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Abstract

For a hypergraph H = (V,E) and a field F, a weighting of H is a map f : V → F.

A weighting is called stable if there is some k ∈ F such that the sum of the weights

on each edge of H is equal to k. The set of all stable weightings of H forms a vector

space over F. This vector space is termed the uniformity space of H over F, denoted

U(H,F), and its dimension is called the uniformity dimension of H over F.

This thesis is concerned with several problems relating to the uniformity space

of hypergraphs. For several families of hypergraphs, simple ways of computing their

uniformity dimension are found. Also, the uniformity dimension of random l-uniform

hypergraphs is investigated. The stable weightings of the spanning trees of a graph

are determined, and lastly, a notion of critical uniformity dimension is introduced

and explored.

viii
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Chapter 1

Introduction

Often in combinatorics, we are interested in weighting the vertices or edges of a graph

or hypergraph with elements from a field F. One well-known problem of this type is

the determination of a minimum cost spanning tree for a graph with weighted edges,

the history of which can be found in [10]. The problem that we wish to consider is

when the weight is constant on all substructures of a particular kind.

In [7], the authors introduced and studied the well-covered weightings of a graph.

The motivation comes from well-covered graphs – those in which every maximal

independent set has the same size. For example, complete graphs are well-covered

since every maximal independent set in these graphs has size 1, and the cycles C4

and C5 are well-covered since every maximal independent set in both C4 and C5 has

size 2.

Figure 1.1: A well-covered weighting of C6

A weighting of a graph G by elements of a field F is a well-covered weighting if

the sum of the weights of the vertices of G on every maximal independent set of

1
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G is constant. A well-covered weighting of the cycle C6 is shown in Figure 1.1. In

this example, the sum of the weights of the vertices of every maximal independent

set of C6 is 0. However, note that C6 is not itself well-covered since it has maximal

independent sets of size 2 and size 3. We observe that if a graphG is well-covered, then

weighting every vertex of G with a 1 is a well-covered weighting of G. It was noted

in [7] that the set of well-covered weightings of any graph G with elements of a field

F forms a vector space over the field F. This vector space of well-covered weightings

was further studied by Caro and Yuster in [8], and by Brown et al. in [4–6]. The

computational complexity of the problem has been studied more recently by Levit

and Tankus in [15, 16].

We wish to study the more general problem introduced by Caro and Yuster in [8],

which takes place on a hypergraph H = (V,E). We consider all weightings of V

by elements of a field F whose sums are equal on every edge e of E. We call these

weightings stable. We see that the stable weightings of a given hypergraph form a

vector space over the field F, which we call the uniformity space of H over F, denoted

U(H,F). We can then ask questions which we would ask of any vector space. We are

chiefly interested in the dimension of U(H,F), which we call the uniformity dimension

of H over F, denoted udim(H,F). We will also be interested in finding a basis for

U(H,F) at times.

We can see immediately that the uniformity space is a generalization of the vector

space of well-covered weightings of a graph. Given a graph G = (V,E), we can define

the hypergraph H = (V,E ′) on the same vertex set and with edges the maximal

independent sets of G. It is clear that U(H,F) is the same as the space of well-

covered weightings of G, i.e. that the stable weightings of H correspond exactly to

the well-covered weightings of G.

There are other substructures of graphs that we may want to have equal weight.

For example we may take a graph G = (V,E) and a subgraph H and consider
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weightings of the edge set E under which all isomorphic copies of H in G have the

same weight (the weight of a copy being the sum of the weights on the edges of

the copy). This can be viewed as a uniformity space problem by considering the

hypergraph whose vertices correspond to edges of G and whose edges correspond to

isomorphic copies of H in the obvious manner (they contain exactly the same edges

as an isomorphic copy of H). This problem was studied in [8], primarily for the case

H = Kn.

Weightings of the edge sets of graphs provide many more examples of uniformity

spaces. For a graph G = (V,E), we will study the weightings of E which are stable

on the maximal acyclic subgraphs of E (i.e. spanning forests of G). In particular

these are the bases of the graphic matroid, and we prove something in general about

uniformity spaces of hypergraphs whose edges are the bases of a matroid.

In general, we can weight the vertices or edges of a hypergraph and require that all

subhypergraphs of a certain type have the same weight. We can create a master hy-

pergraph that represents the problem and try to find its uniformity space. This type

of problem is studied little here, because of its increased complexity and decreased

applicability.

We will be interested in finding the uniformity spaces and dimensions of several

families of hypergraphs. We consider l-uniform hypergraphs for small values of l, and

random l-uniform hypergraphs in general. We also consider several highly structured

types of hypergraphs. These include certain types of l-uniform cycles, matroids, and

block designs.

We introduce a notion of criticality for hypergraphs in terms of their uniformity

dimension. A hypergraph is critical if removing any edge of the hypergraph increases

its uniformity dimension. We characterize the graphs that are critical in this sense,

and provide results on the criticality of some other families of hypergraphs.
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Before proceeding with the formal treatment of our problem, we provide the reader

with some background on hypergraphs, complexes, and block designs.



Chapter 2

Background

2.1 Graphs and Hypergraphs

The material in this section can be found in any introductory textbook on graphs

and hypergraphs, such as [1]. Also see [21] for an introduction to graph theory. The

definitions contained in this section vary slightly over different books, but most are

fairly standard. We begin with the definition of a hypergraph.

Definition 2.1.1. A hypergraph is a pair H = (V,E), where V is a set of objects

called vertices and E, the set of edges, is a set of subsets of V . Edges containing

exactly one vertex are called loops.

Note that our definition of hypergraph does not allow for multiple edges, because

E is a set and therefore cannot contain repetition. For our purposes, any multiple

edges would not make any difference, so we ignore them and do not include them in

our definition. We say that a hypergraph is finite if it has finite vertex set (and hence

finite edge set). Here we assume that all hypergraphs are finite, unless otherwise

noted. We now define a special type of hypergraph.

Definition 2.1.2. A graph G = (V,E) is a hypergraph in which every edge contains

either 1 or 2 vertices. A simple graph is a graph G = (V,E) which contains no loops.

That is, every edge contains exactly 2 vertices. In general, an l-uniform hypergraph

is a hypergraph H = (V,E) whose edges all contain exactly l vertices, i.e. E ⊆ V (l),

the set of all l-subsets of V .

5
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Usually when we refer to a graph we will mean a simple graph. However, most

results that we prove will hold for graphs with loops.

We now present some definitions for general hypergraphs which of course apply

to graphs as well.

Definition 2.1.3. Let H = (V,E) be a hypergraph. For an edge e = {v1, v2, ..., vl}
we say each vertex in e is incident to e. We also say that e is incident to each of

the vertices v1, v2, ..., vl. We will sometimes say that e joins the vertices v1, v2, ..., vl.

Distinct vertices v1 and v2 contained in a common edge are said to be adjacent, and

distinct edges e1 and e2 with nonempty intersection are said to be adjacent as well.

For any vertex v ∈ V , we define the degree of v, denoted deg(v), to be the number

of distinct edges of H containing v. A vertex of degree 0 is called an isolated vertex

of H.

The reader will be familiar with drawings of graphs. For drawings of hypergraphs,

we can represent an edge in two ways. We can draw a loop that encloses the vertices

of that edge, or we can draw an arc that passes through the vertices of that edge. In

any individual drawing, we use the same type of representation for all of the edges.

We often draw each edge with a different colour to make the picture clearer.

Definition 2.1.4. A subhypergraph of a hypergraph H = (V,E) is a hypergraph

H ′ = (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E, and for every edge e ∈ E ′, e ⊆ V ′. A

subhypergraph of a graph is called a subgraph.

Next we define a common operation on hypergraphs which produces a subhyper-

graph.

Definition 2.1.5. Let H = (V,E) be a hypergraph and let e ∈ E. The deletion of e

from H, denoted H−e, is defined to be H−e = (V,E\{e}). We say H−e is obtained

from H by deleting e. The deletion of more than one edge is defined similarly.
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We now present several graph-specific definitions. Some have an analogue for

hypergraphs, and we mention these analogues when they will be of use to us.

Let G = (V,E) be a graph. For the standard definitions of walk, closed walk,

path, cycle, and length of a walk, we refer the reader to [21]. The definitions of

connected components of a graph and connected graphs can be found there as well.

For the similar definitions of connected components of a hypergraph and connected

hypergraphs, we refer the reader to [1]. A forest is a graph with no cycles. We also

call this type of graph acyclic. The maximal acyclic subgraphs of a graph are called

its spanning forests. A tree is a connected forest, thus maximal acyclic subgraphs of

a connected graph are called its spanning trees. A pseudoforest is a graph in which

every component has at most one cycle.

Define the relation R′ on the edges of a graph by xR′y if and only if x = y or

there is a cycle C of the graph which contains both x and y. This is an equivalence

relation, whose equivalence classes are called the blocks of a graph. A graph with

only one block is called biconnected.

A subset X ⊆ V is called independent if no two vertices of X are adjacent. A

graph G = (V,E) is bipartite if there exist two disjoint sets V1 and V2 of V such

that V1 ∪ V2 = V and every edge in G is incident with exactly one vertex from

V1 and exactly one vertex from V2. That is, V1 and V2 are independent sets which

partition V . The subsets V1 and V2 are called the bipartition sets of G. A well-known

characterization of bipartite graphs says that they are exactly the graphs with no

odd cycles. In a bipartite graph with bipartition sets V1 and V2, it is easy to see that

any walk between vertices in V1 and V2 must have odd length, and any walk between

two vertices of V1 (and likewise V2) must have even length.

We defined the operation of deletion for hypergraphs, and we now define another

operation on graphs.
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Definition 2.1.6. Let G = (V,E) be a graph and let e ∈ E. Define the graph

G′ = (V ′, E ′), where v �∈ V is a new vertex and:

V ′ = (V \e) ∪ {v}

E ′ = {f ∈ E | f ∩ e = ∅} ∪ {{u, v} | ∃f ∈ E with u ∈ f\e, f ∩ e �= ∅}

Then G′ is called the contraction of e from G, denoted G · e.

Recall that we took the edges of a graph to be a set, so that any repetitions in

the edge set created by contraction are discarded.

2.2 Simplicial Complexes and Matroids

Definition 2.2.1. A simplicial complex Δ = (V,E) is a hypergraph whose edge set

is closed under containment. That is, if X ∈ E and Y ⊆ X, then Y ∈ E.

In combinatorics, we usually shorten the name and refer to these structures simply

as complexes. The empty set is required to be in a complex by definition, but the

inclusion or exclusion of the empty set has no effect on the work that we will do with

complexes.

Example 2.2.1. Let G = (V,E) be a graph. Define the hypergraph H = (V, I),

where X ⊆ V is a member of I if and only if X is an independent set of G. It is easy

to see that H is a complex, called the independence complex of the graph G.

We now give the definition of a special kind of complex called a matroid. All of

the results in this section pertaining to matroids can be found in [20].

Definition 2.2.2. A complex M = (V,E) is a matroid if the following exchange

axiom holds:

If X, Y ∈ E with |X| = |Y |+ 1 then there exists an x ∈ X\Y such that Y ∪ x ∈ E.
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We introduce some of the terminology that has been developed for complexes and

matroids. The edges of a complex are called faces, and the maximal faces are called

facets. Often the faces of a matroid are called independent sets and the facets are

called bases, because of the historical connection between matroids and vector spaces

(the linearly independent sets of any finite-dimensional vector space form a matroid).

We will often be interested in only the facets of a complex, and to study them more

easily we give the following definition.

Definition 2.2.3. Let Δ = (V,E) be a complex. Let F be the set of facets of Δ.

Then the hypergraph HΔ = (V, F ) is called the facet hypergraph of Δ. If Δ is a

matroid, then HΔ will be referred to as the basis hypergraph of Δ.

A circuit of a complex Δ = (V,E) is a minimal non-face of Δ. More precisely,

C ⊆ V is a circuit of Δ if C is not a face of Δ, but for any x ∈ C, C − {x} is

a face of Δ. Any non-face of a complex must contain a circuit. The dimension of

a complex is equal to the cardinality of its largest face, and a complex is said to

be purely d-dimensional if every one of its facets (or bases) has cardinality d. It is

well-known that every (finite) matroid is purely d-dimensional for some d ∈ N.

We note that a complex is determined completely by its facets, since if F is the

set of facets (i.e. maximal edges) of a complex Δ = (V,E), then E = {X | X ⊆
F for some F ∈ F}. A complex is also determined completely by its circuits, since

if C is the set of circuits of a complex Δ = (V,E), then E = {X ⊆ V | C �⊆
X for all C ∈ C }. There are alternate axiom systems for a matroid in terms of bases

and circuits that we will have occasion to use.

Theorem 2.2.1 (Base axiom). A non-empty collection B of subsets of V is the set

of bases of a matroid on V if and only if it satisfies the following condition:

If B1, B2 ∈ B, and x ∈ B1\B2, then ∃y ∈ B2\B1 such that (B1 ∪ y)\x ∈ B.
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Theorem 2.2.2 (Circuit axioms). A collection C of subsets of V is the set of circuits

of a matroid on V if and only if the following conditions are satisfied.

(i) If C1, C2 ∈ C with C1 �= C2, then C1 �⊆ C2.

(ii) If C1, C2 are distinct members of C and z ∈ C1 ∩ C2 then there exists C3 ∈ C

such that C3 ⊆ (C1 ∪ C2)\z.

A particularly useful and illustrative example of a matroid is the so-called graphic

matroid. Let G = (V,E) be a graph, and let E be the set of all acyclic subsets of E.

Then (E,E ) is the graphic matroid, denoted M(G). For a proof that this is in fact a

matroid, and a more detailed description of the graphic matroid, we refer the reader

to [20], where it is called the cycle matroid of a graph.

The independent sets of the graphic matroid for a graph G are the subsets of

edges that do not contain a cycle, i.e. the subgraphs of G that are forests. The

bases of the graphic matroid are the spanning forests of G (or spanning trees if G is

connected), and the circuits of the graphic matroid are the cycles of G.

We next define operations on matroids that correspond naturally to deletion and

contraction of edges in graphs.

Definition 2.2.4. Let M = (V,E ) be a matroid, and let U ⊆ V .

(i) Let E |U = {X | X ⊆ U,X ∈ E }. Then E |U is the set of independent sets of a

matroid on U , called the restriction of M to U , and denoted M |U .

(ii) Let E (M · U) be the set of subsets X ⊆ U such that there exists a maximal

independent set Y of V \U in M such that X ∪ Y ∈ E (M). Then E (M · U) is

the set of independent sets of a matroid on U , called the contraction of M to

U , and denoted M · U .

The proof that E |U is the set of independent sets of a matroid is fairly trivial.

The proof that E (M · U) is the set of independent sets of a matroid is more work,
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and can be found in [20], pg. 62. The restriction and contraction are defined in the

same way for general complexes.

We can also view restriction and contraction in another way as the deletion and

link. These definitions give rise to restriction and contraction complexes respectively,

but are defined in terms of the elements that are being taken away as opposed to the

elements that remain.

Definition 2.2.5. Let X be a face in the complex Δ = (V,E ).

(i) The deletion of X, denoted Δ−X, is the complex on V \X whose faces are the

faces of Δ not containing any element of X.

(ii) The link of X, denoted lkΔX, is the complex on V \X whose faces are the

subsets Y ⊆ V disjoint from X for which Y ∪X ∈ Δ.

It is fairly easy to prove that Δ−X = Δ|(V \X) and lkΔX = Δ · (V \X), so the

deletion and link of a matroid are again matroids. When X is a singleton set, say

{x}, we simply denote the deletion and link by Δ− x and lkΔx respectively. These

notions correspond naturally to deletion and contraction of an edge of a graph. For

the graphic matroid M(G) of a graph G with edge e, it can be seen that M(G)− e =

M(G− e) and lkM(G)e = M(G · e).
There is no notion in matroids that corresponds exactly to connection in graphs,

but there is a relation that can be defined on the vertices of a matroid that corresponds

to biconnection in graphs.

