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Abstract

The continued increase in the size and complexity of modern computer systems has

led to a commensurate increase in the size of their logs. System logs are an invaluable

resource to systems administrators during fault resolution. Fault resolution is a time-

consuming and knowledge intensive process. A lot of the time spent in fault resolution

is spent sifting through large volumes of information, which includes event logs, to find

the root cause of the problem. Therefore, the ability to analyze log files automatically

and accurately will lead to significant savings in the time and cost of downtime events

for any organization. The automatic analysis and search of system logs for fault

symptoms, otherwise called alerts, is the primary motivation for the work carried out

in this thesis.

The proposed log alert detection scheme is a hybrid framework, which incorporates

anomaly detection and signature generation to accomplish its goal. Unlike previous

work, minimum apriori knowledge of the system being analyzed is assumed. This

assumption enhances the platform portability of the framework. The anomaly detec-

tion component works in a bottom-up manner on the contents of historical system

log data to detect regions of the log, which contain anomalous (alert) behaviour. The

identified anomalous regions are then passed to the signature generation component,

which mines them for patterns. Consequently, future occurrences of the underlying

alert in the anomalous log region, can be detected on a production system using the

discovered pattern. The combination of anomaly detection and signature generation,

which is novel when compared to previous work, ensures that a framework which is

accurate while still being able to detect new and unknown alerts is attained.

Evaluations of the framework involved testing it on log data for High Performance

Cluster (HPC), distributed and cloud systems. These systems provide a good range

for the types of computer systems used in the real world today. The results indicate

that the system that can generate signatures for detecting alerts, which can achieve

a Recall rate of approximately 83% and a false positive rate of approximately 0%, on

average.
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Chapter 1

Introduction

Modern computer systems and networks are increasing in size and complexity at an

exponential rate. An observation of the progression towards the building of large

scale data-centers to support cloud infrastructure and the drive to build bigger and

larger High Performance Clusters (HPC) which can perform computations on the

ever increasing amounts of data being collected, will confirm this assertion. For the

first time all the top 10 HPC (supercomputers) in the world are capable of computing

performance in the petaflop (quadrillion) range. The fastest supercomputer in the

world, the K Computer located at the RIKEN Advanced Institute of Computational

Science (AICS) in Japan is capable of 8 quadrillion calculations per second and has

68,544 nodes with 8 cores each, leading to a total of 548,352 cores [73]. It is fair to

say that this trend is bound to continue.

Fault resolution on modern computer systems is already a time-consuming and

knowledge intensive process. System administrators typically spend hours sifting

through lots of data, firstly to find the root cause of the problem and then plan

the resolution. Typically, finding the root cause will involve analyzing system state

information and the operational context. Sources of information about activity on

computer systems or computer networks include application log files, system activity

reports, trouble tickets, co-workers, off-site sources and system activity paths. As the

size and complexity of systems continue to increase, so will the size and complexity

of these data sources. Therefore, it can only be expected that the tasks required for

the management of error and fault conditions on such systems will reach a level of

complexity where some degree of automation will be required to keep up with the

pace.

The goal of autonomic computing as espoused by IBM’s senior vice president

of research, Paul Horn, in March 2001 can be defined as the goal of building self-

managing computing systems [28]. This is a long-term goal, but in the short-term

1
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the design of computing systems which can gather and analyze information about

their states automatically, to support decisions made by human administrators needs

to be explored. Eventually, this intermediary short-term goal will make the long-term

goal achievable[28].

Self-healing in autonomic computing has set a goal for the engineering of sys-

tems which are capable of detecting and fixing their own error conditions. With the

losses incurred in both man hours and operational cost during downtime events, such

systems already have a ready market in the world of information technology. This

dissertation contributes towards the goal of building such systems, while focusing only

on one of the many sources of information available, i.e. event logs or system logs.

These logs are generated by the many components which make up a computer system

and consist of several independent lines of text data which contain information that

pertains to events which occur within a system. Event logs, which are the largest

on-site source of information (by volume) available to system administrators, are a

ready and available source of data during down time events. However trends tend

to suggest that the task of analyzing these logs is becoming too cumbersome to be

carried out manually [68], so the approach proposed by this thesis is timely.

This work proposes a framework which attempts to detect error conditions (alerts)

automatically in computer systems that are detectable in system logs. The computer

systems can either be on wired or wireless infrastructures, as the assumption here is

that logs have been reported by the application layer or generally components running

above Layer-2 in the protocol stack. I differentiate here between errors as symptoms

of a fault and the actual faults. Faults usually leave traces on systems before and

after they occur. These traces manifest themselves in the form of errors (alerts) in

the system. The goal here is the automatic identification of these error conditions,

thereby reducing troubleshooting time and preventing downtime events altogether.

As full automation is difficult and labour intensive, while low level monitoring tools

still require a lot of manual input with regard to rule maintenance, the proposed

framework aims to be a middle level solution which provides the right amount of

automation with minimal manual activity.

Application log files pose a lot of challenges for the task at hand. One is their
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semi-structured nature and another is their diversity, leading to inconsistency. An-

other possible challenge is that log files may not capture fully information about

failure in all cases. Moreover, application developers cannot anticipate all fault con-

ditions which can occur. Therefore, this framework will employ a mix of data mining

and information-theoretic techniques to overcome some of these challenges. While

the focus of this research is fault management, the intention is to produce a frame-

work which is general enough to apply to other network management functions. The

framework proposed will will extract information from system log files automatically,

thus reducing the manual input required to analyze the contents of event logs. The

system can analyze its own logs automatically and provide hints to the administra-

tor about possible error conditions. Once error conditions are confirmed, the system

can develop signatures for such errors and flag them when they occur in the future,

thereby reducing the time and effort exerted by the administrator in log analysis and

management.

1.1 Definitions

This section contains a glossary of some of the terminology used in this thesis.

• Event Log or System Log. A text-based audit trail of events which occur

within the system or application processes on a computer system (Fig. 1.1).

• Event. An independent line of text within an event log which details a single

occurrence on the system, (Fig. 1.2). An event typically contains not only

a message but other fields of information such as the Date, Source and Tag

as defined in the syslog RFC (Request for Comment) [38]. In Fig. 1.2 the

first five fields (delimited by whitespace) represent the Timestamp, Host, Class,

Facility and Severity of each event.

• Token or Term. A single word delimited by white space within the message

field of an event. For example in Fig. 1.2, the words invalid and SNA.....0 are

tokens in that message.

• Event Size. The number of individual tokens in the “message” field of an

event. The event in Fig. 1.2 has an event size of 2.
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2005-06-03-15.42.50.823719 R02-M1-N0-C:J12-U11 RAS KERNEL INFO instruction cache parity error corrected
2005-06-03-15.42.50.982731 R02-M1-N0-C:J12-U11 RAS KERNEL INFO instruction cache parity error corrected
2005-06-06-22.41.37.357738 R20-M0-NA-C:J15-U11 RAS KERNEL INFO generating core.3740
2005-06-06-22.41.37.392258 R20-M0-NA-C:J17-U11 RAS KERNEL INFO generating core.3612
2005-06-11-19.20.25.104537 R30-M0-N9-C:J16-U01 RAS KERNEL FATAL data TLB error interrupt
2005-06-11-19.20.25.393590 R30-M0-N9-C:J16-U01 RAS KERNEL FATAL data TLB error interrupt
2005-07-01-17.52.23.557949 R22-M0-NA-C:J05-U01 RAS KERNEL INFO 458720 double-hummer alignment exceptions
2005-07-01-17.52.23.584839 R22-M0-NA-C:J03-U01 RAS KERNEL INFO 458720 double-hummer alignment exceptions

Figure 1.1: An system log file example. Each line represents an event.

2005-06-05-01.54.59  R11-M0  RAS  KERNEL  WARNING     invalid  SNAN…..0 

TOKENS 

MESSAGE HEADER 

EVENT 

TIMESTAMP HOST SEVERITY FACILITY CLASS 

Figure 1.2: Sample event broken down into its constituent fields.

• Message Type. These are message fields of entries within an event log pro-

duced by the same print statement. Non-overlapping consecutive pairs of lines

in the log example shown in Fig. 1.1 belong to the same message type.

• Message Type Description.A textual template containing wild-cards which

represents all members of an event cluster. The messages in the 3rd and 4th

lines of Fig. 1.1 have a message type description of “generating *”.

• Constant Token. A token within the message field of an event which is not

represented by a wild-card value in its associated message type description. The

token generating in the 3rd line of Fig. 1.1 is a constant token.

• Variable Token. A token within the message field of an event which is rep-

resented by a wild-card value in its associated message type description. The

token core.3740 in the 3rd line of Fig. 1.1 is a variable token.
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1.2 Autonomic Computing and Fault Management

This work can be placed within the context of autonomic computing and fault man-

agement systems. First of all, this section discusses where this work falls within the

context of the state of the art in autonomic computing and fault management.

Autonomic computing is a term inspired by the workings of the autonomic ner-

vous system. Like the autonomic nervous system which works to control certain bod-

ily functions without the conscious thought of the organism, the aim of autonomic

computing is to provide modern computer systems with the ability to manage their

internal states for optimal performance with little or no human intervention, i.e. self-

managing systems. The four objectives of the self-managing paradigm of autonomic

computing are: self-configuration, self-optimization, self-healing and self-protection

[28, 13]. These objectives are not mutually exclusive and are interdependent in most

cases [13]. For instance to achieve self-protection, self-configuration may be necessary.

The objectives are described below.

• Self-Configuration. This refers to the ability of the system to choose optimal

settings automatically for its configuration parameters to meet the goals of an

organization as specified by the human operator. This configuration should not

be static; it should have the ability to adapt automatically when changes occur

or when the goals set by the human operator change.

• Self-Optimization. This refers to the ability of the system to adapt to changes

in its state and environment. These changes should help to achieve an op-

timal usage of resources so as to maintain performance levels or Quality of

Service(QoS).

• Self-Healing. This refers to the ability of the system to detect, diagnose and

recover from fault conditions as they occur on the system.

• Self-Protection. This refers to the ability of the system to respond to security

vulnerabilities. The system should be able to protect itself pro-actively from

malicious activity and benign user actions which could lead to a security breach.

For an autonomic system to achieve these four ‘self-’ objectives they need to

posses four attributes [13]. These are self-awareness, self-situation, self-monitoring
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and self-adjustment. Self-awareness refers to the system’s ability to be informed

about its internal state, while self-situation implies the ability to be informed about

its external operating conditions. Self-monitoring is the ability to detect changes,

while the ability to adapt to these changes is self-adjustment.

Since the introduction of the concept in 2001 by IBM [28], several approaches,

techniques and frameworks have been proposed. A full discussion of all of these is

beyond the scope of this work but summaries of the state of the art in autonomic

computing can be found in Huebscher and McCann [22] and Khalid et al. [29]. Any

framework, which aims to achieve self-managing capabilities for a system can be

grouped primarily on the basis of its intended objectives and attributes [28, 13].

Furthermore, frameworks can be grouped on the basis of their design approach

[16, 29] or the framework type. Two common design approaches are described below.

• Externalization Approach. In this approach to designing autonomic sys-

tems, the components which enable autonomicity are situated outside of the

system being managed. This is the most common approach and is considered

more effective [29].

• Internalization Approach. In this approach to designing autonomic systems,

the components which enable autonomicity are part of the system itself, i.e.

internal [29].

On the other hand, framework types include the following [29].

• Biologically Inspired. These are autonomic systems which are inspired by

or mimic biological systems. A good example of this is the Autonomous Nan-

otechnology Swarm (ANTS) [13].

• Large Scale Distributed. These autonomic systems focus on the manage-

ment of large scale distributed systems. Large scale distributed systems have to

be highly available and scalable; doing this requires careful configuration and

organization. Large scale autonomic systems attempt to carry out this config-

uration and organization automatically. Examples include IBM’s SMART and

Microsoft’s AutoAdmin [29].
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• Agent-Based. Agent-based autonomic systems use a decentralized approach

to achieve autonomicity. Several independent agents work alone and in con-

cert with other agents to achieve autonomicity. The application monitoring in

the Autonomia system of the University of Arizona [29] is an example of an

autonomic system which is based on an agent architecture.

• Component-Based. In component-based autonomic frameworks, autonomic-

ity is achieved using modules that are not part of the system being monitored

but can be “plugged in” to the system when needed. This encourages reusability

and flexibility [29].

• Technique-Based. Technique-Based approaches utilize techniques from other

areas of computing to achieve some level of autonomicity, e.g. Machine Learn-

ing, Data Mining, Artificial Intelligence (AI) and Control theory [29].

• Service-Oriented. These are autonomic systems designed to facilitate auto-

nomicity in service-oriented environments, e.g. web services [29].

• Injection of autonomicity. In these systems an “overlay” is added to legacy

systems which do not exhibit any autonomous behavior to achieve autonomicity.

This is done without any change to the legacy system. These frameworks utilize

techniques such as Case-Based Reasoning (CBR) to achieve autonomicity [29].

Based upon the hierarchy proposed by IBM, frameworks can also be grouped based

on their level of autonomicity [22]. The five levels of autonomicity are described below.

• Basic-Level 1. At this level, all management tasks are carried out manually by

system administrators. Some monitoring tools may be used but the information

is not collected or analyzed using any intelligence. Most systems today are at

this level of autonomicity [22].

• Managed-Level 2. At this level, the monitoring tools possess some degree of

intelligence. They are able to analyze the information using some intelligence,

reducing the amount of analysis the administrator needs to perform [22].

• Predictive-Level 3. At this level, the monitoring tools go beyond the primary

analysis of system information as done with “Managed” systems. In addition,
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patterns of system behavior can be recognized and preemptive or remedial ac-

tions can be suggested by the system based on the previous action of adminis-

trators [22].

• Adaptive-Level 4. At this level, the system is better able to carry out some

of the preemptive and remedial actions which can be suggested by a Predictive

system [22].

• Autonomic-Level 5. At this level, full autonomicity is achieved. Systems can

manage themselves dynamically using system information and business rules

without the intervention of system administrators [22].

While a lot of work has been proposed in the area of self-healing, most of them

do not place their work within the context of autonomic computing. A survey of the

state of the art in self-healing in the context of autonomic computing shows that it

still remains a long-term goal that is worth aiming for but which may not be achiev-

able in the short-term [37]. For this reason this work focuses on only the detection

aspects of self-healing, as these are achievable with current technology. So far most

approaches to self-healing which place themselves within the context of autonomic

computing utilize either Case-Based Reasoning (CBR), Artificial Intelligence (AI) or

Machine Learning techniques [29] and most do not focus exclusively on the mining

of application logs [22, 29]. The use of system metrics has received considerable

attention as well [8].

The earliest work to recognize the importance of event messages for the goal of

autonomic computing can be found in [71]. In that work, the author proposes a three-

tiered data-driven approach to knowledge acquisition in autonomic systems. Rather

than relying completely on human-generated rules for the autonomous system or

computer-generated rules, the work proposes a compromise between the two extremes,

i.e. human-assisted computer discovery and computer-assisted human discovery. This

thesis continues along these lines by proposing a framework which can analyze a

stream of messages- in this case the event log- and provide useful information to

human operators for carrying out their network management function while relying

as well on feedback from the operators to improve its detection capability.

A more detailed survey of previous work in automatic log analysis can be found
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in Chapter 2.

1.3 Motivation and Objectives

The overall goal of the research carried out in this thesis would be to design and

evaluate a framework which utilizes a series of techniques to analyze the contents of

system event logs automatically while focusing primarily on the discovery of patterns

which are related to fault conditions, i.e. alerts. The analysis will take various

forms but will utilize a mix of unsupervised and supervised techniques while keeping

human involvement to a minimum. The components will be self-contained but could

be interrelated as well, i.e. the output from one could serve as input to the other. The

framework would enable system administrators to maximize event logs as a source of

information in decision making, especially when faults occur on the system.

As this thesis is not the first work to attempt to do this, my goal is to go beyond the

current state of the art by providing a framework which is not only more accurate and

efficient but also requires minimal human input. The proposed system will provide

a means for the automatic troubleshooting of fault situations in a network using the

information contained in logs, thus contributing to autonomicity. With such a tool,

the system could monitor its own logs automatically for symptoms of fault conditions.

If these symptoms can be detected before actual faults occur, then proper remedial

action can be taken. However if they are detected after the fault conditions occur,

then they can help in reducing troubleshooting time. Either way, this will lead to

significant cost savings for any enterprise.

In order to reach the main goal of this work, the following research objectives were

set.

Minimum Apriori Information

Platform portability is important for any effective framework for alert detection in

system logs. For a system to be platform portable, it must not rely on system spe-

cific characteristics and must assume very little knowledge of the architecture of the

system it would be monitoring, i.e. minimum apriori information. Some previous

approaches rely heavily on the knowledge of the systems that they will be monitor-

ing, this reduces their platform portability. For this reason, this work will strive
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to produce a framework that requires minimum apriori information for operation.

Furthermore, the system would also be developed to detect alerts without the use of

semantic analysis. Analyzing terms semantically can lead to platform specific systems

in this domain, therefore a system which utilizes semantic analysis in a significant way

cannot be platform portable.

Unstructured Data

Log files contain unstructured data in the form of the natural language descriptions

of events, i.e. messages. This unstructured content can serve as a stumbling block to

automatic analysis. As stated in [21], abstracting these natural language descriptions

is fundamental and contributes greatly to accuracy of analysis. However, abstraction

is not a straightforward process; previous efforts show that there are several different

approaches using such tools as Simple Logfile Clustering Tool (SLCT) and Loghound

[78] which have been adopted for dealing with this problem.

This research will focus on the problem of the abstraction of the unstructured

content of system logs. Specifically, the goal will be to develop techniques for extract-

ing patterns from the logs which can be used in abstraction while ensuring that the

extraction is done accurately and can be completed in a timely manner.

Interactive Learning

Due to the difficulty and uncertainty associated with automatic analysis performed

by frameworks such as proposed by this thesis, the work in [3] recommends that

human input be utilized by such systems. Such input could be achieved by way

of a visualization system which allows human administrators to view the results of

the analysis of the system and provide feedback which the system can use to carry

out actions and improve on the analysis over time, i.e. interactive data mining via

visualization. In previous research efforts where visualization has been used, the

visualizations have only been used to view and analyze the system’s output but not

for providing feedback.

This thesis would therefore aim to develop a framework that includes an interactive

feature as one of its components. This goal will coincide with the recommendation in

[71], i.e. human-assisted computer discovery and computer-assisted human discovery.
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Hybrid Detection

Systems which carry out automatic alert detection in system logs can be classified

typically as either signature-based or anomaly-based detectors. Signature-based sys-

tems work by using well defined patterns of known previous alert activity for detecting

alerts. Signature-based systems are generally very accurate but suffer from their in-

ability to detect novel and unknown alert activity. Anomaly-based systems work by

using statistical techniques to determine what is normal. In doing so, they can de-

tect alerts by pointing out any activity which differs from the norm. Anomaly-based

systems are generally not as accurate as signature-based systems: it is common for

them to generate a lot of FPs. However, they are able to detect new and novel alert

activity.

An ideal log alert detection framework should be able to detect new and novel

alert activity while still achieving high accuracy in detection. To this end, one of the

goals of the research carried out in this thesis is the designing and developing of a

framework which builds on the strengths of both approaches. The resulting system

would be a hybrid alert detection framework.

Self-Awareness

The four objectives of autonomic computing are self-configuration, self-optimization,

self-healing and self-protection. Nonetheless, as noted in [13], there are four attributes

which a true autonomic computing system must possess before any of the objectives

can be achieved: self-monitoring, self-awareness, self-situation and self-adjustment.

Most previous efforts have focused on achieving one or a combination of the objectives

without focusing on the attributes. My aim is that this thesis will be able to contribute

to self-awareness in computing systems by developing techniques which can be used

to detect not just alert states but all system states which are discernible in a system

log.

Computational Cost

One of the major hindrances to the automation of system logs is their size, which

makes the application of certain techniques impracticable in this domain. Hence it is
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one of the goals of this thesis to ensure that most of the techniques used are simple

and have low computational complexity in order to ensure that they scale gracefully

when applied to large datasets. Most log files today can be expected to be large.

With these objectives in mind, the framework which this thesis aims to design

and develop can be described as a hybrid interactive learning framework for alert

detection in system logs. An overview of what the architecture of such a system may

be is given in Fig. 1.3. At the core of the proposed system is its anomaly detection

mechanism. The anomaly detection mechanism analyzes the contents of event logs,

in the process, generating event log clusters which define the different system states

or behaviors that are discernible in the log. It also determines whether these clusters

are likely to contain normal or anomalous states. Then it presents these clusters to

an administrator using a visualization system after which the administrator can then

confirm the anomalous clusters detected by the system and provide labels. Subse-

quently, the system can then send the events in these labelled anomalous clusters

to a signature generation system which generates a detection signature for the alert

state(s) represented in the clusters. These signatures will be used to detect future

occurrences of the alert state. Meanwhile, the anomaly detection component contin-

ues to use the feedback it gets from the administrator and the signature generation

system to improve its anomaly detection capability.

Figure 1.3: Overview of the hybrid interactive learning framework.

Based on the categorization types listed in Section 1.2, Table 1.1 places this pro-

posal within the context of the current state of the art in autonomic computing. This

table shows that the proposed system in this thesis fits very well within the context
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of current research in autonomic systems. Event logs contain information about the

internal state and changes occurring in a system. By producing a framework which

allows computer systems to monitor and analyze their event logs automatically for

information about their current state, this thesis contributes to self-awareness and

self-monitoring in autonomic systems. Again, by using this information to detect

symptoms of failure automatically when they occur and inform the administrator ac-

cordingly, this thesis contributes towards the long-term goal of producing self-healing

systems. Though security management is not addressed, this research could prove

relevant in that domain. Hence, a secondary contribution of this research is self-

protection.

The design approach is external as the framework performs all of its analysis

outside of the system being monitored. By utilizing visualization, data mining and

information-theoretic techniques, the framework can be described as technique-based.

Most computing systems do not possess any degree of autonomicity, so this research

aims to inject autonomicity into a non-autonomous system. A realistic level of auto-

nomicity for this thesis is set as Level-3, which is achievable using today’s technology.

Autonomic computing research has been besieged with unrealistic expectations [13].

This implies that a more realistic and long-term approach has to be adopted to achieve

the goal of creating systems at Level-4 and Level-5. Consequently, this proposal is

therefore restricted accordingly.

Table 1.1: Placing the framework within the context of autonomic computing

Property Category

Objective Self-Healing, Self-Protection
Attribute Self-Awareness, Self-Monitoring
Design Approach External
Framework Type Technique-Based, Injection of Autonomicity into Non-

Autonomous Systems
Autonomicity Level 3-Predictive

1.4 Literary Contributions

A comprehensive list of the peer-reviewed literary contributions of this thesis can be

found in Appendix E. The list includes two fully reviewed workshop papers, eight fully
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reviewed conference papers and one journal publication. Some of these publications

are cited throughout the thesis at points where they are relevant.

1.5 Organization of the Thesis

The automatic log analysis framework proposed by this thesis deals primarily with

alert detection. Therefore in the next chapter, Chapter 2, alerts as formulated by

this research are defined. Previous and related work in automatic alert detection

are discussed, while noting their limitations. The chapter goes on to introduce the

anomaly detection component, which is at the core of the proposed alert detection

framework, STAD (Spatio-Temporal Alert Detection).

Message type extraction is a fundamental task necessary for the meaningful auto-

matic analysis of unstructured log data. Therefore, Chapter 3 of this thesis is devoted

to automatic message type extraction. In this chapter, a novel linear-time algorithm

for message type extraction developed as part of this thesis is introduced. IPLoM (It-

erative Partitioning Log Mining), as the algorithm is called, is tested against previous

approaches and is shown to outperform them.

In Chapter 4, practical applications of message types in event log management are

presented. First, it is shown how message types can be used to enforce a hierarchy on

the content of system logs. This hierarchy allows the contents of the log to be visual-

ized interactively. A prototype log visualizing tool called LogView, which visualizes

the hierarchy using treemaps [65] is presented as well. The scheme of this tool forms

the visualization component of the alert detection framework. Second, a method for

space efficient storage and easy retrieval of log events is demonstrated. The method

is based on MTT. Storage of event logs using the format suggested here would ease

some of the preprocessing required for automatic analysis. Third, the importance

of message types to alert detection is demonstrated. Using the entropy-based alert

detection mechanism of Nodeinfo [55], it is demonstrated that incorporating message

types during model building not only results in more accurate models but can speed

up the computation by up to a hundredfold.

Chapter 5 introduces the entropy-based ICC technique used to cluster log parti-

tions as part of the STAD anomaly detection process. At the core of ICC technique

is the theory that decomposing the contents of a system log spatio-temporally leads
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naturally to the grouping of correlated messages. This theory is developed in the

chapter and is an important contribution of the thesis. This previously unknown

property of system logs allows pseudo-linear discovery of correlated events, a process

that typically requires significant computation.

Chapter 6 discusses STAD in more detail. A detailed evaluation involving log data

for four HPC machines is presented. The data from these HPC machines represents

∼81GBs of data collected from ∼76,000 nodes over a cumulative period of ∼3.5 years

and ∼746 million processor hours. This dataset, which is perhaps the largest dataset

of its type publicly available at the time of writing this thesis, is appropriate for

this research since it contains alerts which have been labelled using expert knowledge

[56]. The chapter also explores the possibility of using automatic techniques such as

C5.0 [62], for developing the rule base which is used by STAD to identify anomalous

clusters.

As the focus of this thesis is not on alert detection in HPCs alone, Chapter 7

presents work evaluating STAD on non-HPC log data. The datasets were collected

from a distributed system and a cloud-based system. This is appropriate as today’s

enterprise networks consist of both distributed and cloud-based systems. Specifically,

the adoption of cloud computing infrastructures causes system logs to be multi-tiered.

Thus, manual analysis of these logs proves to be difficult. System administrators of

cloud computing systems are desperately in need of tools to make sifting through

large volumes of inter-related log data an easier task. A data mining-based tool such

as STAD would prove useful in the correlation of events across multiple tiers making

log analysis efforts easier.

A detailed description and evaluation of the hybrid alert detection framework pro-

posed by the thesis is presented in Chapter 8. The chapter shows how all the tech-

niques introduced in previous chapters fit into the overall framework. The evaluations

involved generating alert signatures automatically and testing them in a simulated

online environment. The HPC, distributed and cloud logs were used for this purpose.

Finally, conclusions are drawn and future research directions are discussed in

Chapter 9.
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Alert Detection in System Logs

Not all events in an event log are symptomatic of failure. Events which are symp-

tomatic of failure or require the attention of administrators can be described as alerts.

The task of alert detection can be defined as the task of identifying actionable events

in an event log or identifying portions of an event log in which these actionable events

are likely to exist [55]. The automation of alert detection is important, not only be-

cause it contributes to system dependability but because it contributes to the larger

goal of building autonomic computer systems.

This thesis argues that there are two major types into which alerts in system logs

can be categorized. These types, which will be referred to as Type-I and Type-II are

described below:

• Type-I: These are alerts which are purely presence-based, i.e. these alerts can

be identified simply by the presence of a specific signature (line or group of

lines) in the log.

• Type-II: These are context-sensitive alerts, i.e. these alerts can be identified

only by the context in which the events appear. Context-Sensitive alerts can be

dependent on rates (i.e. the rate at which messages are generated), positional

(i.e. where in the log the message is produced), or status based (i.e. the message

identifies an alert only based on the operational status of its source) [55].

These alert types are not always mutually exclusive: an alert type can exhibit

characteristics of both types. Any framework for alert detection needs to keep this

distinction in mind.

This chapter of the thesis discusses previous/related work in automatic alert detec-

tion. It discusses the limitations of these approaches and then gives a quick overview

of the anomaly detection mechanism which is at the core of the alert detection frame-

work proposed by this thesis. The proposed anomaly detection mechanism is primed

16
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to discover mainly Type-I alerts but it is capable of detecting Type-II alerts as well.

However, it may have difficulty detecting Type-II alerts which are purely rate sensi-

tive.

2.1 Related and Previous Methods

In order to create applications which will be capable of monitoring systems auto-

matically to identify alerts, access to a continuous stream of real-time data from the

systems is mandatory. Such data must contain information explicitly or implicitly

about the state of the system and its components.

A literature review shows significant effort has been carried out by various re-

searchers in automatic alert detection and system monitoring and most have followed

the approach of analyzing data from the system. Two important sources of data

include system metrics [8, 53] and system logs[34, 33, 57, 78, 36, 55, 2, 15, 82, 21].

While these sources seem to be more prevalent in the literature, other sources have

been explored. For example, Chen et al. model system behavior by collecting and

modeling statistics on the paths which system requests follow as they move through a

system [6]. They demonstrate how this knowledge can be used in failure and change

management.

Metrics of system activity can be used in the automatic analysis of such sys-

tems. These metrics could be either low level system metrics or application level

metrics. System metrics include measurements such as resource utilization (mem-

ory and CPU), length of system queues and latency of disk I/O operations, while

application level metrics include transaction response time and request throughput

[8].

Cohen et al., demonstrate a method of using system metrics to define system states

[8]. Such observed states are clustered and indexed for similarity-based retrieval.

Their assumption was that if an indexed system state can be used to identify a prior

system problem, i.e. the state signifies an alert condition, then future system states,

which are sufficiently similar, can be associated with the problem as well. In turn,

this can lead to quick diagnosis and repair. Jiang et al. propose the utilization of

entropy-based analysis of management metrics for the problem of fault detection [53].

Their work suggests that systems can be monitored by observing the changes in the
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in-cluster entropy of clusters identified using the normalized mutual information of

metric pairs. In [25], the authors apply a dependency-aware framework based on the

Tanimoto coefficient to the problem of fault diagnosis in enterprise software systems,

using metric-correlation models built from collected application level metrics such as

resource utilization and response time.

However, system logs seem to have received the most attention as a source of

information for automatic alert detection and system monitoring. Hence, it is not

surprising that there are several commercial and open source tools which aid system

administrators in the monitoring of their event logs. Examples of such tools include

Splunk [67] and Sisyphus [70].

Splunk is a proprietary indexing, search and analysis tool for unstructured data.

Though used in the management of log data, it is designed for use on any form of

unstructured data. The only task which is carried out automatically by Splunk is

indexing. It does this by searching for fields in the data which it identifies through

name/value pairs in the data. Also, It searches for well known fields which are

associated with log data, e.g. IP addresses and hexadecimal digits. Any other field

which it indexes must be specified by the user. Its search and analysis functionality are

harnessed and controlled through the use of its search/query language and charting

functionality. Its analysis functionality can be enhanced with the use of custom built

tools. For alert detection it can identify alerts only as defined by users using regular

expressions.

Sisyphus is a log data mining toolkit designed specifically with HPC logs in mind.

However, its use is not limited to HPC logs alone. The system can be adapted for

use on almost any type of log. This is done by providing it with custom parsers

and adjusting its parameters. Just like Splunk it indexes the contents of log files to

allow for faster searches of log contents and provides a charting/graphing capability

as well. However, it goes a step further than Splunk by using information theory

to rank the contents of logs for alert detection. Nodeinfo is one of the information

theoretic algorithms which it utilizes. It uses the output of these information theoretic

algorithms to color code terms in textual views of the logs which helps administrators

to prioritize the contents of the log while viewing them. In addition, it automates

the production of log parsing templates through the use of the Loghound log data
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mining tool [77]. However, the production of the templates is carried out only when

an administrator requests it.

Nevertheless, these tools are still incapable of of automating the process of log

monitoring and alert detection fully. Therefore, for the most part, these tasks are still

carried out manually by system administrators. A lot of research is still required to

develop tools and techniques which will bring the level of automation to the required

level. These research efforts will have to focus on one or more of the problems listed

below.

• Unstructured Message Analysis. Events in system logs are typically not

homogenous entities. They contain structured and unstructured information.

Typically, the unstructured information (namely free-form messages) pose a

stumbling block to the automatic analysis of event data. Therefore, analysis

of unstructured messages is required for further understanding of system logs.

The methods proposed in [78, 45, 83, 2] show different approaches to carrying

out unstructured message analysis.

• Indexing/Feature Creation. This involves the generation of indexable fea-

tures from the unstructured data in the form of message type IDs and message

variables. This is referred to as message type transformation (MTT) in this

thesis.

• Event Correlation. In most cases, it is unlikely that a single event in a

system log could characterize system behavior. As such, it is important to find

message types which are correlated in the system logs. Correlated messages are

usually better indicators of system state. In [83], the authors track the variables

reported in message types as a means of identifying correlated messages. They

argue that messages which report the same variable(s) are likely to be correlated.

• Anomaly Detection. If system states can be identified, the task of alert

detection reduces to the task of identifying anomalous states. Thus, appropriate

anomaly detection techniques need to be devised.

The research performed in this thesis intends to contribute to approaches for deal-

ing with each of these problems. However, the following summarizes some previous

work done with log data in system monitoring.
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Loghound is a log data mining tool, which is an implementation of a frequent

itemset mining algorithm for mining both lines (message types) and event types (cor-

related messages) from an event log [77]. In [78], a case study highlighting the use of

Loghound to analyze Cisco Netflow logs for patterns which describe the behavior of

network traffic is presented. In [34], Liang et al. propose a 3-step filtering algorithm

for filtering failure logs from a high performance cluster (a BlueGene/L prototype),

which compresses and categorizes the events in the log to understand failure behavior

better.

In [33], the authors propose a modified Naive Bayes algorithm for the catego-

rization of messages in system logs. Unlike other approaches in which such message

categories are based on the textual representation of the messages, the categorization

done here is based on previously defined categories associated with the IBM CBE

(Common Base Event) format [74]. The authors then discover temporal relationships

between these message categories. These relationships are then visualized to monitor

system behavior.

In [57], the authors assume the existence of known event types (message types)

and use the process they refer to as event summarization to mine and rank tempo-

ral dependencies between event types. Temporal dependencies are mined using time

series analysis and are ranked using a forward entropy technique [9]. These depen-

dencies are visualized using an Event Relationship Network (ERN ) [72, 58], which

is used to interpret system behavior and derive rules for system management. In

[36], Lim et al. utilize message de-parameterization to create message types from

enterprise telephony system logs. Then the messages in the logs are replaced by these

message types, which they refer to as message codes. The logs are further analyzed

using frequent itemset mining to discover correlated messages, which were useful in

determining failure states in the system.

In [2] the authors propose a sequential algorithm for the discovery of message

types. Being a sequential algorithm, it is suited for online discovery of message types.

The authors also propose a novel algorithm; Principle Atom Recognition in Sets

(PARIS), which uses the message types discovered to identify message types which

tend to occur together in the event stream. Then these message types and correlations

are used in the diagnosis of system problems and in the visualization of the log data.
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In [83] the authors propose a framework for the detection of system problems

through the mining of console logs. Using message types extracted directly from

program source code, relevant features were extracted from event logs and processed

using Principal Component Analysis (PCA ). The PCA analysis was able to identify

outliers (anomalies), which they showed corresponded with periods during which

faults were injected into the network. This framework differs largely from the proposal

in this thesis in many ways, most notably in the fact that the proposed framework

extracts its message types directly from the event logs themselves, which is a more

readily available extraction source. Also, in this thesis, the evaluation is carried out

using data containing real systems faults, as opposed to injected faults.

In [21], the authors investigate the effects of message type transformation on the

problem regarding the supervised learning of alert signatures from log files. The

authors utilize and compare three associative classification methods, Naive Bayes

classification and decision tree classification using C4.5 as supervised learning ap-

proaches. The associative classification methods used are, CBA (Classification-Based

Association), CMAR (Classification based on Multiple Association Rules), and CPAR

(Classification based on Predictive Association Rules).

They used data generated from a test bed having a web server running two ap-

plications and a database server, with faults simulated through fault injection. Their

results suggest that apart from dimensionality reduction, message type transforma-

tion also helps to improve the accuracy of alert detection. Also, they found that

associative classifiers worked better on logs which are not abstracted, while Naive

Bayes and C4.5 performed better on abstracted logs. In contrast, in [15], the authors

propose the use of Finite State Auotmata (FSA) as means for alert detection in logs.

On the other hand, Nodeinfo is an alert detection method which utilizes the

entropy-based information content of system logs [69, 55]. Based on the assumption

that “Similar computers correctly executing similar code should produce similar logs,”

Nodeinfo introduces the more complex log.entropy term weighting scheme to the work

of Liao [35] and Reuning [60]. Nodeinfo has been shown to achieve an operationally

acceptable false positive rate of 0.05% at a Recall rate of 50% in the detection of

alerts in system logs from HPCs. This thesis also builds on the entropy-based infor-

mation content approach to system monitoring. In this thesis, I design and develop
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an entropy-based method which not only reduces the computational effort but also in-

creases its detection accuracy. Moreover a temporal entropy element is introduced to

the framework to deal with situations in which spatial-entropy alone is not sufficient

for alert detection. Overall, the combination of these techniques produces a totally

novel approach to alert detection which, while based on entropy-based techniques, is

completely different in its own right.

2.2 Limitations of Current Methods

This section highlights some of the limitations of the current tools used in industry

and previous research efforts. The system proposed in this thesis contributes to the

literature by mitigating some of these limitations.

• Limited automation. While fully automated system monitoring and alert

detection may not be possible yet, the level of automation found in most com-

mercial tools still leaves much to be desired. Even when some automation is

provided, the systems still require administrators to manage the automated

process: e.g. automation of alert detection using signatures of known alerts

require that administrators discover these signatures, input the signatures into

a database and then manage the signature database over time. The proposed

system in this thesis aims to improve the automation and to free administrators

from some of the more mundane tasks involved in log monitoring.

• Non-Interactive. According to [71], an ideal system log monitoring tool

should encourage co-operation between the autonomic system and human ad-

ministrators. Most systems provide only part of this capability or do not provide

it all. The use of visualization is restricted to aiding human administrators to

comprehend the contents of the logs or for presenting the result of automatic

analysis. The system receives no feedback which allows it to improve on its

capabilities.

• Signature or Anomaly Detection. Most of the previous systems are either

signature-based or anomaly-based. Signature-based systems tend to be very

accurate but suffer from an inability to detect novel alert behaviour. On the
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other hand, anomaly-based systems are able to detect novel alert behaviour

but are not as accurate as signature-based systems. An ideal system should

take advantage of the strengths of both approaches. Consequently, a hybrid

approach is proposed by this thesis.

