PROC. N.S. INST. SCI (1986)
Volume 36, pp. 115-126

ERROR BOUND STRATEGIES FOR A NEW
HULL PLATE EXPANSION PROCEDURE

JOHN C. CLEMENTS
Department of Mathematics
Statistics and Computing Science
Dalhousie University
Halifax, N.S.

and

JULES D. GRIBBLE
Maritime Life Assurance Company
Halifax, N.S.

An improved version of a recently developed (Clements and Leon, 1986) isometric mapping
procedure is presented. This algorithm employs a variable step differential equation solver (ODES) in
conjunction with an adaptive quadrature routine (AQR). Criteria for choosing appropriate error
tolerances for the numerical implementation of the algorithm are presented. An application is briefly
discussed.

Une version améliorée d'un procédé d’application isométrique développé récemment est pre-
sentée. Cet algorithme utilise une routine de résolution d’équations différentielles a étape variable
avec une routine adaptive de quadrature. Les critéres a considérer en choisissant les tolérances
admissibles pour "application numérique de cet algorithme sont discutés. Une application est
briévement discutée.

Introduction

The availability of fast, economical computing capability provides small manufac-
turing operations with the potential for substantially automating and improving
existing design procedures and production techniques. This development has per-
mitted the direct application of advanced mathematical methods and results to the
solution of problems which hitherto have been avoided because of the computa-
tional complexity involved. The implementation of this mathematical analysis in the
form of computer programs yields what is often referred to as scientific or engineer-
ing software.

In the construction of steel ship hulls (Fig 2),for example, the standard procedure is
to loft (from preliminary design plans) the vessel at full scale often using an oak stick
called a spline to manually fair or “smooth” each hull line. The frames are constructed
from the offset data obtained, set vertically in place and tack-welded together. The
steel plate is then measured, cutand welded to the frames in sections. Sometimes the
hull plating is difficult and time consuming since one cannot predict if the plate can
be shaped to conform exactly to each frame member with simple unidirectional
bending. Thisis particularly true in the areas of large curvature such as the bow where
the accepted practice is to patch with small triangular plate sections.

Clearly there is a requirement for a computer system which could use preliminary
hull design data to mathematically define and fair all hull lines; determine if the
resulting hull surfaces are developable and, if not, automatically modify the existing
hull lines to ensure developability; generate graphic displays of waterlines, buttock
lines and frame stations and use these to compute elementary hydrostatics, and to
generate detailed tables of offsets for both the required frame members and the
developable hull surfaces mapped (expanded) onto a flat plane surface (See Fig 3).

116 CLEMENTS AND GRIBBLE

This last step eliminates the full scale lofting and manual fairing and permits the
precutting from a plane pattern of single hull plate sections of 50 feet or more in
length and ensures that the plate will fit at all points of each frame member with
unidirectional bending. The use of developable hull forms in shipbuilding offers the
advantages of lower cost and faster and simpler construction techniques (Clements
and Leon (1986) and Clements (1981)). Indeed, the isometric mapping of developable
surfaces or “plate expansion” is a basic problem in many other manufacturing and
construction programs. The engineering system specifications listed were met by
SYSTEM DEVHULL (Clements 1981) which consists of nineteen component programs
and approximately 10,000 lines of FORTRAN source code. In this paper the mathem-
atical analysis and its application will be discussed for a specific improvement to the
plate expansion component of the system.

In Differential Geometry a surface § in three dimensional Euclidean space R3 is
called a ruled surface if it contains a one parameter family of straight lines called
generators or ruling lines r which can be chosen as coordinate curves on the surface.
A developable surface is a ruled surface defined by nonintersecting generators which
has the same tangent plane at all points of each generator (Fig 1). We shall be
concerned here with developable surfaces which can be represented in the form

S(s, t) =f(s) +tr(a), a=<s=b,0=t=1

where f and r are twice continuously differentiable vector functions in R3. The term
“developable” refers to the property that by a succession of small rotations about
each of the generating lines the surface can be laid flat or developed onto a plane
without stretching or tearing. That is, it can be mapped isometrically (and isogonally)
onto a subset of R2 Conversely, a plane surface material can be shaped into a
developable surface with only simple unidirectional bending along the generating
lines.

