
PROC. N.S. INST. SCI (1986) 
Volume 36, pp. 115-126 

ERROR BOUND STRATEGIES FOR A NEW 
HULL PLATE EXPANSION PROCEDURE 

JOHN C. CLEMENTS 
Department of Mathematics 

Statistics and Computing Science 
Dalhousie University 

Halifax, N.S. 

and 

JULES D. GRIBBLE 
Maritime Life Assurance Company 

Halifax, N.S. 

An improved version of a recently developed (Clements and Leon, 1986) isometric mapping 
procedure is presented. This algorithm employs a variable step differential equation solver (ODES) in 
conjunction with an adaptive quadrature routine (AQR). Criteria for choosing appropriate error 
tolerances for the numerical implementation of the algorithm are presented. An application is briefly 
discussed. 

Une version amelioree d'un procede d 'application isometrique developpe recemment est pre­
sentee. Cet algorithme utilise une routine de resolution d 'equations differentielles a etape variable 
avec une routine adaptive de quadrature. Les criteres a considerer en choisissant les tolerances 
admissibles pour !'application numerique de cet algorithme sont discutes. Une application est 
brievement discutee. 

Introduction 

The availabi lity o f fast, economical computing capabi lity provides small manufac­
turing operations with the pote ntial for substantial ly automating and improving 
existing design procedures and production techniques. This development has per­
mitted the direct application of advanced mathematical methods and results to the 
sol utio n of problems w hich hitherto have been avoided because of the computa­
tional complexity involved. Th e implementation of th is mathematical analysis in the 
form of computer programs yields w hat is often referred to as scie ntific or engineer­
ing software. 

In the construdion of steel ship hulls (Fig 2), for example, the standard procedure is 
to loft (from preliminary design plans) the vessel at full sca le often using an oak stick 
called a spline to manually fair or "smooth" each hull li ne. The frames are construded 
fro m the offset data obtained, set vertically in place and tack-welded together. The 
steel plate is then measured, cut and welded to the frames in sedions. Sometimes the 
hull plating is difficult and time consuming since one cannot predict if the plate can 
be shaped to conform exadly to each frame member with si mple unidirectional 
bending. This is particularly true in the areas of large curvature such as the bow where 
the accepted practice is to patch with small triangu lar plate sections. 

Clearly there is a requi rement for a computer system which could use preliminary 
hull design data to mathematically define and fair all hull lines; determine if the 
resulting hull surfaces are developable and, if not, automatica lly modify the existing 
hull l ines to ensure developability; generate graphic displays o f waterlines, buttock 
lines and frame stations and use these to compute elementary hydrostatics, and to 
generate detailed tables of offsets for both the required frame members and the 
developable hull surfaces mapped (expanded) onto a flat plane surface (See Fig 3). 
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Th is last step elimin ates the full sca le lofting and manual fairi ng and permits the 
precuttin g from a plane pattern of single hull plate sections of 50 feet or more in 
length and ensures that the plate will fit at all po in ts of each frame member with 
unidiredional bending. The use of developable fwll forms in shipbuilding offers the 
adva ntages of lower cost and faster and simpler const ruction techniques (Clements 
and Leon (1986) and Clements (1981)) . Indeed, the isometric mapping of developable 
surfaces or "plate expansion" is a basic problem in many other manufaduring and 
construction programs. The engineering system specifications listed were met by 
SYSTEM DEVHULL (Clements 1981) which consists of nineteen component programs 
and approximately 10,000 lines of FORTRAN source code. In this paper the mathem­
atical analysis and its appl ication wi ll be discussed for a specific improvement to the 
plate expansion component of the system. 

In Differential Geometry a surface Sin three dimensional Euclidean space R3 is 
ca lled a rul ed su rface if it contains a one parameter family of straight lines ca lled 
generato rs or ruling l ines r which can be chosen as coordinate curves on the surface. 
A developable surface is a ruled surface defined by nonintersecting generators which 
has the sa me tangent plane at all points of each generator (Fig 1). We shall be 
concerned here with developable surfaces which can be represented in the form 

S(s, t) = f(s) + tr (a), a :S s :S b, 0 :S t :S 1. 

where f and r are tw ice continuously d ifferentiable vector fu nctions in Rl. The term 
" developable" refers to the property that by a succession of small rotations about 
each o f the generating lines the su rface can be laid flat or developed onto a plane 
without st retching or tearing. That is, it can be mapped iso metr ically (and isogonally) 
onto a su bset o f Rl. Conversely, a plane surface material ca n be shaped into a 
developable surface with only simple unidirect ional bending along the generating 
lines. 