• Assumes knowledge of infrastructure. Some previous approaches assume

in-depth knowledge of the systems being monitored. This assumption limits the

platform portability of such tools or techniques. While some knowledge of the

monitored system is necessary, the proposed approach in this thesis attempts to

limit the amount of information required to the barest minimum i.e. minimum

apriori information. Minimum apriori information produces a system which

assumes very little knowledge of the architecture of the system it would be

monitoring and does not rely on system specific characteristics, producing a

system which is platform portable.

2.3 The Proposed Anomaly Detection Framework

As discussed in Chapter 1, at the core of the alert detection framework is the anomaly

detection mechanism. The novel framework proposed by this thesis for anomaly

detection in system logs is called STAD. It works on the assumption that “System

logs events which are produced by similar spatial sources or produced during periods

of similar system activity are likely to be similar,” which is an extension on the

assumption used in entropy-based systems mentioned earlier in this chapter.

The main contributions of the proposed system are: (i) the extension of entropy-

based approaches by allowing the detection of alerts without resorting to ranking

schemes; and (ii) the enabling the analysis of a group of dissimilar nodes, which means

that it can be applied to distributed systems. The best case results for STAD also

improve on the baseline alert detection of an already deployed system, i.e. Nodeinfo,

on the same datasets. Published best case results for Nodeinfo show 50% detection

with a false positive rate of 0.05% [69]. My research is also the first to provide average

case results across several datasets for an entropy-based approach in which the entire

evaluation is carried out automatically. In previous works, evaluation results were

determined manually from a Precision-Recall plot [55, 47].
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An overview of the approach is provided in Fig. 2.1. Overall, each step of the

approach is general enough to allow flexibility in the choice of methods used. STAD

is referred to as an entropy-based approach in this thesis because some of the steps

used in the implementation utilize entropy-based approaches. However, the STAD

framework does not need to be entropy-based; it can be implemented without the use

of entropy-based techniques. The phases in the proposed framework are described

in detail in Sections 2.3.1 and 2.3.2. Moreover, the specific techniques employed for

the various components of STAD are presented in the following chapters, while the

framework itself is discussed in detail in Chapter 6.

Figure 2.1: Overview of the STAD framework.

2.3.1 Event Processing

As hinted in previous work [32, 84, 56], extracting sufficient structure from event

log data can be beneficial to automatic analysis. Essentially, this step of the frame-

work carries out the task of extracting structure from the unstructured component of

the logs. Event logs contain semi-structured information from heterogenous sources.

This fact coupled with the ambiguity introduced by the semantics of terms used by

application developers makes this step important. The event processing phase of the
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framework is sub-divided into three components which are Message Type Extraction,

Message Type Transformation and Similarity-based Decomposition.

1. MessageType Extraction. A single event line in a log file consists of different

fields (see Fig. 1.2 in Chapter 1). The “Message” is perhaps the most unstruc-

tured field within an event. They are produced by “print” statements within

program code. The goal of message type extraction is to extract structure from

the message field of events. Since messages are produced by print statements

within code, grouping messages produced by the same print statements is a

good way to find such structure automatically.

2. Message Type Transformation.

This component of the event processing phase is intended to apply the discov-

ered structure to the events in the log file. Using the message type templates

extracted from the message type extraction step, the messages in the event data

are transformed so that a more concise representation is achieved. This concise

representation has the effect of not only imposing structure on the unstructured

messages in the event data, but also of contributing to data compression.

3. Similarity-based Decomposition. This step of the process attempts to de-

compose the log into more homogenous units to allow for useful analysis. This

decomposition can be done using any means, depending on the goal of the

analysis.

2.3.2 Anomaly Detection

The goal of this phase of the framework is to identify the portions of the log which con-

tain anomalous events. This phase has three components which are Spatio-Temporal

Decomposition, Clustering and Identification.

1. Spatio-Temporal Decomposition. This component decomposes the content

of any log based on source and time information. After decomposition each

resultant unit will contain log information from a single source over a unit of

time. This thesis argues that this action leads to the discovery of correlated

message types.
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2. Clustering. The goal here is to group the spatio-temporal units such that

members of each group are very similar to each other while being very dissimilar

from the members of other groups. The resulting groups are referred to as

clusters.

3. Identification. This step aims to identify those clusters containing spatio-

temporal units which have anomalous activity. This step completes the process

of anomaly detection.



Chapter 3

Message Type Extraction

A basic task in the automatic analysis of log files is message type extraction [30, 40,

86, 68]. Message types are groups of unstructured natural language event descrip-

tions in event logs which have the same or similar semantic meanings. Message type

descriptions on the other hand are textual templates which abstract all the instances

of a message type. Unfortunately, the message types which exist in an event log are

not always known apriori. Message type extraction is the task of finding message

types when they are not known. The unstructured content of event logs constitute

a key challenge to achieving fully automatic analysis of system logs. Message types,

once found, can help to mitigate this problem. Apart from this, message types are

useful for the following.

• Compression. Message types can abstract the contents of system logs. There-

fore, they can be used to obtain more concise and compact representations of

log entries. This leads to memory and space savings.

• Indexing: Each message type can be assigned a unique ID (Identifier Index),

which in turn can be used to index historical system logs leading to faster

searches.

• Model Building. Building computational models using log data usually re-

quires the input of structured data. This process can be facilitated by the initial

extraction of message type information. Message types can be used to impose

structure on the unstructured messages in the log data before they are used to

build computational models. In [83, 15], the authors demonstrate how message

types can be used to extract measured metrics used for building computational

models from event logs. The authors were able to use their computed models

to detect faults and execution anomalies using the contents of system logs.

27
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• Visualization. Visualization is an important component of the analysis of

large data sets. Visualization of the contents of systems logs can be made more

meaningful to a human observer by using message types as a feature of the

visualization. For the visualization to be meaningful to a human observer, the

message types must be interpretable. This fact provides a strong incentive for

the production of message types which have meaning to a human observer.

As this thesis deals with the automatic analysis of log files, it would be impossible

to complete it without touching on the subject of message type extraction. This chap-

ter highlights a novel algorithm for message type extraction: Iterative Partitioning

Log Mining (IPLoM). It showcases the results of benchmarking it against some well

known techniques for message type extraction.

The main assumptions on the kind of event logs that IPLoM is suitable for are

listed below.

1. The events in the log contain at least one field which is an unstructured natural

language description of the event. These descriptions, which are called “mes-

sages,” illustrated in Fig. 3.1, would be produced naturally by a set of “print”

statements from a source code.

2. The underlying structure of these “messages” is unknown or not well docu-

mented.

The following points highlight how IPLoM differs from previous methods for mes-

sage type extraction:

• IPLoM does not assume any knowledge of the underlying system which will

produce the event log (e.g source code).

• IPLoM’s results tend to match message types produced by humans more closely

than previous approaches.

• IPLoM is able to find both frequent and infrequent message types in the log

data. This is important as rare patterns are often needed for certain types of

analysis.

The material presented in this chapter can be found in these publications [45, 43].
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3.1 Background and Motivation

An example event from an event log which uses the syslog format [38] is given in

Fig. 3.1. A line in a event log is not a homogenous entity; it consists of several fields

with different levels of structure. The natural language ”MESSAGE” field which

consists of a variable number of tokens is the most unstructured portion of the log. It

describes the incident which triggered the event. The unstructured nature of this field

is a major impediment to the fully automatic analysis of event logs. Message type

extraction is an attempt to find structure within the unstructured natural message

descriptions in event logs.

2005-06-05-01.54.59  R11-M0  RAS  KERNEL  WARNING     invalid  SNAN…..0 

TOKENS 

MESSAGE HEADER 

EVENT 

TIMESTAMP HOST SEVERITY FACILITY CLASS 

Figure 3.1: An example system log event.

To give an example of what message types are, consider this line of code:

sprintf(message, Connection from %s port %d, ipaddress, portnumber);

in a C program. This line of code could produce the following log messages:

‘‘Connection from 192.168.10.6 port 25’’

‘‘Connection from 192.168.10.6 port 80’’

‘‘Connection from 192.168.10.7 port 25’’

‘‘Connection from 192.168.10.8 port 21’’.

These four messages would form a message type in the event log and can be rep-

resented by the message type description:

‘‘Connection from * port *’’ .

The wildcards, i.e. the “*” characters, represent placeholders which can match any

word and are referred to as message variables. This representation of message types
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will be adopted in the rest of the thesis. Determining what constitutes a message type

might not always be as simple as this example might suggest. Consider the following

messages produced by the same print statement. ‘‘Link 1 is up’’, ‘‘Link 1 is

down’’, ‘‘Link 3 is down’’, ‘‘Link 4 is up’’. The most logical message type de-

scription here is ‘‘Link * is *’’, however, from an analysis standpoint, having two

descriptions ‘‘Link * is up’’ and ‘‘Link * is down’’ may be preferable. There

may be other cases as well in which messages produced by different print statements

could form single logical message types. However, for the most part, message types

will usually correspond to messages produced by the same print statement, so this

definition is retained for simplicity.

This message type extraction problem is well attested to in the literature but there

is as yet no standard approach to the problem [83]. Techniques for automatic message

type extraction are varied. Some of these approaches will be described subsequently,

but it is important to note that some event log formats are well structured and well

documented (e.g. IBM Webshpere). In such cases, message type extraction may

not be necessary. For example in [81], the authors provide an example of process

mining in web services using Websphere, while in [11], the authors propose a tool for

visualizing web services by mining the contents of event logs. Process mining refers

to the analysis of event logs as a way of monitoring adherence to business process

rules. The analysis can be carried out without message type extraction due to the

structured nature of the Webshpere logs which utilize the CBE model[74] for event

representation.

Approaches to message type extraction include extraction from source code [83]

and the use of techniques designed for pattern discovery in other types of textual

data, such as the use of Teiresias [61, 68]. However, the most popular approach has

been to view the message extraction task as a data clustering problem while using

frequent itemset mining approaches as a means of discovering the clusters.

If each textual line in an event log is considered a data point and its individual

words considered attributes, then the job of message type extraction can be seen as the

task of grouping similar log messages together. This is a clustering task which involves

using the words in each line as attributes. For example the log message Command has

completed successfully can be considered a data point with four dimensions, having
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the following attributes “Command,” “has,” “completed,” “successfully”. However,

as stated in [76], traditional clustering algorithms are not suitable for event logs for

the following reasons.

1. The event lines, do not have a fixed number of attributes.

2. The data point attributes, i.e. the individual words or tokens on each line, are

categorical. Most conventional clustering algorithms are designed for numerical

attributes.

3. Event log lines are high dimensional. Traditional clustering algorithms are not

well suited for high dimensional data.

4. Traditional clustering algorithms also tend to ignore the order of attributes. In

event logs, the order of the attributes is important.

For these reasons various domain specific data clustering algorithms for event logs

have been developed. Examples of such algorithms include Simple Logfile Clustering

Tool (SLCT) [76] and Loghound [77]. SLCT and Loghound are similar to the Apriori

algorithm [1].

In order to evaluate the performance of IPLoM, publicly available implementations

of SLCT, Loghound and Teiresias were selected.

3.2 Methodology

In this section the message type extraction techniques against which IPLoM is bench-

marked are described in more detail.

3.2.1 Simple Logfile Clustering Tool (SLCT) and Loghound

SLCT and Loghound both work by viewing the message type extraction problem

as a frequent itemset mining problem. Given a set of items (called an item base),

S, let us define T as a set of transactions defined over S such that for all T ∈ T,

T ⊆ S. A subset (also called an itemset) S ′ of S is said to be frequent if the number of

transactions in T which are supersets of S ′ exceed a user-specified support threshold

and is referred to as a frequent itemset. Hence, the frequent itemset mining problem
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can be defined as the task of finding all frequent itemsets which have support above

a specified threshold value in a given transaction database, T.

The algorithms view each line in the event log as a transaction containing an

ordered list of items, the items being the words in the log line. Since message types

contain words which occur frequently together on each line, then finding the frequent

itemsets of words would reduce to the problem of message type extraction.

Itemsets can be defined by the number of items they contain; e.g a k-itemset

is one which contains k items. While searching for the frequent itemsets, SLCT

and Loghound differ fundamentally in that while SLCT only considers 1-itemsets,

Loghound considers all itemsets up to size n, n as defined by the user.

Frequent itemset mining can be a very memory intensive process due to the large

number of items which may exist in the transaction database. A large number of

items means that a large number of candidate itemsets would be generated during

the mining process. The number of candidate itemsets increases exponentially with

respect to the number of items in the database. This problem can be especially

severe when dealing with log files. Log files may have unique words numbering in the

millions. Thus, SLCT and Loghound utilize two properties of event logs to reduce

the memory requirements of the search. These properties are:

1. A majority of the words in an event log occur infrequently, sometimes

no more than once and only a small fraction occur frequently. This

property allows the use of fixed size, m, a summary vector to estimate the words

which do not need to be stored in memory. A string hashing function which

returns a value between 0 and m − 1 is applied to each word in the log file.

Each of the m counters of the summary vector keeps a count of the number

of times a word hashes to that value. Eventually, when the actual vocabulary

gets built only those words which hash to values that exceed the support value

in the summary vector are utilized, thus reducing significantly the memory

requirements of storing the list of items.

2. A strong correlation exists among frequent words. This is due to the

fact that every line in an event log is formatted according to a format string.

Therefore the constant words in the format string end up occurring frequently

in log files. If the maximum number of words which occur on any line in the log
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file is k, then all itemsets of size between 1 and k need to be generated to search

for all the frequent itemsets. However, with this property, it is possible to search

for itemsets of a size smaller than k and still produce appreciable results. This

strong correlation which exists among frequent words, implies that combinations

of small size frequent itemsets lead naturally to frequent itemsets of a larger size.

This allows the search to be completed while generating only a few candidate

itemsets.

SLCT’s three step process will now be discussed in more detail.

1. The first step is the data summarization phase, which involves two passes over

the data. In the first pass, the summary vector is built and the list of the

potential 1-itemsets is selected for the vocabulary. The second pass identifies

the frequent words in the vocabulary. These frequent words are frequent 1-

itemsets. SLCT and Loghound make the distinction of differentiating words

by their position on the line. For instance, if the word “pass” appears as the

second and third words on two separate lines, then the following word and

position pairs will be created to separate the two instances: i.e. (2,“pass”) and

(3,“pass”).

2. In the next phase another pass is made over the data to determine the frequent

itemset candidates. The set of candidates is initially empty; as the data is

scanned, the 1-itemsets which occur on each line are determined. A candidate

which is defined by the combination of 1-itemsets that occur on a line is formed.

If the candidate already exists then its counter is incremented, otherwise it is

inserted in the list of candidates and its counter set to 1.

3. In the final step, the list of frequent itemset candidates is inspected. All can-

didates which have a count value which exceeds the support value are selected.

These selected candidates are the frequent line patterns (message types) which

occur in the log. For example, a selected candidate defined by the 1-itemsets,

{(1,“DHCPACK”), (2,“for”)}, will correspond to the message type

‘‘DHCPACK for *” .

A not-so-obvious advantage of determining frequent itemsets through a combi-

nation of 1-itemsets, rather than through actual candidate generation, is that the
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algorithm detects mainly maximal frequent itemsets. For instance, for the message

type ‘‘DHCPACK for *” , the subtypes ‘‘DHCPACK * *” and ‘‘* for *” are also

potential message types. By printing out only the first pattern, the number of mes-

sage types produced is reduced and the user is not overwhelmed with the size of the

output.

An open source implementation of SLCT written in C can be downloaded from

here [80]. A complete list of the options which can be used with the tool are listed in

Section A.1.1 of Appendix A.

Loghound differs from SLCT both in its utility and in the way it determines

frequent patterns in the log. Apart from finding the frequent line patterns which

occur in the log, Loghound is able to find sets of correlated message types as well,

i.e. message types which occur frequently in close temporal proximity in the log. A

frequent itemset mining paradigm is used for this task as well.

Loghound discovers frequent line patterns in much the same way as SLCT. It

follows the same 3-step process but it can utilize itemsets of a size larger than 1 for

candidate line pattern generation. As discussed, itemset generation can be mem-

ory intensive. Therefore, to ensure that minimal memory is used, the implementa-

tion of Loghound borrows ideas from the FP-growth [18] and Eclat [85] algorithms.

Loghound generates itemsets in a tree-like data structure called an itemset trie, which

it explores in a breadth first search manner.

Just like SLCT, Loghound produces output that is a series of line patterns, Fig.

3.2 shows four examples of the type of clusters which SLCT and Loghound are able to

find. With both SLCT and Loghound, lines which do not match any of the frequent

patterns discovered are termed “outliers”.

Figure 3.2: Sample clusters generated by SLCT and Loghound

The Loghound implementation is also open-source and written in C. It can be

downloaded from the url a this reference [79]. A complete list of the options which
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can be used with the “Loghound” tool once it is complied is provided in Section

A.1.2 of Appendix A. SLCT and Loghound have received considerable attention and

have been used in the implementation of the Sisyphus Log Data Mining toolkit [70],

in online failure prediction [64] and in intrusion detection [20].

3.2.2 Teiresias

Teiresias is a bio-informatics pattern discovery algorithm developed by IBM [61]. It

discovers motifs in biological sequences (protein or gene sequences). A motif is a sub-

sequence of characters which occur very frequently within the biological sequence. It

differs from previous algorithms for motif discovery in biological sequences in that

it is able to find all the patterns of interest without having to enumerate the entire

solution space, a property which greatly enhances its performance. Another difference

is that it is guaranteed to list only maximal patterns.

The algorithm works in two phases. During its first phase, called the scanning

phase, its finds all elementary patterns which meet minimum support. In other terms,

it takes a set of strings X and breaks them up into a set of unique characters C, which

are the building blocks of the strings. Only characters which meet a minimum support

value K are listed in C.

In the second phase, called the convolution phase, these elementary patterns are

combined successively into larger patterns until all maximal patterns have been gen-

erated. The maximal patterns must have at least a specificity determined by L/W,

where L is the number of non-wildcard characters from C and W is the width of the

motif with wildcards included.

Teiresias can be applied to message type extraction if message type templates

are viewed as motifs which appear within a set of strings, i.e. the lines in the event

log. A publicly accessible web-based implementation of Teiresias is available at this

URL [23]. The most important parameters for running the algorithm from the web

interface are L,W and K as described previously.

3.3 The Proposed technique: IPLoM Algorithm

Previous tools for message type extraction such as SLCT and Loghound have lim-

itations. The development of IPLoM was carried out with the aim of producing a
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message type extraction algorithm which overcomes these limitations. These limita-

tions are itemized below.

• They are unable to find all the possible message types which appear in a log

data file. The techniques used by these tools focus on the frequency of the

terms which appear in the data, hence can find only those message types which

appear frequently. IPLoM is designed to find both frequent and infrequent

message types.

• The support thresholds of SLCT and Loghound can be altered to allow them

to find infrequent message types. However, tests have shown that even when

this is done, the tools continue to show a bias for finding the frequent message

types. IPLoM is designed not to have a bias for either frequent or infrequent

message types. It gives all message types an equal chance of being found.

• A factor in judging the usability of the automatically extracted message types is

readability, i.e. the ability of a human observer to view and make sense of them.

Sometimes SLCT and Loghound produce message types at an abstraction level

that makes it difficult for a human to make sense of them. Hence, a design goal

for IPLoM is to produce message types at an abstraction level preferred by a

human observer.

The IPLoM message type extraction works by partitioning a set of log messages

iteratively. At each step of the partitioning process, the resultant partitions come

closer to containing only log messages which belong to the same message type. By

partition, a non-overlapping group of messages is assumed. At the end of the par-

titioning process the algorithm attempts to discover the template which generalizes

the log messages in each partition: these discovered partitions and templates are the

output of the algorithm.

The algorithm works through a four step process. An outline of the four steps of

IPLoM is given in Fig. 3.3. The algorithm is designed to discover all message types

in the set of log messages and does not require a support threshold as do SLCT or

Loghound. Since it may be necessary occasionally to find only message types which

have a support that exceeds a certain threshold, a file prune function (Algorithm 1) is

incorporated into the algorithm. By removing the partitions which contain a number
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of messages which fall below the threshold value at the end of each partitioning step,

only message type descriptions which meet the desired support threshold are included

in the output. However, the use of the file prune function is optional. The following

sub-sections describe each step of the proposed algorithm in more detail.

Algorithm 1 File Prune Function: Prunes the partitions produced using the file

support threshold.
Input: Collection C[] of log file partitions.

Real number FS as file support threshold. {Range for FS is assumed to be between

0 − 1.}
Output: Collection C[] of log file partitions with support greater than FS.

1: for every partition in C do

2: Supp = #LinesInPartition
#LinesInCollection

3: if Supp < FS then

4: Delete partition from C[]

5: end if

6: end for

7: Return(C)

3.3.1 Step 1: Partition by event size.

The first step of the partitioning process works on the assumption that log messages

which belong to the same message type are likely to have the same event size. The

event in Fig. 3.1 has an event size of 2. For this reason IPLoM’s first step (Fig. 3.4)

uses event size as a heuristic to partition the log messages.

Consider the message type description “Connection from *”, which contains 3

tokens. It can be be concluded intuitively that all the instances of this message

Step 1: Input Log 
Messages 

• Event Size 

Step 2 

• Token Position 

Step 3 

• Search for 
bijection 

Step 4: Output 
type descriptions 

• Discover type 
descriptions 

Figure 3.3: Overview of IPLoM processing steps.
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Summary…………..1 

. 

Invalid (SNAN)……….0 

. 

Data address: 0x7c832378 

Summary…………..1 

. 

. 

Invalid (SNAN)……….0 

. 

. 

Data address: 0x7c832378 

. 

. 

Figure 3.4: IPLoM Step-1: Partition by event size. Separates the messages into
partitions based on the their event sizes.

type e.g. “Connection from 255.255.255.255” and “Connection from 0.0.0.0” would

contain the same number of tokens as well. By partitioning the data first by event

size, the property of most message type instances having the same event size is being

taken advantage of. Therefore, the resultant partitions of this heuristic are likely to

contain the instances of the different message types which have the same event size.

A detailed description of this step of the algorithm is given in Algorithm 2.

Additional heuristics are used in the remaining steps to divide the initial partitions

further. The partitioning process induces a hierarchy of maximum depth 4 on the

messages and the number of nodes on each level is data dependent.

Sometimes, it is possible that message types which contain instances of variable

size exist in the event log. This scenario is explained in more detail in Section 3.5.3.

Since IPLoM assumes that messages belonging to the same message type should have

the same number of tokens or event size, this step of the algorithm would separate

instances of such message types. This does not occur very often and variable size

message types can be found by post processing IPLoM’s results. The process of

finding variable size message types can be computationally expensive. Nevertheless,

performing this process on the templates produced by IPLoM rather than on the

complete log would require less computation.
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Algorithm 2 IPLoM Step 1: Partition by Event Size
Input: Log file containing log messages.

Output: Collection C of log file partitions.

1: for each line in the log file do

2: Determine the count of tokens in line as token count. {Token delimiter is assumed

to be space character.}
3: if partition for lines with token count tokens exists then

4: Add line to the appropriate partition.

5: else

6: Create partition for lines with token count tokens.

7: Add line to the appropriate partition.

8: end if

9: end for

10: Add all partitions to C.

11: C = File Prune(C)

12: Return(C)

3.3.2 Step 2: Partition by token position.

At this point, each partition of the log data contains log messages which are of the

same size and therefore, the log messages can be viewed as n-tuples, with n being the

event size of the log messages in the partition. This step of the algorithm works on the

assumption that the column with the least number of variables (unique words) is likely

to contain words which are constant in that position of the message type description

which produced them. Therefore the heuristic is to find the token position with the

least number of unique values and split each partition using the unique values in

this token position, i.e. each resulting partition will contain only one of those unique

values in the token position discovered, as can be seen in the example outlined in

Fig. 3.5. A pseudo-code description of this step of the partitioning process is given

in Algorithm 3.

The memory requirement of unique token counting is a potential concern with this

step of the algorithm. While the problem of unique token counting is not specific to

IPLoM, however, IPLoM has an advantage in this respect. Since IPLoM partitions the

data, only the contents of the partition being handled need to be stored in memory.
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instructor  plb   error……..0 

Instruction  address:  0x0000df30 

Data    address:  0x7c832378 

Instructor plb error……0 
Instruction address: 0x0000df30 

Data address: 0x7c832378 

Figure 3.5: IPLoM Step-2: Partition by token position. Selects the token position
with the least number of unique values, token position 2 in this example. Then, it
separates the messages into partitions based on unique token values, i.e. “plb” and
“address:”, in the token position.

This reduces the memory requirements of the algorithm greatly. Moreover, other

workarounds can be implemented to reduce the memory requirements further. For

example, in Step-2 of the algorithm, by determining an upper bound on the lowest

token count in Step-1, the memory requirements of this step can be significantly

reduced. Further counts of unique tokens in any token position which exceeds the

upper bound can be eliminated. However, in this research, the aim is to make a proof

of concept so we left the implementation of such code optimization techniques for

future work.

Despite the fact that the token position with the least number of unique tokens

is used, it is still possible that some of the values in the token position might be

variables in the actual message type descriptions. While an error of this type may

have little effect on Recall, which measures the ratio of relevant items retrieved to

the entire set of relevant items in a retrieval task, it could affect Precision adversely,

which measures the ratio of relevant items retrieved in a set of retrieved items for a

retrieval task. To mitigate the effects of errors of this nature, a partition support ratio

(PSR) for each partition produced could be introduced. The PSR is calculated as in

Eq. 3.1. Then a partition support ratio threshold (PST) can be defined . We group

any partition with a PSR which falls below the PST into one partition (Algorithm 3).

The intuition here is that a child partition which is produced using a variable token

value may not have enough lines to exceed a certain percentage (the partition support

ratio threshold) of the log messages in the parent partition. It should be noted that

this threshold is not necessary for the algorithm to function and is introduced only

to give the system administrators the flexibility to influence the partitioning based
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Algorithm 3 IPLoM Step 2: Selects the token position with the lowest cardinality

and then separates the lines in the partition based on the unique values in the token

position. Backtracks on partitions with lines which fall below the partition support

threshold.
Input: Collection of log file partitions from Step-1.

Real number PST as partition support threshold. {Range for PST is assumed to be

between 0 − 1.}
Output: Collection of log file partitions derived at Step-2 C In.

1: for every log file partition do {Assume lines in each partition have same event size.}
2: Determine token position P with lowest cardinality with respect to set of unique

tokens.

3: Create a partition for each token value in the set of unique tokens which appear in

position P .

4: Separate contents of partition based on unique token values in token position P . into

separate partitions.

5: end for

6: for each partition derived at Step-2 do {}
7: if PSR < PS then

8: Add lines from partition to Outlier partition

9: end if

10: end for

11: File Prune() {Input is the collection of newly created partitions}
12: Return() {Output is collection of pruned new partitions}

on expert knowledge they may have to avoid errors in the partitioning process.

PSR =
#LinesInChildPartition

#LinesInParentPartition
(3.1)

3.3.3 Step 3: Partition by search for bijection

In the third and final partitioning step, partitioning is done by searching for bijective

relationships between the set of unique tokens in two token positions selected using

a heuristic as described in Algorithm 4. Consider the example messages below as a

log partition.
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Command has completed successfully

Command has been aborted

Command has been aborted

Command has been aborted

Command failed on starting

This partition has an event size of 4. The token positions on which to perform

the search for bijection need to be selected. The first token position has one unique

token, {Command}. The second token position has two unique tokens, {has, failed}.
The third token position has three unique tokens, {completed, been, on}. While the

fourth token position has three unique tokens, {successfully, aborted, starting}. We

notice in this example that token count 3 appears most frequently, i.e. twice: once in

position 3 and once in position 4. Therefore, the heuristic would select token positions

3 and 4 in this example.

To summarize the steps of the heuristic, first we determine the number of unique

tokens in each token position of a partition. Then we determine the most frequently

occurring token count among all the token positions. This value must be greater

than 1. The token count which occurs most frequently is likely indicative of the

number of message types which exist in the partition. If this is true, then a bijective

relationship should exist between the tokens in the token positions which have this

token count. Once the most frequently occurring token count value is determined,

the token positions chosen will be the first two token positions which have a token

count value equivalent to the most frequently occurring token count.

A bijective function is a 1-1 relation which is both injective and surjective. When

a bijection exists between two elements in the sets of tokens, usually it implies that

a strong relationship exists between them and log messages which have these token

values in the corresponding token positions. Thus, log messages which have these

token values in the chosen token positions are separated into a new partition.

Sometimes the relations found are not 1-1 but 1-M, M-1 and M-M. In the

example given in Fig. 3.7, the tokens privileged and instruction with the tokens

imprecise and exception have a 1-1 relationship because all lines which contain the

tokens privileged and imprecise in position 2 also contain the tokens instruction and

exception in position 3 as well and vice versa. Consider the event messages given in
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Fig. 3.3.3 below to illustrate 1-M, M-1 and M-M relationships. If token positions 2

and 3 are chosen by the heuristic, a 1-M relationship with tokens speeds, 3552 and

3311 will be found, as all lines which contain the token speeds in position 2 have

either tokens 3552 or 3311 in position 3, a M-1 relationship will be the reverse of this

scenario. On the other hand, if token positions 3 and 4 are chosen by the heuristic,

a M-M relationship will be found.

Fan speeds 3552 3552 3391 4245 3515 3497
Fan speeds 3552 3534 3375 4787 3515 3479
Fan speeds 3552 3534 3375 6250 3515 3479
Fan speeds 3552 3534 3375 **** 3515 3479
Fan speeds 3311 3534 3375 4017 3515 3479

Figure 3.6: Example messages illustrating 1-M, M-1 and M-M relationships.

It is obvious that no discernible relationship can be found with the tokens in the

chosen positions. Token 3552 (in position 3) maps to tokens 3552 (in position 4) and

3534. On the other hand, token 3311 maps to token 3534 as well which makes it

impossible to split these messages using their token relationships. Such a scenario is

referred to as a M-M relationship.

In the case of 1-M and M-1 relations, the M side of the relation could represent

variable values (so only one message type description is being dealt with) or constant

values (so that in fact each value represents a different message type description).

The diagram in Fig. 3.8 describes the simple heuristic which is used to deal with

this problem. Using the ratio between the number of unique values in the set and

the number of lines which have these values in the corresponding token position in

the partition, and two threshold values, a decision is made on whether to treat the

M side as consisting of constant values or variable values. M-M relationships are

split iteratively into separate 1-M relationships or ignored depending on whether the

partition is coming from Step-1 or Step-2 of the partitioning process, respectively.

Before partitions are passed through the partitioning process of Step 3 of the

algorithm, they are evaluated to determine whether they form good clusters already.

To do this, a cluster goodness ratio threshold (CGT) is introduced into the algorithm.

The cluster goodness ratio (CGR) is the ratio of the number of token positions which
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have only one unique value to the event size of the lines in the partition, according to

Eq. 3.2. In the example in Fig. 3.7, the partition to be split has four token positions.

Of these four, the first and second have only one unique value, i.e. “Program” and

“Interrupt” respectively. Therefore, the CGR for this partition will be 2
4
. Partitions

which have a value higher than the CGT are considered good clusters and are not

partitioned any further in this step. Just as in Step-2, the PSR can be used to

backtrack on the partitioning at the end of Step 3. While the backtracking is optional

as with Step 2, it is advisable that it is carried out to deal with errors when they

occur.

CGR =
#TokenPositionsWithOneUniqueTokenInPartition

#EventSizeOfPartition
(3.2)

Program interrupt:  privileged  instruction 

program  interrupt:   imprecise  exception 

program interrupt: privileged instruction program interrupt:  imprecise exception 

Figure 3.7: IPLoM Step-3: Partition by search for bijection.
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Algorithm 4 IPLoM Step 3: Selects the two token positions and then separates the

lines in the partition based on the relational mappings of unique values in the token

positions. Backtracks on partitions with lines which fall below the partition support

threshold.
Input: Collection of partitions from Step 2. {Partitions of event size 1 or 2 are not processed here}

Real number CT as cluster goodness threshold. {Range for CT is assumed to be between 0−1.}
Output: Collection of partitions derived at Step-3.

1: for every log file partition do

2: if CGR >= CT then {See Eq. 3.2}
3: Add partition to collection of output partitions

4: Move to next partition.

5: end if

6: Determine token positions using heuristic as P1 and P2. {Heuristic is explained in the text.

Token position P1 is assumed to occur before P2.}
7: Determine mappings of unique token values P1 in respect of token values in P2 and vice versa.

8: if mapping is 1 − 1 then

9: Create partitions for event lines that meet each 1 − 1 relationship.

10: else if mapping is 1 − M or M − 1 then

11: Determine variable state of M side of relationship.

12: if variable state of M side is CONSTANT then

13: Create partitions for event lines that meet relationship.

14: else {variable state of M side is V ARIABLE}
15: Create new partitions for unique tokens in M side of the relationship.

16: end if

17: else {mapping is M − M}
18: All lines with meet M − M relationships are placed in one partition.

19: end if

20: end for

21: for each partition derived at Step-3 do {}
22: if PSR < PS then

23: Add lines from partition to Outlier partition

24: end if

25: end for

26: File Prune() {Input is the collection of newly created partitions}
27: Return() {Output is collection of pruned new partitions}
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Figure 3.8: Deciding on how to treat 1-M and M-1 relationships. This procedure is
implemented in the Get Rank Position function.

3.3.4 Step 4: Discover message type descriptions from each partition.

At this step of the algorithm, partitioning is complete and it is assumed that each

partition represents a collection of messages produced by the same message type. The

message type descriptions are determined by counting the number of unique tokens

in each token position of a partition. If a token position has only one value then it

is considered a constant value in the message type description. Token positions with

more than one unique token are considered variables. This process is illustrated in

Fig. 3.9.

Since the goal is to find all message types which may exist in an event log or

ensure that the presence of every message type contained in an event log is reflected

in the message types produced, the possibility of “outliers” interfering with the tem-

plates produced at this step is not of major concern. Hence, we set the threshold

for determining a variable token position as any token position with more than one

unique token.
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invalid 

Invalid 

invalid 

invalid 

(SNAN)……0 

(Inf/Zero)…..0 

compare…..0 

* 

Figure 3.9: IPLoM Step-4: Discover message type descriptions. If the cardinality of
the unique token values in a token position is equal to 1, then that token position is
represented by that token value in the template, else the token position is represented
with an “*”.

3.3.5 Algorithm Parameters

In this section, an overview of the parameters used by IPLoM is given. The fact that

IPLoM has several parameters (which can be used to tune its performance) provides

flexibility for the system administrators. This gives them the option of using their

expert knowledge when they deem it necessary.

• File Support Threshold: Ranges between [0,1]. It reduces the number of

partitions produced by IPLoM. Any partition whose instances have a support

value less than this threshold is discarded. The higher this value is set, the

fewer the number of partitions will be produced. This parameter is similar to

the support threshold defined for SLCT and Loghound.

• Partition Support Threshold: Ranges between [0,1]. It is a threshold which

controls backtracking. Based on the experiments, the guideline is to set this

parameter to very low values, i.e. < 0.05, for optimum performance.

• Upper Bound and Lower Bound: Ranges between [0,1]. They control the

decision on how to treat the M side of relationships in Step-2. Lower Bound

should usually take values < 0.5 while Upper Bound takes values > 0.5.

• Cluster Goodness Threshold: Ranges between [0,1]. It is used to avoid

further partitioning. Its optimal setting is in the range of 0.3 − 0.6.
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3.4 Evaluation and Results

The design goal for IPLoM was threefold. The first was to design an algorithm which

is able to find all message types which may exist in a given log file. The second was to

give every message type an equal chance of being found irrespective of the frequency

of its instances in the data. The third was to design an algorithm which will produce

message types at an abstraction level preferred by a human observer. Therefore, the

discussions in this section will begin by first describing the setup of the experiments

in Section 3.4.1 and then providing results, in Section 3.4.2, which show how the goals

listed were met when IPLoM is utilized with its primary goal: finding all message

types. Resource consumption statistics (CPU and Memory) for the SLCT, Loghound

and IPLoM are provided as well in Section 3.4.2. The discussions in sections 3.4.3

and 3.4.4 show how varying the line support threshold (FST) using low absolute

counts and percentage values, respectively affects the results of the algorithms. SLCT,

Loghound and Teiresias need a line support threshold to extract message types, while

IPLoM does not. For SLCT and Loghound, this support value can be specified either

as a percentage of the number of events in the event log or as an absolute value.

For this reason, two sets of experiments were run using support values specified as

percentages and as absolute values. In either case, the support values were set to

low values because intuitively this allows for finding most of the message types in

the data, which is one of the desired goals. In section 3.4.5, parameter sensitivity

analysis results are presented. In section 3.4.6 an experiment is presented using logs

from one of the world’s fastest supercomputers that suggests that IPLoM may have

linear complexity. In section 3.5 the performance limits of IPLoM are discussed.

3.4.1 Experimental Setting

All experiments were run on an iMac7 desktop computer running Mac OS X 10.5.6.

The machine has an Intel Core 2 Duo processor with a speed of 2.4GHz and 2GB

of memory. IPLoM’s performance was tested against those of SLCT, Loghound and

Teiresias. The four algorithms were tested against seven log datasets which were

obtained from different sources; Table 4.4 gives an overview of these datasets. The

HPC log file is a publicly available data-set collected on high performance clusters
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Table 3.1: Log Data Statistics
Name Description # Messages # Msg. Types

HPC High Performance Cluster (Los Alamos) 433,490 106

Syslog OpenBSD Syslog 3,261 60

Windows Windows Oracle Application Log 9,664 161

Access Apache Access Log 69,902 14

Error Apache Error Log 626,411 166

System OS X Syslog 24,524 9

Rewrite Apache mod rewrite Log 22,176 10

at the Los Alamos National Laboratory NM, USA [39]. The Access, Error, System

and Rewrite data-sets were collected on the faculty network at Dalhousie University,

while the Syslog and Windows files were collected on servers owned by a large ISP.

Due to privacy issues, the Dalhousie and ISP datasets cannot be made available to

the public.