In Clements and Leon (1986) and Clements (1984) a fast and accurate algorithm was
derived to accomplish isometric mapping based on the relationship between the
ruling lines r(s) generating the developable surface S and one additional geodesic g(s)
constructed within the surface as the solution of the nonlinear second order ordinary
differential equation.

g(s)* (g(s)xn)=0,a<s<b, a

where s is the real parameter, - and x are the usual scalar and vector products
respectively, - =d/ds, and nis the unit normal to Sat g(s). The mapping procedure
m: r — Ris defined in terms of the ruling line lengths [|r(s)||, the arclengths
along g(s) and the angles of intersection of r(s) and g(s). Since g(s) is a geodesic in the
developable surface §, its image under the isometric mapping must be a straight line
in the plane and, for simplicity, is taken to be the positive real x—axis (Fig 1). Each
ruling line is then mapped into the corresponding plane coordinate line R in the
developed surface.

The solution process requires the numerical solution of the coupled integro-
differential equation system consisting of (1) and

e =% Js_, 19(s)llds, k=1,..., N, (2)
where Py={a=s,<s, <...<snu=b}isa partition of [a, b] chosen initially by the user to

conform to display, cutting or other requirements. Equations (1) and (2) are coupled
since each time a quadrature routine is called to approximate the integral in (2), the

A HULL PLATE EXPANSION PROCEDURE 117

ordinary differential equation (1) must be solved for g(s) at those points in [sk-1, su]
required by the quadrature routine.

The practical difficulty lies in choosing the error tolerances, £ox and &ox, to be
assigned to the numerical routines used to compute the solutions of (1) and (2)
respectively so that it is assured that |!|é(s)|l — In| < &7 for some specified total
absolute error tolerance er. That is, which will ensure that the maximum error in the
determination of the total length of g(s) is less than some user specified tolerance &r.

The object here is to derive a rational and efficient strategy for the choice of €ax and
ok in the solution of (1) and (2), to describe an improved version of the mapping
algorithm (Clements 1984) incorporating both a variable stepsize differential equa-
tion solver (ODES) and an adaptive quadrature routine (AQR) and to discuss briefly
an application.

ruling line

tangent plane

Tola) T(s)

T(a) [T(s1)

o &

g (a)| G (s1)

ISOMETRIC | MAPPING

(U, Vv)

(Uo, Vo) __/.1

Ro R,

'\90 "‘\ 6,

Y (X, Y))
(X0, Yo %12 Y1)

Fig 1 The isometric mapping or “expansion” of a developable surface S (s, t) onto
the x,y plane. In the figure vectors are denoted by a superscript arrow rather
than bold-face as in the text.

118 CLEMENTS AND GRIBBLE

Definitions and Results

Let C* [a, b] = {x(s): x is k times continuously differentiable for all sin [a, b]}. Curves
in R? will be denoted by

C: f=x(s)i +y(s)j +z(s)k, s € [a, b],

with components x(s), y(s), and z(s), and Euclidean norm ||f|| = (x(s) +y3(s) +z(s))" % In
Fig 1vector functions are denoted by f rather than by f as in the text. In what follows, it
is assumed that the developable surface S is given by ([4])

$(s, 1) = f,(s) +tr(s), fy(s) x r(s) # 0,5 € [a, b, t £ [0, 1], (3)
where

(i) £4(5) = x40 + y4j + 2.k, with x,y,z £ C? [a, b],

(ii) r(s) = ry(s)i + ry(s)j + rs(s)k, with i e C2[a, b],i=1,2, 3,

(iii) each point of § corresponds to only one ordered pair (s, t).

ThusSis bounded by the curves C,: f,(s) and C,: f,(s) =f,(s) +r(s) and the ruling lines
r(a) and r(b). In the actual application of the mapping procedure to hull plate
expansion, C, and C,represent the chine curves defining the developable surfaces as
in Fig 2.

Remark
Each ruling liner(s) in Scanbe computed asr(s) =f,(s*) - f(s) for fixed s € [a, b]
where s* £ [a, b] is the solution of the fixed point equation (Clements 1984)

G (s*) = det(f,(s), [f,(s*) - f,(s)], f,(s)) =0, (4)

Equation (4) is used because of the result that a ruled surface given by (3) is
developable if and only if det (f,(s), r(s), (s)) = 0 (Kreyszig 1959). It is assumed
here that this calculation has already been completed and that r(s) is known for
every fixed sin [a, b].

