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Abstract 

A new finite element model was developed to predict the density distribution in an 
Alumix 321 powder metallurgy compact.  The model can predict the density 
distribution results of single-action compaction from 100 to 500 MPa compaction 
pressure.  The model can also determine the amount of springback experienced by a 
compact upon ejection from the die at 100 and 300 MPa compaction pressure.  An 
optical densitometry method, along with the creation of a compaction curve, was 
used to experimentally predict density distributions found within compacts, and 
found results that were consistent with both literature and finite element simulation.  
Further powder characterization included testing apparent density and flow rate of 
the powder.  A literature review was also conducted and the results of which have 
been organized by three categories (powder type, material model, and finite element 
code) for easy reference by future powder researchers. 
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Chapter 1: Introduction

 

Powder metallurgy (PM) is a manufacturing method in which powdered metal is 

consolidated into a component of a desired shape.  This process can be performed 

using several methods, and most utilize a pressing (compaction) step and a heat-

treating step (sintering).  Known as the “press-and-sinter” technique, conventional 

methods use a rigid die and punch set which compacts powdered metal uniaxially 

until it becomes a cohesive component, after which it is sintered to increase the 

strength of the part.  PM manufacturing processes generate parts that are near net 

shape; that is, the components that are produced need little to no secondary 

machining to achieve the final dimensions. 

Powder compaction is a critical step in the PM process since the overall performance 

of a PM part is largely based on the quality of the compaction.  The quality of a 

compact can be quantified by the densification of the part, where the focus is on the 
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distribution of the local densities.  Strength and other material properties increase 

with density, so it is important that the part is both dense and uniform after the 

compaction step.  If there are large variations in the density found throughout a part, 

low-density areas will be weak points in the compact, and will lead to a reduced 

overall quality of a part (German, 2005). 

Aluminum PM (Al PM) is a fast-growing segment of the PM industry as automotive 

manufacturers look to reduce the overall weight of vehicles by replacing a range of 

ferrous PM components, and thus increase their fuel efficiency; Anderson and Foley 

(2001) discuss some of the work being done to advance the state of Al PM 

manufacturing methods to make mass-production a reality and Huo et al. (2009) 

suggested that PM aluminums are feasible substitutes in the place of both die-cast 

aluminum and ferrous PM materials for moving engine components.  As strength and 

other material properties increase with density, the reliability of PM parts is affected 

by both the bulk density and density gradients within the green compacts.  Similarly, 

the dimensional tolerance of the final compact is affected by warping during sintering 

as well as the elastic springback experienced by the green compact upon ejection from 

the die (German, 2005).  It is for these reasons that this work investigates the density 

distribution and springback found within PM parts. 

There are many phenomena that occur during the compaction process that deal with 

the mechanics of powder compaction, and therefore research has focused on several 
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particular aspects of the process.  Some of the major areas of research in terms of 

powder compaction phenomena include die wall friction and the effects of 

lubrication (admixed and sprayed on die wall) on the final state of the compact 

(Rahman et al., 2011; Zhou et al., 2002; Ngai et al., 2002; Li et al., 2002; Brown et al., 

1999), and accurately modelling metal powder behaviour in terms of the densification 

mechanics during compaction (Rahman et al., 2011; Lee and Kim, 2002; Coube and 

Riedel, 2000).  These phenomena are often difficult to measure experimentally, but 

finite element (FE) analysis can provide researchers with detailed information: forces 

at the die-powder interface, internal plastic strains, pressure transmission through the 

powder, and others. 

This work first presents a detailed description of the tools and continuum mechanics 

that are used in the study of PM compaction, followed by a literature review of the 

work that has been done on the FE simulation of PM compaction.  The experimental 

setups and FE models used to investigate the compaction and springback of an 

aluminum powder (ECKA Granules’ Alumix 321) will then be introduced.  Results of 

each will be shown and compared, and conclusions will be drawn about the results of 

the experimental and simulation work. 
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Chapter 2: Background

 

This chapter will discuss three major facets of PM compaction, and the finite element 

simulation thereof: 

1. Compaction techniques 

2. Die compaction theory 

3. Material models 

2.1 Compaction Techniques

Powder compaction is used extensively in industry to produce high volumes of parts 

with almost no wasted material.  The main powder compaction techniques are 

uniaxial die compaction, metal injection molding and cold and hot isostatic pressing.  

In research facilities, triaxial die compaction is also used to make compacts under 

tightly controlled constraints which allows the researcher to characterize the powder 

densification behaviour; this technique is not used in commercial pressing of parts. 
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The focus of this work is on uniaxial die compaction, in which a punch compresses 

powder in a rigid-walled die.  This can be modified by changing the configuration of 

the punches and their movement schedules.  In single-action compaction the lower 

punch is fixed and the upper punch is lowered to compress the powder, whereas in 

double-action compaction both punches are moved and apply load to the powder.  

This technique can also involve several upper and lower punches that move at 

different times/speeds in order to create a multi-level part. 

Isostatic pressing techniques use a flexible die which is sealed with powder inside, and 

is submerged in a fluid chamber which is then hydraulically pressurized.  This 

technique (hot or cold) creates an even pressure from all sides of the part, which 

results in a more uniform density distribution. 

Triaxial die compaction is a combination of both uniaxial and isostatic pressing, 

where a triaxial cell is pressurized around the cylinder wall with oil or some other 

fluid, and this cell is pressed top-to-bottom using upper and lower punches as in 

uniaxial compaction.  This technique is typically reserved for research purposes as it 

gives a true indication of the powder densification qualities.  As such, it is most often 

used to develop material parameters that drive FE models of powder compaction.  

However, it is a difficult and time consuming method where few setups are in active 

use and have pressure capabilities suitable for determining metal powder parameters 

(Pavier and Doremus, 1999; Menzies, 1988; MACE3 Lab, 2012). 
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lubricant) (German, 2005).  This ensures that the particles pack together more easily 

during compaction, and also reduces the wear on the die walls.  In addition to this, 

the density of the green compact is also more uniform, and the ejection process 

requires less force.  The wax is compacted into the green compact, so before the part 

is sintered and moved onto secondary machining operations, the compact is raised to 

a high enough temperature to expel the lubricant. 

An alternative method is to directly lubricate the punches and die wall using one of 

several techniques, including spraying (Ball et al., 1995) or brushing (Li et al., 2002) 

the lubricant onto the tooling, or electrostatic lubrication of molds (Brown et al., 

1999). 

2.2.3 Powder Considerations

When comparing compressibility of powders in terms of green density it is important 

to keep in mind particle size.  Smaller particles are not as able to be compressed, as it 

requires more energy to collapse the small pores found in finer powders.  The amount 

of particle contact, and thus higher contact surface area, increases the IPF in the 

system, requiring more energy than with coarser powders.  It is known that the green 

density of powders reaches a maximum at a blend of approximately 73% coarse 

particles and the remainder being fine particles (German, 2005).  The particles in this 

mixture are better able to arrange themselves into a dense configuration, more so than 

fine or coarse particles on their own. 



10 
 

Particle morphology also has an impact on the compaction of powders.  Materials that 

are atomized into powder form generally range from irregular and rounded (water or 

air atomized) to spherical (inert gas atomized) particle shapes.  Materials which are 

hydrogen reduced and milled into powder are generally irregular, porous, and angular 

in shape.  Figure 4 gives an example of an atomized powder and Figure 5 shows 

hydrogen reduced and milled powder.  Note the differences mentioned above in 

particle shape.  Particle shape plays a significant role in density and flow rate of a 

powder due to the amount of IPF generated between powder particles.  As a general 

rule of thumb, the more irregular the particle shape, the lower the apparent density of 

the loose powder will be, and the slower the flow rate will be of a powder through an 

orifice.  This can have an effect on the initial density distribution in the loose powder, 

which influences the final, compacted, density distributions.  Powder particle shape 

also plays a large part in compressibility which is of importance in this study.  

Irregular powders, due to their increased IPF have a harder time compressing when 

compared to spherical particles of the same size. 
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with high mechanical properties if compressed and sintered correctly.  Powders 

which are a mix of elemental and master alloy powders perform somewhere between 

the elemental and fully pre-alloyed powders mentioned above. 

2.3 Material Models

This section will discuss the foundations of plasticity models, and explain in detail 

how several common constitutive material models work. 

2.3.1 Yield Surfaces for Solid Metals

In order to understand how PM constitutive models work, it is important to first 

understand the concept of yielding.  Yielding is a term used to describe permanent 

deformation of a material when it exceeds a certain state of stress.  Establishing when 

a material will yield depends on the material properties and the loading scenario. 

Under simple uniaxial testing, materials have a property known as yield strength, or 

.  If the stress experienced by a material is smaller than the yield strength, the 

material deforms elastically; that is, the material will return to its original form upon 

release.  If this stress exceeds the yield strength, the material begins to deform 

plastically, or, permanently. 