In Clements and Leon (1986) and Clements (1984) a fast and accurate algorithm was 
derived to accomplish isometric mapping based on the relationship between the 
ru li ng lines r (s) generati ng the developable surface S and one additional geodesic g (s) 
const ructed within the surface as the solution of the nonlinear second order ordinary 
differential equation. 

g (s) · (g(s)xn) = 0, a :S s :S b, (1) 

where s is the real parameter, · and x are the usual scala r and vecto r products 
respectively,·= d/ds, and n is the unit normal to Sat g(s). The mapping procedure 
m: r - R is d efined in terms of the ruling line le ngths ll r(s) ll , the arclengths 
alo ng g (s) and the angles of intersection of r(s) and g (s). Since g (s) is a geodesic in the 
developable surfaceS, its image u nder the isometric mapping must be a st raight li ne 
in the plane and, for simplicity, is taken to be the positive rea l x-axis (Fig 1). Each 
ruling line is then mapped into the correspond ing plane coord inate li ne R in the 
developed surface. 

The solution process requires the numeri ca l solution of the coupled integro­
differential eq uation system consisti ng of (1) and 

(2) 

where PN = {a = s0 < s1 < ... < SN = b l is a partition of [a, b] chosen initially by the user to 
conform to display, cutting or other requirements. Equations (1) and (2) are coupled 
si nce each time a quadrature ro utine is called to approximate the integra l in (2), the 
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ord inary differential equation (1) must be solved for g (s) at those points i n [sk-1, sk] 
required by the quadrature ro utine. 

The practical difficulty lies in choosing the erro r to lerances, Cok and Cok, to be 
assigned to the numerical routines used to compute the solu tions of (1) and (2) 
respectively so that it is assured that lllg (s) ll - JN I < cr for so me speci fied total 
absolute error to lerance cr. That is, which wi ll ensure that the maximum error in the 
determination of the to tal length of g (s) is less than some user specified tolerance cr . 

The object here is to deri ve a rational and efficient strategy for the cho ice of cok and 
cok in the soluti on of (1) and (2), to describe an improved versio n of the mapping 
algorithm (Clements 1984) incorporating both a variable stepsize differential equa­
tio n solver (ODES) and an adapti ve quadrature routine (AQR) and to discuss briefly 
an application. 
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Fig 1 The isometric mapping or "expa nsion" of a developable surfaceS (s, t) onto 
the x, y plane. In the figure vectors are denoted by a superscript arrow rather 
than bold-face as in the text. 
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Definitions and Results 

Let c" [a, b] = {x(s): xis k times continuously differentiable for all sin [a, b]l. Curves 
in RJ will be denoted by 

C: f = x(s) i + y(s)j + z(s)k, s c [a, b], 

with components x(s), y(s), and z(s), and Euclidean norm \I f \I = (x2(s) + yz(s) + z2(s))' 2
. In 

Fig 1 vector functions are denoted by f rather than by f as in the text. In what follows, it 
is assumed that the developable surfaceS is given by ([4]) 

S(s, t) = f ,(s) + tr(s), f1 (s) x r(s) # 0, s c [a, b ], t c [0, 1 ], (3) 

where 

(i) f1(s) = x1i + y1j + z1k, with x, y, z c CZ [a, b], 

(ii) r(s) = r1(s)i + r2(s)j + r3(s)k, with r, c C2 [a, b], i = 1, 2, 3, 

(iii) each point of S corresponds to only one ordered pair (s, t). 

Thus Sis bounded by the curves C1 : f ,(s) and C2: f 2(s) = f 1(s) + r(s) and the ruling lines 
r (a) and r (b). In the actual application of the mapping procedure to hull plate 
expansion, C1 and C2 represent the chi ne cu rves defining the developable surfaces as 
in Fig 2. 