The geodesic curvature &g of a curve C: g(s) in a surface S is given by

Kg(so) = det (&, §, n) =-§ - (g x n),

where n is the unit normal to the surface § at g(s,). We also note that g(s) on Sis a
geodesic if and only if kg = 0 and is either a straight line or its principal normal
coincides with the surface normal at the points. Since a geodesic g(s) in § joining any
two points of § not on the same generator can be represented in the form

g(s) =f, (s) +t* (s) r(s) (5)
forsome twice continuously differentiable function (Clements & Leon 1984) g(s) and

g(s) can be obtained by solving (1) for t*(s) and t* (s), or equivalently by solving the first
order system

A HULL PLATE EXPANSION PROCEDURE 119

U, (s) = uy(s), a<s<h,
Uy(s) = F(us(s), uyls)), a<s<b, (6)
Fr(gxn)+uji- (§xn)+2uF(gxn)

r-(gxn)

il

for u,(s) =t*(s) and u,(s) =t*(s)ateachs in[a, b]‘where n(s) =r(s) x T,(s) isa normal to the
developable surface S at g(s) and T,(s) =f,(s) /||t ||. Calculation of the Lipschitz constant
for Fin (6) shows that the system is solvable by standard numerical methods (Dahl-
quist and Bjorck 1969) provided r - (g x n) stays bounded away from zero. The
numerical solution of gquation (6) requires some starting values at s =a and involves
the computation of f,, f,, f,,r, F, and ¥. For simplicity the starting values are taken to be

uy(a)=.5, uya) =0 7)
or the midpoint of r(a) as indicated in Fig 1.
Once (1),(2) have been solved, the image of each r(s),i=0, ..., N, is determined by
computing as in Fig 1.

a =t* (SI}”r(S!) "r

= (T-t* (s))Ig(si) - f(s)]l. (8)

Y UL SR
i = COS Hé(SI)””r(sl)” ori=40,.., N,

(X, Y) = ()i - @i cos 8, - ai sin 6),

Then

(Ui, Vi) = ()i + Bi cos 8, Bi sin §), (9
L= Z ljs
=1

R| = (UI - XI; Vi- YI)

and the surface S bounded by r(s,) and r(sn) has been mapped isometrically onto that
portion of the plane bounded by Ry, Rn and (X, Yi), (Ui, Vi),i=0, ..., N.

The calculations 8, cos 6 and sin 8,in (8) and (9) are only required at each partition
point and can be computed using double precision arithmetic. Consequently, it is
assumed that roundoff errors in individual arithmetic operations and evaluations of
the elementary special functions are negligible when compared to the errors propa-
gated due the use of inexact function values in the solution of (2). Consequently, it is
assumed that the errorsin evaluating 8, cos 6 and sin 8 do not contribute significantly
to the global error in the mapping procedure.

It is assumed that the geodesic g(s) stays within the boundaries of the developable
surface, and that r - (x n) stays bounded away from zero. Hence, the differential
equations given by (6) are solvable everywhere on [a, b]. One method to ensure thisis
to restart the procedure with new initial values at that point on g where it crosses the
boundary curves C, or C,, or where r- (g x n) becomes sufficiently small. However, to
avoid unnecessary complexity, these details are not included in the statement of the
mapping algorithm given here.

120 CLEMENTS AND GRIBBLE

The Mapping Algorithm:
1) Choose Py and &r.

2) Choose an adaptive quadrature routine for evaluating I« in (9) accurate to a
specified eqx for each k=1, ..., N.

3) Choose an accurate variable step differential equation solving routine where
each evaluation of t* and t* required in the integration routine is computed
accurate to a specified epk, foreach k =1, ..., N.

4) Compute ao, Bo and 8 as in (8) to obtain
(Xo» Yo) = (-aq cos 8,, -a, sin 8,),

(U Vo) = (By cos by, By sin),
and

5) Foreachi=1,..., Ncomputel, a;, B, and 6 as in (8) and (9) using the differential
equation solver to evaluate g and g at the points required by the quadrature
routine, to obtain the coordinates of the ruling line end points of § mapped
isometrically

(Xi, Yi) = (Ji - & cos 8, -aisin 6),
(Ui, Vi) = ()i + Bi cos 8, Bisin &),

onto the plane.