The message type descriptions of these 7 data-sets were produced manually by

Tech Support members of the Dalhousie Faculty of Computer Science. Table 4.4

gives the number of message types identified in each file manually. Some form of

automation (e.g. regular expressions) could have been utilized in the labeling process,

however the decision on what constitutes a message type was completed manually by

system administrators of Dalhousie Computer Science. Again, due to privacy issues,

the manually produced message type descriptions are provided only for the HPC

dataset 1. These cluster descriptions became the gold standard against which to

measure the performance of the algorithms as an information retrieval (IR) task. As

in classic IR, the performance metrics were Precision, Recall and F-Measure, which

are described by Eqs. 3.3, 3.4 and 3.5, respectively. The terms TP, FP and FN in

the equations are the number of True Positives, False Positives and False Negatives,

respectively. Their values are derived by comparing the set of manually produced

message type descriptions to the set of templates extracted by each algorithm. In

the evaluation, a message type description is still considered a FP even if it matches

a manually produced message type description to some degree: the match has to be

exact for it to be considered a TP.

For completeness the Precision, Recall and F-Measure values were evaluated using

1Descriptions are available for download from http://web.cs.dal.ca/˜makanju/iplom
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three different methods. In two methods, the results of the algorithms were evaluated

as a classification problem, using the manually produced message types as classes.

In this case, the correlation of the automatically assigned labels to the manually

produced labels was evaluated. This classification evaluation produced Micro-average

and Macro-average results. These results are referred to as “Micro” and “Macro”.

In the third method, the manually produced message type descriptions are compared

against the automatically produced ones. This evaluation method is called “IR”. The

“IR” evaluation method satisfies the intended goals better, as it tests the accuracy of

the message types extracted. The “IR” method evaluates the results based strictly on

how well the message types extracted match the manually produced message types.

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)

F − Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(3.5)

The parameter values used in running the experiments which produced the base-

line results and the results in sub-sections 3.4.3 and 3.4.4 are provided in Table 3.2.

The seed value for SLCT and Loghound is a seed for a random number generator

used by the algorithms; all other parameter values for SLCT and Loghound are left

at their default values. Similarly, the parameters for Teiresias were chosen to achieve

the lowest support value allowed by the algorithm. The IPLoM parameters were all

set empirically except in the case of the cluster goodness threshold and the partition

support threshold.

In setting the cluster goodness threshold, IPLoM was tested against the HPC

file while varying this value. The parameter was then set to the value (0.34) which

gave the best result and was kept constant for the other files used in the experiments

carried out. On the other hand, the partition support threshold was set to 0 to

provide a baseline performance. Such a setting for the performance threshold implies

that no backtracking was done during partitioning.
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It is pertinent to note that the Teiresias algorithm could not be tested against all

datasets. This was due to its inability to scale to the size of the datasets. This is a

problem which is attested to by other researchers [68]. Thus, in this work, Teiresias

could be tested only against the Syslog dataset. The memory consumption results

were obtained by monitoring the processes for each algorithm by using the Unix ps

and grep utilities.

Table 3.2: Algorithm Parameters
Algorithm Parameter Value

SLCT and Loghound

Support Threshold (-s) 0.01 - 0.1

Seed (-i) 5

Teiresias

Sequence Version On

L (min. no. of non wild card literals in pattern) 1

W (max. extent spanned by L consecutive non wild card literals) 15

K ( Min. no. of lines for pattern to appear in) 2

IPLoM

File Support Threshold (Percentage) 0 - 0.1

File Support Threshold (Absolute) 1 - 20

Partition Support Threshold 0

Lower Bound 0.1

Upper Bound 0.9

Cluster Goodness Threshold 0.34

3.4.2 Baseline Experiments

The result of the default evaluation of SLCT, Loghound and IPLoM is shown in

Figure 3.10. The graphs in Figure 3.10 show the results for the Recall, Precision and

F-Measure metrics for all the algorithms using the “IR” evaluation method. Since

one of the goals of IPLoM is to find all message types which may exist in a log file,

this set of experiments was run with the lowest file support threshold possible, which

is an absolute support value of 1. SLCT and Loghound would not work efficiently

with an absolute support value of 1, so they were run with 2 instead. An absolute

support value of 1 means every line/word will be considered frequent and the result

of the algorithms will be reduced to the case of finding unique lines for SLCT or

the case of finding all possible templates for Loghound. Both situations are not

desirable. Since Teiresias worked only on the Syslog data-set, its results are not
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included in the analysis. Utilizing the parameter values listed in Table 3.2, Teiresias

produced a Recall performance of 0.1, a Precision performance of 0.04, which led

to an F-Measure performance of 0.06 using the IR evaluation method. By providing

“IR” evaluations which compare the results of the algorithms with manually produced

results, we evaluated how well the third design goal has been met, which was to design

an algorithm which will produce message types at an abstraction level preferred by a

human observer.

For fairness in comparison, two evaluations for Loghound are provided. Loghound,

being a frequent itemset mining algorithm, is unable to detect variable parts of a

message type when they occur at the tail end of a message type description. For

example, if it is intended to find the message type description “ Error code: *”, it is

possible for Loghound to find the message type description as “Error code:”, without

the trailing variable at the end. In such a situation, Loghound would not be credited

with finding the message type description. Therefore, a second set of evaluations

for Loghound (referred to as Loghound-2) was generated. This evaluation adjusts

Loghound’s results by comparing them to manually produced message types when

the last trailing variables are discarded.

However, these results are for information purposes only. Considering message

type descriptions where the number of trailing variables cannot be assessed is detri-

mental to the goal of finding only meaningful message types at an abstraction level

preferred by a human observer. When the number of trailing variables in a message

type description cannot be assessed, the event size is unknown. The “Event Size” is

a means of differentiating between messages types. This leads to a loss of meaning

and ambiguity. Consider these three actual examples of message types found manu-

ally: “Link *”, “Link error on broadcast tree”, “Link in reset”. Without the trailing

variable the first message type becomes “Link” which can be interpreted to mean

any message which starts with the word “Link”, since the event size of the message

type is unknown. This interpretation means that an instance of the first message

type cannot be distinguished from an instance of the second or third message types.

Consequently, even though we have presented Loghound-2 results where the trailing

variables are not used, we believe that in practice the trailing variables are needed

(Loghound results below).
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(a) Recall

(b) Precision

(c) F-Measure

Figure 3.10: Comparing algorithm IR performances at lowest support values.
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Table 3.3: Log Data Event Size Statistics

Name Min Max Avg.

HPC 1 95 30.7

Syslog 1 25 4.57

Windows 2 82 22.38

Access 3 13 5.0

Error 1 41 9.12

System 1 11 2.97

Rewrite 3 14 10.1

The average IR F-Measure performance across the data-sets, at this default sup-

port level, is 0.07, 0.04, 0.10 and 0.46 for SLCT, Loghound, Loghound-2 and IPLoM

respectively. However, as stated in [18], in cases where data sets have relatively

long patterns or low minimum support thresholds have been used, apriori-based algo-

rithms incur non-trivial computational costs during candidate generation. The event

size statistics for the datasets as outlined in Table 3.3 show the HPC file as having the

largest maximum and average event size. Loghound was unable to produce results

on this data set with an absolute support value of 2. The algorithm crashed due to

the large number of item-sets which had to be generated, as can be seen in Figure

3.10. However, this was not a problem for SLCT (as it generates only 1-itemsets).

These results show that Loghound is vulnerable to the computational cost problems

outlined in [18], which is not a problem for IPLoM as its computational complex-

ity is not affected adversely by long patterns or low minimum support thresholds. In

terms of performance based on the event size, Table 3.4 shows consistent performance

from IPLoM irrespective of event size, while SLCT and Loghound seem to suffer with

mid-size clusters. Evaluations of Loghound considering the trailing variable problem

shows Loghound achieving its best results for message types with a large event size

and achieving results which are comparable to IPLoM in the other categories.

The ability to discover message types in event logs irrespective of how frequently

its instances appear in the data is another cardinal goal in the design of IPLoM. The

performance of the algorithms using this evaluation criterion is outlined in Table 3.5.
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Table 3.4: Algorithm performance based on cluster event size

Event Size No. of Clusters Percentage Retrieved(%)

SLCT Loghound Loghound-2 IPLoM

1 - 10 316 12.97 13.29 49.68 53.80

11 - 20 142 7.04 9.15 35.92 49.30

>21 68 15.15 16.67 77.27 51.52

The results show a reduction in performance for all the algorithms for message types

with a few instances, however IPLoM’s performance was more resilient.

The resource consumption results for SLCT, Loghound and IPLoM are presented

in Tables 3.6, 3.7 and 3.8. The tables show results for CPU, virtual memory and

resident memory consumption, respectively. It is noted that the results for Loghound

on the HPC data set are results collected before its process crashed. However, the

statistics for this case show why the process crashed. Its virtual memory and resident

memory consumption had gone up to ∼4GB and ∼1.6GB, respectively. This is for

a file which is ∼11.4MB on disk. These results corroborate the initial assertion on

the failure of Loghound on this data set, i.e. a large number of itemsets having been

generated at a low support value. Furthermore, the CPU consumption does not give

a true picture of the time before the algorithm crashed, the actual time between the

start of the process and its crashing was 62 mins. The ps utility measures the CPU

time consumed by the process alone. In this case, all the CPU time spent by the OS

in performing swaps between resident and virtual memory as a result of the process

was not recorded.

Table 3.5: Algorithm performance based on cluster instance frequency (LH →
Loghound)

Instance Frequency # Clusters Percentage Retrieved(%)

Range

SLCT LH LH-2 IPLoM

1 - 10 263 2.66 1.90 38.02 44.87

11 - 100 144 16.67 18.75 50.69 47.92

101 - 1000 68 20.59 23.53 63.24 72.06

>1000 51 34.00 38.00 74.00 82.00
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In spite of the fact that the implementation of IPLoM uses no sophisticated mem-

ory management techniques2, it produces results which are comparable to those of

SLCT and Loghound in terms of both virtual memory and resident memory con-

sumption. The memory consumption of IPLoM can be improved further by using

optimization algorithms and data structures. In terms of CPU time, however, its

results are only comparable to those of SLCT and Loghound for the smaller data

sets, i.e. Rewrite, Syslog, System and Windows. This is not seen as a problem since

IPLoM is designed for offline extraction of message types. Having said this, we be-

lieve there is still a lot of room for improvement in CPU time consumption for the

following reasons.

• The most important factor in determining the processing time for IPLoM is

time spent scanning the database. This suggests that IPLoM may have linear

complexity. IPLoM was implemented for research purposes, so each step of

the algorithm was implemented separately. This implies that there was no

information sharing between the steps of the algorithm. This led to unnecessary

scans of the database for information gathering, which could have been avoided.

• IPLoMs partitioning of the data is in effect a decomposition of the message

type extraction problem. This makes IPLoM a good candidate for parallel

processing.

3.4.3 Absolute Support Values

In this set of experiments the results using absolute support values in the range of

1 − 20 are compared, with a minimum of 2 for SLCT and Loghound. The goal here,

as with the experiments in Section 3.4.4, is to determine how varying the file support

threshold within a range of low values affects the performance of the algorithms. As

stated earlier using low file support values ensures a good chance of finding all the

message types in the file, which is one of the aforementioned goals.

The average F-Measure results using the “Micro”, “Macro” and “IR” evaluations

for SLCT, Loghound and IPLoM are highlighted in Table 3.9. The results show

2SLCT and Loghound utilize string hashing functions and cache trees for efficient memory uti-
lization [76, 77]
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Table 3.6: CPU Time in Minutes

SLCT Loghound IPLoM

HPC <1.0 3.5 2.0

Syslog <1.0 <1.0 <1.0

Windows <1.0 <1.0 <1.0

Access <1.0 <1.0 5.4

Error <1.0 <1.0 37.5

System <1.0 <1.0 <1.0

Rewrite <1.0 <1.0 <1.0

Table 3.7: Maximum Virtual Memory Consumption in KBs

SLCT Loghound IPLoM
HPC 608,348 4,186,284 99,248
Syslog 600,284 600,284 98,992
Windows 601,232 601,056 98,992
Access 614,088 615,760 101,040
Error 623,504 613,964 101,040
System 599,636 600,032 98,992
Rewrite 600,032 600,032 98,992

that IPLoM performs better than the other algorithms on all data sets in the IR

evaluation, which measures the goodness of the clusters produced. In the Micro and

Macro evaluations, IPLoM does even better than the other algorithms in general.

However, there are performance improvements for SLCT and Loghound and in one

case (with the Syslog dataset) SLCT actually performs better than IPLoM.
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Table 3.8: Maximum Resident Memory Consumption in KBs

SLCT Loghound IPLoM
HPC 10,388 1,619,156 19,196
Syslog 1,260 1,260 19,008
Windows 2,660 2,976 19,072
Access 15,688 22,748 21,136
Error 24,900 20,968 21,056
System 320 820 18,988
Rewrite 920 1,252 19,084

Table 3.9: Average F-Measure performance of algorithms using absolute support
values

F-MEASURE PERFORMANCE

HPC Syslog

SLCT Loghound IPLoM SLCT Loghound IPLoM

Micro 0.64 0.55 0.66 0.10 0.06 0.07

Macro 0.25 0.45 0.45 0.13 0.07 0.11

IR 0.02 0.01 0.59 0.14 0.08 0.14

Windows Access

SLCT Loghound IPLoM SLCT Loghound IPLoM

Micro 0.22 0.25 0.28 0.00 0.00 0.00

Macro 0.17 0.18 0.22 0.11 0.15 0.20

IR 0.18 0.11 0.34 0.00 0.00 0.26

Error System

SLCT Loghound IPLoM SLCT Loghound IPLoM

Micro 0.68 0.28 0.82 0.20 0.16 0.83

Macro 0.22 0.17 0.31 0.18 0.09 0.56

IR 0.01 0.01 0.43 0.15 0.07 0.75

Rewrite

SLCT Loghound IPLoM

Micro 0.08 0.05 0.83

Macro 0.10 0.13 0.30

IR 0.01 0.01 0.49
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3.4.4 Percentage-based Support Values

A system administrator can specify a support value using an absolute value (as in

the section above) or a value which is dependent on the number of lines in the event

log, i.e. a percentage. To determine IPLoMs performance when support values are

specified in this way another set of experiments using percentage-based support values

was performed. For the same reasons as described above, the range of values is low, i.e.

0.1% - 1.0%. The F-Measure results of this scenario show IPLoM performing better

than the other algorithms on all the tasks. A single factor ANOVA test performed

at 5% significance on the results shows a statistically significant difference in all the

results except in the case of the Syslog file. Detailed results of the ANOVA tests can

be found in Appendix D.

The rest of the results for this set of experiments were evaluated using the IR

method. A detailed summary of the Recall, Precision and F-Measure results can

be found in Figs. 3.11, 3.12 and 3.13, respectively. The results show that IPLoM

outperforms both algorithms in all cases.

3.4.5 Parameter Sensitivity Analysis

IPLoM has five parameter values which can affect its results. These parameters

are the File Support Threshold (FST), Partition Support Threshold (PST), Cluster

Goodness Threshold (CGT) and the Upper Bound (UB) and Lower Bound (LB)

thresholds used to decide if the “many” end of a 1-M relationship represents constant

values or variable values. It is important that the sensitivity of IPLoM’s performance

to the value settings of these parameters is assessed. In this section such an analysis

is presented. IPLoM was tested against the datasets using a wide range of values

as outlined in Table 3.10. Since the FST used in IPLoM is similar to the support

threshold used in SLCT and Loghound they were tested as well using the range of

values for FST in Table 3.10.

The results show that IPLoM is most sensitive to varying values of FST as can

be seen in Fig. 3.14. This can be explained by the observation that increasing the

support value decreases the number of event types which can be found, since any event

type with instances which fall below the support value cannot be found. However,

the graphs show that generally, for support values greater than 20%, there is not
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Figure 3.11: Comparing Recall performance of IPLoM, Loghound and SLCT using
support values.
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Figure 3.11: Comparing Recall performance of IPLoM, Loghound and SLCT using
support values.
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Figure 3.12: Comparing Precision performance of IPLoM, Loghound and SLCT using
support values.
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Figure 3.12: Comparing Precision performance of IPLoM, Loghound and SLCT using
support values.
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Figure 3.13: Comparing F-Measure performance of IPLoM, Loghound and SLCT
support values.
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Figure 3.13: Comparing F-Measure performance of IPLoM, Loghound and SLCT
support values.
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much difference in the performance of the algorithms. Using the standard deviation

over the range of results for each parameter, as seen in Table 3.11, the sensitivity

of the algorithms to changing parameter values can be evaluated. The results show

that IPLoM is stable in the face of changing parameter values. The largest standard

deviation values are found with IPLoM under the FST parameter, which is due to

IPLoM’s superior performance for FST values less than 20%.

3.4.6 Complexity

The results observed in this section suggest that the computational complexity of

IPLoM is linear with respect to the number of events in any log. The experiments

were performed using the BlueGene/L (BGL) dataset.

The BlueGene/L data set is a publicly available high performance computing log

dataset [75]. The BlueGene/L supercomputer is a well known HPC machine designed

by IBM. It is located at Lawrence Livermore National Labs (LLNL) in Livermore,

CA, USA. According to the Top-500 supercomputing site BlueGene/L ranked #5 in

its list of the fastest supercomputers in the world [73] in January 2011. The BGL

data contains 4.7M event log entries from BlueGene/L covering a 215 day period.

The size of the event log file on disk is 1.2GB.

The experiment was carried out by running IPLoM against portions of the BGL

data which differ in size by units of 100, 000 events. IPLoM was tested against each

portion 10 times and the time for completion was recorded for each run. The graph

in Fig.3.15 records the average time over the 10 runs and the amount of time required

to run each unit of 100, 000 events.

Table 3.10: Parameter Value Ranges Used for Sensitivity Analysis

Parameter Range

File Support Threshold(%) 0 - 100

Partition Support Threshold(%) 0 - 5

Lower Bound 0.1 - 0.5

Upper Bound 0.5 - 0.9

Cluster Goodness Threshold 0 - 1
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The results suggest that IPLoM is a lightweight algorithm with linear complexity

in terms of the size of an event log, for the data sets we experimented with. IPLoM’s

complexity in the general case is a topic of future research. This result provides

strong incentive for future work where the complexity of IPLOM can be explored

analytically.

3.5 Analysis of Performance Limitations

The IPLoM algorithm, as with all algorithms which utilize heuristics, is capable of

making errors and does in fact make errors during its partitioning phase. An analysis

of these errors is given in this section. In addition, likely remedies are described where

possible.

3.5.1 Insufficient Information in Data

Apart from the message type descriptions produced by all the algorithms as output,

IPLoM has the added advantage of producing the partitions of the log data which

represent the actual message types. This provides two sets of results which can be

evaluated for IPLoM, the partitions and their descriptions. While evaluating the

partition results of IPLoM it was discovered that in certain cases it was impossible

for IPLoM to produce the right message type description for a partition due to the

fact that the partition contained only one event line or contained identical event lines.

This situation would not pose a problem for a human subject who would be able to

use semantic and domain knowledge to determine the right message type description.

This problem is illustrated in Fig. 3.16. This indicates that the IR comparison of the

message type descriptions produced by IPLoM does not give a complete picture of

Table 3.11: Standard Deviation over F-Measure results for parameter values

FST PST CGT LB:UB
Loghound SLCT IPLoM IPLoM IPLoM IPLoM

HPC 0.017 0.017 0.197 0.009 0.107 0.048
Syslog 0.025 0.000 0.058 0.000 0.013 0.025

Windows 0.036 0.044 0.146 0.002 0.088 0.018
Access 0.000 0.001 0.079 0.036 0.085 0.006
Error 0.005 0.010 0.146 0.034 0.034 0.028

System 0.035 0.066 0.279 0.000 0.000 0.197
Rewrite 0.001 0.000 0.123 0.000 0.000 0.000
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IPLoM’s performance. To get a complete picture of IPLoM’s capabilities, IPLoM’s

performance based on partitioning results was evaluated. These results are called

Partitions in Fig. 3.17, while the message type description results are called Before.

The partition comparison differs from the message type description results because

cases where IPLoM came up with the right partition but was unable to come up with

the right cluster description were marked as correct. The results show an average F-

Measure of 0.48 and 0.78 for IPLoM when evaluating the results of IPLoM’s message

type description output and partition output, respectively. Similar results are noticed

as well for Precision and Recall.

Due to the fact that SLCT and Loghound do not generate partitions to evaluate

(however, these partitions can be found through post-processing if desired) and since

it can be argued that the “insufficient information in data” scenario could apply to

them as well, another experiment was constructed. In this case, counter-examples

for all the cases in which there was insufficient information in the event data for the

algorithms to come up with the message type descriptions which were inserted into

the data. Subsequently, SLCT, Loghound and IPLoM were run against the new data

sets with counter-examples inserted. SLCT and Loghound were run in this case with

the absolute support values, which gave their best results in the experiments described

in Section 3.4.3 above while IPLoM was run in its default state. These results are

called After in Table 3.17. The results show that unlike SLCT and Loghound, IPLoM

was able to make use of the new information to improve its results in all cases. These

results show that IPLoM can achieve an average Recall of 0.83, Precision of 0.74 and

F-Measure of 0.78.

3.5.2 Ambiguous Token Delimiters

In the problem of message type extraction the assumption is that the space character

acts as the token delimiter. Close inspection of certain messages in the log files ascer-

tains that this assumption is not true in all cases. The most common example occurs

when part or all of a message contains a “variable = value” phrase. In some cases

there is no space character between the variable token and the = sign and also between

the value token and the = sign. This scenario becomes a problem for IPLoM when,

for example, the log messages “Temperature reading: ambient=30”, “Temperature
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reading: ambient=25” and “Temperature reading: ambient=28 are evaluated to the

type “Temperature reading: ambient=*” by a human observer. When and if IPLoM

produces a partition correctly containing these log messages the type produced will

be “Temperature reading: *”, due to IPLoM’s inability to separate the tokens in the

“variable = value” phrase. An approach to mitigating this problem could involve

scanning for words containing an = sign before message type extraction and splitting

such words into three parts at the = sign. The word triple can then be concatenated

at the end of the extraction process which will ensure that future instances of the

message type can be matched to the message type description produced [68].

3.5.3 Clusters with events of variable size

Another scenario which occurs is with message types with variable sizes. IPLoM

assumes that messages belonging to the same message type should have the same

number of tokens or event sizes. Again, on close inspection, this is found to not

to be true in some cases. Message types with variable sizes occur usually when a

variable position in the description can contain strings instead of a single token.

For example, consider the messages “The LightScribe service has started” and “The

Message Queuing service has started” which should belong to the same message type

and have the message type description “The * service has started”. These messages

have a differing number of tokens and would be separated by Step-1 of IPLoM’s

partitioning process which likely would produce two message type descriptions for

this cluster “The * service has started” and “The * * service has started”, the latter

template being redundant.

This problem can be mitigated by performing message type description refinement

after the message types are produced. An approach such as the string edit distance

or Levenshstein distance used in [15], can be utilized for this step if necessary. The

string edit distance provides a measure of distance between strings by counting the

number of operations required to transform one string to another. Strings with a

distance below a user-provided threshold can be merged. The templates of message

types with variable size likely will not be very distant from each other using this

approach. However, dealing with message types of variable size as a post-processing

step rather than as part of the message type extraction process reduces the amount
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of computation required for the extraction process. In addition, it has the advantage

of determining bounds on the range of event sizes for message types with variable

size.

Generally, post-processing and refinement of the output from IPLoM is recom-

mended for practical purposes. A hierarchy of message types and sub-types, using

the variable tokens in a message type, the distance of message types from each other

and user feedback, can be built at this stage as well, if required.

3.6 Discussion of Results

Message types are fundamental units in any application log file. Determining what

message types can be produced by an application accurately and efficiently is therefore

a fundamental step in the automatic analysis of log files. Once determined, message

types provide not only groupings for categorizing and summarizing log data, which

simplifies further processing steps such as visualization or mathematical modeling,

but also a way of labeling the individual terms (distinct word and position pairs) in

the data.

To date, there is no standard approach to tackling the problem of message type

extraction in the literature [83]. In most cases message type extraction is done manu-

ally and never in an exhaustive manner. Usually, the task is reduced to what system

administrators become familiar with over time and through experience. In IPLoM we

have a lightweight algorithm which is able to find these message types automatically

with an acceptable level of accuracy. IPLoM is able to find message types whether or

not their instances are frequent in the log data. IPLoM’s message type descriptions

match human judgement very closely. Experimental evaluations show statistically sig-

nificant better performance for IPLoM when compared to either SLCT or Loghound.

However, automatic analysis of event logs does not end with message type ex-

traction. In IPLoM, a practical way of automatically extracting message types is

available. In conjunction with the other fields in an event (host names, severity),

message types can be used for more detailed analysis of log files. The rest of this

thesis demonstrates this in practical terms. Examples of how message types can help

improve the visualization, storage/retrieval of logs and modeling of event logs are

demonstrated. As the focus of this thesis is fault management, a proof of concept for
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a framework for the automatic discovery of alert message types was designed.

In most modern systems, this process still is done automatically through the use

of a rule base which is built and maintained manually. The work in this thesis

demonstrates how this entire process can be automated with minimal human input.

The framework uses message types produced by IPLoM as its foundation.
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Figure 3.14: F-Measure performance of IPLoM, Loghound and SLCT against FST
values in the range 0% - 100%. 0% support values for SLCT and Loghound are
equivalent to using an absolute support value of 2.
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Figure 3.15: Runtime Cost of IPLoM on the BGL data. Each Bglx dataset contains
x ∗ 100, 000 events.
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Figure 3.16: Example: Insufficient Information in Data.
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Figure 3.17: Comparing F-Measure performance of IPLoM, Loghound and SLCT be-
fore insertion of counter-examples, after insertion of counter examples and evaluating
the accuracy of cluster partitioning before the insertion of counter examples.
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Figure 3.17: Comparing F-Measure performance of IPLoM, Loghound and SLCT be-
fore insertion of counter-examples, after insertion of counter examples and evaluating
the accuracy of cluster partitioning before the insertion of counter examples.



Chapter 4

Applications of Message Types in Event Log Management

Message types are the basic concepts in event logs, therefore their use in the man-

agement and analysis of event logs should not be treated as an option but as a

necessity. To motivate the argument, an analogy from Information Retrieval and

Text/Document Processing is drawn. These computer science fields deal with the

processing of unstructured textual data, just as is the case with event logs. Con-

sequently, event log analysis and management could borrow from techniques and

concepts which have previously been successful in these fields.

As Information Retrieval and Text/Document Processing deal with data which

is unstructured, a primary approach is to build models based on term/document

indexes. This approach has been found to be noisy, due to the problems of polysemy

and synonyms. It is computationally expensive as well, due to the large number

of terms which can exist in data [12]. One approach to mitigating this problem is

found in LSA / LSI [12]. LSA utilizes singular value decomposition (SVD) on a

matrix of terms by documents, to discover useful artificial semantic concepts based

on the co-occurrence of terms in documents. These concepts can be subsequently used

to replace the individual terms as descriptors of the documents, i.e indexing based

on the discovered concepts (LSI). LSA/LSI has been shown to improve document

retrieval by 1) mitigating the problems of polysemy and synonyms and 2) reducing

the dimensionality of the problem [12]. Since its initial application in document

retrieval, LSA/LSI has found use in several other Information Retrieval and Text/

Document Processing tasks.

The concept discovery carried out by LSA in information retrieval is very similar

to message type extraction. Message types represent terms which frequently occur

together in the events in an event log. Importantly, they represent real semantic

concepts in the mind of the programmer who wrote the code, so it makes sense to

utilize them when analyzing log files. Previous work has shown that this approach is

promising [83, 2].

74
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In this chapter, research which demonstrates three practical applications of mes-

sage types based on IPLoM is presented. These applications all have practical roles

to play in the alert detection framework proposed in this thesis.

Firstly, for humans, visualization has always proved invaluable in aiding the anal-

ysis of large amounts of data. Hence log analysis can benefit from the use of visual-

ization. An interactive tool for visualizing event logs using treemaps [65] is proposed.

Secondly, the efficient storage and retrieval of log events is important. By using

message types as a means of imposing structure on event log messages, a structured

schema for the efficient storage and retrieval of messages is proposed. Thirdly, us-

ing the entropy-based nodeinfo [55] alert detection mechanism as a case study, the

benefits of using message type indexing (MTI) as an alternative to the term-based

indexing approach of nodeinfo is demonstrated. The use of MTI was able to reduce

the computational effort and memory requirements of nodeinfo by a hundred orders

of magnitude without a drop in its detection capability.

The material presented in this chapter can be found in these publications [41, 46,

44, 42, 49].

4.1 Visualization

While log files are invaluable to a network administrator, the vast amount of data

they contain can overwhelm a human and can hinder rather than facilitate the tasks

of an administrator. Visualization is an effective means of aiding humans to make

sense of large amounts of data and could prove useful with event logs. Such can

provide summaries of the contents of an event log file to an administrator. Thus,

speeding up the data analysis is needed during downtimes/security breaches and for

the daily monitoring of the system.

For such a visualization to be effective, it would require an effective means of ab-

stracting and clustering the contents of the event log. Message types can prove useful

in this respect. This section describes a prototype visualization tool called LogView.

It uses message types to impose a hierarchy on the contents of the log and visualizes

them using treemaps [65]. A cardinal goal in the design of LogView was to provide a

visualization which was interactive and dynamic.
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The prototype was built using the prefuse visualization toolkit [66]. Visualization

toolkits are becoming an increasingly popular means of creating information visual-

ization tools as they help to reduce the time and effort required to build them. Other

examples of such toolkits include Piccolo [54] and InfoVis [14].

The prefuse visualization toolkit is a software framework written using the Java2D

graphics library. Its design is geared toward the creation of visualization tools which

are dynamic and interactive [19]. The design of the prefuse toolkit is based on the

information visualization reference model outlined in the work of Chi [7]. By providing

reusable building blocks, for the building of custom visualization tools, prefuse goes

beyond what is offered in other visualization toolkits.

4.1.1 Methodology

A treemap is a methodology for the visualization of hierarchical data which uses a

2-dimensional space filling approach. Each node occupies a rectangular area within

the confines of the 2-d space; the size of occupied area is often proportional to some

attribute of the node, e.g. size [65]. Treemaps were first proposed by Professor Ben

Shneiderman of the University of Maryland in 1992. His aim was to produce a vi-

sualization of the directory structure of the file system of his 80MB hard disk with

a technique which utilizes a space-constrained layout. Treemaps provide an alterna-

tive to the traditional node-link structure diagrams used for visualizing hierarchical

data which require a large amount of space for large hierarchies. Hence, treemaps

are particularly useful when visualizing large amounts of hierarchical data, as they

allow data to be viewed in a confined space as well as providing an interface which

can be useful for encoding other pieces of information, a convenience which is not

readily available or convenient with node-link representations. This makes treemaps

an excellent choice for visualizing log files.

A classic treemap is produced using the slice-and-dice treemap layout algorithm.

This algorithm works by taking any node and a rectangular space which is to be filled

with a representation of the hierarchy starting at the node. Then it partitions this

space into a number of regions equal to the number of outgoing edges from the node.

The size of each partition is proportional to the attribute value of the node at the end

of each edge. If this process is started with the root node in a hierarchy, the algorithm
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proceeds to call itself recursively on each child node using the partition allocated to

the child node as the rectangular space. To differentiate between partitioning at

alternate levels in the hierarchy, spaces are partitioned vertically (slice) at even levels

and horizontally (dice) at odd levels.

An example of how a treemap can be used to represent the hierarchical structure

of a node-link diagram is provided in Fig. 4.1. Leaf nodes are represented by numbers

in Fig. 4.1 (b) while internal nodes are represented with letters. The numerical value

assigned to each leaf node is an indication of the size of the node. It is immediately

apparent that these numbers could have been omitted in the treemap representation,

as the size of each node is encoded by the size of its corresponding block in the

treemap.

However, other treemap layout algorithms have been proposed to solve the prob-

lems associated with layouts created with the traditional slice-and-dice algorithm [4].

Some of these problems include low aspect-ratio, layout instability, order preservation

in the face of dynamically changing data and the need to create layouts which are

easy to search visually. Some of these layout styles include: Squarified, Strip, Clus-

ter, Pivot-by-spilt, Pivot-by-size and Pivot-by-Middle. LogView utilizes the squarified

treemap layout algorithm. Unlike the slice-and-dice algorithm, the squarified treemap

layout attempts to ensure that each rectangular space is partitioned into units which

are all roughly squares. By doing this, it maintains a low aspect-ratio even with

hierarchies with a large number of nodes and large depth. Visualizing event logs as

a hierarchy of nodes requires a large number of nodes. Hence the squarified layout is

suitable for this task.

The data used in this project was collected on a Linux-based test server. The

log files were collected on a per service basis and log files from four services were

used. The services chosen include IMAP, POP3, SSH and HTTP. These services are

explained in more detail below, while summary statistics of the event logs contents

are summarized in Table 4.1 .

• IMAP. The IMAP service is an application layer protocol which allows a client

to access his/her e-mails stored on a remote server over a TCP/IP connection.

• POP3. Like IMAP, POP3 is an application layer protocol which allows a client

to access his/her e-mails on a remote server over a TCP/IP connection. It differs
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(a) Tree Structure (b) Treemap representation

Figure 4.1: Treemap visualization of hierarchical data using the slice and dice algo-
rithm.

from IMAP in that it does not allow persistent connections. This means that

connections last for only as long as it takes to download messages, while IMAP

allows clients to stay connected for as long as they require.

• SSH. SSH is an application layer protocol which allows two computers to

exchange information over a secure encrypted channel. The information ex-

changed or transferred can be shell commands or files.

• HTTP. Probably the most popular application layer protocol in use today,

HTTP is the protocol used for communication over the World Wide Web (WWW)

and internal Intranets.

Table 4.1: Dataset Summary

Service No. of Events Period Covered

HTTPD 574,664 > 6 months
IMAPD 85,721 > 6 months
POP3D 86,190 > 6 months

SSHD 146,092 > 6 months

It is possible to cluster and visualize the log files for virtually all services. These

four services were selected only as samples for the demonstration of LogView.

The data had to be processed into a suitable form before it could be used as input

to the visualization tool. The three steps required to process the data are listed below.
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• Message Type Extraction. Only relevant and meaningful message types

were selected for use in the visualization. Descriptions of the message types

which were selected for visualization from each service are outlined in Table

4.2. The name of each message type was assigned intuitively.

• Event parsing. This step involved the conversion of the message type descrip-

tions into regular expressions. These regular expressions were used to parse the

log files and separate the contents of the logs based on the message type to

which they belonged; an event which did not belong to any message type was

classified as an “outlier”.

• TreeML Conversion. The visualization tool expects data in the TreeML

format. The TreeML format is an XML-based file format designed for the

purpose of specifying the data in a tree hierarchy. An outline of the TreeML

format is given in Fig. 4.2. The final step was to convert the input into the

TreeML file. The TreeML format requires that a number of data attributes be

declared which can be assigned to the entities in the tree. Table 4.3 gives an

outline of the data attributes used in the final TreeML files produced.

Figure 4.2: General outline of a TreeML file
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Table 4.2: Message Type Summary
Service Message Type Description
SSH Invalid User Shell login request from a non registered user.

Failed Reverse
Mapping

Failed attempt to use getaddrinfo() to resolve
a hostname.

Spoof IP A request from an IP address which may be
spoofed.

PAM Authentica-
tion Failure: Legal
User

PAM login failure from a registered user.

PAM Authentica-
tion Failure: Illegal
User

PAM failure from an unregistered user.

Failed keyboard-
interactive/pam

Failed keyboard interactive or PAM authenti-
cation.

No identification
String

Shell login request without login information.

IMAP Connection A client connection.
Disconnection A client disconnection.

POP3 Logout A client disconnection.
Connection A client connection.
Login Failed A failed login attempt.
checkmailpasswd:
Login Failed

A failed login attempt associated with check-
mailpasswd.

checkmailpasswd:
Connection

A client connection associated with checkmail-
passwd.

checkmailpasswd:
Logout

A client disconnection associated with check-
mailpasswd.

HTTP PHP Undefined In-
dex: Fail

Error associated with an undefined array in-
dex which generates a failure message.

PHP Undefined In-
dex: Warn

Error associated with an undefined array in-
dex which generates a warning message.

PHP Undefined In-
dex: Ok

Error associated with an undefined array in-
dex which generates an information message.

PHP Undefined
Offset: 0

Error associated with an undefined numeric
array index of 0.

PHP Undefined
Offset: 1

Error associated with an undefined numeric
array index of 1.

GET Request 500 HTTP get request with a status code of 500.
GET Request 400 HTTP get request with a status code of 400.
PHP Division by
Zero

Error caused by division by zero.
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Table 4.3: Data Attributes Used in TreeML Files

Attribute Name Description

Name A string describing the node.
Entries An integer which indicates the number of events which

are part of the entire tree rooted at that node.
Cluster A string which represents the cluster description pro-

duced by SLCT.
Severity A string describing the severity category of the even

type. The categories are OK, WARN and FAIL.
Service A string which indicates the service which produced the

log entry.
Msg The actual log event entry string.
Server The name or IP address of the server on which the data

was collected.

4.1.2 Results

An overview of the LogView interface is shown in Figure 4.3. The example shows the

visualization of the contents of the SSH service log. The components of the LogView

window, as can be seen in Fig. 4.3, include a service selection combo-box at the top

of the screen, a dynamic query slider to the mid-right and the visualization itself to

the mid-left. There are also search and detail panes which occupy the bottom-right

and bottom-left of the screen, respectively. The labels for each cluster are the names

given to each of the message types.

A detailed look at the visualizations created for each service type is shown in Fig.

4.4. Using such views, a system administrator can profile a particular service on a

network mentally over time. For example it can be seen that the IMAP and POP3

event logs are relatively less complex when compared to HTTP and SSH, since all

their entries were able to fall into defined clusters without outliers. Specifically, the

IMAP visualization is the least complex with only two clusters.

Looking also at the SSH visualization, it can be seen that the majority of the

entries fall into one cluster which cluster represents invalid login attempts. Further

investigation showed that this was due to a prevalence of brute force login attempts

on this server. In this case, LogView provided a very nice visualization of such an

attack attempt on the SSH server. For the HTTP visualization, it is noticed that
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Figure 4.3: An Overview of the LogView Interface.

most of the clusters are PHP related. This is an immediate indication that this web

server runs mostly PHP pages. Such a scenario would not occur on a web server

which does not host PHP pages.

The data analysis and interaction capabilities of LogView are demonstrated using

three possible tasks: searching, filtering and selection. A screenshot of a search over

the SSH service showing log entries which contain the term “root” is shown in Fig.