Remark 
Ea ch ruling line r(s) in S can be computed as r (s) = f2(s*)- f1(s) for fi xed s c (a, b] 

where s• c [a, b] is the solu tion of the fixed point equation (Clements 1984) 

G (s *) = det(f, (s), [f2(s*) - f,(s)], f2(s*)) = 0, (4) 

Equation (4) is used because of the result that a ru led surface given by (3) is 
developable if and only if det (f 1(s), r (s), r (s)) = 0 (Kreyszig 1959). It is assumed 
here that this calculatio n has already been completed and that r (s) is known for 
every fixed s in [a, b ]. 

The geodesic curvature Kg of a curve C: g(s) in a surface S is given by 

Kg{s0) = det (g, g, n) = -g · (g x n), 

where n is the unit normal to the surface S at g (s0). We also note that g (s) on Sis a 
geodesic if and only if K g = 0 and is either a straight line or its principal normal 
coincides with the surface normal at the points. Since a geodesic g (s) in S joining any 
two points of S not on the same generator can be represented in the fo rm 

g (s) = f1 (s) + t• (s) r (s) (5) 

for some twice cont inuously differentiable function (Clements & Leon 1 984) g (s) and 
g (s) ca n be obtained by solving (1) for t*(s) and i • (s), or equivalently by solving the first 
order system 
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u2(s) = F(u1(s), u2(s)), a ~ s ~ b, (6) 

"i · (g x n) + u;r · (g x n) + 2u 2r(g x n) 

r · (g x n) 

for u1(s) = t* (s) and u2(s) = i*(s) at each s i~ [a, bl where n (s) = r (s) x T1(s) is a normal to the 
developable surface S at g(s) and T1(s) =f1(s)/ll f 111. Calculation of the Lipschitz consta nt 
for Fin (6) shows that the system is solvable by standard numerical methods (Dahl­
quist and Bjorck 1969) provided r · (g x n) stays bounded away from zero. The 
numerical solution of ~q~ation (6) requires some starting values at s =a and invo lves 
the computat ion o f f1, f1, f1, r, r, and "r. For simplicity the starting values are taken to be 

u 1(a) = .5, u 2(a) = 0 (7) 

or the midpoint of r(a) as indicated in Fig 1. 
Once (1), (2) have been solved, the image of each r (s,), i = 0, ... , N, is determined by 

computing as i n Fig 1. 

Then 

a, = t• (s,) ll r(s,)ll , 

fJ, = (1 - t• (s,)) llg(s,)- f2(S;) II . 

( g(s,) · r(s,) ) 
8, = cos-1 \ ll s (s,) ll · ll r (s;) ll fori= 0, ... , N, 

(X;, Y;) = (J;- a; cos 8;,- a; sin 8;), 

( U;, V;) = (J; + {J; cos 8;, {J; sin 8;), 
I 

J,= L ,;, 
j. 1 

R; = (U; - X;, v,- Y;) 

(8) 

(9) 

and the surface S bounded by r (s0) and r (sN) has been mapped isometri ca lly onto that 
portion of the p lane bounded by R0, RN and (X;, Y;), (U,, V,), i = 0, ... , N. 

The calculations 8;, cos 8, and sin 8; in (8) and (9) are o nly required at each partition 
point and can be computed usi ng double precision arithmetic. Consequently, it is 
assumed that roundoff errors in individual arithmetic operations and evaluations of 
the elementary specia l functions are negligible when compared to the errors propa­
gated due the use of inexact fu nction va lues in the sol ution o f (2). Consequently, it is 
assumed that the errors in evaluating 8;, cos 8; and sin 8; do not contribute signif icantly 
to the global error in the mapping procedure. 

It is assumed that the geodesic g(s) stays within the boundaries of the developable 
surface, and that r · (g x n) stays bounded away from zero. Hence, the differential 
equat ions given by (6) are solvable everywhere on (a, b]. One method to ensure this is 
to restart the procedure with new initial va lues at that point on g where it crosses the 
boundary curves C1 or C2, or where r · (g x n) becomes sufficiently small. However, to 
avoid unnecessary complexity, these details are not included in the statement of the 
mapping algorithm given here. 
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Th e Mapping Algorit hm: 
1) Choose PN and ET. 

2) Choose an adaptive quadrature routine for evaluating /kin (9) accurate to a 
specified Eok for each k = 1, ... , N. 

3) Choose an accurate variable step differential equation solving ro utine where 
each eval uati on of t• and i• required in the integration routine is computed 
accurate to a specified Eok, for each k = 1, ... , N. 