Let M = (V,E ) be a matroid. Define a relation R on the elements of V by xRy if

and only if x = y or there is a circuit C of the matroid M which contains both x and

y. Then R is an equivalence relation on V , as shown in [20]. The relation R partitions

V into equivalence classes, say V1, V2, ..., Vk. The matroids M |V1,M |V2, ...,M |Vk are

called the connected components (or more simply the components) of the matroid.
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The components of a matroid are analogous to the blocks of a graph, and the com-

ponents of the graphic matroid M(G) are exactly the blocks of the graph G (since

circuits of the graphic matroid are exactly the cycles of the graph). We sometimes

refer to a component of a matroid by only its vertex set when no confusion results.

2.3 Block Designs

A design is a hypergraph that satisfies certain regularity constraints. When we are

dealing with designs we call the vertices points and the edges blocks. We also often use

geometric language when dealing with designs. For example, we say a block passes

through a point if it contains that point, or that two points are joined by a block if

they are both contained in a block. All definitions and theorems in this section can

be found in any book on design theory (we refer to [2]).

Definition 2.3.1. A (finite) hypergraph D = (V,B) is called a block design with

parameters v, k, λ ∈ N if it satisfies the following conditions:

(i) |V | = v.

(ii) Any two distinct points are joined by exactly λ blocks.

(iii) Each block passes through exactly k points.

Projective planes are a commonly studied type of block design. We give the

definition and a theorem that says that they are in fact block designs.

Definition 2.3.2. A hypergraph D = (V,B) is called a projective plane if it satisfies

the following axioms:

(i) Any two distinct points are joined by exactly one block.

(ii) Any two distinct blocks intersect in a unique point.
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(iii) There exist four points, no three of which lie on a common block.

Proposition 2.3.1. Let D = (V,B) be a finite projective plane. Then there exists a

natural number n, called the order of D, satisfying:

(i) For each point p ∈ V , p lies on exactly n+ 1 distinct blocks of D

(ii) For each block B ∈ B, B passes through exactly n+ 1 distinct points.

(iii) |V | = |B| = n2 + n+ 1.

So we have that a finite projective plane is a block design with parameters

v = n2 + n+ 1, k = n+ 1, and λ = 1. The Fano Plane, a projective plane of order 2,

is a commonly used example of a block design.

Figure 2.1: The Fano plane

We will use the following well-known results from design theory, which can be

found in [2]:

Proposition 2.3.2. In a (v, k, λ)-block design D, we have the following:

(i) Each point p lies in exactly r := λ(v − 1)/(k − 1) blocks.

(ii) b := |B| = λv(v − 1)/k(k − 1).
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Proposition 2.3.3 (Fisher’s Inequality). In a (v, k, λ)-block design,

v ≤ b.

Note: Fisher’s Inequality holds for a more general type of design, but we only require

the given result. When a block design satisfies v = b, it is called a symmetric block

design.

Proposition 2.3.4. In a symmetric (v, k, λ)-block design with v > k, any two distinct

blocks intersect in exactly λ points.

Now that we have laid the necessary framework, we can begin with the formal

definition of uniformity space.



Chapter 3

The Uniformity Space of Hypergraphs

3.1 Formal Definition

We wish to consider weightings of the vertices of a hypergraph that are constant on

all edges. We make this definition more precise.

Definition 3.1.1. Let H = (V,E) be a hypergraph. For a field F, a map f : V → F

is called a weighting of H. We say the weight of a vertex v ∈ V is the value f(v).

We define the weight of an edge e ∈ E to be f(e) =
∑
v∈e

f(v). More generally, for any

subset X ⊆ V , the weight of X is defined to be f(X) =
∑
x∈X

f(x).

This is the natural extension of the definition of weightings for graphs used in [4–6]

and [7]. In these papers, a special class of weightings was studied, called the well-

covered weightings.

Definition 3.1.2 (Caro et al., [7]). A weighting f : V → F of a graph G = (V,E)

is well-covered if there is an element k ∈ F such that the weight of every maximal

independent set is equal to k.

This idea was extended by Caro and Yuster in [8], and the definition is presented

here.

Definition 3.1.3. For a hypergraph H = (V,E), a weighting f : V → F is called

stable if there is an element k ∈ F such that the weight of every edge of H is equal

to k.

15
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So a well-covered weighting of a graph G = (V,E) is a stable weighting of the

hypergraph on vertex set V whose edges are the maximal independent sets of G. The

key observation in [7] is that the well-covered weightings of a graph G form a vector

space over the field F, denoted WC(G,F). The dimension of this space, denoted

wcdim(G,F), is called the well-covered dimension of G over F. In fact, the stable

weightings of any hypergraph form a vector space, as shown below.

Observation 3.1.1 (Caro and Yuster, [8]). The stable weightings of a hypergraph

H form a vector space over the field F, called the uniformity space of H over F,

which we denote U(H,F). The dimension of this vector space is called the uniformity

dimension of H over F, and is denoted udim(H,F).

Proof. Let H = (V,E) be a hypergraph. Suppose f, g : V → F are both stable

weightings of H, and let the weight of each edge under f be a ∈ F and the weight of

each edge under g be b ∈ F. So for any e ∈ E,
∑
v∈e

f(v) = a and
∑
v∈e

g(v) = b. Then

for the map kf + lg : V → F, where k, l ∈ F, the weight of any edge e ∈ E is:

∑
v∈e

(kf + lg)(v) =
∑
v∈e

kf(v) +
∑
v∈e

lg(v) = k
∑
v∈e

f(v) + l
∑
v∈e

g(v) = ka+ lb

and so kf + lg is also a stable weighting of H. �

We are interested in finding the uniformity dimension of certain hypergraphs (or

families of hypergraphs). We will often find a basis for the uniformity spaces of these

hypergraphs in the process. Before developing any more theory, we provide several

examples.

3.2 Examples

In this section we find the uniformity space of two hypergraphs derived in different

ways from the graph G shown in Figure 3.1.
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Figure 3.1: The graph G of Example 3.2.1

Example 3.2.1. Consider the graph G = (V,E) pictured in Figure 3.1. In this

example we will find the space of well-covered weightings of G. To do this we create

the hypergraph H on vertex set V whose edges are the maximal independent sets of

G. The hypergraph H is pictured in Figure 3.2. The stable weightings of H are the

well-covered weightings of G, so we find U(H,F).

Figure 3.2: The hypergraph H whose edges are the maximal independent sets of G
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We label the vertices and edges of H as in Figure 3.2, so that we have:

e1 = {v2, v4}

e2 = {v2, v5}

e3 = {v1, v4, v6}

e4 = {v1, v3, v6}

e5 = {v1, v3, v5}

which one easily verifies to be the maximal independent sets of G. We now find the

stable weightings of H. By definition, f : V → F is a stable weighting of H if and

only if its weight on every edge is equal to some k ∈ F. So we must solve the linear

system:

v2 + v4 = k, (3.1)

v2 + v5 = k, (3.2)

v1 + v4 + v6 = k, (3.3)

v1 + v3 + v6 = k, (3.4)

v1 + v3 + v5 = k, (3.5)

(We are abusing notation slightly and allowing vi to denote the weight on vertex vi.)

All we have left to do in this example is to solve this system.

From equations 3.1 and 3.2 we see that v4 = v5. Similarly from equations 3.3,

3.4, and 3.5 we get v3 = v4 and v5 = v6, so v3 = v4 = v5 = v6. Now letting v1 = a

and v3 = b, we obtain k = a + 2b from equations 3.3, 3.4, and 3.5, while equations

3.1 and 3.2 both tell us that v2 = a + b. Therefore, udim(H,F) ≤ 2. We now define

two weightings f1 and f2 which we claim to be stable and linearly independent.
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f1(vi) =

⎧⎪⎪⎨
⎪⎪⎩
1 if i = 1, 2

0 otherwise

and f2(vi) =

⎧⎪⎪⎨
⎪⎪⎩
0 if i = 1

1 otherwise

Under f1, the weight on each edge of H is 1, since exactly one of the vertices

v1 and v2 is in each edge of H. Under f2, the weight on each edge of H is 2 by

inspection. Thus f1 and f2 are both stable weightings of H. It is also easy to see

that the set {f1, f2} is linearly independent, so it must form a basis for U(H,F).

Remark 3.2.1. We can eliminate the reference to k in the linear system of the above

example by setting the left side of equations 3.1 through 3.4 equal to the left side of

equation 3.5, obtaining:

v2 + v4 = v1 + v3 + v5,

v2 + v5 = v1 + v3 + v5,

v1 + v4 + v6 = v1 + v3 + v5,

v1 + v3 + v6 = v1 + v3 + v5,

and then subtracting to obtain:

−v1 + v2 − v3 + v4 − v5 = 0,

−v1 + v2 − v3 = 0,

−v3 + v4 − v5 + v6 = 0,

−v5 + v6 = 0.

This is a simple way to express the linear system that we wish to solve, and using

Gauss-Jordan elimination we can verify that {f1, f2} is a basis for the uniformity

space of Example 3.2.1. This process is generalized in the next section.
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Figure 3.3: The graph G with edges labeled

Example 3.2.2. In this example we derive a different hypergraph from G. We show

G in Figure 3.3 with the edges labeled, and let M = (E, T ) be the graph whose

vertices are the edges of G, and whose edges are the spanning trees of G. M is shown

in Figure 3.4.

Figure 3.4: The hypergraph M whose edges are the spanning trees of G

The edges of M are exactly the bases of the graphic matroid M(G) of G. We

consider the uniformity space of basis hypergraphs of matroids more generally in

Section 5.2. In this example, we will find the uniformity space of M . We have
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labeled the edges of M as t1, t2, t3, t4, and t5 so that the index i corresponds to the

only vertex ei of M not contained in the edge ti.

We first note that every edge of M (i.e. every spanning tree of G) has size 5.

This means that any constant weighting of E is a stable weighting of M . Thus the

weighting f : E → F defined by f(ei) = 1 for all i ∈ {1, 2, ..., 6} is a stable weighting

of M .

Next we note that e6 is in every edge of M . Thus the weighting f6 : E → F

defined by:

f6(ei) =

⎧⎪⎪⎨
⎪⎪⎩
1 if i = 6

0 otherwise

is a stable weighting of M since the weight on every edge of M is 1.

We now claim that the weight on the remaining vertices {e1, e2, e3, e4, e5} must

be equal under any stable weighting of M . For i, j ∈ {1, 2, 3, 4, 5}, the weight on

edges ti and tj must be equal under any stable weighting of M by definition, so if

g : E → F is a stable weighting of M , we must have:

g(ti) = g(tj) ⇔
[

6∑
k=1

g(ek)

]
− g(ei) =

[
6∑

k=1

g(ek)

]
− g(ej) ⇔ g(ei) = g(ej).

This completes the proof of our claim, and tells us that udim(M,F) ≤ 2. Since

the set {f, f6} is clearly linearly independent, it must form a basis for U(M,F), and

udim(M,F) = 2.

3.3 An Approach Using Matrices

We saw in Section 3.2 that given a hypergraph H, finding the uniformity space

U(H,F) involves solving a system of linear equations. We have the following approach

to finding U(H,F) using matrices.
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Definition 3.3.1. Let H = (V,E) be a hypergraph with V = {v1, v2, ..., vn} and

E = {e1, , e2, ..., em}. Then the incidence matrix of H is the n×m matrix D defined

as follows:

Dij =

⎧⎪⎪⎨
⎪⎪⎩
1 if vi ∈ ej

0 otherwise

We denote the columns of D by e1, e2, ..., em, so that:

D =

[
e1 e2 . . . em

]

A weighting of H is a map f : V → F, so we can identify with the weighting f

the vector f ∈ F
n defined by fj = f(vj) ∈ F. We have:

ei · f =
n∑

j=1

eij fj =
∑
vj∈ei

fj =
∑
vj∈ei

f(vj),

so the dot product ei · f is the weight on edge ei. Then the product Dtf gives a vector

in F
m in which the ith entry is the weight on edge ei. Thus f is a stable weighting

of H if and only if Dtf = k1, where 1 denotes the all 1’s vector in F
m, and k is any

element of F.

As mentioned in Remark 3.2.1, we can eliminate the reference to k by setting

the weight on one edge equal to the weight on all other edges. Then f is a stable

weighting of H if and only the following system of equations is satisfied:

e1 · f − em · f = 0

e2 · f − em · f = 0

...

em−1 · f − em · f = 0
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That is, if and only if f is in the nullspace of the matrix WH , defined by:

WH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(e1 − em)
t

(e2 − em)
t

...

(em−1 − em)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

This means that U(H,F) is exactly nullspace(WH), and udim(H,F) = nullity(WH).

For this reason we call WH the solution matrix of H. We will use both the incidence

matrix and solution matrix to prove the main theorem of Section 5.3.

Given a hypergraphH = (V,E), finding the uniformity space ofH involves setting

up the solution matrix and solving for the nullspace. The nullspace of an n×mmatrix

can be found in polynomial time using a number of different methods. One such

method is to find the appropriate part of the singular value decomposition (SVD).

The Golub-Reinsch SVD algorithm will find the nullspace of an m× n matrix using

approximately 4m2n − 8mn2 operations ( [9], pg. 239). The problem may become

more complex when we are not given a hypergraph directly, as in the examples of

Section 3.2. For example, given a graph G with n vertices and m edges (we have

m ≤ (
n
2

)
< n2/2 necessarily), G may have up to nn−2 spanning trees. Thus finding

all stable weightings of the spanning trees of G by the method of this section involves

setting up and solving a matrix that could have up to nn−2 − 1 rows! For problems

such as this we wish to develop other methods for finding the uniformity space. In

the problem above we would prefer to find a characteristic of the graph itself that

tells us what the stable weightings of its spanning trees look like without actually

enumerating them. We do just this in Section 5.2. In the next section we present

some basic results that will be important for much of our later work.
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3.4 Basic Results

The first result that we present was proved before in [5] for the special case of well-

covered weightings. It states a sufficient condition for two vertices of a hypergraph

H to have the same weight under any stable weighting of H.

Lemma 3.4.1 (The Interchange Property). Let H = (V,E) be a hypergraph, and let

x, y ∈ V . If there exists a set Z ⊆ V such that x, y �∈ Z and both Z ∪ x and Z ∪ y

are edges of H, then for any stable weighting f : V → F of H, f(x) = f(y). In this

case we say that x and y have the interchange property, with interchange set Z.

Proof. Since Z ∪x and Z ∪ y are both edges of H, they must have the same weight

under any stable weighting by definition. So for any stable weighting f : V → F we

have:

f(x) +
∑
t∈Z

f(t) = f(y) +
∑
t∈Z

f(t) =⇒ f(x) = f(y).

�

We will use Lemma 3.4.1 extensively, and will always refer to it as the interchange

property. We see that this is the property that the vertices e1, e2, ..., e5 of M had in

Example 3.2.2. Note that we did not prove that the interchange property is necessary

for two vertices to have the same weight under any stable weighting. We will see later

on that it is not, in fact, necessary. We first use the interchange property to find the

uniformity dimension of complete hypergraphs. We define the complete l-uniform

hypergraph Kn,l to be the hypergraph on vertex set V = {v1, v2, ..., vn} with edge set

V (l), i.e. with edges all l-subsets of V .

Corollary 3.4.2. Let Kn,l be the complete l-uniform hypergraph on n vertices, where

n ≥ l > 0, and n, l ∈ N. Let F be any field. If n = l, then udim(Kn,l,F) = n.