4.5 (a); this is a task which an administrator might want to perform over this service

to find the frequency of attempts to gain root access over SSH. In figure 4.5 (b), the

filtering of the same visualization using the dynamic query can be seen. The filter is

set to show only those entries which occur on the 27th day of the month; all other

nodes are invisible. The view can be changed dynamically simply by dragging the

slider. The slider has values in the range 0 - 31. The range 1 - 31 is for each of the

possible days of a month and 0 (the default value) means “show all nodes”.

There might be times when the administrator has focused on a node of interest

and wants more information on the node. LogView allows for such situations; by

hovering a mouse pointer over the node, the actual log entry gets displayed in the
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detail pane below. An example of such a selection operation is shown in Fig. 4.5 (c).

For user convenience LogView provides the capability to zoom and pan the visual-

ization. A screenshot of LogView zoomed out on the visualization of the SSH service

is shown in Fig. 4.6 (a), while Fig. 4.6 (b) shows the tool zoomed in and panned to

the left over the same visualization. Such utilities could prove valuable during the

analysis of a log file.

4.1.3 Discussion

LogView demonstrates practically how message types can be incorporated into event

log visualizations to make them more meaningful. The message types provide a means

of viewing the flat structure of a event log as a hierarchy and by using treemaps, a

visualization which makes effective use of space is made possible.

Due to its interactive nature, LogView is able to abstract the contents of the log

file while still allowing the user to see the actual log file. As the size of event logs

continue to increase in size, LogView provides a prototype for an effective tool for

visualizing log files. It should be noted that while the hierarchy used in this prototype

had only three levels, with message types as the middle tier, it is possible to encode

other pieces of information at other levels in the hierarchy (e.g. the sources of the

events). This will give rise to richer and more informative visualizations.

4.2 Message Type Transformation

In this section, methods for using message types to enforce structure on event mes-

sages are discussed. These methods are referred to as MTT, which provide more

concise representations of event messages. They are important to the understanding

of the application of message types to model building and indexing. In model building

they can be used for dimensionality reduction, while using them in indexing can lead

to space savings and of course faster and more intuitive searches.

The first MTT technique is called “Phrasal MTT”, see Fig. 4.7. It breaks up the

message using the position of wild-card tokens in the message type descriptions as

delimiters. Each group of constant tokens is treated as one term and replaced with

a unique term throughout the log data. This MTT was designed to transform the

message with minimal disruption to its original format. This technique will be called
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MTT-1 for the rest of this chapter. The second MTT technique transforms a message

by first representing it using a unique term which represents its message type. It then

appends its variable tokens to the transformation in the same order they appeared

in the original message. The encoding of token positions is very important in log

analysis, hence the importance of maintaining the order of the variable tokens in the

original message format. This method called, “MTT with variables,” will be called

MTT-2 for the rest of this chapter. The third MTT technique makes the most drastic

changes to the data. It replaces a message with a token representing its message type

and ignores its variables completely, see Fig. 4.9. The intuition here is that variable

tokens may not be useful in certain kinds of log analysis, (e.g. the task of identifying

alerts), the message types being more important. This MTT technique called “Full

MTT” will be called MTT-3 for the rest of this chapter.

4.3 Storage and Retrieval

The material in this section demonstrates the use of message types as a means of

imposing structure on event log messages for storage and retrieval using a structured

schema. Not only would this improve the efficient storage and retrieval of log events,

but it will ensure that the contents of event logs will be stored in a format which

makes them ready to use in other log management and analysis tasks as well.

4.3.1 Methodology

MTT is the most important part of the methodology. With MTT, the unstructured

message of an event can be transformed losslessly into an alternate format which is

structured and removes redundancy. This new structured format can be exploited to

provide an alternate schema for storing system log events.

As it is intended for the transformation to be lossless and compact, the MTT-2

technique, Fig. 4.8, is proposed for this task. Unlike the other MTT techniques, the

MTT-2 technique produces a more concise representation than MTT-1 and does not

result in information loss as with MTT-3.

Most modern computer systems, especially those which follow the syslog format

[38], would have a schema similar to the one shown in Fig. 3.1 in Chapter 3, i.e.

{Timestamp, Host, Class, Facility, Severity, Message}. An alternative schema which
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breaks the events log based on message types and the creation of a message type

index which maps to each event log is suggested. The schema for the message type

index will be of the form {MsgTypeID, MsgTypeFormat}, while the schema for each

message type log will be of the form {Timestamp, Host, Class, Facility, Severity,

Var1, Var2,....,VarN}. The V ar1 . . . V arN fields will store each of the variable tokens

in the message; as each one of these tables will contain only events of the same message

type, the value of N will be constant for each table and the events stored therein. A

visual depiction of how a stream of messages can be stored and retrieved is provided

in Fig. 4.10.

With the advent of Nested DBMS, which differ largely from the more common

relational DBMS in their ability to allow a schema which groups similar fields within

a single field and their support for variable length fields, an alternate structured

schema can be proposed. The message type index will remain the same while a single

log will be maintained. Thus, the schema for the single log table using a Nested

DBMS will be of the form {Timestamp, Host, Class, Facility, Severity, MsgTypeID,

{Var1, Var2,....,VarN}}.

(a) Event Storage (b) Event Retrieval

Figure 4.10: Proposed Event Storage and Retrieval Procedure.

This new storage and retrieval system based on the proposed schema aims to

provide the dual benefit of: 1) Faster searches, and 2) Space savings on the disk.

The space savings which will be achieved with MTT should not be confused with

compression which is achieved with tools such as zip with which an archived document
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is created which cannot be used without unzipping. On the other hand, with MTT

a live document that can be used as it stands is created. The use of MTT does not

prevent the use of tools such as zip when an �archived document needs to be created.

The datasets utilized to evaluate this component of the framework are four HPC

datasets [56] which are publicly available in the USENIX Computer Failure Data

Repository [75]. These datasets represent probably the largest set of publicly available

HPC logs, covering approximately 111GB of data containing almost a billion events.

The four datasets utilized are Blue Gene/L (BGL), Liberty, Spirit and Thunderbird

(Tbird). Each line in the log data contains an actual event from the HPC machine

which produced the log plus four additional fields, which are added to aid parsing.

The four fields represent: the alert category ( a “-” meaning no alert category),

the Unix time-stamp, the date and the identifier for the device which generated the

event. After these four fields comes the actual event as reported in the logs. The event

consists of six fields: the first field represents the time-stamp, next comes the message

source, the event type (the mechanism through which the event is reported), the event

facility (the reporting component), the severity and the free form event description

or message. For this work, the free form event description is of special interest,

even though analysis is performed using other fields. For instance, the reporting

device identifier enables the grouping of the events in any log based on the functional

category of the device that produced the event. Using this information, the events

in each dataset can be split into functional node categories. Thus, in the following

evaluations, only the results for the Compute node category of each log are presented.

This functional grouping represents over 73% of all events in each of the logs, hence

it is safe to assume that results for this category should be representative of results

over the entire dataset. The statistics of the HPC logs are given in Table 4.4.

Table 4.4: HPC Log Data Statistics

Log Days Size(GB) # Events

Blue Gene/L 215 1.207 4,153,009
Liberty 315 22.820 200,940,735
Spirit 558 30.289 218,697,851
Thunderbird 244 27.367 155,403,254
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To evaluate the space savings gained by transforming the message portions of

events using MTT, message types are extracted from the logs and then the events are

transformed using the extracted message types, creating a new log file in the process.

The size of the transformed file and the original file are then compared to see how

much space is saved, if any, by the transformation. To show that the proposed schema

will lead to faster searches, the size of indexes which will be required to index the

event log before and after transformation with MTT are compared. In both cases

the percentage reduction, which is calculated using the formula in Eq. 4.1 below, is

reported.

%Reduction = 1 − Transformed Size

Original Size
(4.1)

4.3.2 Results

Indexing is a means of increasing the speed of searches of textual data. In the case

of event logs, searches are mostly done through sequential searches of the lines of

the event log using the grep command. To make this search any faster, an index of

the unique tokens in the event log would have to be created. With the new schema

proposed, the size of such an index can be reduced significantly. The results of the

reduction in the number of terms required for an index are shown in Table 4.5. The

average reduction in the number of terms is 99%, which implies a hundred order

magnitude reduction in the time required for searches.

For example, should an administrator be interested in retrieving all messages of

the form “Connection from * port *” or all messages with the word “Connect” from

an event log stored in log.txt using the traditional schema, he/she could issue the

following commands: (grep “Connection from * port *” log.txt) or (grep Connection

log.txt), respectively. In both cases, such a search would in the worst case require

a sequential search through the entire event log. Even with an index, the search

could take a significant amount of time since such an index would be very large (see

Table 4.5). With the proposed schema a search for messages of the form “Connection

from * port *” in the worst case would require a search through the message type

index database for the message type ID linked to the messages of the form which

the administrator seeks, leading straight to the required event log, which would be
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returned to the administrator (see Fig. 4.10). With the proposed schema a search for

messages with the word “Connect” in them would require, firstly a search through

the message type index database for the message type IDs of all message types which

contain the word “Connect” and then secondly, a sequential search through the event

logs of message types that do not contain the word “Connect”. In both cases, the

proposed schema leads to faster search times with queries of the first type being

significantly faster. Since message types are fundamental concepts in event logs, it

is safe to assume that most searches issued by administrators would be of the first

type. It is noted that the proposed schema provides the possibility of using SQL type

queries when searching the event log.

Table 4.5: Percentage Reduction in # of terms

Original Transformed % Reduction

#Terms #Terms
BGL 491,768 399 99.92

LIberty 1,129,767 481 99.96
Spirit 898,111 854 99.90
Tbird 4,877,988 1,262 99.97

Avg. 99.94

One of the advantages derived from MTT is the removal of redundancy in the

event logs. The results show an average reduction in size on disk of approximately

28%, with a best case scenario of approximately 38% reduction (see Table 4.6). This

percentage reduction in file size can be significant in most cases, being measured in

GBs, or even TBs on most modern computer systems. Indeed, the space gain from

the transformation of the Tbird file is in the order of 4GBs. As this transformation is

“lossless” and is not mutually exclusive to further compression using other techniques,

these results show that MTT can provide significant space savings for the storage of

yet-to-be-archived event logs.

4.4 Building Computational Models

Can computational models built using the contents of event logs benefit from the use

of message types? That is the question which the material in this section attempts
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Table 4.6: Percentage Reduction in File Size

Original Transformed % Reduction

Size(MB) Size(MB)
BGL 160 126 21.25

LIberty 8,563 5,271 38.44
Spirit 14,974 12,416 17.08
Tbird 12,583 8,007 36.37

Avg. 28.29

to answer. This is explored using the entropy-based alert detection mechanism of

nodeinfo [55] as a case study. As originally defined, nodeinfo does not utilize message

types for alert detection; it uses the tokens in the message in their raw form. This

can make the building of alert detection models using nodeinfo expensive in terms of

both computational and memory requirements. The previous section has shown that

the number of terms in log files can be reduced by up to 99% by using MTT-3. If

this new set of terms can be used with nodeinfo without a significant decrease in its

detection capability, it would provide significant reductions in the computational and

memory requirements of nodeinfo.

4.4.1 Methodology

Central to the nodeinfo framework is the concept of a nodehour. Given any event log

E, a nodehour Hc
j can be defined as a spatio-temporal grouping of lines produced by

a single node (c) within a one hour interval in tune with wall clock time [69]. In this

case, Hc
j denotes the jth nodehour for node c. For each line ei in the event log, the

reporting time and source node are determined by the timestamp (ti) and reporting

node (ci) fields. Nodehours form the basis of the decomposition of an event log for

analysis.

Nodeinfo bases its assessment of each nodehour on the information content of

the individual tokens, t1 to tp in the free form message (mi) field of an event ei,

with regard to its source. To incorporate the encoding of token positions into the

framework, the concept of a term is introduced. A term is formed by concatenating

each token with a number corresponding to its ordinal position in the message. For

each token tj in message mi a term wj = tj.j is created. Now, let W be the set of
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unique terms and let C be the count of nodes on the network. A |W | × C matrix

X is computed, where xw,c is the count of the number of times term w appears in

messages having node c as source. Then it is possible to use matrix X to compute

vector G with cardinality |W |, where each element gw of G, is calculated using Eq.

4.2. The pw,c component of Eq. 4.2 is calculated using Eq. 4.3. pw,c is the probability

that term w is produced by node c. The output of Eq. 4.2 corresponds to 1 plus each

term’s Shannon information entropy over the nodes of the network [55]. Its value

ranges between 0 and 1, with 0 signifying low information content for the term and

1 signifying the highest information content possible. Terms with high information

content are more likely to indicate conditions which are of interest to an administrator

and could be alerts.

The second step assigns a nodeinfo score to each nodehour based on the infor-

mation content (measured by gw) of the terms contained in the nodehour and how

many times they appear. Let H be the set of all nodehours, a |W | × |H| matrix Y is

defined, where yc
w,j is the count of the number of times term w appears in nodehour

Hc
j . Then the nodeinfo score for nodehour Hc

j can be calculated using Eq. 4.4. The

NodeInfo(Hc
j ) value computed by Eq. 4.4 represents the magnitude of the vector of

counts of terms contained in Nodehour Hc
j weighted by the information content of

the term. The information content is determined by each term’s value in vector G.

gw = 1 +
1

log2(C)

C∑
c=1

pw,c log2(pw,c) (4.2)

pw,c =
xw,c∑C
c=1 xw,c

(4.3)

NodeInfo(Hc
j ) =

√√√√ |W |∑
w=1

(gw log2(y
c
w,j))

2 (4.4)

A ranking of nodehours based on their nodeinfo scores can be established. Node-

hours with high nodeinfo scores are considered more likely to contain alerts than those

which are lower in the ranking. For more details on the nodeinfo framework please

see, [69, 55].

Experiments were performed to evaluate the effect of incorporating message types

into the alert detection mechanism of Nodeinfo. Two evaluation methodologies were
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used. In the first evaluation, the nodeinfo framework was used exactly as described in

[55]. This evaluation provides a baseline for the performance analysis. In the second

experiment, the terms in the log were replaced using MTT-3 (see Fig. 4.11). In this

case, the goal is to achieve equal or better performance while using the terms derived

with MTT-3. Achieving this would suggest that the use of message types in building

the alert detection model reduces the computational effort greatly. MTT-3 reduces

the number of terms in the log about 99%. A similar reduction in computational

effort can be claimed as the amount of computation is determined by the size of the

matrices, X and Y.

The binary scoring metric as defined in [55], which defines the TP , FP, TN and

FN, is utilized for measuring the performance. With these values, Precision and

Recall values are determined as defined by Eqs. 3.3 and 3.4 in Chapter 3. To produce

the Precision-Recall graphs, which are presented in Figs. 6.10, 4.13, 6.12 and 4.15,

Rk is defined as the set of nodehours formed by taking the top k nodehours in a list

of nodehours sorted using their nodeinfo scores at the end of an experiment. The

value of k is varied from minimum to maximum and Precision and Recall values are

calculated for each value of k. This set of Precision and Recall pairs are used in

generating the Precision-Recall plots.

The datasets used in the experiments are the same datasets listed in Table 4.7.

These datasets are appropriate for the following reasons.

• The events in these datasets have been have been labelled previously as alerts

and non-alerts by domain experts. This determines the ground truth with which

to compare the results of automatic analysis.

• The fact that the datasets are all publicly available adds to reproducibility of

the results presented.

• Previous work in the development and evaluation of Nodeinfo has used these

datasets [69, 55].

Details of the hardware architecture, configuration, characteristics, log collection

methods and alert identification policies of these datasets and the systems which

produced them can be found in [56].
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The Nodeinfo framework relies on the assumption that “Similar computers cor-

rectly executing similar work should produce similar logs” [69]. For this reason log

events from similar nodes need to be analyzed together for the framework to work

effectively. To this end, the messages in the test datasets were separated based on

the functional roles of the nodes which produced them, leading to thirteen categories:

four categories for BGL, i.e. Compute, IO, Link and Other; and three categories each

for Liberty, Spirit and Tbird, i.e. Compute, Admin and Other. A fourth category

for the Tbird dataset (SM) was not included in this analysis as it had no identified

alerts. The four Other node categories are not functional groupings of messages but

consist of all messages which could not be placed in any of the other categories or

had unknown source information. The data statistics of the resultant datasets based

on functional groupings are detailed in Table 4.7.

Table 4.7: Functional Group Data Statistics

# Events # Nodes # Nodehours % Alerts

BGL-Compute 4,153,009 32,770 1,581,845 4.42
BGL-IO 400,923 1,024 219,722 38.22
BGL-Link 2,935 517 1,395 2.37
BGL-Other 191,096 2,167 13,666 0.43
Liberty-Compute 200,940,735 236 1,748,865 0.29
Liberty-Admin 52,211,676 2 27,162 0.04
Liberty-Other 12,416,820 6 44,447 0.22
Spirit-Compute 218,697,851 512 6,648,719 0.19
Spirit-Admin 41,847,257 2 26,216 3.10
Spirit-Other 11,753,861 7 57,532 0.25
Tbird-Compute 155,403,254 4,514 14.520,204 0.17
Tbird-Admin 15,306,749 20 100,740 0.02
Tbird-SM 19,109,810 2 8,859 0.00
Tbird-Other 21,392,379 1,319 626,030 0.02

4.4.2 Result

The results of running the original Nodeinfo framework on the original and trans-

formed data is provided in Figs. 6.10, 4.13, 6.12 and 4.15. While the results differ

for each set of nodes, the overall conclusion from the results is that it is possible to

achieve a similar if not better result by modifying the data using the MTT-3 terms.
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Similar results were achieved while modifying the data using MTT-1 and MTT-2

[44]. However, as these MTT techniques did not provide a significant reduction in

the terms, their use is not justified as they do not reduce the computational effort

significantly.

By introducing MTI after MTT a ∼99% reduction in the size of the term vector

utilized in the nodeinfo framework can be achieved, leading to an equal reduction in

computational effort.

Apart from showing the improvements which the proposed changes can provide

for alert detection in system logs, this work demonstrates practically the advantage

which can be achieved by building models of event log data based on the message types

they contain. With the introduction of algorithms like IPLoM, accurate automatic

extraction of message type descriptions from log data has become a possibility.

4.5 Discussion

Message types form natural semantic concepts in log files. For this reason they should

be used when free form messages are required for log file analysis. Unfortunately,

the fact that message types are not always known apriori has hindered their use

in system log analysis. The advent of several automatic message type extraction

schemes has allowed message types to be incorporated into event log management

and analysis mechanisms. Just as LSA has found use in text processing beyond the

task of document retrieval, which it was initially designed for, it is likely that message

type analysis of log files can find use in automatic log analysis beyond the examples

mentioned in this chapter.

Since it is possible to accurately extract message types automatically, the methods

described in this chapter can find practical implementation in any system, as the

process can be automated fully. While all the application examples are important

to the alert detection framework proposed in the thesis, the rest of the thesis will

focus primarily on the alert detection component. Building on the success of the

incorporation of MTI into nodeinfo, a novel alert detection mechanism, i.e. STAD,

will be developed.
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(a) SSH (b) IMAP

(c) POP3 (d) HTTP

Figure 4.4: Figure showing the treemaps produced by LogView. (a)SSH (b) IMAP
(c) POP3 (d)HTTP.
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(a) Search showing all log events containing
the term “root”

(b) Filtering the view to show only log events
which occurred on the 27th day of the month

(c) Selecting a node causes the message of the
log entry to be displayed in the textbox below
the treemap.

Figure 4.5: Analysis Using LogView with the SSH service (a) Search (b) Filtering (c)
Selection.

(a) ZoomOut (b) ZoomIn and Pan-Left

Figure 4.6: Zooming and Panning with the SSH service.(a) Zoomout (b) Zoomin and
Pan-Left.
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Figure 4.7: Phrasal Message Type Transformation: The procedure starts with
an individual message as contained in the first box on the right. The box on the left
contains the message type template which matches the message in the first box on the
right. Each phrase consisting of constant tokens is replaced with a unique token. In
the final box on the right, XX represents an ordinal number assigned to the message
type and hence will change for different message types.

Figure 4.8: Message Type Transformation with variables: The procedure
starts with an individual message as contained in the first box on the right. The box
on the left contains the message type template which matches the message in the first
box on the right. In the final box on the right, XX represents an ordinal number
assigned to the message type and hence will change for different message types.
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Figure 4.9: Full Message Type Transformation: The procedure starts with an
individual message as contained in the first box on the right. The box on the left
contains the message type template which matches the message in the first box on
the right. This method is identical to the message type transformation with variables
except that the variable values are discarded in the final transformation. In the final
box on the right, XX represents an ordinal number assigned to the message type and
hence will change for different message types.

Figure 4.11: Process flow for experiments. The baseline for performance had the raw
data input into Nodeinfo without preprocessing using IPLOM and MTTs.
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(a) BGL-Compute
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(b) BGL-IO
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(c) BGL-Link
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(d) BGL-Other

Figure 4.12: Precision-Recall plots for the BGL node categories using the original
Nodeinfo framework (NI) and modified framework (NIPlus) obtained by transforming
the raw log data using MTT-3.
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(a) Liberty-Compute
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(b) Liberty-Admin
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(c) Liberty-Other

Figure 4.13: Precision-Recall plots for the Liberty node categories using the original
Nodeinfo framework (NI) and modified framework (NIPlus) obtained by transforming
the raw log data using MTT-3.
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(a) Spirit-Compute
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(b) Spirit-Admin
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(c) Spirit-Other

Figure 4.14: Precision-Recall plots for the Spirit node categories using the original
Nodeinfo framework (NI) and modified framework (NIPlus) obtained by transforming
the raw log data using MTT-3.
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(a) Tbird-Compute
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(b) Tbird-Admin
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(c) Tbird-Other

Figure 4.15: Precision-Recall plots for the Tbird node categories using the original
Nodeinfo framework (NI) and modified framework (NIPlus) obtained by transforming
the raw log data using MTT-3.



Chapter 5

Spatio-Temporal Decomposition, Correlated Message

Types and System State

Self-awareness is an important attribute for any self-managing system to have. A

system needs to have a continuous stream of real-time data to analyze to be aware of

its internal state. To this end, previous approaches have utilized system performance

metrics and system log data to characterize a system’s internal state. In order to

utilize system logs for this task, the computation of strongly correlated message types

is necessary.

System log analysis follows, encompasses or requires one or more of the following

steps.

• Unstructured Message Analysis : Events in system logs are not homoge-

nous entities: they contain structured and unstructured information. The un-

structured information, namely free-form messages, pose a stumbling block to

the automatic analysis of log data. Therefore, analysis of unstructured messages

is required for further understanding of system logs. Message type extraction

deals with this problem.

• Indexing/Feature Creation : This involves the creation of indexable fea-

tures from the unstructured data in the form of message type IDs and message

variables. MTT deals with this problem.

• Event Correlation: In most cases, it is unlikely that a single event in a system

log can characterize system behavior. As such, it is important to find message

types which are correlated in the system logs. Correlated messages are usually

better indicators of system state. The event correlation problem has yet to

be tackled in this thesis. In this chapter, it is shown that strongly correlated

message types can be discovered without much computation.

100
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The proposed method explores a natural behaviour of system logs when system

log data is partitioned using source and time information. Such a system log partition

will contain log data from a single source on the network over a unit period of time.

This work highlights the observation that such partitioning of system logs leads nat-

urally to partitions, which contain correlated message types, a previously unknown

property of system logs. It demonstrates how the groups of partitions which contain

correlated message types can be found by clustering the partitions based on their

entropy-based information content. The conceptual clusters formed by the method

are evaluated using cluster cohesion, cluster separation and cluster conceptual pu-

rity as metrics. Conceptual clusters are clusters in which objects in a cluster can be

described by a concept, not just based on their distance from each other [18]. The

results demonstrate that the proposed method produces not only well-formed clusters

but also clusters which can be mapped to different alert states with a high degree of

confidence, with regard to the different alert types identified by system administrators

in the log data. Another advantage of this clustering technique is the fact that users

do not need to specify the number of clusters before clustering begins.

The material presented in this chapter can be found in these publications [44, 47,

48, 50].

5.1 Related Work

The literature abounds with previous attempts at the automatic discovery of corre-

lated messages which indicate system state in log data. One thing which is common

among them is that for the most part they attempt to discover the correlated mes-

sages by analyzing the log temporally. The method introduced here differs because

it introduces not only a spatial component to the analysis but also in that it requires

very little computation to execute. Some examples of related work are given below.

The Loghound log data mining tool, which is an implementation of a frequent

itemset mining algorithm, can be used for discovering correlated message types [77].

Loghound does this by decomposing the log using a fixed length time interval provided

by the user. These log time intervals are viewed as transactions, with the message

types reported in the interval as items. Using its frequent itemset mining mechanism,

Loghound finds the frequent itemsets in these transactions. These frequent itemsets
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are viewed as the correlated messages in the log. In [34], Liang et al. propose a

3-step filtering algorithm for filtering failure logs from a high performance cluster (a

BlueGene/L prototype), which compresses and categorizes the events in the log to

understand failure behavior better. The filtering is carried out temporally.

In [33], the authors discover temporal relationships between message categories

which are discovered using a modified Naive Bayes algorithm. The message categories

are based on previously defined categories associated with the IBM CBE (Common

Base Event) format [74]. These temporal relationships expose the temporally corre-

lated message categories in the log. The authors propose that these relationships be

visualized to monitor system behavior.

In [57], the authors assume the existence of known message types and use a process

they refer to as event summarization to mine and rank temporal dependencies between

event types. Temporal dependencies are mined using time series analysis and are

ranked using a forward entropy technique [9]. These dependencies are visualized using

an Event Relationship Network (ERN) [72, 58]. The ERN is used to interpret system

behavior and derive rules for system management. In [36], Lim et al. utilize message

de-parameterization to create message types from enterprise telephony system logs.

Messages in the logs are replaced by these message types, which they refer to as

message codes. The logs are then further analyzed using frequent itemset mining

to discover correlated messages, which are useful in determining failure states in the

system.

In [2], Aharon et al. propose the PARIS (Principal Atom Recognition in Sets)

algorithm. This algorithm is able to detect atoms, i.e. sets of correlated message

types which are produced as part of a normal process or failure activity. In this case,

the message types have been mined previously. The authors propose the monitoring

of these atoms through visualization as a means of detecting failure in system logs.

Xu et. al proposed a PCA-based (Principal Component Analysis) framework for the

detection of system problems through the analysis of console logs [83]. In their case,

message types were extracted from source code, while correlated message types were

discovered by tracking the variables reported in the message types. They argue that

messages which report the same variable(s) are likely to be correlated.
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5.2 Methodology

In this section, the intuition behind the proposed method of extending an entropy-

based approach to system behavior characterization is described. During the process

of evaluation of entropy-based alert detection, several approaches were tested on the

HPC logs listed in Table 4.7 in Chapter 4. Specifically, three methods for assigning

information content scores (ICS) to nodehours were tested. These methods will be

referred to as NI, NIUniq and NIMax, which are represented by Eqs. 5.1, 5.2 and 5.3,

respectively. In each of these equations Hc
j refers to the jth nodehour of node c.

The details of Eq. 5.1 will not be discussed here, as this equation is identical

to Eq. 4.4 already introduced in Chapter 4. Information content assignment using

Eqs. 5.2 and 5.3 proceeds in very much the same way as that done with Eq. 5.1.

Hence, the first step of assigning entropy-based ICSs for each individual term which

appears in the log is identical (see Eqs. 4.3 and 4.2 in Chapter 4). However, in the

case of NIUniq and NIMax, terms would refer strictly to the tokens produced through

MTT-3, as used with NIPlus in Chapter 4

For the second step in which an ICS is assigned to each nodehour, Eqs. 5.2 and 5.3

are used. In these equations, matrix Z is a matrix in which each entry zc
w,j only records

unique occurrences of terms in the event data, i.e. zc
w,j is 1 when term w appears in

nodehour Hc
j and 0 otherwise. This is different from the matrix Y used in Eq. 5.1,

in which yc
w,j is the count of the number of times term w appears in Nodehour Hc

j .

Therefore NIUniq assigns an ICS to a nodehour based on the magnitude of the vector

of information content values of the terms contained in nodehour Hc
j . While NIMax

assigns an ICS to each nodehour Hc
j which is the highest entropy value assigned to

any term which is reported during the nodehour.

NI(Hc
j ) =

√√√√ |W |∑
w=1

(gw log2(y
c
w,j))

2 (5.1)

NIUniq(Hc
j ) =

√√√√ |W |∑
w=1

(gw ∗ zc
w,j)

2 (5.2)

NIMax(Hc
j ) = maxw(gw ∗ zw,c,j) (5.3)
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Results highlighted in [44, 47] and Appendix B, have shown that NIUniq results

in improved alert detection accuracy and reduced computation during the alert de-

tection process. However, the research presented in this section is not concerned with

accuracy in alert detection. This research is concerned with using ICSs to determine

correlated message types, which in turn represent system states.

During evaluations, a strong clustering of nodehours around single ICS values was

observed which was particularly pronounced when NIUniq (i.e. Eq. 5.2) was used.

Such clustering of values could be considered odd, since ICSs are real numbers which

can take any value in the range [0,∞). The graphs in Figs. 5.1, 5.2, 5.3 and 5.4 show

the scatter plots of the ICSs for nodehours from the datasets listed in Table 4.7. In

each graph, the y-axis represents the ICS for a nodehour using Eq. 5.2, while the

x-axis represents each individual nodehour sorted according to its ICS. It can be seen

that the clustering manifests itself in all the graphs, while being most pronounced

with the BGL-Link category.

The following discussion tries to explain what may be responsible for this ob-

servation. Consider a set of distinct objects X which you wish to sample (with re-

placement) and distribute into a number of bins (each bin acting as a bag, which can

contain several instances of the same object from X), with the following constraints:

1. If the number of bins is n, then |X| should be << n.

2. If Yi is the set of unique objects in bin i, then |Yi| should be << |X| for most i.

If the sampling from X described above is carried out even with a random sam-

pling method, it is easy to see how several bins could end up containing the same set

of distinct objects. Constraint 2 reduces the number of possible distinct object com-

binations which can exist in any bin, while constraint 1 ensures that the chance for a

combination to repeat itself is high. If the number of possible combinations of objects

from X given constraint 2 is less than n, a combination repetition is guaranteed.

If X is assumed to be the set of message types which exist in a system log and the

bins are assumed to be the nodehours in the system log, then the process described

above can be reduced to the system log analysis domain with one major difference: the

sampling from X will follow a Pareto distribution rather than a random distribution.

Previous work [76, 77] has shown that the distribution of messages in system logs by
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(a) BGL-Compute (b) BGL-IO

(c) BGL-Link (d) BGL-Other

Figure 5.1: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the BGL node
functionality categories. The plot differentiates between alert nodehours and normal
nodehours. Nodehours are sorted based on ICS in the plot.

nature follow a Pareto distribution. This means that the sampling of objects from

X will be biased in such a way that a small subset of the objects would be sampled

more frequently than others. This biased sampling should accentuate the result of

having several bins containing the same set of distinct objects.

It is conjectured that the process described above is responsible for the strong

clustering of nodehours around a single ICS as in Figs. 5.1, 5.2, 5.3 and 5.4. The ICS

value derived from the use of Eq. 5.2, is in a way, a hash value for the set of unique

message types in a nodehour, so a distinct ICS can be linked to one or more sets of

unique message type combinations. This would explain why this observation is more

pronounced when Eq. 5.2 is used to calculate ICSs for nodehours. Eq. 5.1 weights its

results with the frequency of occurrence of each term, thus two nodehours can have
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(a) Liberty-Compute (b) Liberty-Admin

(c) Liberty-Other

Figure 5.2: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the Liberty node
functionality categories. The plot differentiates between alert nodehours and normal
nodehours. Nodehours are sorted based on ICS in the plot.

the same ICS only if they have the same message type combination appearing at the

same frequency. On the other hand, Eq. 5.3 does not take all the message types in

a nodehour into consideration. This highlights another advantage of using Eq. 5.2

over the other methods evaluated. Previous work suggests that temporal filtering

of system log messages could be beneficial for system log analysis [34] and Eq. 5.2,

represents a form of implicit temporal filtering of system log messages.

From Table 5.1 it can be seen that the constraints described earlier hold true

for the datasets. The “# Msg-Types” column represents |X|, the “# Nodehours”

column represents the number of bins n, while the “Msg-Types/Nodehour (Max)”

and “Msg-Types/Nodehour (Avg.)” columns represent the maximum and average

number of message types which can be found in each nodehour, respectively. Based
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(a) Spirit-Compute (b) Spirit-Admin

(c) Spirit-Other

Figure 5.3: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the Spirit node
functionality categories. The plot differentiates between alert nodehours and normal
nodehours. Nodehours are sorted based on ICS in the plot.

on these observations, the following hypotheses are derived.

• Nodehours with the same ICS (based on Eq. 5.2), contain the same unique set

of message types.

• ICSs, which occur frequently, represent nodehours which contain strongly cor-

related message types and represent some system behavior or characteristic.

The work described in this chapter of this thesis attempts to validate these hy-

potheses. Should these hypotheses be validated, it can be concluded that the ICSs of

spatio-temporal partitions of log data can serve as an effective means of discovering

correlated message types and hence system state.
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(a) Tbird-Compute (b) Tbird-Admin

(c) Tbird-Other (d) Tbird-SM

Figure 5.4: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the Tbird node
functionality categories. The plot differentiates between alert nodehours and normal
nodehours; the Tbird-SM category has no alert nodehours. Nodehours are sorted
based on ICS in the plot.

Table 5.1: Statistics of Message Type Distribution across Nodehours for HPC Data
# Nodehours # Msg-Types Msg-Types/Nodehour (Max) Msg-Types/Nodehour (Avg)

BGL-Compute 1,581,845 399 117 1.37
BGL-IO 219,722 49 5 1.11
BGL-Link 1,395 13 4 1.23
BGL-Other 13,666 97 16 2.71
Liberty-Compute 1,748,865 481 214 1.87
Liberty-Admin 27,162 601 195 5.9
Liberty-Other 44,447 510 166 11.89
Spirit-Compute 6,648,719 854 349 2.29
Spirit-Admin 26,216 443 151 6.79
Spirit-Other 57,532 707 228 10.93
Tbird-Compute 14.520,204 1,262 325 3.62
Tbird-Admin 100,740 627 179 4.69
Tbird-SM 8,859 597 254 12.54
Tbird-Other 626,030 1,387 356 2.13
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5.2.1 Information Content Clustering (ICC)

The pseudo-code in Algorithm 5 describes a method developed as part of this thesis

for the clustering of the nodehours based on their information content. Essentially,

the algorithm creates each cluster as a bin which can be described using the tuple

(ICS, “MaxEntropyMsgType′′), where ICS is an ICS value and “MaxEntropyMsgType′′

is the ID of the message type with the maximum entropy value among all the message

types which have instances in the nodehour. Intuitively, it would be sufficient to use

only the ICS as a description for each bin. However, for the first hypothesis in Sec.

5.2 to be true, two nodehours with the same ICS should at least have the same message

type with maximum entropy, given that this message type would be the highest con-

tributor to the ICS in all probability. Hence, the addition of MaxEntropyMsgType

to the description. The addition of MaxEntropyMsgType to the description has the

effect of reducing collisions as well. All nodehours with the same values for the tuple

will end up in the same cluster.

Algorithm 5 This pseudo-code describes the proposed method for clustering a set

of nodehours.
Input: Set S of nodehours with associated ICSs (Nodeinfo).

Array mmax which contains the message type with maximum entropy for each

nodehour in S.

Output: Collection S1 . . . Sn of clusters of S.

1: for each nodehour s in S do

2: Determine the cluster Si that s belongs to as combination of its ICS and its

maximum entropy message type.

3: if Si exists then

4: s ∈ Si {Add s to Si}
5: else

6: Define a cluster Si of S, such that |Si| = ∅
7: s ∈ Si {Add s to Si}
8: end if

9: end for

{Each cluster produced will represent the set of nodehours which have the same

ICS and the same maximum entropy message type.}
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A list of some of the properties which differentiate the proposed method from

previous approaches is provided below:

1. Spatial Decomposition : Previous work has shown that one of the major

mitigations against finding correlated messages in system logs is the fact that

correlated messages may not always follow each other in sequence in the system

logs [77]. The entropy-based information content approach of the proposed

method requires that the system log be decomposed spatio-temporally both at

the point at which entropy values are calculated for terms and the point where

ICSs are assigned to nodehours. Nodehours are spatio-temporal partitions of

the log data. This observation increases the chance which messages that follow

each other temporally are likely to be correlated.

2. Complexity : The complexity of this approach is O(n), where n is the number

of spatio-temporal partitions, i.e. nodehours in this case.

3. Interestingness : Since each pattern belongs to a cluster which is partially

defined by an ICS, a means to evaluate the interestingness of the pattern which

has been found without further analysis is available. Interestingness refers to

the likelihood that the pattern represents the occurrence of an event which

would require the attention of an administrator.

4. Pattern Length : For the most part, the patterns do not contain sub-patterns

of a larger pattern, thereby reducing the number of patterns found. This hap-

pens because the proposed method deals only with the entire message type

combination found in a nodehour. Patterns mined from system log data could

be just as large and complex as the log data itself, hence the production of only

a small set of interpretable patterns is desirable [57].

5.2.2 Evaluations

In this section, the methods used in evaluating the quality of the clusters formed by

the proposed technique are described. It should be noted that since the ICS associated

with each nodehour is a real number, a precision level of 10 decimal places was set

when testing the equality of the ICSs. This is important for the reproducibility of
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the results. Also, only clusters which had > 9 nodehours in them were considered,

arguing that clusters with fewer nodehours might have resulted by mere coincidence.

The experiments were carried out using all the datasets listed in Table 4.7.

The clusters formed at the end of the experiments were evaluated using three

measurements, namely cluster cohesion, cluster separation and cluster conceptual

purity. Before the means of assigning values to these metrics is described, two impor-

tant meta-concepts are described (i.e. the distance between clusters and the cluster

centroid).

The cluster centroid for each cluster is an n-tuple which represents the message

type combination which appears most frequently among the nodehours in the cluster.

For example, in Cluster A in Fig. 5.5, the message type combination (MT1, MT2)

appears most frequently and therefore is the centroid for this cluster. Similarly the

message type combination (MT2, MT3, MT4) is the centroid for Cluster B.