4) Compute ao, f3o and 8o as in (8) to obtain 

and 

5) Fo r each i = 1, ... , N compute 1;, a;, {3;, and 8; as in (8) and (9) using the differential 
equation solver to eva luate g and g at the points req uired by the quadrature 
routine, to o btain the coordinates of the ruling li ne end points of S mapped 
isometrica lly 

(X;, Y;) = (J; - a; cos 8;, -a; sin 8;) , 

(U;, V;) = (J; + {3; cos 8;, {3; sin 8;), 

onto the plane. 

Choosing the error to lerances 
Assume a tolerance ET, is given, which is to bound the total erro r in the numerical 

process. On the assumption that the calcu lations are equally difficult in each subin­
terval [sk-1, sk ] we bound the total error committed in eval uating lk by 

(Sk - Sk-1) 

(b- a) 
(10) 

for each k. It is also assumed that an Adapti ve Quadrature Routine (AQR), based on a 
quadrature fo rmula wi th degree of precision d, wi ll be used to evaluate (2), and that 
an appropriate Ordinary Differential Equat ion Solver (O DES), based on a method of 
order r, wi ll be used to solve (1) at the points required by the AQR. Given Ek the 
problem is to determine the tolerances, Eok and Eok, to be given to the AQR and the 
ODES respectively. As in Fritsch, Kahaner and Lyness (1981) it is assumed throughout 
that both the AQR and the ODES are completely reliable, that is, they will always 
return results which are accurate to within the to lerances specified, that the AQR wi ll 
perform its computatio ns i n the same order with polluted data as wi th exact data, and 
that all ca lls to the ODES are of the same level of d ifficulty. 

The problem is o ne o f interfaci ng two soft ware packages in an efficient and reliable 
manner. This pro blem has been considered recently in Fritsch, Kahaner and Lyness 
(1981) (under the same assumptions as above), w here the scenario of an AQR using 
resu lts obtained by a second AQR was considered. The analysis given here is moti­
vated by this work. 

Denote by ¢(f) the AQR applied to a function f, by I (f) the correct integral off, and 
by fc the numerical approximation to the function f w hich is actually computed by the 
ODES, here denoted by 1/J. Given Ek, it is then required t hat 

II (f) - t/J (f)+ t/J (f) - t/J (fc)l :5 II (f)- t/J(f) l + l t/J (f)- t/J (fc)l :5 Ek. 
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The error can now be seen to be made up of two distinct components: II (f)-¢ (f) I, 
due to approximating I by¢ (assumi ng that corred function evaluations are avai lable 
to¢), and 1¢ (f) -¢ (fc) I, due to incorred function eval uations being made avai lable to 
¢ . Thus divide c., the total error tolerance for the entire numerical procedure of 
evaluating 1., into two components, Co• and Cooe• with 

c. = Co• + Cooek, 

ca. 2: I I (f) - ¢ (f) I being the tolerance given to the AQR, and Cooe• bounding the 
errors due to obtaining inaccurate values of f. Thus the tolerances given in each call to 
t/1, namely Co•, depend o n Cooe•, although they will not normally be equal to Cooe•· 
The interpretation of cooEk is that it reflects the total error accummulated due to the 
calls to t/1 made by ¢. 

Assume that the AQR uses a basic Quadrature Formula Qa (f)= L w1 f (x1) and has 
some strategy for applying Qa to some sequence o f subintervals in the interval of 
integrat ion. Qa, when applied over an interval of unit length will have a condition 
number Ca = L l wil · It follows by linearity of the quadrature process that if Qa is 
applied over an interval of length H, the condition number of the integration wi ll be 
HCa. Now define Co to be the condition number of¢ applied over the interva l (sk-1, 
s.). By linearity of the quadrature process, we have Co $ (s• - Sk-1)Ca. In fad Co will 
equal CaH unless Qa uses both endpoints of the interval of the integration and the 
correspo nding coefficients are of opposite sign. Note that the method by which¢ 
d etermines the order in which Qa will be applied to the subintervals does not affect 
the previous com ments. 