Otherwise, if n > l, then udim(Kn,l,F) = 1.
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Proof. Firstly, if n = l, thenKn,l is the hypergraph on vertex set V = {v1, v2, ..., vn}
with the single edge V . Any weighting is stable on a hypergraph with a single edge,

so udim(Kn,l,F) = n in this case.

Now suppose that n > l. If n = 1 then l = 1 by the assumption that l > 0, so we

can assume that n > 1. Without loss of generality take two vertices v1 and v2 in the

vertex set V of Kn,l. Now take any (l− 1)-subset of V \{v1, v2} and call it Z. Such a

set exists since n > l, so n− 2 ≥ l− 1. Now Z ∪ v1 and Z ∪ v2 are both edges of Kn,l

since every l-subset of V is an edge of Kn,l by definition. Therefore, v1 and v2 have

the interchange property with interchange set Z. Since v1 and v2 were arbitrary, we

can conclude that the weight on each vertex of Kn,l must be the same. This tells

us that udim(Kn,l,F) ≤ 1. We now claim that the constant weighting f : V → F

defined by f(v) = 1 for all v ∈ V is stable on Kn,l. For any edge e of Kn,l, the weight

on e is
∑
v∈e

f(v) = l · 1 = l since every edge of Kn,l contains exactly l vertices. Thus

f is stable, and since f is nonzero, this proves that udim(Kn,l,F) = 1. �

Lemma 3.4.3. Let H = (V,E) be a hypergraph with a set of isolated vertices VI =

{v1, v2, ..., vs} ⊆ V . Define H ′ = (V \VI , E), the same hypergraph but with the isolated

vertices removed. Then U(H,F) = U(H ′,F)⊕ F
s for any field F.

Proof. Each vertex in VI is not contained in any edge of H, so the system of linear

equations whose solution is the uniformity space of H does not involve any of the

vertices in VI . Thus the system of equations for U(H,F) is the same as the system of

equations for U(H ′,F). The only difference is that for U(H,F), each of the vertices

in VI is a free variable in the solution. �

In particular, Lemma 3.4.3 tells us that udim(H,F) = udim(H ′,F) + s in the

notation of the lemma. It tells us that we can focus primarily on hypergraphs with

no isolated vertices.
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Definition 3.4.1. Let H = (V,E) be a hypergraph. Define the set E∗ = {V \e | e ∈
E}. The hypergraph H∗ = (V,E∗) is called the hypergraph-complement of H.

The definition is similar to that of matroid dual. Given a matroid M , the dual

matroid M∗ is the matroid on the same underlying set that has B as a basis if and only

if V \B is a basis of M . Note that Definition 3.4.1 does not coincide with the usual

definition of the complement of a graph. We try to keep the two concepts separate

by calling this the hypergraph-complement. It is easy to see that (H∗)∗ = H, which

makes it easy to prove that certain properties hold for a hypergraph H if and only

if they hold for H∗. The next lemma tells us that the stable weightings of H are the

same as the stable weightings of H∗.

Lemma 3.4.4. Let H = (V,E) be a hypergraph. A weighting f : V → F is a stable

weighting of H if and only if it is a stable weighting of H∗. Thus U(H,F) = U(H∗,F).

Proof. Since (H∗)∗ = H, it is sufficient to prove only the forward direction. So

suppose f : V → F is a stable weighting of H, and let the weight on each edge be

k ∈ F. Now the weight
∑

v∈V f(v) on the entire set V is a constant, say l ∈ F. Thus

the weight on each edge of H∗ must be l−k. Thus we conclude that f is also a stable

weighting of H∗. �

Using this lemma, when we were finding the uniformity space of the hypergraph

M in Example 3.2.2, we could have considered the much simpler looking hypergraph-

complement M∗, pictured in Figure 3.5. From now on, when we are trying to find a

hypergraph’s uniformity space, we can work with the hypergraph-complement if it is

easier.

It is surprising how much the simple results presented in this section will help

us. In the next section we study general k-uniform hypergraphs. There we describe

the stable weightings of all 1-uniform and 2-uniform hypergraphs, and the stable
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Figure 3.5: The hypergraph-complement M∗ of M

weightings of all (n−1)-uniform and (n−2)-uniform hypergraphs are then described

easily due to Lemma 3.4.4.



Chapter 4

l-Uniform Hypergraphs

In this chapter we consider stable weightings of l-uniform hypergraphs. We describe

the uniformity space of every 1-uniform and 2-uniform hypergraph, and we present

some results for 3-uniform hypergraphs with small vertex sets. We then consider the

uniformity space of random l-uniform hypergraphs. First we have a result that holds

for all l-uniform hypergraphs.

Proposition 4.0.1. Let H = (V,E) be an l-uniform hypergraph for some l ∈ N, and

let F be a field. Define the map f : V → F by f(v) = t ∈ F for all v ∈ V . Then f is

a stable weighting of H, and thus udim(H,F) ≥ 1.

Proof. Each edge of H has l vertices, so the weight on each edge of H under f is

lt. Thus f is a stable weighting of H. Taking t �= 0 we conclude that udim(H,F) ≥ 1

since we have found a nonzero stable weighting of H. �

So the uniformity dimension of every l-uniform hypergraph is at least 1. We move

forward by describing the uniformity dimension of 1-uniform hypergraphs in the next

section.

4.1 1-Uniform Hypergraphs

For any 1-uniform hypergraph H = (V,E), we wish to determine U(H,F) over any

field F. Essentially we can weight the isolated vertices of H with anything we wish,

but we must weight all vertices that are contained in some edge with the same weight.

28
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Proposition 4.1.1. Let H = (V,E) be a 1-uniform hypergraph with n vertices and

m edges. Then for any field F, we have udim(H,F) = n − m + 1 if m > 0 and

udim(H,F) = n if m = 0.

Proof. In the case m = 0, every weighting of H is a stable weighting, so we can

conclude immediately that udim(H,F) = n. Now we assume that m > 0. We find

a basis for the uniformity space of H over F. The edges of H are all singleton sets,

so let {v1}, {v2, }, ..., {vm} be the edges of H. If f : V → F is a stable weighting of

H, then f(v1) = f(v2) = ... = f(vm) by definition. So udim(H,F) ≤ n−m + 1. We

now present n−m+1 linearly independent stable weightings of H, which must then

form a basis for U(H,F). Define fE : V → F by:

fE(v) =

⎧⎪⎪⎨
⎪⎪⎩
1 if {v} ∈ E

0 otherwise

and if vm+1, vm+2, ..., vn are the vertices not contained in any edge of H, for i ∈
{m+ 1,m+ 2, ..., n} define fi : V → F by:

fi(v) =

⎧⎪⎪⎨
⎪⎪⎩
1 if v = vi

0 otherwise

The set {fE, fm+1, fm+2, ..., fn} is a set of n − m + 1 weightings of H, and it is

clear that they are linearly independent, since each v ∈ V has a nonzero weight in

exactly one of the weightings. It is also easy to see that they are all stable weightings.

The weight on each edge under fE is 1, and the weight on each edge under all n−m

other weightings is 0. This means that {fE, fm+1, ..., fn} is a basis for U(H,F) and

udim(H,F) = n−m+ 1. �
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Corollary 4.1.2. Let H = (V,E) be an (n − 1)-uniform hypergraph with n vertices

and m edges. Then for any field F, we have udim(H,F) = n −m + 1 if m > 0 and

udim(H,F) = n if m = 0.

Proof. The case m = 0 is again trivial. Thus we assume that the hypergraph-

complement H∗ of H is a 1-uniform hypergraph with n vertices and m > 0 edges. By

Lemma 3.4.4, U(H,F) = U(H∗,F). Since udim(H∗,F) = n −m + 1 by Proposition

4.1.1, udim(H,F) = n − m + 1 as well. A basis for U(H,F) is also easily found by

considering H∗. Each vertex contained in every edge of H is not contained in any

edge of H∗, so can be weighted with any entry from F. All vertices not contained in

every edge of H must be contained in some edge of H∗, and so these vertices must

all carry the same weight. �

The last corollary could also have been proved without Lemma 3.4.4 by using

the interchange property. Such a proof would mirror the proof of Proposition 4.1.1

closely. The proof we have presented is shorter and more practical.

Having found a simple description for the uniformity space of any 1-uniform hy-

pergraph, we proceed to the more complicated situation of 2-uniform hypergraphs.

4.2 2-Uniform Hypergraphs

Let G = (V,E) be a 2-uniform hypergraph, or in other words a simple graph. We

wish to find the stable weightings of G. We begin with a lemma that will be very

helpful.

Lemma 4.2.1. Let G be as above, and suppose f : V → F is a stable weighting of G.

If u, v ∈ V and there is a walk of even length (a walk with an even number of edges)

between u and v in G, then f(u) = f(v).

Proof. The proof is by induction on r, where 2r is the length of the walk from u

to v in G.
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For the base case, when there is a walk of length 2 from u to v, let x be the

intermediate vertex of the walk. Then {u, x} and {v, x} are both edges of G. So u

and v have the interchange property, and thus f(u) = f(v).

The inductive hypothesis is that every two vertices with a walk of length 2(r− 1)

between them have the same weight under any stable weighting of G. Now suppose

there is a walk of length 2r between u and v. Then there is a walk of length 2(r− 1)

from u to some vertex w and a walk of length 2 from w to u. By the inductive

hypothesis, f(u) = f(w), and by the base case f(w) = f(v), so we conclude that

f(u) = f(v). Therefore, the result holds by mathematical induction. �

We now consider the uniformity space of connected graphs, and will extend these

results to general graphs shortly afterwards.

Theorem 4.2.2. Let G = (V,E) be a connected simple graph and let F be a field.

Then if G has order 1, udim(G,F) = 1. If G has order at least 2, udim(G,F) = 2 if

G is bipartite, and udim(G,F) = 1 otherwise.

Proof. We begin by supposing that G has order at least 2. First suppose G

is bipartite with bipartition sets V1 and V2. Since G has order at least 2 and is

connected, V1 and V2 must be nonempty. Let v, v′ ∈ V1. Since G is connected, there

is a walk from v to v′. Further, this walk must be of even length since v and v′ are in

the same bipartition set. So by Lemma 4.2.1, f(v) = f(v′) for any stable weighting

f : V → F. Thus any two vertices of V1 must have the same weight, and similarly

for any vertices of V2. So udim(G,F) ≤ 2. For i = 1, 2, define gi : V → F by

gi(v) =

⎧⎪⎪⎨
⎪⎪⎩
1 if v ∈ Vi

0 otherwise
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and gi is a stable weighting of G for i = 1, 2, since the weight on each edge of G is

1. The weightings g1 and g2 are clearly linearly independent, so udim(G,F) = 2 and

{g1, g2} is a basis for the uniformity space of G.

Suppose now that G has order at least 2 but that G is not bipartite. This means

that G contains an odd cycle C. There is a path of even length between any two

vertices of C, so all vertices of C have the same weight under any stable weighting

f : V → F of G. Now if v is any vertex of G not contained in the cycle C, then take

any vertex x of C. There is a walk between v and x since G is connected. If this walk

has even length, then f(v) = f(x) by Lemma 4.2.1. Otherwise, if the walk has odd

length, then there is an even walk from v to each of the neighbours of x in C. Since

all vertices in C have the same weight, f(v) = f(x) again. So all vertices of G must

have the same weight under any stable weighting if G is connected and not bipartite.

This means that udim(G,F) ≤ 1. Since the constant weightings are always stable for

uniform hypergraphs, udim(G,F) = 1, with basis any single constant weighting.

The case where G has order 1 is easily handled. Since G is simple it can have no

edges, so any weighting of the single vertex must be stable. Thus udim(G,F) = 1. �

We now extend our results to when G is not necessarily connected. Using Lemma

3.4.3, we can ignore the isolated vertices for the moment, because we know exactly

what they add to the uniformity space. So we consider components of G with

nonempty edge set. That is, components of order at least 2. The weight on each

edge must be constant, say k ∈ F. This means that for a connected component that

is not bipartite, each vertex must have weight k/2 (as long as char(F) �= 2). For each

connected component C that has order at least 2 and is bipartite, say with bipartition

sets C1 and C2, without loss of generality the vertices in C1 can be weighted with

any lC ∈ F, and then the vertices of C2 must be weighted with k − lC .
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So in general, the uniformity dimension of a graph G with at least one edge over

any field of characteristic not equal to 2 is

1 + # of bipartite components of G of order at least 2 + # of isolated vertices of G

=1 +# of bipartite components of G.

Over a field F of characterstic 2, if G has only bipartite components, then the

argument presented above still works. We treat the remaining case where char(F) = 2

and G has at least one non-bipartite component separately.

Over a field F of characterstic 2, if G has a non-bipartite component H, the proof

of Theorem 4.2.2 shows that each vertex of H must have the same weight under any

stable weighting. Then since char(F) = 2, the weight on each edge of H, and therefore

each edge of G, must be 0. For a bipartite component K of G with bipartition sets K1

and K2, every vertex of K1 must have the same weight, and likewise for K2. Further,

since the weight on each edge must be 0 and we are working over characteristic 2,

the weight on the vertices of K1 must be the same as the weight on the vertices of

K2. This proves that for any component of G, all of its vertices must have the same

weight, so udim(G,F) ≤ s, the number of components of G. Now if G1, G2, ..., Gs are

the components of G, define the weighting fi : V → F by:

fi(v) =

⎧⎪⎪⎨
⎪⎪⎩
1 if v ∈ Gi

0 otherwise

Each of the fi’s is stable because the weight on every edge of G is 0, and the set

{f1, f2, ..., fs} is clearly linearly independent, so it is a basis for U(G,F).

We sum up these results in the following proposition.

Proposition 4.2.3. Let G be a simple graph with nonempty edge set, and with s

components, exactly r of which are bipartite (including isolated vertices). Let F be
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any field. If char(F) = 2 and G has at least one non-bipartite component (i.e. at

least one odd cycle), then udim(G,F) = s. If char(F) = 2 and G is bipartite, then

udim(G,F) = 1 + s. If char(F) �= 2 then udim(G,F) = 1 + r. �

Remark 4.2.1. In the notation of Proposition 4.2.3, if G has empty edge set, it has

uniformity dimension n, since every weighting of G is stable in this case.

Now let H = (V,E) be an (n− 2)-uniform hypergraph on n vertices. By Lemma

3.4.4, the uniformity space of H is the same as the uniformity space of its hypergraph-

complement H∗, and H∗ is a simple graph. So to find the uniformity space of H,

we find the hypergraph-complement H∗ and can find its uniformity dimension using

Proposition 4.2.3.

We are now able to find the uniformity dimension of any 1, 2, (n− 1), or (n− 2)-

uniform hypergraph without explicitly solving the linear system. We do not achieve

this type of general result for l-uniform hypergraphs with l ≥ 3, but we do present

some computational results for 3-uniform hypergraphs with at most 6 vertices in the

next section.

4.3 3-Uniform Hypergraphs

We wish to learn something about the uniformity dimension of 3-uniform hyper-

graphs, even if we cannot achieve a general result concerning them. In this section

we work over a field of characteristic 0. We first wrote code in Maple to enumerate the

edge sets of all non-isomorphic 3-uniform hypergraphs on n vertices for n = 4, 5, 6.