When a material undergoes a multiaxial state of stress, the determination of when a 

material will yield becomes more complicated than using a simple value of yield 
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strength.  There are several models available to predict when a material will begin to 

plastically deform, and many of these models are represented by yield surfaces. 

In a three-dimensional state of stress, the directional stresses are given by the normal 

stresses , , and , and the shear stresses , , and .  It is possible to orient 

the coordinate system in such a way that it results in maximum, intermediate, and 

minimum normal stresses , , and  respectively, known as principal stresses, 

along with their associated shear stresses, , , and . 

Of the many theories that have been proposed for material yield, the ones stated here 

are two of the most commonly applied yield criteria.  The Tresca maximal shear stress 

criterion (Tresca, 1864) that states that material would yield if 

 
(1) 

and underestimates the apparent yield strength of a material in most situations.  For 

this reason, it is considered to be a conservative theory, erring on the safe side of 

yielding.  The von Mises yield criterion, or distortion energy theory (von Mises, 

1913), 

 (2) 

is more accurate in predicting the behavior of metals in all states of stress, and as such 

is more prevalent in engineering applications. 
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elastically.  If the state of stress results in a point outside the envelope, the metal 

begins to yield. 

In Figure 7, various loading scenarios are illustrated and superimposed onto the 

failure envelopes as discussed above.  The failure envelopes shown in the figure are 

for a metal with a yield strength of 400 MPa. 

The results of these loading scenarios can be divided into two categories: instances 

where Tresca and von Mises predict yielding at the same state of stress, and instances 

where Tresca predicts yielding at a lower state of stress than von Mises. 

For certain experimental tests, including standard uniaxial tensile tests, and applying 

tension or compression (plane stress) evenly in the perpendicular directions, it can be 

seen that both Tresca and von Mises predict yielding at the same state of stress.  

However, following a stress path of pure shear (holding a bar and applying torsion), 

applying a combination of uniaxial and shear loads, or applying tension or 

compression (plane stress) at different rates in the perpendicular directions results in 

Tresca indicating yielding at a lower state of stress than the more accurate von Mises.  

This illustrates the statement made earlier which regarded Tresca as a conservative 

theory, predicting yielding at lower states of stress than von Mises. 
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(3) 

Many important values relating to the above discussion can be derived from the stress 

tensor.  The stress tensor can be decomposed into two parts: a hydrostatic portion, 

and a deviatoric portion.  The hydrostatic portion is the uniform pressure distributed 

over the object (i.e. a differential cube) and has a negligible effect on plastic 

deformations.  The deviatoric stress tensor is the main contributor to permanent 

deformation.  This is why the cylindrical von Mises yield surface has a constant radius 

as the hydrostatic pressure, 

 (4) 

increases along the pressure axis in Figure 8.  The decomposition is as follows: 

 (5) 

where  is the deviatoric stress tensor,  is the hydrostatic stress, and  is the 

Kronecker delta, or, the identity matrix.  The elements contained within the diagonal 

of the second term of (5) are equal to one another and denote the mean pressure on 

the component.  Another important term is the von Mises stress, , which can be 

expressed in terms of the deviatoric stress tensor as, 

 (6) 
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The yield criterion associated with the von Mises stress occurs when  

 
(7) 

where is the current yield strength which would occur when the state of stress is 

located on the surface of the circle on the -plane. 

2.3.3 Yield Surfaces for PMMaterials

Now that simple material models have been discussed in terms of yield surfaces, it is 

now possible to expand on this knowledge and apply it to more complex powder 

material models.  While there are a vast number of ways in which researchers 

represent the behaviour of powdered metal undergoing compaction, an attempt is 

made here to broadly classify them into two main families: granular and porous 

material models.  Regardless of the model type, all must simulate the densification 

behaviour of powdered metals which is a non-reversible plastic deformation 

phenomenon.  A further complication, and a significant difference when compared 

with solid metals, is that the stiffness (e.g. elastic modulus) changes with 

densification. 

When discussing yield surfaces for PM materials, two terms are used frequently when 

describing the yield surfaces: the first invariant of the stress tensor, , which is given 

in (8), and the square root of the second invariant of the deviatoric stress tensor,  

which is given in (9). 
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(8) 

 (9) 

Granular Material Models 

The first family of plasticity models is for granular materials.  These models include 

Drucker-Prager (Drucker and Prager, 1952), Mohr-Coulomb (Coulomb, 1776) and 

Cam-Clay (Roscoe et al., 1963) among others.  Granular models are able to describe 

material behaviour for all possible loading cases; they are not tailored for just 

particular loading paths (such as pure shear or axial symmetry).  Furthermore, the 

parameters of the model may be determined using a relatively small number of 

standard or simple material tests, and the model is phenomenological in nature 

(Khoei, 2005). 

A material that starts off at a low density, such as soil or PM material, will behave 

differently than a solid metal.  Whereas increasing the hydrostatic pressure on a solid 

metal does not affect the yield surface shape (see Figure 8), powdered metal is greatly 

affected by increasing hydrostatic stress.  As the powder becomes more and more 

dense, it begins to act more like a solid metal.  Therefore, at low values of pressure, 

the yield strength is very low: plastic deformation occurs at very small values of stress.  

As the material is further compacted, the density increases, and the yield strength of 

the material grows.  Therefore, if one were to visualize what this yield surface would 
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look like, it would appear to be a cone travelling along the pressure axis.  As the 

pressure increases, the cross-section on the -plane (see Figure 8) expands, 

representing an increase in yield strength.  This cross-section does not expand 

forever; as the powder reaches maximum density, the radius reaches a maximum 

value, based on the type of material.  Furthermore, another phenomenon is present 

when analyzing PM material.  The particles are experiencing work hardening as the 

particles are being deformed, and this is represented in the model by a second surface 

known as a hardening cap.  The cap is essentially the limit of the maximum pressure 

that the powder can withstand without an increase in density. 

The foregoing description of material models are colloquially referred to as cap-type 

models. One of the most common models, the Drucker–Prager Cap (DPC) model, is 

shown in Figure 9.  The  axis of the DPC model can be thought of as being 

analogous to the hydrostatic axis of the von Mises model, while the  axis is 

analogous to the radius of the cylinder (see Figure 8). 

The formula for the fixed yield surface as seen in Figure 9 has many variations, but 

one particular version of this is the following, implemented by Sandler and Rubin 

(1979): 

 (10) 
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where , , , and  are material model parameters, and the material is in 

compression.  The exponential term contained within this function serves to create a 

plateau, which illustrates the evolution of the behavior of powdered metal to act more 

like a solid metal under higher states of stress. 

The hardening cap is defined by the equation: 

 (11) 

where  is the intersection of the cap surface with the  axis,  is the surface axis 

ratio of the cap, and  is defined as 

 (12) 

The hardening parameter, , is the  intersection between the Drucker-Prager yield 

surface and the cap surface, and is related to the plastic volumetric strain, , through 

the hardening law 

 (13) 

where  and  are material model parameters. 
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Porous Material Models 

The second plasticity family consists of models developed for porous materials, such 

as Kuhn and Downey (1971), Shima-Oyane (Oyane et al., 1973), and Fleck-Gurson 

(Fleck et al., 1992; Gurson, 1977), which express the hydrostatic and deviatoric 

stresses in terms of the yield stress of the solid material and the yield stress of the 

partially dense material found in a part during compaction.   

A brief description of one of the more widely-used porous models, is presented here.  

A schematic of the yield surface for the Shima-Oyane model is shown in Figure 10.  

Several variations of the parameters found in this model exist in the literature, but 

these models are all based on the same general equation: 

 
(14) 

where , , and  are functions of the relative density of the powder (  in Figure 

10), and  and  are the yield strengths of the solid material and partially dense 

material, respectively. 



 

Fi

H

d

it

su

m

 

igure 10 - Yield 

However, th

ensities (i.e.

ts use for t

uitable.  Wh

more applica

Surface for Shi

hese models

e. the start of

the simulati

hen investig

able (Khoei, 

ma-Oyane mod

s make assu

f the powde

ion of a co

gating pre-c

2005). 

 

25 

del (adapted from

umptions w

er compactio

ompact bein

compacted s

m Oyane et al., 

which do n

on process) 

ng created 

sintered pow

 

1973) 

not hold tr

(Khoei, 200

from loose

wder, this t

rue at very

05) and ther

e powder is

type of mod

y low 

refore 

s not 

del is 



26 
 

 

 

 

Chapter 3: Literature Review

 

A literature review is presented here which summarizes pre-existing finite element 

metal powder die compaction models.  As the PM field is fairly expansive, the present 

review aims to both provide a detailed review and highlight the areas where there is a 

lack of research.  There are many works in the literature that deal with finite element 

analysis of the compaction of non-metals such as soils, sand, ceramics, and 

pharmaceuticals, and while there are some similarities, they were considered to be 

outside the scope of the research presented in this work. 