The distance between two nodehours is defined using the standard function for

finding the distance between objects defined by nominal variables [17], Eq. 5.4, where

p represents the number of variables common to the objects and m represents the

number of variables for which both objects match. For example, in Cluster A in Fig.

5.5, the message types common to NH1 and NH4 would be (MT1, MT2, MT3),

hence in this case p = 3 and the message types which match between them are

(MT1, MT2), and therefore, in this case m = 2. Thus, the distance between NH1

and NH4 would be 0.33. In this way, distances between pairs of nodehours and

cluster centroids can be calculated.

d(i, j) =
p − m

p
(5.4)

• Cluster cohesion : This measures the degree of similarity of the members of

a cluster. It is desired that the members of a cluster be very similar. This is

measured using the Fwithin statistic as defined in Eq. 5.5. It represents the

standard deviation within a cluster, using the centroid as mean. In Eq. 5.5,

μx represents the centroid of cluster X, while xi represents the ith nodehour in

cluster X.

• Cluster separation : This measures the degree of similarity between different
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Nodehour Cluster A 

NH1 NH2 NH3 NH4 

• MT1 

• MT2 

• MT1 

• MT2 

• MT1 

• MT2 

• MT1 

• MT3 

(a) Cluster A

Nodehour Cluster B 

NH5 NH6 NH7 
• MT2 

• MT3 

• MT4 

• MT2 

• MT3 

• MT4 

• MT2 

• MT3 

•MT5 

(b) Cluster B

Figure 5.5: Two example nodehour clusters formed using Algorithm 5. The enclosed
boxes represent nodehours which belong to the cluster and the bulleted lists represent
the set of unique message types which appear in the nodehour. In each bulleted list the
message type highlighted in red represents the message type with maximum entropy
which is common to all nodehours in a cluster based on Algorithm 5.

clusters. It is expected that clusters should be very dissimilar. This is measured

using the Distance statistic as defined in Eq. 5.6. It represents the distance

between two clusters X and Y using Eq. 5.4.

• Conceptual Purity : It is assumed that the proposed method produces con-

ceptual clusters. It would be interesting to see whether the clusters formed could

be linked to concepts and if so, with what level of confidence. Conceptual Pu-

rity, as used here, attempts to measure the degree to which the clusters formed

meet this criterion. The datasets used in the experiments provide ground truth

with respect to the alert concepts which exist in these datasets in the form of

the alert categories assigned to each event in the log [56]. To this end, the

conceptual purity of the alert clusters, i.e. clusters which contain a majority of

alert nodehours, is measured. The process defined in Algorithm 6 determines

the ratio of nodehours in an alert cluster which contain the signature for an alert

category. It measures the degree to which the alert nodehours in a cluster can

be linked to an alert category. A value of 1 for this ratio implies that all the alert

nodehours in a cluster can be linked to the same alert category. Therefore, the

cluster can be linked conceptually to the alert category with 100% confidence.

For example, suppose that alert category β can be linked to MT2, i.e. MT2 is a

signature for the error represented by β. In Cluster A in Fig. 5.5, MT2 appears
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in 3 out of 4 nodehours, hence the alert category to alert cluster ratio for Cluster

A with respect to alert category β is 3
4
. This process can be repeated for all

alert categories whose signatures appear in the nodehours of Cluster A and the

same can be done for all the clusters. The average of these values represents

the conceptual purity with respect to the alert categories defined in the system

log.

Fwithin(X) =

√√√√ 1

N

N∑
i=1

d(μx, xi) (5.5)

Distance(X, Y ) = d(μx, μy) (5.6)

Algorithm 6 This pseudo-code describes the method for determining the degree to

which the signature of an alert category can be linked to an alert cluster.

Input: Set Malert of messages types which can be linked to alert category

Cluster Salert whose conceptual purity with respect to the alert category we want

to determine.

Output: Alert Category to Alert Cluster Ratio. [Range [0,1]]

1: ratio sum = 0

2: count = 0

3: Determine the number n of nodehours in Salert

4: for each message type m in Malert do

5: Determine the number x of nodehours in Salert that contain m

6: if x > 0 then

7: temp ratio = x
n

8: ratio sum = ratio sum + temp ratio

9: count + +

10: end if

11: end for

12: cluster ratio = ratio sum
count

13: Return(cluster ratio)
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5.3 Results

The results demonstrate that by using the proposed ICC method well formed and

conceptually meaningful clusters can be produced. The statistics of the clusters

formed are presented in Table 5.2. As mentioned earlier, only clusters of size > 9 are

considered. The number of clusters formed with this restriction is given in the “#

Clusters (> 9)” column and the total number of clusters formed irrespective of size is

given in column “Total Clusters”. The “% Nodehours” column gives the percentage

of nodehours which belong to clusters if only clusters of size > 9 are considered. The

results demonstrate that, on average, ∼92% of nodehours can be clustered using this

approach.

In the following sections the results on the goodness of the clusters formed using (i)

internal measures (cohesion and separation) and (ii) ground truth (alert categories)

are discussed. Finally, a discussion on how the results validate the hypotheses is

given.

5.3.1 Internal Measures

The results demonstrate that the clusters formed show an average Fwithin measure of

∼0.01, indicating tightly formed clusters, and an average Distance measure of ∼0.82,

indicating that the clusters are well separated. Details of the Fwithin and Distance

results for each of the datasets can be found in Table 5.3.

5.3.2 Ground Truth

If the clusters formed have some sort of conceptual meaning then they should be able

to separate alert behavior from normal behavior. This means that if at least one

nodehour in a cluster is indicative of alert behavior then most of the other nodehours

in the cluster should also be indicative of alert behavior. Results that highlight this

for the datasets are shown in Figs. 5.6, 5.7, 5.8 and 5.9. These graphs indicate that

the clustering method was able to separate normal nodehours from alert nodehours

to a good degree for most of the categories. The degree of separation was not very

pronounced with the Liberty-Admin, Liberty-Other, Spirit-Admin and Spirit-Other

node categories. It should be noted that there are other clusters not shown in the
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graphs in Figs. 5.6, 5.7, 5.8 and 5.9 which consist entirely of normal nodehours.

(a) BGL-Compute (b) BGL-IO

(c) BGL-Link (d) BGL-Other

Figure 5.6: Stacked Bar Graphs for BGL node functionality categories. In each graph,
each line on the y-axis represents a nodehour cluster which contains at least one alert
nodehour. The colors in each line represent the distribution of alert nodehours (red)
to normal nodehours (blue). Only clusters which contain 3 or more nodehours are
plotted.

The provided ground truth gives not only the ability to differentiate alert messages

from normal messages, it provides alert categories as well which allow the differen-

tiation of different kinds of alerts. The conceptual purity ratio attempts to measure

the degree to which the clusters are able to differentiate these alert categories, i.e. if

one of the nodehours in a cluster contains the signature for a specific alert category,

then to what degree do the other nodehours show the signature for that alert cat-

egory. The results show an average conceptual purity ratio of ∼0.96 with regard to

the alert categories. Details are provided in Table 5.4. The first two columns of this
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(a) Liberty-Compute (b) Liberty-Admin

(c) Liberty-Other

Figure 5.7: Stacked Bar Graphs for Liberty node functionality categories. In each
graph, each line on the y-axis represents a nodehour cluster which contains at least one
alert nodehour. The colors in each line represent the distribution of alert nodehours
(red) to normal nodehours (blue). Only clusters which contain 3 or more nodehours
are plotted.

table present the number of alert categories (this is for the entire dataset and not just

those found in the alert clusters) and the number of alert clusters, respectively.

Since only clusters of size > 9 were considered, some of the datasets did not have

any alert clusters of size > 9, hence no conceptual purity results are provided for these

datasets. In addition, the results show that the relationship between alert categories

and alert clusters did not follow a one-to-one correspondence in some instances. The

signature of an alert category could be linked to several alert clusters, while an alert

cluster could be linked with more than one alert category. Cases in which more than

one alert category are linked to a cluster probably indicate the existence of correlated
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(a) Spirit-Compute (b) Spirit-Admin

(c) Spirit-Other

Figure 5.8: Stacked Bar Graphs for Spirit node functionality categories. In each
graph, each line on the y-axis represents a nodehour cluster which contains at least one
alert nodehour. The colors in each line represent the distribution of alert nodehours
(red) to normal nodehours (blue). Only clusters which contain 3 or more nodehours
are plotted.

alert categories which occur together occasionally and an alert category being linked

to different alert clusters could indicate different background activity at the point

of occurrence. This background activity could indicate different causes for the same

error. Overall, this highlights the complex interactions which go on in the system,

with events showing different correlated behavior at different times. It is therefore an

advantage that this approach can differentiate these different temporally dependent

behaviors.

Due to the fact that only ground truth with respect to alert behavior was provided

in the data, the evaluation measures only the degree to which the clusters formed
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(a) Tbird-Compute (b) Tbird-Other

Figure 5.9: Stacked Bar Graphs for Tbird node functionality categories. In each
graph, each line on the y-axis represents a nodehour cluster which contains at least one
alert nodehour. The colors in each line represents the distribution of alert nodehours
(red) to normal nodehours (blue). Only clusters which contain 3 or more nodehours
are plotted.

mirror alert behavior. It is likely that results for alert behavior could be extended to

normal behavior.

5.3.3 Discussion on Hypotheses

These results help to validate the hypotheses stated in Section 5.2.

• Nodehours with the same ICS (based on Eq. 5.2), could contain the

same unique set of message types : The Fwithin results (i.e. Eq. 5.5)

validate this hypothesis.

• ICSs which occur frequently represent nodehours which contain strongly

correlated message types and could represent some system behavior

or characteristic : The Distance (i.e. Eq. 5.5) and concept purity results

validate this hypothesis.

5.4 Discussion of Results

This section starts with a discussion on the implications of the results and ideas

on how this method can be generalized; it ends with directions which these results

provide for the alert detection framework developed in the thesis.
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The constraints on the distribution of message types across nodehours, which allow

the method to work, are discussed in Section 5.2. These constraints have to be met

for the proposed method to work. These datasets are from HPC systems which are

different in configuration, installation location and usage. Despite these differences,

the constraints applied to them all. This gives strong support to the idea that these

constraints are generalizable to HPC systems and might even be to other systems

which are similar, such as data-centres or cloud computing infrastructures.

The first constraint can be achieved by the utilization of sufficiently large datasets,

i.e. a data set which has sufficient system log bins (spatio-temporal partitions). The

second constraint is due likely to the Pareto sampling of messages and the choice of

the time window for the spatio-temporal partitions used. Since the Pareto property

is a characteristic of the log data, it is generalizable to most system logs. Therefore,

meeting the second constraint would require only careful selection of an appropriate

time window for the spatio-temporal partitions. In this research a one hour time

window was utilized in the evaluations to generalize for all the datasets used. Previous

work states that correlated messages in system logs could occur within time windows

of between one second to one day [33]. A more generalized approach would be to vary

this time window with the inter-arrival rate of messages in the system log. However,

once patterns have been extracted from the system log, they can be applied without

recourse to the time window which is used to extract them.

For the proposed method to work it is necessary for the events in a system log

to be separable by source and time which is required for the information content

calculations. This method cannot be generalizable for a system log in which source

and time information is not available.

Is this method generalized to a system log which contains only messages from a

single node or computer? The method is generalizable to this scenario because it

is possible to leverage other system log fields to act as sources for the events in the

log. Reporting processes or applications could be utilized if known; there is also the

possibility of using time slices. In the use of time slices, the events are decomposed,

so events produced during similar time slices (days of the week, off-peak, on-peak,

weekdays, weekends, etc.) can be compared. The time slice should be chosen in a

way which ensures that similar activity is performed. A proof of concept result for
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this is shown in Table 5.5. This table shows the results for running the proposed

method on events produced by a randomly selected node from each of the *.Compute

datasets. In this case, C in Eq. 4.2 is assumed to be the set of 24-hour periods in

the data. The matrix X then represents a |W | × |C| matrix where xw,c is the count

of the number of times term w was produced during a 24-hour period c.

It is noticed that appreciable separation of alert behavior from normal behavior

was not achieved for the Liberty-Admin, Liberty-Other, Spirit-Admin and Spirit-

Other node categories (see Figs. 5.7 and 5.8). This result might be due to the fact

that while nodes in these categories are similar in terms of function, their logs are not

similar. If this is true then a different means of defining similarity must be defined for

these node categories. The work done with STAD does this, as STAD generalizes the

approach to allow the definition of similarity even for cases in which nodes may not

be similar. In addition, STAD takes advantage of the potential of this ICC method

to separate alert states from normal states.

In determining patterns the proposed approach ignores the order in which mes-

sages occur in a nodehour. It might be interesting to investigate how taking this into

consideration could affect the results. However, since clocks among several comput-

ers are not usually well synchronized to the level of precision which is required for

such analysis, the correct ordering of the events is not guaranteed [77, 83]. Therefore

checking to see if the ordering matters maybe futile.

The work presented in this chapter demonstrates how the decomposition of sys-

tem log messages using source and time information naturally leads to the grouping

of correlated message types within the partitions. Further, it demonstrate how these

correlated message types can be discovered using the entropy-based information con-

tent of the partitions (nodehours) as a means of clustering the partitions. The method

was evaluated using fourteen datasets derived from the functional decomposition of

the system logs for the four HPC systems. The results show that the resulting clusters

are well formed, i.e. having high internal cohesion and high external separation. The

results demonstrate as well that, with a high level of confidence, it is possible to map

conceptually the clusters to different alert categories. While the results are tested

only on alert behavior, the proposed approach has the potential to be extended to

normal behavior.



121

The well formed nature of the clusters produced by the proposed method lends

credence to the assertion that these clusters mirror the different states of the sys-

tem. The metrics used to evaluate the results, using ground truth on alert states

and internal measures, provide sufficient evidence that these clusters are useable for

describing the state of a system at a point in time. These states can be used to learn

a Finite State Automaton (FSA) which mirrors the normal workflow of the system

[15]. Hence the results have practical applications for enhancing the self-awareness

and self-monitoring capabilities of a system which are important characteristics for

an autonomic system [13].



122

Table 5.2: Cluster Statistics

# Clusters (> 9) % Nodehours Total Clusters

BGL-Compute 135 99.96 446
BGL-IO 62 99.91 113
BGL-Link 6 97.71 17
BGL-Other 37 97.64 177
Liberty-Compute 412 99.74 3061
Liberty-Admin 202 87.82 2,069
Liberty-Other 345 88.86 5,326
Spirit-Compute 615 99.82 9,247
Spirit-Admin 259 86.53 2,118
Spirit-Other 495 78.46 8,641
Tbird-Compute 5,389 99.01 110,201
Tbird-Admin 557 94.01 3,492
Tbird-SM 78 68.62 2,000
Tbird-Other 556 97.65 8,653

Table 5.3: Average FWithin and Distance for Nodehour Clusters

Avg. FWithin Avg. Distance

BGL-Compute 0.000 0.963
BGL-IO 0.000 0.965
BGL-Link 0.000 0.914
BGL-Other 0.027 0.927
Liberty-Compute 0.000 0.748
Liberty-Admin 0.034 0.741
Liberty-Other 0.001 0.576
Spirit-Compute 0.003 0.784
Spirit-Admin 0.059 0.786
Spirit-Other 0.000 0.672
Tbird-Compute 0.000 0.896
Tbird-Admin 0.001 0.783
Tbird-SM 0.001 0.774
Tbird-Other 0.003 0.903
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Table 5.4: Alert Nodehour Cluster Conceptual Purity

# Categories # Alert Clusters Conceptual Purity Ratio

BGL-Compute 15 95 1.00
BGL-IO 15 41 1.00
BGL-Link 5 3 0.90
BGL-Other 6 6 0.90
Liberty-Compute 19 57 1.00
Liberty-Admin 3 0 N/A
Liberty-Other 9 1 1.0
Spirit-Compute 29 114 1.00
Spirit-Admin 3 9 0.86
Spirit-Other 6 2 1.00
Tbird-Compute 31 273 1.00
Tbird-Admin 7 0 N/A
Tbird-SM 0 0 N/A
Tbird-Other 10 0 N/A

Table 5.5: Cluster Measurements for a Random Single Node

Avg. Fwithin Avg. Distance Conceptual Purity

BGL-Compute 0.00 1.00 1.00
Liberty-Compute 0.00 0.741 1.00
Spirit-Compute 0.00 0.734 N/A
Tbird-Compute 0.00 0.766 N/A



Chapter 6

Spatio-Temporal Alert Detection in HPC Logs

Following from the success of the evaluations of the ICC technique discussed in Chap-

ter 5, this chapter discusses the details of the log alert detection method proposed by

this thesis, i.e. Spatio-Temporal Alert Detection (STAD).

STAD is not a specific technique but a framework which allows flexibility in the

choice of techniques used. There are three steps in the STAD framework. Firstly, it

decomposes the events in a log spatio-temporally. “Spatial” refers to the source of the

log event, e.g. a node in the HPC, and “Temporal” refers to the time the log event

was reported, i.e. a timestamp. Secondly, it clusters the units resulting from the

decomposition. If the clustering technique used in the second step is able to produce

clusters which group different kinds of normal and anomalous activity together, then

a third step is activated to separate the clusters which contain anomalous activity

from those which contain normal activity, thus detecting the alerts in the anomalous

clusters.

The specific techniques used in the implementation of the framework are discussed

in this chapter. Nodehours are utilized as spatio-temporal units in this implementa-

tion. Other spatio-temporal units can be chosen - the choice is purpose and system

dependent. Entropy-based ICC is utilized for the clustering of the nodehours, while

a rule-based approach is utilized for anomalous cluster identification.

The main contributions of STAD are listed below.

1. The basic assumption for entropy-based alert detection is that “Similar com-

puters correctly executing similar code will have similar logs” [55]. This work

goes beyond this by assuming that “System log events which are produced by

similar spatial sources or produced during periods of similar system activity are

likely to be similar” [51]. The new assumption allows for the extension of the

entropy-based approach to groups of dissimilar nodes.

124
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2. STAD allows the determination of alerts without resorting to a ranking of spatio-

temporal partitions.

3. A novel feature set is proposed for the identification of the anomalous clusters.

The rules employed for identification use these features.

The evaluations of STAD on the HPC logs show that it is able to detect 100% of

all alerts with a FPR of 0.8% in the best case, while achieving 78% Recall and a FPR

of 5.4% on average.

STAD was compared to NIPlus which is based on nodeinfo [55]. The results of the

comparison show that the average false positive rate achieved by NIPlus across the

datasets is approximately 25% compared to 5.4% for STAD. An analysis of variance

(ANOVA) test (at 5% significance) carried between the false positive rates achieved

by NIPlus and those achieved by STAD show a statistically significant difference in

favor of STAD.

The rules used in the third step of the implementation were developed manually.

Since it is desirable for these rules to be generated automatically, a comparison be-

tween the results of using manually generated rules and automatically generated rules

is provided. The automatically generated rules are generated by the C5.0 data-mining

algorithm [62].

The material presented in this chapter can be found in these publications [50, 51].

6.1 Related Work

Alert detection is the main thrust of this thesis and related work has been discussed

in Chapter 2. As STAD is the main contribution of this thesis in relation to alert

detection, related work will not be discussed further.

6.2 Methodology

This section details the methods and techniques used in the implementation of the

STAD framework. The STAD framework has three main steps listed below.

1. Spatio-Temporal Decomposition of log events

2. Clustering of Spatio-Temporal partitions
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3. Identification of Anomalous Clusters

Each step of the process is general enough to allow for flexibility in the choice of

methodology. The steps are described in more detail in the following sections.

6.2.1 Spatio-Temporal Decomposition of log events

The proposed alert detection mechanism is intended for use on very large and complex

systems for which the manual inspection of system logs has become unrealistic. The

system logs on such systems would contain information from the several components

which make up the system. This is one of the properties which make system logs

good indicators of system state. However, a single reported event in the system log

is unlikely to be a good indicator of system state. Strongly correlated events in the

log are more interesting and are better indicators of system state [63]. This problem

was addressed in Chapter 5.

Previous work in log analysis have based their analysis on the correlated events in

the log rather than on single events. Previous approaches to find correlated events in

logs include frequent itemset mining [77, 36], tracking of variables reported in message

types [83], time series analysis [57] and the PARIS algorithm [2]. One of the major

obstacles to finding correlated events in system logs is the fact that correlated events

may not always follow each other in sequence in the system logs [77]. To this end,

the approach utilized here is the decomposition of the event log spatio-temporally.

Typically, events in system logs are not homogenous entities. Apart from the

textual descriptions of the event, they contain information about the reporting com-

ponent (source), which could be a hardware and/or software component, and the

time of occurrence of the event (timestamp). By using the source and timestamp

information to decompose the events in an event log such that each resultant unit of

the event log contains only events from a single source over a unit of time, the chance

that the events reported in such units are correlated is increased. Any combination

of source and time information can be used for decomposing the contents of an event

log spatio-temporally. However, only nodehours are utilized here.
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6.2.2 Clustering of Spatio-Temporal partitions

Clustering can be described as the process of gathering entities into groups. The

grouping is carried out in a way which ensures entities which fall into the same

group are very similar but at the same time are very dissimilar from entities in

the other groups [17]. The aim of this step of the process is to place the spatio-

temporal partitions of the event log into partitions based on their similarity while

minimizing the similarity among the eventual clusters. Hence, this step is referred

to as a clustering phase. The information content-based technique [50] described in

Chapter 5 is used in this step. Clustering using a traditional distance-based clustering

technique is not feasible. The features used in clustering will be the unique terms

(words) which appear in the log. The number of unique words in a log can number in

the millions, leading to the curse of dimensionality. The ICSs used in this technique

are derived from the terms which appear in the log after several steps of abstraction

[50]. This work has shown previously that these scores provide an accurate means of

finding the clusters without much computation.

Before the ICC of nodehours can be carried out, the entropy-based analysis of the

contents of a log needs to be completed. This process has already been described

in Chapters 4 and 5. However, for STAD, an extension of the process which allows

its application to systems which contain dissimilar nodes is added. In Chapter 5 it

was found that the ICC approach did not separate normal nodehours from anomalous

nodehours satisfactorily in some node categories. It was conjectured that this occurred

because the nodes in this category, while similar in function (similarity is defined by

the function of the node), did not have similar logs. Consequently, a different means

of clustering has to be found in such situations.

One way to approach the problem is to analyze the nodes in such dissimilar groups

individually rather than as a group. In Chapter 5, proof of concept results were

provided for how this can be done. In a case in which a group of functional nodes is

considered dissimilar, the logs could be decomposed initially into separate logs so that

each log is produced by only a single node. If single node log files are used, similarity

can no longer be defined based on the source node and this thesis proposes that

similar time periods can be used in this case. For instance, if the time period chosen

is days then C, which represents source nodes in Eqs. 4.3 and 4.2 in Chapter 4 would
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correspond to each 24 hour period in the log. Hence, the events are now attributed

to a temporal source, after which the ICSs can be assigned to the nodehours as usual.

Please note that other time periods can be used here.

For clarification, the preferred method for assigning ICSs for this framework is

NiUniq (see Eq. 5.2). This choice is made for the following reasons.

• Fast Computation. Due to its use of message types rather than raw terms in

the log, NIUniq allows fast computation.

• Higher Accuracy. Evaluations have demonstrated that NIUniq seems to iden-

tify anomalous clusters more accurately than other techniques (see [48] and

Appendix B).

• Clustering Value. Due to the fact NIUniq considers all message types which

exist in a spatio-temporal partition of a log, while ignoring their frequency of

occurrence, it has more value for ICC than other techniques.

• Temporal Filtering. This proceeds from the previous item. Previous work

has highlighted the importance of temporal filtering to log analysis [34]. By

ignoring the frequency of the occurrence of message types, NIUniq performs

implicit temporal filtering of system logs.

The proposed method for clustering dissimilar nodes was evaluated against the logs

of the node categories which are considered dissimilar, i.e. Liberty-Admin, Liberty-

Other, Spirit-Admin, Spirit-Other and Tbird-Admin. The results are promising. The

charts in Fig. 6.1 show the stacked bar graphs of the anomalous clusters formed on

a single node on each of these node categories. The clusters were derived using ICC,

except the entropy-based analysis was carried out as described above. These charts

indicate that the changes applied to the clustering method resulted in a better sepa-

ration of normal nodehours from alert nodehours when compared to results obtained

by assuming the nodes were similar.



129

(a) Liberty-Admin (b) Liberty-Other

(c) Spirit-Admin (d) Spirit-Other

(e) Tbird-Admin

Figure 6.1: Stacked Bar Graphs for a single node from node functionality categories
which are considered dissimilar. In each graph, each line on the y-axis represents a
nodehour cluster which contains at least one alert nodehour. The colors in each line
represent the distribution of alert nodehours (red) to normal nodehours (blue). All
clusters which contain at least one alert nodehour are shown.
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While the stack graphs show how the clusters separate normal nodehours from

alert nodehours, they do not show to which alert types the nodehours in the clus-

ters should belong. If most of the alerts belong to one (or a few) alerts then the

clusters can be said to define an alert state. This is illustrated using circos plots

[31], which show the effectiveness of the technique in separating the different alert

states in the system. A circos plot is a technique for visualizing the confusion ma-

trix produced at the end of a classification or a clustering experiment. Typically,

the rows/columns represent the actual-clusters/derived-clusters in a clustering exper-

iment or actual-class/predicted-class in a classification experiment. For instance, the

2 × 2 confusion matrix in Table 6.1, which involves two actual classes (i.e. A, B)

and two derived classes (i.e. 1,2) will produce the circos plot shown in Fig. 6.2.

The plot shows how each of the derived clusters map to the actual clusters using

the values in the confusion matrix. An example of a more complex circos plot is

shown in Fig. 6.3. This figure is the circos visualization of the alert clusters of the

BGL-Link category. The figure shows the mapping between the nodehours in the

four alert clusters (rows in the confusion matrix) derived using the ICC technique

(i.e. 1, 2, 3, 4) and the nodehours known to belong to the five alert categories iden-

tified by system administrators (columns in the confusion matrix) in the log data

(i.e. LINKBLL, LINKDISC,LINKIAP, LINKPAP,MONPOW ). This visualiza-

tion shows that none of the derived clusters contains any NORMAL nodehours and

that a 1−1 or 1−M mapping exists between the derived clusters and these alert cate-

gory groupings (i.e. 1 → LINKDISC, 2 → LINKPAP &LINKIAP , 3 → MONPOW

and 4 → LINKBLL). It is noted that the LINKPAP and LINKIAP alert categories

are similar. Further explanations on how to interpret the circos plot are given below.

Table 6.1: Sample Confusion Matrix

Label A B

1 5 3
2 3 0

• A: These are arc shaped headers for row and column segments. There is an

arc shaped header for each row and column in the confusion matrix. In the
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Figure 6.2: Simple 2 × 2 Circos plot example.

circos plots shown in this thesis, the row segments (derived clusters from the

proposed system) are labelled using numbers, while the column segments (alert

categories from the data sets) are labelled using the name of the alert.

• B: These ribbons show the mapping between row/column segment pairs. The

size of the ribbon is proportional to the value for the row/column segment pair

in the confusion matrix.

• C: Ribbons are colored either by the row or column segment they map from.

In the circos plots in this thesis the ribbons are colored by row segments, i.e.

the derived clusters they map from.

• D: These are ribbon ends. They are colored by the color of the row/column seg-

ment they map to. In this thesis, ribbon ends are colored by column segments,

i.e. the alert categories they map to.
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• E: This is a gap between a ribbon and its associated segment. The presence

of the gap is another way of knowing whether the ribbon “maps to” or “maps

from” the segment. The gap is present if the ribbon “maps to” to the segment

and absent if it “maps from”.

• F: These arcs encode the relative row, column and overall total values for the

segments.

A

C

D

E

F 

B

Figure 6.3: Example of a more complex Circos plot.

The circos plot visualizations of all the node categories are shown in Appendix C.

Through inspection of these plots, alert detection is reduced to the task of identifying

the derived clusters based on the possibility that they contain alert nodehours. This

is what the third step of the proposed STAD framework attempts to achieve.
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6.2.3 Identification of Anomalous Clusters

This step of the framework involves the separation of the clusters into two classes: an

anomalous class and a normal class. Once a cluster is determined to be anomalous,

all the nodehours which belong to that cluster are assumed to contain alerts. As with

the other steps of the framework, any method of separation can be utilized.

To carry out the separation of the clusters, four important characteristics of alerts

are identified. These are: Bursty, Endemic, Epidemic and Near-Periodic proper-

ties. Using these properties three assumptions about alert clusters which can be

used in separating them from normal clusters are derived. An alert cluster refers to

clusters which contain a majority of nodehours with alert signatures. These proper-

ties/assumptions and the identification rules implemented based on the assumptions

are described in detail with real examples from the HPC logs in Section 6.3 and

Section 6.4.

6.3 Cluster Separation

In this section, the four alert characteristics which were identified, are described (see

Section 6.3.1). Based on these characteristics three assumptions about alert clusters

are proposed (see Section 6.3.2). Finally, in Section 6.4, the rules derived from the

assumptions are described as implemented in the evaluations.

6.3.1 Alert Characteristics

Four important alert characteristics were identified by going over time series plots of

the activity for the different alert types identified in the log. They are described in

detail below. It is noted that these alert properties are not mutually exclusive and

are not intended to be exhaustive.

• Bursty Property. The bursty property occurs when there is a significant

increase in the number of events reported over a period of time. An example of

the bursty property is shown in Fig. 6.4. This figure shows the number of events

(measured by size in bytes) produced by a single node (Ln30) on the Liberty

cluster on an hourly basis over a 24 hour period. A significant increase in the

number of bytes produced in the logs is seen in the 15th to 18th hours. Based on
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the labeling, there are at least 9 alert types active during this period, with the

R EXT CCISS, R EXT FS IO and R EXT INODE1 types being the major

contributors to the burstiness experienced. The number of bytes produced

by this node drops to zero in the 19th hour right up to and including the

24th hour. This indicates that the fault which caused this burstiness led to a

failure of the node. This graph highlights the importance of alert detection in

system management. The detection of this alert in the 15th hour would have

given administrators a three hour window within which they could have applied

remedial action to prevent the failure of the node which occurred in the 19th

hour.

Figure 6.4: Bursty Property: This graph shows the size of the events pro-
duced by a single node from the Liberty HPC at hourly intervals over a 24 hour
period.

• Endemic Property. The endemic property occurs when a cluster shows spo-

radic activity over a period of time as well as being localized at each occurrence.

The graph in Fig. 6.5 shows the activity of a cluster from the BGL log. This

cluster is associated with the KERNMC alert type. Occurrences of this cluster

type are sporadic and affect only one node at each occurrence.

• Epidemic Property. The epidemic property occurs when a cluster shows

sporadic activity over a period of time as in the endemic case but affects instead
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Figure 6.5: Endemic Property: The graph shows localized sporadic activity.

a relatively large number of nodes at each occurrence. The graph in Fig. 6.6

shows an example of another cluster from the BGL log which shows the epidemic

property. This cluster is associated with the KERNREC alert type. Occurrences

of this cluster type are sporadic and affect as many as 2, 000 nodes at each

occurrence. Though wide spread, the activity does not affect all nodes: the

total number of nodes in the BGL event log category to which this cluster

belongs contains 65,554 nodes.

• Near-Periodic Property. The near-periodic property occurs when activity

in a cluster occurs at almost regular intervals. The graph in Fig. 6.7 shows

an example of a cluster exhibiting the near-periodic property. In this example

from the Spirit event log the cluster type occurs almost on an hourly basis over

a period spanning about four weeks. This almost regular rate of occurrence and

the frequency of occurrence is an indication of the near-periodic property. The

cluster shown in Fig. 6.7 is linked to the R HDA NR and R HDA STAT alert

types.
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Figure 6.6: Epidemic Property: The graph shows sporadic activity which
affects a relatively large number of nodes.

6.3.2 Alert Cluster Assumptions

This section describes the properties which the alert clusters are assumed to have.

These assumptions are based on the identified alert characteristics and are the basis

for cluster separation.

• Bursty, Endemic and Epidemic alert types show activity in relatively few time

periods. This implies that the number of active periods for a cluster type should

be a good indication of whether a cluster contains alerts or not. A cluster type

which is active during relatively few time periods is likely to contain alerts. This

supports the assumption that alerts are usually infrequent in an event log. The

number of active periods is also a better measure of frequency than the count

of active nodes or the count of nodehours.

• Endemic alerts show localized activity each time they occur. Measuring local-

ized activity in a cluster would be a good indicator for an alert cluster. A cluster

type which shows a high degree of localized activity each time it occurs is likely

to contain alerts.

• Near-Periodic alert types have a frequent occurrence rate and may or may not

be localized. Consequently, they may not be captured by the assumptions
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Figure 6.7: Near-Periodic Property: The graph shows very frequent activity
compared to either the endemic or epidemic types and has an almost periodic
rate of occurrence.

above. However, they do have the property of having close to regular rates of

occurrence. Measuring the periodicity of a cluster would be a good indicator

of this property. Consequently, clusters which are relatively frequent and show

periodic or almost periodic activity are likely to contain alerts.

6.4 Identification Rules

The assumptions detailed in Section 6.3.2 were used as a means of identifying the

nodehour clusters, which are derived from HPC logs. The details of the evaluation

of the identification rules are described in Section 6.4.2. However, in this section,

the implemented rules are described. There are three rules, one for each assumption.

Before describing the rules, the following definitions are needed.

• Let E be the event log which we intend to analyze. Let each temporal period

spanned in E be assigned an ordinal number, n. The first hour is assigned a

value of 1 and every subsequent hour is assigned a value of n + 1 relative to its

preceding hour, which would have a value of n.
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• We define set C of spatio-temporal partition clusters derived from E, where ci

∈ C is the ith element of C.

• We define arrays P and S, such that P[i] and S[i] are the counts of temporal

periods and event sources reported in the nodehours in cluster ci, respectively.

• For each cluster ci, we define array Qi such that Qi[j] is the ordinal number of

jth temporal period of activity for cluster ci.

• For each cluster ci, we define array Ri such that Ri[j] is the count of the number

of event sources reporting activity of type ci during the jth temporal period of

activity for cluster ci.

• |Qi| = |Ri| = P[i] = m

6.4.1 Rule Definitions

• First Rule - Active Periods: This rule implements the first assumption

about alert clusters.

1. Let med per = Median(P), ignoring values where P[i] = 1.

2. For cluster ci, if P[i] < med per, then ci is considered an alert.

Due to the Pareto property, which is generally true for statistics involving sys-

tem logs [77], several values in array P are = 1. Hence they are ignored in the

calculation of med per. If this is not done, then med per = 1, most of the time.

• Second Rule - Localization: This rule implements the second assumption

about alert clusters.

1. Calculate the average inverse node frequency INFi for cluster ci using Eq.

6.1.

INFi =

∑m
j=1

1
Ri[j]

m
(6.1)

2. Set an average inverse node frequency threshold INT .
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3. For cluster ci, if INFi >= INT , then ci is considered an alert.

The average inverse node frequency metric, which is described in Eq. 6.1,

attempts to provide a measure for localized activity. Its values are in the

range (0, 1] and the values close to one indicate localized activity within

the cluster. The graph in Fig. 6.8 is a scatter plot of the alert clusters

in the Liberty-Compute node category versus their average inverse node

frequency values. The graph in Fig. 6.8 shows that most of the alert

clusters have an average inverse node frequency value of 1 and therefore

are showing the endemic property. In the implementation, INT is set to

0.95.

Figure 6.8: Liberty-Compute Alert Clusters: The graph shows a scatter
plot of the alert clusters derived from the Liberty HPC log versus their inverse
node frequency scores. The clusters are sorted based on their average inverse
node frequency scores.

• Third Rule - Periodicity: This rule implements the third assumption about

alert clusters.

1. Calculate the mean time between activity μi for cluster ci using Eq. 6.2. μi

represents the expected time between system activity of type ci, if cluster
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ci was periodic.

μi =

∑m−1
j=1 (Qi[j + 1] − Qi[j])

m − 1
(6.2)

2. Calculate the standard deviation STDi from μi of intervals between system

activity of type ci using Eq. 6.3. It is assumed that STDi values close to

0 indicate near-periodic activity.

STDi =

√∑m−1
j=1 [(Qi[j + 1] − Qi[j]) − μi]

m − 1
(6.3)

3. Set a standard deviation threshold STT .

4. For cluster ci, if STDi < STT , then ci is considered an alert.

Let the norm per cnti (normalized period count) for any cluster ci be P[i]
Max(P)

.

The bar graph in Fig. 6.9 shows STD for the Spirit-Admin clusters with

a norm per cnt greater than 0.1. The Spirit-Admin node category is one

of the functional node categories from the Spirit HPC log. Clusters with a

norm per cnt greater than 0.1 represent those clusters with a relatively high

number of active periods. Cluster 16 with a STD value of approximately 2

is the only cluster which contains alert nodehours. The adjacent clusters, i.e

clusters 15 and 16, have STD values of approximately 1.8 and 4.0, respectively.

This suggests that a STD close to zero is a good indicator for an alert cluster.

In the implementation, STT is set to 2.5.

Since the near-period property requires frequent occurrences, this rule is only

applied to mid-size clusters. Size is defined in respect to the count of active

periods. Clusters with large period counts are left out, as they are likely normal.

With this in mind, upper and lower bounds for the norm per cnt can be set.

Then this rule can be applied only to clusters with a norm per cnt value which

falls within these bounds. In the implementation the upper and lower bounds

are set to 0.3 and 0.1, respectively. These values are set based on the Pareto

property of event logs; clusters with mid-sized period counts would likely fall

within these bounds.
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Figure 6.9: Spirit Admin Clusters: This graph shows a bar chart of clusters
with a norm per cnt > 0.1 from the Admin functional node category of the
Spirit HPC log. Cluster 16 is the only cluster which is known to contain alerts.

Algorithm 7 summarizes the procedure for identifying a cluster ci as either an

alert or a normal cluster using the rules above. It sets cluster ci as an alert cluster if

either of the rules above is true, and it sets ci as a normal cluster if all of the rules are

false. It is noted that the 2nd rule is not used when dealing with a dissimilar node

scenario. The average inverse node frequency metric has no value for distinguishing

alert clusters in such a scenario.

6.4.2 Evaluations

The evaluations include all the thirteen datasets listed in Table 4.7 in Chapter 4. The

assumptions about the similarity of the node categories are highlighted in Table 6.2.