The program takes as input the set of edge sets of all non-isomorphic 3-uniform

hypergraphs on n vertices with m edges and returns the set of edge sets of all non-

isomorphic 3-uniform hypergraphs on n vertices with m + 1 edges, for appropriate

m. This program runs very slowly, and this is why the size of n is restricted. Then

we wrote a program which takes as input the set of edge sets of all non-isomorphic
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3-uniform hypergraphs on n vertices with m edges, and returns a list of numbers

where the kth entry is the number of non-isomorphic 3-uniform hypergraphs on n

vertices with m edges and uniformity dimension k. All relevant Maple code can be

found in Appendix A. The results are presented in Tables 4.1, 4.2, and 4.3. In these

tables, zero entries are omitted for ease of reading.

m
k

1 2 3 4

0 1
1 1
2 1
3 1
4 1

Table 4.1: The number of non-isomorphic 3-uniform hypergraphs on 4 vertices with
m edges and uniformity dimension k

m
k

1 2 3 4 5

0 1
1 1
2 2
3 4
4 5 1
5 4 2
6 4 2
7 4
8 2
9 1
10 1

Table 4.2: The number of non-isomorphic 3-uniform hypergraphs on 5 vertices with
m edges and uniformity dimension k

We started at n = 4 because the 3-uniform hypergraphs on 3 or less vertices all

have at most 1 edge. Therefore the uniformity dimension of any 3-uniform hypergraph

on n ≤ 3 vertices has uniformity dimension equal to n over any field F.

Table 4.1 seems rather trivial, and could easily be computed by hand. Keeping in

mind Lemma 3.4.4, we could even consider 1-uniform hypergraphs on 4 vertices, which
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makes the table very easy to compute indeed. For n = 5, Lemma 3.4.4 could again

be used. The hypergraph-complement of any 3-uniform hypergraph on 5 vertices is a

simple graph. It is easy to find a list of non-isomorphic graphs on 5 vertices and find

their uniformity dimension using the characterization given in the previous section.

So Table 4.2 could also be verified by hand.

However, Table 4.3 is not so easy to verify by hand. Lemma 3.4.4 is no longer of

any use, since the hypergraph-complement of a 3-uniform hypergraph on 6 vertices

is still a 3-uniform hypergraph. Given the large number of non-isomorphic 3-uniform

hypergraphs on 6 vertices (there are 2136 of them!), the computation of Table 4.3 is

much better left to a computer.

m
k

1 2 3 4 5 6

0 1
1 1
2 3
3 7
4 19 2
5 34 9
6 45 42 7
7 122 38 1
8 223 25 1
9 300 12
10 345 7
11 311 1
12 248 1
13 161
14 94
15 43
16 21
17 7
18 3
19 1
20 1

Table 4.3: The number of non-isomorphic 3-uniform hypergraphs on 6 vertices with
m edges and uniformity dimension k
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Now we consider the information contained in Tables 4.1, 4.2, and 4.3. We first

notice that every 3-uniform hypergraph on n vertices (n = 4, 5, 6) with uniformity

dimension k < n contains at least n − k + 1 edges. This is a bound that holds

for hypergraphs in general, as we show later on in Lemma 6.1.3. The 3-uniform

hypergraphs of dimension k < n that contain exactly n − k + 1 edges for n = 4, 5,

and 6 lie on what we call the critical diagonal of Tables 4.1, 4.2, and 4.3 respectively.

Any hypergraph lying on the critical diagonal satisfies a property which we study in

Chapter 6, called criticality. That is, if we remove any edge from a hypergraph on

the critical diagonal, its uniformity dimension must increase. In Chapter 6 we find

out exactly when a hypergraph has critical uniformity dimension.

We can also study the rows and columns of Tables 4.1, 4.2, and 4.3 as integer

sequences. The nonzero entries of the rows are all decreasing from left to right, and

the nonzero entries of the columns are all unimodal sequences. (Unimodal sequences

are those that are increasing and then decreasing. Formally, a sequence (s1, s2, ..., sn)

is unimodal if there exists a t ∈ {1, 2, ..., n} such that s1 ≤ s2 ≤ ... ≤ st and

st ≥ st+1 ≥ ... ≥ sn.) Are these statements true for n > 6? Are they true in general

for l-uniform hypergraphs for any l ∈ N?

For a fixed l, n, and m we define the sequence (rl,n,m(k))
k=n
k=1 where the kth term

is the number of non-isomorphic l-uniform hypergraphs on n vertices with m edges

and uniformity dimension k. Similarly, for a fixed l, n, and k, we define the sequence

(cl,n,k(m))
m=(nl)
m=0 where the mth term is the number of non-isomorphic l-uniform hy-

pergraphs on n vertices with uniformity dimension k and m edges. So for example,

(r3,6,5(k))
k=6
k=1 = (0, 34, 9, 0, 0, 0), the 5th row of Table 4.3, while (c3,5,2(m))m=10

m=0 =

(0, 0, 0, 0, 5, 2, 2, 0, 0, 0, 0), the 2nd column of Table 4.2. The questions that we asked

above can now be rephrased as follows:

Are the nonzero entries of (rl,n,m(k))
k=n
k=1 decreasing for all values of l, n,m ∈ N with

l ≤ n and m ≤ (
n
l

)
? What if l = 3? Is (cl,n,k(m))

m=(nl)
m=0 unimodal for all values of
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l, n, k ∈ N with l, k ≤ n? What if l = 3? We show that (cl,n,k(m))
m=(nl)
m=0 has no

internal zeros in Chapter 6.

Lastly, in Table 4.3 especially, we notice that the number of non-isomorphic 3-

uniform hypergraphs on n vertices and m edges with highest uniformity dimension

(the rightmost nonzero entry in each row) is relatively small. The number and struc-

ture of these hypergraphs may be of interest. We present pictures of some of these

hypergraphs in Appendix B.

In the next section we explore the uniformity dimension of random l-uniform

hypergraphs, and learn something about the uniformity space of almost all l-uniform

hypergraphs for fixed l ≥ 1.

4.4 Random l-Uniform Hypergraphs

We create a random l-uniform hypergraph H = (V,E) of order n by taking a set V

of size n, then including each subset of V of size l (each l-subset of V ) in E with

probability p ∈ (0, 1). Here we deal with a fixed l and a fixed p. Recall that we

let V (l) denote the set of all l-subsets of V . When we say that almost all l-uniform

hypergraphs satisfy a certain property, we mean that as n → ∞, a random l-uniform

hypergraph on n vertices has the property with probability approaching 1.

We wish to explore the uniformity dimension of random l-uniform hypergraphs as

the size of the underlying set V of vertices, n, approaches infinity. Before doing so,

we show that as n approaches infinity, the edges of a random l-uniform hypergraph

on n vertices are unlikely to be the facets of the independence complex of a graph

on n vertices. We do this because most of the work on the uniformity space problem

to date has been on well-covered weightings, the stable weightings of the maximal

independent sets of a graph. We are essentially showing that the uniformity dimension
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of most l-uniform hypergraphs has not been determined through previous research

on well-covered weightings.

First we need to derive a complex from any (simple) l-uniform hypergraph H =

(V,E). Since H is l-uniform, no edge of H is contained in any other edge of H. Thus

the set E is the set of facets of a complex, which we call the associated complex of

H, and denote ΔH . In this new terminology, we wish to show that the associated

complex of an l-uniform hypergraph on n vertices is the independence complex of

a graph on n vertices with probability 0 as n approaches infinity. We begin with

a theorem concerning the circuits of an l-uniform hypergraph’s associated complex,

from which the desired result follows as a corollary.

Theorem 4.4.1. Fix an l ≥ 1 and let H = (V,E) be a random l-uniform hypergraph,

with |V | = n. Then every circuit of the associated complex ΔH contains at least l

vertices with probability 1 as n approaches infinity.

Proof. We want to show that as n approaches infinity, every circuit of ΔH has

size strictly greater than l − 1 with probability 1. To do this we show that every set

X ∈ V (l−1) is contained in some facet F ∈ ΔH (i.e. an edge F ∈ E) with probability

1 as n approaches infinity. For X ∈ V (l−1) let EX be the event that X �⊂ F for any

F ∈ E. Let P be the probability that ΔH contains no circuit of size strictly less than

l. We have:

P = Prob
( ∀X ∈ V (l−1), ∃F ∈ E such that X ⊂ F

)
= 1− Prob

( ∃X ∈ V (l−1) such that ∀F ∈ E,X �⊂ F
)

= 1− Prob

⎛
⎝ ⋃

X∈V (l−1)

EX

⎞
⎠

Now for the event EX to occur, none of the l-subsets chosen when H was constructed

can contain X. There are n− (l−1) = n− l+1 such l-subsets for any fixed X. Thus
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for a fixed X,

Prob(EX) = (1− p)n−l+1.

Using the fact that |V (l−1)| = (
n

l−1

)
and that the probability of a union is less than

or equal to the sum of the probabilities, we obtain:

Prob

⎛
⎝ ⋃

X∈V (l−1)

EX

⎞
⎠ ≤

(
n

l − 1

)
(1− p)n−l+1 ≤ nl−1(1− p)n−l+1.

The natural logarithm of the right side of the previous inequality is

(l − 1) lnn+ (n− l + 1) ln(1− p).

We know that ln(1 − p) is a negative constant, so (n − l + 1) ln(1 − p) → −∞ as

n → ∞. The first term is clearly dominated by the second term since l is fixed, so

the sum goes to −∞. Therefore, nl−1(1− p)n−l+1 → 0 as n → ∞. Thus

Prob

⎛
⎝ ⋃

X∈V (l−1)

EX

⎞
⎠ → 0

as well, and we conclude that P → 1 as n → ∞. �

Corollary 4.4.2. Let H be a random l-uniform hypergraph. As n approaches ∞, the

circuits of the associated complex ΔH are all of size l or l + 1 with probability 1.

Proof. Theorem 4.4.1 tells us that every circuit of ΔH has size at least l with

probability 1. It is easy to see that no circuit of ΔH can have size strictly greater

than l + 1 because removing any single vertex of a circuit must create a face of ΔH ,

and no face in ΔH has size strictly greater than l. �
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Corollary 4.4.3. The edge set of a random l-uniform hypergraph H = (V,E) on

n vertices with l ≥ 3 is the set of facets of the independence complex of a graph

G = (V,E ′) with probability 0 as n → ∞.

Proof. By Corollary 4.4.2, every circuit of the associated complex ΔH of H has

size l or l+1 with probability 1 as n approaches infinity. However, any independence

complex of a graph with nonempty edge set must have circuits of size 2 (the two ends

of any edge). Since l ≥ 3, H is the set of facets of an independence complex with

probability 0 as n → ∞. �

Corollary 4.4.3 tells us that for l ≥ 3, the uniformity dimension of most l-uniform

hypergraphs has not been studied previously as part of research on well-covered

weightings. We will shortly pursue this problem. We first show that the uniformity

dimension of a random 1-uniform hypergraph on n vertices lies in a small interval

around n− pn+1 with probability approaching 1 as n goes to infinity. We then deal

with the case l ≥ 2, and show that as n grows large, the uniformity dimension of a

random l-uniform hypergraph H on n vertices is 1 with probability 1. That is, the

constant weightings of V are the only stable weightings of H.

Theorem 4.4.4. Let H be a random 1-uniform hypergraph on n vertices, and let

ε > 0. As n approaches infinity, the probability that n− (p+ ε)n+1 ≤ udim(H,F) ≤
n− (p− ε)n+ 1 approaches 1.

Proof. Let the random variable Un be the uniformity dimension of H and let the

random variable Mn be the number of edges of H. By Proposition 4.1.1, we have

n− (p+ ε)n+ 1 ≤ Un ≤ n− (p− ε)n+ 1 ⇐⇒ (p− ε)n ≤ Mn ≤ (p+ ε)n
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Thus we are now interested in the probability that Mn, a binomial random variable,

is close to its mean. By an application of Hoeffding’s Inequality (see [11]), we get:

Prob [(p− ε)n ≤ Mn ≤ (p+ ε)n] ≥ 1− 2e−2ε2n,

which clearly approaches 1 as n approaches infinity. �

Next we deal with random l-uniform hypergraphs for a fixed l ≥ 2. We can

prove that almost all 2-uniform hypergraphs (i.e. simple graphs) have uniformity

dimension 1 as follows: Almost all simple graphs have the property that for any pair

of distinct vertices {x, y}, there is a third vertex z �∈ {x, y} which is adjacent to both

x and y. (This is an easy exercise, and a similar but much more general property

is shown to hold for almost all graphs in [3].) Any graph on at least 3 vertices with

this property is connected and contains a 3-cycle, which is easy to show directly.

Thus by Proposition 4.2.3, almost all graphs have uniformity dimension 1 over any

field F. Note that the characteristic makes no difference in this case. The next

theorem generalizes this result, proving that for any fixed l ≥ 2, almost all l-uniform

hypergraphs have uniformity dimension 1.

Theorem 4.4.5. For any fixed l ≥ 2, an l-uniform hypergraph H = (V,E) on n

vertices has uniformity dimension 1 with probability 1 as n approaches infinity over

any field F. That is, almost all l-uniform hypergraphs have uniformity dimension 1

for any fixed l ≥ 2.

Proof. We will show that every pair of vertices of H has the interchange property

with probability 1 as n approaches infinity. This means that any stable weighting f

of H must be constant, i.e. f(v) = t ∈ F for all v ∈ V . Conversely, we know that

these constant weightings are stable by Proposition 4.0.1. So this will prove that

udim(H,F) = 1 with probability 1 as n approaches infinity.
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Let P be the probability that two vertices of V do not have the interchange

property. For a subset X ⊂ V , and vertices y and z not in X, let EXy,z be the event

that y and z have the interchange property with X as the interchange set. That is,

y, z �∈ X and X ∪ y,X ∪ z are both edges of H. So we have:

P = Prob( ∃ y, z ∈ V that do not have the interchange property)

= Prob

⎛
⎜⎜⎝ ⋃

{y,z}⊂V

⋂
X∈V (l−1)

y,z �∈X

(X ∪ y and X ∪ z are not both edges of H)

⎞
⎟⎟⎠

= Prob

⎛
⎜⎜⎝ ⋃

{y,z}⊂V

⋂
X∈V (l−1)

y,z �∈X

¬EXy,z

⎞
⎟⎟⎠

For a fixed subset X ∈ V (l−1) not containing vertices y and z, Prob(¬EXy,z) = 1−p2,

since X ∪ y and X ∪ z were chosen as edges of H independently with probability p.

Further, given a fixed pair of vertices y, z ∈ V , for each X ∈ V (l−1) with y, z �∈ X,

the event EXy,z occurs independently from all other such events, (e.g. EX′
y,z

for

X ′ ∈ V (l−1), X ′ �= X) since each event involves the inclusion of different subsets of

V as edges. By an easy counting argument there are
(
n−2
l−1

)
subsets in V (l−1) not

containing y or z. We also use the fact that a union of probabilities is less than the

sum of those probabilities to get:

P ≤
(
n

2

)
(1− p2)(

n−2
l−1) ≤ n2(1− p2)(

n−2
l−1).

We now show that as n → ∞, P → 0. The natural logarithm of n2(1− p2)(
n−2
l−1) is

2 lnn+

(
n− 2

l − 1

)
ln(1− p2).
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Now since p > 0, we have ln(1 − p2) < 0. Thus the second term has negative sign

and clearly dominates the first term as n → ∞, so this expression approaches −∞
as n → ∞, and we see that lim

n→∞
n2(1− p2)(

n−2
l−1) = 0.

We conclude that P → 0 as n → ∞, so that every two vertices of V have the

interchange property in the limit. �

Having discovered something about the uniformity dimension of almost all l-

uniform hypergraphs for any fixed l ≥ 1, we now turn to the expected value of the

uniformity dimension of a random l-uniform hypergraph. We derive a formula for the

expected value of the uniformity dimension of a random 1-uniform hypergraph on n

vertices, and for l ≥ 2 we show that the expected value of the uniformity dimension of

a random l-uniform hypergraph on n vertices approaches 1 as n approaches infinity.

Theorem 4.4.6. Let H = (V,E) be a random 1-uniform hypergraph on n vertices.

The expected value of udim(H,F) is n−pn+1− (1−p)n, where each singleton subset

of V was included in H with probability p.