Recent reviews on analytical (continuum approaches), ceramic, and pharmaceutical 

powders by Cunningham et al. (2004), Aydin et al. (1997), and Sinka (2007), 

respectively, have given a broad overview of the modelling field.  However, surveys 

of existing modelling efforts in metallic PM applications have been somewhat limited, 
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where the PM Modnet’s 1999 review fundamental and Calero’s 2006 industry-centric 

reviews are standouts. 

This review is separated into three categories by material: ferrous PM, non-

ferrous/non-aluminum PM, and finally aluminum PM.  Analysis of the literature 

results is presented vis-à-vis modelling approaches, and the last section investigates 

the papers that experimentally determined the density distribution.  These results are 

a key action in validating compaction models. 

3.1 Ferrous PM

Ferrous material is used very commonly in a wide variety of automotive components 

and therefore has been quite thoroughly investigated.  Several experimental-only 

works, notably Doremus et al. (1995) and Pavier and Doremus (1999), characterized 

ferrous powders using a high pressure triaxial cell; the results of which were 

subsequently widely used by other FE modellers (Rahman et al., 2011; Shtern and 

Mikhailov, 2002; Cocks, 2001).  Sinka et al. (2000) also used a ferrous alloy powder 

(DistaloyAE) to study triaxial compaction as well as other tests, and compared these to 

the results found by Doremus et al. (1995) and the test results were found to be in 

broad agreement.  Korachkin et al. (2008) also used DistaloyAE in experimental work 

which tested the effects of ad-mixed lubrication on the Young’s modulus and tensile 

failure properties of green compacts. 
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The papers in the literature that focus on the simulation of iron powder compaction 

are sub-categorized by granular or porous material model, and a brief description of 

each paper is presented.  Table 1 lists the PM compaction models which use iron-

based powders, classified by powder type, powder material model, and FE code. 

Table 1 - Literature review for ferrous PM metal 

Author Title Material Model 
Type 

Year Finite Element 
Code 

Granular Powder Material Model 
 

Tran, Lewis, Gethin, 
Ariffin 

Numerical Modelling of Powder 
Compaction Processes: 
Displacement Based Finite Element 
Method 

Ferrous 
metal 

Granular 1993 Unknown 

Krezalek, Sivakumar Computational Simulation of 
Powder Movement During Uniaxial 
Die Compaction of Metal Powders 

Ferrous 
metal 

Granular 1995 STRAND 6 

PM Modnet Research 
Group 

Comparison of Computer Models 
Representing Powder Compaction 
Process 

Ferrous 
metal 

Granular 1999 ABAQUS, 
DYNA2D 

Wikman, Solimannezhad, 
Larsson, Oldenburg, 
Haggblad 

Wall Friction Coefficient 
Estimation Through Modelling of 
Powder Die Pressing Experiment 

Ferrous 
metal 

Granular 2000 DYNA2D 

Coube, Riedel Numerical Simulation of Metal 
Powder Die Compaction with 
Special Consideration of Cracking 

Ferrous 
metal 

Granular 2000 ABAQUS 

Doremus, Toussaint, 
Alvain 

Simple Tests and Standard 
Procedure for the Characterisation 
of Green Compacted Powder 

Ferrous 
metal, 
ceramic, 
other metal 

Granular 2001 DYNA2D, 
ABAQUS 

Chtourou, Guillot, 
Gakwaya 

Modeling of the Metal Powder 
Compaction Process Using the Cap 
Model. Part I. Experimental 
Material Characterization and 
Validation, Part II. Numerical 
Implementation and Practical 
Applications 

Ferrous 
metal 

Granular 2002 ABAQUS 

PM Modnet Research 
Group 

Numerical Simulation of Powder 
Compaction for Two Multilevel 
Ferrous Parts 

Ferrous 
metal 

Granular 2002 Unknown custom 
and commercial 
codes 
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Author Title Material Model 
Type 

Year Finite Element 
Code 

Mikhailov, Shtern Numerical Modelling of the 
Compaction of Powder Articles of 
Complex Shape in Rigid Dies: Effect 
of Compaction Scheme on Density 
Distribution II. Modelling 
Procedure and Analysis of Forming 
Schemes 

Ferrous 
metal 

Granular 2003 Unknown 

Coube, Cocks, Wu Experimental and Numerical Study 
of Die Filling, Powder Transfer and 
Die Compaction 

Ferrous 
metal 

Granular 2005 ABAQUS 

Khoei, Shamloo, Azami Extended FEM in Plasticity 
Forming of Powder Compaction 
with Contact Friction 

Ferrous 
metal 

Granular 2006 Proprietary (X-
FEM) 

Wikman, Bergman, 
Oldenburg, Haggblad 

Estimation of Constitutive 
Parameters for Powder Pressing by 
Inverse Modelling 

Ferrous 
metal 

Granular 2006 DYNA2D 

Khoei, Azami, Azizi Computational Modelling of 3D 
Powder Compaction Processes 

Ferrous 
metal 

Granular 2007 Unknown 

Liu, Xia, Zhou, Li Numerical Simulation of Metal 
Powder Compaction Considering 
Material & Geometrical 
Nonlinearity 

Ferrous 
metal 

Granular 2007 MSC.Marc 

Rahman, Ariffin, Nor Development of a Finite Element 
Model of Metal Powder 
Compaction Process at Elevated 
Temperature 

Ferrous 
metal 

Granular 2009 Custom 

Zadeh, Kim, Jeswiet Nonlinear Finite Element Analysis 
of Metal Powder Die Compaction 
Using Various Plasticity Models 

Ferrous 
metal 

Granular 2009 ABAQUS 

Porous Powder Material Model 
 

Weber, Brown Simulation of the Compaction of 
Powder Components 

Ferrous 
metal 

Porous 1989 Unspecified 
(implicit, non-
linear) 

Svoboda, Haggblad, 
Nasstrom 

Simulation of Hot Isostatic Pressing 
of Metal Powder Components to 
Near Net shape 

Ferrous 
metal 

Porous 1996 NIKE2D, 
TOPAZ2D, CACE 

Kim, Cho A Densification Model for Mixed 
Metal Powder Under Cold 
Compaction 

Ferrous 
metal with 
copper mix 

Porous 2001 ABAQUS 

Kang, Lee, Kim Densification Behavior of Iron 
Powder During Cold Stepped 
Compaction 

Ferrous 
metal 

Porous 2007 ABAQUS 

Lee, Chung, Cho, Chung, 
Kwon, Kim, Joun 

Three-dimensional Finite Element 
Analysis of Powder Compaction 
Process of Forming Cylinder Block 
of Hydraulic Pump 
 

Ferrous 
metal 

Porous 2008 Unknown 
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Author Title Material Model 
Type 

Year Finite Element 
Code 

Unknown Powder Material Model 
 

Zhu, Li, Liang, Xiang, Yin Comparison Study of Single 
Direction and Friction Assisted 
Compaction of Multiple Alloy 
Powders by Finite Element 
Simulation 

Ferrous 
metal 

Unknown 2012 DEFORM, Newton-
Raphson Solver 

When looking at granular models used to model ferrous PM, the vast majority of 

them incorporate a hardening cap in the model.  The most common granular model 

used in the literature is the Drucker-Prager Cap (DPC) model, followed by the Mohr-

Coulomb Cap model and the Cam-Clay model. 

Krezalek and Sivakumar (1995) studied the mass movement of the powder during 

compaction using the DPC-derived Hehenberger model in the FE simulations, and 

tested these results experimentally using iron powder layers separated by thin copper 

layers.  The FE model they used predicted the stress distributions quite well, and the 

displacements were approximately 10-15% higher in the experiment than the FE 

model.  The PM Modnet Research Group (1999, 2002) used both the Cam-Clay and 

DPC models with different finite element codes to simulate compaction of multilevel 

parts.  The conclusion reached was that reasonable results can be derived by using 

different models and FE codes to describe the same material behaviour.  Coube and 

Riedel (2000) studied the formation of cracks in compacted iron PM parts during the 

compaction, unloading, and ejection phases of the compaction process by using a 

modified DPC model.  Their model is very good at predicting green density 



31 
 

throughout 2D and 3D multi-level parts, predicting within 0.05 g/cm3 density in five 

regions of one part.  Wikman et al. (2000) used a DPC model to model a cylindrical 

iron PM part, in order to investigate the wall friction coefficient as a function of 

relative density, and it was found that in general, the coefficient decreases as the 

relative density increases.  Doremus et al. (2001) proposed a set of standard tests to fit 

model parameters of the DPC model.  This was tested by simulating the compaction 

of a drawing die part and comparing the density distribution and punch forces with 

those determined from experimental data.  The density distribution was calculated 

within a mean of 1%, with a maximum of 3% difference, while the punch forces 

simulated were within a maximum of 10% overestimation when compared to 

experimental data.  Chtourou et al. (2002a) modelled an axisymmetric multi-level part 

and used the DPC model to try and match triaxial and isostatic loading cases from 

experiment, with good success.  It was also found that the variables of the DPC model 

have a different level of influence on the results:  has the greatest influence by far, 

followed by the elastic modulus, then the model parameter , then the shear 

modulus, with the remainder having minimal influence on the final result.  They 

then investigated the practical industrial applications for this model and once again 

compared the finite element results to the experimental data with close agreement 