Choosing the error tolerances

Assume a tolerance &r, is given, which is to bound the total error in the numerical
process. On the assumption that the calculations are equally difficult in each subin-
terval [sk-1, sx] we bound the total error committed in evaluating I« by

(5k - Sk-1)

€7 T £k (10)
foreach k. Itis also assumed that an Adaptive Quadrature Routine (AQR), basedona
quadrature formula with degree of precision d, will be used to evaluate (2), and that
an appropriate Ordinary Differential Equation Solver (ODES), based on a method of
order r, will be used to solve (1) at the points required by the AQR. Given & the
problem is to determine the tolerances, gox and €px, to be given to the AQR and the
ODES respectively. As in Fritsch, Kahaner and Lyness (1981) it is assumed throughout
that both the AQR and the ODES are completely reliable, that is, they will always
return results which are accurate to within the tolerances specified, that the AQR will
perform its computations in the same order with polluted data as with exact data, and
that all calls to the ODES are of the same level of difficulty.

The problem is one of interfacing two software packages in an efficient and reliable
manner. This problem has been considered recently in Fritsch, Kahaner and Lyness
(1981) (under the same assumptions as above), where the scenario of an AQR using
results obtained by a second AQR was considered. The analysis given here is moti-
vated by this work.

Denote by ¢(f) the AQR applied to afunction f, by | (f) the correct integral of f,and
by f. the numerical approximation to the function f which is actually computed by the
ODES, here denoted by ¢. Given &, it is then required that

() -o)+ (H-@(f)l =11 - o) + @ () - @ ()| = &x.

A HULL PLATE EXPANSION PROCEDURE 121

The errorcan now be seen to be made up of two distinct components: | (f) - ¢ (f)[,
due to approximating | by ¢ (assuming that correct function evaluations are available
to ¢),and | ¢ (f) - ¢ (fc)|, due to incorrect function evaluations being made available to
@. Thus divide &, the total error tolerance for the entire numerical procedure of
evaluating li, into two components, €ax and €opex With

&k = €ak t €£0DEK,

gax = |1 (f) - @ (f)| being the tolerance given to the AQR, and £opex bounding the
errors due to obtaining inaccurate values of f. Thus the tolerances givenin each call to
¢, namely €ox, depend on €opex, although they will not normally be equal to €opgx.
The interpretation of £opex is that it reflects the total error accummulated due to the
calls to ¢ made by ¢.

Assume that the AQR uses a basic Quadrature Formula Qg (f) = Z w; f (xj) and has
some strategy for applying Qs to some sequence of subintervals in the interval of
integration. Qg, when applied over an interval of unit length will have a condition
number Cg = Z|w;|. It follows by linearity of the quadrature process that if Qg is
applied over an interval of length H, the condition number of the integration will be
HCg. Now define Cato be the condition number of ¢ applied over the interval (sx-1,
sk). By linearity of the quadrature process, we have Cq = (s« - sk-1)Ca. In fact Cq will
equal CeH unless Qg uses both endpoints of the interval of the integration and the
corresponding coefficients are of opposite sign. Note that the method by which ¢
determines the order in which Qg will be applied to the subintervals does not affect
the previous comments.

Now assume that the maximum error in any call to ¢ is £o«. It then follows that the
maximum error in the numerical process due to ¢ using inexact data from ¢ is
bounded by Cq €ok. Thus, from

£k = Eak + Eopek = Eak + (Sk - Sk-1) Ca €pk (11)

it follows that, once £opex is specified, £ox should be chosen as

EODEK
- (Sk - Sk-1) Ce

If the condition number of ¢ is specified in more detail (see, for example, Stoer and
Bulirsch 1980) then a similar analysis may be carried out. However, since this leads to
different tolerances being specified for each call to ¢, (that is, ¢ would have to be
solved from the initial point a on every call) and also leads to some restrictions on the
type of AQR which may safely be used, we shall not pursue this possibility further
here.

There are two generic ways in which an AQR can be constructed (Fritsch, Kahaner
and Lyness, 1981), it can either be based on a local error control strategy (LG) orit can
be based upon some form of global error control strategy (GE). The essence of a LE
method is that the procedure moves through the interval of interest, say from left to
right, and locally acts upon a subinterval. It does not progress to the next subinterval
until the result obtained for the subinterval under consideration is considered to be
sufficiently (locally) accurate. Consequently, when the procedure is complete, since
all the local errors are believed to be sufficiently small, the total error of the proce-
dure is believed to be within the specified tolerance. In contrast, a GE method is
always able to consider one of many subintervals, and always chooses to work on that
subinterval which has the worst error estimate. Thus a GE method examines the
subintervals in an order very difficult to predict before the computation is begun. A

(12)

Epk

122 CLEMENTS AND GRIBBLE

GE method exists when the sum of all the local errors is believed to be less than the
prescribed tolerance. It is recommended (Fritsch, Kahaner and Lyness 1981) that a
global error control strategy AQR be used if it is felt that the AQR may encounter
some difficulty since, in contrast to a local error control strategy AQR, a global error
AQR may have the opportunity to recover from dealing with a subinterval with a
large error estimate by considering other subintervals.

