APPLICATION OF 13C NMR SPECTROSCOPY IN THE ASSIGNMENT OF 1H NMR SIGNALS OF NONEQUIVALENT SCH$_3$ GROUPS

DONALD L. HOOPER*, J. STUART GROSSERT AND WILLIAM M. NEAVES

Department of Chemistry
Dalhousie University
Halifax, N.S. B3H 4J3

The SCH$_3$ groups of 3- and/or 5 alkyl substituted 2,4,6-trithiaheptanes have almost identical chemical shifts in both 1H and 13C nmr spectra. A combination of gated decoupling and single-frequency off-resonance decoupling, followed by the construction of graphs of the type proposed by Pachler, allows the assignment of the 1H nmr signals.

Les graphes SCH$_3$ des composés 2,4,6-trithiaheptanes substitués en position 3 et 5 par des groupes alkyl ont des déplacements chimiques presque identiques dans leurs spectres rnm au 13C et 1H. Une combinaison de découplage à fenêtre et de découplage à fréquence unique hors-résonance, suivie par la construction de graphiques de type proposé par Pachler, permet l'attribution des signaux rnm 1H.

The 1H and 13C nuclear magnetic resonance spectra of the 2,4,6-trithiaheptanes la-e provide some examples of a familiar problem in the interpretation of nmr spectra. The problem, common to compounds with several chemically nonequivalent -OR, -SR, or -NR$_2$ groups, is the assignment of singlet resonances with very small chemical shift differences, and is illustrated here by the assignment of the nonequivalent S-CH$_3$ groups of Ib and Ic. In both these examples the C-1 and C-7 S-CH$_3$ signals are sharp singlets in both the usual fully decoupled 13C spectrum and in the 1H spectrum, with such a small range of chemical shifts observed for the series la-e that assignments based on the effect of substituents on chemical shifts must be questionable. There are many reports (Freeman and Hill 1971, Shaw 1973) on the correlation of 13C spectra with 1H spectra followed by assignment of the 13C spectrum from easy assignment of the 1H spectrum, and a few cases have been reported (Luzikov et al. 1975, McCabe and Nelson 1976) in which the 1H spectrum has been assigned from correlation with an easily interpreted 13C spectrum. We report an example in which neither 1H or 13C spectrum is readily assigned, yet both assignments are accessible from various combinations of decoupling experiments.

The starting point of our assignment is the observation that in the 13C spectrum of la, measured under conditions of gated decoupling, (Feeney et al. 1970) the S-CH$_3$ signal is a quartet (J = 139.0 Hz) of triplets (J = 4.7), with the triplet splitting the result of the three-bond proton-carbon coupling through sulphenyl sulfur. In Ib and Ic the gated decoupling gives a quartet (J = 138.9) of triplets (J = 4.5) for C-7, while C-1 appears as a quartet (J = 138.8) of doublets (J = 4.0 for Ib, J = 4.2 for Ic). Hence, the gated decoupling experiment acts as a probe of the asymmetry of the molecule and the 13C spectrum may be assigned.

Correlation of the 1H and 13C spectra was made for each compound from measurement of a series of 6-8 off-resonance decoupled spectra with a different value of the decoupling frequency for each spectrum of the series. These spectra yield values of J$_{RED}$, the residual directly bonded carbon-proton coupling constant, as a function of decoupling frequency. These J$_{RED}$ measurements are then used to construct plots of the type proposed by Pachler (Pachler 1972) in which values of the ratio J$_{RED}$/s(J$_o$ - J$_{RED}$)$^{1/2}$, where J$_o$ is the magnitude of the directly bonded C-H

*to whom all correspondence should be addressed.
coupling constant measured in the gated decoupling experiment, are plotted vs decoupler frequency, with the zero intercept on the x-axis giving the resonance frequency of the directly bonded proton. This method has been showed valid (Pachler 1972) for values of $\frac{\delta H}{J_{\text{red}}} > \frac{1}{2} J_{\text{red}}$, a condition easily satisfied by the maximum decoupler power of the Varian CFT-20 spectrometer. The plots were excellent straight lines over a range of decoupling frequencies 1000 Hz on either side of the resonance frequency and the intercepts were determined by linear regression analysis. The assignments Ib and Ic agree with what might be expected, in that substitution at C-3 should affect the chemical shift of C-1 protons more than that of C-7 protons, however the real test of the method is the assignment of S-CH$_3$ proton signals in Id and le. Id and le were prepared as a diastereometric mixture and all spectra recorded on solutions of mixture. The graphical method predicts the signal of the S-CH$_3$ protons for the major product Id and the minor product le. These are easily distinguished by the relative peak areas and the experimental measurement places le 4.8 Hz above Id. The usual plots of J_{red} vs decoupler frequency (Birdsall et al. 1981), even for much narrower ranges of decoupling frequency, were much less accurate and could give misleading results in cases such as this where chemical shift differences are small.

The assignment method outlined here should be applicable to other -SCH$_3$, -OCH$_3$, or -N(CH$_3$)$_2$ examples for which an internal asymmetry of the molecule may be exploited to assign the 13C spectrum. It is particularly applicable to cases for which chemical shift differences are so small that low-power selective decoupling is impractical, and for which 2-D experiments would require inordinate spectrometer time in order to achieve the resolution needed.

Experimental

13C nmr spectra were recorded at 20 MHz and 1H nmr spectra recorded at 80 MHz using a Varian CFT-20 spectrometer. The same solution containing 100-250 mg/ml CDC$_1$ was used for both sets of spectra. The fully decoupled 13C spectra were recorded with a spectral width of 4000 Hz and the gated decoupling experiments were carried out with the smallest possible spectral width for which "foldover" of spectral lines could be avoided, typically 1000 Hz. The preparation and characterization of compounds la-e has been reported on elsewhere (Grossert et al. 1981).

Table I

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R</th>
<th>δ_{13C} (C-1)</th>
<th>δ_{13C} (C-7)</th>
<th>δ_{1H} (C-1)</th>
<th>δ_{1H} (C-7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>H</td>
<td>H</td>
<td>14.19</td>
<td></td>
<td></td>
<td>2.15</td>
</tr>
<tr>
<td>Ib</td>
<td>Me</td>
<td>H</td>
<td>11.34</td>
<td>14.23</td>
<td>2.10</td>
<td>2.16</td>
</tr>
<tr>
<td>lc</td>
<td>Bu0</td>
<td>H</td>
<td>12.12</td>
<td>14.98</td>
<td>2.05</td>
<td>2.15</td>
</tr>
<tr>
<td>Id</td>
<td>Me</td>
<td>Me</td>
<td>12.8</td>
<td></td>
<td></td>
<td>2.16</td>
</tr>
<tr>
<td>(major diastereomer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>le</td>
<td>Me</td>
<td>Me</td>
<td>11.3</td>
<td></td>
<td></td>
<td>2.10</td>
</tr>
<tr>
<td>(minor diastereomer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgements

Financial support by Dalhousie University, and, in part, from the Natural Sciences and Engineering Research Council, is gratefully acknowledged.

References