(Chtourou et al., 2002b).  Coube et al. (2005) investigated the effects of die filling on 

the final density distribution found within an H-shaped part.  The die filling aspect 

was modelled with discrete element analysis, while the densification was studied 
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using finite element analysis with the DPC model.  It was found that depressions in 

the top of the columns of loose powder have more of an impact on creating an 

inhomogeneous density distribution, when compared to the effects of initial 

inhomogeneity caused by powder filling.  Wikman et al. (2006) used the DPC model 

to model an axisymmetric bottle-neck shape compact in DYNA2D and a pulley in 

ABAQUS.  The pulley was shown to have good agreement with the experimental 

determination of density, but underestimated the density in some locations.  Khoei et 

al. (2006) used a custom finite element technique to model tablet compaction, a 

rotated flange component, and a shaped tip component.  For the latter two 

components, a comparison of this custom technique and traditional FE modelling is 

shown, and in both cases, it appears that the density contours are of similar shape, and 

for the most part are in good agreement, but the predicted local densities in some 

interface locations are not as close.  Khoei et al. (2007) used the DPC model to model 

several parts in 3D and also compared a simulated triaxial test to the results from the 

triaxial tests performed by Doremus et al. (1995) and found very comparable results.  

A modified Cam-Clay model and a DPC model were used by Zadeh et al. (2009) to 

test two FE models.  The Cam-Clay model was found to show very close agreement to 

experimental density distributions, and the second experiment, which took geometry 

from Coube and Riedel (2000), showed very good agreement when compared to the 

results found in the same paper. 
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Tran et al. (1993) modelled a plain bushing component using the Mohr-Coulomb Cap 

model, and compared the measured density at different compaction pressures against 

experimentally-made components of the same size and shape, with good results.  

Adaptive remeshing was recommended for the more complex T-section component, 

while it was not necessary for a straight bush component.  Mikhailov and Shtern 

(2003) used the Cam-Clay model to study the density distribution on a multi-level 

part resulting from different compaction schemes with varying punch velocities and 

found good agreement with experiment.  Rahman et al. (2009) used the elliptical cap 

model to model an axisymmetric bush component under warm compaction using a 

custom FE code.  It was found that the simulated punch stress had good correlation 

with experiment, the warm compaction route provides higher green density, and 

springback is marginally larger in warm compaction compared to cold compaction. 

The porous family of material models is the second point of discussion for ferrous 

powders.  One of the earliest papers in the literature which studies ferrous PM as its 

main focus is Weber and Brown (1989) which presented in-depth mathematical 

constitutive equations for the material model and studied cylindrical components 

undergoing closed die compaction using the Kuhn and Downey model, which showed 

great correlation between simulation and experiment overall, but the resolution of 

the experimental density method (hardness testing) made it unable to accurately 

predict contours in areas with sharp density contours.  Svoboda et al. (1996) used a 
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modified Shima-Oyane model to simulate the hot isostatic pressing of a turbine 

component, and compares the calculated and measured axial displacements of the 

component; the plastic strain at elements close to the edge in both the experiment 

and simulation show similar results.  Kim and Cho (2001) studied the effects of 

varying copper powder percentages by volume mixed with tool steel powder.  They 

performed cold isostatic pressing and single-action die compaction, and found that a 

mix between the Fleck and Tvergaard material models was the best fit for this powder 

mixture.  Kang et al. (2007) studied the densification behaviour of a ferrous powder 

using the Shima-Oyane model during the cold stepped compaction of a hollow 

cylinder using die compaction, and cold isostatic pressing.  Hardness testing was used 

to determine the density distribution experimentally, and this was in good agreement 

with the finite element simulation.  Liu et al. (2007) modelled a cylinder of iron 

powder using the Ellipsoidal model, citing the complexity of cap models as not being 

cost-effective and opting instead to use the simpler Ellipsoidal model which is derived 

from the von Mises model.  Lee et al. (2008) uses, among other models, the Shima-

Oyane material model, stating that from their findings, it is a better choice than 

granular models such as Cam-Clay and the modified Drucker-Prager model. 

Most recently, Zhu et al. (2012) studied the difference between single-action and 

friction assisted compaction (an approximation of double-action compaction using 
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relative die wall motion) using an unknown material model and found results which 

were consistent with literature. 

3.2 Non Ferrous/Non Aluminum PMMetals

In the literature, several groups have investigated the compaction of non-ferrous, 

non-aluminum metals and alloys, although in some cases, the authors do not specify 

the type of metal being studied.  Table 2 lists the literature that includes research on 

non-ferrous, non-aluminum metals, sorted by material type.  The discussion following 

Table 2 is sorted by granular material models followed by porous material models. 

Table 2 - Literature review for non-ferrous, non-aluminum PM metal 

Author Title Material Model 
Type 

Year Finite Element 
Code 

Tran, Lewis, Gethin, 
Ariffin 

Numerical Modelling of Powder 
Compaction Processes: 
Displacement Based Finite Element 
Method 

Bronze, 
Ceramic, 
Carbon 

Granular 1993 Unknown 

Smith, Midha, Graham Simulation of Metal Powder 
Compaction, for the Development 
of a Knowledge Based Powder 
Metallurgy Process Advisor 

Bronze Porous 1998 ABAQUS 

Jinka, Lewis, Gethin Finite Element Simulation of 
Powder Compaction Via the Flow 
Formation 

Copper Porous 1991 Unknown, 
Newton-Raphson 
Solver 

Hwang, Kobayashi Application of the Finite Element 
Method to Powdered Metal 
Compaction Processes 

Copper Porous 1991 DEFORM, Newton-
Raphson Solver 

Shima, Saleh Variation of Density Distribution in 
Compacts in Closed-Die 
Compaction with Powder 
Characteristics 

Copper Porous 1993 Unknown 

Ko, Jang, Choi, Lim, 
Hwang 

Finite Element Method in 
Powdered Metal Compaction 
Processes 

Copper Porous 2004 DEFORM, Newton-
Raphson Solver 

Armstrong, Godby, 
Shankar Rachakonda, 
Cheng, McCabe 

Finite Element Modelling of Cold 
Powder Compaction 

Not 
defined 

Granular 1993 ABAQUS 
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Tran et al. (1993), in addition to studying iron as mentioned in Section 3.1, also 

studied bronze, ceramics, and carbon using the Mohr-Coulomb Cap model.  

Armstrong et al. (1993) modelled a metal axisymmetric multilevel hub using the 

Cam-Clay model and compared single- and double-action compaction and how it 

affected density distributions in the component, finding that a schedule with 

independent motion of upper and lower punch(es) yields the highest and most 

uniform density distribution. 

The copper powders which were investigated by several groups were all modelled 

using porous material models.  Hwang and Kobayashi (1991) developed a porous 

material model to simulate the compaction of solid cylinders and rings using both 

single- and double-action compaction.  Jinka et al. (1991) modelled the compaction of 

straight cylinders and flanged cylinders using the Shima-Oyane model in the FE 

simulations, and found good correlation with experimental density data.  Shima and 

Saleh (1993) used another porous material model which had been developed by that 

group previously, and the aim of this study was to compare density distributions 

within powder compacts using copper powder particles of different shape and size.  It 

was found that the powder shape and size did have an effect on the resulting density 

distributions.  Ko et al. (2004) was co-written with Hwang, and as such used the 

model presented by Hwang and Kobayashi (1991) and presented the FE simulation 

results for several different classes of parts (Class II being represented here by a solid 
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cylinder and ring, Class III by a flanged cylinder, and Class IV by a multi-level 

cylinder) which showed results that qualitatively agree with expected results, though 

no experimental validation was carried out.  Smith et al. (1998) used the Gurson 

porous metal plasticity model to simulate the compaction of bronze cylinders with 

the goal of creating an extensive database to inform designers on proper parameters 

for different geometries, powders, desired densities, etc.  The simulated punch 

displacements were compared to experimental data, and were found to be very well-

correlated. 

3.3 Aluminum PM

In the literature, Al PM finite element models are not nearly as abundant as other 

metals (especially iron and copper).  However, particular attention is given here as Al 

PM is an ever-increasing resource that PM manufacturers are currently leveraging for 

lightweight applications (Anderson and Foley, 2001; Huo et al., 2009). 