Now assume that the maximum error in any call to t/1 is co •. It then follows that the 
maximum error in the numerical process due to ¢ usi ng i nexad data from t/1 is 
bounded by Co co •. Thus, f rom 

c. = co• + cooe• = Co• + (s• - Sk-1) Ca Co• (11) 

it follows that, once cooe• is specified, co• should be chosen as 

CQOEk 
(12) 

If the condition number of¢ is specified in more detail (see, for example, Stoer and 
Bulirsch 1980) then a simi lar analysis may be carried o ut. However, since this leads to 
different tolerances being specified for each ca ll to t/1, (that is, t/1 would have to be 
solved from the initial point a on every call) and also leads to some restrictions on the 
type of AQR which may safely be used, we shall not pursue this possibility further 
here. 

There are two generic ways in wh ich an AQR can be constructed (Fritsch, Kahaner 
and Lyness, 1981), it can either be based on a local error control strategy (LG) or it can 
be based upon some form of global error control strategy (GE). The essence of aLE 
method is that the procedure moves through the interva l of interest, say from left to 
ri ght, and locally ads upon a subi nterva l. It does not progress to the next subinterval 
until the result obtained for the subinterval under consideration is considered to be 
sufficiently (locally) accu rate. Consequently, when the procedure is complete, since 
all the local errors are believed to be sufficiently small , the total error of the proce­
dure is believed to be within the specified tolerance. In contrast, a GE method is 
always able to consider one of many subintervals, and always chooses to work on that 
subinterval w hich has the worst error estimate. Thus a GE method examines the 
subintervals in an order very difficu lt to predid before the computation is begun. A 
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GE method exists when the sum of all the local erro rs is believed to be less than the 
prescribed to lerance. It is recommended (Fritsch, Kahaner and Lyness 1981) that a 
global error contro l strategy AQR be used if it is felt that the AQR may encounter 
some difficulty since, in contrast to a local error control strategy AQR, a global error 
AQR may have the opportunity to recover from dealing wi th a subinterval with a 
large erro r estimate by considering other subintervals. 

Now consider the question of choosing Eooe• (and thus Eo•) and Eo• to minimize 
t he computational cost, given the requi rement E• = Eo• + Eooe•· The error w hen Qa is 
appl ied over an interval of le ngth H depends upon Hd • 2. Thus, if (a, b) is partiti oned 
into subintervals of length H, the overal l error when using Qa in a compounded 
manner will be 0 (Hd • '). Measuring work in terms of the number of subinterva ls 
(which is proportional to the number of integrand evaluations required) of equal 
length to which Qa should be applied to achieve a given tolerance, it follows that the 
cost of usi ng ¢ with tolerance Eo• is propo rtional to Ea~.f(d • 11

• Now consider the 
amount of work involved in a call to t/1. Since t/1 is based on a method, either multistep 
or Runge-Kutta, which has local order r, and thus local error 0 (H' • 1) when applied 
to a subinterval of length H, it follows that, under appropriate conditions (see, for 
example Stoer and Bulirsch 1980), the global error involved in using the basic method 
of t/J when the interval o f integration is partitioned into subinterva ls of length His 0 
(H'). Thus the cost of using t/1 w ith error tolerance Eo• is proportional to Eo1/'. 

To follow the approach in Fritsch, Kahaner and Lyness (1981), it is assumed that each 
call to t/1 is independent of every other one. In the simplest implementat ion, this 
would mean that t/1 would always begin from the point a when obtaing a va lue o f g (s) 
at an integration point. Since we have assu med that the use of inexact data by¢ does 
not change the sequence of computational steps in¢, we shall also assume that the 
number of function evaluat ions required by¢ is fixed at, say, N. lf the sa me tolerance 
Eo• is specified on each call to 1/J, then the total work done wi ll be proportional to 
N rbl!' that is, proportional to raU'd • 11 ro'66. Using (12) and the constraint E• = Eo• + 
Eooek, we minimize this expression obtaining 

r d + 1 
Eak = d + r + 1 Ek, foDEk = d~ Ek, (13) 

as the appropriate choices to minim ize the total amount of work required for the 
computations done in the interval (sk-1, s.). Note that the specific values of the 
constants of proportionality wi ll not affect Eo• and Eooe• as given in (13). 