Proof. Let the random variable Mn be the number of edges of H, and let the

random variable Un be the uniformity dimension of H (the dimension is the same

over every field). By proposition 4.1.1, Un = n −Mn + 1 if Mn > 0. On the other

hand, if Mn = 0, then Un = n. By the definition of expected value, we have:

E(Un) =
n∑

i=1

i · P (Un = i)

= n · P (Un = n) +
n−1∑
i=1

i · P (Un = i)

At this point, we see that Un = n if and only if Mn = 0 or 1. Also, in the sum

on the right we are now left with Un < n. When this is the case, Mn > 0, so
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Un = n−Mn + 1. Thus we have:

E(Un) = n · [P (Mn = 0) + P (Mn = 1)] +
n−1∑
i=1

i · P (Mn = n− i+ 1)

Now we make the substitution j = n− i+ 1 in the index of our sum, then move the

term n · P (Mn = 1) into the sum, and finally break up the sum:

E(Un) = n · P (Mn = 0) + n · P (Mn = 1) +
n∑

j=2

(n− j + 1) · P (Mn = j)

= n · P (Mn = 0) +
n∑

j=1

(n− j + 1) · P (Mn = j)

= n · P (Mn = 0) + (n+ 1)
n∑

j=1

P (Mn = j)−
n∑

j=1

j · P (Mn = j)

We know that Mn is a binomial distribution in which n objects are included with

probability p, and we use the well-known formulas (see [14], for example):

P (Mn = 0) = (1− p)n

n∑
j=0

P (Mn = j) = 1

n∑
j=0

j · P (Mn = j) = pn

to get:

E(Un) = n(1− p)n + (n+ 1) [1− (1− p)n]− [pn− 0]

= n+ 1− (1− p)n − pn

Rearranging slightly we obtain the desired result. �
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Finding an explicit formula for the expected uniformity dimension of a random

1-uniform hypergraph on n vertices proved to be fairly difficult. We do not determine

such a formula for l-uniform hypergraphs with l ≥ 2, but we do find a bound on the

expected uniformity dimension from which we are able to show that the expected

uniformity dimension of a random l-uniform hypergraph with l ≥ 2 on n vertices

approaches 1 as n approaches infinity.

Theorem 4.4.7. As n approaches infinity, the expected uniformity dimension of a

random l-uniform hypergraph H with l ≥ 2 on n vertices approaches 1.

Proof. Let the random variable Un be the uniformity dimension of H, a random

l-uniform hypergraph on n vertices. Let P be the probability that there exist two

vertices of H that do not have the interchange property. In the proof of Theorem

4.4.5 we showed that P ≤ n2(1 − p2)(
n−2
l−1). Now if every pair of vertices of H have

the interchange property, then we know Un = 1. On the other hand, if there are two

vertices of H that do not have the interchange property, we still know that Un ≤ n.

The expected uniformity dimension can thus be bounded as follows:

E(Un) ≤ 1 · (1− P ) + n · P

≤ 1 + n · n2(1− p2)(
n−2
l−1)

= 1 + n3(1− p2)(
n−2
l−1)

Taking the limit as n approaches infinity of the natural logarithm of n3(1− p2)(
n−2
l−1),

we get:

lim
n→∞

3 lnn+

(
n− 2

l − 1

)
ln(1− p2) = −∞.

Therefore, lim
n→∞

E(Un) ≤ 1. Since Un ≥ 1 by Proposition 4.0.1, we must have

lim
n→∞

E(Un) = 1. �
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Having found a variety of results on general l-uniform hypergraphs, in the next

chapter we move on to hypergraphs with particular restraints on their structure, and

we obtain more specific results.



Chapter 5

Highly Structured Hypergraphs

In this chapter, we consider several families of hypergraphs, all of which turn out

to be l-uniform hypergraphs, but with some type of additional structure. The extra

structure allows us to find some nice descriptions of their uniformity spaces. We

are able to apply our work here on matroid bases to the problem of finding stable

weightings of the spanning forests of a graph. The first family of hypergraphs which

we study is the family of l-uniform cycles.

5.1 Cycles

We begin with the definition of l-uniform cycles. For graphs, cycles are easy to

define, but there are several ways to extend the definition to l-uniform hypergraphs.

Different definitions can be found in [1] and [13], for example. We choose to use the

definition given by Kühn and Osthus in [13].

Definition 5.1.1. An l-uniform hypergraph H = (V,E) is a cycle of order n if there

exists a cyclic ordering v0, ..., vn−1 of V such that the pair vi, vi+1 lies in an edge of

H for all i modulo n, and such that every edge of H consists of l consecutive vertices

(so the cyclic ordering of the vertices induces a cyclic ordering of the edges as well).

Further, an l-uniform cycle is tight if every l consecutive vertices form an edge. An

l-uniform cycle on n vertices is loose if it has the minimum possible number of edges

among all l-uniform cycles on n vertices.

48
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5.1.1 Loose Cycles

Here we find the uniformity dimension of all loose 3-uniform cycles. The loose 3-

uniform cycle of order 3 has only one edge and therefore has uniformity dimension 3.

As shown in [13], if H is a loose 3-uniform cycle of order n ≥ 4, the number of edges

of H must be �n
2
�. Moreover, if n is even the intersection of any two consecutive

edges in H must have size 1, whereas if n is odd, there exist two consecutive edges

of H whose intersection is of size 2, and all other pairs of consecutive edges intersect

in only one vertex.

Let C = (V,E) be a loose 3-uniform cycle of order n ≥ 4. In order to find the

uniformity dimension of C, we will have to consider two cases. All subscripts in the

following discussion will be modulo n.

Case i) n is odd.

Figure 5.1: The loose cycle of odd order n

Without loss of generality let:

V = {v0, v1, v2, ..., vn−1},

E = {{v0, v1, v2}, {v1, v2, v3}, {v3, v4, v5}, ..., {vn−2, vn−1, v0}},
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so that C appears as in Figure 5.1. We can construct a stable weighting f : V → F

of C as follows: Weight the vertices v0, v1, v2 arbitrarily with a0, a1, a2 ∈ F, and let

a0 + a1 + a2 = k. Then the weight on v3 must be equal to a0 since v0 and v3 have

the interchange property with interchange set {v1, v2}. We next weight the vertices

v5, v7, v9, ..., vn−2 arbitrarily with a5, a7, a9, ..., an−2 ∈ F. The weight on each of the

remaining vertices v4, v6, ..., vn−1 is now determined by the weight of its neighbours,

since the sum of the weights on each edge must be k. Thus we have defined f : V → F

by:

f(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai if i = 0, 1, 2, 5, 7, 9, ..., n− 2,

a0 if i = 3,

k − a0 − a5 if i = 4,

k − ai−1 − ai+1 if i = 6, 8, ..., n− 1.

where ai ∈ F for all i ∈ {0, 1, 2, 5, 7, 9, ..., n−2}. It is easy to check that the weight on

every edge of C is equal to k. Further, since any stable weighting of C is completely

determined by these n+1
2

= �n
2
+ 1� arbitrary values, we have udim(C,F) = �n

2
+ 1�.

Figure 5.2: The stable weighting f of the loose cycle of odd order n
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Case ii) n is even.

Figure 5.3: The loose cycle of even order n

Without loss of generality let:

V = {v0, v1, v2, ..., vn−1},

E = {{v0, v1, v2}, {v2, v3, v4}, {v4, v5, v6}, ..., {vn−2, vn−1, v0}},

so that C appears as in Figure 5.3. We can construct a stable weighting f : V →
F of C as follows: Assign arbitrary weights a0, a1, and a2 from F to v0, v1, and

v2 respectively. Then let k = a0 + a1 + a2, so that the weight on each edge of

C must be equal to k. Now assign arbitrary weights a4, a6, ..., an−2 ∈ F to the

vertices v4, v6, ..., vn−2 respectively. Then the weight on each of the remaining vertices

v3, v5, ..., vn−1 is determined by the weight of its neighbours as in the previous case.

Thus we have defined f : V → F by:

f(vi) =

⎧⎪⎪⎨
⎪⎪⎩
ai if i = 0, 1, 2, 4, 6, ..., n− 2,

k − ai−1 − ai+1 if i = 3, 5, ..., n− 1,

and it is easy to check that the weight on each edge of C is equal to k under this

weighting, so it is stable.
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Figure 5.4: The stable weighting f of the loose cycle of even order n

The weighting f is completely determined by the placement of the weights

a0, a1, a2, a4, a6, ..., an−2, which can be arbitrarily chosen from F. Thus we must have

udim(C,F) = n
2
+ 1. We summarize our results on loose 3-uniform cycles in the

following proposition.

Proposition 5.1.1. Let C = (V,E) be a loose 3-uniform cycle of order n ≥ 4. Then

for any field F, udim(C,F) = �n
2
+ 1�. �

5.1.2 Tight Cycles

The uniformity dimension of loose l-uniform cycles for l > 3 is not so clear, as there is

much more variety in forming loose l-uniform cycles of a fixed order n for any l > 3.

However, for a given l and n ≥ l, all tight l-uniform cycles of order n are isomorphic,

and the uniformity dimension of a tight l-uniform cycle turns out to be very easy to

determine with the next theorem.

Theorem 5.1.2. Let C = (V,E) be a tight l-uniform cycle of order n ≥ l, and let F

be a field. Then udim(C,F) = gcd(l, n).

Proof. During this proof all subscripts are taken modulo n, the set of integers

modulo n is denoted Zn, and we let d = gcd(l, n). In the case n = l, the cycle C has
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only one edge, so immediately we see that udim(C,F) = n = d. Now suppose n < l

and let:

V = {v0, v1, v2, ..., vn−1},

E = {{v0, v1, ..., vl−1}, {v1, v2, ..., vl}, {v2, v3, ..., vl+1}, ..., {vn−1, v0, ..., vl−2}}.

We see immediately that vi and vi+l have the interchange property with interchange

set {vi+1, vi+2, ..., vi+l−1} for all i modulo n. This tells us that under any stable

weighting of C, each vertex in the set V0 = {vtl | t ∈ Zn} must have the same

weight. Likewise for the sets V1 = {v1+tl | t ∈ Zn}, V2 = {v2+tl | t ∈ Zn} through to

Vl−1 = {vl−1+tl | t ∈ Zn}. We have presented l sets whose vertices must be weighted

equally, but some of them could overlap. We know that V0, V1, ..., Vd−1 partition V

since d is the greatest common divisor of l and n. This tells us that udim(C,F) ≤ d.

For i ∈ {0, 1, 2, ..., d− 1}, define fi : V → F by:

fi(v) =

⎧⎪⎪⎨
⎪⎪⎩
1 if v ∈ Vi,

0 otherwise.

Let p ∈ N be such that l = dp. Then we know that every edge of C contains exactly p

members of each set Vi. Therefore, the weight on every edge under the weighting fi is

equal to p, and fi is stable for all i = 0, 1, ..., d− 1. The set {f0, f1, ..., fd−1} is clearly

linearly independent and contains d weightings, so it forms a basis for U(C,F). This

completes the proof that udim(C,F) = gcd(l, n). �

This concludes our work on l-uniform cycles. We note that more could be done

with these cycles. We have found a simple description for the uniformity spaces of

only two specific types of cycles. However, in the next section we move on to a

different type of highly structured hypergraph.
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5.2 Matroid Bases

In this section we study the uniformity spaces of hypergraphs whose edges are exactly

the bases of a matroid. We can generate such a hypergraph from any matroid M =

(V,E ) by defining the hypergraph H = (V,B), where B is the set of bases of M .

This is the basis hypergraph of Definition 2.2.3. Conversely, given a hypergraph

H = (V ′, E ′), we know that E ′ is the set of bases for a matroid on V ′ exactly when it

satisfies the base axiom for a matroid (Theorem 2.2.1). The next theorem describes

the uniformity space of a basis hypergraph in terms of the connected components of

its associated matroid.

Theorem 5.2.1. Let HM = (V,E) be the basis hypergraph for the matroid M =

(V,E ) and let F be any field. Then udim(HM ,F) = k, where k is the number of

components of M . In particular, if the components of M are M |V1,M |V2, ...,M |Vk,

then a basis for U(HM ,F) is given by {f1, f2, ..., fk}, where fi : V → F is defined by:

fi(v) =

⎧⎪⎪⎨
⎪⎪⎩
1 if v ∈ Vi

0 otherwise

for all i ∈ {1, 2, ..., k}.

Proof. First we show that any two elements of V contained in the same component

of M must have the same weight under any stable weighting of HM . Let x and y

be distinct vertices of some component of M . Then x and y are contained in some

common circuit C of M . Now C\x must be an independent set of M , and so is

contained in some base T of M (i.e. an edge of HM), and clearly y ∈ T .

Now we claim that (T ∪ x)\y must also be a base of M . Suppose otherwise, so

that (T ∪ x)\y contains a circuit C ′ of M . In particular we have C ′ ⊆ T ∪ x, and we

must have x ∈ C ′ since T\y is independent in M . Now since x ∈ C ∩C ′, there exists
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a circuit C ′′ of M such that C ′′ ⊆ (C ∪C ′)\x (by circuit axiom (ii), Theorem 2.2.2).

Since (C ∪ C ′)\x = (C\x) ∪ (C ′\x) ⊆ T , we have C ′′ ⊆ T . This is a contradiction

because T was assumed to be a base of M .

So we conclude that T and (T ∪ x)\y are both bases of M . Since HM is the basis

hypergraph of M , T and (T ∪ x)\y are both edges of HM , and therefore x and y

have the interchange property. Thus x and y must have the same weight under any

stable weighting of HM . Since x and y were arbitrary, any two elements contained

in a common circuit of M must have the same weight under any stable weighting.

This means exactly that for any component M |Vi of M , all elements of Vi must

have the same weight. We conclude that if k is the number of components of M ,

udim(HM ,F) ≤ k.

Now let f1, f2, ..., fk be as in the theorem statement, and claim that fi is a stable

weighting of HM for all i = 1, 2, ..., k. Fix an i ∈ {1, 2, ..., k}. Recall that M |Vi is a

matroid, so the bases of M |Vi are all of the same size, say ni. We show that each

base of M contains ni elements of Vi.

Let B be a base of M . It is easy to see that B cannot contain more than ni

elements of Vi, since there are no independent sets of size greater than ni contained

in Vi. On the other hand, suppose an independent set I of M contains less than ni

elements of Vi. Then let Ii = I ∩ Vi, and Ii is not a base of M |Vi, since |Ii| < ni. So

there exists an element z ∈ Vi such that z �∈ Ii and Ii ∪ z is independent in M |Vi.

Then I ∪ z must be independent in M because the addition of z does not create

any circuits in Vi, and by the definition of Vi, no element outside of Vi can lie on a

common circuit with z. This proves that I is not a base of M , and so any base of M

must contain at least ni elements of Vi.

Now since we can conclude that every base of M contains exactly ni vertices from

Vi, the weight on each base of M under fi must be ni. So fi is a stable weighting

of HM . Since this holds for every i ∈ {1, 2, ..., k}, the weightings f1, f2, ..., fk are all
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stable. It is also easy to see that they are linearly independent. Since udim(HM ,F) ≤
k, they must form a basis for U(HM ,F). �

We have the following corollary to Theorem 5.2.1:

Corollary 5.2.2. Let G = (V,E) be a graph with graphic matroid M(G). Then

udim(HM(G),F) is equal to the number of blocks of G over any field F.

Proof. HM(G) is the basis hypergraph for the graphic matroid of G, so the uni-

formity dimension of HM(G) is the number of components of M(G). The number

of components of M(G) is equal to the number of blocks of G. Note that a basis

for U(HM(G),F) is also easily found from Theorem 5.2.1. In this basis, each vector

weights the edges of a single block of G with 1’s and the remaining edges with 0’s. �

This gives a nice solution to one problem that we mentioned in the introduction.