Lee and Kim (2002) used an Al6061 alloy powder in both cold isostatic pressing and 

die compaction tests, and used ABAQUS as their finite element code.  The aim of 

their work was to compare several available material models to the model being 

proposed in their paper and how these compared to experimental data.  Of the 

available models, it was found that the Shima-Oyane model agreed well with 

experimental data at the high-density region, but underestimated at the low-density 

region, while the Fleck-Gurson with tuned yield parameters, the Cam-clay, and the 
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modified Drucker-Prager Cap models slightly overestimated the density distribution 

of the powder compact at the low-density region, but underestimated at higher 

density. 

3.4 Analysis of Modelling Approaches

It is interesting to note that of the twenty-two papers in the literature that were 

focused on the FE modelling of ferrous PM, sixteen papers used the Drucker-Prager 

Cap model or another granular model that incorporates a cap, such as the Cam-Clay 

model, and the Mohr-Coulomb Cap model, while only five papers used a porous 

material model, and one used an unknown material model.  Figure 11 shows a 

breakdown of the papers that focused primarily on ferrous PM materials, and 

emphasizes the overwhelming tendency to use a granular material model over a 

porous material model. 
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from the model.  However, gamma rays are expensive and a source for potential 

hazard for those involved in operating the machinery due to radiation. 

Weber and Brown (1989) used a double correlation technique which first correlated 

the density between a green powder compact and an identical sintered compact, then 

correlated the density of the sintered part to the Rockwell hardness of the sintered 

part.  Lee and Kim (2002) derived a similar correlation by sintering the green 

compacts for 20 min, which did not change the relative density of the part.  The 

sintered parts were annealed, then tested with a Rockwell tester and a correlation 

equation between relative density and hardness was derived.  Kim and Cho (2001), 

Chtourou et al. (2002a, 2002b) and Kang et al. (2007) all used variations on this 

hardness correlation technique to determine the density distributions throughout the 

powder compacts.  Hardness testing requires sintering and annealing of the green 

compacts, as well as a determination of the correlation between hardness and density.  

This correlation is not readily available in the literature for the powder used in this 

particular research. 

Krezalek and Sivakumar (1995) studied the movement of powder during compaction, 

and employed a technique which would allow them to see this movement 

experimentally.  The powder was inserted into the die in layers: a thin copper layer 

between thick iron layers.  The sample would be sintered and cut afterwards, and the 

deflection of each layer of powder could be seen and measured.  Aydin et al. (1997) 
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used two methods to determine the density distribution within alumina compacts in 

this work.  One, referred to as the lead-shot tracer method, has fine lead balls or a 

lead mesh incorporated into the powder, and x-rays are used for imaging.  The second 

method is known as the colored layer method, where alternating layers of dyed 

alumina are placed in a die one after another after being very lightly compacted in 

order to see a sharp boundary between layers.  Powder movement using lead shot 

tracer or powder layers gives a visual aid for displacement only, not density or strain.  

Introducing layers of a different powder material may also skew density 

measurements and powder interaction, especially when pre-compacted.  The lead 

shot method also requires the use of x-rays which can be expensive and also a 

potential hazard due to radiation. 

Another apparently popular method is the Archimedes method, which is to section a 

green compact into representative smaller sections (Coube and Riedel, 2000; Kang et 

al., 2007), or into a fine grid pattern of much smaller cubes (Liu et al., 2007) and 

determining the density of these individual pieces.  Lee et al. (2008) also cut a 

cylinder block of a hydraulic pump made from iron powder into several sections and 

measured the density by water densitometry of the sintered component.  Archimedes 

method yields a poor resolution when compared to several of the other methods, and 

it can also be difficult to section green compacts especially at low compaction 

pressures. 
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Chtourou et al. (2002a), in addition to the hardness correlation method, also used an 

optical densitometry technique to map the density distribution within the sample.  

The sample was ground and polished, and images were taken with an optical 

microscope.  The relative density was calculated as unity minus the void ratio of the 

image.  Ma et al. (2004) similarly used optical metallography to measure the density 

distribution in a gear made from aluminum-reinforced composite powder.  Zhu et al. 

(2012) used a very simple optical densitometry example to show that, in general, 

there were more pores toward the bottom of a single-action sample, and fewer pores 

toward the top; thus, representing higher density at the top and lower density at the 

bottom.  This method can be time consuming in preparation of the sample, and 

depending on the desired resolution can take a long time to capture the entire surface 

of the part.  However, the resolution can be much finer than that of the Archimedes 

method. 

The PM Modnet Research Group (2002) performed a very extensive study of density 

measuring techniques when investigating a ferrous PM component.  Gamma-ray 

absorption, computerized tomography (CT), hardness testing, Archimedes’ method 

(water densitometry), and optical microscopy were all used to measure the 

distribution found within the compact.  In order to conduct the hardness testing and 

microscopy, the powder compacts were cut in half using a wire cutting technique as 

this did not load the sample, leaving its density distribution largely unchanged.  The 
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study by the PM Modnet Group (1999) comes to the conclusion that many of the 

methods that they analyzed give similar results to one another. 
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Chapter 4: Experimental Work

 

In order to validate the compaction model, a number of experiments were performed 

on powder compacts.  The experimental methods used in this thesis will be described 

in this chapter.  These can be divided into two major categories: powder 

characterization and powder consolidation. 

Powder characterization consists of three experiments: constructing a compaction 

curve, determining the apparent density of the powder prior to compaction, and 

determining the flow rate of the powder. 

The powder consolidation category consists of powder compaction, which is the 

physical act of using a press to consolidate powdered metal, and optical densitometry, 

which is a method of mapping the density distribution within the powder compact 

using microscopy and photo analysis.  After reviewing the available methods of 

density distribution analysis, it was determined that optical densitometry was the 
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most suitable candidate for this research, as access to a microscope and camera with 

imaging software is available, as are the facilities for grinding and polishing the 

samples to prepare them for metallography.  This method provides very good 

resolution, though it is destructive, and preparing the samples for metallography can 

be time consuming. 

4.1 Materials

The material used in this work is ECKA Granules Alumix 321, which is an Al6061 

powder whose composition shown in Table 3.  This material was used because the 

one paper from the literature that studied aluminum PM in depth used an Al6061 

powder and having a reference with which to perform general comparison is 

beneficial. 

Table 3 - Properties of ECKA Alumix 321 powder (ECKA Granules, 2012) 

Alloy Mg % Si % Cu % Microwax C 
(lubricant) 

Al % 

AlMgSiCu 1 0.5 0.2 1.5 remainder 

4.2 Powder Characterization

Several experiments have been performed to characterize the powder based on its 

attributes.  These include creating a compaction curve based off MPIF (Metal Powder 

Industries Federation) Standard 45, determining the flow rate of a powder following 

MPIF Standard 03, and determining the apparent density of the powder following 



47 
 

MPIF Standard 48.  The aforementioned standards were followed as closely as 

possible with the equipment that was available. 

4.2.1 Compaction Curve

Three samples were pressed at each pressure in 100 MPa increments from 100 MPa to 

500 MPa in a single-action compaction procedure in the manner described in Section 

4.3.1.  The material used in this powder characterization test has a lubricant premixed 

in the powder, so it is not necessary to add any extra lubrication during compaction.  

The sample heights were measured using a 0.001 mm precision micrometer.  The 

diameter of each was measured using the same micrometer at the top, middle, and 

bottom of each sample, and the average of each was calculated.  The samples were 

weighed to the nearest 0.01 g.  The density of the test specimen was determined as: 

 
(15) 

where  = green density in g/cm3,  = mass of test cylinder in g,  = diameter of 

test cylinder in mm, and  = height of test cylinder in mm.  The results of the 

compaction curve are shown in Figure 13. 
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4.2.2 Flow Rate Determination

This test utilizes a Hall Flowmeter Funnel (Figure 14) having a calibrated orifice of 

2.54 mm diameter.  As per MPIF Standard 03, the funnel is cleaned using dry paper 

towel and a clean dry pipe cleaner.  50.0 g of powder is measured out into a clean 

weighing dish.  The orifice at the bottom of the funnel is blocked and the powder is 

carefully poured into the centre of the funnel without the powder being disturbed by 

tapping or moving the funnel.  The emptied weighing dish is placed on the flowmeter 

stand directly beneath the funnel.  Simultaneously, a stopwatch is started and the 

blockage is removed from the orifice (if the powder does not immediately start 

flowing, one light tap on the funnel rim may be used to get it started).  The stopwatch 

is stopped the instant the last of the powder exits the orifice.  The elapsed time is then 

recorded to the nearest 0.1 s. 
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The Arnold apparent density for this Alumix 321 powder was tested three times (23.1, 

23.1, and 23.1 g/20 cm3) and thus calculated as 1.15 g/cm3. 