The choice of Eo• and Eo• must also be such that t he computation is stable. In 
particular, Eo• must not be so large as to preclude the possibility of¢ being able to 
converge given the tolerance Ea •. Since¢ is a linear process, assume it has a linear 
method for estimat ing the erro r of the computation in a given subinterval, let this 
process have condition number Ce when applied over a subinterva l of unit length 
(see the discussion of Ca above). Thus, for a subinterva l of lengths.- Sk-1, the bound 
o n the error in the erro r estimation process of ¢ due to using i nexad data from t/1 is 
Ce (s•- Sk-1) Eo•· Thus it fo llows from (12) that the inequality 

Eooe• Ce 
Eak > Ce (Sk- Sk-1) Eok = Ce (Sk- Sk-1) c = c-EooEk 

(Sk - Sk-1) B B 
(14) 

should be satisfi ed for all k to ensure stability of the AQR in all subintervals (sk-1, s.). 
From (10), (12) and (13) it follows that 

(d + 1) r (Sk - Sk-1) 
Eo• = Er; 

(r+d+1 ) Ca(b-a) (r+ d+1) (b - a) 
(15) 
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Note that co• does not depend upon k. Combining (14) with (15) leads to the global 
stability requirement 

r Ca > ( d + 1) CE. (16) 

Implementation 
It was assu med in the previous sect ion that each ca ll to the ODES t/J was independ­

ent of all other cal ls to t/J. In the simplest implementation this would lead us to call t/J 
always taking a as the left endpoint of the interva l of integration. Since we cannot tell 
in advance at which points the AQR will need a function val ue we cannot simply 
make one pass with t/1 and obtain all the function values needed. 

This now suggests the following more efficient two stage strategy. First, call t/J with a 
to lerance l:o•/2, and obtain the function values at the points s. of the partition PN. 
Second, in solving (2) in each subinterval (sk-1, s.), k = 1, 2, ... , N when the AQR 1/J 
requires a function evaluation, t/1 is called with left starting point Sk-1, the previously 
computed function va lue at Sk-1 given, and a tolerance of co./2. ·Since constants do 
not affect the analysis leading up to (13), co• and co• are still chosen according to (15), 
subject to (16) being satisfied. Assuming that the error propagated by t/J due to using 
an inexact starting va lue at Sk-1 is damped by t/J (as is typically assumed when error 
control strategies of ODES depend upon loca l error estimation), we expect to obtain 
function values accurate to the requ ired tolerance of Co•· 

A more efficient strategy might be to replace the second stage above with the use 
of an interpolating function of some sort (for example, cubic splines). However, this 
approach has two difficulties. It leads to a three tiered system for solving (2) (that is, 
the use of an ODES is followed by the use of an interpolation routine, which in turn is 
followed by the use of an AQR) in contrast to the two tiered method. Secondly, it 
appears that when one assigns appropriate tolerances for each of the three routines 
to be used, an attempt to choose them optimally to reduce computational costs is 
high ly dependent on the particular problem being solved. Thus, while it may well be 
possible to tune such a stye m to be efficient for particular problems, it seems that it is 
difficult to derive appropriate strategies for the choice of error tolerances in a more 
general setting. Consequently, we have not used this three tiered approach here. 

Using hull curve offset data for a 38foot developable hull sloop (Fig 2), the mapping 
algorithm together with criteria (13), (14) and (16) was successfully employed in the 
co mplete generation of each hull plate (Fig 3) with only very short CPU times being 
required on a CYBER 17~730 computer. The AQR used was QUANC8 (d = 8, 
Forsythe, Malcolm and Moler 1977) and the ODES used was RKF45 (r = 4, Forsythe, 
Malcolm and Moler 1977). 

Precise results regarding the efficiency of the algorithm and the error bound 
strategies outl ined in this work are cu rrently under investigation using su rface 
patches of regular circular cones for which simple analytic mapping formulas exist. 
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Fig 2 The pro file, plan and cross-sectio n views of a 11.583 m develo pable hull 
sloop DAY38. The profile view shows the ru li ng lines computed for each of 
the three developable surfaces wh ich comprise one side of the hull form. 
All units are in 0.3048 m. 
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10. 

DEVELOPED PLATE NO. 1 

32. 16. 0 . -4. 

10 . 

DEVELOPED PLATE NO. 2 

32. 16. 0. -4. 

10. 

DEVELOPED PLATE NO.3 

32. 16. 0. -4. 

Fig 3 The results obtained for the mapping or " plate expansion" of each of the 3 
developable hull surfaces of DA Y38. Plate No.1 corresponds to the su rface 
adjacent to the keel; plate No.2 to the next surface up and plate No.3 to the 
uppermost surface. 
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