For a graph G = (V,E), we now have an efficient way to find the space of all weight-

ings of E that are stable on the maximal acyclic subsets of E. That is, we just find

the blocks of G. We compare the computational complexity of this method with

the complexity of listing all spanning trees of G, then setting up the solution matrix

and finding its nullspace. We restrict our attention to connected graphs because the

algorithms that we reference are designed for connected graphs.

Suppose G = (V,E) is a connected graph with n vertices and m edges. In chapter

6.4 of [12], a depth-first search algorithm for finding the blocks of any connected

graph is presented. The complexity of this algorithm is O(m). Since the number of

edges is bounded by
(
n
2

)
= n(n−1)

2
, the complexity is O(n2). This is a very fast way to

find the space of weightings stable on the spanning trees of G when compared with

the alternate algebraic method considered next.

If we want to list all spanning trees of G, let t denote the number of spanning

trees of G, which could be exponential in n. (The complete graph on n vertices has

nn−2 spanning trees.) Any algorithm that lists the spanning trees of G will involve at
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least t operations. One such algorithm whose complexity is O(n+m+ t) is presented

in [18]. So in terms of n, the complexity could be as bad as O(nn−2). Once all

spanning trees are listed, we can form the (t − 1) × n solution matrix W . There

are several ways to find the nullspace of this matrix, which all have approximately

the same computational complexity. One such method is to find the singular value

decomposition (SVD) of W . We don’t actually need the entire SVD, and algorithms

to find the necessary part of the SVD have complexity O((t − 1)2n) when t � n

( [9], pg. 239). So in terms of n, the complexity of this method could be as bad as

O(n2n−3). We would obviously much rather use the first method and find the blocks

of the graph.

Now that we have described the stable weightings of matroid bases in terms of

the blocks of the matroid, we consider the affect of some matroid operations on the

uniformity dimension of its bases. In particular, we observe the affects of restriction

and contraction of a matroid on its basis hypergraph’s uniformity dimension. Recall

that restriction corresponds to deleting certain edges of a graph, and contraction

corresponds to contracting certain edges of a graph. We are interested in the number

of components of the restriction and contraction of a matroid relative to the number of

components of the original, because by Theorem 5.2.1, a matroid with k components

has basis hypergraph with uniformity dimension k.

We deal with restriction first. Let M = (V,E ) be a matroid with k components.

Let v be an element of V ; we investigate the deletion of v, M − v = M |(V \v). We

want to find a bound on the number of components of M − v. We have two cases:

(i) {v} is a component of M .

In this case, M − v has one less component than M , since {v} is clearly no

longer a component of M − v, but all other components are unchanged.

(ii) {v} is not a component of M .
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We show that in this case, M − v must have at least as many components as

M . Suppose v is in the component V1 of M , and let the other components of

M be V2, V3, ..., Vk. These other components of M must still be components of

M − v. This is because the circuits of M − v are exactly the circuits of M not

containing v. Since V1 �= {v} by assumption, there must be some other element

u ∈ V ′ as well, such that u �= v. Then u is in some component of M − v, and

it cannot be in any of V2, V3, ..., Vk, so M − v must have at least k components.

Let HM be the basis hypergraph for M and HM−v the basis hypergraph for M−v.

We have shown that udim(HM−v,F) ≥ udim(HM ,F) − 1, with equality if and only

if {v} is a component of M . Is there an upper bound for udim(HM−v,F) in terms of

udim(HM ,F)? It turns out that there is not, as the following example shows.

Example 5.2.1. Consider the graph Cn and let e be an edge of Cn. Clearly Cn has

only one block, while Cn−e has n−1 blocks. By Corollary 5.2.2, udim(HM(Cn),F) = 1,

while udim(HM(Cn)−e,F) = udim(HM(Cn−e),F) = n− 1.

Next we explore contractions of a matroid M = (V,E ) with k components, by

taking an element v of V and considering the link of v, lkMv = M · (V \v). We again

want to bound the number of components of lkMv. The same arguments apply to

the link as applied to the deletion above. The link of a single element v changes only

the component that v is part of. If {v} is a component of M , then lkMv has k − 1

components. Otherwise, there is some other element u ∈ V in the same component

as v. So u is in some component of lkMv which must be distinct from the other k− 1

components of M . Therefore if {v} is not a component of M , lkMv has at least k

components.

Thus, as above, we have shown that udim(HlkMv,F) ≥ udim(HM ,F) − 1, with

equality if and only if {v} is a component of M . We also provide an example showing

that there is no upper bound for udim(HM−v,F) in terms of udim(HM ,F).
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Example 5.2.2. Consider the graph G pictured in Figure 5.5, where G is made

up of n 4-cycles, all sharing exactly one edge. The graph G has only one block, so

udim(HM(G),F) = 1. However, contracting edge e results in a graph that is made up

of n 3-cycles all sharing exactly one vertex. Each 3-cycle is a separate block of G · e,
so udim(HlkM(G)e,F) = udim(HM(G·e),F) = n.

Figure 5.5: A graph G for which G · e has many more blocks than G

We summarize the results on the deletion and link of a single element of a matroid

in the theorem below.

Theorem 5.2.3. Let M = (V,E ) be a matroid with k blocks, so udim(HM ,F) =

k for any field F. Then for any element v of V , udim(HM−v,F) ≥ k − 1, and

udim(HlkMv,F) ≥ k − 1, with equality occurring for both if and only if {v} is a

component of M . �

Remark 5.2.1. We can easily extend this theorem to the deletion and link of a set

X ⊆ V of size r. We will have udim(HM−X ,F) ≥ k− r, and udim(HlkMX ,F) ≥ k− r,

with equality occurring for both if and only if every element of X is in a component

of M by itself.
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5.3 Symmetric Block Designs

In this section we prove that the uniformity dimension of any symmetric block design

is 1 as long as the characteristic of the field we are working over does not divide

certain numbers. Recall that we have defined designs as a class of hypergraphs, so in

our context they have no multiple edges.

Theorem 5.3.1. Let D = (V,B) be a symmetric block design with parameters v, k,

and λ, where v > k > λ. Then udim(D,F) = 1 as long as char(F) does not divide

k − λ, k + λ(v − 1), or v.

Remark 5.3.1. Requiring v > k > λ excludes only fairly trivial block designs. Any

design where v = k can only contain one block which passes through every point.

Further if v > k and k = λ in a symmetric design then any two blocks intersect in

all of their points by Proposition 2.3.4, so again the block design can have only one

block. For any design with only one block, and more generally for any hypergraph

with only one block, the uniformity dimension is the number of vertices, since every

weighting of the vertex set must be stable.

Proof of Theorem 5.3.1. Let M be the incidence matrix of D. We know that

M is a v × v matrix since D is a symmetric block design. Now let Bi denote the ith

column of M , corresponding to the ith block of D. Then consider the product M tM .

The ijth entry of this matrix is:

(M tM)ij = Bi ·Bj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ if i �= j since distinct blocks intersect in exactly

λ points by Proposition 2.3.4.

k if i = j since each block passes through exactly

k points by Definition 2.3.1 (iii).

Thus we have:
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M tM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k λ · · · λ

λ k · · · λ

...
...

. . .
...

λ λ · · · k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= (k − λ)I + λJ,

where I denotes the v × v identity matrix and J denotes the v × v matrix with all

entries equal to 1. There are now several ways to see that M tM has rank v. We find

v linearly independent eigenvectors for J , (and hence for I and M tM as well), none

of which are in the nullspace of M tM . This proves that M tM has nullity 0 and rank

v. We claim the eigenvectors are as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

0

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

−1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

−1

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·
· · ·
· · ·
. . .

. . .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

...

0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Call these vectors u1 and u2,u3,u4, ...,uv respectively. It is easy to verify that they

are eigenvectors for J . These vectors are linearly independent over any field of char-

acteristic not dividing v, which we prove now. Suppose we have a dependence relation

among the eigenvectors above over the field F as follows:

α1u1 + α2u2 + ...+ αvuN = 0

where αi ∈ F for all i ∈ {1, 2, ..., v}, and at least one of the αi is nonzero. To see

that α1 must be nonzero, suppose α1 = 0. Then αi �= 0 for some i ≥ 2, and then

the ith entry of the sum must be −αi, which is a contradiction. Now since α1 �= 0,
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each entry αi for i = 2, 3, ..., v must be equal to α1 in order for the ith entry of the

sum to be equal to 0. However, then the 1st entry of the sum is vα1. As long as the

characteristic of F does not divide v, this entry is nonzero and therefore the vectors

u1,u2, ...,uv must be linearly independent.

So we have a basis of eigenvectors for M tM , and we now show that none of them

have eigenvalue 0. The first vector u1 has eigenvalue v for J and hence eigenvalue

(k − λ) + vλ = k + λ(v − 1) for M tM = (k − λ)I + λJ . The remaining eigenvectors

have eigenvalue 0 for J and hence eigenvalue k − λ for M tM = (k − λ)I + λJ . We

assumed k > λ so that k − λ > 0. So the eigenvalues we have found will be nonzero

over any field of characteristic not dividing k − λ or k + λ(v − 1).

Since we have found a basis of eigenvectors for M tM , none of which have eigen-

value 0, nullity(M tM) = 0 and so rank(M tM) = v by the rank-nullity theorem. By

a well-known result in linear algebra, rank(M tM)=rank(M). [17]

Since M is a v × v matrix, it has full column and row rank. The columns

B1,B2, ...,BN of M are therefore linearly independent. Also, the solution matrix

WD for D can be written:

WD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(B1 −Bv)
t

(B2 −Bv)
t

...

(Bv−1 −Bv)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Now suppose the rows of WD are linearly dependent. Then we would have a linear

dependence relation among B1,B2, ...,Bv, a contradiction. Therefore, WD has full

row rank, and rank(WD) = v− 1. This implies nullity(WD) = 1. We conclude that if

char(F) does not divide k−λ, k+λ(v− 1), or v then udim(D,F) = nullity(WD) = 1.

�
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Remark 5.3.2. It is interesting to note that Theorem 5.3.1 gives us another condition

sufficient to prove that several vertices of a hypergraph must have the same weight

under any stable weighting. That is, if a hypergraph H contains a subhypergraph D

that satisfies the axioms for a symmetric block design with parameters v > k > λ,

then every vertex of D must have the same weight under any stable weighting of

H. The only other such sufficient condition we have seen up to this point is the

interchange property. In particular this shows that the interchange property is not a

necessary condition for two vertices of a hypergraph to have the same weight under

every stable weighting. For example, in the Fano plane pictured in Figure 2.1 no two

vertices have the interchange property. However, since the only stable weightings of

the Fano plane are the constant weightings by Theorem 5.3.1, all vertices of the Fano

plane must carry the same weight under any stable weighting.

Since projective planes are such a commonly studied type of block design, we give

the following result as a corollary to Theorem 5.3.1:

Corollary 5.3.2. Let P = (V,B) be a projective plane of order n. Then udim(P,F) =

1 over any field F of characteristic not dividing n, n+ 1, or n2 + n+ 1.

Proof. This is a direct consequence of Theorem 5.3.1, because P is a symmetric

block design with v = n2 + n + 1, k = n + 1, and λ = 1 by Proposition 2.3.1. So we

have udim(P,F) = 1 as long as char(F) does not divide k − λ = n, k + λ(v − 1) =

(n+ 1) + (1)(n2 + n) = n2 + 2n+ 1 = (n+ 1)2, or v = n2 + n+ 1. �

Now let D be as in the statement of Theorem 5.3.1 with parameters v, k, and λ.

Theorem 5.3.1 does not tell us anything about the uniformity dimension of D if the

characteristic of F divides any of the numbers k − λ, k + λ(v − 1), or v. We now

explore these situations.

First of all, suppose char(F) divides k − λ. In the proof of Theorem 5.3.1, we

found v − 1 eigenvectors for M tM with the eigenvalue k − λ, and they are linearly
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independent over a field of any characteristic, so nullity(M tM) = nullity(M t) ≥ v−1.

In particular, anything in the nullspace of M t is a stable weighting of D (with weight

0 on each edge), so udim(D,F) ≥ v − 1. This tells us that udim(D,F) = v − 1

or udim(D,F) = v. As long as the solution matrix WD has at least one row (this

means D has at least 2 blocks), rank(WD) ≥ 1 over a field of any characteristic,

and so udim(D,F) = v − 1. Otherwise, D has at most one block, and in this case

udim(D,F) = v.

Now suppose char(F) does not divide k−λ. Then the v−1 eigenvectors for M tM

with eigenvalue k − λ �= 0 tell us that rank(M tM) = rank(M t) ≥ v − 1. So for the

solution matrix WD, rank(WD) ≥ v − 2. This tells us that udim(D,F) ≤ 2. Since

we know that the all 1’s vector is a stable weighting of any symmetric block design

(as it is a uniform hypergraph), we know that udim(D,F) = 1 or udim(D,F) = 2.

We leave the exact determination of the uniformity dimension open when char(F)

divides k + λ(v − 1) or v. A solution by cases should be achievable. We summarize

our results in the following theorem.

Theorem 5.3.3. Let D = (V,B) be a symmetric block design with at least two

blocks and parameters v, k, and λ, where v > k > λ. If char(F) divides k − λ, then

udim(D,F) = v − 1. If char(F) does not divide k − λ, but divides v or k + λ(v − 1),

then udim(D,F) = 1 or udim(D,F) = 2. �

Remark 5.3.3. In the notation of Theorem 5.3.3, we could not find an example of a

block design D with udim(D,F) = 2 over a field of characteristic not dividing k− λ,

but dividing v or k + λ(v − 1). It is possible that this never occurs.



Chapter 6

Criticality

6.1 Critical Uniformity Dimension

A notion of criticality is important in many areas in mathematics. In graph theory,

the best known example relates to graph colourings. A graph G with chromatic

number k is edge k-critical if the deletion of any edge of G decreases the chromatic

number. A short section on these k-critical graphs can be found in [21]. A simple

result tells us that every graph with chromatic number k has a k-critical subgraph.

This means that the k-critical graphs describe the essentials of k-colourability, so

these critical graphs have been studied extensively. We present a notion of when a

hypergraph with uniformity dimension k is critical, and find some hypergraphs which

are critical. To begin with, we show that removing an edge of a hypergraph must

either leave its uniformity dimension the same or increase its uniformity dimension

by 1.

Lemma 6.1.1. Let H = (V,E) be a hypergraph, and let |V | = n. Let e be any edge

of H. Then either udim(H−e,F) = udim(H,F) or udim(H−e,F) = udim(H,F)+1.

Proof. Order the edges of H so that e comes first. Let e2, e3, ..., em be the other

edges of H, and hence the complete set of edges of H − e. Then the solution matrix

65
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WH for H is:

WH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(e− em)
t

(e2 − em)
t

...

(em−1 − em)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The solution matrix WH−e for H − e can be obtained from WH by removing the first

row:

WH−e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(e2 − em)
t

(e3 − em)
t

...

(em−1 − em)
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Now suppose nullity(WH) = udim(H,F) = k. Then rank(WH) = n− k by the rank-

nullity theorem. So any basis for the row space of WH has size n − k. When we

remove the first row of WH , the dimension of the row space could either stay the

same or decrease by 1. So rank(WH−e) is either n − k or n − k − 1. This implies

udim(H − e,F) = nullity(WH−e) is equal to k or k + 1, as desired. �

In particular, Lemma 6.1.1 tells us that removing an edge from a hypergraph

cannot decrease its uniformity dimension. The following definition of criticality seems

the most natural.

Definition 6.1.1. Let H = (V,E) be a hypergraph. Then if udim(H,F) = k and

udim(H− e,F) > k for all e ∈ E, we say that H has k-critical uniformity dimension.