A Y in the Similar Nodes column indicates that the dataset is processed under the

assumption that the nodes in this dataset are sufficiently similar, while an N indicates

that the nodes are assumed to be dissimilar.

In a real world scenario similarity of nodes would depend on function, configuration

and usage patterns. Using these criteria it should be easy for a system administrator

to make the decision of whether nodes are similar or not. In cases where it is difficult

to decide, it is suggested that the nodes be considered dissimilar.

The values for all parameters were set as described in Section 6.4, except in the case

of the med per parameter. The implementation calls for the value of this parameter

to be set automatically. It was found that the value assigned automatically to this
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Algorithm 7 This pseudo-code describes the method for deciding whether a node-

hour cluster contains alert nodehours.
Input: A nodehour cluster.

Output: Boolean value is alert. 0 indicates a normal cluster while 1 indicates an

alert cluster

1: is alert = 1

2: if Rule1 is FALSE then

3: if Rule2 is FALSE then

4: {Rule2 is only used when dealing with similar spatial sources.}
5: if Rule3 is FALSE then

6: is alert = 0

7: end if

8: end if

9: end if

10: Return(is alert)

parameter is always in the range [3, 5] on the datasets employed in this research. Based

on this observation, experiments for each dataset where the value of med per is set

manually to values in the range [2, 6] were run. This is in addition to experiments

where its value was set automatically. The evaluations in which this parameter is

manually set are compared against the auto-tune evaluations in Section 6.5.

The evaluation metrics used for the experiments are Recall (Detection) rate and

FPR. These metrics are calculated using Eqs. 3.4 (in Chapter 3) and 6.4 (given be-

low), respectively. The values for the TPs, FPs, TNs and FNs used in these equations

are derived using the binary scoring metric as defined in [55]. In a dissimilar node

scenario, processing is performed on a node-by-node basis, but during the evaluation,

the TPs, FPs, TNs and FNs are summed to provide a single value for Recall and

FPRs for the functional group.

To provide a baseline comparison, the proposed method is compared against NI-

Plus. As NIPlus uses a rank-based mechanism for alert detection, comparison is

carried out only for FPR performance. The value of k (required for the Topk separa-

tion of nodehours with NIPlus) which achieves a similar Recall rate as those achieved

in the STAD experiments, is determined. The FPR is then calculated for NIPlus and



143

Table 6.2: Similarity Status of Node Functional Groupings used in Evaluations

Similar Nodes

BGL-Compute Y
BGL-IO Y
BGL-Link Y
BGL-Other Y
Liberty-Compute Y
Liberty-Admin N
Liberty-Other N
Spirit-Compute Y
Spirit-Admin N
Spirit-Other N
Tbird-Compute Y
Tbird-Admin N
Tbird-SM N
Tbird-Other Y

is compared to the FPR achieved using STAD.

FPR =
FP

FP + TN
(6.4)

6.5 Results

For the similar node categories, 100% Recall is achieved in three node categories, i.e.

BGL-Link , BGL-Other and Tbird-Other, irrespective of the value of med per. Also,

depending on the value of the med per parameter, a Recall above 50% is achieved,

with a single digit FPR for all node categories except the BGL-IO category (see Figs.

6.10a and 6.10b). With the BGL-IO node category a low 8% Recall was achieved.

The reasons for this performance are explained in previous work [47]. In this node

category, approximately 80% of the alert events are correlated closely to message type

signatures which have entropy-based information content values, which are less than

0.1. This indicates an almost equal rate of occurrence across nodes. This observation

is due to the fact that certain error types in this category are not generated by the

individual nodes but by an IO subsystem. Such errors are sensed and reported by

all nodes. This means that these errors are attributed to the wrong source for the
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entropy-based analysis. The high alert nodehour ratio (38.22%) of this node category

emphasizes the hypothesis that the alerts in this node category are unusual. If the

results for this node category are adjusted by ignoring the alerts which show this

property, the Recall increases to approximately 60%.

For the dissimilar node categories, 100% Recall was achieved in two node cat-

egories, i.e. Liberty-Admin and Tbird-Admin, irrespective of the value of med per.

Recall above 60% was achieved for all node categories, depending on the value set-

ting of the med per parameter. What is interesting here is that while it is noted

that setting the med per to 2 gives single digit FPRs for 4 out 5 node categories, the

FPRs here tend to be on the order of about 1.5 times larger than those experienced

with similar node alert detection. However, they are still better than what NIPlus

achieves on the same data sets. This increase in FPRs may have to do with the

simple method used for determining similar temporal sources, i.e. 24hr periods. A

more sophisticated approach, which differentiates between actual days of the week,

week-days, week-ends and so on, may yield better results.

(a) Recall Rate - Similar Nodes (b) False Positive Rate - Similar Nodes

(c) Recall Rate - Dissimilar Nodes (d) False Positive Rate - Dissimilar Nodes

Figure 6.10: This figure shows recall and false positive rates for evaluations of STAD
on the datasets listed in Table 4.7.

A summary of the results of the evaluation is given in Fig. 6.12. In this graph, the
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best case result for each dataset is selected from the experiments in which the value of

the med per parameter was set manually. These results are compared with the result

in which the value of med per was set automatically. The graph also shows a base-

line FPR result using NIPlus. In choosing the best case a balance between achieving

high Recall and a low FPR was considered. The graph shows that the overall best

case was achieved with the BGL-Link category with 100% recall at a false positive

rate of 0.8%. The average Recall (across node categories) was 78% and 77% for the

manual experiments and auto-tuned experiments, respectively and the average FPR

was 5.4%, 6.9% and 25% for the manual experiments, auto-tuned and NIPlus exper-

iments, respectively. An ANOVA test carried out at 5% significance indicates that

there is no statistically significant difference between the results achieved by setting

the value of med per manually and those achieved by setting it automatically. A

similar test between the baseline false positive rates achieved by NIPlus against those

achieved by the auto-tuned STAD results show a statistically significant difference. It

is noted that had there been no statistically significant difference between the results,

the observation that STAD achieves similar results without the manual determination

of k for Topk analysis, as employed by NI and NIPlus, remains a contribution of the

method. In the determination of alerts through the information content ranking of

spatio-temporal partitions by a Topk analysis, it may be difficult to choose a value

for k which can be used on all datasets. Detailed ANOVA results are provided in

Appendix D. The ANOVA results are summarized in Table 8.1.

6.6 Anomaly Detection using C5.0

This section details the methodology and results for attempting to learn rules for iden-

tifying anomalous clusters automatically. The rules used in the previous evaluation

were crafted manually. It would be interesting to see how automatically generated

Table 6.3: ANOVA Test Summary

Treatment F P-Value F crit

FPR-Baseline vs. FPR-Autoset 5.036 0.034 4.259
FPR-BestCase vs. FPR-Autoset 0.003 0.957 4.259
DR-BestCase vs. DR-Autoset 0.817 0.375 4.259
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Figure 6.11: This graph shows the best case results for the experiments in which the
med per parameter is set manually and the results in which its value is set automati-
cally. In addition, it shows the false positive rate achieved by NIPlus for a recall rate
similar to the autoset experiments.

rules perform on this task. The C5.0 data mining algorithm is used in this evaluation

[62].

C5.0 is the most recent version of the C4.5, which is derived from the ID3 tree

induction algorithm [17, 62]. A decision tree is a tree structure which can be used in

classification. Decision tree induction refers to the process of learning a decision tree

from data. In a decision tree, each non-leaf node represents a test on an attribute,

while each edge emanating from a node represents the possible values for said attribute

or the possible outcomes of performing the test on the attribute. On the other hand,

the leaf nodes take values from the set of possible classes to which the exemplars in

the data can belong.

While the result of tree introduction is a tree structure, it is possible to represent

the knowledge contained in the tree in the form of IF-THEN rules. Each path from

the root node to all leaf nodes is a rule. The rule antecedent is the conjunction of

the attribute tests carried out at each internal node along the path, while the rule

consequent is the class label assigned to the leaf node in the path.

Classification of a data exemplar using a decision tree proceeds in the following

manner: starting at the root, using the attribute tests at each node encountered, the
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attribute values of the sample are tested [17]. The sample finds a path through the

tree by following the edge at each node which yields true when the test is performed

on its corresponding attribute value. This is done until a leaf node is reached. The

class value of the leaf node is assigned to the sample. The recursive algorithm for

decision tree induction using the ID3 algorithm is outlined in Algorithm 8 [17].

Algorithm 8 This function, called ID3 Tree Induction, generates a decision tree

using a set of training exemplars. The function works recursively.
Input: A set of training exemplars, data and the set of attributes, attributes by which members of

data are defined.

Output: A decision tree t for classifying data

1: Create a node N of tree t

2: Assign all elements of data to N

3: if all elements of data belong to the same class, C then

4: Label N with class C

5: Return(N) {N becomes a leaf node}
6: else if |attributes| = 0 then

7: Label N with the most common class in data

8: Return(N) {N becomes a leaf node}
9: else

10: Select targetattribute from attributes using attribute selection criterion

{Entropy-based Information Gain is the most common criterion used. The attribute with

the highest information gain is selected.}
11: Label N with targetattribute

12: for every value, val that targetattribute can assume do

13: Create a condition for the statement targetattribute = val

14: Create an edge starting at N for condition

15: Let datacon be the set of exemplars from data for which condition is TRUE

16: if |datacon| = 0 then

17: Create a node at end of the edge labelled with the most common class in data

18: else

19: attributesi = attributes \ targetattribute

20: Ni = ID3 Tree Induction(datacon,attributesi) {Ni is node}
21: Attach Ni to the edge

22: end if

23: end for

24: end if
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C5.0 works in a manner similar to Algorithm 8. However, there are some enhance-

ments to this basic algorithm and its previous successor C4.5 which are incorporated

into C5.0 [59]. They are listed below.

• Attribute Type. ID3 tree induction expects all attributes it deals with to

be categorical. If they are not categorical then they must be discretized before

they can be used. C5.0 is generalized to deal with a whole range of attribute

types, including continuous attributes.

• Attribute Selection Criteria: Since the Information Gain metric is known

to be biased toward attributes with a large number of values, C5.0 uses a

range of more robust selection criteria for attribute selection (for example the

Gain Ratio statistic [17]).

• Missing Values. C5.0 has more robust ways of handling missing values. Clas-

sic tree induction handles missing values by replacing them with the most com-

mon value for the attribute.

• Attribute Creation: C5.0 has the ability to create new compound attributes

from the attributes used to describe the exemplars in the data. This ability helps

it to reduce problems such as fragmentation, (i.e. when the number of samples

assigned to a node is too small compared to the original sample), repetition,

(i.e. repeated testing of the same attribute along a branch of the tree) and

replication, (i.e. the duplication of subtrees within the decision tree).

• Attribute Winnowing. This allows the algorithm to remove attributes from

the attribute list if it considers them not to be useful.

• Class and Attribute Weighting: In classical tree induction all classes have

the same importance. C5.0 allows classes to weight by their degree of impor-

tance. In this way, the tree induction pays more attention to errors result-

ing from the misclassification of exemplars which belong to classes with high

weights.

• Boosting. The addition of boosting to C5.0 allows the induction of more

accurate decision trees.
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• Complexity. C5.0 uses less memory and is faster that either C4.5 or ID3. It

also produces more compact decision trees.

For the evaluation the implementation of the C5.0 algorithm found at [62] was

utilized. The full listing of parameters which can be used is detailed in Appendix A,

while the parameter settings used for the evaluation are listed in Table 6.4. The “-b”

option turns on boosting during tree induction. Each of the datasets was split into

two in the ratio 3 : 1, with the larger split used for training the classifier and smaller

split used for testing. Attention was paid to ensuring that the normal/anomalous

cluster ratio remained the same in both the training and test files.

Table 6.4: C5.0 Parameter Settings

Parameter Value

-r On
-p On
-e On
-b On

In the file each cluster was represented by the following features: #Nodehours,

#Nodes, #Periods, ICS, Avg. Inverse Node Frequency, Mean Time between periods,

Max Time between periods, Minimum Time between periods, Median Time between

periods and Standard Deviation of time between periods from mean. This feature set

includes all the features used in the manually generated rule set and more. This is

appropriate as C5.0 has the ability to do its own feature selection.

The results of the evaluation were compared to the manually crafted rule-set in

Fig. 6.12. The results show far more variability in the results obtained from C5.0

than that obtained using the manually crafted rule-set, indicating that the problem is

a difficult one. C5.0 was unable to produce a usable classifier in at least five datasets

but did produce classifiers which outperformed the manually crafted rules on two

datasets for both Recall and FPR. However, it is noticed that the FPRs produced

by the C5.0 rules tend to be much lower than those produced by the manual rules.

An ANOVA test was performed to compare the C5.0 rules to the manual rules (see

Appendix D). The results show a statistically significant difference in Recall rates in
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favor of the manual rules, while it shows a statistically significant difference in FPRs

in favor of C5.0.

Figure 6.12: Comparing the Recall and FP rates for the default performance of C5.0
and the anomaly detection rule set.

Further tests were carried out to improve the results of C5.0 by varying its pa-

rameter settings. These tests were not successful. They are detailed in Appendix

C.

6.6.1 Discussion of C5.0 Results

The results achieved by generating rules automatically using C5.0 allude to the diffi-

culty of the anomaly cluster identification problem. However, while manually crafted

rules seem to suffice, it is still important to be able to generate the rules automati-

cally. Listed below are ideas about what may be done in the future to make automatic

generation of the identification of rules successful.

• Change the feature set: Perhaps changing the feature set by adding more

features may improve the results.

• Use another algorithm: Perhaps the use of another machine learning or

data-mining algorithm other than C5.0 may lead to better results.
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• Reduce Class Imbalance: The normal/anomalous cluster ratio in these

datasets is skewed in favor of the normal clusters. Perhaps modifying the dataset

to include more examples of anomalous clusters may improve the classifier’s per-

formance.

• Model as a one-class problem: The anomalous cluster identification problem

is modeled as a two-class problem in the data presented to C5.O. Perhaps

modeling the problem as a one-class problem may yield better results. It is

noticed that the manually crafted rules form a one-class classifier. They identify

only anomalous clusters and have no rules for identifying normal clusters.

• Model as a multi-class problem: The anomalous clusters belong to several

different types of alerts. Perhaps training the classifier to identify the specific

instance of an alert to which each cluster belongs may yield better results.

However, this defeats the intended objective of training an anomaly detector.

6.7 Final Discussion of Results

The FPRs achieved by these experiments are not uncommon with anomaly detection

systems [26]. The FPRs achieved are sufficiently low to support a semi-supervised

approach. This would involve an administrator going over the detected alerts to

document root causes and signatures for actual alerts and flagging signatures for the

FPs. The system can use such information for future detection by searching for and

reporting known alert signatures, thus suppressing future FPs. Such an approach

will, lead to the reduction of the FPs to much lower levels. This approach has been

used successfully with intrusion detection alarms [26].

Perhaps the most important lesson learnt from the experiments is that it is pos-

sible to separate clusters of event log spatio-temporal partitions which may contain

anomalous activity from those which contain normal activity. The anomaly detection

rules developed in this work demonstrate that separation of the clusters is possible.

Even though minimal success was achieved with the initial attempt at automatic

rule generation, it is safe to assume that if the rules can be generated manually then

they can be generated automatically. This will be a viable project for future work.
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The separation produced from such automatic identification might increase the ac-

curacy further, as can be seen with the low FPRs achieved with the C5.0 classifiers.

The instances of correlated message types, which appear in the clusters, are ordered

temporally and thus form a time series. This suggests the potential that time series

analysis techniques may prove useful during identication. This is worth exploring in

future work as well.

In line with the goal of this thesis, the framework can be deployed easily with

little or no user input. The only significant user input is the definition of the sim-

ilarity categories used in the entropy-based calculations. The methods involved in

the framework are computationally inexpensive and easy to understand. The overall

accuracy of the framework could potentially be improved by working on improving

the accuracy of each component of the framework. The majority of the techniques

used in this implementation are unsupervised. Future studies could look at ways of

incorporating user input into all of the phases of the framework, thereby improving

accuracy through the use of semi-supervised techniques.

The extension of alert detection to dissimilar nodes provides the possibility of

using this framework for alert detection on distributed systems. This is examined in

the next chapter.

The application of STAD to production systems will involve the semi-supervised

association of alerts to faults, i.e. converting anomalies to fault signatures. These fault

signatures can be applied in an online setting for the detection of future occurrences of

similar faults with lower false positives than those reported here. This would coincide

as well with the proposal in [71] for the use of event messages in the goal of autonomic

computing. This is the basis for the hybrid alert detection framework for production

systems proposed in Chapter 1.
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Spatio-Temporal Alert Detection in Non-HPC Logs

The difficulty experienced in the manual analysis of system logs, due to size and

complexity, is not limited to HPC logs alone. Cloud computing, i.e. the provision of

computing as a service rather than as a product, is a paradigm being promoted in the

computing world. This paradigm shift in the way computing power is provided calls

for the installation of larger and more complex data centers. Even on the enterprise

scale, the size and distributed nature of certain enterprise networks make not only

the analysis of logs difficult but even the collection of such logs. This has led certain

cloud providers to offer Logging-as-a-Service (LaaS).

The ability to extend an alert detection framework such as STAD to these types

of logs would prove useful. This chapter provides details of evaluations which demon-

strate not only that STAD can be used on logs from the kinds of infrastructure

mentioned above, but also the flexibility of STAD as an alert detection mechanism.

In this chapter, the evaluations are carried out using two new datasets, one from a

distributed system and the other from a private cloud.

7.1 Methodology

Two system logs are used to ascertain the usefulness of the STAD framework for log

files collected on non-HPC logs, i.e. a distributed log and a cloud log. The statistics

of these log files are detailed in Table 7.1 which shows that these logs contain log

information from multiple nodes and multiple applications (processes).

The distributed log comes from a cloud-based logging platform, i.e. a LaaS

provider. The service provides a centralized system for the collection of enterprise log

information and provides a web-based interface to view and analyze the information

remotely. The log contains information from several independent machines located

around the globe. As asserted by the provider, the log contains information from

machines located in Africa, Asia, Europe and N. America. Most of these machines

153
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are configured differently, have different functions and are not aware of each other’s

existence. They are random machines which have been configured to submit their log

data to a remote server located at the site of the LaaS provider. While the distributed

logs come from a cloud-based service, they cannot be referred to as cloud logs as they

do not come from the machines hosting the cloud services. On the other hand, the

cloud log comes from a private cloud located within the network of an enterprise

which provides web farming services. The logs come from the blade servers, five in

number, on which the actual cloud services are hosted. Hence, they are referred to

as cloud logs.

Table 7.1: Non-HPC Log Data Statistics

Log Days Size(MB) # Events #Nodes #Applications

Distributed-Log 15 89.7 616,163 26 52
Cloud-Log 120 2109.52 11,294,552 5 46

The most important question which needs to be answered before STAD can be

applied to these logs will be how to define similarity. For the HPC logs it was

defined using the functionality of the nodes. In the case of the distributed logs, the

nodes in the logs were all independent and did not serve the same function, hence

functionality could not be used to define similarity. However, after exploring the logs,

it was discovered that some of the machines run similar applications. Hence, for the

distributed logs, similarity was defined on an application basis. Five applications,

which were used on more than four machines and had a significant number of log

entries were selected for analysis. They are listed below.

• Avahi. This is a service which allows devices to connect and use services on

an IP network without administrator configuration.

• Kernel. The kernel is a service at the core of most computer operating systems

(OS). It serves as an intermediary between each software application running

on the machine and the machine’s hardware.

• Sendmail. This is a service which enables the routing of email messages be-

tween different networks and it is not linked to any specific email delivery pro-

tocol.
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• SMBD. This stands for Samba daemon and is one of the daemons associated

with Samba. It provides services which allow file and printer sharing between

computers running Windows-based OSs and computers running UNIX-based

OSs.

• SSHD. This stands for Secure Shell (SSH) daemon. SSH is a network protocol

which allows for secure communication between computers via an encrypted

channel which may pass through an insecure network. SSH is used for data

transfer or remote command execution.

The statistics of the resulting datasets are highlighted in Table 7.2. The nodehour

was maintained as a unit for spatio-temporal decomposition. It is important to note

that these nodehours are slightly different from the nodehours used for the HPC

logs. More appropriately these nodehours should be referred to as app-nodehours

(application nodehours), as they contain one hour of log information from a single

node and a single application. By contrast, the nodehours used for the HPC logs

(previous chapter) contained one hour of log information from a single node and

several applications.

Table 7.2: Distributed-Log Dataset Statistics

# Events # Nodes # App-Nodehours % Alerts # Msg Types

Avahi 113 5 16 12.5 15
Kernel 2129 12 74 10.8 344
Sendmail 263 8 29 58.6 13
SMBD 2505 10 129 13.2 12
SSHD 45,776 12 212 15.1 16

In the case of the cloud logs, two of the servers had the same function of hosting

the cloud virtual machines (VMs). These machines were placed in a cluster so that

the VMs could use resources on both servers and could be migrated easily from one

server to the next. The initial thought was to select these machines and analyze them

as was done with the HPCs. In order to make the analysis different in this case, it

was decided that app-nodehours be used instead of nodehours. Three applications,

listed below, are selected.
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• Messages. This application log contains general and system related messages

from applications running in a Linux-based environment. This log is located in

the /var/log/message sub-directory on most Linux-based OSs.

• Secure. This application log contains security related messages from appli-

cations running in a Linux-based environment. This log is located in the

/var/log/secure sub-directory on most Linux-based OSs.

• Xen. Xen is a hypervisor application. It allows multiple virtual machines

running different OSs to execute on the same hardware simultaneously.

The statistics for the resulting datasets are highlighted in Table 7.3.

Table 7.3: Cloud-Log Dataset Statistics

# Events # Nodes # App-Nodehours % Alerts # Msg Types

Messages 1,878,572 2 886 4.9 152
Secure 567,283 2 982 100 34
Xen 391,951 2 980 6.9 319

Upon performing entropy-based analysis on the messages found in the datasets

listed in Table 7.3, it was found that ∼95% of message types had entropy-based ICS of

exactly 0. This indicates that ∼95% of the message types had an exactly equal rate of

occurrence across both nodes. This is not only odd but it would make the usefulness

of the results of further analysis doubtful as well. Further investigation revealed that

a large portion of the activity carried out in the chosen applications was controlled

by the cloud hypervisor, hence they did not operate independently. Therefore, the

approach of defining similarity was changed to the approach used for dissimilar nodes

in the HPC case, i.e. each node was treated independently from the other. When

this approach was taken, the percentage of message types which had entropy-based

ICS of exactly 0 dropped to 0%.

As these logs did not have alerts defined and labelled by system administrators as

was the case with the HPCs logs, alerts were defined naively by labeling as an alert

a log event which contained any of the following terms: ERROR, FAIL and WARN.

While it is acknowledged that this approach may end up including non-alerts as alerts

and vice versa, I believe that it is sufficient for a proof of concept.
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The entropy-based calculations and ICC were carried out using the exact same

procedure as that used with the HPC logs. Entropy-based calculations for the dis-

tributed logs followed the same procedure used for the similar node HPC datasets,

while the procedure for the dissimilar node datasets was used for the cloud logs. The

rules and parameter settings used for anomaly detection remained the same. The

results of the evaluations are presented in the next section.

7.2 Results

The result of the ICC of the logs will be highlighted first. Scatter plots of the ICSs of

the nodehours derived from the datasets are shown in Figs. 7.1 and 7.2. From these

graphs the phenomenon of strong clustering of spatio-temporal partitions around ICS

values can be seen. This lends credence to the assertion that this phenomenon is not

isolated and occurs in non-HPC logs as well. This result makes the use of the ICC

technique a viable option for these datasets.

The results of evaluating the clusters formed after ICC are highlighted in Tables

7.4 and 7.5. The results show an average Fwithin of ∼0.01, distance of ∼0.748 and

conceptual purity ratio of 1.00 for the distributed log datasets, while an average

Fwtihin of 0, distance of ∼0.440 and conceptual purity ratio of 1.00 for the cloud log

datasets was recorded. These values indicate that the technique works appreciably

with these datasets. The clusters are well formed and are sufficiently dissimilar from

each other. Hence, they may represent distinct system states. It was found that by

considering only clusters that had more than nine nodehours in them, it was possible,

on average, to cluster ∼80.78% and ∼80.05% of all nodehours in the distributed and

cloud log datasets, respectively.

The stacked bar graphs in Figs. 7.3 and 7.4 show the distribution of nodehours in

the alert clusters formed after ICC. Just as is the case with the HPCs, it was observed

that the resulting clusters separate normal nodehours from alert nodehours to a great

degree. Hence, the identification of anomalous clusters for detecting alerts, as is done

with STAD, is a possible next step.

After the identification of the clusters using the rule set, it was found that an

average Recall of ∼62.2% and average FPR of ∼5.9% was achieved for the distributed

log datasets, while an average Recall of ∼57.5% and average FPR ∼5.8% was achieved
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Table 7.4: Average FWithin, Distance and Conceptual Purity for Nodehour Clusters
from the Distributed Log

Avg. FWithin Avg. Distance Conceptual Purity Ratio

Avahi 0.0 1.0 1.0
Kernel 0.0 0.83 1.0
Sendmail 0.03 0.61 1.0
SMBD 0.0 0.61 1.0
SSHD 0.02 0.69 1.0

Table 7.5: Average FWithin, Distance and Conceptual Purity for Nodehour Clusters
from the Distributed Log

Avg. FWithin Avg. Distance Conceptual Purity Ratio

Messages 0.0 0.62 1.0
Secure 0.0 0.46 1.0
Xen 0.03 0.24 1.0

for the cloud log datasets. Detailed results are highlighted in Figs. 7.5 and 7.6. While

these results are respectable, it will be noticed that low Recall rates were achieved

in three datasets: Sendmail, SSHD and Secure, where Recalls of 17%, 34% and 10%

were achieved, respectively. Based on these results, it was thought that perhaps

investigating with parameter values might yield better results for these datasets.

In the case of the SSHD log, it was found that increasing the size of the upper

bound parameter from 0.3 to 0.4, effectively increasing the range of clusters which

are checked for the near-periodic property, increases the Recall to 78% from 34%

with no corresponding increase in the FPR. This approach worked for the SSHD

log because it contained a large alert cluster which demonstrated the near-period

property. The previous setting of the upper bound parameter excluded this cluster

from being examined for the near-periodic property. This approach did not work for

the Sendmail and Secure datasets. However, both these logs had at least one very

large alert cluster which contained at least 50% of all alerts, see Figs. 7.1 and 7.2.

This makes it difficult to achieve high Recall rates without the detection of these large

clusters.

It is thought that changing the dimensionality of the decomposition could solve
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this problem. This approach would have the effect of separating alert behaviour

further from normal behaviour, leading to smaller alert clusters. This assertion makes

a lot of sense for the Secure dataset especially. In this dataset, all the clusters contain

alert behaviour, meaning that at least one event containing terms relating to alert

behaviour is reported in every hour of activity in the log. Using a smaller unit of time

for decomposition might help separate this behaviour. Therefore the use of minutes

for spatio-temporal decomposition was therefore investigated.

The graphs in Fig. 7.7 show the scatter plots for the ICSs for these datasets

when app-nodehours and app-nodeminutes were used as a means for spatio-temporal

decomposition. An app-nodehour is a spatio-temporal decomposition unit which

contains one hour of log information from a single application running on a single

node. An app-nodeminute contains one minute of log information from a single

application running on a single node. The graph shows that the aforementioned

assertion i.e. the reduction in the granularity of spatio-temporal decomposition by

using minutes instead of hours, may lead to the production of smaller alert clusters is

plausible. The newly pronounced separation of alert behaviour from normal behaviour

in the Secure log dataset is of particular note. Performing cluster separation using

clusters of nodeminutes increased the Recall marginally to 19% from 17% with no

increase in FPR for the Sendmail dataset, while an increase of Recall to 14% from

10% with only a negligible increase in the FPR (0.06% from 0%) is recorded for the

Secure dataset. Though the results improved, the marginal increase indicates that

some large clusters remained undetected.

In the case of the Secure dataset, it was discovered that the large cluster exhibited

the near-periodic property. However, the value of the STT parameter was unable to

identify it as being anomalous. The STD values in this dataset seemed on average

larger than usual. Hence, by changing the value of STT to 14, it was possible to

increase the Recall to 73% without a corresponding increase in the FPR. However,

no success was achieved in this respect for the Sendmail dataset. Given the naive

method of identifying alerts in these datasets, it remains to be seen whether the large

alert cluster in this dataset represents true alert behaviour. It is noted that this alert

cluster was the largest cluster formed, which is odd for an alert cluster.
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7.3 Discussion

The evaluations presented in this chapter demonstrate in practical terms the versa-

tility of the STAD framework, having experimented with different spatio-temporal

partitioning approaches using nodes, applications, hours and minutes. In the task

of alert detection in system logs one size rarely fits all. However, STAD is flexible

enough to be adopted for the specific needs of the infrastructure on which it is to be

deployed. This is definitely an advantage of the framework.

With the inclusion of the distributed logs and cloud logs, it was demonstrated

that STAD is not limited to use on HPC logs alone. A large spectrum of ways (listed

below) of defining similarity in log files has been covered.

• Multiple applications running on multiple nodes was covered by the evaluations

of the similar HPC logs.

• Multiple applications running on a single node was covered by the evaluations

of the dissimilar HPC logs.

• Single application running across multiple nodes was covered by the evaluation

of the distributed logs.

• Single application running on a single node was covered by the evaluations of

the cloud logs.

The evaluations have revealed that while similarity is important for meaningful

entropy-based analysis, a relative amount of independence between the similar en-

tities is necessary for meaningful analysis to take place. Performing entropy-based

analysis on entities which are not independent will yield models that indicate that all

behaviour(s) is/are normal.

The importance of parameter settings was highlighted as well. The fact that STAD

has these parameters is an advantage but users not understanding them could be a

disadvantage. Investigations into methods for setting the values of these parameters

automatically will make for interesting future research.



161

(a) Avahi

(b) Kernel

Figure 7.1: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the application
logs from the distributed log. The plot differentiates between alert nodehours and
normal nodehours. Nodehours are sorted based on the ICS values in the plot.
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(c) Sendmail

(d) SMBD

Figure 7.1: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the application
logs from the distributed log. The plot differentiates between alert nodehours and
normal nodehours. Nodehours are sorted based on the ICS values in the plot.
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(e) SSHD

Figure 7.1: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the application
logs from the distributed log. The plot differentiates between alert nodehours and
normal nodehours. Nodehours are sorted based on the ICS values in the plot.
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(a) Messages

(b) Secure

Figure 7.2: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the application
logs from the cloud log. The plot differentiates between alert nodehours and normal
nodehours. Nodehours are sorted based on the ICS values in the plot.
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(c) Xen

Figure 7.2: Scatter-Plot of nodehours (x-axis) vs. ICSs (y-axis) for the application
logs from the cloud log. The plot differentiates between alert nodehours and normal
nodehours. Nodehours are sorted based on the ICS values in the plot.
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(a) Avahi (b) Kernel

(c) Sendmail (d) SMBD

(e) SSHD

Figure 7.3: Stacked Bar Graphs for the application logs from the distributed log. In
each graph, each line on the y-axis represents a nodehour cluster which contains at
least one alert nodehour. The colors in each line represent the distribution of alert
nodehours (red) to normal nodehours (blue). All clusters which contain at least one
alert nodehour are shown.
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(a) Messages (b) Secure

(c) Xen

Figure 7.4: Stacked Bar Graphs for the application logs from the cloud log. In
each graph, each line on the y-axis represents a nodehour cluster which contains at
least one alert nodehour. The colors in each line represent the distribution of alert
nodehours (red) to normal nodehours (blue). All clusters which contain at least one
alert nodehour are shown.
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Figure 7.5: Recall and FP rates for STAD on the application categories of the dis-
tributed log.

Figure 7.6: Recall and FP rates for STAD on the application categories of the cloud
log.
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(a) Sendmail - Nodehours

(b) Sendmail -Nodeminutes

Figure 7.7: Scatter-Plot of spatio-temporal partitions (x-axis) vs. ICSs (y-axis)
for the Sendmail and Secure application logs. For each application, the temporal
granularity level of the plot is “Hours” for the graph on the left while “Minutes” are
used for the graph on the right.
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(c) Secure - Nodehours

(d) Secure - Nodeminutes

Figure 7.7: Scatter-Plot of spatio-temporal partitions (x-axis) vs. ICSs (y-axis)
for the Sendmail and Secure application logs. For each application, the temporal
granularity level of the plot is “Hours” for the graph on the left while “Minutes” are
used for the graph on the right.



Chapter 8

Putting it All Together: Online Alert Detection through

Interactive Learning of Alert Signatures

The ability to discover error conditions automatically with little human input is a

feature lacking in most modern computer systems and networks. However, with the

ever increasing size and complexity of modern systems, such a feature will become

a necessity in the not too distant future; modern computer systems and networks

are increasing in size and complexity at an exponential rate. The goal of automatic

alert detection is to create systems which are able to identify their own error condi-

tions/states with limited input from a human operator.

The material in this chapter presents the results which demonstrate how the alert

detection framework proposed by this thesis would perform on real life production

systems. The framework utilizes all of the techniques which have been presented

in previous chapters. The use of these techniques is optional. While most of the

techniques used are suitable for offline analysis, this framework shows how knowledge

extracted from off-line analysis can be used online. Off-line anomaly detection detects

the parts of the log which are likely to contain errors (anomalies). Via visualization,

human administrators can inspect these anomalies and assign labels to clusters which

correlate with error conditions. The system can learn a signature from the confirmed

anomalies which it uses to detect future occurrences of the error condition on a

production system. The evaluations suggest that the system is able to generate

simple and accurate signatures using very little data. This framework contributes to

the goal of achieving self-healing systems in autonomic computing.

This framework differs from and improves on previous approaches due to its hy-

brid nature and its use of techniques which have low computational cost. Previous

approaches have utilized either a signature-based [21] or anomaly-based [42] approach

but not both. Visualization techniques, if included, are not used interactively and

are used only for the visualization of the results of analysis [2, 82]. The inclusion

171
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of a signature-based component will help to improve accuracy, while the visualiza-

tion component helps the system to learn from the expert knowledge of the human

administrator.

The material presented in this chapter can be found in this publication [52].

8.1 Methodology

The main idea behind the proposed online alert detection framework is to use the

content of historical logs to learn the signatures of previous alert conditions which may

have manifested in the log, with the proviso that this be done with minimal human

intervention. Once these signatures are learned, they can be stored and applied

on production systems to detect future incidents of such alerts as they occur. The

proposed system utilizes anomaly detection, signature generation and visualization to

achieve this goal. The framework is a hybrid signature- and anomaly-based system.

Signature-based systems work by utilizing models of known and well defined be-

haviors of interest. They are very accurate but suffer from their inability to detect

new behaviors of interest. Anomaly-based systems, on the other hand, require less

apriori knowledge of the behaviors the system aims to detect. Instead, they attempt

to identify behaviors that differ from the norm which enables them to detect new

behaviors of interest. However, they tend to be less accurate as legitimate behavior

can differ from the norm. By utilizing concepts from both signature- and anomaly-

based systems, the framework builds on the strengths of both systems, by both being

capable of detecting new types of alerts and being as accurate as a signature-based

system.

Due to the complexity of the problem, previous work asserts that in such situations

human involvement is important to complement the automated system [3]. Thus, the

visualization component provides the interactive component of the framework. It

allows the human administrator to interact with the proposed system and provide

feedback which will improve the models learned by the system over time and keep

them up-to-date.

The diagram in Fig. 8.1 provides an overview of the phases of the proposed alert

detection framework. The phases of the framework are:

1. Unsupervised anomaly detection through the clustering of system logs and the
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separation of normal and anomalous log clusters.

2. Feedback from the human operator in the form of identification and labeling of

anomalous clusters.

3. Mining of alert signatures and cluster refinement. The feedback from the ad-

ministrator is used for learning alert signatures and for cluster refinement

4. Repeat Steps 1 - 3 as required.

The framework does not require the use of any specific mechanisms for carrying out

its phases. The choice is left to the discretion of the user.

For the anomaly (alert) detection component of the system, the use of STAD

[51] is proposed. The steps of the STAD framework are explained in Section 8.1.1.

STAD is described in more detail in Chapter 6. STAD works by clustering the

spatio-temporal partitions of the log and separating the clusters into normal and

anomalous categories. These categories contain several different types of normal and

anomalous behavior, hence the clusters would require labels i.e. textual description

and categorization. These labels can be provided by the human administrator through

a visualization system. A system such as LogView [41] could serve this purpose,

albeit with a modified hierarchical structure which would include spatio-temporal

partitions and the clusters identified by the system. The level of user interaction

would be minimal, as the system does not require a complete labeling of all clusters

to learn their signatures. A label on a single cluster is enough for the system to learn

a signature if need be.

Once these labels are acquired, the system can take all the alert clusters with the

same label and generate a signature for them. A frequent itemset mining paradigm

is used for signature generation: it is described in more detail in Section 8.1.2. The

anomaly detection system continues to improve on its accuracy by using the infor-

mation from the labels provided by the administrator and the alert signatures it

generates to improve its clustering and anomaly detection accuracy. Examples of

how this can be done are given in Section 8.1.3.
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Figure 8.1: Framework for Automatic Signature Generation from System Logs. This
figure highlights the phases involved in the proposed framework for automatic alert
signature generation using the contents of the system’s historical log files.

8.1.1 Anomaly Detection

The steps of the STAD framework are summarized in this section, Fig. 8.2 shows the

steps of the STAD anomaly detection mechanism. The techniques used for each step

of the framework have been discussed in previous chapters.

• Message Type Transformation. This involves the transformation of the

natural language description of each line in the log into a unique token which

represents the message type that produced the description. Previous work has

shown that message type transformation reduces not only the amount of com-

putation required for log analysis but may improve the accuracy of the analysis

as well [82, 2, 42].

• Spatio-Temporal Decomposition. Spatio-Temporal decomposition involves

the partitioning of the contents of the log such that each partition contains all

events from a single source over a specified time period. This can be done easily

on most logs, using information from their timestamp and the other fields in

the event header.
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Figure 8.2: Spatio-Temporal Alert Detection (STAD). This figure shows the steps in
the STAD alert detection mechanism. The mechanism results in the classification of
the contents of log into normal and anomalous categories.

