751 3.766 3.754 3.763 3.772 3.753 

+ Minimum mean value 

4.3. Hybrid Greedy vs. MILP vs. PHM 

Comparison of the hybrid greedy, the MILP, and the PHM reveals that the PHM 

statistically outperforms the LAD methods. While the hybrid greedy and the MILP 
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methods are not statistically different. Table 30 shows the comparison between the mean 

values of the three methods. 

Table 30. Hybrid Greedy vs. MILP vs. PHM 

 
Hybrid Greedy MILP PHM 

Sensitive Discriminating 3.751 3.811 3.507
+
 

Equipartitioning 20 3.748 3.867 3.51
+
 

Equipartitioning 30 3.731 3.826 3.509
+
 

Equipartitioning 40 3.723 3.801 3.51
+
 

Equipartitioning 50 3.728 3.801 3.51
+
 

+ Minimum mean value 

For the data in the Table 25, Figures 6-8 illustrate the survival functions for the next 5 

periods at 21 consecutive observation moments, using the best models respectively 

provided by the hybrid greedy, the MILP, and the PHM methods. 

As it can be inferred from the Figure 6, survival probabilities for the next 5 periods do not 

move below 0.95 for the early observation moments. They also do not move below 0.9 

except for the last few observation moments. But as soon as it is warned about an 

imminent failure, the survival probabilities severely decrease even below 0.4. 

 

In comparison with the hybrid greedy method, Figure 7 shows that the MILP method has 

more pessimistic outlook about the future. The slopes of the survival functions in the 

Figure 7 are higher in comparison with that in the Figure 6. Survival probabilities for the 

next 5 periods usually move below 0.9 even at the early observation moments. But same 

as the hybrid greedy, the MILP survival probabilities also severely decrease as soon as it 

is warned about an imminent failure. Comparing the survival probabilities at the 
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observation moments 19 and 20 shows that the LAD methods are pessimistic about the 

future of the 19th observation while they are optimistic about the future of the 20th 

observation, which cannot be seen in the PHM method (Figure 8). The reason might be 

that a warning about a hidden failure was received at the 19th observation while the 

failure was not detectable at the 20th observation. 

 

 

Figure 8 shows that the slopes of the survival functions gradually increase as the 

equipment health deteriorates. Survival probabilities at the last few observation moments 

severely decrease even as low as 0.25. 

Figure 9 shows the difference between the MRL and the actual RL of the equipment in 

the Table 25, using the best models provided by the hybrid greedy, the MILP, and the 

PHM methods. It shows that the LAD methods underestimate the MRL at the early 

observation moments (pessimistic outlook about the equipment future). As time passes 
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Figure 8. Survival Function using PHM Method  
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by, the estimations get closer to the actual RL, and they correctly estimate the MRL 

between 4th and 7th observations. Later, when getting closer to the actual failure moment, 

they overestimate the MRL (optimistic outlook about the equipment future). It can be 

concluded that the LAD methods have neither a constant optimistic outlook nor a 

constant pessimistic outlook about the equipment future, whereas they adjust their 

outlook over the equipment lifetime. Contrary to the LAD methods, the PHM method 

always overestimates the MRL by at least one period (optimistic outlook about the 

equipment future). Interestingly, all the curves almost meet at the 18th and 19th 

observations. This means that all the methods estimate almost the same MRL at the last 

few observation moments before the actual failure moment. Figure 9 also shows that the 

PHM method is stable at the early observation moments (see zone A), while the LAD 

methods are stable when getting closer to the actual failure moment (see zone B). 

Figure 9. Difference Between MRL and Actual RL using Hybrid Greedy, MILP, and PHM Methods 

Figures 10-a to 10-u illustrate the survival functions for the data 

in the Table 25, using the best models provided by the hybrid 

greedy, the MILP, and the PHM methods at the observation 

moments 0 to 20 respectively. 
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The Figures 10-a to 10-i show that the PHM, hybrid greedy, and MILP methods have 

comparatively optimistic, moderate, and pessimistic outlooks from the early observation 

moments to the 8th observation. During these periods, the PHM gradually gets pessimistic 

and takes the place of the hybrid greedy at the 9th observation, the Figure 10-j. According 

to the Figures 10-j to 10-l, this continues up to the 11th observation when the PHM 

overtakes the MILP, the Figure 10-l. The Figures 10-l to 10-p show that: the hybrid 
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greedy, MILP, and PHM methods have comparatively optimistic, moderate, and 

pessimistic outlooks from the 11th to 15th observation. According to the Figures 10-q to 

10-t, as the equipment gets closer to the actual failure moment, from the 16th to 19th 

observation, all the methods have similar outlooks about an imminent failure. The Figure 

10-u shows that the PHM better warns about the failure at the last observation. 