4.3 Powder Consolidation

4.3.1 Powder Compaction

The die compaction is carried out on an Instron universal test frame, which is a load-

controlled 1 MN hydraulic press.  The die used in this compaction is a simple single-

action die with a diameter of 15 mm and a maximum rating of 600 MPa, a stationary 

lower punch located at the die-platen interface, and an upper punch which is inserted 

on top of the powder (as shown in Figure 16).  A load cell can be inserted between the 

upper punch and the top platen to get a reading of the upper punch force using a 

portable data acquisition system. 
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Measure to the top of the upper punch using a height gauge 

Select the load-controller to the desired pressure 

Initiate the pressing program 

Eject the part by first removing the single-action punches, and attaching the 

die to a floating die apparatus which is designed to eject parts 

Place an obstruction between the die and upper platen and raise the lower 

platen 

Three samples were pressed at each pressure for repeatability and allowing multiple 

tests to be performed on samples at the same compaction pressure, such as measuring 

bulk density or performing optical densitometry.  The height of each sample before 

pressing was also measured so that the finite element model would have accurate 

initial dimensions.  The height to the top of the upper punch was measured, and from 

this value, the height of the upper punch and lower punch were subtracted, leaving 

the height of the uncompacted powder column. 

4.3.2 Optical Densitometry

The samples were mounted in resin, and ground to the bisecting plane of the cylinder 

using 240 grit sandpaper.  Each sample was then ground using a 400 grit sandpaper 

until a relatively uniform surface with no large scratches was observed.  This was 

followed by polishing using a 0.3 m alumina suspension on a felt wheel for several 

minutes, and a solution of 0.06 m colloidal silica on a microcloth wheel by hand for 
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several minutes.  The polishing step of preparation for optical densitometry is not one 

that has a defined regimen to achieve the desired results, and as such, some of the 

steps above were repeated a few times to achieve a proper surface. 

The analysis is performed using an Olympus BX51 optical microscope with a 5x 

objective lens, and a QImaging 3 megapixel digital camera equipped for data 

acquisition.  Half of the cylinder was photographed and analyzed, as the sample is 

assumed to be axisymmetric and thus the two halves should be mirror images of one 

another. 

The cylinder was mapped systematically beginning with the top outside corner.  

Images were collected manually by adjusting the microscope stage until the top of the 

image matched the bottom of the image immediately previous.  An image of 

approximately 1.78 x 2.37 mm, with a pixel resolution of 1200 x 1600, was captured 

using the software package ImagePro by Media Cybernetics.  Once a column was 

completed, the stage was reset to the top and moved sideways in the same manner as 

just described.  At this magnification, five columns of various heights were captured, 

with rows of eleven samples for 100 MPa and rows of nine samples for 300 and 500 

MPa.  An example of this is shown in Figure 17 for the 300 and 500 MPa samples of a 

five column, nine row grid of images. 
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highest and lowest density in a sample is found in the most lightly-compacted sample 

(85% to 63%) while the two samples compacted at higher pressure are much more 

uniform in density, ranging only about 2% from highest to lowest relative density. 
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Chapter 5: Modelling & Results

 

The simulations that were conducted as part of the current research are comprised of 

two separate models: one to simulate the powder compaction and another to simulate 

the elastic springback of the component after compaction.  The finite element 

calculations are all performed using the FE hydrocode LS-DYNA version 971.  The 

compaction and springback code used in this research can be found in Appendices A 

and B, respectively. 

5.1 Compaction Model Description

5.1.1 Model Geometry and Mesh

A schematic of the FE powder compaction model is shown in Figure 22.  The 

geometry of the punches, the die, and the powder were constructed and meshed into 

discrete elements using Altair Hyperworks 11.0.  The punches and die are assumed to 

be rigid bodies made of steel, and the powder is modelled using axisymmetric 
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the original experiment duration are often run using implicit time integration.  

However, the material model being used to model the powder compaction is coded to 

run only in explicit time integration.  When a simulation of this length is run in the 

explicit mode, the results start to become erratic due to accumulation of error over a 

long period.  Running at this reduced time has been shown to produce results which 

are consistent with literature findings (see Section 5.2), and also significantly shortens 

the time it takes to run the model.  The contact between the die wall, punches, and 

powder is modelled using a surface-to-surface contact algorithm in LS-DYNA and 

employs a Coulomb-type friction with a value of 0.24 that was taken from the 

literature (Lee and Kim, 2002).  Standard LS-DYNA hourglass control has been used 

in this model, with the default coefficient of 0.10.  This is implemented to help 

control possible instabilities that are sometimes encountered when running models. 

5.1.3 Material Model and Parameter Determination

The Alumix 321 powder was modelled using the *MAT_GEOLOGIC_CAP_MODEL 

keyword (Hallquist, 2006), which is a representation of the Drucker-Prager Cap 

model discussed in Section 2.3.  The parameters used to describe the material model 

were derived from the experimental triaxial data presented by Lee and Kim (2002), 

and are presented in Table 5.  The values here represent a pre-alloyed Al6061 powder 

supplied by Valimet used by Lee and Kim, and will be the starting point to determine 



67 
 

the parameters of the powder used in the experimental section of this work which is 

ECKA Alumix 321. 

Table 5 - Compaction material model parameters for Al6061 powder from Lee and Kim (2002) 

Parameter Value 
Initial density 1377 kg/m3 
Initial bulk modulus 55.76 GPa 
Initial shear modulus 13.26 GPa 
Failure envelope parameter,  0 Pa 
Failure envelope linear coefficient,  0.394 
Failure envelope exponential coefficient,  0 Pa 
Failure envelope exponent,  0 Pa-1 
Cap surface axis ratio,  2.800 
Hardening law exponent,  5E-10 
Hardening law coefficient,  0.62 

5.2 Lee and Kim Validation

To validate the predicted densification of the model described in Section 5.1, a model 

was constructed with the geometry of the die used in Lee and Kim (2002).  This die is 

20 mm in diameter, and used an initial powder height of 30.05 mm.  The simulation 

was run with the initial parameters derived from Lee and Kim’s paper, and a 

parametric study was undertaken with the hardening law exponent, , and the 

hardening law coefficient, , to fit the model to results shown in Lee and Kim’s 

paper.  The values shown in Table 5 in Section 5.1.3 give a result that qualitatively 

matches the density distribution shape from the Lee and Kim DPC result (see Figure 

25), with relative density values that are within 2% of those in Lee and Kim’s paper; 
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4.2.1.  The initial relative density of the Alumix 321 powder in the die was calculated 

using the height of the powder column in the die, and the initial bulk and shear 

modulus were estimated to be those values corresponding to fully-dense Al6061 

multiplied by the initial relative density.  A parametric study with the  and  

parameters was conducted to attempt to match the bulk density of the finite element 

sample at each compaction pressure to the experimental samples.  LS-DYNA 

calculates the effective plastic strain within each element, which is then converted to 

relative density through the relationship derived from Coube and Riedel (2000). 

 
(17) 

The bulk density was calculated by averaging the effective plastic strain over all the 

elements in the powder, and converting it to relative density, where the resulting 

compaction curve is shown in Figure 26. 
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Table 6 - Final compaction material model parameters for Alumix 321 powder 

Parameter Value 
Initial density 1207 kg/m3 
Initial bulk modulus 48.87 GPa 
Initial shear modulus 11.62 GPa 
Failure envelope parameter,  0 Pa 
Failure envelope linear coefficient,  0.394 
Failure envelope exponential coefficient,  0 Pa 
Failure envelope exponent,  0 Pa-1 
Cap surface axis ratio,  2.800 
Hardening law exponent,  1.4E-9 
Hardening law coefficient,  0.76 

5.3.2 Simulated Density Distribution Results and Comparison

The density distribution within powder compacts at each pressure was investigated.  

As mentioned in Section 5.3.1, LS-DYNA calculates the effective plastic strain for 

each element; this value is then converted into percent relative density.

Figure 27 shows the deformed sample and the density distribution within the 

compact at 100, 300, and 500 MPa. 
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difference becomes very small as compaction pressure is increased (5% difference at 

500 MPa). 

The information that can be extracted from the optical densitometry density 

distribution contour maps can be directly compared to the information taken from 

those created from the FE simulations.  Figure 28, Figure 29, and Figure 30 show the 

density distributions for 100, 300, and 500 MPa, respectively, for the optical 

densitometry experiments and the FE simulations.  Since the threshold value for the 

optical densitometry analysis was set so that the bulk density matched that of the 

physical compaction curve data, the contours can be compared directly between the 

densitometry and FE simulation data.  The apparent size difference in the images is 

attributed to the fact that the optical densitometry contour maps are bound by the 

centroids of the outermost data points, which trims approximately 1 mm off the 

external borders.  Furthermore, the FE simulation results have been flipped about the 

vertical axis to show a “mirror-image” comparison with the optical densitometry 

results. 
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s from experiment and finite eelement simulatiion (300 MPa)
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From this data, it shows that the two methods of analyzing the density contours in an 

Alumix 321 green sample are similar to one another, and acceptable representations 

of this information. 