• Clustering. This step requires the grouping of the spatio-temporal partitions

such that each group contains partitions which are very similar to each other,

while being very dissimilar from the spatio-temporal partitions in other groups.

The exact method which is used to achieve this can be chosen freely by the

user.

• Anomaly Detection. It is assumed that the resulting clusters from the previ-

ous step contain either a majority of normal activity or a majority of anomalous

(alert) activity. The anomaly detection step serves to separate such clusters.

Again, the exact method used is left to the discretion of the user.

8.1.2 Signature Generation

The input to the signature generation mechanism (see Fig. 8.3) consists of the spatio-

temporal partitions belonging to the cluster(s) which have been identified by the

human administrator as containing activity which relates to a particular alert type.

The administrator would have to review only those clusters identified by the system

as being anomalous. Subsequently, a cluster pruning step is performed, as described

in Algorithm 9. During this step the set of message types reported in each spatio-

temporal partition is pruned by computing iteratively the difference between the set

of message types in the spatio-temporal partition and the cluster centroids for each of

the clusters identified as normal by STAD. The method for choosing cluster centroids

is described in Chapter 5.

After pruning, frequent itemset mining is performed on the spatio-temporal par-

titions. Given a set of objects or items (called an item base), S, we define T as a set

of transactions defined over S such that for all T ∈ T, T ⊆ S. A subset (also called

an itemset) S ′ of S is said to be frequent if the number of transactions in T which
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Algorithm 9 The cluster pruning pseudo code.
Input: The spatio-temporal partitions which need to be pruned, A. The cluster centroids

for all the spatio-temporal partition clusters identified as normal by STAD, B.

Output: The pruned spatio-temporal partitions

1: for each A as A do

2: {A will contain a set of message types.}
3: for each B as B do

4: {B will also contain a set of message types.}
5: A = A\B {Compute set difference}
6: end for

7: end for

are supersets of S ′ exceed a user-specified support threshold and is referred to as a

frequent itemset. The goal of frequent itemset mining is to find all itemsets which

occur in T with a minimum support threshold. The apriori algorithm is a classical

algorithm for frequent itemset and association rule mining [1] and can be used here.

Other frequent itemset mining algorithms such as Eclat [85] and FP-Growth [18] can

be used as well.

The apriori algorithm is a level-wise iterative search algorithm. It uses its knowl-

edge of frequent k-itemsets to generate and search the space of (k + 1)-itemsets. It

starts by finding all frequent 1-itemsets. Then it uses the set of frequent 1-itemsets

to generate the set of frequent 2-itemsets. It continues this until it generates the set

of frequent k-itemsets beyond which no more frequent itemsets with a size larger k

can be found. The computation at each level in the iteration involves two steps.

1. Candidate Generation. If the set of k-itemsets is Ck and the set of frequent

k-itemsets is Lk (i.e. Lk ⊆ Ck) then the goal of this step is to generate Ck using

Lk−1. It does this by performing a join of Lk−1 on itself, i.e. Lk−1 � Lk−1.

2. Candidate Pruning. The goal of this step is to generate Lk from Ck. It does

this by removing all elements of Ck which are not frequent in the transaction

database.

However, a problem exists with the pruning step: the size of Ck may be prohibitive.

The direct approach to pruning Ck would involve determining the count of each
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Figure 8.3: Signature Creation Mechanism. This figure shows the steps in the signa-
ture creation phase of the framework.

element of Ck in the transaction database, which will require a lot of computation if

Ck is large. The apriori algorithm utilizes the apriori property to reduce the amount of

computation required for candidate pruning at each level of computation. The apriori

property states that all nonempty subsets of a frequent itemset must be frequent as

well [17]. The algorithm gets its name from this property. Using this property, it

can be stated that a (k − 1)-itemset which is infrequent cannot be a subset of a

frequent k-itemset. Hence, if any subset of size (k − 1) of an itemset in Ck is not in

Lk−1, such an itemset cannot be frequent and can be removed from Ck. This is how

the apriori algorithm reduces the amount of computation required for the frequent

itemset search.

The frequent itemset mining paradigm can be applied to the problem of alert

signature generation by supposing that message types are items and a spatio-temporal

partition is a transaction. Hence, the set of message types found in a system log is the

item base and the transaction database is the set of spatio-temporal partitions found

in the log. It is theorized that for any set of related transactions (spatio-temporal

partition cluster) in the transaction database (system log), the set of frequent itemsets

which occur in the transaction cluster would be an effective signature for identifying

future occurrences of that transaction type. If a transaction cluster is related to

an alert type, then the frequent itemsets mined from such a cluster would form a

signature for that alert. Given a spatio-temporal partition cluster C which contains

some sort of alert behavior, the set of frequent itemsets derived from C (i.e. Cf ) will

contain the signature for that alert behavior. The alert signature defined by Cf is

triggered if a message type which is contained in any of the itemsets in Cf is found

in a spatio-temporal partition.

Once the signatures are generated they can be stored in a database and used to

detect future alerts on a production system, Fig. 8.4. This database will be updated
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Figure 8.4: Online Alert Detection. This shows how the alert signatures produced by
the system can be used for online alert detection on a production system.

as more up-to-date signatures are discovered. The log parsing module would parse the

log event stream, searching for any events (or log partitions) which match any of the

signatures in the database. If a match is found, an alarm is raised. The alarms can be

passed directly to the administrator for action or passed to a downstream module such

as an alarm correlation system before being passed to the administrator. The result

is a system which can automatically search its own logs for symptoms of failure and

notify the administrator. Unlike other systems which do this using signatures which

are produced and managed manually, the proposed system produces the signatures

itself while relying on the administrator only for class labels.

8.1.3 Visualization, Feedback and Cluster Refinement

The anomaly detection capability of STAD depends on its ability to cluster the spatio-

temporal partitions of a log properly. Nodehours and nodeminutes were chosen as

units of spatio-temporal decomposition for the experiments. This decomposition is

done arbitrarily: it aims to ensure that the resulting spatio-temporal partitions con-

tain correlated messages types which define a single system state. However, such

decomposition may separate correlated message types or may combine correlated

message types from different states. The example of Cluster B in Fig. 8.5 is an

example of the latter.

In the example in Fig. 8.5, it is assumed that Clusters A, B and C are clusters

formed by clustering the nodehours in a log. Furthermore, it is assumed that the
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anomaly detection process has identified Clusters A and C as normal, while Cluster

B has been identified as an anomaly. This classification of Cluster B may be a FP, as

its contains a spatio-temporal partition which contains information about two normal

states. The spatio-temporal partition is anomalous but the states it defines are not.

The information which the anomaly detection mechanism receives via the feedback

loop can be used to resolve this scenario. Let us assume that Cluster A is labelled and

identified as a normal cluster through the visualization system by an administrator.

The system can use the cluster centroid or a signature learnt through frequent itemset

mining as a signature for this normal cluster. In this case, the signature will be

(MT1 ∨ MT2).

Using this signature in its database, it is now possible for the system to reason

about the single spatio-temporal partition in Cluster B. It can discover that the spatio-

temporal partition contains the complete signature for Cluster A. An IF clustering

scenario can be created by performing ICC on the spatio-temporal partition without

considering the message types which are part of the signature of Cluster A. This

action will show that the cluster now belongs to Cluster C. Hence, the system knows

that Cluster B is actually a soft cluster which belongs partially to Clusters A and C.

By knowing that Clusters A and C are normal clusters, it can eliminate Cluster B as

an anomalous cluster and reduce the FPs.

Another reasoning scenario could occur if, as in the example, the system discovers

that a spatio-temporal partition contains complete definitions of system states from

other clusters: it can attempt to split the spatio-temporal partition into smaller units.

In the single spatio-temporal partition in Cluster B, if two non-overlapping time units,

t1 and t2 , can be found such that t1 + t2 = 1hr (if the spatio-temporal partition is a

nodehour) and all instances of MT1 and MT2 occur in t1, while all instances of MT3

occur in t2, it is possible to decompose the spatio-temporal partition into two new

spatio-temporal units, i.e. a node-t1 and a node-t2 as in shown in Fig. 8.6. These

resulting spatio-temporal units can be placed in Cluster A and Cluster B respectively,

eliminating Cluster B altogether.
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• MT1 

• MT2 
.   .   .   .     

• MT1 

• MT2 

• MT1 

• MT2 

(a) Cluster A

• MT1 

• MT2 

• MT3 

(b) Cluster B

• MT3 
.   .   .   .     

• MT3 • MT3 

(c) Cluster C

Figure 8.5: The figure above shows three examples of spatio-temporal partition clus-
ters which maybe formed during analysis. For this example, let us assume that
Clusters A and C, have been identified correctly as normal while Cluster B has been
wrongfully identified as anomalous due to the fact that it contains only one spatio-
temporal partition.

8.2 Complexity

For the proposed framework to be usable in an online environment, its computational

cost (time complexity) must allow quick processing of the content of very large logs,

which is the trend in today’s network systems [68].

At the anomaly detection phase, the costly operations are message type transfor-

mation and clustering. The message type transformation is a linear time operation

with respect to the number of events in the logs [43]. However, this is a preprocessing

step which can be performed in advance. The ICC requires the calculation of a num-

ber of entropy-based values. Let W represent the number of terms in the log, C the

number of reporting sources and H the number of spatio-temporal partitions. ICC

comes after calculations are performed on two matrices of size W × C and W × H.

The time complexity is of the order of W × C and W × H. However, previous work



181

• MT1 

• MT2 

•MT3 

Figure 8.6: The figure shows the single spatio-temporal partition from Cluster B in
Fig. 8.5. It depicts a possible scenario of breaking up the spatio-temporal partition
into smaller and temporally uneven spatio-temporal units.

has demonstrated that the use of message types to represent the terms in the log,

i.e W , significantly reduces the dimensionality of the problem by an order of about

a hundred [42]. The actual clustering step which comes after these calculations is a

linear time computation with respect to H.

Let n represent the number of items in an item base. The time and space com-

plexity for mining the set of frequent itemsets from a transaction database defined

over the item base is theoretically of the order of
∑n

k=1

(
n
k

)
, i.e. the number of pos-

sible itemsets which can be generated from the items in the item base. However,

in practice, the size of the largest candidate itemset is more likely bounded by the

size of the largest transaction in the transaction database, which is usually a lot less

than the number of items in the item base. The use of the classical apriori algorithm

helps to reduce this complexity further by reducing the number of candidates itemsets

which need to be generated. In addition, there are several published approaches using

sampling, partitioning, transaction reduction etc., which can improve the efficiency

of the process even further[17].

This discussion forms the basis on which this thesis argues that the methods used

all scale gracefully in the face of large logs.

8.3 Evaluations

The experiments involved simulating the alert generation mechanism of the framework

using historical log data and then using the signatures to detect alerts in spatio-

temporal partitions as they occurred. The goal was to measure the detection accuracy

of the generated signatures. The following assumptions were made.
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• The signatures are static, i.e. once they are created, they do not change.

• The anomaly detection portion of the framework works perfectly, i.e. it is able

to separate normal and anomalous clusters perfectly.

• The administrator is able to label all alert clusters shown to him/her by the

system accurately. As these labels are the basis on which the system decides

from what alert clusters to mine signatures, the accuracy of this labeling will

have an impact on the result.

The visualization component of the system allows the human operator to interact

with the system and provide labels for signature generation and cluster refinement.

Since cluster refinement was not performed in these experiments and it is assumed that

all labels have been provided accurately, the visualization phase was not evaluated in

this thesis.

Each experiment is done for only a single alert type using datasets derived from

the HPC, Distributed and Cloud logs mentioned in previous chapters. Statistics of

these datasets are provided in Tables 4.7, 7.2 and 7.3 respectively.

Each log dataset is split into five separate training and testing pairs for each alert

type (see Tables 4.7, 7.2 and 7.3). These training and testing pairs are not of equal

size. The split point for the training file is determined by the time at which 10%, 20%,

30%, 40% and 50% of all spatio-temporal partitions of the alert type has occurred. All

log events occurring after each of these points are used to test the signatures found.

Each run involved the execution of the proposed framework on a test file, which was

assumed to be a historical log, to learn the signature for an alert type. The generated

signature(s) were applied to the test set to detect spatio-temporal partitions which

contained the alert type after which the number of TPs, FPs,TNs and FNs were

determined. These values were used to calculate the detection rate (recall) and FPR

as defined in Eq. 3.4 and Eq. 6.4 respectively. In summary, as a result of this setup,

approximately 1,120 experiments were carried out.

An efficient open-source implementation of the apriori algorithm 1 was utilized in

all the runs [5]. The support threshold was set to 50% for all runs. It is not uncom-

mon for frequent itemset mining to generate a large number of itemsets which are

1Downloadable from http://www.borgelt.net/apriori.html
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sometimes redundant. For this reason, only closed frequent itemsets were generated.

Frequent itemsets which have no superset with the same support value are referred

to as closed.

8.4 Results

This section present results on the detection accuracy of the signatures and the nature

of the signatures produced by the proposed system.

The FPRs achieved during the experiments show very little variation. The FPR

achieved was approximately 0% for all runs. These FPRs are operationally acceptable

and show that the goal of converting detected anomalies into signatures as a means

of reducing false positives was achieved.

An average DR of 88%, 84% and 83% was achieved on the HPC, Distributed and

Cloud logs, respectively. The distribution of these DRs is shown in Fig. 8.7. How-

ever, it is stated that a DR close to 100% can be expected for most of the signatures

produced for the HPC logs: Fig. 8.7(a) shows the DR distribution for the runs for

each log file in the HPC category. It can be seen that the average DR would be much

higher if the few outliers are not considered. Investigations show that some of the

outlier DR values are due to the quality of the clusters produced or due to the distri-

bution of signature(s) across time. In cases where the alert state is not the majority

behavior in a cluster, the signature learnt would not relate to the alert and hence

would produce a DR close to zero. This situation can be mitigated by reducing the

support threshold used in signature generation. In cases in which signature(s) for an

alert are not distributed evenly in time, it is possible to only learn the signature(s) for

an alert partially. Leading to less than perfect detection, this situation is pronounced

particularly in datasets 4,9,11,13 in Fig. 8.7(a). In a real life implementation the

signatures would not be static, as is the case in the experiments. Having dynamic

signatures, as would be the case in an online implementation, will allow the proposed

system to learn new signatures for an alert and improve its detection accuracy. In

Fig. 8.7(b) there are no DR results for the Avahi log due to the fact that there is only

one alert type for this log and only one cluster formed at any point in time. Hence

there are no alerts to detect after learning the signature. However, the signatures

learnt for the Avahi file could be said to be effective as they did not generate any
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Table 8.1: ANOVA Test Summary

Treatment F P-Value F crit

FPR(HPC) 0.874 0.485 2.525
DR(HPC) 0.162 0.957 2.531
FPR(Distributed) 65535 NA 2.866
DR(Distributed) 0.311 0.866 3.055
FPR(Cloud) 65535 NA 3.478
DR(Cloud) 0.068 0.990 3.478

FPs. Though there were no alerts to detect, the Avahi alert signatures were tested

anyway and having no FPs implies that the proposed framework did not make any

errors in misclassifying normal behavior as alert behavior.

The graphs in Fig. 8.8 show how the average DR changes as the size of the

training file is changed. The results show that while an increase in DR performance

is noticed for 3 log files, i.e. Bgl-Comp, Tbird-Other and Liberty-Other, as the size

of the training file is increased, there seems to be no correlation between the size

of the training file and the DR performance. This is confirmed by an ANOVA test

performed at 5% significance, which is summarized in Table 8.1. Detailed ANOVA

results are provided in Appendix D. The ANOVA results show no statistically sig-

nificant difference between the FPR and DRs achieved when the training file size is

changed. These results suggest that alert signatures can be learnt when as little as

10% of the exemplars for an alert type are present in the log.

The nature of the signatures produced are discussed using three factors: their

length, their support value and the number of signatures generated for each alert

type. An alert signature, as defined by this research, consists of a set of message

types which can be used disjunctively or conjunctively to detect an alert condition in

a log file partition. Therefore, the length of a signature is the number of message types

which define it. This thesis assumes that shorter signatures are not only simpler but

better defined, i.e. compact, so shorter signatures are deemed to be preferable than

longer ones. The graphs in Fig. 8.9 show the length distribution of the signatures for

each of the HPC, Distributed and Cloud logs. The results show an overall median

length of two and mean length of six for the HPC logs, median length of six and

mean length of ten for the Distributed logs and a median length of four and mean
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length of twenty-seven for the Cloud logs. Since the minimum signature length is one,

these results show that the signatures produced by the proposed system are relatively

simple and compact. High mean lengths are due to the effect of outliers.

Signatures are generated as frequent itemsets from clusters of spatio-temporal par-

titions, therefore each signature has a support rate and since more than one frequent

itemset can be mined, it is possible to have more than one signature for an alert

type. While it can be debated, it is safe to say that signatures with higher support

rates are likely to be better detectors than those with lower support rates. There-

fore, this work reports on the support rates for the signatures produced during the

experiments. The graph in Fig. 8.10 shows the support rate distribution for the sig-

natures. The results show an overall median support rate of 100% and mean support

rate of 94.45% for the HPC logs, an overall median support rate of 100% and mean

support rate of 95.71% for the Distributed logs and an overall median support rate

of 100% and mean support rate of 82.96% for the Cloud logs. These support rates

are very high and attest to the quality of the signatures produced. The results are

not surprising given the high internal cohesion rates reported from the assessment of

the clusters produced using ICC [50]. Generating a few (ideally one) signature(s) for

each alert type is desirable. The data in Tables 8.2, 8.3 and 8.4 report on the median

and maximum number of signatures created for each alert type. The median num-

ber of signatures was the minimum (1) for all the log files except Liberty-Compute,

Liberty-Admin, Spirit-Comp, Sendmail and Messages.

It is important to mention that not all of the experiments were able to produce

useful signatures: of the 1,120 experiments performed, useful signatures were not

produced directly in 137 (12%) of them. After analysis, it was discovered that the

inability of the framework to produce signatures was due to one of two reasons:

• Very high support value.

• Over-generalized message type descriptions.

The minimum support value set for all experiments was 50%. In 32 experiments

signatures could not be produced because this support value was too high. If these

experiments were run with lower support values, useful signatures would have been

produced. This is a parameter which can be tuned in an actual implementation of this
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Table 8.2: Number of Signatures Per Alert Type

# Alert Types Median Max

BGL-Compute 18 1.0 6.0
BGL-IO 17 1.0 2.0

BGL-Link 5 1.0 2.0
BGL-Other 7 1.0 2.0

Liberty-Compute 17 2.0 5.0
Liberty-Admin 3 2.0 4.0
Liberty-Other 7 1.0 9.0

Spirit-Compute 29 2.0 33.0
Spirit-Admin 3 1.0 2.0
Spirit-Other 11 1.0 3.0

Tbird-Compute 31 1.0 36.0
Tbird-Admin 7 1.0 5.0
Tbird-Other 10 1.0 2.0

Table 8.3: Number of Signatures Per Alert Type

# Alert Types Median Max

Avahi 1 1 1
Kernel 3 1 2

Sendmail 1 2 2
SMBD 2 1 2
SSHD 2 1 2

framework and is not a difficult problem to overcome. In 115 runs, the system ended

up having no message types in all spatio-temporal partitions after the cluster pruning

step. This is due to the fact that the message types which defined the alerts are

sub-types of the message types that were extracted automatically from the logs. This

implied that the message types appear in both normal and anomalous clusters. Hence

they end up being deleted in the cluster pruning step. For example, the APPALOC

alert type found in the BGL-IO log is defined by log events which contain the message

type “ciod: Error creating node map from file * Cannot allocate memory.” However

the message type extracted from the log was “ciod: Error creating node map from file

* * * *”, so not all instances of this message are defined as alerts in the log. Hence

the “ciod: Error creating node map from file * * * *” message type appears in some
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Table 8.4: Number of Signatures Per Alert Type

# Alert Types Median Max

Messages 3 3 8
Secure 2 1 1

Xen 3 1 2

normal clusters and is pruned whenever it appears in an alert cluster.

This example of an over-generalized message type highlights the importance of

message type extraction as the foundation for this framework. The message type ex-

traction process is able to find a meaningful message type and though the message type

is meaningful, it is unable to distinguish the alert due to its being over-generalized.

Unfortunately, even for a human administrator, the right level of abstraction to use

in such situations is difficult to guess without prior in-depth knowledge of the alerts

beforehand. In such situations, performing the message type extraction process again

on only the log events found in the cluster(s) would yield the accurate message type

required to distinguish the alert. Without the log events which are considered normal

in those clusters, the message types extracted would be produced at the right level

of abstraction and can be used as signatures for the alerts without generating false

positives. It is possible for the system at this stage to look for other discriminating

features which might differentiate a normal occurrence of a message type from an

anomalous one, using information from other fields in the event log. For example, the

“data storage interrupt” message type extracted from the BGL-Comp log defines the

KERNSTOR alert type but could be found in normal clusters as well. However, alert

instances of this message type appear with the term FATAL usually in the severity

field.

8.5 Discussion

This chapter has presented evaluations of the hybrid alert detection framework for

alert detection in system logs as proposed by this thesis. The proposed framework

combines the advantages of anomaly-based and signature-based detection. By in-

cluding an interactive visualization, the framework hopes to provide a window by

which human administrators can provide feedback to the system. The system uses
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this feedback to generate signatures and improve on its anomaly detection capability

over time.

The evaluations suggest that effective signatures can be learnt with minimal

amounts of data. The signatures learnt are not overly complex and since they are

composed of sets of message types, they are human readable. The signatures are

found to be relatively accurate. They are able to achieve a DR > 83% on average,

while maintaining an operationally acceptable FPR of approximately 0%. The best

case was 100% detection with no false positives. It is possible that higher DRs are

achievable by relaxing the tightness of clusters and skipping cluster pruning. How-

ever, this will come at the cost of higher FPRs. It will be interesting to investigate

this tradeoff in future work.

The reduction in the DR for the log data from the distributed and cloud computing

infrastructures when compared to the HPC data is most likely due to the difference

in the way similarity was defined for the files. Albeit, it is likely that the difference is

only related to differences in the data. The level of accuracy attained demonstrates

that the goal of achieving high accuracy by introducing a signature-based component

into the framework is possible. Achieving high DRs with no FPs is dependent on

accurate message type extraction and clustering. The results attest to the importance

of message type extraction accuracy as a foundation of the framework.

The signatures created by the system can be created in real-time and can be

brought online immediately. This property ensures that the system can be used on

production systems.

The framework provides a lot of flexibility in the choice of techniques used during

each of its phases. None of the techniques used in the evaluation is tied to the frame-

work: all can be changed with user discretion. While nodehours and nodeminutes

were used during the evaluations, it is possible to use spatio-temporal partitions with

any level of granularity. This is useful especially for real-time alert detection when

quick discovery is important. Once learned, signatures can be applied to a spatio-

temporal partition at any desired level of granularity.
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Figure 8.7: Detection rates for the different HPC, Distributed and Cloud logs. For
the HPC log, the files are numbered in the same order as shown in Table 4.7
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Figure 8.8: Detection rates for the different HPC logs, showing variations in perfor-
mance for different sizes of training files
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Figure 8.9: Boxplots showing distributions for signature length, i.e. the number of
message types which define a signature.
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Figure 8.10: Boxplots showing distributions for signature support levels



Chapter 9

Conclusion

Autonomic computing can be described as the goal of building self-managing com-

puter systems. The need for self-managing computer systems has become more glar-

ing with the ever increasing size and complexity of today’s computer systems. At the

heart of autonomic computing are four objectives which are sometimes referred to

as various self- properties: e.g. self-configuration, self-optimization, self-healing and

self-protection. To enable the autonomic system to meet these objectives it must also

posses at least one of the following attributes as well: self-awareness, self-situation,

self-monitoring and self-adjustment.

As systems continue to grow in size and complexity, the time and knowledge

required for fault resolution must increase in step. Having systems which are capable

of self-healing to some degree will help to mitigate this problem. A system which is

capable of self-healing is one that is capable of detecting, diagnosing and recovering

from its fault conditions with minimal human intervention. The first step in this

process is alert detection. Alert detection involves the discovery of the symptoms of

the fault condition on the system. Several sources of information are available for the

detection of fault symptoms. System logs stand out due to the fact that they play

a crucial role in manual fault resolution. Hence, it makes sense to utilize them in

automatic alert detection.

This thesis aims to develop a hybrid interactive learning framework for alert de-

tection in system logs. The framework can be placed firmly within the context of

autonomic computing, as highlighted in Table 9.1, which is repeated here from Chap-

ter 1. From the foregoing, it can be seen that this goal has been achieved to a

significant degree.

193
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Table 9.1: Placing the framework within the context of autonomic computing

Property Category

Objective Self-Healing, Self-Protection
Attribute Self-Awareness, Self-Monitoring
Design Approach External
Framework Type Technique-Based, Injection of Autonomicity into Non-

Autonomous Systems
Autonomicity Level 3-Predictive

The framework is interactive as it includes a visualization component through

which feedback can be given. It is hybrid because it utilizes a mix of anomaly detection

and signature generation. These components of the system work through a bottom-up

approach to detect alerts in the log. The approach involves several techniques which

are used for message type extraction, message abstraction, entropy-based analysis,

clustering, identification of anomalous clusters and signature generation. Most of the

techniques used here are novel contributions of this thesis.

Evaluation of the proposed framework involved piecemeal evaluations of the vari-

ous techniques used in the framework. These evaluations were discussed in previous

chapters. The final evaluation of the framework involved testing the accuracy of the

signature generation phase using data from HPC systems, distributed systems and

cloud systems. This set covers a wide range of the computer systems used today

in the real world. The signatures which were generated by the proposed framework

automatically were found to be relatively accurate, able to achieve a DR > 83% on av-

erage, while maintaining an operationally acceptable FPR of ∼0%. This result implies

that if the cluster(s) which define an alert can be isolated successfully by the anomaly

detection mechanism, the system can generate a signature automatically which can

detect > 83% of future occurrences of the alert with negligible FPs. Achieving a very

low FP is very important here; a significant FP rate can cause the alarms raised by

such a system to be ignored by human administrators.

To the best of my knowledge, this work is the first to propose and provide evalu-

ation results for a hybrid, visualization, anomaly detection and signature generation

system for alert detection in logs. Hence, there is no baseline with which to compare

it. However, I believe that the average performance, > 83% DR, ∼0% FPR, of the
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proposed system is a very promising starting point given that the system is automatic

and data driven.

9.1 Contributions

The contributions of this thesis will be discussed with respect to the objectives out-

lined in Section 1.3 of Chapter 1. For each of the six objectives this section will detail

the contributions of the thesis which contribute to the meeting of the objective. The

contributions follow below.

1. Minimum Apriori Information. The alert detection framework proposed by

this thesis assumes very little about the infrastructure on which it will run. In-

deed, the only significant piece of apriori information which the system needs to

be aware of are the similarity categories used for anomaly detection. Automat-

ing this step through an analysis of the message types produced by different

sources can be an interesting direction for future work.

Also, the framework can detect alerts successfully without semantic analysis.

This enhances the platform portability of the framework. The use of semantic

analysis would require a taxonomy which counts as significant apriori knowledge.

2. Unstructured Data. As detailed in Chapter 1 and Chapter 3, the unstruc-

tured nature of log data is a major hinderance to the automatic analysis of log

data. Message types can help with the mitigation of this problem. Log data

which has been preprocessed through MTT is easier to analyze, produces more

accurate models and requires less computation [42, 21]. Unfortunately, message

types are not always known, hence the need for message type extraction.

Message type extraction, like most processes which involve textual data, can be

computationally expensive and the accuracy of extraction cannot be guaran-

teed. The IPLoM message type extraction algorithm is an important technical

contribution of this thesis. IPLoM does not require apriori knowledge of the

domain from which the log data emanates, as is required by some previous

approaches which discover message types by parsing source code or searching

the log data for patterns of well known variable tokens such as IP addresses.
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It works in linear time, thus reducing the computational expense associated

with message type extraction. Furthermore, it is more accurate than previous

approaches.

IPLoM can be made a lot faster through parallelization: its decomposition of the

message type extraction problem makes it a natural candidate for parallel imple-

mentation. While IPLoM’s output is accurate enough for use as demonstrated

by this thesis, its accuracy can be improved upon by applying more complex

mining schemes on its output. IPLoM’s output reduces data size greatly, so the

use of computationally expensive schemes becomes tractable. Using IPLoM in

a production environment would involve running it against historical log data

at periodic intervals to discover previously unknown message types. This ap-

proach will suffice, as it is known that messages types reported in log data

remain relatively static over time [2].

3. Interactive Learning. Interactive learning can enhance the results of the

computer-based analysis of complex systems to a great extent [3]. One way of

achieving interactive learning is through the use of visualization. This thesis

proposes a scheme which allows log data to be visualized as a hierarchy of clus-

ters using treemaps [65]. This scheme is implemented in a prototype interactive

visualization tool called LogView.

The scheme allows for flexibility in the hierarchy definition which makes it suit-

able for STAD. STAD detects anomalous clusters of log partitions. The interac-

tive nature of the LogView prototype ensures that administrators can provide

feedback to the anomaly detection mechanism. This allows the framework de-

veloped in this thesis to be implemented as an interactive learning framework,

which is an improvement on previous work.

4. Hybrid Detection. Frameworks for alert detection in previous work have

followed either a Signature-based or an Anomaly-based approach. There are

pros and cons for each approach, a hybrid approach would however be able to

leverage on the advantages of both approaches. The alert detection framework

proposed by this thesis improves on previous work by using a hybrid approach.

STAD is an anomaly-based detection framework. Like other anomaly-based
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approaches it is able to detect novel activity which comes with a risk of hav-

ing a relatively high FPR. The proposed framework combines STAD with a

signature-based approach based on frequent itemset mining. The signature

generation system generates signatures from identified anomalies. Based on the

evaluations, the signatures are accurate, as they generate virtually no FPs. In

this way the proposed framework takes advantage of both approaches.

5. Self-Awareness. Self-awareness is the attribute of an autonomic system which

allows it to be informed about its internal state. Previous research efforts in

self-healing using system logs have focussed primarily on the objective of self-

healing while ignoring the need for attributes such as self-awareness, which a

system must possess before it can be capable of true self-management [13].

This thesis makes a contribution to enhancing self-awareness through the mining

of system logs by correlating events which can be found by decomposing the

log spatio-temporally. Correlated events in the log define different states of a

system, however discovery can be computationally expensive. Unique to this

thesis, this property allows for the timely discovery of an accurate initial set of

system states which can form the basis for further analysis.

6. Computational Cost.

Due to the ever increasing size of log data on modern systems, an automatic

log analysis framework needs to scale gracefully in the face of large data. If it

cannot then it is of no practical use. The framework proposed by this thesis

achieves this by utilizing several novel techniques which are linear or pseudo-

linear in time and memory cost. Some of these techniques include IPLoM, the

NIUniq equation for assigning information content scores to log partitions (see

Eq. 5.2), ICC and the rule-based detection scheme of STAD.

9.2 Future Research Directions

Alerts manifest themselves in various ways which is why this thesis argues in Chapter

2 that there are two major ways in which alerts manifest in log data. Type-II alerts

are the most varied. While this thesis has developed an accurate, robust and flexible
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framework for alert detection, the large variation in alert behavior may prove to be

a problem. For the framework to detect a context sensitive alert successfully, the

model most be built using the right similarity dimensions which will likely expose the

context of the alert. This fact makes the problem of alert detection a difficult one and

prevents the development of a framework which can detect all alert types accurately

without user input.

For instance, the proposed framework relies on NIUniq for ICS assignment. In [48],

it is demonstrated that Nodeinfo is better at detecting bursty alerts. Bursty alerts are

Type-II alerts. The Bytes detection mechanism [48], though relatively simpler than

both Nodeinfo and NIUniq, has been demonstrated to detect bursty alert signatures

effectively. However, it does not generalize as well as NIUniq, thus it is unable to

detect any of the other alert types.

Based on this observation, it is suggested that the future direction of alert detec-

tion mechanisms in system logs should consist of not one (probably complex) mecha-

nism capable of detecting all types of alerts, but several (probably simple) detection

mechanisms which co-operate. Consequently if the proposed framework is found to

be unable to detect some bursty signatures, it makes sense to use it in conjunction

with Bytes, rather than adding more complexity to the proposed framework to allow

it to detect all bursty signatures. This ensemble learning approach to alert detection

in system logs should be considered in future research.

The problem of unstructured data still remains a hinderance. The National In-

stitute of Standards and Technology (NIST) states that this a major problem con-

fronting event log management and asserts that there is still no agreed standard for

terminology used in describing log events [27]. In IPLoM, this thesis has developed

an effective algorithm for extracting the message types which can be used to mitigate

this problem. However, this problem need not exist if more work is put into the

development of a standard formalism for what and how information should be re-

ported in system logs. The syslog format remains the only widely accepted standard

for reporting information in system logs [38]. While the syslog standard defines a

well defined schema for reporting log events, it leaves much to be desired with regard

to the problem of unstructured data in system logs. Other proprietary attempts to

develop a log reporting standard include: the Common Event Format (CEF) [24] and
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Common Event Expression (CEE) [10]. Until such a standard is developed, the prob-

lem of lack of structure in the message part of event logs will persist and will continue

to be a hindrance to automatic log analysis. Future research efforts in alert detection

will be enhanced greatly if an open source log reporting standard which deals with

the problem of free form event descriptions can be developed and adopted. However,

the research performed in this thesis is still valid because even if such a standard is

developed, message type extraction will be necessary to support legacy systems.

Automatic alert detection is meant to enable the goal of self-healing in autonomic

computing by aiding the automatic diagnosis of fault conditions. However, not all

faults leave traces in system logs. This implies that alert detection in system logs has

limited scope for fault diagnosis and that complete fault diagnosis can be achieved

using logs alone. This thesis has focussed on alert detection in system logs because

previous efforts have shown them to be important for alert detection, but it does

not argue that the proposed framework is the only or the best means for detecting

alerts on systems. Other means which have been used effectively for this purpose

include system metrics and system activity paths [8, 6], which are only part of the

picture and cannot be relied on solely. Alert detection research should not focus

on just one of these methods, as they are all important. Since there is a variety of

alerts in system logs, an ensemble learning approach which combines the output of

alert signatures learnt from each of these data sources would provide the most robust

means of detecting all of the alerts on a system effectively.

The proposed alert detection framework can benefit from further improvements,

which will enhance its accuracy and usability. Some of these improvements are sug-

gested below and should prove interesting for future research in this direction.

One of the objectives of this thesis was to develop a framework which utilized min-

imum apriori information. This has been accomplished in that the only significant

apriori information required by the system is the similarity categories for the event

sources on which the framework must base its analysis. The process of identifying

similar event sources can be automated. Similar event sources, discovered automat-

ically, may lead to even more accuracy. It is suggested that similarity be based on

the message types produced by a source and the information content of the message

type with regard to the source. These features can be used to cluster event sources so
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that sources which produce the same message types in the same manner are grouped

together. These clusters will form the similar categories for alert detection analysis.

The framework requires the setting of several parameters for its various compo-

nents. These parameters are not a hindrance on the contrary, they enhance the

flexibility of the framework. However, the ability to set these parameters automat-

ically will enhance the usability of the framework, allowing the administrator to set

only those goals which need to be achieved. This will be an interesting direction for

future research. Such research will fall under self-configuration and self-optimization

in autonomic computing. Indeed this supports the assertion that the four self-* ob-

jectives of autonomic computing are not mutually exclusive.

The STAD framework uses a rule base to detect anomalous log partition clusters.

For now this rule base has been developed manually. The automatic discovery of

rules to detect anomalous clusters is a possibility. Exploring this will be an interesting

future research direction. A preliminary attempt using C5.0 rule induction is provided

in Chapter 6. The results indicate that this is not a trivial problem, but C5.0’s

success on some of the datasets demonstrates that automatic rule discovery is possible.

Suggestions on how automatic rule discovery research can continue from the point

left off by this thesis is provided in Chapter 6.

A secondary objective of the framework is self-protection. The framework as

implemented in this thesis is geared toward the detection of anomalies which manifest

themselves in the message types reported by components of the system. This suffices

for detecting faults but may not be adequate for detecting anomalies, which relate to

security incidents. This thesis is of the opinion that anomalies which relate to security

incidents are more likely to occur in the message type variables instead. However,

with a little modification, the framework should be able to detect such anomalies.

This can be done by creating sub-clusters of the clusters created by the framework,

using the variables reported by the message types in the spatio-temporal units of the

cluster. After this is done, an identification step can be applied to the sub-clusters to

reveal the anomalies, which relate to the reported message type variables.

Generally, the visualization component of the framework and the utilization of

feedback by the anomaly detection component need to be explored further. LogView

is suggested for the visualization component. However to enable it work with the alert
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detection framework, its hierarchy needs to be adjusted to include spatio-temporal

partitions and clusters of spatio-temporal partitions. A user study involving a pro-

totype of the framework would be necessary. Such a study would provide valuable

design choices which would improve the visualization component of the framework.

In addition, the user study could help to understand the various kinds of feedback

which the system can receive and use to improve itself over time. Some suggestions

in this direction are provided in Chapter 8.
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Appendix A

A.1 Tool Documentation

A detailed listing and definitions of the options of the open source tools used in this

thesis can be found in this Appendix.

A.1.1 Full List of SLCT Options

-b <byte offset>

when processing the input file(s), ignore the first

<byte offset> bytes of every line. This option can be

used to filter out the possibly irrelevant information in

the beginning of every line (e.g., timestamp and hostname).

The default value for the option is zero, i.e., no bytes

are ignored.

-c <clustertable size>

the number of slots in the cluster candidate hash table

(note that this option does not limit the actual size of the

hash table, since multiple elements can be connected

to a single slot). The default value for the option is

(100 * the number of frequent words).

-d <regexp>

the regular expression describing the word delimiter. The

default value for the option is ’[ \t]+’, i.e., words are

separated from each other by one or more space or

tabulation characters.

-f <regexp>

when processing the input file(s), ignore all lines that do not

match the regular expression. The regular expression can

contain ()-subexpressions, and when -t <template> option

210
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has also been given, the values of those subexpressions

can be retrieved in <template> through $-variables. When

-f and -b options are used together, the -b option is applied

first.