Table 31 shows the comparison between the average run-time of the three methods. It is 

shown that the run-time, as was expected, increases as the number of cut-points increases. 

In the train phase, the PHM method runs faster in comparison with the LAD methods. So, 

the PHM method is preferred in the cases where the train phase required to be performed 

frequently. In the test phase, the LAD methods run faster than the PHM method. So, the 

LAD methods are preferred in the cases where the test phase required to be performed 

frequently (online condition monitoring).  In total, the PHM method comparatively runs 

faster in 4 out of 5 cases, while in the remaining case, the MILP method runs faster. 

Among the LAD methods, the MILP method runs, as was expected, much significantly 

faster than the hybrid greedy method. 

Table 31. Run-Time: Hybrid Greedy vs. MILP vs. PHM 

 
Hybrid Greedy MILP PHM 

Train Test Total Train Test Total Train Test Total 

Sensitive Discriminating 2585.39 0.12
*
 2585.51 9.87 0.24 10.11 0.44

+
 3.07 3.51

^
 

Equipartitioning 20 123.88 0.05
*
 123.93 2.18 0.38 2.56

^
 0.48

+
 2.66 3.14 

Equipartitioning 30 670.14 0.08
*
 670.22 5.01 0.19 5.20 0.45

+
 2.79 3.24

^
 

Equipartitioning 40 2293.49 0.10
*
 2293.59 8.56 0.26 8.82 0.44

+
 2.79 3.23

^
 

Equipartitioning 50 5430.96 0.37 5431.32 11.29 0.33
*
 11.62 0.45

+
 2.84 3.29

^
 

+ 
Minimum mean value (Train)                    

* 
Minimum mean value (Test)                    

^
 Minimum mean value (Total) 
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 : CONCLUSION CHAPTER 4

In this research, we developed an equipment failure prognostic model by employing the 

Logical Analysis of Data (LAD). We improved the LAD methodology to predict 

equipment’s chance of survival at each observation moment when new data on the 

equipment health condition indicators is collected. The LAD model was applied on the 

Prognostics and Health Management Challenge dataset, a condition monitoring dataset 

provided by NASA Ames Prognostics Data Repository. Analysis of performance of the 

LAD model revealed that it provides comprehensible results that are greatly beneficial to 

maintenance practitioners. Prognostics results obtained using the LAD model, were 

compared with that using PHM model. Following result is only based on one example 

and need to be investigated further. 

Comparison with respect to the accuracy of estimated MRL showed that: The conditional 

survival probability calculation method that equally favors the baseline and pattern 

survival probabilities statistically outperformed the one that prefers the pattern survival 

probability. The hybrid greedy method with the parameters coverage >10% and 

fuzziness= 0 statistically outperformed other hybrid greedy methods. The PHM 

statistically outperformed the both LAD methods. Also, it is noticed that the 

performances of the LAD model is highly sensitive to its defined survival function. 

However, the LAD model results are highly interpretable and easy to understand which is 

of great value for maintenance practitioners. 

Comparison with respect to the run-time showed that: Fewer cut-points is preferred due 

to the fact that the accuracy of prognostics did not significantly depend much on the 

number of cut-points at the tested levels. In the train phase, the PHM method ran faster 

than the LAD methods, while in the test phase, the LAD methods ran faster than the 

PHM method. In 4 out of 5 cases, the PHM method ran faster in total. Among the LAD 

methods, the MILP method ran much significantly faster than the hybrid greedy method. 

Since the LAD methods were not statistically different, the MILP is preferred to the 

hybrid greedy, due to faster result achievement. 

Our results also showed that the PHM method has an optimistic outlook about the 

equipment’s survival. The LAD methods have neither constant optimistic nor constant 

pessimistic outlooks about the equipment’s survival, whereas their outlooks change 
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gradually from pessimistic to optimistic, as the equipment health deteriorates over its 

lifetime. The PHM method is more stable at the early observation moments, while the 

LAD method stabilizes when the equipment gets older. 

The LAD model has the advantage of not relying on any statistical theory, which enables 

it to overcome the conventional problems concerning the statistical properties of the 

datasets. Its main advantage is its straightforward process and self-explanatory results, 

which are greatly beneficial to maintenance practitioners. 

Since the proposed LAD model is at its beginning phase, further research is required to 

improve the performance of the model. Due to the fact that the performances of the 

proposed calculation methods are highly sensitive to the defined survival function, a 

future research is to improve the survival function to reflect equipment’s probable failure 

better. Due to the fact that the PH Model and the LAD model are stable at the early and 

the late observation moments, respectively, another future research direction is to 

investigate a hybrid LAD-PHM Model to benefit from both models’ advantages. Another 

future research is to develop a technique to calibrate the LAD model to adjust for both 

underestimation and overestimation.  
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