5.4 Springback Model

Once the compaction model has reached completion, LS-DYNA writes a file which 

stores the final state of stress of the model and effective plastic strain that has 

occurred during compaction.  This file is then read into another simulation that 

models springback of the compact.  The springback model runs using the LS-DYNA 

implicit code, as opposed to the explicit code used to model compaction.  The state of 

stress of each element is initialized in the solver, and the solver uses this as the input 

to calculate the eventual equilibrium of the system after elastic springback has taken 

place. 

As springback is essentially the release of elastic strain in the model, the DPC model is 

replaced by an elastic constitutive material model for this simulation.  The density 

used for the springback model is the final density of the compaction simulation, and 

the elastic modulus for the model is approximated as being the value of fully-dense 

Al6061 multiplied by the relative density (Ma et al., 2004) and Poisson's ratio is 

assumed to be  = 0.30. 
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modelled: a compact being ejected slowly from a die after compaction at high 

pressure could result in smaller springback values near the top of the compact as this 

is the first part of the compact to be free of the die, and therefore is restricted from 

expanding as much as it would in an unrestricted case.  However, the current 

springback process being modelled is a simple relaxation of the compact where the 

springback is experienced at all heights simultaneously. 
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Chapter 6: Conclusions & Recommendations

 

This research contributed several important findings in finite element simulation of 

Alumix 321 PM.  A thorough background detailing the powder compaction process 

and factors that influence it was given.  A literature review was conducted which 

classified powder compaction papers by powder type, material model, and finite 

element code used.  This classification can be used by future powder researchers to 

help determine which route to follow to model a particular type of powder. 

A new finite element model has been developed for Alumix 321 PM to predict the 

density within green compacts over a wide range of compaction pressures in single-

action compaction.  The powder parameters were originally taken from the literature 

for a similar powder, but were altered for the powder in this work by conducting a 

parametric study and fitting the resulting bulk densities of the samples to the 

experimental compaction curve.  This was deemed to be a good substitute when 
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access to a triaxial compaction apparatus is not available.  This model can also predict 

the springback of a green compact to a good degree of accuracy when compared to 

experimental results, at compaction pressures of 300 MPa or less. 

Optical densitometry was shown to be an effective method for experimentally 

determining the density gradients within a powder compact with a very good 

resolution. 

Recommendations for future work include: 

As new papers get added to the literature, it is recommended that the tables 

which are included in the literature review should continue to be updated by 

the research group. 

The model has the capability to have the upper punch and lower punch 

actuate, so a recommendation for the next step for the model would be to 

experimentally validate the model when using double-action compaction, or 

the floating die apparatus used often in research settings which simulates 

double-action compaction on a single-action press. 

The springback model should be modelled with a full ejection schedule to 

study the effects of the release from the die on overall dimensional change, 

especially at high pressures. 

A recommendation to increase the quality of the polished samples would be to 

mitigate the damage caused around the external edges of the compact at low 
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pressures by testing different polishing methods to determine how much of an 

effect the grinding and polishing has on the sample edges.  This would 

minimize the amount of image manipulation necessary to extract the 

information for the density contour maps. 

A study should be done on the repeatability of the optical densitometry 

method, as well as a sensitivity analysis of the effect of magnification on 

density contour maps. 
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Appendix A: LS DYNA Code for 300 MPa

Compaction

dcompaction.dyn 

$ Units 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$   LENGTH      MASS      TIME     FORCE    STRESS    ENERGY     POWER   DENSITY 
$      [m]      [kg]       [s]       [N]      [Pa]       [J]       [W]   [kg/m3] 
$
$
*KEYWORD_ID
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$            PROJECT                 NUM                                   STAGE 
DIECOMP             SELIG_SA_300MPa    RIGIDPUNCH_ELFORM15 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                          PARAMETER DEFINITIONS                               $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PARAMETER
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$    PRMR1      VAL1     PRMR2      VAL2     PRMR3      VAL3     PRMR4      VAL4 
R ENDTIM     +0.0450R HLDTIM     +0.0400R DTOUT      +0.0020R MAXDISP     -0.001 
$    PRMR5      VAL5     PRMR6      VAL6     PRMR7      VAL7     PRMR8      VAL8 
R LOAD        -53014R FRIC       +0.2400R SFACT         5.00 
$
$
*TITLE
Single-Action Die Compaction (300MPa) 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                 CONTROL CARD                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTROL_TIMESTEP
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$   DTINIT    TSSFAC      ISDO    TSLIMT     DT2MS      LCTM     ERODE     MS1ST 
         0       0.8         0       0.0       0.0         0         0         0 
$---+----1----+----2
$   DT2MSF   DT2MSLC 

$
$
*CONTROL_TERMINATION
$---+----1----+----2----+----3----+----4----+----5
$   ENDTIM    ENDCYC     DTMIN    ENDENG    ENDMAS 
&ENDTIM            0       0.0       0.0       0.0 
$
$
*CONTROL_ENERGY
$---+----1----+----2----+----3----+----4
$     HGEN      RWEN    SLNTEN     RYLEN 
         2         1         2         1 
$
$
*CONTROL_HOURGLASS
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$---+----1----+----2
$      IHQ        QH 
         1      0.10 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                         DATABASE CONTROL FOR BINARY                          $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DATABASE_BINARY_D3PLOT
$---+----1----+----2----+----3----+----4
$  DT/CYCL      LCDT      BEAM     NPLTC 
&DTOUT             0         0         0 
$---+----1
$    IOOPT 
         0 
$
$
*DATABASE_RCFORC
$---+----1----+----2
$       DT    BINARY 
&DTOUT             1 
$
$
*DATABASE_GLSTAT
$---+----1----+----2
$       DT    BINARY 
&DTOUT             1 
$
$
*DATABASE_MATSUM
$---+----1----+----2
$       DT    BINARY 
&DTOUT             1 
$
$
*DATABASE_RBDOUT
$---+----1----+----2
$       DT    BINARY 
&DTOUT             1 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                  PART CARDS                                  $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*INCLUDE
7n5mm_die_0n500mm_elems_10g_sample_SELIG.mesh
$
$
*INCLUDE
matdef.dyn
$
$
*INCLUDE
die.part
$
$
*INCLUDE
toppunch.part
$
$
*INCLUDE
bottompunch.part
$
$
*INCLUDE
sample.part
$
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$
*SET_PART_LIST
$MASTERS, DIE AND PUNCH 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      SID       DA1       DA2       DA3       DA4 
         1 
$     PID1      PID2      PID3      PID4      PID5      PID6      PID7      PID8 
         1 
$
$
*SET_PART_LIST
$MASTERS, DIE AND PUNCH 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      SID       DA1       DA2       DA3       DA4 
         2 
$     PID1      PID2      PID3      PID4      PID5      PID6      PID7      PID8 
         2 
$
$
*SET_PART_LIST
$MASTERS, DIE AND PUNCH 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      SID       DA1       DA2       DA3       DA4 
         4 
$     PID1      PID2      PID3      PID4      PID5      PID6      PID7      PID8 
         4 
$
$
*SET_PART_LIST
$SLAVE, POWDER 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      SID       DA1       DA2       DA3       DA4 
         3 
$     PID1      PID2      PID3      PID4      PID5      PID6      PID7      PID8 
         3 
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                CONTACT CARDS                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$     SIDS      SIDM     SFACT      FREQ        FS        FD        DC     MEMBS 
         3         1&SFACT            50&FRIC 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$   TBIRTH    TDEATH       SOS       SOM       NDS       NDM       COF      INIT 
                                                                               1 
$
*CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$     SIDS      SIDM     SFACT      FREQ        FS        FD        DC     MEMBS 
         3         2&SFACT            50&FRIC 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$   TBIRTH    TDEATH       SOS       SOM       NDS       NDM       COF      INIT 
                                                                               1 
$
*CONTACT_2D_AUTOMATIC_SURFACE_TO_SURFACE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$     SIDS      SIDM     SFACT      FREQ        FS        FD        DC     MEMBS 
         3         4&SFACT            50&FRIC 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$   TBIRTH    TDEATH       SOS       SOM       NDS       NDM       COF      INIT 
                                                                               1 
$
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                            MOTION/DYNAMICS CARDS                             $ 
$                                                                              $ 
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$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*LOAD_RIGID_BODY
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      PID       DOF      LCID        SF       CID        M1        M2        M3 
         2         2         1&LOAD 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                               LOAD CURVE CARDS                               $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*DEFINE_CURVE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7
$     LCID      SIDR       SFA       SFO      OFFA      OFFO    DATTYP 
         1         0      +1.0      +1.0       0.0       0.0         0 
$---+----1----+----2----+----3----+----4
$            XVALUES             YVALUES 
          +0.000E+00          +0.000E+00 
&HLDTIM                       +1.000E+00 
&ENDTIM                       +1.000E+00 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                            IMPLICIT SPRINGBACK                               $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*INTERFACE_SPRINGBACK_LSDYNA
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7
$     PSID      NSHV     FTYPE              FTENSR 
         3        15         2                   0 
$
$
*END

matdef.dyn 

*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                              MATERIAL KEYWORDS                               $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MAT_ELASTIC_TITLE
$---+----1
$  HEADING 
ALUMINUM
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7
$      MID        RO         E        PR        DA        DB         K 
         1      2680  71.0E+09     0.334 
$
$
*MAT_RIGID_TITLE
$---+----1
$  HEADING 
STEEL,DIE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      MID        RO         E        PR         N    COUPLE         M     ALIAS 
         2      7800 210.0E+09      0.29 
$---+----1----+----2----+----3
$      CMO      CON1      CON2 
      +1.0       7.0       7.0 
$---+----1----+----2----+----3----+----4----+----5----+----6
$   LCO/A1        A2        A3        V1        V2        V3 
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$
$
*MAT_RIGID_TITLE
$---+----1
$  HEADING 
STEEL,PUNCH
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      MID        RO         E        PR         N    COUPLE         M     ALIAS 
         3      7800 210.0E+09      0.29 
$---+----1----+----2----+----3
$      CMO      CON1      CON2 
      +1.0       6.0       7.0 
$---+----1----+----2----+----3----+----4----+----5----+----6
$   LCO/A1        A2        A3        V1        V2        V3 