Example 6.1.1. In Section 4.3, we mentioned the critical diagonal of Tables 4.1, 4.2,

and 4.3. The 3-uniform hypergraphs that lie on the critical diagonal are those with n

vertices, m > 1 edges, and uniformity dimension n−m+1. By considering the tables

we see that these hypergraphs must all have (n−m+1)-critical uniformity dimension,

because if we remove an edge, the uniformity dimension must increase, since there
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are no hypergraphs on n vertices and m − 1 edges with uniformity dimension less

than n−m + 2. In fact, we will show in Lemma 6.1.3 that any hypergraph H with

n vertices and m edges must have udim(H,F) ≥ n−m+ 1.

We will see later that the hypergraphs on the critical diagonal are the only hy-

pergraphs in Tables 4.1, 4.2, and 4.3 that have critical uniformity dimension. This

is not immediately obvious, and we soon begin developing the theory that will be

needed to prove this result. Before doing this, we present a lemma that tells us that

we are primarily interested in the critical hypergraphs with no isolated vertices.

Lemma 6.1.2. Let H = (V,E) be a hypergraph with a set of isolated vertices VI =

{v1, v2, ..., vs} ⊆ V . Let H − VI denote H with the isolated vertices removed, and

suppose udim(H,F) = k for some field F. Then H is k-critical if and only if H − VI

is (k − s)-critical.

Proof. We have that udim(H,F) = k if and only if udim(H − VI ,F) = k − s by

Lemma 3.4.3. Further, H is k-critical if and only if udim(H− e,F) ≥ k for all e ∈ E,

if and only if udim(H − VI − e,F) ≥ k − s for all e ∈ E by Lemma 3.4.3, if and only

if H − VI is (k − s)-critical. �

We note that this lemma tells us we can find all k-critical hypergraphs on n

vertices by finding all (k − t)-critical hypergraphs on n − t vertices and adding t

isolated vertices for all appropriate values of t. Thus we will be primarily interested

in the critical hypergraphs which contain no isolated vertices. However, we do not

include this restriction in the definition so that we get the desired result of Corollary

6.1.7 later on.

Lemma 6.1.3. Let H = (V,E) be a hypergraph with n vertices, m ≥ 1 edges, and

uniformity dimension k over some field F. Then m ≥ n− k + 1.

Proof. We know that any hypergraph with only one edge has uniformity dimension

equal to the size of its vertex set, because every weighting of the vertex set must be
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stable when there is only one edge. So if we delete m− 1 edges from H, we are left

with a hypergraph H ′ whose uniformity dimension is n. By Lemma 6.1.1, deleting

an edge from a hypergraph can increase its uniformity dimension by at most 1. This

implies that the uniformity dimension of H can increase by at most m − 1 through

any m − 1 deletions. This tells us that udim(H ′,F) ≤ udim(H,F) + (m − 1), from

which we obtain n ≤ udim(H,F) + (m− 1) ⇒ m ≥ n− k + 1. �

Remark 6.1.1. The result of Lemma 6.1.3 can also be seen from the matrix form of

the uniformity space solution.

Theorem 6.1.4. Let H = (V,E) be a hypergraph with n vertices and m edges, and

suppose udim(H,F) = k < n. Then H has k-critical uniformity dimension if and

only if m = n− k + 1.

Proof. (⇒) Let H be as in the theorem statement and suppose H has k-critical

uniformity dimension. We know that m ≥ n− k + 1 by Lemma 6.1.3, and we would

like to show that m = n− k+1. Suppose otherwise that m > n− k+1. Rearranged

slightly, this says that m − 1 > n − k. Consider the (m − 1) × n solution matrix

WH of H. We have nullspace(WH) = k, and therefore by the rank-nullity theorem,

rank(WH) = n− k. Our inequality now says that the number of rows of WH exceeds

the rank of WH . Therefore, there is some row of WH which is a linear combination

of the others. So the edge e of H that corresponds to this row can be deleted from

H without changing the rank (and nullity) of WH . This contradicts the assumption

that H has k-critical uniformity dimension, and so we conclude that m = n− k + 1.

(⇐) Let H be as in the theorem statement and suppose m = n− k + 1. Since k < n

this implies m ≥ 2. For any e ∈ E, the deletion H − e has m− 1 ≥ 1 edges and still

lies on n vertices. By Lemma 6.1.3, we have m− 1 ≥ n− udim(H − e,F)+ 1, so that

udim(H − e,F) ≥ n−m+ 2 = k + 1. So udim(H − e,F) > udim(H,F). Since e was

arbitrary, we conclude that H has (n−m+ 1)-critical uniformity dimension. �
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As a special case, Theorem 6.1.4 tells us that the hypergraphs lying on the critical

diagonal of Tables 4.1, 4.2, and 4.3 are in fact the only critical 3-uniform hypergraphs

on 4, 5, and 6 vertices respectively. It also forms the foundation of the proofs to follow.

Corollary 6.1.5. Let H = (V,E) be a hypergraph with n vertices and m edges, and

let udim(H,F) = k < n. Then there is a subhypergraph Hk of H, obtainable from H

by the deletion of m− (n− k + 1) edges, which has k-critical uniformity dimension.

Proof. By Lemma 6.1.3, we know that m ≥ n − k + 1. If m = n − k + 1,

then H has k-critical uniformity dimension by Theorem 6.1.4, so Hk = H in this

case. Otherwise, m > n − k + 1, and by Theorem 6.1.4, H does not have k-critical

uniformity dimension. So there is an edge e1 ∈ H which can be deleted without

increasing the uniformity dimension. This process can be repeated m − (n − k + 1)

times, at which point we will be left with a k-critical subhypergraph Hk. �

In Section 4.3 we mentioned that we could study the sequences of numbers that

make up the columns and rows of Tables 4.1, 4.2, and 4.3 more generally. We defined

(cl,n,k(m))
m=(nl)
m=0 as the sequence whose mth entry is the number of non-isomorphic

l-uniform hypergraphs on n vertices with uniformity dimension k and m edges. We

now show that this sequence has no internal zeros.

Corollary 6.1.6. The sequence (cl,n,k(m))
m=(nl)
m=0 has no internal zeros for any fixed

values of l, n, k ∈ N with l, k ≤ n.

Proof. Fix l, n, k ∈ N with l, k ≤ n. Suppose cl,n,k(m
∗) is the last nonzero

term of (cl,n,k(m))
m=(nl)
m=0 (so cl,n,k(m) = 0 for all m > m∗). Then there is an l-

uniform hypergraph H on n vertices and m∗ edges with uniformity dimension k. By

Corollary 6.1.5, H contains a k-critical subhypergraph Hk which is obtainable from

H by deleting m∗ − (n − k + 1) edges. We know Hk has n − k + 1 edges, and that

no hypergraph on n vertices with fewer edges can have uniformity dimension k by

Lemma 6.1.3 (so cl,n,k(m) = 0 for all m < n− k + 1).
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As we delete edges to go from H to Hk, the uniformity dimension must always

be equal to k. Further, since H is an l-uniform hypergraph, each hypergraph along

the way must also be l-uniform. Thus in the process of going from H to Hk, we

obtain an l-uniform hypergraph on n vertices with uniformity dimension k and with

m edges for every m ∈ {n − k + 1, n − k + 2, ...,m∗ − 1,m∗}. This tells us that

cl,n,k(m) �= 0 for all m ∈ {n − k + 1, n − k + 2, ...,m∗ − 1,m∗}, and completes the

proof that (cl,n,k(m))
m=(nl)
m=0 has no internal zeros. �

We now strengthen Corollary 6.1.5 slightly by showing that every hypergraph

with uniformity dimension k contains an i-critical subhypergraph for any k < i < n.

Corollary 6.1.7. Let H = (V,E) be a hypergraph with n vertices and m edges, and

let udim(H,F) = k < n. Then for any i ∈ {k, k+1, ..., n−1}, there is a subhypergraph

Hi of H, obtainable from H by the deletion of m−(n−i+1) edges, which has i-critical

uniformity dimension.

Proof. By Corollary 6.1.5, H has a subhypergraph Hk, obtainable by the deletion of

m− (n− k+1) edges, which has k-critical uniformity dimension. For any i ∈ {k, k+
1, ..., n−1}, delete any i−k edges from Hk, and thus m− (n− i+1) edges total from

H. Call the resulting hypergraph Hi. We now prove that Hi has i-critical uniformity

dimension. By Lemma 6.1.1, deleting i−k edges from Hk can increase the uniformity

dimension by at most i− k. So udim(Hi,F) ≤ udim(Hk,F) + (i− k) = k+ i− k = i.

SinceHk has n−k+1 edges by Theorem 6.1.4, Hi has n−k+1−(i−k) = n−i+1 edges.

By Lemma 6.1.3 on the hypergraph Hi, we have n− i + 1 ≥ n− udim(H,F) + 1 ⇒
udim(H,F) ≥ i. We conclude that udim(Hi,F) = i, and since Hi has n− i+1 edges,

we conclude that Hi has i-critical uniformity dimension by Theorem 6.1.4. �

Observation 6.1.8. The proof of Corollary 6.1.7 essentially tells us that once we find

a hypergraph Hk with k-critical uniformity dimension, when we delete any i−k edges

from Hk, we have reached a hypergraph Hi with i-critical uniformity dimension for
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any k < i < n. So if we extend our definition of criticality to include all hypergraphs

with m ∈ {0, 1}, then for any hypergraph H, the edge sets of the subhypergraphs of

H that have critical uniformity dimension form a complex on the underlying set of

edges of H.

In the next section, we use this observation to show that any subhypergraph of

a symmetric block design obtained by deleting only edges has critical uniformity

dimension. We also characterize the simple graphs which have critical uniformity

dimension.

6.2 Hypergraphs of Critical Uniformity Dimension

We now wish to identify specific hypergraphs with k-critical uniformity dimension.

We begin by considering 2-uniform hypergraphs, or simple graphs. We found in

section 4.2 that if G is a simple graph, and F is a field with char(F) �= 2, udim(G,F) =

1+r, where r is the number of bipartite components of G (including isolated vertices).

Theorem 6.2.1. Let G = (V,E) be a graph with at least 2 edges, and let F be any

field of characteristic not equal to 2. Then G has critical uniformity dimension over

F if and only if G is a pseudoforest with no even cycles. In other words, G has no

even cycles, and each component of G has at most one odd cycle.

Proof. G is critical if and only if deleting any edge of G increases the uniformity

dimension. That is, if and only if deleting any edge of G increases the number of

bipartite components by Proposition 4.2.3. The deletion of an edge can increase the

number of bipartite components in only the following three ways:

(i) By splitting a bipartite component into two.

(ii) By splitting a non-bipartite component into two, producing one bipartite and

one non-bipartite component.
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(iii) By changing a non-bipartite component into a bipartite component.

We first prove the backward implication of the statement.

(⇐) Suppose that G has no even cycles, and that every component of G has at most

one odd cycle. Then every bipartite component of G must be a tree. The deletion

of any edge of a tree splits the tree into two smaller trees, so this splits a bipartite

component of G into two. Any non-bipartite component Gk of G has exactly one odd

cycle, say C, and no even cycles. The deletion of any edge not contained in C must

then disconnect Gk, leaving a bipartite component and a non-bipartite component,

since the unique odd cycle C remains intact. Deleting any edge contained in C leaves

a tree since C was the only cycle in Gk, so this changes Gk into a bipartite component.

Thus G− e has more bipartite components than G for any e ∈ E, and so G must be

critical.

(⇒) For the forward implication, we first show that if G is critical then G cannot

contain an even cycle. Suppose otherwise that G is critical and contains an even cycle

D. We find an edge of D whose deletion does not increase the number of bipartite

components of G, and thus tells us that G is not critical. Let D be contained in the

component Gk of G. We consider two cases:

(i) If Gk is bipartite, let e be any edge of D, and the deletion of e leaves Gk

connected, so does not increase the number of bipartite components of G.

(ii) If Gk is not bipartite, it contains an odd cycle F . Let e be an edge contained

in D but not contained in F . Then deleting e leaves Gk connected since e is

contained in the cycle D, but it leaves the cycle F alone. Thus Gk − e remains

connected and non-bipartite. So the deletion of e does not increase the number

of bipartite components of G.

This completes the proof that G cannot contain an even cycle. It remains to prove

that no component of G can contain more than one odd cycle. Suppose otherwise that
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the component Gk contains two distinct odd cycles, S and T . There must be an edge

of e of S not contained in T . Deleting e does not split Gk into two components since

e is part of a cycle. Nor does deleting e change Gk into a bipartite component, since

the cycle T remains intact. So deleting e does not increase the number of bipartite

components of G. Therefore, if G is critical, no component of G can contain more

than one odd cycle. �

We also characterize the graphs which have critical uniformity dimension over a

field of characteristic 2.

Theorem 6.2.2. Let G = (V,E) be a graph with at least 2 edges, and let F be any

field of characteristic equal to 2. Then G has critical uniformity dimension over F if

and only if G has no even cycles and at most one odd cycle.

Proof. Let G be as in the theorem statement and suppose that G has s components

throughout this proof.

(⇐) If G has no even cycles and at most one odd cycle, then either G is a forest or

G has a unique cycle C, which must be odd. First suppose G is a forest. Then G

has uniformity dimension 1 + s by Proposition 4.2.3. For any edge e of G, the graph

G−e has at least 1 edge since G has at least 2 edges, and G−e has 1+s components.

Therefore udim(G− e,F) = 2 + s by Proposition 4.2.3, and thus G is critical.

Now suppose that G has a unique cycle C, which must be odd. Then G is not

bipartite, and by Proposition 4.2.3, we have udim(G,F) = s. Take any edge e of G.

If e ∈ C, then the graph G − e is a bipartite graph with s components. Therefore

udim(G− e,F) = 1+ s by Proposition 4.2.3. On the other hand, if e �∈ C, then G− e

is still not bipartite, but it has 1 + s components, so udim(G− e,F) = 1 + s in this

case as well. Therefore, G is critical.

(⇒) Suppose G is critical. We first prove that G contains no even cycles. Suppose

that G is bipartite and contains an even cycle C. Take an edge e ∈ C. The graph
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G− e is bipartite and still has s components, so by Proposition 4.2.3, udim(G,F) =

udim(G− e,F). This contradicts the criticality of G, and therefore if G is bipartite,

it contains no even cycles.

Now suppose that G is not bipartite and contains an even cycle C. We know that

G also contains an odd cycle C ′, and we take an edge e ∈ C\C ′. The graph G − e

remains non-bipartite, and still has s components. Therefore, by Proposition 4.2.3,

udim(G,F) = udim(G − e,F). This contradicts the criticality of G, and completes

the proof that G contains no even cycles.

It remains to prove that G can have only one odd cycle. Suppose G has two

distinct odd cycles, C1 and C2. Then there is an edge e ∈ C1\C2. The graph

G− e has s components, and is not bipartite since it still contains the odd cycle C2.

Therefore, by Proposition 4.2.3, udim(G,F) = udim(G− e,F). This contradicts the

criticality of G, and therefore G contains at most one odd cycle. �

The next theorem tells us that any hypergraph obtained by deleting edges from a

symmetric block design is critical as long as certain restrictions on the characteristic

of the field are met.

Theorem 6.2.3. Let D = (V,B) be a symmetric block design with parameters v, k,

and λ, where v > k > λ. Then any hypergraph obtained by deleting 0 ≤ t < v blocks

from D has critical uniformity dimension 1 + t over any field F of characteristic not

dividing v, k − λ, or k + λ(v − 1).

Proof. First we show that D has 1-critical uniformity dimension. We know that

udim(D,F) = 1 by Theorem 5.3.1. Further, D has v vertices and v blocks, so by

Theorem 6.1.4, this dimension is critical.