Now consider the question of choosing opex (and thus €ok) and eax to minimize
the computational cost, given the requirement &« = eak + €opex. The error when Qg is
applied over an interval of length H depends upon H* * 2. Thus, if (a, b) is partitioned
into subintervals of length H, the overall error when using Qs in a compounded
manner will be O (H® *"). Measuring work in terms of the number of subintervals
(which is proportional to the number of integrand evaluations required) of equal
length to which Qeshould be applied to achieve a given tolerance, it follows that the
cost of using ¢ with tolerance eqx is proportional to £a¥'® * . Now consider the
amount of work involved in a call to ¢. Since ¢ is based on a method, either multistep
or Runge-Kutta, which has local order r, and thus local error O (H"* ') when applied
to a subinterval of length H, it follows that, under appropriate conditions (see, for
example Stoer and Bulirsch 1980), the global error involved in using the basic method
of ¢ when the interval of integration is partitioned into subintervals of length His O
(H"). Thus the cost of using with error tolerance epx is proportional to epy".

To follow the approach in Fritsch, Kahaner and Lyness (1981), it is assumed that each
call to ¢ is independent of every other one. In the simplest implementation, this
would mean that ¢ would always begin from the point a when obtaing a value of g(s)
atanintegration point. Since we have assumed that the use of inexact data by ¢ does
not change the sequence of computational steps in ¢, we shall also assume that the
number of function evaluations required by ¢ is fixed at, say, N. If the same tolerance
eox is specified on each call to , then the total work done will be proportional to

N epd that is, proportional to eak ® * " gobex Using (12) and the constraint & = £ax +
€opex, we minimize this expression obtaining
r d+1
Eak = &, € = T &k 13
o= Tereq opex = T & (13)

as the appropriate choices to minimize the total amount of work required for the
computations done in the interval (sk-1, sx). Note that the specific values of the
constants of proportionality will not affect eax and €opex as given in (13).

The choice of gqk and epx must also be such that the computation is stable. In
particular, epx must not be so large as to preclude the possibility of ¢ being able to
converge given the tolerance a. Since ¢ is a linear process, assume it has a linear
method for estimating the error of the computation in a given subinterval, let this
process have condition number Ce when applied over a subinterval of unit length
(see the discussion of Cs above). Thus, for a subinterval of length si - sk-1, the bound
on the error in the error estimation process of ¢ due to using inexact data from ¢ is
Ce (s - Sk-1) €ok. Thus it follows from (12) that the inequality

£0DEK Ce

. EoDEk (14)

€ak = Cg (Sk - Sk-1) €ok = Cg (Sk - Sk-1) (m = Co

should be satisfied for all k to ensure stability of the AQR in all subintervals (sk-1, sk).
From (10), (12) and (13) it follows that

(d+1) 1 r (sk - Sk-1)

S r+d+1) Cefb-a) ™ T 11d+1) (b-a " (15}

Epk

A HULL PLATE EXPANSION PROCEDURE 123

Note that eox does not depend upon k. Combining (14) with (15) leads to the global
stability requirement

rCg>(d+1) Ce (16)

Implementation

It was assumed in the previous section that each call to the ODES ¢ was independ-
ent of all other calls to ¢. In the simplest implementation this would lead us to call ¢
always taking a as the left endpoint of the interval of integration. Since we cannot tell
in advance at which points the AQR will need a function value we cannot simply
make one pass with ¢ and obtain all the function values needed.

This now suggests the following more efficient two stage strategy. First, call ¢ with a
tolerance eox/2, and obtain the function values at the points sk of the partition Py.
Second, in solving (2) in each subinterval (sk-1, s), k =1, 2, ..., N when the AQR ¢
requires a function evaluation, y is called with left starting point sk-1, the previously
computed function value at sx-1 given, and a tolerance of eox/2. Since constants do
not affect the analysis leading up to (13), £ax and o« are still chosen according to (15),
subject to (16) being satisfied. Assuming that the error propagated by ¢ due to using
an inexact starting value at sk-1 is damped by ¢ (as is typically assumed when error
control strategies of ODES depend upon local error estimation), we expect to obtain
function values accurate to the required tolerance of &p«.