-g <slice size>

when the -j option has been given, SLCT inspects the table

of candidates and compares each candidate with others, in

order to find its subclusters. This task has quadratic

complexity, and if the candidate table is larger, substantial

amount of time could be required to complete the task. In

order to reduce the time complexity, SLCT will divide

candidate table into slices, with each slice having <slice size>

candidates, and all candidates in the same slice having the

same number of constant words in their descriptions. A

descriptive bit vector is then calculated for every slice that lists

all constant words the candidates of a given slice have. If SLCT

is inspecting the cluster candidate C for subclusters, and the

descriptive vector of the slice S does not contain all the

constant words of the candidate C, the candidates from the

slice S will be skipped (i.e., they will not be compared with

the candidate C). If the -j option has been given, the default

value for the -g option is

(the number of cluster candidates / 100 + 1).

-i <seed>

the value that is used to initialize the rand(3) based random

number generator which is used to generate seed values

for string hashing functions inside SLCT. The default value

for the option is 1.

-j
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when processing the table of cluster candidates, also consider

the relations between candidates, and allow the candidates

(and clusters) to intersect. This option and the option -z are

mutually exclusive, since -j requires the presence of all

candidates in order to produce correct results, but with -z not all

candidates are inserted into the candidate table.

-o <outliers file>

the file where outliers are written. This option is meaningless without

the -r option.

-r

after the clusters have been found from the set of candidates, refine

the cluster descriptions.

-t <template>

template that is used to convert input lines, after they have matched the

regular expression given with the -f option. Template is a string that will

replace the original input line, after the $-variables in the template have

been replaced with the values of ()-subexpressions from the regular

expression. For example, if the regular expression given with the -f

option is ’sshd\[[0-9]+\]: (.+)’, and the template is "$1", then the line

sshd[1344]: connect from 192.168.1.1

will be converted to

connect from 192.168.1.1

This option is meaningless without the -f option.

-v <wordvector size>

the size of the word summary vector. The default value for the option is

zero, i.e., no summary vector will be generated.

-w <wordtable size>

the number of slots in the vocabulary hash table. The default value for

the option is 100,000.

-z <clustervector size>

the size of the cluster candidate summary vector. The default value for

the option is zero, i.e., no summary vector will be generated. This
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option and the option -j are mutually exclusive, since -j requires the

presence of all candidates in order to produce correct results, but when

the summary vector is employed, not all candidates are inserted into the

candidate table.

-s <support>

the support threshold value. The value can be either an integer, or a real

number with a trailing %-sign.

A.1.2 Full List of Loghound Options

-b <byte offset>

when processing the input file(s), ignore the first <byte offset> bytes of

every line. This option can be used to filter out the possibly irrelevant

information in the beginning of every line (e.g., timestamp and hostname).

The default value for the option is zero, i.e., no bytes are ignored.

-c

output closed frequent itemsets only.

-d <regexp>

the regular expression describing the item delimiter in input file(s).

The default value for the option is ’[ \t]+’, i.e., items are separated

from each other by one or more space or tabulation characters.

-f <regexp>

when processing the input file(s), ignore all lines that do not match

the regular expression. The regular expression can contain

()-subexpressions, and when -t <template> option has also been

given, the values of those subexpressions can be retrieved in

<template> through $-variables. When -f and -b options are used

together, the -b option is applied first.

-g

assume that each line in input file(s) represents a set of events,

and mine frequent event type patterns from the file(s). If this

option is omitted, it is assumed that input file(s) are raw event log(s),

and frequent line patterns will be mined from the file(s).
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-i <seed>

the value that is used to initialize the rand(3) based random

number generator which is used to generate seed values for

hashing functions inside LogHound. The default value for the

option is 1.

-l <max itemset size>

don’t mine itemsets containing more than <max itemset size>

items.

-n <cache trie support>

create a cache trie that is guaranteed to contain transaction

itemsets present at least <cache trie support> times in the data set.

The default value for the option is zero, i.e., load the entire input

data set into main memory.

-o <out-of-cache file>

The location of the out-of-cache file. When this option is omitted,

the entire input data set is loaded into main memory.

-t <template>

template that is used to convert input lines, after they have

matched the regular expression given with the -f option.

Template is the string that will replace the original input line,

after the $-variables in the template have been replaced with

the values of ()-subexpressions from the regular expression.

For example, if the regular expression given with the -f option

is ’sshd\[[0-9]+\]: (.+)’, and the template is "$1", then the line

sshd[1344]: connect from 192.168.1.1

will be converted to

connect from 192.168.1.1

before the line will be processed by the mining algorithm that is

built into LogHound. This option is meaningless without the -f option.

-v <item vector size>

the size of the item summary vector. The default value for the

option is zero, i.e., no summary vector will be generated.
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-w <item table size>

the number of slots in the item hash table. The default value for

the option is 100,000.

-z <transaction vector size>

the size of the transaction summary vector. If this option is

omitted or zero is specified for its value, the summary vector

of size (the number of frequent items * 100) is used. This

option is meaningless without the -n or the -o option, or

when zero is specified for the value of the -n option.

-s <support>

the support threshold value. The value can be either

an integer, or a real number with a trailing %-sign.

A.1.3 Full List of C5.0 Options

-f <filestem>

select the application

-s

partition discrete values into subsets

-r

generate rule-based classifiers

-u <bands>

sort rules by their utility into bands

-b

use boosting with 10 trials

-t <trials>

use boosting with the specified number of trials

-w

winnow the attributes before constructing a classifier

-p

use soft thresholds

-g

do not use global tree pruning
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-c <CF>

set the CF value for pruning trees

-m <cases>

set the minimum cases for at least two branches of a split

-S <x>

use a sample of x\% for training and a disjoint sample for testing

-I <seed>

set the sampling seed value

-X <folds>

carry out a cross-validation

-e

ignore any costs file

-h

print a short summary of the options

A.1.4 Full List of Apriori Options

-t# target type (default: s)

(s: frequent item sets, c: closed item sets,

m: maximal item sets, r: association rules)

-m# minimum number of items per set/rule (default: 1)

-n# maximum number of items per set/rule (default: no limit)

-s# minimum support of a set/rule (default: 10%)

-S# maximum support of a set/rule (default: 100%)

(positive: percentage, negative: absolute number)

-c# minimum confidence of a rule (default: 80%)

-o use the original rule support definition (body & head)

-e# additional evaluation measure (default: none)

-a# aggregation mode for evaluation measure (default: none)

-z zero evaluation below expected support (default: evaluate all)

-d# minimum value of add. evaluation measure (default: 10%)

-I# minimum increase of evaluation measure (default: no limit)

(not applicable with evaluation averaging, i.e. option -aa)
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-p# (min. size for) pruning with evaluation (default: no pruning)

(< 0: backward, > 0: forward)

-l# sort item sets in output by their size (default: no sorting)

(< 0: descending, > 0: ascending)

-g write item names in scannable form (quote certain characters)

-h# record header for output (default: "")

-k# item separator for output (default: " ")

-i# implication sign for association rules (default: " <- ")

-v# output format for set/rule information (default: " (%1S)")

-q# sort items w.r.t. their frequency (default: 2)

(1: ascending, -1: descending, 0: do not sort,

2: ascending, -2: descending w.r.t. transaction size sum)

-u# filter unused items from transactions (default: 0.1)

(0: do not filter items w.r.t. usage in sets,

<0: fraction of removed items for filtering,

>0: take execution times ratio into account)

-j use quicksort to sort the transactions (default: heapsort)

-x do not prune with perfect extensions (default: prune)

-y a-posteriori pruning of infrequent item sets

-T do not organize transactions as a prefix tree

-w integer transaction weight in last field (default: only items)

-r# record/transaction separators (default: "\n")

-f# field /item separators (default: " \t,")

-b# blank characters (default: " \t\r")

-C# comment characters (default: "#")

-! print additional option information

infile file to read transactions from [required]

outfile file to write item sets/assoc. rules to [optional]

appfile file stating a selection of items [optional]

or item appearance indicators (for association rules)
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B.1 Comparing Entropy-Based Approaches in Online Alert Detection

This appendix presents the results of evaluations which are intended to demonstrate

how well the proposed entropy-based alert detection mechanisms would work if ap-

plied online for a production system. Alert detection is essentially an online task,

so these evaluations are necessary and differ from the evaluations done in Chapter 4

through the use of sliding windows to simulate online activity. For a window of size

W , the nodeinfo score for each nodehour is computed using only data seen in the

W − 1 days prior to the day on which the nodehour occurred, each day starting at

12:00 AM.

The evaluations were performed on the datasets listed in Table 4.7 in Chapter 4.

The NIPlus method introduced in Chapter 4 was compared as a baseline against the

NIUniq method introduced in Chapter 5. Previous off line evaluations have shown

that NIPlus will perform as well as Nodeinfo with one hundred times less computation

[42], so it suffices as a baseline. Another set of evaluations indicates that NIUniq

performs better for offline alert detection than NIPlus as long as the alerts do not have

a bursty signature [48]. This evaluation complements previous evaluations by showing

how the methods work online. A third method, called NIMax, is not included here

due to its lack of robustness [48].

Window sizes of 30, 60 and 90 days were considered in the evaluations, while

the first 90 days of each dataset were omitted from the evaluation but were used in

building the model. Two sets of evaluations were performed. In the first, results

of running NIPlus and NIUniq against all the datasets using a window size of 30

were compared. This evaluation would help to determine how NIUniq would perform

against the baseline in production environment. The second evaluation compares the

results of running NIUniq using window sizes of 30, 60 and 90 days. This evaluation

would help to determine what effect the size of the window would have on detection

accuracy.
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The evaluation metrics are Recall, Precision and F-Measure as defined in Eqs.

3.4, 3.3 and 3.5 respectively, in Chapter 3 and FPR as defined in Eq. 6.4 defined in

Chapter 6.

B.1.1 Results

The Precision-Recall plots for the first evaluation are shown in Figs. B.5, B.6, B.7

and B.8. These plots show that, apart from the Tbird-Compute dataset, NIPlus does

not show any dominance over NIUniq for Recall rates above 30%. NIUniq achieves

marginal dominance over NIPlus in three datasets, i.e. the BGL-Compute, BGL-

Other, Liberty-Compute datasets. However, NIUniq dominates NIPlus significantly

in five datasets, i.e. the Liberty-Admin, Liberty-Other, Spirit-Admin, Spirit-Other

and Tbird-Other datasets. The approaches achieved similar performance in four

datasets: the BGL-IO, BGL-Link, Spirit-Compute and Tbird-Admin datasets.
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Figure B.1: Precision-Recall plots for the BGL node categories. Each plot compares
the result of using the original nodeinfo framework with message types incorporated
(NIPlus) and nodeinfo based on Eq. B.1 (NIUniq). A window size of 30 was used for
both methods.
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(c) Liberty-Other

Figure B.2: Precision-Recall plots for the Liberty node categories. Each plot com-
pares the result of using the original nodeinfo framework with message types incor-
porated (NIPlus) and nodeinfo based on Eq. B.1 (NIUniq). A window size of 30 was
used for both methods.

The Precision-Recall plots for the second evaluation are shown in Figs. B.5, B.6,

B.7 and B.8. As in the previous evaluation the level of accuracy differs among the

different datasets. However, it can be noticed that the results within each dataset

do not differ much from each other except in five datasets: the BGL-IO, Liberty-

Compute, Liberty-Admin, Liberty-Other, Spirit-Admin datasets. In these datasets,

the trend suggests that larger window sizes give better results. These results are not

surprising as it should be expected that models built using more examples should be

more robust than those built using fewer examples.

The bar charts in Figs. B.9, B.10, B.11 and B.12 show the FPRs achieved at 90%

Recall and the maximum F-Measure for all of the evaluations. The results indicate

that in certain cases very high FPRs were experienced at 90% Recall, meaning that

the methods yield poor results for high detection rates. This is attributed to the

presence of a few outlier nodehours [47]. Outliers are alert nodehours with very
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Figure B.3: Precision-Recall plots for the Spirit node categories. Each plot compares
the result of using the original nodeinfo framework with message types incorporated
(NIPlus) and nodeinfo based on Eq. B.1 (NIUniq). A window size of 30 was used for
both methods.

low nodeinfo scores which end up being placed very low in the ranking. A possible

approach to mitigating this problem can be found in [48]. Augmenting the nodeinfo

score using other metrics is suggested.

However, operationally acceptable FPRs are achieved at maximum F-Measure

except in the case of the BGL-IO dataset. These results suggest that we can expect

good results from the mechanisms as long as they are primed to detect alerts while

maintaining a balance between high Recall and high Precision rates. The high FPRs

achieved at maximum F-Measure for the BGL-IO category are due to the fact that

most of the alerts in this category are not linked to the reporting node directly [47].

The alerts are due to a shared component whose faults are detected and reported by

all the nodes, hence these alerts appear to be distributed evenly across all nodes.

It is important to remember that low Precision scores (below 50%) in the Precision-

Recall plots presented do not mean poor results necessarily [48]. The fact that alert
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Figure B.4: Precision-Recall plots for the Tbird node categories. Each plot compares
the result of using the original nodeinfo framework with message types incorporated
(NIPlus) and nodeinfo based on Eq. B.1 (NIUniq). A window size of 30 was used for
both methods.

nodehours form less than 1% of all nodehours in some of the datasets make achieving

high Precision scores difficult. At this level, Precision values are very sensitive to even

small changes in the value of k. Even at low Precision scores the methods perform in

most cases at least ten times better than what would be expected of a simple random

selection of nodehours.

B.1.2 Conclusion

A summary comparison of NIPlus and NIUniq is given Table B.1. The data in the

table shows the average score across all the datasets for the maximum precision and

maximum F-Measure achieved for each experiment run. In addition, it shows the

FPR achieved at the points when the maximum F-Measure and a Recall of 90% were

achieved. The data in the table shows NIUniq doing better than NIPlus using all the

metrics.
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(d) BGL-Other

Figure B.5: Precision-Recall plots for the BGL node categories. Each plot compares
the result of using the nodeinfo based on Eq. B.1 (NIUniq) while varying the window
size to 30, 60 and 90 days.

With this result, it can be concluded that NIUniq is a more robust detection

method than NIPlus. Hence, its use as the method of choice in STAD is justified.

Other factors make NIUniq appropriate for STAD but these are explained in Chapter

5.

A summary comparison of NIUniq using the different time windows is shown in

Table B.2. The table shows the same metrics as those used in Table B.1. The table

shows that the results achieved using a 90 day window outperforming all cases except

for the FPR achieved at maximum F-Measure.

These results would suggest that marginal increases can be expected in a produc-

tion environment from using larger size windows. Larger windows mean more data

and hence more computation. However, the use of MTI in NIUniq provides consid-

erable reduction in computation, implying that computation can be carried out fast

enough even with larger size windows.
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(c) Liberty-Other

Figure B.6: Precision-Recall plots for the Liberty node categories. Each plot com-
pares the result of using the nodeinfo based on Eq. B.1 (NIUniq) while varying the
window size to 30, 60 and 90 days.

NodeInfo(Hc
j ) =

√√√√ |W |∑
w=1

(gw ∗ zc
w,j)

2 (B.1)
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Figure B.7: Precision-Recall plots for the Spirit node categories. Each plot compares
the result of using the nodeinfo based on Eq. B.1 (NIUniq) while varying the window
size to 30, 60 and 90 days.

Table B.1: Average performance across all datasets for NIPlus and NIUniq using a
window size of 30 days

NIPlus-30 NIUniq-30

Max. Precision 0.44 0.50
Max. F-Measure 0.25 0.35
FPR( Max. F-Measure) 0.09 0.06
FPR(90% Recall) 0.43 0.33

Table B.2: Average performance across all datasets for NIUniq using window sizes of
30, 60 and 90 days

NIUniq-30 NIUniq-60 NIUniq-90

Max. Precision 0.50 0.50 0.60
Max. F-Measure 0.35 0.35 0.38
FPR( Max. F-Measure) 0.06 0.06 0.07
FPR(90% Recall) 0.33 0.29 0.25
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Figure B.8: Precision-Recall plots for the Tbird node categories. Each plot compares
the result of using the nodeinfo based on Eq. B.1 (NIUniq) while varying the window
size to 30, 60 and 90 days.
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(a) BGL-Compute (b) BGL-IO

(c) BGL-Link (d) BGL-Other

Figure B.9: The bar chart compares the FPR achieved at the maximum F-Measure
score and at 90% Recall for the experiment trials on the BGL node categories shown
in Figs. B.1, B.5.



228

(a) Liberty-Compute (b) Liberty-Admin

(c) Liberty-Other

Figure B.10: The bar chart compares the FPR achieved at the maximum F-Measure
score and at 90% Recall for the experiment trials on the Liberty node categories
shown in Figs. B.2, B.6.
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(a) Spirit-Compute (b) Spirit-Admin

(c) Spirit-Other

Figure B.11: The bar chart compares the FPR achieved at the maximum F-Measure
score and at 90% Recall for the experiment trials on the Spirit node categories shown
in Figs. B.3, B.7.
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(a) Tbird-Compute (b) Tbird-Admin

(c) Tbird-Other

Figure B.12: The bar chart compares the FPR achieved at the maximum F-Measure
score and at 90% Recall for the experiment trials on the Tbird node categories shown
in Figs. B.4, B.8.



Appendix C

C.1 Further Results And Figures

This appendix contains results and/or figures of evaluations which are not included

in the main text of the thesis.

C.1.1 HPC Node Circos Plots

The circos plot visualizations for all the HPC node categories are shown in in Figs.

C.1, C.5, C.6 and C.7. Clusters from only a single node are shown for the dissimilar

node categories; the clusters from the other nodes are shown in proceeding section.
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(a) BGL-Compute

Figure C.1: Circos Plots for nodes for the BGL node categories. Each plot shows
the plot for clustering as performed on all nodehours in each category.



233

(b) BGL-IO

Figure C.1: Circos Plots for the BGL node categories. Each plot shows the plot for
clustering as performed on all nodehours in each category.
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(c) BGL-Link

Figure C.1: Circos Plots for the BGL node categories. Each plot shows the plot for
clustering as performed on all nodehours in each category.
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(d) BGL-Other

Figure C.1: Circos Plots for the BGL node categories. Each plot shows the plot for
clustering as performed on all nodehours in each category.
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(e) Liberty-Compute

Figure C.2: Circos Plots for the Liberty node categories. The Liberty-Compute plot
shows the plot for clustering as performed on all nodehours in this category, while only
clusters formed from a single node are shown for Liberty-Admin and Liberty-Other
categories.
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(f) Liberty-Admin Node1

Figure C.2: Circos Plots for the Liberty node categories. The Liberty-Compute plot
shows the plot for clustering as performed on all nodehours in this category, while only
clusters formed from a single node are shown for Liberty-Admin and Liberty-Other
categories.
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(g) Liberty-Other Node2

Figure C.2: Circos Plots for the Liberty node categories. The Liberty-Compute plot
shows the plot for clustering as performed on all nodehours in this category, while only
clusters formed from a single node are shown for Liberty-Admin and Liberty-Other
categories.
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(h) Spirit-Compute

Figure C.3: Circos Plots for the Spirit node categories. The Spirit-Compute plot
shows the plot for clustering as performed on all nodehours in this category, while
only clusters formed from a single node are shown for Spirit-Admin and Spirit-Other
categories.



240

(i) Spirit-Admin Node0

Figure C.3: Circos Plots for the Spirit node categories. The Spirit-Compute plot
shows the plot for clustering as performed on all nodehours in this category, while
only clusters formed from a single node are shown for Spirit-Admin and Spirit-Other
categories.
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(j) Spirit-Other Node3

Figure C.3: Circos Plots for the Spirit node categories. The Spirit-Compute plot
shows the plot for clustering as performed on all nodehours in this category, while
only clusters formed from a single node are shown for Spirit-Admin and Spirit-Other
categories.
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(k) Tbird-Compute

Figure C.4: Circos Plots for the Tbird node categories. The Tbird-Compute and
Tbird-Other plots show plots for clustering as performed on all nodehours in each
category, while only clusters formed from a single node are shown for Tbird-Admin
category.
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(l) Tbird-Admin Node18

Figure C.4: Circos Plots for the Tbird node categories. The Tbird-Compute and
Tbird-Other plots show plots for clustering as performed on all nodehours in each
category, while only clusters formed from a single node are shown for Tbird-Admin
category.
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(m) Tbird-Other

Figure C.4: Circos Plots for the Tbird node categories. The Tbird-Compute and
Tbird-Other plots show plots for clustering as performed on all nodehours in each
category, while only clusters formed from a single node are shown for Tbird-Admin
category.

C.1.2 Other HPC Dissimilar Node Circos Plots

The Circos plots shown in Figs. C.5, C.6 and C.7 are for the nodes in Liberty-

Admin, Liberty-Other, Spirit-Admin, Spirit-Other and Tbird-Admin. The nodes

in this category were adjudged to be dissimilar from each other. Hence, anomaly

detection was carried out on a node-by-node basis. The plots show how the clusters
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derived on each node map to the alert categories on the node.

(n) Liberty-Admin Node0

Figure C.5: Circos Plots for dissimilar nodes for the Liberty node categories. Each
plot shows the plot for a single node in the category.
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(o) Liberty-Other Node0

Figure C.5: Circos Plots for dissimilar nodes for the Liberty node categories. Each
plot shows the plot for a single node in the category.
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(p) Liberty-Other Node1

Figure C.5: Circos Plots for dissimilar nodes for the Liberty node categories. Each
plot shows the plot for a single node in the category.
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(q) Liberty-Other Node3

Figure C.5: Circos Plots for dissimilar nodes for the Liberty node categories. Each
plot shows the plot for a single node in the category.



249

(r) Liberty-Other Node4

Figure C.5: Circos Plots for dissimilar nodes for the Liberty node categories. Each
plot shows the plot for a single node in the category.
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(s) Liberty-Other Node5

Figure C.5: Circos Plots for dissimilar nodes for the Liberty node categories. Each
plot shows the plot for a single node in the category.
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(a) Spirit-Admin Node1

Figure C.6: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(b) Spirit-Other Node2

Figure C.6: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(c) Spirit-Other Node4

Figure C.6: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(d) Spirit-Other Node5

Figure C.6: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(e) Spirit-Other Node6

Figure C.6: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(a) Tbird-Admin Node2

Figure C.7: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(b) Tbird-Admin Node5

Figure C.7: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(c) Tbird-Admin Node8

Figure C.7: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(d) Tbird-Admin Node13

Figure C.7: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(e) Tbird-Admin Node14

Figure C.7: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(f) Tbird-Admin Node15

Figure C.7: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.
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(g) Tbird-Admin Node19

Figure C.7: Circos Plots for dissimilar nodes for the Spirit node categories. Each
plot shows the plot for a single node in the category.

C.1.3 Detailed Results for C5.0 Evaluations

The Figs. C.8, C.9, C.10 and C.11 show the detailed results of running C5.0 on the

cluster classification problem introduced in Chapter 6. In these figures, the results

labelled Default are the same as those presented in Chapter 6, while the results labelled

Weight are those obtained by weighting the #Nodehours feature during training. The

results labelled c=* and m=* are obtained by varying the values of C5.0’s -c and -m

parameters. The meanings of these parameters are provided in Appendix A.
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The results show that C5.0 achieves consistent Recall rates > 0.5 on the BGL-

Compute and Liberty-Compute categories. Also, it achieves Recall rates > 0.5 in the

BGL-IO category but these Recall rates are overshadowed by unacceptable FPRs.

Indeed, acceptable FPRs were achieved in most cases except for the BGL-Compute,

BGL-IO and BGL-Link categories. C5.0 was unable to produce a decent classifier

for the Liberty-Admin, Tbird-Admin and Tbird-Other categories. The classifiers for

these categories label everything as normal. Overall, no trend which indicates which

parameter settings would improve classification results across all the datasets was

observed.

(h) BGL-Compute (i) BGL-IO

(j) BGL-Link (k) BGL-Other

Figure C.8: Recall and FPR scores for the classification of anomalous and normal
clusters for the BGL node categories using C5.0 classification rules.
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(a) Liberty-Compute (b) Liberty-Admin

(c) Liberty-Other

Figure C.9: Recall and FPR scores for the classification of anomalous and normal
clusters for the Liberty node categories using C5.0 classification rules.
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(a) Spirit-Compute (b) Spirit-Admin

(c) Spirit-Other

Figure C.10: Recall and FPR scores for the classification of anomalous and normal
clusters for the Spirit node categories using C5.0 classification rules.
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(a) Tbird-Compute (b) Tbird-Admin

(c) Tbird-Other

Figure C.11: Recall and FPR scores for the classification of anomalous and normal
clusters for the Tbird node categories using C5.0 classification rules.



Appendix D

D.1 Analysis of Variance (ANOVA) Tables

Detailed results of all the ANOVA tests performed as part of this thesis can be found

here. All the ANOVA tests were carried out at 5% significance.

D.1.1 IPLoM Precision Performance

This section shows the results of the Anova test on the precision performance of

IPLoM, SLCT and Loghound in Tables D.1, D.2, D.3, D.4, D.5, D.6 and D.7. The

results show a statistically significant difference in all cases.

Table D.1: Anova Results Comparing Precision Performance on HPC Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 2.969 0.297 0.001

Loghound 10 1.799 0.1799 0.001
IPLoM (CD) 10 5.957 0.596 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.919 2 0.460 2133.742 1.9E-30 3.354
Within Groups 0.006 27 0.001

Total 0.925 29
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Table D.2: Anova Results Comparing Precision Performance on Syslog Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 1.084 0.108 0.001

Loghound 10 0.585 0.059 0.001
IPLoM (CD) 10 1.540 0.154 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.046 2 0.023 30.961 1.03E-07 3.354
Within Groups 0.020 27 0.001

Total 0.065 29

Table D.3: Anova Results Comparing Precision Performance on Windows Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 3.127 0.313 0.001

Loghound 10 0.739 0.074 5.89E-05
IPLoM (CD) 10 6.290 0.629 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 1.550 2 0.775 1343.193 9.35E-28 3.354
Within Groups 0.016 27 0.001

Total 1.566 29

Table D.4: Anova Results Comparing Precision Performance on Access Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0 0 0

Loghound 10 0.003 0.001 8.5E-07
IPLoM (CD) 10 6.195 0.620 0.012

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 2.558 2 1.279 318.625 1.67E-19 3.354
Within Groups 0.108 27 0.004

Total 2.666 29
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Table D.5: Anova Results Comparing Precision Performance on Error Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.368 0.037 0.001

Loghound 10 0.203 0.020 2.63E-05
IPLoM (CD) 10 9.015 0.901 0.012

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 5.082 2 2.541 603.307 3.91E-23 3.354
Within Groups 0.114 27 0.004

Total 5.195 29

Table D.6: Anova Results Comparing Precision Performance on System Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 1.111 0.111 8.56E-34

Loghound 10 0.667 0.0667 0
IPLoM (CD) 10 10 1 0

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 5.544 2 2.772 9.72E+33 0 3.354
Within Groups 7.7E-33 27 2.85E-34

Total 5.544 29

Table D.7: Anova Results Comparing Precision Performance on Rewrite Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.0958 0.009 1.52E-05

Loghound 10 0.092 0.009 1.29E-05
IPLoM (CD) 10 10 1 0

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 6.542 2 3.271 348431.5 2.76E-60 3.354
Within Groups 0.001 27 9.39E-06

Total 6.543 29
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D.1.2 IPLoM Recall Performance

This section shows the results of the Anova test on the Recall performance of IPLoM,

SLCT and Loghound in Tables D.8, D.9, D.10, D.11, D.12, D.13 and D.14. The

results do not show a statistically significant difference in all cases: the HPC, Syslog

and Windows files did not show a statistically significant difference.

Table D.8: Anova Results Comparing Recall Performance on HPC Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 1.466 0.1466 0.001

Loghound 10 1.354 0.135 0.001
IPLoM (CD) 10 2.498 0.250 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.079 2 0.040 35.346 2.89E-08 3.354
Within Groups 0.0304 27 0.001

Total 0.110 29

Table D.9: Anova Results Comparing Recall Performance on Syslog Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.733 0.073 0.002

Loghound 10 0.733 0.073 0.002
IPLoM (CD) 10 0.833 0.083 0.003

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.001 2 0.001 0.130 0.878 3.354
Within Groups 0.069 27 0.002

Total 0.070 29
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Table D.10: Anova Results Comparing Recall Performance on Windows Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.826 0.083 0.001

Loghound 10 1.056 0.106 0.001
IPLoM (CD) 10 1.286 0.129 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.011 2 0.005 3.882 0.033 3.354
Within Groups 0.037 27 0.001

Total 0.047 29

Table D.11: Anova Results Comparing Recall Performance on Access Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0 0 0

Loghound 10 0.067 0.007 0.001
IPLoM (CD) 10 1.786 0.179 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.205 2 0.102 165.129 7.21E-16 3.354
Within Groups 0.017 27 0.001

Total 0.222 29

Table D.12: Anova Results Comparing Recall Performance on Error Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.114 0.011 8.43E-05

Loghound 10 0.114 0.011 8.43E-05
IPLoM (CD) 10 0.415 0.0416 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.006 2 0.003 21.087 3.05E-06 3.354
Within Groups 0.004 27 0.001

Total 0.010 29
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Table D.13: Anova Results Comparing Recall Performance on System Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.625 0.063 0

Loghound 10 0.455 0.0455 5.35E-35
IPLoM (CD) 10 5.556 0.556 1.37E-32

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 1.679 2 0.839 1.83E+32 0 3.354
Within Groups 1.24E-31 27 4.58E-33

Total 1.679 29

Table D.14: Anova Results Comparing Recall Performance on Rewrite Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.160 0.016 3.12E-05

Loghound 10 0.155 0.015 2.73E-05
IPLoM (CD) 10 3 0.3 3.42E-33

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.539 2 0.269 13812.74 2.29E-41 3.354
Within Groups 0.001 27 1.95E-05

Total 0.539 29

D.1.3 IPLoM F-Measure Performance

This section shows the results of the Anova test on the F-Measure performance of

IPLoM, SLCT and Loghound in Tables D.15, D.16, D.17, D.18, D.19, D.20 and D.21.



273

Table D.15: Anova Results Comparing F-Measure Performance on HPC Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 1.466 0.147 0.001

Loghound 10 1.354 0.135 0.001
IPLoM (CD) 10 2.498 0.250 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.079 2 0.040 35.346 2.88629E-08 3.354
Within Groups 0.0304 27 0.001

Total 0.110 29

Table D.16: Anova Results Comparing F-Measure Performance on Syslog Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.815 0.0815 0.001

Loghound 10 0.620 0.0620 0.001
IPLoM (CD) 10 0.964 0.0964 0.003

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.006 2 0.003 1.631 0.215 3.354
Within Groups 0.050 27 0.001

Total 0.055 29

Table D.17: Anova Results Comparing F-Measure Performance on Windows Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 1.269 0.127 0.001

Loghound 10 0.857 0.086 0.001
IPLoM (CD) 10 2.110 0.211 0.003

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.082 2 0.041 26.547 4.215E-07 3.354
Within Groups 0.0415 27 0.002

Total 0.123 29
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Table D.18: Anova Results Comparing F-Measure Performance on Access Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0 0 0

Loghound 10 0.006 0.001 3.121E-06
IPLoM (CD) 10 2.732 0.273 0.002

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.496 2 0.248 366.309 2.725E-20 3.354
Within Groups 0.018 27 0.001

Total 0.515 29

Table D.19: Anova Results Comparing F-Measure Performance on Error Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.148 0.015 2.792E-05

Loghound 10 0.127 0.013 1.657E-05
IPLoM (CD) 10 0.787 0.079 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.028 2 0.014 51.348 6.294E-10 3.354
Within Groups 0.007 27 0.001

Total 0.036 29

Table D.20: Anova Results Comparing F-Measure Performance on System Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.8 0.08 2.140E-34

Loghound 10 0.541 0.054 0
IPLoM (CD) 10 7.143 0.714 0

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 2.796 2 1.398 1.960E+34 0 3.354
Within Groups 1.93E-33 27 7.13E-35

Total 2.796 29
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Table D.21: Anova Results Comparing F-Measure Performance on Rewrite Log.

SUMMARY
Groups Count Sum Average Variance
SLCT 10 0.120 0.012 2.129E-05

Loghound 10 0.115 0.012 1.832E-05
IPLoM (CD) 10 4.615 0.462 3.423E-33

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 1.349 2 0.674 51076.721 4.977E-49 3.354
Within Groups 0.001 27 1.32E-05

Total 1.349 29

D.1.4 STAD and C5.0 Rule-set ANOVA Results

The tables in this section show the results for the ANOVA tests performed on the

Recall and FPR performance of cluster identification by the manual rule-set, C5.0

rule-set and NIPlus. The results of the test between the C5.0 and manual set perfor-

mances are in Tables D.22 and D.23. The results of the test between the best case

of manually setting manual rule-set parameters vs. setting them automatically are in

Tables D.24 and D.25, while, the results of the test between the manual rule-set and

NIPlus performances are in Tables D.26 and D.27.

Table D.22: Anova Results Comparing Recall Performance of C5.0 and Rule-Set on
Cluster Classification

SUMMARY
Groups Count Sum Average Variance

Recall-Rules 14 10.842 0.774 0.038
Recall-C50 14 2.638 0.188 0.074

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 2.404 1 2.404 42.641 6.36E-07 4.225
Within Groups 1.466 26 0.056

Total 3.870 27
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Table D.23: Anova Results Comparing FPR Performance of C5.0 and Rule-Set on
Cluster Classification

SUMMARY
Groups Count Sum Average Variance

FPR-Rules 14 0.969 0.069 0.002
FPR-C50 14 0.196 0.014 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.021 1 0.021 10.529 0.003 4.225
Within Groups 0.052 26 0.002

Total 0.0740 27

Table D.24: Anova Results Comparing Recall Performance of Rule-Set Cluster Clas-
sifier when parameters are set automatically and best case when parameters are set
manually.

SUMMARY
Groups Count Sum Average Variance

Recall-Best Case 13 10.124 0.779 0.037
Recall-Autoset 13 10.068 0.774 0.041

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.0001 1 0.0001 0.003 0.957 4.260
Within Groups 0.947 24 0.039

Total 0.947238314 25

Table D.25: Anova Results Comparing FPR Performance of Rule-Set Cluster Clas-
sifier when parameters are set automatically and best case when parameters are set
manually.

SUMMARY
Groups Count Sum Average Variance

FPR -Best Case 13 0.703 0.054 0.001
FPR-Autoset 13 0.900 0.069 0.002

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.001 1 0.001 0.817 0.375 4.26
Within Groups 0.044 24 0.002

Total 0.04524635 25
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Table D.26: Anova Results Comparing Recall Performance of NIPlus and best case
of Rule-Set Cluster Classifier .

SUMMARY
Groups Count Sum Average Variance

FPR (NIPlus) 13 3.357 0.258 0.090
FPR -Best Case 13 0.703 0.054 0.001

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.271 1 0.271 5.934 0.023 4.260
Within Groups 1.096 24 0.046

Total 1.367 25

Table D.27: Anova Results Comparing FPR Performance of NIPlus and Rule-Set
Cluster Classifier when parameters are set automatically.

SUMMARY
Groups Count Sum Average Variance

FPR (NIPlus) 13 3.357 0.258 0.089
FPR-Autoset 13 0.899 0.069 0.002

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.232 1 0.232 5.036 0.034 4.260
Within Groups 1.107 24 0.046

Total 1.339 25

D.1.5 Online detection ANOVA Results

The tables in this section show the results for the ANOVA tests performed on the

Recall and FPR performance of online alert detection on the HPC, distributed and

cloud logs using different training file split points. The results of the tests on the

HPC logs are in Tables D.28 and D.29. The results of the tests on the distributed

logs are in Tables D.30 and D.31, whlie, the results of the tests on the cloud logs are

in Tables D.32 and D.33.
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Table D.28: Anova Results Comparing Recall Performance with different training file
split points on the HPC Logs.

SUMMARY
Groups Count Sum Average Variance

0.1 13 11.324 0.871 0.014
0.2 13 11.497 0.884 0.015
0.3 13 11.693 0.899 0.011
0.4 12 10.436 0.870 0.014
0.5 12 10.430 0.869 0.013

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.009 4 0.002 0.162 0.957 2.530
Within Groups 0.790 58 0.014

Total 0.799157505 62

Table D.29: Anova Results Comparing FPR Performance with different training file
split points on the HPC Logs.

SUMMARY
Groups Count Sum Average Variance

0.1 13 3.986E-05 3.066E-06 1.223E-10
0.2 13 2.335E-06 1.796E-07 4.195E-13
0.3 13 2.335E-06 1.796E-07 4.194E-13
0.4 13 2.335E-06 1.796E-07 4.194E-13
0.5 13 2.335E-06 1.796E-07 4.194E-13

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 8.66801E-11 4 2.167E-11 0.874 0.485 2.525
Within Groups 1.487E-09 60 2.478E-11

Total 1.574E-09 64
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Table D.30: Anova Results Comparing DR Performance with different training file
split points on the Distributed Logs.

SUMMARY
Groups Count Sum Average Variance

0.1 4 3.368 0.842 0.034
0.2 4 3.365 0.841 0.034
0.3 4 3.667 0.917 0.028
0.4 4 3.5 0.875 0.063
0.5 4 3 0.75 0.083

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.060 4 0.015 0.31 0.866 3.056
Within Groups 0.728 15 0.049

Total 0.788 19

Table D.31: Anova Results Comparing FPR Performance with different training file
split points on the Distributed Logs.

SUMMARY
Groups Count Sum Average Variance

0.1 5 0 0 0
0.2 5 0 0 0
0.3 5 0 0 0
0.4 5 0 0 0
0.5 5 0 0 0

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0 4 0 65535 NA 2.866
Within Groups 0 20 0

Total 0 24
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Table D.32: Anova Results Comparing DR Performance with different training file
split points on the Cloud Logs.

SUMMARY
Groups Count Sum Average Variance

0.1 3 2.586 0.862 0.028
0.2 3 2.556 0.852 0.023
0.3 3 2.556 0.852 0.032
0.4 3 2.432 0.811 0.058
0.5 3 2.375 0.792 0.068

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0.011 4 0.003 0.068 0.990 3.478
Within Groups 0.418 10 0.042

Total 0.429 14

Table D.33: Anova Results Comparing FPR Performance with different training file
split points on the Cloud Logs.

SUMMARY
Groups Count Sum Average Variance

0.1 3 0 0 0
0.2 3 0 0 0
0.3 3 0 0 0
0.4 3 0 0 0
0.5 3 0 0 0

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 0 4 0 65535 NA 3.478
Within Groups 0 10 0

Total 0 14
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