By Observation 6.1.8, we see that deleting any t blocks fromD creates a hyergraph

with critical uniformity dimension 1 + t for any 0 < t < v − 2. �
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Remark 6.2.1. In the notation of Theorem 6.2.3, if the characteristic of F divides

k − λ, then udim(D,F) = v − 1 by Theorem 5.3.3. Thus if v > 2, then D is not

critical by Theorem 6.1.4. If the characteristic of F does not divide k−λ, but divides

v or k + λ(v − 1), we do not know whether the uniformity dimension of D over F is

1 or 2, so we cannot make a conclusion about whether this uniformity dimension is

critical.



Chapter 7

Conclusion

We conclude with a number of questions and problems suggested by our investigation

of uniformity dimension. We found a way to determine the uniformity dimension of

1-uniform and 2-uniform hypergraphs in Chapter 4 without explicitly solving a linear

system. Is there such a method for 3-uniform hypergraphs, or more generally for l-

uniform hypergraphs? We did find the uniformity dimension of some families of highly

structured hypergraphs. Are there other families of hypergraphs whose uniformity

dimension can be found without explicitly solving the linear system?

In Section 4.3 we presented tables containing the number of non-isomorphic 3-

uniform hypergraphs on n vertices with m edges and uniformity dimension k for

n = 4, 5, 6 and all possible values of m and k. We defined two families of se-

quences, (rl,n,m(k))
k=n
k=1 and (cl,n,k(m))

m=(nl)
m=0 , which were generalizations of the rows

and columns respectively of these tables. Corollary 6.1.6 told us that the column se-

quences (cl,n,k(m))
m=(nl)
m=0 contain no internal zeros. Are the column sequences in fact

unimodal? (We know that if the generating polynomial of a sequence an of positive

numbers has all real roots then an is unimodal, as shown in [19]. However, the 2nd

column of Table 4.2, which is the sequence (c3,5,2(m))m=10
m=0 , has generating polyno-

mial 5x4 + 2x5 + 2x6 = x4(5 + 2x + 2x2). This polynomial has non-real roots, and

therefore a different approach would be necessary to prove that all column sequences

are unimodal.) Do the row sequences contain internal zeros? Are the nonzero terms

of each row sequence decreasing?

76
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We found an easy way to compute the uniformity dimension of tight l-uniform

cycles and loose 3-uniform cycles. Can we find an easy way to compute the uniformity

dimension of loose l-uniform cycles for l > 3? What about other special types of l-

uniform cycles? For example, those l-uniform cycles with maximum degree 2. What

about l-uniform cycles in general?

We proved that a symmetric block design D with parameters v, k, and λ has

uniformity dimension 1 when the characteristic of the field does not divide k − λ,

k + λ(v − 1), or v. The proof of this result was strictly algebraic, and it would be

interesting to find a combinatorial proof. If the field has characteristic dividing k−λ,

we found that the uniformity dimension of D must be v − 1 as long as D has at

least 2 blocks. If the characteristic does not divide k − λ but divides one or both of

k+ λ(v− 1) and v, then we proved that the uniformity dimension of D must be 1 or

2. We have left to find out exactly when the dimension is 1 and when it is 2.

Finally, we characterized the space of stable weightings of the spanning forests of

any graph G. This problem is similar to the problem of finding the space of well-

covered weightings of a graph, because in both cases we are looking for the weightings

of G for which the weight is equal on all substructures of a particular kind. We would

like to consider more problems like this that involve finding the stable weightings of

certain graph substructures.
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Appendix A

Maple Code

We include two worksheets created using Maple 14. Figure A.1 gives the code written

to enumerate the edge sets of all non-isomorphic 3-uniform hypergraphs on 6 vertices.

Figure A.2 gives the code written to determine the uniformity dimensions of any

set of 3-uniform hypergraphs on 6 vertices. Together, these worksheets contain the

procedures used to create Table 4.3. We also modified the procedures contained in

Figures A.1 and A.2 to produce Tables 4.1 and 4.2.

The procedures can easily be adjusted to work for 3-uniform hypergraphs on 7

or more vertices. However, the algorithm for enumerating the edge sets of all non-

isomorphic 3-uniform hypergraphs on n vertices is very slow even for n = 6.
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(3)(3)

(1)(1)

(2)(2)

O O 

O O 

O O 
O O 

with combinat :
PermAct dproc S, T
     # For S a permutation of n elements (for example 1, 3, 4, 6, 2, 5  represents the
     # permutation of {1,2,3,4,5,6} that sends 1 to 1, 2 to 3, 3 to 4, 4 to 6, 5 to 2, and 6 to 5)
     # and T the edge set of some hypergraph on n vertices, PermAct S, T  returns the edge 
     # set T with the vertices permuted by S. 
local N, i;
N d NULL;
for i from 1 to nops T  do
     N d N, S T i 1 , S T i 2 , S T i 3 ;
od;

N ;
end;

PermAct := proc S, T
local N, i;
N := NULL;
for i to nops T do N := N, S T i 1 , S T i 2 , S T i 3 end do;

N
end proc

IsIsoTo dproc S, T
     # For S and T edge sets of hypergraphs on underlying vertex set {1,2,3,4,5,6}, IsIsoTo(S,T) 
     # returns 1 if S and T are isomorphic, and 0 otherwise. 
local U;
for U in permute 1, 2, 3, 4, 5, 6  do
     if is PermAct U, S = T  then
          return 1;
     fi;
od;
return 0;
end;

IsIsoTo := proc S, T
local U;
for U in combinat:-permute 1, 2, 3, 4, 5, 6 do

if is PermAct U, S = T then return 1 end if
end do;
return 0

end proc

Complement dproc S
     # For S the edge set of a 3-uniform hypergraph on vertex set {1,2,3,4,5,6}, Complement(S)
     # returns the edge set of the complement of S, i.e. the edge set of the 3-uniform hypergraph
     # on vertex set {1,2,3,4,5,6} with edges exactly those edges of size 3 not contained in S.
choose 1, 2, 3, 4, 5, 6 , 3 minus S;
end;

Complement := proc S minus combinat:-choose 1, 2, 3, 4, 5, 6 , 3 , S end proc
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(4)(4)

O O 

O O 

NonIso dproc Z, n
     # For Z a set of edge sets of 3-uniform hypergraphs on vertex set {1,2,3,4,5,6} containing
     # exactly n-1 edges,the function NonIso Z, n  returns the set of of edge sets of all
     # nonisomorphic 3-uniform hypergraphs on vertex set {1,2,3,4,5,6} which can be obtained
     # by adding a single edge to some member of Z.
     # So if Z contians the edge sets of all nonisomorphic 3-uniform hypergraphs on 
     # {1,2,3,4,5,6} with n-1 edges,then NonIso Z, n  returns the set of edge sets of all 
     # nonisomorphic 3-uniform hypergraphs on {1,2,3,4,5,6} with n edges. 
local N, W, X, Y, M, V, t, U;
M d choose choose 1, 2, 3, 4, 5, 6 , 3 , n 1 ;
N d NULL;
for X in Z do
     for W in Complement X  do
          N d N, X union W ;
     od;
od;
for V in N do
     t d 0;
     for U in M do
          if IsIsoTo U, V = 1 then
               t d 1;
               break
          fi;
     od;
     if t = 0 then
          M d M, V;
     fi;
od;

M ;
end;

NonIso := proc Z, n
local N, W, X, Y, M, V, t, U;
M := combinat:-choose combinat:-choose 1, 2, 3, 4, 5, 6 , 3 , n 1 ;
N := NULL;
for X in Z do for W in Complement X do N := N, union X, W end do end do;
for V in N do

t := 0;
for U in M do if IsIsoTo U, V = 1 then t := 1; break end if end do;
if t = 0 then M := M, V end if

end do;
M

end proc

# Examples
 
# We know there is only one 3-uniform hypergraph on {1,2,3,4,5,6} with one edge up to 
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(7)(7)

O O 

(6)(6)

O O 
(5)(5)

O O 

# isomorphism, so the following code returns the set of edge sets of all nonisomorphic
# 3-uniform hypergraphs on {1,2,3,4,5,6} with 2 edges.

NonIso 1, 2, 3 , 2 ;
 

1, 2, 3 , 1, 2, 4 , 1, 2, 3 , 1, 4, 5 , 1, 2, 3 , 4, 5, 6

# Now using the output of the previous line, we can find the set of edge sets of all 
# nonisomorphic 3-uniform hypergraphs on {1,2,3,4,5,6} with 3 edges. 

NonIso 1, 2, 3 , 1, 2, 4 , 1, 2, 3 , 1, 4, 5 , 1, 2, 3 , 4, 5, 6 , 3 ;
1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 , 1, 2, 3 , 1, 2, 4 , 1, 3,
5 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 , 1, 2, 3 , 1, 2, 4 , 3, 4, 5 , 1, 2, 3 , 1, 2,
4 , 3, 5, 6 , 1, 2, 3 , 1, 4, 5 , 2, 4, 6

# Similarly we find the set of edge sets of all nonisomorphic 3-uniform hypergraphs on 
# {1,2,3,4,5,6} with 4 edges.
 
NonIso 1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 , 1, 2, 3 , 1, 2,

4 , 1, 3, 5 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 , 1, 2, 3 , 1, 2, 4 , 3, 4, 5 , 1, 2,
3 , 1, 2, 4 , 3, 5, 6 , 1, 2, 3 , 1, 4, 5 , 2, 4, 6 , 4 ;

1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 1, 2, 6 , 1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 1, 3, 4 , 1, 2,
3 , 1, 2, 4 , 1, 2, 5 , 1, 3, 6 , 1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 3, 4, 5 , 1, 2, 3 ,

1, 2, 4 , 1, 2, 5 , 3, 4, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 , 1, 5, 6 , 1, 2, 3 , 1,
2, 4 , 1, 3, 4 , 2, 3, 4 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 , 2, 3, 5 , 1, 2, 3 , 1, 2,
4 , 1, 3, 4 , 2, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 1, 4, 5 , 1, 2, 3 , 1, 2, 4 ,

1, 3, 5 , 1, 4, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 2, 3, 6 , 1, 2, 3 , 1, 2, 4 , 1,
3, 5 , 2, 4, 5 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 2, 4, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3,
5 , 2, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 4, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 ,

2, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 , 3, 4, 5 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 , 3,
5, 6 , 1, 2, 3 , 1, 2, 4 , 3, 5, 6 , 4, 5, 6 , 1, 2, 3 , 1, 4, 5 , 2, 4, 6 , 3, 5,
6

# We continue this process to find all nonisomorphic 3-uniform hypergraphs on 
# {1,2,3,4,5,6} with k edges for k up to 10.  For k larger than 10 we can use the 
# Complement function and the previous output of NonIso to find 
# all nonisomorphic 3-uniform hypergraphs on {1,2,3,4,5,6} with k edges.

Figure A.1: Maple code used to find the edge sets of all non-isomorphic 3-uniform
hypergraphs on 6 vertices
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O O 

O O 

(1)(1)

O O 
with LinearAlgebra :
SolutionMatrix dproc S, n
     # For S the edge set of a hypergraph on vertex set {1,2,3,...,n},
     # SolutionMatrix(S,n) returns the solution matrix W of S.  
local A, k, i : 
A d Matrix nops S K 1 , n :
convert S, list :
for i from 1 to nops S K 1 do
     for k in S i  do
          A i, k d 1 :
     od:
od:
for i from 1 to nops S  K1 do
     for k in S nops S  do
          A i, k d A i, k K 1 :
     od:
od:
A;
end;

SolutionMatrix := proc S, n
local A, k, i;
A := Matrix nops S  K 1, n ;
convert S, list ;
for i to nops S  K 1 do for k in S i do A i, k := 1 end do end do;
for i to nops S  K 1 do for k in S nops S do A i, k := A i, k  K 1 end do end do;
A

end proc

UniformityDimensions dproc S
     # For S a set of edge sets of hypergraphs on vertex set {1,2,3,4,5,6},
     # UniformityDimensions(S) returns a list [x1,x2,x3,x4,x5,x6], where xi is the
     # number of hypergraphs in S with uniformity dimension i for all i
     # in {1,2,3,4,5,6}.
local x1, x2, x3, x4, x5, x6, i, T, A;
x1 d 0;
x2 d 0;
x3 d 0;
x4 d 0;
x5 d 0;
x6 d 0;
for T in S do
     A d SolutionMatrix T, 6 ;
     i d ColumnDimension A KRank A ;
     if i = 1 then x1 d x1C 1;
     elif i = 2 then x2 d x2C 1;
     elif i = 3 then x3 d x3C 1;
     elif i = 4 then x4 d x4C 1;
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(2)(2)

     elif i = 5 then x5 d x5C 1;
     elif i = 6 then x6 d x6C 1;
     fi; 
od;

x1, x2, x3, x4, x5, x6 ;
end;

UniformityDimensions := proc S
local x1, x2, x3, x4, x5, x6, i, T, A;
x1 := 0;
x2 := 0;
x3 := 0;
x4 := 0;
x5 := 0;
x6 := 0;
for T in S do

A := SolutionMatrix T, 6 ;
i := LinearAlgebra:-ColumnDimension A  K LinearAlgebra:-Rank A ;
if i = 1 then

x1 := x1C 1
elif i = 2 then

x2 := x2C 1
elif i = 3 then

x3 := x3C 1
elif i = 4 then

x4 := x4C 1
elif i = 5 then

x5 := x5C 1
elif i = 6 then

x6 := x6C 1
end if

end do;
x1, x2, x3, x4, x5, x6

end proc

#Example
 
# Taking the set of edge sets of all 3-uniform hypergraphs on {1,2,3,4,5,6} 
# with 4 edges generated in the previous example, we find the uniformity
# dimensions of these hypergraphs.
 
UniformityDimensions 1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 1, 2, 6 , 1, 2, 3 , 1, 2, 4 , 1,
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O O 
(3)(3)

2, 5 , 1, 3, 4 , 1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 1, 3, 6 , 1, 2, 3 , 1, 2, 4 , 1, 2,
5 , 3, 4, 5 , 1, 2, 3 , 1, 2, 4 , 1, 2, 5 , 3, 4, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 ,
1, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 , 2, 3, 4 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 , 2,
3, 5 , 1, 2, 3 , 1, 2, 4 , 1, 3, 4 , 2, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 1, 4,
5 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 1, 4, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 2, 3,
6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 2, 4, 5 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 2, 4,
6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 2, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 3, 5 , 4, 5,
6 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 , 2, 5, 6 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 , 3, 4,
5 , 1, 2, 3 , 1, 2, 4 , 1, 5, 6 , 3, 5, 6 , 1, 2, 3 , 1, 2, 4 , 3, 5, 6 , 4, 5,
6 , 1, 2, 3 , 1, 4, 5 , 2, 4, 6 , 3, 5, 6 ;

0, 0, 19, 2, 0, 0

# So we see that 19 of these 21 hypergraphs have uniformity dimension 3, 
# while 2 of the 21 have uniformity dimension 4.

Figure A.2: Maple code used to find the uniformity dimension of all non-isomorphic
3-uniform hypergraphs on 6 vertices



Appendix B

3-Uniform Hypergraphs of High Uniformity Dimension

We include drawings of the non-isomorphic 3-uniform hypergraphs with 6 vertices

and m edges that have maximal uniformity dimension for m = 4, 5, 6, 7, and 8.

Table B.1: The 3-uniform hypergraphs on 6 vertices with 4 edges and uniformity
dimension 4

Table B.2: The 3-uniform hypergraphs on 6 vertices with 5 edges and uniformity
dimension 3
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Table B.3: The 3-uniform hypergraphs on 6 vertices with 6 edges and uniformity
dimension 3

Figure B.1: The 3-uniform hypergraph on 6 vertices with 7 edges and uniformity
dimension 3

Figure B.2: The 3-uniform hypergraph on 6 vertices with 8 edges and uniformity
dimension 3