A more efficient strategy might be to replace the second stage above with the use
of an interpolating function of some sort (for example, cubic splines). However, this
approach has two difficulties. It leads to a three tiered system for solving (2) (that is,
the use of an ODES s followed by the use of an interpolation routine, which in turn is
followed by the use of an AQR) in contrast to the two tiered method. Secondly, it
appears that when one assigns appropriate tolerances for each of the three routines
to be used, an attempt to choose them optimally to reduce computational costs is
highly dependent on the particular problem being solved. Thus, while it may well be
possible to tune such astyem to be efficient for particular problems, it seems that it is
difficult to derive appropriate strategies for the choice of error tolerances in a more
general setting. Consequently, we have not used this three tiered approach here.

Using hull curve offset data for a 38foot developable hull sloop (Fig 2), the mapping
algorithm together with criteria (13), (14) and (16) was successfully employed in the
complete generation of each hull plate (Fig 3) with only very short CPU times being
required on a CYBER 170-730 computer. The AQR used was QUANCS (d = 8,
Forsythe, Malcolm and Moler 1977) and the ODES used was RKF45 (r = 4, Forsythe,
Malcolm and Moler 1977).

Precise results regarding the efficiency of the algorithm and the error bound
strategies outlined in this work are currently under investigation using surface
patches of regular circular cones for which simple analytic mapping formulas exist.

References

Clements, J.C. 1981. A computer system to derive developable hull surfaces and
tables of offsets, Marine Technology, 18: 227-233.

Clements,).C. and Leon, L.J. 1986. A fast, accurate algorithm for the isometric
mapping of a developable surface, in press.

Clements,).C. 1984. Developed plate expansion using geodesics, Marine technology,
271: 384-388.

Dahlquist, G. and Bjorck, A. 1969. Numerical Methods, Prentice-Hall.

124 CLEMENTS AND GRIBBLE

PROFILE VIEW DAY 38
chine line ruling lines 12.
fairbody Iir.e5 B
r T T T T T T T T T T T T T T T T T L 1
32 16 0. -4
PLAN VIEW DAY 38
6.
P
I I I T T I T T T T T T T T T T T T T T
32. 16 0. -4
CROSS-SECTION DAY 38
12,
aft fore
0.
Fig 2 The profile, plan and cross-section views of a 11.583 m developable hull
sloop DAY38. The profile view shows the ruling lines computed for each of

the three developable surfaces which comprise one side of the hull form.
All units are in 0.3048 m.

A HULL PLATE EXPANSION PROCEDURE 125

10.

DEVELOPED PLATE NO. 1

design stations

32 16. 0 -4
10.
DEVELOPED PLATE NO. 2 L

DEVELOPED PLATE NO. 3 L

Fig 3 The results obtained for the mapping or “plate expansion” of each of the 3
developable hull surfaces of DAY38. Plate No. 1 corresponds to the surface
adjacent to the keel; plate No. 2to the next surface up and plate No. 3 to the
uppermost surface.

126 CLEMENTS AND GRIBBLE

Fritsch, F.N., Kahaner, D.K. and Lyness, J.N. 1981. Double integration using one-

dimensional adaptive quadrature routines: A software interface problem, ACM
T.O.M.S., 7: 46-75.

Forsythe, G.E.,, Malcolm, M.A. and Moler, C.B. 1977. Computer Methods for
Mathematical Computations, Prentice-Hall.

Kreyszig, E. 1959. Differential Geometry, University of Toronto Press.

Stoer,). and Bulirsch, R. 1980. Introduction to Numerical Analysis, trans. R. Bartels, W.
Gautschi, & C. Witzgall, Springer-Verlag, New York.

	NSIS_v36_p3-4_09
	NSIS_v36_p3-4_10
	NSIS_v36_p3-4_11
	NSIS_v36_p3-4_12
	NSIS_v36_p3-4_13
	NSIS_v36_p3-4_14
	NSIS_v36_p3-4_15
	NSIS_v36_p3-4_16
	NSIS_v36_p3-4_17
	NSIS_v36_p3-4_18
	NSIS_v36_p3-4_19
	NSIS_v36_p3-4_20