$
$
*MAT_GEOLOGIC_CAP_MODEL_TITLE
$ Al6061 (Lee and Kim) 
$ THEORETICAL MAX DENSITY = 2700 KG/M3 
$ RO - 44.7% of max density. BULK and G - 44.7% of values from matweb. GAMMA and BETA = 
0? TOFF = ??? 
$---+----1
$  HEADING 
AL6061
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      MID        RO      BULK         G     ALPHA     THETA     GAMMA      BETA 
        13      1207  48.87E+9  11.62E+9         0     0.394         0         0 
$---+----1----+----2----+----3----+----4----+----5----+----6
$        R         D         W        X0         C         N 
     2.800    1.4E-9      0.76 
$---+----1----+----2----+----3----+----4
$     PLOT     FTYPE       VEC      TOFF 
       3.0       1.0       0.0 -2.068E+6 
$
*END

die.part 

*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                PART KEYWORDS                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PART
$---+----1
$  HEADING 
DIE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         1         1         2         0         0         0         0         0 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                              SECTION KEYWORDS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*SECTION_SHELL
$---+----1
$  HEADING 
$SOLID, DIE 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$    SECID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP     SETYP 
         1        15       1.0         2       0.0       0.0         0         1
$
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$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$       T1        T2        T3        T4      NLOC     MAREA      IDOF    EDGSET 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0
$
*END

toppunch.part 

*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                PART KEYWORDS                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PART
$---+----1
$  HEADING 
TOPPUNCH
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         2         2         3         0         0         0         0         0 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                              SECTION KEYWORDS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*SECTION_SHELL
$---+----1
$  HEADING 
$SOLID, PUNCH 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$    SECID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP     SETYP 
         2        15       1.0         2       0.0       0.0         0         1
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$       T1        T2        T3        T4      NLOC     MAREA      IDOF    EDGSET 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0
$
$
*END

bottompunch.part 

*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                PART KEYWORDS                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PART
$---+----1
$  HEADING 
BOTTOMPUNCH
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         4         4         2         0         0         0         0         0 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                              SECTION KEYWORDS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
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*SECTION_SHELL
$---+----1
$  HEADING 
$SOLID, PUNCH 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$    SECID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP     SETYP 
         4        15       1.0         2       0.0       0.0         0         1
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$       T1        T2        T3        T4      NLOC     MAREA      IDOF    EDGSET 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0
$
$
*END

sample.part 

*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                PART KEYWORDS                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PART
$---+----1
$  HEADING 
POWDER
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         3         3        13         0         0         0         0         0 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                              SECTION KEYWORDS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*SECTION_SHELL
$---+----1
$  HEADING 
$SOLID, POWDER 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$    SECID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP     SETYP 
         3        15       1.0         2       0.0       0.0         0         1
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$       T1        T2        T3        T4      NLOC     MAREA      IDOF    EDGSET 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0
$
$
*END
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Appendix B: LS DYNA Code for 300 MPa

Springback

dcompaction_springback.dyn 

*KEYWORD
$
*KEYWORD_ID
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$            PROJECT                 NUM                                   STAGE 
DIECOMP_SPRINGBACK  SINGLEACT_300MPa    RIGIDPUNCH_ELFORM15 
$
$
*TITLE
SINGLE_ACTION_SPRINGBACK
$
$
$--------------
$
*INCLUDE
DIECOMP_SELIG_SA_300MPa_RIGIDPUNCH_ELFORM15.dynain
$
*INCLUDE
matdef.dyn
$
*INCLUDE
sample_springback.part
$
$--------------
$
*CONTROL_IMPLICIT_GENERAL
$   imflag       dt0      iefs 
         1    0.2500         0 
$
*CONTROL_IMPLICIT_SOLUTION
$  nlsolvr    ilimit    maxref     dctol     ectol     rctol     lstol    abstol 
         2        11        15     0.001      0.01   1.0E+10       0.9   1.0E-10 
$    dnorm   divflag   inistif   nlprint 
         2         1         1         0 
$
*CONTROL_IMPLICIT_AUTO
$    iauto    iteopt    itewin     dtmin     dtmax 
         0        11         5   0.00025       2.5 
$
*CONTROL_IMPLICIT_STABILIZATION
$      ias     scale    tstart      tend 
         0       0.0         0         0 
$        1      0.00         0         0 
$
$--------------
$
*CONTROL_TERMINATION
      3.00 
$
*DATABASE_BINARY_D3PLOT
      0.01 
$
$--------------
$
*END
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matdef.dyn 

$ 

*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                              MATERIAL KEYWORDS                               $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*MAT_ELASTIC_TITLE
$---+----1
$  HEADING 
ALUMINUM
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7
$      MID        RO         E        PR        DA        DB         K 
         1      2680  71.0E+09     0.334 
$
$
*MAT_RIGID_TITLE
$---+----1
$  HEADING 
STEEL,DIE
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      MID        RO         E        PR         N    COUPLE         M     ALIAS 
         2      7800 210.0E+09      0.29 
$---+----1----+----2----+----3
$      CMO      CON1      CON2 
      +1.0       7.0       7.0 
$---+----1----+----2----+----3----+----4----+----5----+----6
$   LCO/A1        A2        A3        V1        V2        V3 

$
$
*MAT_RIGID_TITLE
$---+----1
$  HEADING 
STEEL,PUNCH
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      MID        RO         E        PR         N    COUPLE         M     ALIAS 
         3      7800 210.0E+09      0.29 
$---+----1----+----2----+----3
$      CMO      CON1      CON2 
      +1.0       6.0       7.0 
$---+----1----+----2----+----3----+----4----+----5----+----6
$   LCO/A1        A2        A3        V1        V2        V3 

$
$
*MAT_GEOLOGIC_CAP_MODEL_TITLE
$ Al6061 (Lee and Kim) 
$ THEORETICAL MAX DENSITY = 2700 KG/M3 
$ RO - 44.7% of max density. BULK and G - 44.7% of values from matweb. GAMMA and BETA = 
0? TOFF = ??? 
$---+----1
$  HEADING 
AL6061
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      MID        RO      BULK         G     ALPHA     THETA     GAMMA      BETA 
        13      1207  48.87E+9  11.62E+9         0     0.394         0         0 
$---+----1----+----2----+----3----+----4----+----5----+----6
$        R         D         W        X0         C         N 
     2.800     5E-10      0.62 
$---+----1----+----2----+----3----+----4
$     PLOT     FTYPE       VEC      TOFF 
       3.0       1.0       0.0 -2.068E+6 
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$
*MAT_ELASTIC_TITLE
$---+----1
$  HEADING 
ELASTIC Al6061 
$ RO is final bulk density; E ASSUMED TO BE calculated as rel dens at end of compaction * 
72.27E+09 (94.4%) ; PR = 0.30 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7
$      MID        RO         E        PR        DA        DB         K 
        14      2549 68.22E+09      0.30 
$
*END

sample_springback.part 

*KEYWORD
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                                PART KEYWORDS                                 $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*PART
$---+----1
$  HEADING 
POWDER
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$      PID     SECID       MID     EOSID      HGID      GRAV    ADPOPT      TMID 
         3         3        14         0         0         0         0         0 
$
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$                                                                              $ 
$                              SECTION KEYWORDS                                $ 
$                                                                              $ 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
*SECTION_SHELL
$---+----1
$  HEADING 
$SOLID, POWDER 
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$    SECID    ELFORM      SHRF       NIP     PROPT   QR/IRID     ICOMP     SETYP 
         3        15       1.0         2       0.0       0.0         0         1
$
$---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
$       T1        T2        T3        T4      NLOC     MAREA      IDOF    EDGSET 
       0.0       0.0       0.0       0.0       0.0       0.0       0.0
$
$
*END


